

Renesas SynergyTM Software Package
(SSP) v2.6.0

 User’s Manual

 Renesas SynergyTM Platform

 All information contained in these materials, including products and
product specifications, represents information on the product at the
time of publication and is subject to change by Renesas Electronics
Corp. without notice. Please review the latest information published
by Renesas Electronics Corp. through various means, including the
Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics Revision 1.60 Mar.29.2024
www.renesas.com

Table of Contents

Chapter 1 Renesas Synergy™ Software Package Introduction 26
1.1 Introduction to the SSP User's Manual .. 26
1.2 Subjects Covered in this Manual .. 27

Chapter 2 SSP Overview ... 29
2.1 SSP Overview .. 29

2.1.1 Introduction .. 30
2.1.1.1 Purpose .. 30
2.1.1.2 Overview .. 30
2.1.1.3 Ease of Use .. 30
2.1.1.4 Scalability .. 30

2.1.2 SSP Architecture ... 30
2.1.2.1 Renesas Synergy Software Package (SSP) Architecture .. 30
2.1.2.2 SSP Modules .. 33
2.1.2.3 SSP Stacks ... 34
2.1.2.4 SSP Interfaces ... 35
2.1.2.5 Build Time Configuration .. 45
2.1.2.6 Interface Extensions .. 45
2.1.2.7 SSP Predefined Layers ... 46
2.1.2.8 SSP File Structure ... 46
2.1.2.9 SSP Connecting Layers .. 48
2.1.2.10 SSP Architecture In Practice ... 49
2.1.2.11 Using SSP Modules .. 51
2.1.2.12 Coding Style .. 53

2.1.3 BSP Architecture ... 54
2.1.3.1 What Does the BSP Do? .. 54
2.1.3.2 BSP Related Terminology ... 55
2.1.3.3 BSP Directory Structure .. 56
2.1.3.4 Configuring the BSP .. 57
2.1.3.5 BSP Configuration Settings ... 57
2.1.3.6 BSP Configuration Files .. 58
2.1.3.7 BSP Pin Configuration ... 59
2.1.3.8 BSP Clock Configuration .. 59
2.1.3.9 System Interrupts .. 60
2.1.3.10 Group Interrupts .. 60
2.1.3.11 Custom BSP Board support .. 64
2.1.3.12 BSP API functions ... 64

2.1.4 Key Features ... 66
2.1.4.1 Azure RTOS ThreadX® RTOS ... 66
2.1.4.2 Azure RTOS GUIX™ .. 66
2.1.4.3 Azure RTOS USBX™ .. 67
2.1.4.4 Azure RTOS FileX® .. 67
2.1.4.5 Azure RTOS NetX™ ... 67
2.1.4.6 Application Frameworks .. 67
2.1.4.7 Security Cryptographic (SCE) Library .. 68
2.1.4.8 CMSIS DSP Library .. 68
2.1.4.9 CMSIS Neural Network Library ... 69
2.1.4.10 AzureRTOS NetX Duo™ .. 69
2.1.4.11 Azure RTOS NetX™ Applications (IPv4 Networking Services) 69
2.1.4.12 Azure RTOS NetX Duo™ Applications (IPv4/v6 Networking Services) 70
2.1.4.13 Azure RTOS NetX Secure ... 70
2.1.4.14 Azure RTOS MQTT client for NetX Duo .. 71

2.1.4.15 Memory Support ... 71
2.1.4.16 Human Machine Interface (HMI) .. 71
2.1.4.17 Hardware Abstract Layer (HAL) Driver Modules .. 71
2.1.4.18 GPIO and Key Interrupts ... 72

Chapter 3 Starting Development ... 73
3.1 e2 studio ISDE User Guide .. 73

3.1.1 Using the e2 studio ISDE .. 73
3.1.2 What is the e2 studio ISDE? .. 73
3.1.3 e2 studio ISDE Prerequisites .. 75

3.1.3.1 Obtaining a Synergy Kit ... 75
3.1.3.2 PC Requirements .. 75
3.1.3.3 Installing e2 studio and the SSP .. 75
3.1.3.4 Choosing a Toolchain ... 75
3.1.3.5 Adding the IAR Embedded Workbench for Renesas Synergy Compiler into e2 studio 76

3.1.4 What is a Project? .. 76
3.1.5 Creating a Project .. 78

3.1.5.1 Creating a New Project ... 78
3.1.5.2 Selecting a Board and Toolchain .. 79
3.1.5.3 Selecting a Project Template .. 80

3.1.6 Configuring a Project ... 82
3.1.6.1 Configuring the BSP with the ISDE ... 82
3.1.6.2 Configuring Clocks ... 83
3.1.6.3 Configuring Pins .. 84

3.1.7 Adding Threads and Drivers ... 87
3.1.7.1 Adding and Configuring HAL Drivers .. 88
3.1.7.2 Adding Drivers to a Thread and Configuring the Drivers .. 90
3.1.7.3 Configuring Threads .. 93
3.1.7.4 Configuring Interrupts .. 94

3.1.8 Configuring the SSP Messaging Framework ... 95
3.1.8.1 Adding an Event Class ... 96
3.1.8.2 Adding an Event .. 97
3.1.8.3 Configuring the Messaging Subscriber List ... 97
3.1.8.4 Generating Files for the Messaging Framework .. 99

3.1.9 Reviewing and Adding Components .. 99
3.1.10 Writing the Application .. 100

3.1.10.1 RTOS-independent Applications .. 100
3.1.10.2 ThreadX Applications .. 101

3.1.11 Debugging the Project .. 102
3.1.12 Using TraceX with a Synergy Project .. 103
3.1.13 Modifying Toolchain Settings .. 106
3.1.14 e2 studio ISDE Usage Notes .. 106

3.1.14.1 Including ThreadX sources ... 106
3.1.14.2 Using Synergy Developer Assistance .. 107

3.2 Tutorial: Your First Synergy Project - Blinky .. 110
3.2.1 Tutorial Blinky .. 110
3.2.2 What Does Blinky Do? ... 110
3.2.3 Prerequisites .. 111
3.2.4 Create a New Project for Blinky .. 111

3.2.4.1 Details about the Blinky Configuration .. 113
3.2.4.2 Configuring the Blinky Clocks ... 113
3.2.4.3 Configuring the Blinky Pins .. 113
3.2.4.4 Configuring the Parameters for Blinky Components ... 113
3.2.4.5 Where is main()? ... 113
3.2.4.6 Blinky Example Code ... 114

3.2.5 Build the Blinky Project .. 114
3.2.6 Debug the Blinky Project .. 115

3.2.6.1 Debug prerequisites ... 115
3.2.6.2 Debug steps ... 115
3.2.6.3 Details about the Debug Process ... 116

3.2.7 Run the Blinky Project ... 117
3.3 Tutorial: Using HAL Drivers - Programming the WDT .. 117

3.3.1 Application WDT .. 117
3.3.2 Creating a WDT Application Using the Synergy SSP and ISDE 117

3.3.2.1 Using the SSP and the e2 studio ISDE .. 117
3.3.2.2 The WDT Application ... 118
3.3.2.3 WDT Application flow ... 119

3.3.3 Creating the Project with the ISDE .. 120
3.3.4 Configuring the Project with the ISDE .. 122

3.3.4.1 BSP Tab ... 123
3.3.4.2 Clocks Tab .. 123
3.3.4.3 Pins Tab ... 124
3.3.4.4 Threads Tab ... 124
3.3.4.5 Components Tab ... 126

3.3.5 WDT Generated Project Files ... 127
3.3.5.1 WDT hal_data.h ... 128
3.3.5.2 WDT hal_data.c ... 129
3.3.5.3 WDT main.c ... 130
3.3.5.4 WDT hal_entry.c ... 130

3.3.6 Building and Testing the Project ... 132
3.4 IAR Embedded Workbench for Renesas .. 133

3.4.1 Using IAR Embedded Workbench for Synergy ... 133
3.4.2 What is IAR EW for Synergy? ... 134
3.4.3 IAR EW Key Features ... 134
3.4.4 What is Synergy Standalone Configurator (SSC)? ... 134
3.4.5 Installing the Tools ... 135
3.4.6 Creating a Renesas Synergy Project using IAR EW for Synergy and SSC 136

Chapter 4 Module Overviews .. 141
4.1 Framework Layer ... 142

4.1.1 ADC Periodic Framework ... 143
4.1.1.1 ADC Periodic Framework Module Introduction .. 143
4.1.1.2 ADC Periodic Framework Module APIs Overview .. 144
4.1.1.3 ADC Periodic Framework Module Operational Overview ... 145
4.1.1.4 Including the ADC Periodic Framework Module in an Application 147
4.1.1.5 Configuring the ADC Periodic Framework Module .. 148
4.1.1.6 Using the ADC Periodic Framework Module in an Application 159

4.1.2 Audio Playback Framework .. 160
4.1.2.1 Audio Playback Framework Introduction ... 160
4.1.2.2 Audio Playback Framework Module APIs Overview ... 161
4.1.2.3 Audio Playback Framework Module Operational Overview .. 163
4.1.2.4 Including the Audio Playback Framework Module in an Application 165
4.1.2.5 Configuring the Audio Playback Framework Module ... 166
4.1.2.6 Using the Audio Playback Framework Module in an Application 181

4.1.3 Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac 182
4.1.3.1 Audio Playback DAC Framework Introduction .. 182
4.1.3.2 Audio Playback DAC Framework Module APIs Overview ... 183
4.1.3.3 Audio Playback DAC Framework Module Operational Overview 184
4.1.3.4 Including the Audio Playback DAC Framework Module in an Application 187
4.1.3.5 Configuring the Audio Playback DAC Framework Module .. 188
4.1.3.6 Using the Audio Playback DAC Framework Module in an Application 196

4.1.4 Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s 197
4.1.4.1 Audio Playback I2S Framework Introduction ... 197
4.1.4.2 Audio Playback I2S Framework Module APIs Overview ... 198
4.1.4.3 Audio Playback I2S Framework Module Operational Overview 200
4.1.4.4 Including the Audio Playback I2S Framework Module in an Application 202
4.1.4.5 Configuring the Audio Playback I2S Framework Module ... 203
4.1.4.6 Using the Audio Playback I2S Framework Module in an Application 211

4.1.5 Audio Record ADC Framework .. 212
4.1.5.1 Audio Record ADC Framework Module Introduction ... 212
4.1.5.2 Audio Record ADC Framework Module APIs Overview .. 213
4.1.5.3 Audio Record ADC Framework Module Operational Overview 214
4.1.5.4 Including the Audio Record ADC Framework Module in an Application 215
4.1.5.5 Configuring the Audio Record ADC Framework Module ... 216
4.1.5.6 Using the Audio Record ADC Framework Module in an Application 226

4.1.6 Audio Record I2S Framework ... 227
4.1.6.1 Audio Record I2S Framework Introduction .. 227
4.1.6.2 Audio Record I2S Framework Module APIs Overview .. 228
4.1.6.3 Audio Record I2S Framework Module Operational Overview 229
4.1.6.4 Including the Audio Record I2S Framework Module in an Application 230
4.1.6.5 Configuring the Audio Record I2S Framework Module .. 231
4.1.6.6 Using the Audio Record I2S Framework Module in an Application 238

4.1.7 Block Media Framework on sf_block_media_lx_nor .. 239
4.1.7.1 Block Media Framework Module Introduction ... 239
4.1.7.2 Block Media Framework Module APIs Overview ... 240
4.1.7.3 Block Media Framework Module Operational Overview .. 242
4.1.7.4 Including the Block Media Framework Module in an Application 243
4.1.7.5 Configuring the Block Media Framework Module ... 244
4.1.7.6 Using the Block Media Framework Module in an Application 246

4.1.8 Block Media Framework on sf_block_media_qspi ... 248
4.1.8.1 Block Media QSPI Framework Module Introduction .. 248
4.1.8.2 Block Media QSPI Framework Module APIs Overview .. 249
4.1.8.3 Block Media QSPI Framework Module Operational Overview 250
4.1.8.4 Including the Block Media QSPI Framework Module in an Application 251
4.1.8.5 Configuring the Block Media QSPI Framework Module .. 252
4.1.8.6 Using the Block Media QSPI Framework Module in an Application 253

4.1.9 Block Media Framework on sf_block_media_ram ... 254
4.1.9.1 Block Media RAM Framework Module Introduction .. 254
4.1.9.2 Block Media RAM Framework Module APIs Overview .. 255
4.1.9.3 Block Media RAM Framework Module Operational Overview 256
4.1.9.4 Including the Block Media RAM Framework Module in an Application 257
4.1.9.5 Configuring the Block Media RAM Framework Module .. 258
4.1.9.6 Using the Block Media RAM Framework Module in an Application 259

4.1.10 Block Media Framework on sf_block_media_sdmmc ... 260
4.1.10.1 Block Media SDMMC Framework Module Introduction ... 260
4.1.10.2 Block Media SDMMC Framework Module APIs Overview .. 261
4.1.10.3 Block Media SDMMC Framework Module Operational Overview 262
4.1.10.4 Including the Block Media SDMMC Framework Module in an Application 263
4.1.10.5 Configuring the Block Media SDMMC Framework Module 264
4.1.10.6 Using the Block Media SDMMC Framework Module in an Application 269

4.1.11 BLE Framework .. 271
4.1.11.1 BLE Framework Introduction .. 271
4.1.11.2 BLE Framework Module APIs Overview ... 273
4.1.11.3 BLE Framework Module Operational Overview ... 278
4.1.11.4 Including the BLE Framework Module in an Application ... 292
4.1.11.5 Configuring the BLE Framework Module .. 293

4.1.11.6 Using the BLE Framework Module in an Application .. 297
4.1.12 Cellular Framework .. 298

4.1.12.1 Cellular Framework Introduction ... 298
4.1.12.2 Cellular Framework Module APIs Overview ... 300
4.1.12.3 Cellular Framework Module Operational Overview ... 305
4.1.12.4 Including the Cellular Framework Module in an Application 314
4.1.12.5 Configuring the Cellular Framework Module ... 316
4.1.12.6 Using the Cellular Framework Module in an Application ... 323

4.1.13 Telnet Communications Framework on sf_comms_telnet 324
4.1.13.1 Telnet Communications Framework Introduction .. 324
4.1.13.2 Telnet Communications Framework Module APIs Overview 325
4.1.13.3 Telnet Communications Framework Module Operational Overview 327
4.1.13.4 Including the Telnet Communications Framework Module in an Application 327
4.1.13.5 Configuring the Telnet Communications Framework Module 329
4.1.13.6 Using the Telnet Communications Framework Module in an Application 335

4.1.14 Communications Framework on sf_el_ux_comms_v2 .. 336
4.1.14.1 Communications Framework on USBX v2 Module Introduction 336
4.1.14.2 Communications Framework on USBX v2 Module APIs Overview 337
4.1.14.3 Communications Framework on USBX v2 Module Operational Overview 339
4.1.14.4 Including the Communications Framework on USBX v2 Module in an Application 339
4.1.14.5 Configuring the Communications Framework v2 on USBX Module 340
4.1.14.6 Using the Communications Framework on USBX v2 Module in an Application 351

4.1.15 Console Framework ... 352
4.1.15.1 Console Framework Introduction .. 352
4.1.15.2 Console Framework Module APIs Overview ... 353
4.1.15.3 Console Framework Module Operational Overview ... 355
4.1.15.4 Including the Console Framework Module in an Application 357
4.1.15.5 Configuring the Console Framework Module .. 359
4.1.15.6 Using the Console Framework Module in an Application .. 360

4.1.16 Crypto Framework .. 361
4.1.16.1 Crypto Framework Introduction ... 361
4.1.16.2 Crypto Framework Module APIs Overview ... 362
4.1.16.3 Crypto Framework Module Operational Overview .. 367
4.1.16.4 Including the Crypto Framework Module in an Application .. 379
4.1.16.5 Configuring the Crypto Framework Module ... 380
4.1.16.6 Using the Crypto Framework Module in an Application ... 384

4.1.17 Capacitive Touch v2 Framework .. 389
4.1.17.1 Capacitive Touch v2 Module Introduction .. 389
4.1.17.2 Capacitive Touch v2 Module Features ... 389
4.1.17.3 Capacitive Touch v2 Module Configuration ... 389
4.1.17.4 Capacitive Touch v2 Module Usage Notes ... 390
4.1.17.5 Capacitive Touch v2 Module Examples ... 391

4.1.18 External IRQ Framework ... 393
4.1.18.1 External IRQ Framework Module Introduction .. 393
4.1.18.2 External IRQ Framework Module APIs Overview .. 394
4.1.18.3 External IRQ Framework Module Operational Overview ... 395
4.1.18.4 Including the External IRQ Framework Module in an Application 395
4.1.18.5 Configuring the External IRQ Framework Module .. 396
4.1.18.6 Using the External IRQ Framework Module in an Application 398

4.1.19 I2C Framework .. 399
4.1.19.1 I2C Framework Introduction ... 399
4.1.19.2 I2C Framework Module APIs Overview ... 400
4.1.19.3 I2C Framework Module Operational Overview ... 402
4.1.19.4 Including the I2C Framework Module in an Application ... 404
4.1.19.5 Configuring the I2C Framework Module ... 405

4.1.19.6 Using the I2C Framework Module in an Application ... 415
4.1.20 JPEG Decode Framework .. 423

4.1.20.1 JPEG Decode Framework Module Introduction ... 423
4.1.20.2 JPEG Decode Framework Module APIs Overview ... 424
4.1.20.3 JPEG Decode Framework Module Operational Overview .. 426
4.1.20.4 Including the JPEG Decode Framework Module in an Application 427
4.1.20.5 Configuring the JPEG Decode Framework Module ... 428
4.1.20.6 Using the JPEG Decode Framework Module in an Application 431

4.1.21 Memory Framework on sf_memory_qspi_nor ... 432
4.1.21.1 Memory Framework Module Introduction .. 432
4.1.21.2 Memory Framework Module APIs Overview ... 433
4.1.21.3 Memory Framework Module Operational Overview ... 434
4.1.21.4 Including the Memory Framework Module in an Application 435
4.1.21.5 Configuring the Memory Framework Module .. 436
4.1.21.6 Using the Memory Framework Module in an Application .. 437

4.1.22 Messaging Framework .. 438
4.1.22.1 Messaging Framework Module Introduction ... 439
4.1.22.2 Messaging Framework Module APIs Overview ... 440
4.1.22.3 Messaging Framework Module Operational Overview .. 441
4.1.22.4 Including the Messaging Framework Module in an Application 451
4.1.22.5 Configuring the Messaging Framework Module ... 452
4.1.22.6 Using the Messaging Framework Module in an Application 457

4.1.23 Power Profiles V2 Framework .. 459
4.1.23.1 Power Profiles V2 Framework Introduction ... 459
4.1.23.2 Power Profiles V2 Framework Module APIs Overview .. 460
4.1.23.3 Power Profiles V2 Framework Module Operational Overview 462
4.1.23.4 Including the Power Profiles V2 Framework Module in an Application 470
4.1.23.5 Configuring the Power Profiles V2 Framework Module ... 471
4.1.23.6 Using the Power Profiles V2 Framework Module in an Application 479

4.1.24 SPI Framework .. 480
4.1.24.1 SPI Framework Introduction ... 481
4.1.24.2 SPI Framework Module APIs Overview ... 481
4.1.24.3 SPI Framework Module Operational Overview ... 483
4.1.24.4 Including the SPI Framework Module in an Application ... 485
4.1.24.5 Configuring the SPI Framework Module ... 486
4.1.24.6 Using the SPI Framework Module in an Application ... 496

4.1.25 Thread Monitor Framework ... 505
4.1.25.1 Thread Monitor Framework Module Introduction .. 506
4.1.25.2 Thread Monitor Framework Module APIs Overview ... 506
4.1.25.3 Thread Monitor Framework Module Operational Overview 508
4.1.25.4 Including the Thread Monitor Framework Module in an Application 510
4.1.25.5 Configuring the Thread Monitor Framework Module ... 511
4.1.25.6 Using the Thread Monitor Framework Module in an Application 515

4.1.26 Touch Panel V2 Framework ... 516
4.1.26.1 Touch Panel V2 Framework Introduction .. 516
4.1.26.2 Touch Panel V2 Framework Module APIs Overview ... 517
4.1.26.3 Touch Panel V2 Framework Module Operational Overview 519
4.1.26.4 Including the Touch Panel V2 Framework Module in an Application 522
4.1.26.5 Configuring the Touch Panel V2 Framework Module .. 523
4.1.26.6 Using the Touch Panel V2 Framework Module in an Application 536

4.1.27 UART Communications Framework .. 537
4.1.27.1 UART Communications Framework Module Introduction .. 537
4.1.27.2 UART Communications Framework Module APIs Overview 538
4.1.27.3 UART Communications Framework Module Operational Overview 540
4.1.27.4 Including the UART Communications Framework Module in an Application 540

4.1.27.5 Configuring the UART Communications Framework Module 541
4.1.27.6 Using the UART Communications Framework Module in an Application 548

4.1.28 Wi-Fi Framework ... 550
4.1.28.1 Wi-Fi Framework Introduction .. 550
4.1.28.2 Wi-Fi Framework Module APIs Overview .. 552
4.1.28.3 Wi-Fi Framework Module Operational Overview ... 558
4.1.28.4 Including the Wi-Fi Framework Module in an Application .. 562
4.1.28.5 Configuring the Wi-Fi Framework Module .. 563
4.1.28.6 Using the Wi-Fi Framework Module in an Application .. 574

4.1.29 Wi-Fi QCA4010 Framework ... 578
4.1.29.1 Wi-Fi QCA4010 Framework Introduction .. 578
4.1.29.2 SF WIFI QCA4010 Framework APIs Overview ... 579
4.1.29.3 SF_WIFI_QCA4010 Framework Module Operational Overview 583
4.1.29.4 Including the SF_WIFI_QCA4010 Framework in an Application 585
4.1.29.5 Configuring the Wi-Fi QCA4010 Framework ... 586
4.1.29.6 Using the Wi-Fi QCA4010 Framework Module in an Application 592

4.2 HAL Layer .. 592
4.2.1 Analog Connection Driver on r_analog_connect .. 594

4.2.1.1 Analog Connection HAL Module Introduction ... 594
4.2.1.2 Analog Connection HAL Module APIs Overview ... 595
4.2.1.3 Analog Connection HAL Module Operational Overview .. 596
4.2.1.4 Including the Analog Connection HAL Module in an Application 599
4.2.1.5 Configuring the Analog Connection HAL Module ... 600
4.2.1.6 Using the Analog Connection HAL Module in an Application 603

4.2.2 Comparator Driver on r_acmphs ... 603
4.2.2.1 ACMPHS HAL Module Introduction .. 603
4.2.2.2 ACMPHS HAL Module APIs Overview .. 605
4.2.2.3 ACMPHS HAL Module Operational Overview .. 606
4.2.2.4 Including the ACMPHS HAL Module in an Application .. 607
4.2.2.5 Configuring the ACMPHS HAL Module .. 607
4.2.2.6 Using the ACMPHS HAL Module in an Application .. 609

4.2.3 Comparator Driver on r_acmplp ... 610
4.2.3.1 ACMPLP HAL Module Introduction .. 610
4.2.3.2 ACMPLP HAL Module APIs Overview .. 612
4.2.3.3 ACMPLP HAL Module Operational Overview ... 613
4.2.3.4 Including the ACMPLP HAL Module in an Application .. 614
4.2.3.5 Configuring the ACMPLP HAL Module .. 614
4.2.3.6 Using the ACMPLP HAL Module in an Application .. 621

4.2.4 ADC Driver ... 622
4.2.4.1 ADC HAL Module Introduction .. 622
4.2.4.2 ADC HAL Module APIs Overview ... 625
4.2.4.3 ADC HAL Module Operational Overview ... 626
4.2.4.4 Including the ADC HAL Module in an Application ... 629
4.2.4.5 Configuring the ADC HAL Module .. 629
4.2.4.6 Using the ADC HAL Module in an Application .. 637

4.2.5 Timer Driver on r_agt .. 639
4.2.5.1 AGT HAL Module Introduction .. 639
4.2.5.2 AGT HAL Module APIs Overview ... 641
4.2.5.3 AGT HAL Module Operational Overview ... 642
4.2.5.4 Including the AGT HAL Module in an Application ... 646
4.2.5.5 Configuring the AGT HAL Module .. 647
4.2.5.6 Using the AGT HAL Module in an Application .. 650

4.2.6 AGT Input Capture Driver on r_agt .. 651
4.2.6.1 Input Capture HAL Module Introduction .. 651
4.2.6.2 Input Capture HAL Module APIs Overview .. 653

4.2.6.3 Input Capture HAL Module Operational Overview .. 654
4.2.6.4 Including the Input Capture HAL Module in an Application .. 656
4.2.6.5 Configuring the Input Capture HAL Module .. 657
4.2.6.6 Using the Input Capture HAL Module in an Application .. 660

4.2.7 Clock Accurate Circuit Driver ... 660
4.2.7.1 CAC HAL Module Introduction .. 660
4.2.7.2 CAC HAL Module APIs Overview ... 663
4.2.7.3 CAC HAL Module Operational Overview ... 664
4.2.7.4 Including the CAC HAL Module in an Application ... 666
4.2.7.5 Configuring the CAC HAL Module .. 667
4.2.7.6 Using the CAC HAL Module in an Application .. 670

4.2.8 CAN Driver ... 671
4.2.8.1 CAN HAL Module Introduction .. 671
4.2.8.2 CAN HAL Module APIs Overview ... 675
4.2.8.3 CAN HAL Module Operational Overview ... 676
4.2.8.4 Including the CAN HAL Module in an Application ... 678
4.2.8.5 Configuring the CAN HAL Module .. 679
4.2.8.6 Using the CAN HAL Module in an Application .. 684

4.2.9 CGC Driver ... 685
4.2.9.1 CGC HAL Module Introduction .. 686
4.2.9.2 CGC HAL Module APIs Overview .. 688
4.2.9.3 CGC HAL Module Operational Overview ... 691
4.2.9.4 Including the CGC HAL Module in an Application ... 696
4.2.9.5 Configuring the CGC HAL Module .. 697
4.2.9.6 Using the CGC Module in an Application ... 702

4.2.10 CTSU v2 Driver .. 703
4.2.10.1 CTSU v2 HAL Module Introduction ... 703
4.2.10.2 CTSU v2 HAL Module Configuration .. 704
4.2.10.3 CTSU v2 HAL Module Usage Notes ... 705
4.2.10.4 CTSU v2 HAL Module Examples .. 706

4.2.11 CRC Driver ... 709
4.2.11.1 CRC HAL Module Introduction ... 709
4.2.11.2 CRC HAL Module APIs Overview .. 711
4.2.11.3 CRC HAL Module Operational Overview .. 712
4.2.11.4 Including the CRC HAL Module in an Application .. 713
4.2.11.5 Configuring the CRC HAL Module .. 714
4.2.11.6 Using the CRC HAL Module in an Application .. 715

4.2.12 DAC Driver ... 717
4.2.12.1 DAC HAL Module Introduction ... 718
4.2.12.2 DAC HAL Module APIs Overview .. 719
4.2.12.3 DAC HAL Module Operational Overview .. 720
4.2.12.4 Including the DAC HAL Module in an Application .. 721
4.2.12.5 Configuring the DAC HAL Module .. 722
4.2.12.6 Using the DAC HAL Module in an Application .. 724

4.2.13 DAC8 Driver .. 725
4.2.13.1 DAC8 HAL Module Introduction ... 725
4.2.13.2 DAC8 HAL Module APIs Overview ... 727
4.2.13.3 DAC8 HAL Module Operational Overview .. 728
4.2.13.4 Including the DAC8 HAL Module in an Application ... 729
4.2.13.5 Configuring the DAC8 HAL Module ... 730
4.2.13.6 Using the DAC8 HAL Module in an Application ... 732

4.2.14 Display Driver ... 733
4.2.14.1 GLCDC HAL Module Introduction .. 733
4.2.14.2 GLCDC HAL Module APIs Overview .. 736
4.2.14.3 GLCDC HAL Module Operational Overview ... 738

4.2.14.4 Including the GLCDC HAL Module in an Application .. 744
4.2.14.5 Configuring the GLCDC HAL Module .. 745
4.2.14.6 Using the GLCDC HAL Module in an Application .. 758

4.2.15 Data Operation Circuit Driver .. 759
4.2.15.1 DOC HAL Module Introduction ... 760
4.2.15.2 DOC HAL Module APIs Overview .. 761
4.2.15.3 DOC HAL Module Operational Overview .. 762
4.2.15.4 Including the DOC HAL Module in an Application .. 763
4.2.15.5 Configuring the DOC HAL Module .. 764
4.2.15.6 Using the DOC HAL Module in an Application .. 765

4.2.16 Transfer Driver on r_dmac .. 766
4.2.16.1 DMAC HAL Module Introduction ... 766
4.2.16.2 DMAC HAL Module APIs Overview ... 768
4.2.16.3 DMAC HAL Module Operational Overview ... 769
4.2.16.4 Including the DMAC HAL Module in an Application ... 771
4.2.16.5 Configuring the DMAC HAL Module ... 772
4.2.16.6 Using the DMAC HAL Module in an Application ... 773

4.2.17 Transfer Driver on r_dtc ... 774
4.2.17.1 DTC HAL Module Introduction .. 774
4.2.17.2 DTC HAL Module APIs Overview .. 776
4.2.17.3 DTC HAL Module Operational Overview .. 778
4.2.17.4 Including the DTC HAL Module in an Application .. 779
4.2.17.5 Configuring the DTC HAL Module .. 780
4.2.17.6 Using the DTC HAL Module in an Application .. 782

4.2.18 ELC Driver ... 783
4.2.18.1 ELC HAL Module Introduction .. 783
4.2.18.2 ELC HAL Module APIs Overview .. 785
4.2.18.3 ELC HAL Module Operational Overview ... 786
4.2.18.4 Including the ELC HAL Module in an Application .. 788
4.2.18.5 Configuring the ELC HAL Module .. 789
4.2.18.6 Using the ELC HAL Module in an Application .. 789

4.2.19 External IRQ Driver .. 790
4.2.19.1 External IRQ HAL Module Introduction ... 790
4.2.19.2 External IRQ HAL Module APIs Overview .. 792
4.2.19.3 External IRQ HAL Module Operational Overview .. 793
4.2.19.4 Including the External IRQ HAL Module in an Application .. 794
4.2.19.5 Configuring the External IRQ HAL Module ... 795
4.2.19.6 Using the External IRQ HAL Module in an Application .. 797

4.2.20 Flash Driver .. 798
4.2.20.1 Flash HAL Module Introduction ... 798
4.2.20.2 Flash HAL Module APIs Overview .. 801
4.2.20.3 Flash HAL Module Operational Overview .. 803
4.2.20.4 Including the Flash HAL Module in an Application .. 806
4.2.20.5 Configuring the Flash HAL Module ... 806
4.2.20.6 Using the Flash HAL Module in an Application ... 809

4.2.21 FMI Driver ... 810
4.2.21.1 FMI HAL Module Introduction .. 810
4.2.21.2 FMI HAL Module APIs Overview .. 811
4.2.21.3 FMI HAL Module Operational Overview ... 812
4.2.21.4 Including the FMI HAL Module in an Application ... 813
4.2.21.5 Configuring the FMI HAL Module .. 814
4.2.21.6 Using the FMI HAL Module in an Application .. 815

4.2.22 Timer Driver on r_gpt ... 816
4.2.22.1 GPT HAL Module Introduction .. 816
4.2.22.2 GPT HAL Module APIs Overview .. 818

4.2.22.3 GPT HAL Module Operational Overview .. 820
4.2.22.4 Including the GPT HAL Module in an Application .. 823
4.2.22.5 Configuring the GPT HAL Module .. 824
4.2.22.6 Using the GPT HAL Module in an Application .. 827

4.2.23 I2C SCI Driver ... 827
4.2.23.1 I2C SCI HAL Module Introduction .. 827
4.2.23.2 I2C SCI HAL Module APIs Overview .. 829
4.2.23.3 I2C SCI HAL Module Operational Overview ... 831
4.2.23.4 Including the I2C SCI HAL Module in an Application .. 832
4.2.23.5 Configuring the I2C SCI HAL Module .. 833
4.2.23.6 Using the I2C SCI HAL Module in an Application .. 838

4.2.24 I2C Master Driver ... 839
4.2.24.1 I2C Master HAL Module Introduction .. 839
4.2.24.2 I2C Master HAL Module APIs Overview ... 842
4.2.24.3 I2C Master HAL Module Operational Overview ... 843
4.2.24.4 Including the I2C Master HAL Module in an Application ... 844
4.2.24.5 Configuring the I2C Master HAL Module .. 845
4.2.24.6 Using the I2C Master HAL Module in an Application ... 850

4.2.25 I2C Slave Driver .. 851
4.2.25.1 I2C Slave HAL Module Introduction ... 851
4.2.25.2 I2C Slave HAL Module APIs Overview ... 854
4.2.25.3 I2C Slave HAL Module Operational Overview .. 855
4.2.25.4 Including the I2C Slave HAL Module in an Application ... 856
4.2.25.5 Configuring the I2C Slave HAL Module ... 857
4.2.25.6 Using the I2C Slave HAL Module in an Application ... 859

4.2.26 I2S Driver ... 861
4.2.26.1 I2S HAL Module Introduction .. 861
4.2.26.2 I2S HAL Module APIs Overview ... 863
4.2.26.3 I2S HAL Module Operational Overview ... 865
4.2.26.4 Including the I2S HAL Module in an Application ... 865
4.2.26.5 Configuring the I2S HAL Module .. 866
4.2.26.6 Using the I2S HAL Module in an Application .. 874

4.2.27 GPT Input Capture on r_gpt Driver ... 875
4.2.27.1 GPT Input Capture HAL Module Introduction .. 876
4.2.27.2 GPT Input Capture HAL Module APIs Overview ... 878
4.2.27.3 GPT Input Capture HAL Module Operational Overview ... 879
4.2.27.4 Including the GPT Input Capture HAL Module in an Application 881
4.2.27.5 Configuring the GPT Input Capture HAL Module .. 882
4.2.27.6 Using the GPT Input Capture HAL Module in an Application 885

4.2.28 I/O Port Driver ... 886
4.2.28.1 I/O PORT HAL Module Introduction ... 886
4.2.28.2 I/O PORT HAL Module APIs Overview ... 888
4.2.28.3 I/O PORT HAL Module Operational Overview .. 890
4.2.28.4 Including the I/O PORT HAL Module in an Application ... 891
4.2.28.5 Configuring the I/O PORT HAL Module ... 892
4.2.28.6 Using the I/O PORT HAL Module in an Application ... 893

4.2.29 Watchdog Driver on r_iwdt .. 894
4.2.29.1 Independent Watchdog Timer HAL Module Introduction ... 894
4.2.29.2 Independent Watchdog Timer HAL Module APIs Overview 897
4.2.29.3 Independent Watchdog Timer HAL Module Operational Overview 898
4.2.29.4 Including the Independent Watchdog Timer HAL Module in an Application 902
4.2.29.5 Configuring the Independent Watchdog Timer HAL Module 903
4.2.29.6 Using the Independent Watchdog Timer HAL Module in an Application 904

4.2.30 JPEG Decode Driver ... 906
4.2.30.1 JPEG Decode HAL Module Introduction ... 907

4.2.30.2 JPEG Decode HAL Module APIs Overview ... 909
4.2.30.3 JPEG Decode HAL Module Operational Overview ... 911
4.2.30.4 Including the JPEG Decode HAL Module in an Application 912
4.2.30.5 Configuring the JPEG Decode HAL Module ... 913
4.2.30.6 Using the JPEG Decode HAL Module in an Application ... 915

4.2.31 JPEG Encode Driver ... 916
4.2.31.1 JPEG Encode HAL Module Introduction ... 916
4.2.31.2 JPEG Encode HAL Module APIs Overview ... 918
4.2.31.3 JPEG Encode HAL Module Operational Overview .. 919
4.2.31.4 Including the JPEG Encode HAL Module in an Application 920
4.2.31.5 Configuring the JPEG Encode HAL Module ... 921
4.2.31.6 Using the JPEG Encode HAL Module in an Application ... 924

4.2.32 Key Matrix Driver ... 925
4.2.32.1 Key Matrix HAL Module Introduction .. 925
4.2.32.2 Key Matrix HAL Module APIs Overview ... 927
4.2.32.3 Key Matrix HAL Module Operational Overview ... 928
4.2.32.4 Including the Key Matrix HAL Module in an Application ... 929
4.2.32.5 Configuring the Key Matrix HAL Module ... 930
4.2.32.6 Using the Key Matrix HAL Module in an Application ... 932

4.2.33 Low Power Modes Driver on r_lpmv2 .. 933
4.2.33.1 LPM V2 HAL Module Introduction .. 933
4.2.33.2 LPM V2 HAL Module APIs Overview .. 936
4.2.33.3 LPM V2 HAL Module Operational Overview ... 937
4.2.33.4 Including the LPM V2 HAL Module in an Application .. 941
4.2.33.5 Configuring the LPM V2 HAL Module .. 942
4.2.33.6 Using the LPM V2 HAL Module in an Application .. 947

4.2.34 Low Voltage Detection Driver .. 948
4.2.34.1 LVD HAL Module Introduction .. 948
4.2.34.2 LVD HAL Module APIs Overview .. 950
4.2.34.3 LVD HAL Module Operational Overview ... 951
4.2.34.4 Including the LVD HAL Module in an Application .. 952
4.2.34.5 Configuring the LVD HAL Module .. 953
4.2.34.6 Using the LVD HAL Module in an Application .. 955

4.2.35 OPAMP Driver ... 956
4.2.35.1 OPAMP HAL Module Introduction .. 956
4.2.35.2 OPAMP HAL Module APIs Overview .. 958
4.2.35.3 OPAMP HAL Module Operational Overview ... 959
4.2.35.4 Including the OPAMP HAL Module in an Application .. 961
4.2.35.5 Configuring the OPAMP HAL Module .. 961
4.2.35.6 Using the OPAMP HAL Module in an Application .. 964

4.2.36 PDC Driver ... 965
4.2.36.1 PDC HAL Module Introduction ... 965
4.2.36.2 PDC HAL Module APIs Overview .. 968
4.2.36.3 PDC HAL Module Operational Overview .. 969
4.2.36.4 Including the PDC HAL Module in an Application .. 970
4.2.36.5 Configuring the PDC HAL Module .. 971
4.2.36.6 Using the PDC HAL Module in an Application .. 975

4.2.37 PTP Driver on r_ptp .. 976
4.2.37.1 Precision Time Protocol HAL Module Introduction .. 976
4.2.37.2 Precision Time Protocol HAL Module APIs Overview .. 978
4.2.37.3 Precision Time Protocol HAL Module Operational Overview 981
4.2.37.4 Including the Precision Time Protocol HAL Module in an Application 983
4.2.37.5 Configuring the Precision Time Protocol HAL Module .. 984
4.2.37.6 Using the Precision Time Protocol HAL Module in an Application 985

4.2.38 PTPEDMAC Driver on r_ptpedmac ... 988
4.2.38.1 PTPEDMAC HAL Module Introduction ... 988
4.2.38.2 PTPEDMAC HAL Module APIs Overview .. 989
4.2.38.3 PTPEDMAC HAL Module Operational Overview .. 990
4.2.38.4 Including the PTPEDMAC HAL Module in an Application .. 991
4.2.38.5 Configuring the PTPEDMAC HAL Module .. 992
4.2.38.6 Using the PTPEDMAC HAL Module in an Application .. 993

4.2.39 QSPI Driver .. 994
4.2.39.1 QSPI HAL Module Introduction ... 994
4.2.39.2 QSPI HAL Module APIs Overview .. 997
4.2.39.3 QSPI HAL Module Operational Overview .. 998
4.2.39.4 Including the QSPI HAL Module in an Application ... 1002
4.2.39.5 Configuring the QSPI HAL Module .. 1003
4.2.39.6 Using the QSPI HAL Module in an Application .. 1005

4.2.40 RTC Driver .. 1006
4.2.40.1 RTC HAL Module Introduction ... 1006
4.2.40.2 RTC HAL Module APIs Overview ... 1008
4.2.40.3 RTC HAL Module Operational Overview ... 1010
4.2.40.4 Including the RTC HAL Module in an Application ... 1011
4.2.40.5 Configuring the RTC HAL Module ... 1012
4.2.40.6 Using the RTC HAL Module in an Application ... 1013

4.2.41 SCE Crypto Driver ... 1017
4.2.41.1 SCE HAL Module Introduction ... 1017
4.2.41.2 SCE HAL Module APIs Overview ... 1020
4.2.41.3 SCE HAL Module Operational Overview ... 1028
4.2.41.4 Including the SCE HAL Module in an Application ... 1034
4.2.41.5 Configuring the SCE HAL Module ... 1035
4.2.41.6 Using the SCE HAL Module in an Application ... 1038

4.2.42 SDADC Driver .. 1042
4.2.42.1 SDADC HAL Module Introduction ... 1042
4.2.42.2 SDADC HAL Module APIs Overview ... 1044
4.2.42.3 SDADC HAL Module Operational Overview .. 1046
4.2.42.4 Including the SDADC HAL Module in an Application ... 1047
4.2.42.5 Configuring the SDADC HAL Module ... 1048
4.2.42.6 Using the SDADC HAL Module in an Application ... 1050

4.2.43 SD/MMC Driver and SDIO Driver ... 1051
4.2.43.1 SDMMC HAL Module Introduction ... 1051
4.2.43.2 SDMMC HAL Module APIs Overview ... 1054
4.2.43.3 SDMMC HAL Module Operational Overview ... 1056
4.2.43.4 Including the SDMMC HAL Module in an Application ... 1058
4.2.43.5 Configuring the SDMMC HAL Module ... 1059
4.2.43.6 Using the SDMMC HALModule in an Application ... 1063

4.2.44 Segment LCD Driver .. 1065
4.2.44.1 SLCDC HAL Module Introduction ... 1065
4.2.44.2 SLCDC HAL Module APIs Overview ... 1068
4.2.44.3 SLCDC HAL Module Operational Overview .. 1069
4.2.44.4 Including the SLCDC HAL Module in an Application .. 1070
4.2.44.5 Configuring the SLCDC HAL Module ... 1071
4.2.44.6 Using the SLCDC HAL Module in an Application ... 1074

4.2.45 SCI SPI Driver .. 1075
4.2.45.1 SCI SPI HAL Module Introduction ... 1075
4.2.45.2 SCI SPI HAL Module APIs Overview ... 1077
4.2.45.3 SCI SPI HAL Module Operational Overview .. 1079
4.2.45.4 Including the SCI SPI HAL Module in an Application ... 1080
4.2.45.5 Configuring the SCI SPI HAL Module ... 1081

4.2.45.6 Using the SCI SPI HAL Module in an Application ... 1086
4.2.46 SPI Driver .. 1087

4.2.46.1 RSPI HAL Module Introduction .. 1087
4.2.46.2 RSPI HAL Module APIs Overview ... 1091
4.2.46.3 RSPI HAL Module Operational Overview ... 1093
4.2.46.4 Including the RSPI HAL Module in an Application ... 1095
4.2.46.5 Configuring the RSPI HAL Module .. 1096
4.2.46.6 Using the SPI HAL Module in an Application ... 1102

4.2.47 UART Driver ... 1103
4.2.47.1 UART HAL Module Introduction .. 1103
4.2.47.2 UART HAL Module APIs Overview .. 1106
4.2.47.3 UART HAL Module Operational Overview ... 1108
4.2.47.4 Including the UART HAL Module in an Application .. 1111
4.2.47.5 Configuring the UART HAL Module .. 1112
4.2.47.6 Using the UART HAL Module in an Application .. 1119

4.2.48 Watchdog Driver .. 1120
4.2.48.1 Watchdog Timer HAL Module Introduction .. 1120
4.2.48.2 Watchdog Timer HAL Module APIs Overview ... 1122
4.2.48.3 Watchdog Timer HAL Module Operational Overview ... 1124
4.2.48.4 Including the Watchdog Timer HAL Module in an Application 1128
4.2.48.5 Configuring the Watchdog Timer HAL Module ... 1129
4.2.48.6 Using the Watchdog Timer HAL Module in an Application 1131

4.3 Azure RTOS Modules ... 1132
4.3.1 ThreadX Overview .. 1135

4.3.1.1 Azure RTOS ThreadX Module Introduction ... 1135
4.3.1.2 Azure RTOS ThreadX Module Operational Overview .. 1136
4.3.1.3 Using the Azure RTOS ThreadX Module in an Application 1138

4.3.2 FileX on Block Media ... 1139
4.3.2.1 FileX On Block Media Framework Module Introduction ... 1139
4.3.2.2 FileX On Block Media Framework Module APIs Overview 1140
4.3.2.3 FileX On Block Media Framework Module Operational Overview 1141
4.3.2.4 Including the FileX On Block Media Framework Module in an Application 1142
4.3.2.5 Configuring the FileX On Block Media Framework Module 1145
4.3.2.6 Using the FileX on Block Media Framework Module in an Application 1150

4.3.3 FileX Source ... 1151
4.3.3.1 FileX Source Component Module Introduction ... 1152
4.3.3.2 When to Include the FileX Source Component ... 1152
4.3.3.3 Adding the FileX Source Component .. 1152
4.3.3.4 Changing the FileX Source Component Properties ... 1153
4.3.3.5 FileX Source .. 1153
4.3.3.6 FileX Fault Tolerant Module .. 1156
4.3.3.7 About exFAT Support .. 1157

4.3.4 GUIX Port ... 1157
4.3.4.1 GUIX Synergy Port Framework Introduction .. 1157
4.3.4.2 GUIX Synergy Port Framework Module APIs Overview ... 1158
4.3.4.3 GUIX Synergy Port Framework Module Operational Overview 1160
4.3.4.4 Including the GUIX Synergy Port Framework Module in an Application 1164
4.3.4.5 Configuring the GUIX Synergy Port Framework Module .. 1165
4.3.4.6 Using the GUIX Synergy Port Framework Module in an Application 1182

4.3.5 GUIX Source ... 1183
4.3.5.1 GUIX GX_SRC Framework Introduction .. 1183
4.3.5.2 GUIX GX_SRC Framework Components Overview ... 1184
4.3.5.3 GUIX GX_SRC Framework Module Operational Overview 1185
4.3.5.4 Including the GUIX GX_SRC Framework Module in an Application 1201
4.3.5.5 Configuring the GUIX GX_SRC Framework Module .. 1202

4.3.5.6 Using the GUIX GX_SRC Framework Module in an Application 1206
4.3.6 LevelX Port Framework on sf_el_lx_nor .. 1207

4.3.6.1 Port LevelX Framework Module Introduction .. 1207
4.3.6.2 Port LevelX Framework Module APIs Overview .. 1208
4.3.6.3 Port LevelX Framework Module Operational Overview ... 1209
4.3.6.4 Including the Port LevelX Framework Module in an Application 1210
4.3.6.5 Configuring the Port LevelX Framework Module .. 1211
4.3.6.6 Using the Port LevelX Framework Module in an Application 1213

4.3.7 NetX Port Ether .. 1214
4.3.7.1 NetX Port Ether Module Introduction .. 1214
4.3.7.2 NetX Port Ether Module APIs Overview .. 1215
4.3.7.3 NetX Port Ether Module Operational Overview ... 1215
4.3.7.4 Including the NetX Port Ether Module in an Application ... 1218
4.3.7.5 Configuring the NetX Port Ether Module .. 1220
4.3.7.6 Using the NetX Port Ether Module in an Application .. 1221

4.3.8 NetX Port Using PPP ... 1223
4.3.8.1 NetX Port Using PPP Module Introduction ... 1224
4.3.8.2 NetX Port Using PPP Module APIs Overview .. 1224
4.3.8.3 NetX Port Using PPP Module Operational Overview .. 1226
4.3.8.4 Including the NetX Port Using PPP Module in an Application 1226
4.3.8.5 Configuring the NetX Port Using PPP Module ... 1227
4.3.8.6 Using the NetX Port Using PPP Module in an Application 1236

4.3.9 NetX/NetX Duo Source ... 1237
4.3.9.1 NetX and NetX Duo Source Module Introduction .. 1237
4.3.9.2 NetX and NetX Duo Source Module APIs Overview .. 1237
4.3.9.3 NetX and NetX Duo Source Module Operational Overview 1237
4.3.9.4 Including the NetX and NetX Duo Source Module in an Application 1237
4.3.9.5 Configuring the NetX and NetX Duo Source Module .. 1239

4.3.10 Azure RTOS NetX Overview .. 1250
4.3.10.1 Azure RTOS NetX Interface .. 1250

4.3.11 Azure RTOS NetX Duo Overview ... 1252
4.3.11.1 Azure RTOS NetX Duo Interface ... 1252
4.3.11.2 Azure RTOS NetX Duo Protocol Modules ... 1252
4.3.11.3 Azure RTOS NetX Duo Limitations .. 1253
4.3.11.4 Azure RTOS NetX Duo Supported Devices .. 1253

4.3.12 NetX/NetX Duo Auto IP ... 1253
4.3.12.1 NetX/NetX Duo Auto IP Introduction .. 1253
4.3.12.2 NetX/NetX Duo Auto IP Module APIs Overview .. 1254
4.3.12.3 NetX/NetX Duo Auto IP Module Operational Overview .. 1256
4.3.12.4 Including the NetX/NetX Duo Auto IP Module in an Application 1257
4.3.12.5 Configuring the NetX/NetX Duo Auto IP Module .. 1258
4.3.12.6 Using the NetX/NetX Duo Auto IP Module in an Application 1263

4.3.13 NetX/NetX Duo BSD Support ... 1264
4.3.13.1 NetX/NetX Duo BSD Support Introduction ... 1264
4.3.13.2 NetX/NetX Duo BSD Support Module APIs Overview ... 1266
4.3.13.3 NetX/NetX Duo BSD Support Module Operational Overview 1269
4.3.13.4 Including the NetX/NetX Duo BSD Support Module in an Application 1277
4.3.13.5 Configuring the NetX/NetX Duo BSD Support Module ... 1279
4.3.13.6 Using the NetX/NetX Duo BSD Support Module in an Application 1283

4.3.14 NetX/NetX Duo DHCP Client ... 1288
4.3.14.1 NetX/NetX Duo DHCP Client Introduction ... 1288
4.3.14.2 NetX/NetX Duo DHCP Client Module APIs Overview ... 1289
4.3.14.3 NetX/NetX Duo DHCP Client Module Operational Overview 1292
4.3.14.4 Including the NetX/NetX Duo DHCP Client Module in an Application 1294
4.3.14.5 Configuring the NetX/NetX Duo DHCP Client Module ... 1296

4.3.14.6 Using the NetX/NetX Duo DHCP Client Module in an Application 1301
4.3.15 NetX/NetX Duo DHCP Server ... 1302

4.3.15.1 NetX/NetX Duo DHCP Server Introduction .. 1302
4.3.15.2 NetX/NetX Duo DHCP Server Module APIs Overview ... 1303
4.3.15.3 NetX/NetX Duo DHCP Server Module Operational Overview 1305
4.3.15.4 Including the NetX/NetX Duo DHCP Server Module in an Application 1306
4.3.15.5 Configuring the NetX/NetX Duo DHCP Server Module .. 1308
4.3.15.6 Using the NetX/NetX Duo DHCP Server Module in an Application 1313

4.3.16 NetX Duo DHCPv6 Client ... 1314
4.3.16.1 NetX Duo DHCP IPv6 Client Introduction ... 1314
4.3.16.2 NetX Duo DHCP IPv6 Client Module APIs Overview ... 1315
4.3.16.3 NetX Duo DHCP IPv6 Client Module Operational Overview 1319
4.3.16.4 Including the NetX Duo DHCP IPv6 Client Module in an Application 1322
4.3.16.5 Configuring the NetX Duo DHCP IPv6 Client Module ... 1324
4.3.16.6 Using the NetX Duo DHCP IPv6 Client Module in an Application 1328

4.3.17 NetX Duo DHCPv6 Server ... 1330
4.3.17.1 NetX Duo DHCP IPv6 Server Introduction ... 1330
4.3.17.2 NetX Duo DHCP IPv6 Server Module APIs Overview ... 1332
4.3.17.3 NetX Duo DHCP IPv6 Server Module Operational Overview 1334
4.3.17.4 Including the NetX Duo DHCP IPv6 Server Module in an Application 1336
4.3.17.5 Configuring the NetX Duo DHCP IPv6 Server Module ... 1338
4.3.17.6 Using the NetX Duo DHCP IPv6 Server Module in an Application 1343

4.3.18 NetX/NetX Duo DNS Client .. 1344
4.3.18.1 NetX/NetX Duo DNS Client Introduction .. 1345
4.3.18.2 NetX/NetX Duo DNS Client Module APIs Overview .. 1346
4.3.18.3 NetX/NetX Duo DNS Client Module Operational Overview 1350
4.3.18.4 Including the NetX/NetX Duo DNS Client Module in an Application 1354
4.3.18.5 Configuring the NetX/NetX Duo DNS Client Module .. 1357
4.3.18.6 Using the NetX/NetX Duo DNS Client Module in an Application 1361

4.3.19 NetX/NetX Duo FTP Client ... 1362
4.3.19.1 NetX/NetX Duo FTP Client Introduction .. 1363
4.3.19.2 NetX/NetX Duo FTP Client Module APIs Overview .. 1364
4.3.19.3 NetX/NetX Duo FTP Client Module Operational Overview 1366
4.3.19.4 Including the NetX/NetX Duo FTP Client Module in an Application 1370
4.3.19.5 Configuring the NetX/NetX Duo FTP Client Module .. 1371
4.3.19.6 Using the NetX/NetX Duo FTP Client Module in an Application 1376

4.3.20 NetX/NetX Duo FTP Server .. 1377
4.3.20.1 NetX/NetX Duo FTP Server Introduction ... 1377
4.3.20.2 NetX/NetX Duo FTP Server Module APIs Overview .. 1378
4.3.20.3 NetX/NetX Duo FTP Server Module Operational Overview 1379
4.3.20.4 Including the NetX/NetX Duo FTP Server Module in an Application 1383
4.3.20.5 Configuring the NetX/NetX Duo FTP Server Module ... 1384
4.3.20.6 Using the NetX/NetX Duo FTP Server Module in an Application 1390

4.3.21 NetX/NetX Duo HTTP Client .. 1391
4.3.21.1 NetX/NetX Duo HTTP Client Introduction ... 1391
4.3.21.2 NetX/NetX Duo HTTP Client Module APIs Overview ... 1392
4.3.21.3 NetX/NetX Duo HTTP Client Module Operational Overview 1394
4.3.21.4 Including the NetX/NetX Duo HTTP Client Module in an Application 1396
4.3.21.5 Configuring the NetX/NetX Duo HTTP Client Module ... 1397
4.3.21.6 Using the NetX/NetX Duo HTTP Client Module in an Application 1402

4.3.22 NetX/NetX Duo HTTP Server ... 1403
4.3.22.1 NetX/NetX Duo HTTP Server Introduction ... 1403
4.3.22.2 NetX/NetX Duo HTTP Server Module APIs Overview ... 1404
4.3.22.3 NetX/NetX Duo HTTP Server Module Operational Overview 1407
4.3.22.4 Including the NetX/NetX Duo HTTP Server Module in an Application 1411

4.3.22.5 Configuring the NetX/NetX Duo HTTP Server Module ... 1412
4.3.22.6 Using the NetX/NetX Duo HTTP Server Module in an Application 1418

4.3.23 NetX Duo HTTP Client (HTTPS/HTTPS 1.1) .. 1419
4.3.23.1 NetX Duo Web HTTP/HTTPs Client Introduction ... 1419
4.3.23.2 NetX Duo Web HTTP/HTTPs Client Module APIs Overview 1421
4.3.23.3 NetX Duo Web HTTP/HTTPs Client Module Operational Overview 1425
4.3.23.4 Including the NetX Duo Web HTTP/HTTPs Client Module in an Application 1429
4.3.23.5 Configuring the NetX Duo Web HTTP/HTTPs Client Module 1431
4.3.23.6 Using the NetX Duo Web HTTP/HTTPs Client Module in an Application 1435

4.3.24 NetX/NetX Duo HTTP/HTTPS Web Server Framework 1437
4.3.24.1 NetX Duo Web HTTP/HTTPs Server Introduction ... 1437
4.3.24.2 NetX Duo Web HTTP/HTTPs Server Module APIs Overview 1439
4.3.24.3 NetX Duo Web HTTP/HTTPs Server Module Operational Overview 1444
4.3.24.4 Including the NetX Duo Web HTTP/HTTPs Server Module in an Application 1451
4.3.24.5 Configuring the NetX Duo Web HTTP/HTTPs Server Module 1453
4.3.24.6 Using the NetX Duo Web HTTP/HTTPs Server Module in an Application 1459

4.3.25 NetX/NetX Duo SMTP Client ... 1460
4.3.25.1 NetX/NetX Duo SMTP Client Introduction ... 1460
4.3.25.2 NetX/NetX Duo SMTP Client Module APIs Overview ... 1461
4.3.25.3 NetX/NetX Duo SMTP Client Module Operational Overview 1462
4.3.25.4 Including the NetX/NetX Duo SMTP Client Module in an Application 1465
4.3.25.5 Configuring the NetX/NetX Duo SMTP Client Module ... 1466
4.3.25.6 Using the NetX/NetX Duo SMTP Client Module in an Application 1471

4.3.26 NetX/NetX Duo SNMP Agent ... 1472
4.3.26.1 NetX/NetX Duo SNMP Agent Introduction ... 1472
4.3.26.2 NetX/NetX Duo SNMP Agent Module APIs Overview ... 1473
4.3.26.3 NetX/NetX Duo SNMP Agent Module Operational Overview 1482
4.3.26.4 Including the NetX/NetX Duo SNMP Agent Module in an Application 1483
4.3.26.5 Configuring the NetX/NetX Duo SNMP Agent Module ... 1484
4.3.26.6 Using the NetX/NetX Duo SNMP Agent Module in an Application 1490

4.3.27 NetX/NetX Duo SNTP Client .. 1492
4.3.27.1 NetX/NetX Duo SNTP Client Introduction ... 1492
4.3.27.2 NetX/NetX Duo SNTP Client Module APIs Overview ... 1493
4.3.27.3 NetX/NetX Duo SNTP Client Module Operational Overview 1495
4.3.27.4 Including the NetX/NetX Duo SNTP Client Module in an Application 1497
4.3.27.5 Configuring the NetX/NetX Duo SNTP Client Module ... 1498
4.3.27.6 Using the NetX/NetX Duo SNTP Client Module in an Application 1504

4.3.28 NetX/NetX Duo POP3 Client .. 1505
4.3.28.1 NetX/NetX Duo POP3 Client Introduction ... 1505
4.3.28.2 NetX/NetX Duo POP3 Client Module APIs Overview ... 1507
4.3.28.3 NetX/NetX Duo POP3 Client Module Operational Overview 1508
4.3.28.4 Including the NetX/NetX Duo POP3 Client Module in an Application 1512
4.3.28.5 Configuring the NetX/NetX Duo POP3 Client Module ... 1513
4.3.28.6 Using the NetX/NetX Duo POP3 Client Module in an Application 1518

4.3.29 NetX/NetX Duo Telnet Client ... 1519
4.3.29.1 NetX and NetX Duo Telnet Client Introduction ... 1519
4.3.29.2 NetX and NetX Duo Telnet Client Module APIs Overview 1521
4.3.29.3 NetX and NetX Duo Telnet Client Module Operational Overview 1523
4.3.29.4 Including the NetX and NetX Duo Telnet Client Module in an Application 1523
4.3.29.5 Configuring the NetX and NetX Duo Telnet Client Module 1525
4.3.29.6 Using the NetX and NetX Duo Telnet Client Module in an Application 1529

4.3.30 NetX/NetX Duo Telnet Server ... 1530
4.3.30.1 NetX and NetX Duo Telnet Server Introduction .. 1531
4.3.30.2 NetX and NetX Duo Telnet Server Module APIs Overview 1532
4.3.30.3 NetX and NetX Duo Telnet Server Module Operational Overview 1534

4.3.30.4 Including the NetX and NetX Duo Telnet Server Module in an Application 1535
4.3.30.5 Configuring the NetX and NetX Duo Telnet Server Module 1537
4.3.30.6 Using the NetX and NetX Duo Telnet Server Module in an Application 1542

4.3.31 NetX/NetX Duo TFTP Client .. 1543
4.3.31.1 NetX/NetX Duo TFTP Client Introduction ... 1544
4.3.31.2 NetX/NetX Duo TFTP Client Module APIs Overview ... 1545
4.3.31.3 NetX/NetX Duo TFTP Client Module Operational Overview 1546
4.3.31.4 Including the NetX/NetX Duo TFTP Client Module in an Application 1547
4.3.31.5 Configuring the NetX/NetX Duo TFTP Client Module ... 1549
4.3.31.6 Using the NetX/NetX Duo TFTP Client Module in an Application 1553

4.3.32 NetX/NetX Duo TFTP Server ... 1554
4.3.32.1 NetX and NetX Duo TFTP Server Introduction .. 1554
4.3.32.2 NetX and NetX Duo TFTP Server Module APIs Overview 1555
4.3.32.3 NetX and NetX Duo TFTP Server Module Operational Overview 1556
4.3.32.4 Including the NetX and NetX Duo TFTP Server Module in an Application 1558
4.3.32.5 Configuring the NetX and NetX Duo TFTP Server Module 1560
4.3.32.6 Using the NetX and NetX Duo TFTP Server Module in an Application 1565

4.3.33 NetX Duo MQTT Client ... 1566
4.3.33.1 NetX Duo MQTT Client Introduction .. 1566
4.3.33.2 NetX Duo MQTT Client Module APIs Overview .. 1567
4.3.33.3 NetX Duo MQTT Client Module Operational Overview .. 1569
4.3.33.4 Including the NetX Duo MQTT Client Module in an Application 1576
4.3.33.5 Configuring the NetX Duo MQTT Client Module .. 1577
4.3.33.6 Using the NetX Duo MQTT Client Module in an Application 1585

4.3.34 NetX Duo NAT .. 1586
4.3.34.1 NetX Duo NAT Introduction .. 1586
4.3.34.2 NetX Duo NAT Module APIs Overview .. 1587
4.3.34.3 NetX Duo NAT Module Operational Overview ... 1589
4.3.34.4 Including the NetX Duo NAT Module in an Application .. 1593
4.3.34.5 Configuring the NetX Duo NAT Module .. 1594
4.3.34.6 Using the NetX Duo NAT Module in an Application .. 1599

4.3.35 NetX Duo TLS Session ... 1600
4.3.35.1 NetX Duo TLS Session Introduction .. 1600
4.3.35.2 NetX Duo TLS Session Module APIs Overview .. 1602
4.3.35.3 NetX Duo TLS Session Module Operational Overview .. 1608
4.3.35.4 Including the NetX Duo TLS Session Module in an Application 1611
4.3.35.5 Configuring the NetX Duo TLS Session Module .. 1613
4.3.35.6 Using the NetX Duo TLS Session Module in an Application 1619

4.3.36 NetX Duo DTLS Session .. 1620
4.3.36.1 NetX Duo DTLS Session Introduction ... 1620
4.3.36.2 NetX Duo DTLS Session Module APIs Overview ... 1622
4.3.36.3 NetX Duo DTLS Session Module Operational Overview .. 1626
4.3.36.4 Including the NetX Duo DTLS Session Module in an Application 1627
4.3.36.5 Configuring the NetX Duo DTLS Session Module ... 1628
4.3.36.6 Using the NetX Duo DTLS Session Module in an Application 1633

4.3.37 NetX Duo mDNS/DNS-SD ... 1635
4.3.37.1 NetX Duo mDNS/DNS-SD Introduction .. 1635
4.3.37.2 NetX Duo mDNS/DNS-SD Module APIs Overview .. 1636
4.3.37.3 NetX Duo mDNS/DNS-SD Module Operational Overview 1640
4.3.37.4 Including the NetX Duo mDNS/DNS-SD Module in an Application 1642
4.3.37.5 Configuring the NetX Duo mDNS/DNS-SD Module .. 1643
4.3.37.6 Using the NetX Duo mDNS/DNS-SD Module in an Application 1650

4.3.38 Azure RTOS USBX Overview ... 1651
4.3.38.1 Azure RTOS USBX Interface Overview .. 1651
4.3.38.2 What Does the Azure RTOS USBX Module Do? ... 1651

4.3.38.3 Supported USB Classes in Azure RTOS USBX .. 1652
4.3.38.4 Azure RTOS USBX Auto-generated Code Procedures .. 1661
4.3.38.5 Azure RTOS USBX Application Code Examples ... 1663
4.3.38.6 Azure RTOS USBX Special Linker Sections .. 1664
4.3.38.7 Azure RTOS USBX Memory Requirements .. 1664
4.3.38.8 Azure RTOS USBX Limitations .. 1664

4.3.39 USBX Source .. 1665
4.3.39.1 USBX Source Component Module Introduction .. 1665
4.3.39.2 When to Include the USBX Source Component .. 1665
4.3.39.3 Adding the USBX Source Component ... 1665
4.3.39.4 Changing the USBX Source Component Properties .. 1666
4.3.39.5 USBX Source Component Overview ... 1666

4.3.40 USBX Port .. 1669
4.3.40.1 USBX Synergy Port Framework Introduction ... 1669
4.3.40.2 USBX Synergy Port Framework Module APIs Overview .. 1670
4.3.40.3 USBX Synergy Port Framework Module Operational Overview 1670
4.3.40.4 Including the USBX Synergy Port Framework Module in an Application 1671
4.3.40.5 Configuring the USBX Synergy Port Framework Module 1673
4.3.40.6 Using the USBX Synergy Port Framework Module in an Application 1679

4.3.41 USBX Device Class CDC-ACM .. 1680
4.3.41.1 USBX Device Class CDC-ACM Module Introduction ... 1680
4.3.41.2 USBX Device Class CDC-ACM Module APIs Overview .. 1680
4.3.41.3 USBX Device Class CDC-ACM Module Operational Overview 1681
4.3.41.4 Including the USBX Device Class CDC-ACM Module in an Application 1682
4.3.41.5 Configuring the USBX Device Class CDC-ACM Module .. 1683
4.3.41.6 Using the USBX Device Class CDC-ACM Module in an Application 1693

4.3.42 USBX Device Class HID .. 1694
4.3.42.1 USBX Device Class HID Module Introduction ... 1694
4.3.42.2 USBX Device Class HID Module APIs Overview ... 1695
4.3.42.3 USBX Device Class HID Module Operational Overview .. 1696
4.3.42.4 Including the USBX Device Class HID Module in an Application 1698
4.3.42.5 Configuring the USBX Device Class HID Module ... 1699
4.3.42.6 Using the USBX Device Class HID Module in an Application 1710

4.3.43 USBX Device Class Mass Storage .. 1711
4.3.43.1 USBX Device Class Mass Storage Introduction .. 1711
4.3.43.2 USBX Device Class Mass Storage Module APIs Overview 1712
4.3.43.3 USBX Device Class Mass Storage Module Operational Overview 1712
4.3.43.4 Including the USBX Device Class Mass Storage Module in an Application 1713
4.3.43.5 Configuring the USBX Device Class Mass Storage Module 1714
4.3.43.6 Using the USBX Device Class Mass Storage Module in an Application 1725

4.3.44 USBX Host Class CDC-ACM ... 1725
4.3.44.1 USBX Host Class CDC-ACM Module Introduction ... 1726
4.3.44.2 USBX Host Class CDC-ACM Module APIs Overview ... 1726
4.3.44.3 USBX Host Class CDC-ACM Module Operational Overview 1727
4.3.44.4 Including the USBX Host Class CDC-ACM Module in an Application 1729
4.3.44.5 Configuring the USBX Host Class CDC-ACM Module ... 1730
4.3.44.6 Using the USBX Host Class CDC-ACM Module in an Application 1735

4.3.45 USBX Host Class HID ... 1736
4.3.45.1 USBX Host Class HID Module Introduction .. 1736
4.3.45.2 USBX Host Class HID Module APIs Overview ... 1737
4.3.45.3 USBX Host Class HID Module Operational Overview ... 1739
4.3.45.4 Including the USBX Host Class HID Module in an Application 1741
4.3.45.5 Configuring the USBX Host Class HID Module .. 1742
4.3.45.6 Using the USBX Host Class HID Module in an Application 1748

4.3.46 USBX Host Class HUB ... 1749
4.3.46.1 USBX Host Class Hub Module Introduction .. 1749
4.3.46.2 USBX Host Class Hub Module APIs Overview .. 1750
4.3.46.3 USBX Host Class Hub Module Operational Overview ... 1750
4.3.46.4 Including the USBX Host Class Hub Module in an Application 1752
4.3.46.5 Configuring the USBX Host Class Hub Module .. 1753
4.3.46.6 Using the USBX Host Class Hub Module in an Application 1758

4.3.47 USBX Host Class Printer .. 1758
4.3.47.1 USBX Host Class Printer Module Introduction ... 1759
4.3.47.2 USBX Host Class Printer Module APIs Overview ... 1759
4.3.47.3 USBX Host Class Printer Module Operational Overview .. 1760
4.3.47.4 Including the USBX Host Class Printer Module in an Application 1762
4.3.47.5 Configuring the USBX Host Class Printer Module ... 1762
4.3.47.6 Using the USBX Host Class Printer Module in an Application 1767

4.3.48 USBX Host Class Mass Storage ... 1768
4.3.48.1 USBX Host Class Mass Storage Module Introduction ... 1768
4.3.48.2 USBX Host Class Mass Storage Module APIs Overview 1769
4.3.48.3 USBX Host Class Mass Storage Module Operational Overview 1769
4.3.48.4 Including the USBX Host Class Mass Storage Module in an Application 1771
4.3.48.5 Configuring the USBX Host Class Mass Storage Module 1772
4.3.48.6 Using the USBX Host Class Mass Storage Module in an Application 1780

4.3.49 USBX Host Class Video .. 1781
4.3.49.1 USBX Host Class Video Module Introduction ... 1781
4.3.49.2 USBX Host Class Video Module APIs Overview .. 1782
4.3.49.3 USBX Host Class Video Module Operational Overview .. 1782
4.3.49.4 Including the USBX Host Class Video Module in an Application 1785
4.3.49.5 Configuring the USBX Host Class Video Module ... 1786
4.3.49.6 Using the USBX Host Class Video Module in an Application 1789

Chapter 5 API Reference ... 1792
5.1 Renesas Synergy Software Package Reference .. 1792

5.1.1 Shared ... 1792
5.1.1.1 Common Error Codes ... 1793

5.1.2 Framework Interfaces .. 1797
5.1.2.1 ADC Periodic Framework Interface ... 1803
5.1.2.2 Audio Framework Interface ... 1810
5.1.2.3 Audio Playback Framework Interface .. 1823
5.1.2.4 Audio Recording Framework Interface ... 1831
5.1.2.5 SF BLE Framework Interface .. 1839
5.1.2.6 SF BLE On-Board Profile Framework Interface ... 1912
5.1.2.7 SF BLE Alert Notification Profile Framework Interface ... 1932
5.1.2.8 SF BLE Battery Service Profile Framework Interface .. 1940
5.1.2.9 SF BLE Blood Pressure Profile Framework Interface .. 1941
5.1.2.10 SF BLE Current Time Service Profile Framework Interface 1944
5.1.2.11 SF BLE Find Me Profile Framework Interface ... 1949
5.1.2.12 SF BLE HID Over GATT Profile Framework Interface ... 1950
5.1.2.13 SF BLE Heart Rate Profile Framework Interface ... 1957
5.1.2.14 SF BLE Health Thermometer Profile Framework Interface 1961
5.1.2.15 SF BLE Immediate Alert Profile Framework Interface ... 1965
5.1.2.16 SF BLE Next DST Change Service Profile Framework Interface 1968
5.1.2.17 SF BLE Phone Alert Status Profile Framework Interface 1969
5.1.2.18 SF BLE Proximity Profile Framework Interface .. 1974
5.1.2.19 SF BLE Reference Time Update Service Profile Framework Interface 1975
5.1.2.20 SF BLE Scan Parameters Service Profile Framework Interface 1977
5.1.2.21 SF BLE Time Information Profile Framework Interface .. 1979
5.1.2.22 Block Media Framework Interface ... 1982

5.1.2.23 SF CELLULAR Framework Interface ... 1988
5.1.2.24 SF CELLULAR NSAL Framework Interface .. 2021
5.1.2.25 SF Socket CELLULAR Framework Interface ... 2026
5.1.2.26 Communications Framework Interface .. 2050
5.1.2.27 Console Framework Interface ... 2058
5.1.2.28 SSP Crypto Framework Common Module Interface .. 2071
5.1.2.29 SSP Crypto Cipher Framework Interface ... 2082
5.1.2.30 SSP Crypto HASH Framework Interface ... 2094
5.1.2.31 SSP Crypto Key Framework Interface ... 2104
5.1.2.32 SSP Crypto Key Installation Framework Interface ... 2111
5.1.2.33 SSP Crypto Signature Framework Interface .. 2120
5.1.2.34 SSP Crypto TRNG Framework Interface ... 2133
5.1.2.35 GUIX Interface .. 2138
5.1.2.36 External IRQ Framework Interface .. 2146
5.1.2.37 I2C Framework .. 2152
5.1.2.38 JPEG Decode Framework Interface .. 2162
5.1.2.39 Memory interface ... 2171
5.1.2.40 Messaging Framework Interface ... 2180
5.1.2.41 Power Profiles V2 Framework Interface .. 2195
5.1.2.42 SF Socket WIFI Framework Interface ... 2205
5.1.2.43 SPI Framework Interface ... 2229
5.1.2.44 Thread Monitor Framework Interface ... 2239
5.1.2.45 CTSU v2 Framework Interface .. 2248
5.1.2.46 Touch chip Interface .. 2258
5.1.2.47 Touch Panel Framework Interface ... 2263
5.1.2.48 SF WIFI Framework Interface ... 2274
5.1.2.49 SF WIFI NSAL Interface .. 2301
5.1.2.50 SF WIFI On-Chip Stack Interface ... 2303
5.1.2.51 SF WIFI QCA4010 Framework Interface ... 2311
5.1.2.52 SF WIFI QCA4010 On-Chip Interface ... 2331
5.1.2.53 SF Socket WIFI Framework Interface ... 2341
5.1.2.54 SF WIFI NSAL on NetX .. 2351
5.1.2.55 BLE Framework Interface on RL78G1D .. 2352
5.1.2.56 Cellular Framework Example using Quectel CATM1 API 2383
5.1.2.57 BSD Socket over Quectel CATM1 on-chip stack API ... 2393
5.1.2.58 Cellular Framework Example using RYZ014CATM1 API 2407
5.1.2.59 SF CELLULAR Common Interface .. 2418
5.1.2.60 BSD Socket over RYZ014CATM1 on-chip stack API ... 2437

5.1.3 Framework Layer ... 2452
5.1.3.1 ADC periodic Framework .. 2457
5.1.3.2 Audio Framework .. 2465
5.1.3.3 DAC Audio Playback Framework .. 2475
5.1.3.4 I2S Audio Playback Framework .. 2482
5.1.3.5 ADC Audio recording Framework .. 2488
5.1.3.6 I2S Audio recording Framework .. 2494
5.1.3.7 BLOCK_MEDIA_LEVELX_NOR .. 2502
5.1.3.8 BLOCK_MEDIA_QSPI ... 2510
5.1.3.9 BLOCK_MEDIA_RAM ... 2518
5.1.3.10 BLOCK_MEDIA_SDMMC ... 2522
5.1.3.11 Cellular NSAL Implementation on NetX .. 2528
5.1.3.12 Telnet Communication Framework on sf_comms_telnet .. 2531
5.1.3.13 Console Framework .. 2541
5.1.3.14 SSP Crypto Common Framework ... 2549
5.1.3.15 SSP Crypto Cipher Framework .. 2556
5.1.3.16 SSP Crypto Hash Framework ... 2587

5.1.3.17 SSP Crypto Key Framework .. 2594
5.1.3.18 SSP Crypto Key Installation Framework .. 2620
5.1.3.19 SSP Crypto Signature Framework ... 2624
5.1.3.20 SSP Crypto TRNG Framework .. 2647
5.1.3.21 FX_IO Framework ... 2650
5.1.3.22 GUIX Synergy Port .. 2665
5.1.3.23 EL_LX_NOR ... 2673
5.1.3.24 USB Communication Framework V2 ... 2685
5.1.3.25 External IRQ Framework ... 2690
5.1.3.26 I2C Framework .. 2694
5.1.3.27 JPEG Framework ... 2702
5.1.3.28 Memory framework .. 2716
5.1.3.29 Messaging Framework .. 2725
5.1.3.30 Power Profiles Framework V2 ... 2733
5.1.3.31 SPI Framework .. 2738
5.1.3.32 Thread Monitor Framework .. 2748
5.1.3.33 CTSU V2 Framework ... 2757
5.1.3.34 Touch Panel V2 Framework .. 2765
5.1.3.35 UART Framework Instance .. 2773
5.1.3.36 NetX Synergy Port .. 2782
5.1.3.37 NetX Synergy Port PHY Driver .. 2799
5.1.3.38 BLE Framework on RL78G1D ... 2802
5.1.3.39 BLE On-Board Profile Framework on RL78G1D .. 2823
5.1.3.40 Cellular Framework Example using Quectel CATM1 ... 2824
5.1.3.41 BSD Socket over Quectel CATM1 on-chip stack ... 2827
5.1.3.42 Cellular Framework Example using RYZ014 CATM1 ... 2827
5.1.3.43 BSD Socket over RYZ014CATM1 on-chip stack ... 2828
5.1.3.44 Touch Panel Framework Example for FT5X06 .. 2828
5.1.3.45 Touch Panel Framework Example for SX8654 .. 2830
5.1.3.46 WiFi Framework on GT202 .. 2832
5.1.3.47 WiFi On Chip Stack on GT202 .. 2843
5.1.3.48 BSD Socket on GT202 .. 2844
5.1.3.49 WiFi Framework on QCA4010 ... 2845
5.1.3.50 WiFi On Chip Stack on QCA4010 ... 2855
5.1.3.51 Socket on QCA4010 ... 2862
5.1.3.52 USBX Framework ... 2872
5.1.3.53 2D Drawing Engine Support Framework ... 2959

5.1.4 HAL Interfaces .. 2976
5.1.4.1 ADC Interface ... 2980
5.1.4.2 Analog Connect Interface .. 3004
5.1.4.3 CAC Interface ... 3008
5.1.4.4 CAN Interface ... 3020
5.1.4.5 CGC Interface ... 3038
5.1.4.6 COMPARATOR Interface .. 3058
5.1.4.7 CRC Interface ... 3069
5.1.4.8 Crypto Interface .. 3077
5.1.4.9 CTSU v2 Interface ... 3172
5.1.4.10 DAC Interface ... 3184
5.1.4.11 Display Interface ... 3191
5.1.4.12 DOC Interface ... 3217
5.1.4.13 events and peripheral definitions ... 3226
5.1.4.14 External IRQ Interface ... 3231
5.1.4.15 Flash Interface .. 3241
5.1.4.16 FMI Interface ... 3258
5.1.4.17 I2C Interface ... 3262

5.1.4.18 I2S Interface ... 3277
5.1.4.19 Input Capture Interface .. 3292
5.1.4.20 I/O Port Interface ... 3305
5.1.4.21 JPEG Decode Interface .. 3332
5.1.4.22 JPEG Encode Interface .. 3347
5.1.4.23 Key Matrix Interface .. 3359
5.1.4.24 Low Power Modes V2 Interface .. 3367
5.1.4.25 Low Voltage Detection Interface .. 3371
5.1.4.26 OPAMP Interface ... 3383
5.1.4.27 PDC Interface ... 3392
5.1.4.28 PTP driver Interface .. 3402
5.1.4.29 PTPEDMAC driver Interface .. 3431
5.1.4.30 Quad SPI Flash Interface ... 3438
5.1.4.31 RTC Interface ... 3446
5.1.4.32 SD/MMC Interface ... 3464
5.1.4.33 SLCDC Interface ... 3482
5.1.4.34 SPI Interface ... 3496
5.1.4.35 Timer Interface .. 3508
5.1.4.36 Transfer Interface ... 3522
5.1.4.37 UART Interface .. 3541
5.1.4.38 WDT Interface ... 3554

5.1.5 HAL Layer ... 3568
5.1.5.1 High-Speed Analog Comparator .. 3573
5.1.5.2 Low Power Analog Comparator ... 3578
5.1.5.3 ADC .. 3583
5.1.5.4 AGT .. 3599
5.1.5.5 AGT Input Capture ... 3609
5.1.5.6 Analog Connections .. 3620
5.1.5.7 CAC .. 3623
5.1.5.8 CAN .. 3633
5.1.5.9 CGC .. 3642
5.1.5.10 CRC .. 3659
5.1.5.11 CTSU v2 ... 3665
5.1.5.12 DAC .. 3679
5.1.5.13 DAC8 ... 3685
5.1.5.14 DMAC ... 3692
5.1.5.15 DOC .. 3703
5.1.5.16 DTC .. 3710
5.1.5.17 ELC .. 3724
5.1.5.18 High-performance Flash .. 3727
5.1.5.19 Low Power Flash ... 3744
5.1.5.20 FMI .. 3758
5.1.5.21 GLCDC .. 3758
5.1.5.22 GPT .. 3777
5.1.5.23 GPT Input Capture .. 3789
5.1.5.24 ICU .. 3798
5.1.5.25 IOPORT .. 3804
5.1.5.26 IWDT ... 3813
5.1.5.27 JPEG CODEC ... 3819
5.1.5.28 JPEG ENCODE .. 3830
5.1.5.29 Key Interrupts ... 3838
5.1.5.30 LPMV2 S124 ... 3844
5.1.5.31 LPMV2 S128 ... 3855
5.1.5.32 LPMV2 S1JA ... 3866
5.1.5.33 LPMV2 S3A1 ... 3877

5.1.5.34 LPMV2 S3A3 ... 3889
5.1.5.35 LPMV2 S3A6 ... 3902
5.1.5.36 LPMV2 S3A7 ... 3914
5.1.5.37 LPMV2 S5D3 ... 3927
5.1.5.38 LPMV2 S5D5 ... 3948
5.1.5.39 LPMV2 S5D9 ... 3968
5.1.5.40 LPMV2 S7G2 ... 3987
5.1.5.41 LVD .. 4005
5.1.5.42 Operational Amplifier (OPAMP) .. 4013
5.1.5.43 PDC .. 4025
5.1.5.44 PTP .. 4033
5.1.5.45 PTPEDMAC .. 4057
5.1.5.46 QSPI ... 4063
5.1.5.47 IIC ... 4073
5.1.5.48 IIC Slave ... 4085
5.1.5.49 SPI .. 4093
5.1.5.50 RTC .. 4114
5.1.5.51 Simple I2C on SCI ... 4125
5.1.5.52 Simple SPI on SCI .. 4136
5.1.5.53 UART on SCI ... 4146
5.1.5.54 Sigma Delta ADC (SDADC) .. 4158
5.1.5.55 SDMMC .. 4180
5.1.5.56 SLCDC .. 4193
5.1.5.57 SSI .. 4200
5.1.5.58 WDT ... 4209
5.1.5.59 SCE Module .. 4217

5.2 Board Support Package .. 4468
5.2.1 Supported MCUs ... 4468

5.2.1.1 S124 .. 4470
5.2.1.2 S128 .. 4513
5.2.1.3 S1JA .. 4556
5.2.1.4 S3A1 .. 4601
5.2.1.5 S3A3 .. 4647
5.2.1.6 S3A6 .. 4693
5.2.1.7 S3A7 .. 4739
5.2.1.8 S5D3 .. 4786
5.2.1.9 S5D5 .. 4833
5.2.1.10 S5D9 ... 4881
5.2.1.11 S7G2 ... 4929

5.2.2 Common BSP Code ... 4979
5.2.2.1 Common BSP LED Code and Types .. 4983
5.2.2.2 Compiler Support .. 4985
5.2.2.3 Software Delay ... 4985
5.2.2.4 Error Checking ... 4987
5.2.2.5 Module specific feature overrides .. 4987
5.2.2.6 Grouped Interrupt Support ... 5009
5.2.2.7 Interrupt Initialization .. 5018
5.2.2.8 Atomic Locking ... 5019
5.2.2.9 Register Protection ... 5022
5.2.2.10 BSP_MCU_SBRK ... 5024

Chapter 6 Structure Index .. 5026
6.1 Data Structures ... 5026

6.1.1 d1_device_synergy Struct Reference ... 5048
6.1.2 NX_DES Struct Reference ... 5048

6.1.3 NX_IPV6_HEADER Struct Reference ... 5049
6.1.4 NX_MD5 Struct Reference ... 5049
6.1.5 NX_SECURE_TLS_PHASH_SCE Struct Reference ... 5049
6.1.6 NX_SECURE_TLS_PRF_1_SCE Struct Reference ... 5050
6.1.7 NX_SECURE_TLS_PRF_SHA_256_SCE Struct Reference 5050
6.1.8 NX_SHA1 Struct Reference ... 5050
6.1.9 RBLE_GATT_CHAR_128_LIST Struct Reference .. 5051
6.1.10 RBLE_GATT_CHAR_DESC_128_LIST Struct Reference 5052
6.1.11 RBLE_GATT_CHAR_DESC_LIST Struct Reference .. 5053
6.1.12 RBLE_GATT_CHAR_LIST Struct Reference .. 5053
6.1.13 RBLE_GATT_DESIRED_TYPE Struct Reference ... 5055
6.1.14 RBLE_GATT_DISC_CHAR_DESC_REQ Struct Reference 5055
6.1.15 RBLE_GATT_DISC_CHAR_REQ Struct Reference .. 5056
6.1.16 RBLE_GATT_DISC_SVC_REQ Struct Reference ... 5058
6.1.17 RBLE_GATT_EVENT Struct Reference ... 5059
6.1.18 RBLE_GATT_EXE_WR_CHAR_REQ Struct Reference 5060
6.1.19 RBLE_GATT_INCL_128_LIST Struct Reference .. 5061
6.1.20 RBLE_GATT_INCL_LIST Struct Reference ... 5062
6.1.21 RBLE_GATT_INDICATE_REQ Struct Reference .. 5063
6.1.22 RBLE_GATT_INFO_DATA Struct Reference .. 5064
6.1.23 RBLE_GATT_NOTIFY_REQ Struct Reference ... 5065
6.1.24 RBLE_GATT_QUERY_RESULT Struct Reference ... 5066
6.1.25 RBLE_GATT_READ_CHAR_REQ Struct Reference .. 5066
6.1.26 RBLE_GATT_RELIABLE_WRITE Struct Reference .. 5068
6.1.27 RBLE_GATT_SET_DATA Struct Reference ... 5069
6.1.28 RBLE_GATT_SET_PERM Struct Reference .. 5070
6.1.29 RBLE_GATT_SVC_128_LIST Struct Reference .. 5071
6.1.30 RBLE_GATT_SVC_LIST Struct Reference ... 5072
6.1.31 RBLE_GATT_SVC_RANGE_LIST Struct Reference .. 5073
6.1.32 RBLE_GATT_UUID_TYPE Struct Reference .. 5074
6.1.33 RBLE_GATT_WRITE_CHAR_REQ Struct Reference 5075
6.1.34 RBLE_GATT_WRITE_RELIABLE_REQ Struct Reference 5077
6.1.35 RBLE_GATT_WRITE_RESP Struct Reference ... 5078
6.1.36 sdmmc_priv_csd_reg_ext_t Struct Reference .. 5079
6.1.37 sdmmc_priv_csd_reg_t Struct Reference .. 5079
6.1.38 sf_cellular_circular_queue_cfg_t Struct Reference ... 5080
6.1.39 sf_cellular_comms_extend_cfg_t Struct Reference ... 5080
6.1.40 sf_cellular_extended_cfg_t Struct Reference .. 5081
6.1.41 sf_cellular_instance_cfg_t Struct Reference ... 5082
6.1.42 sf_cellular_qctlcatm1_socket_cfg_t Struct Reference 5083
6.1.43 sf_cellular_socket_info_t Struct Reference ... 5084
6.1.44 ssp_pack_version_t Union Reference .. 5086
6.1.45 ssp_version_t Union Reference .. 5088

6.2 Data Structure Index .. 5089
6.3 Data Fields .. 5104

6.3.1 All Data Fields ... 5104
6.3.2 Functions ... 5150
6.3.3 Variables .. 5151

Synergy Software Package

User’s Manual
Renesas Synergy™ Software Package Introduction

Chapter 1 Renesas Synergy™
Software Package Introduction

1.1 Introduction to the SSP User's Manual
This manual describes how to use the Renesas Synergy Software Package for writing applications for
the Synergy microcontroller series. In the figure below, the API Reference components of the SSP
User's Manual are indicated in blue. Additional components such as the description of the e2 studio
ISDE and tutorials and example applications are included in this manual to guide you through the
steps of programming with the SSP.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 26 / 5,198

Synergy Software Package

User’s Manual
Renesas Synergy™ Software Package Introduction > Introduction to the SSP User's Manual

Figure 1: Synergy Software Package (SSP) Documentation

1.2 Subjects Covered in this Manual
To learn about the SSP architecture and about board and chip-level support included in the SSP see:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 27 / 5,198

Synergy Software Package

User’s Manual
Renesas Synergy™ Software Package Introduction > Subjects Covered in this Manual

SSP Architecture
BSP Architecture

For programming with the SSP and an introduction to the e2 studio ISDE see:

e2 studio ISDE User Guide

For introductory tutorials and application examples see:

Tutorial Blinky
Application WDT

For Module Overviews describing the SSP Modules, see:

Framework Layer
HAL Layer

The API reference documentation of the following SSP components is included in this document:

Framework Interfaces for Interfaces to the ThreadX-aware Framework Modules
Framework Layer for ThreadX-aware Framework Driver Modules
HAL Interfaces for Interfaces to the Hardware Abstraction Layer (HAL) Modules
HAL Layer for the RTOS-independent HAL driver Modules
Board Support Package for the Board Support Package (BSP) which includes board-specific
and microcontroller-specific configuration modules

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 28 / 5,198

Synergy Software Package

User’s Manual
SSP Overview

Chapter 2 SSP Overview

2.1 SSP Overview

Learn how to develop applications with the Synergy Software Package (SSP) using the SSP's module-
based architecture and the functional software layers. Integrate SSP applications with multiple
boards and Synergy devices using the Board Support Package (BSP).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 29 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview

The following pages describe the fundamental SSP architecture:

SSP Architecture
BSP Architecture

2.1.1 Introduction

2.1.1.1 Purpose

The Renesas Synergy™ Software Package (SSP), part of the Renesas Synergy™ Platform, is a
complete integrated software package designed to provide easy to use, scalable, high quality
software for embedded system design. Using the Synergy Software Platform will reduce time to
market by providing a completely integrated and qualified embedded software platform comprising
of an industry leading, completely optimized and hardened Real-time Operating System (RTOS),
middleware, communication stacks, function libraries, application framework and hardware
abstracted low-level device drivers.

2.1.1.2 Overview

The SSP is divided into four main layers:

Framework Interfaces The Framework Library connects to Synergy hardware peripherals
through common Interfaces, which abstract the hardware into functional use cases. The
Interface layer is a group of header files with definitions of functions and parameters, so it
consumes no code space.
Framework Layer The Framework layer consists of RTOS integrated drivers and valuable
application code.
HAL Interfaces HAL layer Interfaces connect to RTOS-independent HAL-level drivers.
HAL Layer The HAL layer drivers with hardware registers implement Interfaces.

2.1.1.3 Ease of Use

The SSP provides uniform and intuitive APIs that are well documented. Each module is supported
with detailed user documentation and software datasheet including code size and execution time for
each function.

2.1.1.4 Scalability

Users have the choice to integrate with the platform capabilities using either the Framework
Interface or HAL layer, depending on which best meets the needs of the application. To further scale
each module, build time options such as parameter checking may be compiled out for smaller, more
efficient code.

2.1.2 SSP Architecture

2.1.2.1 Renesas Synergy Software Package (SSP) Architecture

This section describes the Renesas Synergy Software Package (SSP) architecture and how to use the
SSP Application Programming Interface (API).

Introduction to the SSP

As microcontrollers increase in complexity, so does the breadth of knowledge required to make them

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 30 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > Renesas Synergy Software Package (SSP) Architecture

operate in the desired way. The SSP provides an innovative approach to embedded software for IoT
applications. With the SSP, you have a new and extremely powerful software interface from the
ground up, making coding fast and providing you with a robust development processes. With this
software, you can create differentiated application code instead of spending months developing
baseline code to interface at the hardware level.

SSP Terms

Term Description Reference

Module Modules can be peripheral
drivers, purely software, or
anything in between. Each
Module consists of a folder with
source code, documentation,
and anything else that the
customer needs to use the code
effectively. Modules are
independent units, but they
may depend on other Modules.
Example SSP Modules are the
UART driver (UART Interface),
Audio Playback Framework,
which relies on timer, DMA, and
DAC drivers (Audio Framework
Interface), or the Messaging
Framework (Messaging
Framework Interface).
Applications can be built by
combining multiple modules to
provide the user with the
features they need.

SSP Modules

BSP Short for Board Support
Package. In the SSP the BSP
provides just enough
foundation to allow other SSP
modules to work together
without issue.

BSP Architecture

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 31 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > Renesas Synergy Software Package (SSP) Architecture

Callback Function This term refers to a function
that is called when an event
occurs. For example, the bus
error interrupt handler is
implemented in the r_bsp. The
user will likely want to know
when a bus error occurs. To
alert the user, a callback
function can be supplied to the
r_bsp. When a bus error occurs
the r_bsp will jump to the
provided callback function and
the user can handle the error.
Interrupt callback functions
should be kept short and be
handled carefully because when
they are called the MCU will still
be inside of an interrupt and
therefore will be delaying any
pending interrupts.

-

Interface See SSP Interfaces section: SSP
Interfaces. All interfaces in the
SSP are listed here: Framework
Interfaces and HAL Interfaces

SSP Interfaces

Instance See SSP Instances section: SSP
Instances

SSP Instances

Module Instance Single and independent
configuration of a Module.

-

Application Code that is owned and
maintained by the user.
Application code may be based
off sample application code
provided by Renesas, but is the
responsibility of the user.

An example for a simple
application is included as
tutorial in this manual: ref
application-wdt

Driver A Driver is a specific kind of
Module that directly modifies
registers on the MCU.

-

Stacks The SSP architecture is
designed such that Modules
work together to form a Stack.
Starting with the uppermost
Module and going to the
bottommost dependency forms
a specific Stack.

SSP Stacks

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 32 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > Renesas Synergy Software Package (SSP) Architecture

Layer/Level Stacks are made of multiple
layers of Modules. A Layer can
consist of one or multiple
Modules depending on the
requirements of the next Layer
up. Layer and Level are used
interchangeably.

ref ssp-predefined-layers

2.1.2.2 SSP Modules

Modules are the core building block of SSP. Modules can do many different things, but all Modules
share the basic concept of providing functionality upwards and requiring functionality from below.

Figure 2: Modules

 The amount of functionality provided by a Module is not limited though there are usually points
where separation makes sense. If too much functionality is provided, then reuse of the Module can
become difficult in the future. If not enough functionality is provided, then unnecessary complexity
and overhead may be added in order to make the Modules work as expected.

The simplest SSP application consists of one Module with the user application on top.

Figure 3: Module with application

For simplicity, ignore the Board Support Package (BSP) for now because it is a requirement of any

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 33 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Modules

SSP project. In the picture above, the BSP is located underneath the bottom layer, SSP Layer 0.

2.1.2.3 SSP Stacks

When modules are layered atop one another, an SSP stack is formed. The stacking process is
performed by matching what one module provides with what another module requires. For example,
the Audio Playback Framework Module requires a Transfer Interface, which can be fulfilled by the
Data Transfer Controller (DTC) Driver Module. Instead of including the DTC code in the Audio
Playback Module, we split these into two modules. This allows for reuse of the underlying modules,
which has many benefits.

Figure 4: Stacks – Audio playback

 By continuing to add layers to the Stack using SSP Modules, you can interface with the Synergy
hardware at a high level.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 34 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Stacks

Figure 5: Stacks

 The ability to stack modules has great benefit because it ensures the flexibility of the architecture
as a whole. If modules are directly dependent upon other modules, then issues arise when
application features must work across different user designs. To ensure that modules are reusable
the modules must be capable of being swapped out for other modules that provide the same
features. The SSP architecture provides this flexibility to swap modules in and out through the use of
SSP Interfaces.

2.1.2.4 SSP Interfaces

At the architecture level, Interfaces are the way that Modules provide common features. This
commonality allows Modules that adhere to the same Interface to be used interchangeably.
Interfaces can be thought of as a contract between two Modules. The Modules agree to work
together using the information that was agreed upon in the contract.

On Synergy hardware there is occasionally an overlap of features between different peripherals. For
example, I2C communications can be achieved through use of the IIC peripheral or the SCI
peripheral in its Simple I2C mode. There is a difference in the level of features provided by both
peripherals. In I2C mode the SCI peripheral will only support a subset of the features of the full-
featured IIC.

Interfaces aim to provide support for the common features that most users would expect. This
means that some of the advanced features of a peripheral, such as the IIC, might not be available in

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 35 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

the Interface. In most cases these features are still available through Interface Extensions.

In design, Interfaces are implemented as header files. All Interface header filenames end with
'_api.h'. The following sections detail what makes up an Interface.

SSP Interface Enumerations

Whenever possible, Interfaces use typed enumerations for function parameters and structure
members.

typedef enum e_i2c_addr_mode

{

 I2C_ADDR_MODE_7BIT = 1, // Use 7-bit addressing mode

 I2C_ADDR_MODE_10BIT // Use 10-bit addressing mode

} i2c_addr_mode_t;

Enumerations remove any uncertainty when deciding what values are available for a parameter. Also
note that enumeration options follow a strict naming convention where the name of the type is
prefixed on the available options. Combining the naming convention with the autocomplete feature
available in e2 studio provides the benefits of rapid coding while maintaining highly readable code.

SSP Interface Data Structures

At a minimum, all SSP Interfaces include three data structures: a control structure, a configuration
structure, and an instance structure.

The control structure is used as a unique identifier for using the module. If SSP modules were only
peripheral drivers then this control structure might be replaced with a channel number. All function
calls for that module would then take a channel number so that the code could determine which
peripheral channel to operate on. SSP modules are not restricted to device drivers and therefore the
control structure is used. The user allocates storage for a control structure and then sends a pointer
to it into the open() call for a Module. At this point, the Module initializes the structure as needed.
You must then send in a pointer to the control structure for all subsequent module calls. The
contents of the control structure are used by the module and must not be altered. Reading data from
a control structure should also be avoided as the data structure is not guaranteed to remain the
same between SSP releases. In general, you should treat control structures like a black box.

The contents of a control structure are specific to an instance. This means that two instances of the
same interface will have two completely different control structure types. The control structures that
exist in an interface are named <interface>_ctrl_t. Below is an example of the interface control
structure for I2C:

typedef void i2c_ctrl_t;

Since all interface control structures are of type void, they cannot be allocated. Instead, these types

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 36 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

are placeholders for instance control structures. Instance control structures are defined in instance
header files and are named <instance>_instance_ctrl_t. Below are examples of I2C Instance
control structures for the IIC (r_riic) and SCI (r_sci_i2c) peripherals:

/* riic Instance control structure to be used with I2C Interface. */

typedef struct st_riic_instance_ctrl

{

 i2c_cfg_t info; // Information describing I2C device

 uint32_t open; // Flag to determine if the device is open

 void * p_reg; // Base register for this channel

} riic_instance_ctrl_t;

/* sci_i2c Instance control structure to be used with I2C Interface. */

typedef struct st_sci_i2c_instance_ctrl

{

 i2c_cfg_t info; // Information describing I2C device

 uint32_t open; // Flag to determine if the device is open

 void * p_reg; // Base register for this channel

 /* More members specific to sci_i2c Instance. */

} sci_i2c_instance_ctrl_t;

When using an interface, the instance control structure should be allocated and used in place of the
interface control structure. Using the example above, if the SCI-I2C Instance was being used then
you would allocate a structure of type sci_i2c_instance_ctrl_t and use it wherever i2c_ctrl_t is
referenced in the Interface. The ISDE will take care of allocating the correct control structure for you.

Dynamic memory allocation through use of the malloc() and free() functions are not used in SSP
modules.

The configuration structure is used for the initial configuration of a module during the open() call.
The structure consists of members such as: channel, interrupt priority, bitrate, and operating mode.
The structure is used purely for input into the module. This structure does not have to be unique and
could be discarded by you after initialization, if desired.

typedef struct st_i2c_cfg

{

 /* Generic configuration */

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 37 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

 uint8_t channel; // Identifier

recognizable by implementation

 i2c_rate_t rate; // Device's maximum

clock rate from enum i2c_rate_t

 uint16_t slave; // The address of the

slave device

 i2c_addr_mode_t addr_mode; // Indicates how

slave fields should be interpreted

 uint16_t sda_delay; // The SDA output

delay

 uint8_t rxi_ipl; // Receive interrupt

priority

 uint8_t txi_ipl; // Transmit interrupt

priority

 uint8_t tei_ipl; // Transmit end

interrupt priority

 uint8_t eri_ipl; // Error interrupt

priority

 /* DTC/DMA support */

 transfer_instance_t const * p_transfer_tx; // DTC instance for I2C

transmit.Set to NULL if unused.

 transfer_instance_t const * p_transfer_rx; // DTC instance for I2C

receive. Set to NULL if unused.

 /* Parameters to control software behavior */

 void (* p_callback)(i2c_callback_args_t * p_args); // Pointer to

callback function

 void const * p_context; // Pointer to the

user-provided context

 /* Implementation-specific configuration */

 void const * p_extend; // Any configuration

data needed by the hardware

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 38 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

} i2c_cfg_t;

Above is an example configuration structure for the I2C Interface. The last three structure members
(p_callback, p_context, and p_extend) are common to almost all module configurations.

The p_callback and p_context members are described in the SSP Interface Callback Functions
section.

The p_extend member is used for extending the current Interface for a specific Instance. Interfaces
are designed to support the most common features. There are cases where an Instance of an
Interface requires extra information to properly configure itself. There are also cases where the extra
information is not required, but users might need it to adjust the module for their specific
application. When this is the case, the user can provide the underlying Instance with more
configuration information by passing it through the p_extend member. The information that is
passed through this member is defined by the underlying Instance, and therefore the user must
adhere to its structure. If invalid information is passed to the underlying driver, then the Instance is
not able to successfully use the data and proper operation cannot be guaranteed. Refer to the
Interface Extensions section for more information.

It is also important that configuration structures only have members that apply to the current
Interface. If multiple layers in the same stack define the same configuration parameters then it
becomes difficult to know where to modify the option. For example, the baud rate for a UART is only
be defined at the Driver layer. Any layers that use the UART Interface rely on the baud rate being
provided at the Driver layer and do not offer it in their own configuration structures.

SSP Interface Callback Functions

Callback functions allow Modules to asynchronously alert the user application when an event has
occurred. An example for an event is when a byte has been received over a UART channel. Callbacks
are required to allow user application code to react to interrupts. SSP Modules define and handle the
interrupts for Synergy MCU peripherals. If the user tries to define the interrupt service routine at the
same time as a SSP Module, then the code does not build. Therefore SSP Modules allow the user
application to respond to interrupts by registering a function to be called when an interrupt occurs.

Callback functions must be defined in the user application. They always return void and take a
structure for their one parameter. The structure typedef is provided in the Interface for the Module
and is named * _callback_args_t*. The contents of the structure may vary depending on the
Interface, but two members are common: event and p_context.

The event member is used by the application to determine why the callback was called. Using the
UART example again, the callback could have been triggered because a byte was received, all bytes
had been transmitted, or a framing error has occurred. The event member is an enumeration
provided by the Interface.

The p_context member is used for providing user-specified data to the callback function. In many
cases a callback function is shared between multiple channels or Module Instances. When the
callback occurs, the code handling the callback needs context information so that it can figure out
which Module Instance the callback is for. For example, if the callback wanted to make a SSP API call
in the callback, then at a minimum the callback must use the control structure. To make this easy,
the user can provide a pointer to the control structure as the p_context. When the callback occurs,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 39 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

the control structure is available as it will be passed in the callback structure.

Callback functions are called from within an interrupt service routine. For this reason callback
functions should be kept as short as possible so they do not affect the real time performance of the
user's system. An example skeleton function for the Flash Interface callback is shown below.

static void flash_callback (flash_callback_args_t * p_args)

{

 /* See what event caused this callback. */

 switch (p_args->event)

 {

 case FLASH_EVENT_ERASE_COMPLETE:

 /* Handle event. */

 break;

 case FLASH_EVENT_WRITE_COMPLETE:

 /* Handle event. */

 break;

 case FLASH_EVENT_BLANK:

 /* Handle event. */

 break;

 case FLASH_EVENT_NOT_BLANK:

 /* Handle event. */

 break;

 case FLASH_EVENT_ERR_DF_ACCESS:

 /* Handle error. */

 break;

 case FLASH_EVENT_ERR_CF_ACCESS:

 /* Handle error. */

 break;

 case FLASH_EVENT_ERR_CMD_LOCKED:

 /* Handle error. */

 break;

 }

}

When a Module is not directly used in the user application (it is not the top layer of the stack) then

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 40 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

its callback function will be handled by the Module above. If there is a Console Interface Module that
requires a UART Interface Module then the Console Module will control and use the UART's callback
function. In this case the user does not need to create a callback function for the UART Module in
their application code.

SSP Interface API Structure

All Interfaces include an API structure which contains function pointers for all the supported Interface
functions. An example structure, with the comments removed, for the Digital to Analog Convert
(DAC) is shown below.

typedef struct st_dac_api

{

 ssp_err_t (* open)(dac_ctrl_t * p_ctrl, dac_cfg_t const * const p_cfg);

 ssp_err_t (* close)(dac_ctrl_t * p_ctrl);

 ssp_err_t (* write)(dac_ctrl_t * p_ctrl, dac_size_t * p_value);

 ssp_err_t (* start)(dac_ctrl_t * p_ctrl);

 ssp_err_t (* stop)(dac_ctrl_t * p_ctrl);

 ssp_err_t (* versionGet)(ssp_version_t * p_version);

} dac_api_t;

The API structure is what allows for Modules to easily be swapped in and out for other Modules that
are Instances of the same Interface. Let's look at an example application using the DAC Interface
above.

Synergy MCUs have an internal DAC peripheral. If the DAC API structure in the DAC Interface were
not used, then the application could make calls directly into the module. In the example below the
application is making calls to the R_DAC_Write function which is provided in the r_dac module.

Figure 6: DAC Write example

Now let's assume that the user needs more DAC channels than are available on the MCU by adding a

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 41 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

new external DAC module named r_dac_external. The external DAC uses I2C for communications.
The application must now distinguish between the two modules, which adds complexity and further
dependencies to the application.

Figure 7: DAC Write with two write modules

The use of Interfaces and the API structure allows for the use of an abstracted DAC. This means that
no extra logic is needed and the application no longer depends upon certain hard-coded Modules.
Instead the application now depends on the DAC Interface API which can be implemented by any
number of Modules.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 42 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

Figure 8: DAC Interface

Functions inside of the API structures follow common names. Most Modules will have a pair of open()
and close functions. The open() function must be called before any of the other functions. The only
exception is the versionGet() function which is not dependent upon any user provided information.

Other functions that will commonly be found are read(), write(), get(), and set(). Function names are
designed to be a noun followed by a verb. Example names include:

read(), write(), writeRead()
statusGet()
calendarAlarmSet(), calendarAlarmGet()
accessWindowSet(), accessWindowClear()

SSP Interface Version Information

All Interfaces supply a versionGet() function. This function fills in a structure of type ssp_version_t.
This structure is made up of two versions: one for the Interface (the API) and one for the underlying
Instance that is currently being used.

/* Common version structure */

typedef union st_ssp_version

{

 /* Version id */

 uint32_t version_id;

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 43 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

 /* Code version parameters */

 struct

 {

 uint8_t code_version_major; // Code major version

 uint8_t code_version_minor; // Code minor version

 uint8_t api_version_major; // API major version

 uint8_t api_version_minor; // API minor version

 };

} ssp_version_t;

The API version ideally never changes, and only rarely if it does. A change to the API may require
users to go back and modify their code. The code version, the version of the current Instance, may
be updated more frequently. Bug fixes, enhancements, and additional features may all bump the
code version. Changes to the code version will only require changes to the user code if the user code
is using extended features provided by the Instance.

SSP Instances

While Interfaces dictate the features that are provided, Instances actually implement those features.
Each Instance is tied to a specific Interface. Instances use the enumerations, data structures, and API
prototypes from the Interface. This allows for an application that uses an Interface to swap out the
Instance when needed.

On Synergy MCUs some peripherals will have a one-to-one mapping between the Interface and
Instance, while others will have a one-to-many. In the example below the IIC and SPI peripherals map
to only one Interface each while the SCI peripheral implements three Interfaces.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 44 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Interfaces

Figure 9: Instances

SSP Instances API Structure

Each Instance includes a constant global structure with its functions that implement the Interface's
API. The name of this structure is standardized as g__on_. Examples include g_spi_on_spi,
g_transfer_on_dtc, and g_adc_on_adc. This structure is available to be used through an extern in the
instances header file (r_spi.h, r_dtc.h, and r_adc.h respectively).

2.1.2.5 Build Time Configuration

All modules have a build-time configuration header file. Most configuration options are supplied at
run time. Some options that are rarely used, or apply to all instances of a module, may be moved to
build time. The advantage of using a build-time configuration option is to potentially reduce code
size reduction by removing an unused feature. Performance enhancements are also possible. All
modules have at least one build time option, which is whether to enable or disable parameter
checking for the module. SSP modules check function arguments for validity when possible. You may
want to disable this feature when your testing has concluded to save code space and to speed up
execution.

2.1.2.6 Interface Extensions

In some cases, Instances require more information than is provided in the Interface. This situation
can occur in the following two cases:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 45 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > Interface Extensions

An Instance offers extra features that are not common to most Instances of the Interface.
An Interface must be very generic out of necessity. As an Interface becomes more generic,
the number of possible Instances increases. A prime example of this is the Block Media
Interface.

typedef struct st_sf_block_media_cfg

{

 uint32_t block_size; // Block size in bytes

 void * p_extend; // Instance dependent configuration

} sf_block_media_cfg_t;

The configuration structure for the Block Media Interface is intentionally sparse. This allows for
nearly endless Instances. Possible Instances include SD card, SPI Flash, SDRAM, USB, and many
more. Different configuration information is needed for each Instance. This is accomplished by
supplying the information through the p_extend parameter. While the configuration data provided in
the p_extend is not the same between Instances, the API calls thereafter will be. This means that the
change is only required in one place.

Use of Interface extensions is not always necessary. Some Instances do not offer an extension since
all functionality is provided in the Interface. In many cases the p_extend member can be set to NULL.
If NULL is provided and the Instance does offer an extension then the Instance will take this to mean
that the default options should be used. The documentation for each Instance indicates whether an
Interface extension is provided and whether its use is mandatory or optional.

2.1.2.7 SSP Predefined Layers

The SSP comes with two predefined layers: the Driver layer and the Framework layer. The layers are
easily identifiable because the modules reside in different folders and have different prefixes. Driver
layer modules are located in the ssp/src/driver folder, while Framework level modules are located in
the ssp/src/framework folder. Modules in the Driver layer start with an r_ prefix, while Framework
level modules start with a sf_ prefix.

The core difference in the functionality between the layers is that Driver layer modules are restricted
to being peripheral drivers that are RTOS aware, but do not use any RTOS objects or make any RTOS
API calls. This means that Driver layer modules can be used in applications with, or without, an
RTOS.

Framework layer modules are free to use RTOS objects such as semaphores, mutexes, or event
flags. Framework modules may also create their own when needed. Framework layer modules that
need to access hardware typically do so through a Driver layer Interface. Exceptions can be granted
in special cases where multiple peripherals need to be used together in a way that would not be
practical through multiple individual Interfaces.

2.1.2.8 SSP File Structure

The high-level file structure of the SSP is shown below.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 46 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP File Structure

ssp

+---inc

\| +---bsp

\| \| +---cmsis

\| +---driver

\| \| +---api

\| \| \\---instances

\| \\---framework

\| +---api

\| +---el

\| +---instances

\| \\---tes

---src

 +---bsp

 \| +---cmsis

 \| \\---mcu

 +---driver

 \| \\---r_module

 \\---framework

 \\---sf_module

synergy_cfg

+---ssp_cfg

 +---bsp

 +---driver

 \\---framework

}

Directly underneath the base ssp folder the folders are split into the source and include folders.
Include folders are kept separate from the source for easy browsing and easy setup of include paths.
The same set of folders are located in the ssp/inc and ssp/src folders: bsp, driver, and framework.

Apart from the BSP, the SSP's two predefined layers, Driver and Framework, are present. Driver layer
modules are located in the ssp/src/driver folder and Framework layer modules are located in
ssp/src/framework. Under the include tree, the Driver and Framework layer folders contain two
folders each: api and instances. The api folder contains the Interface header files for that layer. The
instances folder contains the Instance header files for that layer. Both layers are flat internally which
limits the number of include paths required for a project.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 47 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP File Structure

The ssp_cfg folder is where configuration header files are stored for each module. Its layout is the
same as the ssp folder where the BSP, Driver, and Framework layers have separate flat directories.
See the Build Time Configuration section for information on what is provided in these header files.

2.1.2.9 SSP Connecting Layers

SSP modules are meant to be both reusable and stackable. It is important to remember that modules
are not dependent upon other modules, but upon other Interfaces. The user is then free to fulfill the
Interface using the Instance that best fits their needs.

Figure 10: Connecting layers

In the image above Interface Y is a dependency of Interface X and has its own dependency on
Interface Z. Interface X only has a dependency on Interface Y. Interface X has no knowledge of
Interface Z. This is a requirement for ensuring that layers can easily be swapped out. This is shown in
the diagram below:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 48 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Connecting Layers

Figure 11: Connecting layers with the FileX interface

In this example we are using the Azure RTOS. FileX file system on two storage mediums: SDMMC and
SPI Flash. The SPI Flash Interface takes care of the SPI flash protocol but requires a SPI Interface for
actual SPI bus communications. The SDMMC Interface takes care of the protocol and the bus
communications meaning that it does not have any dependencies.

2.1.2.10 SSP Architecture In Practice

Each layer in the SSP Stack is responsible for calling the API functions of its dependencies. This can
also be described by saying that users are only responsible for calling the API functions at the layer
at which they are interfacing. Using the FileX example above, the user is only responsible for calling
FileX functions in the application code. Internally, FileX then calls FileX I/O, which in turn calls a Block
Media Interface Module. The Block Media Interface can call multiple drivers. At a minimum an upper
layer Module calls the open() function of the Interface it depends upon.

To write an application using a Module, you must determine the following:

1) Determine which open() function to call. Dependencies are based upon Interfaces which
means that a Module must have some way of discerning which Instance to call.

2) Determine the configuration parameters. The Module also needs to know what
configuration information to pass down. In some cases the Module requires certain
configuration parameters to be set. If this is the case then the module sets these
configuration structure members itself before passing on the rest of the structure. The rest
of the configuration structure members must be provided outside of the Module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 49 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Architecture In Practice

3) Provide a control structure which is Module Instance specific and therefore can be
allocated by the upper layer module.

Putting this all together means that to interact with a Module Instance, the following is needed:

A pointer to the Instance's API structure
A pointer to the Module Instance's configuration structure
A pointer to the Module Instance's control structure

This information is sufficient to use any module. Notice that the API structure is the only structure
that is Instance specific; not Module Instance specific. This is because the API structure will not vary
between multiple uses of the same Instance. If SPI is being used on SCI channels 0 and 2 then both
Module Instances will use the same API structure while the configuration and control structures will
vary.

To make Module Instances easier to use, all of these pieces are encapsulated in instance structures
found in each Interface. These structures have a standardized name of <interface>_instance_t. An
example from the WDT interface is shown below.

typedef struct st_wdt_instance

{

 wdt_ctrl_t * p_ctrl; // Pointer to the control structure for this instance

 wdt_cfg_t const * p_cfg; // Pointer to the configuration structure for this

instance

 wdt_api_t const * p_api; // Pointer to the API structure for this instance

} wdt_instance_t;

Upper layer modules that have a dependency on an Interface can then use the instance structure to
hold everything needed to interact with an Instance of that Interface. Continuing with the WDT
example above, below is the Thread Monitor Framework Interface configuration structure. The
Thread Monitor Interface is dependent upon the WDT Interface.

typedef struct st_sf_thread_monitor_watchdog_type

{

 wdt_instance_t * p_lower_lvl_wdt; // Pointer to lower level watchdog instance

 bool profiling_mode_enabled; // Enables or disables profiling mode

 UINT priority; // Priority of thread monitor thread

} sf_thread_monitor_cfg_t;

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 50 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > SSP Architecture In Practice

The Thread Monitor module has everything it needs to work with the WDT Interface in the
p_lower_lvl_wdt structure member.

In some cases module dependencies are not be defined in the Interface, but instead in the Instance.
An example is the Block Media Interface could be implemented on SDMCC, SPI Flash, or many other
Instances (also see API Reference section). Because of the wide range of implementations, the
instance structure for a particular Interface cannot be used directly in the Block Media Interface's
configuration structure. The Block Media Interface's configuration structure is shown again below.

typedef struct st_sf_block_media_cfg

{

 uint32_t block_size; // Block size in bytes

 void * p_extend; // Instance dependent configuration

} sf_block_media_cfg_t;

Notice there are Instance structure pointers provided. The reason for this, as previously mentioned,
is that the Block Media Interface is too generic to enforce a dependency upon a particular Interface.
When a Module is an Instance of a generic Interface, such as Block Media, and it has dependencies
on other Modules, the module puts the lower-layer pointers in an extension structure that is
referenced through the Interface's p_extend configuration member. This is required to allow Module
stacking while not forcing Interfaces to expand and have many optional configuration members.

typedef struct st_block_media_on_sdmmc_cfg

{

 sdmmc_instance_t const * const p_lower_lvl_sdmmc; // Pointer to SDMMC instance

structure

} sf_block_media_on_sdmmc_cfg_t;

2.1.2.11 Using SSP Modules

This section will give general information on how to use a SSP module.

Pick an Interface

Start by picking an Interface for the functionality that is required. For example, for UART
communications use the UART Interface.

Find a suitable Instance of the Interface

After picking an Interface, choose a suitable Instance. The list of known Instances of an Interface is

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 51 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > Using SSP Modules

listed in the documentation comments for an Interface. Include the header file of the selected
Instance in the source file of the application that uses the Instance.

Allocate control and configuration structures

The e2 studio ISDE provides a graphical user interface for setting the parameters of the Interface and
Instance configuration structures. The ISDE also automatically includes those structures, once they
are configured in the GUI, in application-specific header files that you can include into your
application code.

To see how the ISDE handles the configuration, see Configuring a Project in the ISDE User’s Guide:
Using the e2 studio ISDE

The configuration and control structure types follow standard names of <interface>_ctrl_t and
<interface>_cfg_t respectively. The ISDE allocates storage for both structures in the application
specific header files, which the ISDE creates. Use the ISDE Properties view to set the values for the
members of the configuration structure as needed. Many members will be typed enumerations in
which case the enumeration can be referenced for available options.

If the Interface has a callback function option, then you first need to declare and define the function
in their source code. The return value is always of type void and the parameter to the function is a
typed structure of name <interface>_callback_args_t. Once the function has been defined, assign its
name to the p_callback member of the configuration structure. If any context information is required
in the callback, then the user can provide a pointer to the p_context member. You can assign
callback function names through the ISDE Properties window for the selected Module.

Refer to the Instance documentation to see if an Interface extension is provided. If so, then it will be
found in the Instance's header file and named <interface>_on__cfg_t. It may have several members
just like the Interface's configuration structure. When you select a driver with a specific Instance, you
can select any parameter in the configuration structure of the instance in the ISDE property.

Interact using Interface’s Instance Structure

Once the instance structure has been defined, you can interact with the Instance as needed. Below is
code that builds up an instance structure for the UART Interface as implemented on SCI. Please note
that when using e2 studio for Synergy, the following code is automatically generated for the user.

/* Include the header file of the Instance. */

#include "r_sci_uart.h" // This will in turn include the r_uart_api.h Interface

/* Allocate control structure. */

uart_ctrl_t my_uart_ctrl;

/* Setup extended UART configuration on SCI. */

uart_on_sci_cfg_t my_uart_extended_cfg =

{

 /* Set extended configuration members... */

};

/* Configure standard UART Interface. */

uart_cfg_t my_uart_cfg =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 52 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > Using SSP Modules

{

 .data_bits = UART_DATA_BITS_8,

 /* Continue configuring other members... */

 .p_extend = &my_uart_extended_cfg

};

/* Setup instance structure */

uart_instance_t my_uart = {

 .p_ctrl = &my_uart_ctrl,

 .p_cfg = &my_uart_cfg, //Extended configuration is brought through

in p_extend

 .p_api = &g_uart_on_sci //Defined in r_sci_uart.h

};

Now that the instance structure is ready, you can interact with the UART Interface. In e2 studio, the
name of the instance structure is the *Name* that you provide when configuring the Module Instance
in the ISDE Properties window.

ssp_err_t err;

/* Initialize UART */

err = my_uart.p_api->open(my_uart.p_ctrl, my_uart.p_cfg);

/* Check return for errors. */

if (SSP_SUCCESS != err)

{

/* Handle error. */

}

/* Use other Interface functions. */

err = my_uart.p_api->write(my_uart.p_ctrl, ...);

err = my_uart.p_api->read(my_uart.p_ctrl, ...);

2.1.2.12 Coding Style

C99 Use

SSP uses the ISO/IEC 9899:1999 (C99) C programming language standard. Specific features
introduced in C99 that are used include standard integer types (stdint.h), booleans (stdbool.h),
designated initializers, and the ability to intermingle declarations and code.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 53 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > SSP Architecture > Coding Style

Use of const in API parameters

The const qualifier is used with API parameters whenever possible. An example case is shown below:

ssp_err_t (* open)(flash_ctrl_t * const p_ctrl, flash_cfg_t const * const p_cfg);

While not fool-proof by any means, this does provide some extra checking inside the SSP code to
ensure that arguments that should not be altered are treated as such.

Weak Symbols

Weak symbols are used occasionally in and with SSP. They are used to ensure that a project builds
even when you have not defined an optional function.

2.1.3 BSP Architecture

This section describes the BSP or Board Support Package. For the API Reference see Board Support
Package. The BSP is board specific and as a result also MCU specific.

2.1.3.1 What Does the BSP Do?

The BSP is responsible for getting the MCU from reset to the user's application (that is, the main()
function). Before reaching the user's application the BSP sets up the stacks, heap, clocks, interrupts,
and C runtime environment. The BSP also configures and sets up the port I/O pins and performs any
board specific initializations.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 54 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > BSP Architecture > What Does the BSP Do?

Figure 12: BSP flow

2.1.3.2 BSP Related Terminology

Term Meaning

system_xxxx.c or startup_xxxx.c The ‘xxxx’ refers to the MCU type. For example,
system_S7G2.c when referencing the S7G2 MCU.

BSP Short for Board Support Package. BSP’s usually
have source files related to a specific board.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 55 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > BSP Architecture > BSP Related Terminology

Callback Function This term refers to a function that is called when
an event occurs. For example, the NMI interrupt
handler is implemented in the BSP. The user will
likely want to know when an NMI system
exception occurs. To alert the user, a callback
function can be configured for the group
interrupts (a group of exceptions all of which are
tied to the NMI). When an NMI occurs the BSP
will jump to the provided callback function and
the user can handle the error. Interrupt callback
functions should be kept short and be handled
carefully because when they are called the MCU
will still be inside of an interrupt and therefore
will be delaying any pending interrupts.

2.1.3.3 BSP Directory Structure

The BSP is organized into folders containing MCU, board specific and CMSIS information.

Synergy is CMSIS-compliant and based on the CMSIS-Core. This requires that we follow CMSIS
requirements and naming standards.

Standardized definitions for processor peripherals
NVIC (Nested Vector Interrupt Controller)
Systick (System Tick Timer)
MPU (Memory Protection Unit)
Standardized access functions to access processor features
NVIC_SetPriority()
NVIC_EnableIRQ
Standardized function names for system exception handlers
Reset_Handler()
SysTick_Handler()
Standardized functions for system initialization.
SystemInit() – defined in system_S7G2.c for S7G2 MCUs
Standardized software variables for clock speed information
SystemCoreClock

The BSP directory structure is shown below:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 56 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > BSP Architecture > BSP Directory Structure

Figure 13: BSP directory structure

2.1.3.4 Configuring the BSP

The BSP is heavily data driven with most features and functionality being configured based on the
content from configuration files. Configuration files represent the settings specified by the user and
are generated by the ISDE when the Generate Project Content button is clicked.

2.1.3.5 BSP Configuration Settings

The table below describes each of the configurable BSP settings. Many of these settings are MCU
specific and there are differences between the settings available for each of the supported MCUs.

Table: BSP Configuration options

BSP Property Description

Part number MCU part number

ram_size_bytes Available RAM in this MCU package

rom_size_bytes Available ROM in this MCU package

data_flash_size_bytes Available Data Flash in this MCU package

package_style Style of package (ie. BGA)

package_pins Number of pins in this MCU package

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 57 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > BSP Architecture > BSP Configuration Settings

series MCU part series

Main stack size (bytes) Size of the Main Stack. Must be > 0.

Process stack size (bytes) Size of the Process Stack. Use of this stack is
optional. If 0, then PSP use is disabled

Heap size (bytes) Size of the heap in bytes. If 0, the heap is
disabled.

OFS0 register settings: IWDT Start Mode, IWDT
Timeout Period, IWDT Dedicated Clock
Frequency Divisor, IWDT Window End Position,
IWDT Window Start Position, IWDT Reset
Interrupt Request Select, IWDT Stop Control,
WDT Start Mode Select , WDT Timeout Period,
WDT Clock Frequency Division Ratio, WDT
Window End Position, WDT Window Start
Position, WDT Reset Interrupt Request, WDT
Stop Control

The option-setting memory determines the state
of the MCU after a reset. It is allocated to the
configuration setting area and the program flash
area of the flash memory. See the MCU user
manual for details.

OFS1 register settings: Voltage Detection 0
Circuit Start, Voltage Detection 0 Level, HOCO
Oscillation Enable. S3 MPU has MPU
configuration settings.

See the MCU user manual for details.

MPU - Enable or disable PC Region 0 Start block address for access window protection

MPU - PC0 Start, MPU - PC0 End, MPU - Enable or
disable PC Region 1, MPU - PC1 Start, MPU - PC1
End, MPU - Enable or disable Memory Region 0,
MPU -Memory Region 0 Start, MPU - Memory
Region 0 End, MPU - Enable or disable Memory
Region 1, MPU - Memory Region 1 Start, MPU -
Memory Region 1 End, MPU - Enable or disable
Memory Region 2, MPU - Memory Region 2 Start,
MPU - Memory Region 2 End, MPU - Enable or
disable Memory Region 3, MPU - Memory Region
3 Start, MPU - Memory Region 3 End

Secure MPU ROM register settings. See user
manual for details.

ID code 1, ID code 2, ID code 3, ID code 4 Sets the ID Code for boot mode and debugger
access protection.

MCU Vcc (mV) Some Modules (e.g. LVD) need to know the
voltage supplied to the MCU. This information is
obtained from here.

Parameter checking Defines whether the global setting for parameter
checking is enabled or disabled. Local modules
will take this value by default but can be locally
overridden.

Assert Failures Defines what happens when an assertion failure
occurs.

Error Log Defines whether or not errors are logged to
ssp_error_log.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 58 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > BSP Architecture > BSP Configuration Files

2.1.3.6 BSP Configuration Files

Configuration files are used by the BSP to set up ROM registers, clocks, interrupts, ELC events and
initial pin configurations. These configuration files can be found in ssp_cfg\bsp.

Bsp_cfg.h

This configuration file contains the values for BSP system settings. These are the settings that can
be modified from the ISDE BSP properties tab. They include ROM register settings, stack and heap
size, parameter checking and control of error logging.

Some registers are located in ROM and therefore must be set at compile-time. These include
some option-setting memory (OFS) registers as well as certain memory protection registers.

Option-setting memory determines the state of the MCU after a reset. For example, the IWDT can
be configured and enabled, voltage detection can be enabled, and HOCO oscillation can be
enabled. When these registers are set the operations are completed before the MCU’s reset vector is
fetched and execution begins.

Some Synergy MCUs include a Memory Protection Unit (MPU). The MPU is a programmable
device that can be used to define memory access permissions (i.e. privileged access only or full
access) and memory attributes (for example, bufferable, cacheable) for different memory regions.
The MPU can support up to eight programmable memory regions, each with their own programmable
starting addresses, sizes and settings.

The ISDE configures these memory areas by setting values for the provided MPU settings. You
must be careful when setting these registers. Incorrect settings can prevent access to required
memory areas or prevent access to the MCU entirely.

2.1.3.7 BSP Pin Configuration

You can configure the pins used in your application through the ISDE pin configurator. See
Configuring Pins.

Bsp_pin_cfg.h

This configuration file contains an array of pin configurations. During start-up, and before main()
is executed, the BSP iterates over this array and initializes the MCU's port pins based on the settings
in the array. Initially, before any pin configuration by the user, the ISDE Pins tab displays the initial
reference configuration defined for the selected board type (see Configuring Pins). Once the user
modifies the pin configuration and clicks Generate Project, a new bsp_pin_cfg.h file is generated
containing the new pin configuration. The BSP always uses the bsp_pin_cfg.h file from ssp_cfg\bsp as
the source for its pin configuration information, but the pin information generated by clicking
Generate Project is written to a bsp_pin_cfg.h file in the hidden folder ssp_cfg\bsp\.out.

In this way, the user can manually edit the bsp_pin_cfg.h in ssp_cfg\bsp without the fear of the file
being overwritten by the project generation, while the Pin Configuration information generated by
the ISDE also remains available for view or merging with the user’s config file.

2.1.3.8 BSP Clock Configuration

All system clocks are set up during BSP initialization based on the settings in bsp_clock_cfg.h. These
settings are derived from clock configuration information provided from the ISDE Clocks tab setting.

Clock configuration is performed prior to initializing the C runtime environment to speed up

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 59 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > BSP Architecture > BSP Clock Configuration

the startup process, as it is possible to start up on a relatively slow (for example, 32 kHz)
clock.
The BSP implements the required delays to allow the selected clock to stabilize.

Bsp_clock_cfg.h

This configuration file represents the values for system clock settings. These are the settings that
can be modified from the ISDE **Clocks** tab. See: Configuring Clocks

2.1.3.9 System Interrupts

As Synergy MCU’s are based on the Cortex-M ARM architecture, the NVIC Nested Vectored Interrupt
Controller (NVIC) handles exceptions and interrupt configuration, prioritization and interrupt
masking. In the ARM architecture, the NVIC handles exceptions. Some exceptions are known as
System Exceptions. System exceptions are statically located at the top of the vector table and
occupy vector numbers 1 to 15. Vector zero is reserved for the MSP Main Stack Pointer (MSP). The
remaining 15 system exceptions are shown below:

Reset
NMI
Cortex-M4 Hard Fault Handler
Cortex-M4 MPU Fault Handler
Cortex-M4 Bus Fault Handler
Cortex-M4 Usage Fault Handler
Reserved
Reserved
Reserved
Reserved
Cortex-M4 SVCall Handler
Cortex-M4 Debug Monitor Handler
Reserved
Cortex-M4 PendSV Handler
Cortex-M4 SysTick Handler

NMI and Hard Fault exceptions are enabled out of reset and have fixed priorities. Other exceptions
have configurable priorities and some can be disabled.

2.1.3.10 Group Interrupts

Group interrupt is the term used to describe the 12 sources that can trigger the Non-Maskable
Interrupt (NMI). When an NMI occurs the NMI Handler examines the NMISR (status register) to
determine the source of the interrupt. NMI interrupts take precedence over all interrupts, are usable
only as CPU interrupts, and cannot activate the Synergy peripherals Data Transfer Controller (DTC)
or Direct Memory Access Controller (DMAC).

Possible group interrupt sources include:

IWDT Underflow/Refresh Error
WDT Underflow/Refresh Error
Voltage-Monitoring 1 Interrupt
Voltage-Monitoring 2 Interrupt
VBATT monitor Interrupt
Oscillation Stop is detected

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 60 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > BSP Architecture > Group Interrupts

NMI pin
RAM Parity Error
RAM ECC Error
MPU Bus Slave Error
MPU Bus Master Error
MPU Stack Error

A user may enable notification for one or more group interrupts by registering a callback using the
BSP API function R_BSP_GroupIrqWrite. When an NMI interrupt occurs, the NMI handler checks to see
if there is a callback registered for the cause of the interrupt and if so calls the registered callback
function.

As mentioned earlier, the first 16 slots in the vector table are already accounted for by the system
exceptions. Beginning with slot 16 are user configurable interrupts. These may be external, or
peripheral generated interrupts.

The size of the NVIC interrupt table varies across Synergy MCU types (shown below).

Figure 14: NVIC Interrupt vector table

Although the number of available slots for the NVIC interrupt vector table may seem small, the BSP
defines up to 512 events that are capable of generating an interrupt. By using Event Mapping, the
BSP maps user enabled events to NVIC interrupts. For an S7G2 MCU, only 96 of these events may be
active at any one time, but the user has flexibility by choosing which events generate the active
event.

The diagram below shows the interrupt vector table for the S7G2:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 61 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > BSP Architecture > Group Interrupts

Figure 15: NVIC Interrupt vector table

 By allowing the user to select only the events they are interested in as interrupt sources, we are
able to provide an interrupt service routine that is fast and event specific.

For example, on other microcontrollers a standard NVIC interrupt vector table might contain a single
vector entry for the SCI0 (Serial Communications Interface) peripheral. The interrupt service routine
for this would have to check a status register for the 'real' source of the interrupt. In the Synergy
implementation there is a vector entry for each of the SCI0 events that we are interested in. The
difference between a standard NVIC table and the Synergy S7G2 NVIC table is shown below:

Figure 16: NVIC Interrupt vector table example

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 62 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > BSP Architecture > Group Interrupts

Configuration of interrupts is handled by the ISDE. Selecting an interrupt to be used by a module will
generate the code necessary to allocate its entry in the vector table, as well as link it to the proper
ICU ELC event.

When an interrupt occurs one of the very first operations must be to call R_BSP_IrqStatusClear() with
the interrupt number corresponding to the NVIC interrupt slot that was assigned by the BSP. R_BSP_
IrqStatusClear() clears the interrupt status flag (IR) for the given interrupt. When an interrupt is
triggered the IR bit is set. If it is not cleared in the ISR then the interrupt will trigger again
immediately.

Entries that have been assigned a priority (i.e. BSP_IRQ_CFG_ICU_IRQ0) in our example, have their
corresponding ‘weak handler’ address placed in the next available vector slot. All of the possible
interrupt sources are iterated over in this manner. Defined interrupts are entered into the vector
table.

BSP Interrupt Configuration File

Bsp_irq_cfg.h is a legacy file that is no longer used and will be removed in the future. Interrupt
configuration is now completely handled by the ISDE.

Vector table entries

System exceptions such as the HardFault_Handler, are defined as weak references. This allows the
user to override the default handler for a particular exception and define their own handler.

All other entries in the vector table are generated by the ISDE using a macro which defines the
vector and a corresponding vector information structure to generate an entries in ROM table linker
sections (.vector.* for vectors and .vector_info.* for vector information).

Note that in CMSIS system_xxxx.c, there is also a weak definition (and a function body) for the Warm
Start callback function R_BSP_WarmStart(). Because this function is defined in the same file as the
weak declaration, it will be called as the ‘default’ implementation. The function may be overridden
by you by copying the body into your application and modifying it as necessary. The linker identifies
this as the ‘strong’ reference and uses it.

Warm start callbacks

As the BSP is in the process of bringing up the board out of reset, there are two points where the
user can request a callback. These are defined as the 'Pre C' and 'Post C' warm start callbacks.

As described above, this function is already weakly defined as R_BSP_WarmStart(), so it is a simple
matter of redefining the function or copying the existing body from CMSIS system_xxxx.c into the
application code to get a callback. R_BSP_Warmstart() takes an event parameter which describes the
type of warm start callback being made.

/* Different warm start entry locations in the BSP. */

typedef enum e_bsp_warm_start_event

{

 BSP_WARM_START_PRE_C = 0, // Called almost immediately after reset.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 63 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > BSP Architecture > Group Interrupts

 /* No C runtime environment, clocks, or IRQs. */

 BSP_WARM_START_POST_C // Called after clocks and C runtime environment have been

set up.

} bsp_warm_start_event_t;

This function is not enabled/disabled and is always called for both events as part of the BSP startup.
Therefore it needs a function body, which will not be called if the user is overriding it. The function
body is located in system_xxxx. To use this function just copy this function into your own code and
modify it to meet your needs.

Pre C Warm start callback

This callback occurs almost immediately after reset and at this point no C runtime environment,
clocks, or IRQs have been setup.

Why would you be interested in a 'Pre C' warm start callback?

Below are a few examples.

Execution of safety code (i.e. destructive memory tests) as part of the startup process.
Examination of global memory as part of a crash dump investigation.
Preventing re-initialization of an already running RTC.

Post C Warm start callback

This callback occurs after clocks and the C runtime environment have been setup.

Why would you be interested in a 'Post C' warm start callback?

Below are a few examples.

Run tests that require that clocks have been setup.
ADC diagnostics.
ROM/External memory system checks.

2.1.3.11 Custom BSP Board support

Creating a Custom BSP for your own board is not supported in this version of the SSP. For
information on creating a Custom BSP with earlier versions, see application note R11AN0071EU,
Creating a Custom Board Support Package for SSP v1.2.0 or Later.

2.1.3.12 BSP API functions

The BSP provides public functions, available to any project using the BSP, that allow access to
functionality that is common across BSP supported MCUs and boards.

R_BSP_SoftwareLockInit: The BSP provides API functions to implement atomic locking.
These locks can be used to protect critical areas of code as an RTOS semaphore or mutex
normally would. This function simply initializes a defined lock structure to
BSP_LOCK_UNLOCKED
R_BSP_SoftwareLock: Attempts to acquire the lock that has been sent in. The Load-

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 64 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > BSP Architecture > BSP API functions

Exclusive and Store-Exclusive instructions are being used to perform an exclusive read-
modify-write on the input lock. This process is:

 Use a load-exclusive (LDREXB) to read the value of the lock.
 If the lock is available, then modify the lock value so it is reserved. If not
available, then issue CLREX.
 Use a store-exclusive to attempt to write the new value back to memory.
 Test the returned status bit to see if the write was performed or not.

R_BSP_SoftwareUnlock: Releases the hold on an existing software lock.
R_BSP_HardwareLock: Hardware locks are similar to Software locks. In fact, the BSP
Software lock functions are called by the Hardware lock functions. Hardware locks are
specific to a particular peripheral, the list of available hardware locks being defined in
bsp_hw_locks.h. Hardware locks can be used to prevent multiple threads from trying to use
a peripheral that is already in use by a process or thread. For example, when the Flash API
open() function is called, it takes the Flash Hardware lock and keeps it until the Flash API
close is called.
R_BSP_HardwareUnlock: Releases the hold on an existing hardware lock. In the Flash
example above, the Flash API close function would call this function.
R_BSP_GroupIrqWrite: Registers a callback function for one of supported group interrupts.
As described earlier, there are 12 of these and they are all mapped to the NMI exception.
When an NMI occurs, the NMI_Handler looks at the NMISR (status register) to determine the
source of the interrupt. If a callback function has been registered for this group interrupt, it
will be called. If NULL is passed for the callback argument, then any previously registered
callbacks are unregistered.
R_BSP_IrqStatusClear: Clears the interrupt status flag (IR) for a given interrupt. When an
interrupt is triggered the IR bit is set. If it is not cleared in the ISR, then the interrupt will
trigger again immediately.
R_BSP_SoftwareDelay: Implements a blocking software delay. A delay can be specified in
microseconds, milliseconds, or seconds. The delay is implemented based on the system
clock rate.
R_BSP_VersionGet: Returns the version of the BSP.
R_BSP_LedsGet(): Returns information about the LEDs on the board.
R_BSP_ModuleStop(): Specifies modules whose stop bit should be set.
R_BSP_ModuleStart(): Specifies modules whose stop bit should be cleared.
R_BSP_CacheOff(): Turns off the ROM cache, and return it’s prior state.
R_BSP_CacheSet(): Sets the cache state to a specific state (on or off).
R_BSP_RegisterProtectEnable: Enables register protection. Registers that are protected
cannot be written to. Register protection is enabled by using the Protect Register (PRCR)
and the MPC's Write-Protect Register (PWPR). The registers that may be protected are
grouped together into one of three groups.

 BSP_REG_PROTECT_CGC - registers related to the clock generation circuit.
 BSP_REG_PROTECT_OM_LPC_BATT - registers related to operating modes, low
power consumption, and battery backup function.
 BSP_REG_PROTECT_LVD – registers related to LVD (Low Voltage Detection)

The BSP register protection functions utilize reference counters to ensure that an application which
has specified a certain register and subsequently calls another function does not have its register
protection settings inadvertently modified.

Each time RegisterProtectDisable() is called, the respective reference counter is
incremented.
Each time RegisterProtectEnable() is called, the respective reference counter is
decremented.

Both functions will only modify the protection state if their reference counter is zero.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 65 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > BSP Architecture > BSP API functions

As the example below shows, without reference counters, MODULE2 would re-protect the registers
that MODULE 1 had un-protected, preventing MODULE1 from writing them.

Figure 17: Register protection

R_BSP_RegisterProtectDisable: Disables register protection. Registers that are not protected
can be written to. Register protection is disabled by using the Protect Register (PRCR) and
the MPC's Write-Protect Register (PWPR). The register groupings described above still apply.

2.1.4 Key Features

This section describes the key features

2.1.4.1 Azure RTOS ThreadX® RTOS

Multithreaded, deeply embedded, real-time systems
Small, fast Picokernel™ architecture
Multitasking capabilities
Preemptive and cooperative scheduling
Flexible thread priority support (32-1024 priority levels)
Small memory footprint and fast response times
Optimized interrupt handling
Stack Pointer Overflow Monitor

2.1.4.2 Azure RTOS GUIX™

Supports 2D Graphics Acceleration in Hardware
Unlimited objects (screens, windows, widgets)
Dynamic object creation/deletion
Alpha blending and anti-aliasing at higher color depths
Canvas blending
Dithering support
Complete windowing support, including viewports and Z-order maintenance
Multiple canvases and physical displays
Window blending and fading
Screen transitions, sprites, and dynamic animations
Touchscreen and virtual keyboards
Multilingual support with UTF8 string encoding
Automatic size scaling

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 66 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > Key Features > Azure RTOS GUIX™

8-bit Color Lookup Table (CLUT) support
Touch Rotation
Radial Progress Bar
Endian Neutral
Monochrome through 32-bit true-color with alpha graphics formats
Skinning and Themes
Bitmap compression
GUIX Studio desktop tool and Win32 simulation
Integrated with hardware JPEG/MJPEG decoder

2.1.4.3 Azure RTOS USBX™

USB 2.0 Full Speed and High-Speed support
Device class: MSC, HID, CDC-ACM
Host class: MSC, HID, CDC-ACM, UVC, HUB, Printer, Video
Supports fast DMA and isochronous transfers

2.1.4.4 Azure RTOS FileX®

MS-DOS compatible file system integrated with ThreadX
FAT12-, 16-, 32-bit support
exFAT
Fault-tolerant file system (uses journaling)
Multiple media instances
LevelX Flash block media driver
LevelX support for NOR Flash on QSPI

2.1.4.5 Azure RTOS NetX™

Integrated with wired (Ethernet) and wireless (WiFi, Cellular) networking interfaces for
Synergy
IPv4 compliant TCP/IP Protocol Stack
Integrated with ThreadX
Zero-copy API
UDP Fast Path Technology
BSD-compatible socket layer
RFC 791 Internet Protocol (IP)
RFC 826 Address Resolution Protocol (ARP)
RFC 903 Reverse Address Resolution Protocol (RARP)
RFC 792 Internet Control Message Protocol (ICMP)
RFC 3376 Internet Group Management Protocol (IGMP)
RFC 768 User Datagram Protocol (UDP)
RFC 793 Transmission Control Protocol (TCP)
RFC 1112 Host Extensions for IP Multicasting

2.1.4.6 Application Frameworks

ADC Periodic framework
Audio Playback framework
Audio Playback HW DAC framework
Audio Playback HW I2S framework
Audio Record framework
Audio Recording HW ADC framework
Block Media Interface for SD Multi Media Card
Block Media LevelX NOR framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 67 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > Key Features > Application Frameworks

Block Media QSPI framework
Block Media RAM framework
Block Media SDMMC framework
Bluetooth Low Energy (BLE) framework
Deprecated – Capacitive Touch Sensing Unit framework
Capacitive Touch Sensing Unit framework Version 2
Deprecated – Capacitive Touch Sensing Unit Button framework
Deprecated – Capacitive Touch Sensing Unit Slider framework
Cellular framework
Communications framework on NetX
Communications framework on NetX Telnet
Deprecated - Communications framework on USBX
Communications Framework on USBX version2
Console framework
External Interrupt framework
I2C framework
Inter-Thread Messaging framework
JPEG Decode framework
Memory framework
Port LevelX framework
Periodic Sampling ADC framework
Power Profile Version 2 framework
SPI Framework
Synergy FileX® Port Block Media Interface framework
Synergy GUIX™ Interface framework
Synergy NetX™ Port framework
Synergy USBX™ Port framework
Thread Monitor framework
Deprecated - Touch Panel framework
Touch Panel Version 2 framework
UART framework
Wi-Fi Framework

2.1.4.7 Security Cryptographic (SCE) Library

True RNG (TRNG)
SHA1, SHA224/SHA256
ECC P-192, P-224, P-256 and P-384 curves. Includes APIs for scalar multiplication, key
generation, ECDSA signature generation, and ECDSA signature verification operations
AES 128, 192, and 256-bits ECB, CBC, CTR, GCM, XTS
3DES, 192-bit key, ECB, CBC, CTR
ARC4
RSA up to 2048-bit keys
DLP, DSA up to 2048-bit keys
Encryption/Decryption
Key Generation (plaintext and wrapped keys) and Installation.
Signature Generation and Verification
MD5

2.1.4.8 CMSIS DSP Library

Basic math functions
Fast math functions
Complex math functions
Filters

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 68 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > Key Features > CMSIS DSP Library

Convolution
Matrix functions
Transforms
Motor control functions
Statistical functions
Support functions
Interpolation functions
Bayes functions
Controller functions
Distance functions
Quaternion functions
SVM functions

Detailed CMSIS library details can be found on
Github: https://github.com/ARM-software/CMSIS_5/releases/tag/5.8.0

2.1.4.9 CMSIS Neural Network Library

Convolution functions
Activation functions
Fully-connected Layer functions
Pooling functions
Softmax functions
Basic math functions
Concatenation functions
NN Support functions
Reshape Functions
SVD Functions

Detailed CMSIS library details can be found on
Github: https://github.com/ARM-software/CMSIS_5/releases/tag/5.8.0

2.1.4.10 AzureRTOS NetX Duo™

IPv4 and IPv6 compliant TCP/IP Protocol Stack
Integrated with ThreadX
Integrated with wired (Ethernet) and wireless (WiFi, Cellular) networking interfaces for
Synergy
Zero-copy API
UDP Fast Path Technology
BSD-compatible socket layer
RFC 2460 IPv6 Specification
RFC 4861 Neighbor Discovery for IPv6
RFC 4862 IPv6 Stateless Address
RFC 1981 Path MTU Discovery for IPv6
RFC 4443 ICMPv6
RFC 791 Internet Protocol (IP)
RFC 826 Address Resolution Protocol (ARP)
RFC 903 Reverse Address Resolution Protocol (RARP)
RFC 792 Internet Control Message Protocol (ICMP)
RFC 3376 Internet Group Management Protocol (IGMP)
RFC 768 User Datagram Protocol (UDP)
RFC 793 Transmission Control Protocol (TCP)
RFC 1112 Host Extensions for IP Multicasting
RFC 1661 - The Point-to-Point Protocol (PPP)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 69 / 5,198

https://github.com/ARM-software/CMSIS_5/releases/tag/5.8.0
https://github.com/ARM-software/CMSIS_5/releases/tag/5.8.0

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > Key Features > Azure RTOS NetX™ Applications (IPv4 Networking Services)

2.1.4.11 Azure RTOS NetX™ Applications (IPv4 Networking Services)

DHCP Client and Server
DNS Client
HTTP 1.0 Client and Webserver
HTTP 1.1 Client
FTP Client and Server
TFTP Client and Server
Telnet Client and Server
Auto IP
NAT
SMTP Client
POP3 Client and Server
SNMP Agent
SNTP Client
PPP (Not currently supported by Synergy Configuration tool)

2.1.4.12 Azure RTOS NetX Duo™ Applications (IPv4/v6 Networking Services)

DHCP Client and Server
DNS Client
HTTP 1.0 Client and Webserver
HTTP 1.1 Client
HTTPS Client and Server
FTP Client and Server
TFTP Client and Server
Telnet Client and Server
Auto IP
NAT
SMTP Client
POP3 Client and Server
SNMP Agent
SNTP Client
MDNS/DNS-SD
PPP (Not currently supported by Synergy Configuration tool)

2.1.4.13 Azure RTOS NetX Secure

TLS v1.2 (RFC 5246) and v1.3 (RFC 8446)
DTLS v1.2 (RFC 6347)
RFC 5280 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile
RFC 5280 X.509 PKI Certificates (v3)
Supports X.509 extensions for Key Usage and Extended Key Usage
RFC 3268 Advanced Encryption Standard (AES) Cipher suites for Transport Layer Security
(TLS)
RFC 3447 Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1
RFC 2104 HMAC: Keyed-Hashing for Message Authentication
RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)
RFC 8422 Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)
Versions 1.2 and Earlier
RFC 4279 Pre-Shared Key Cipher suites for TLS
Supports TLS extensions for:

 Secure Renegotiation Indication

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 70 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > Key Features > Azure RTOS NetX Secure

 Server Name Indication
 Signature Algorithms

Subject Alternative Name
Integrated with hardware accelerated Cryptographic library on Synergy

2.1.4.14 Azure RTOS MQTT client for NetX Duo

Compliant with OASIS MQTT Version 3.1.1
Provides option to enable/disable TLS for secure communications using NetX Secure in SSP
Supports QoS and provides the ability to choose the levels that can be selected while
publishing the message
Supports multiple Instances of MQTT Client Per Device

2.1.4.15 Memory Support

Flash programming support via JTAG
Code and Data Flash drivers
External memory bus support

2.1.4.16 Human Machine Interface (HMI)

Graphics LCD controller driver
Segment LCD controller driver
Capacitive Touch Sensing Unit (CTSU)

2.1.4.17 Hardware Abstract Layer (HAL) Driver Modules

Analog Comparator High-Speed (ACMPHS)
Analog Comparator Low Power (ACMPLP)
Analog Connect Module (ACM)
Analog to Digital Converter (ADC) (12-bit, 14-bit)
Asynchronous General Purpose Timer (AGT)
AGT Input Capture (AGT Input Capture)
Capacitive Touch Sensing Unit (CTSU)
Clock Frequency Accuracy Measurement (CAC)
Clock Generation Circuit (CGC)
Controller Area Network Interface (CAN)
Cyclic Redundancy Check calculator (CRC)
Data Operation Circuit (DOC)
Data Transfer Controller (DTC)
Digital to Analog converter (DAC)
Digital to Analog converter 8-bit (DAC8)
Direct Memory Access Controller (DMAC)
Event Link Controller (ELC)
Flash Memory-High Performance (FLASH_HP)
Flash Memory-Low Power (FLASH_LP)
General Purpose I/O Port (GPIO / IOPORT)
General Purpose Timer (GPT)
General PWM Timer with Input Capture (GPT_INPUT_CAPTURE)
Graphics LCD Controller (GLCD)
IEEE 1588 Precision Time Protocol (PTP)
I2IC (RIIC)
Independent Watchdog Timer (IWDT)
Interrupt Controller Unit (ICU)
JPEG Codec (JPEG_COMMON, JPEG_ENCODE, JPEG_DECODE)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 71 / 5,198

Synergy Software Package

User’s Manual
SSP Overview > SSP Overview > Key Features > Hardware Abstract Layer (HAL) Driver Modules

Keyboard Interrupt Interface (KINT)
Deprecated – Low Power Mode (LPM)
Low Power Mode Version 2 (LPMv2)
Low Voltage Detection (LVD)
Parallel Data Capture Unit (PDC)
Quad SPI (QSPI)
Real Time clock (RTC)
SD Multi Media Card (SDMMC)
Segment LCD (SLCD)
Serial Communication Interface I2C (SCI_I2C)
Serial Communication Interface SPI (SCI_SPI)
Serial Communication Interface UART (SCI_UART)
Sigma-Delta ADC (SDADC)
Serial Peripheral Interface (SPI)
Serial Sound Interface (SSI)
Watchdog Timer (WDT)

2.1.4.18 GPIO and Key Interrupts

GPIO module
Key Interrupts module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 72 / 5,198

Synergy Software Package

User’s Manual
Starting Development

Chapter 3 Starting Development

To start development with the Renesas Synergy Software Package (SSP), download and install e2
studio, obtain a target Synergy development or evaluation board, and run through the tutorials in
this chapter. The e2 studio ISDE user guide and the tutorials include step-by-step instructions for
getting started with a simple application. To get started with the SSP, refer to these pages:

e2 studio ISDE User Guide
Tutorial: Your First Synergy Project - Blinky
Tutorial: Using HAL Drivers - Programming the WDT
IAR Embedded Workbench for Renesas
What is Synergy Standalone Configurator (SSC)?

3.1 e2 studio ISDE User Guide

3.1.1 Using the e2 studio ISDE

This section describes how to use the Renesas e2 studio Integrated Solutions Development
Environment (ISDE) to develop applications with the Renesas Synergy Software Package (SSP). The
architecture of the SSP directly determines how you use the e2 studio ISDE to develop a Synergy
application. See the following documents for details on the SSP architecture included in this manual:

SSP Architecture
BSP Architecture

For simple example projects generated and built with e2 studio, see:

Tutorial: Using HAL Drivers - Programming the WDT
Tutorial: Your First Synergy Project - Blinky

All User Guides in this manual show how to configure a driver and develop an application using the
e2 studio ISDE. See:

HAL Layer for HAL layer user guides
Framework Layer for Framework layer user guides

3.1.2 What is the e2 studio ISDE?

The Renesas e2 studio ISDE, or Integrated Solution Development Environment, is a development tool
encompassing code development, build, and debug. The ISDE is based on the open-source Eclipse
IDE and the associated C/C++ Development Tooling (CDT). Specifically for Synergy MCUs, the ISDE
provides a Graphical User Interface (GUI) with numerous wizards for configuring and auto-generating

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 73 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > What is the e2 studio ISDE?

code using the Synergy Software Package (SSP). The ISDE also incorporates a smart manual so that
driver and device documentation is available in the form of tooltips right in the code.

Figure 18: e2 studio Splash Screen

Note
The e2 studio screens shown in this manual are examples. Some details may differ between different releases of the
e2 studio ISDE and the SSP.

The e2 studio ISDE and the Synergy Project Configurator have been developed to make it as easy as
possible to quickly select the SSP modules required for a particular application, include them in a
project, and configure them. The ISDE provides a graphical user interface to configure all elements of
the SSP for the Synergy MCU applications. In addition to HAL and Framework modules, the ISDE can
add and configure RTOS threads, semaphores, mutexes, event flags, and queues. This makes adding
RTOS support to an application very straightforward. Once a project has been generated, you can go
back and reconfigure any of the modules and settings if required. The ISDE generates the complete
and correct configuration code from the selections in the configuration views, so you can focus on
writing the application code.

The elements of the SSP are shown in the Project Explorer view of the e2 studio ISDE. All SSP
configuration structures and parameters are mapped to XML files. The XML files enable the ISDE to
present a visual list of configurable options that you can select from. In addition to generating code
to configure the modules, the XML also provides dependency information for modules.

When you add an SSP module to your project, the e2 studio ISDE checks the dependencies of this
module and adds all necessary drivers and framework modules to create the appropriate stack. If
there is a dependency that requires you to make a choice, this module is highlighted in the Stack
window and the ISDE guides your selection by showing the available options.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 74 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > What is the e2 studio ISDE?

Figure 19: ISDE Dependency Checking

 Errors are flagged next to the Driver name in the HAL/Common Modules or New Thread Modules
pane. You can also review errors in the Problems window.

3.1.3 e2 studio ISDE Prerequisites

3.1.3.1 Obtaining a Synergy Kit

To develop applications with the SSP, start with one of the Renesas Synergy Kits. The Renesas
Synergy Kits are designed to seamlessly integrate with the e2 studio ISDE. Several types of kits are
available:

Development Kit (DK)
Starter Kit (SK)
Product Example (PE)
Target Board (TB)

Ordering information, Quick Start Guides, User Manuals, and other related documents for all Synergy
Kits are available at http://renesassynergy.com.

3.1.3.2 PC Requirements

To use the e2 studio ISDE, ensure that your PC meets the following minimum requirements:

Windows 7 with Intel i5 or i7, or AMD A10-7850K or FX
Memory: 8 GB DDR3 or DDR4 DRAM (16 GB DDR4/2400 MHz RAM is preferred)
Minimum 250 GB hard disk

3.1.3.3 Installing e2 studio and the SSP

Detailed installation instructions and installers for the e2 studio ISDE and the SSP are available on the
Renesas Synergy Gallery website https://synergygallery.renesas.com. Review the release notes for
e2 studio to ensure that the e2 studio version supports the selected SSP version.

3.1.3.4 Choosing a Toolchain

The e2 studio ISDE can work with several toolchains and toolchain versions such as the GNU ARM

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 75 / 5,198

http://renesassynergy.com
https://synergygallery.renesas.com

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > e2 studio ISDE Prerequisites > Choosing a Toolchain

compiler and the IAR toolchain. A version of the GNU ARM compiler is included in the e2 studio
installer and has been verified to run with the SSP version.

To use the IAR toolchain for ARM, install IAR Embedded Workbench for Renesas Synergy (EWSYN) (a
license from IAR is required). Before starting a Synergy project with IAR, also install the IAR
Embedded Workbench for ARM Eclipse plugin (using the IAR Embedded Workbench plugin manager
in the 'Help' menu).

3.1.3.5 Adding the IAR Embedded Workbench for Renesas Synergy Compiler into e2
studio

The IAR Embedded Workbench for Renesas Synergy compiler (IAR compiler) can now be used from
within 2 studio. This allows the developer to have the advantages provided by the IAR compiler
without the need to also use the IAR EW for Renesas Synergy ISDE. The installation process involves
installing IAR EW for Renesas Synergy, installing e2 studio, and installing the associated IAR plugins
for e2 studio. The process is described in the application note found with this search:
https://www.renesas.com/eu/en/document/apn/installing-iar-compiler-e2-studio-application-note

The application note also includes a description of how to migrate a project that originally used e2

studio and GCC. It also includes a description of how to migrate a project from IAR 7.x to IAR 8.x so it
will be successfully opened when using e2 studio.

3.1.4 What is a Project?

In e2 studio, all SSP applications are organized in Synergy projects. Setting up a Synergy project
involves:

1. Creating the project
2. Configuring the project

The e2 studio ISDE has many project wizards and configuration windows specifically for Synergy
projects. You can create a new Synergy Project with the Synergy Project Generator or edit the
configuration of an existing project in the Synergy Project Editor.

When you launch e2 studio and select a workspace, all projects previously saved in the selected
workspace are loaded and displayed in the Project Explorer view. Each project has an associated
configuration file named configuration.xml which is located in the project’s root directory.

Figure 20: e2 studio Project Configuration File

 Double-click on the configuration.xml file to open the Synergy Project Editor and view or modify all
configuration settings associated with this project. To edit the project configuration, make sure that
the Synergy Configuration perspective is selected in the upper right hand corner of the e2 studio
window.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 76 / 5,198

https://www.renesas.com/eu/en/document/apn/installing-iar-compiler-e2-studio-application-note

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > What is a Project?

Figure 21: e2 studio Synergy Configuration Perspective

Note
Whenever the Synergy project configuration (that is, the configuration.xml file) is saved, a verbose Synergy Project
Report file (synergy_cfg.txt) with all the project settings is generated. The format is such that differences can be
easily viewed using a textual difference tool. The generated file is located in the project root directory.

Figure 22: Synergy Project Report

 The Synergy Project Editor has a number of tabs. The configuration steps and options for individual
tabs are discussed in the following sections.

Note
Which tabs are available with the Synergy Project Editor depends on the e2 studio version.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 77 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > What is a Project?

Figure 23: e2 studio Project Editor

3.1.5 Creating a Project

This section includes step-by-step instructions for creating a Synergy Project. Once you have created
the project, you can easily configure the hardware (clocks, pins, interrupts) and the parameters of all
modules that are part of your application.

To create a new Synergy Project with the Synergy Project Generator, select the project name, select
the hardware for your application, select the toolchain and choose from preconfigured clock, pin, and
MCU related settings by selecting a project template.

3.1.5.1 Creating a New Project

For Synergy applications, always generate a new project as a Synergy Project in the following way:

1. Click on File > New > Synergy C/C++ Project

Figure 24: New Synergy Project

Then click on the type of template for the type of project you are creating.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 78 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Creating a Project > Creating a New Project

Figure 25: New Project Templates

2. Select a project name and location.

Figure 26: Synergy Project Generator (Screen 1)

3. Click Next.

3.1.5.2 Selecting a Board and Toolchain

In the next Project Configuration window select the hardware and software environment:

1. Select the SSP version.

2. Select the Board for your application. You can select an existing Synergy Kit or select
Custom User Board for any of the Synergy devices with your own BSP definition.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 79 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Creating a Project > Selecting a Board and Toolchain

Note
To develop your own BSP, see the following Application Note: "Creating a Custom Board Support
Package" at http://renesassynergy.com.

3. Select the Toolchain version.
4. Select the Debugger. The J-Link ARM Debugger is preselected.
5. Click Next.

Figure 27: Synergy Project Generator (Screen 2)

3.1.5.3 Selecting a Project Template

In the next window, select a project template from the list of available templates and click Finish.

Note
If you want to develop your own application, select a basic template for your board, such as S7G2-DK BSP. You
can add RTOS support at any time while you configure the modules for your project.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 80 / 5,198

http://renesassynergy.com

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Creating a Project > Selecting a Project Template

Figure 28: Synergy Project Generator (Screen 3)

 By default, this screen shows the templates that are included in your current SSP pack.

When the project is created, the ISDE displays a summary of the current project configuration in the
Synergy Project Editor.

Figure 29: Synergy Project Editor and Available Editor Tabs

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 81 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Creating a Project > Selecting a Project Template

 On the bottom of the Synergy Project Editor view, you can find the tabs for configuring multiple
aspects of your project:

With the BSP tab, you can change board specific parameters from the initial project
selection.
With the Clocks tab, you can configure the MCU clock settings for your project.
With the Pins tab, you can configure the electrical characteristics and functions of each port
pin.
With the Threads tab, you can add SSP modules and drivers for RTOS and non-RTOS
applications and configure the drivers. For each module or driver selected in this tab, the
Properties window provides access to the configuration parameters, interrupt priorities, and
pin selections.
With the Messaging tab, you can configure the Messaging Framework for ThreadX-based
projects. The Messaging tab is included in e2 studio version 5.0 and higher.
The Components tab provides an overview of the selected modules. You can also add
drivers for specific SSP releases and application sample code here.

3.1.6 Configuring a Project

A project has two levels of configuration.

The BSP, Clocks, and Pins tabs determine the initial configuration of the MCU after reset and
before any user code is executed. By selecting a project template during project creation,
the ISDE configures default values as appropriate for the selected board. You can change
those default values as needed.
The Threads allows you to add SSP modules to the project and set the configuration
parameters of the module as needed by the application. Because the Messaging Framework
is an integral part of many ThreadX-based applications, you can configure the Messaging
Framework for each thread requiring messaging in the Messaging tab (for e2 studio versions
5.0 and higher).

3.1.6.1 Configuring the BSP with the ISDE

The BSP tab shows the currently selected board (if any) and device. The Properties view is located
in the lower left of the Project Configurations view as shown below.

Note
If the Properties view is not visible, click Window > Show View > Properties in the top menu bar.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 82 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring the BSP with the ISDE

Figure 30: ISDE BSP Tab

 The Properties view shows the configurable options available for the BSP. These can be changed as
required. The BSP is the SSP layer above the MCU hardware. The ISDE checks the entry fields to flag
invalid entries. For example, only valid numeric values can be entered for the stack size.

When you press the Generate Project Content button, the BSP configuration contents are written
to

synergy_cfg/ssp_cfg/bsp/bsp_cfg.h

This file is created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
pressed.

3.1.6.2 Configuring Clocks

The Clocks tab presents a graphical view of the MCU’s clock tree, allowing the various clock dividers
and sources to be modified. If a clock setting is invalid, the offending clock value is highlighted in
red. It is still possible to generate code with this setting, but correct operation cannot be guaranteed.
In the figure below, the USB clock UCLK divider has been changed so the resulting clock frequency is
60 MHz instead of the required 48 MHz. This parameter is colored red.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 83 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Clocks

Figure 31: ISDE Clocks Tab

 When you press the Generate Project Content button, the clock configuration contents are
written to:

synergy_cfg/ssp_cfg/bsp/bsp_clock_cfg.h

This file will be created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
pressed.

3.1.6.3 Configuring Pins

The Pins tab provides flexible configuration of the MCU’s pins. As many pins are able to provide
multiple functions, they can be configured on a peripheral basis. For example, selecting a serial
channel via the SCI peripheral offers multiple options for the location of the receive and transmit pins
for that module and channel. Once a pin is configured, it is shown as green in the Package view.

Note
If the Package view window is not open in the ISDE, select Window > Show View > Pin Configurator > Package
from the top menu bar to open it.

The Pins tab simplifies the configuration of large packages with highly multiplexed pins by
highlighting errors and presenting the options for each pin or for each peripheral. If you selected a
project template for a specific board such as the DK-S7G2, some peripherals connected on the board
are preselected.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 84 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

Figure 32: ISDE Pins Tab

 The pin configurator includes a built-in conflict checker, so if the same pin is allocated to another
peripheral or I/O function the pin will be shown as red in the package view and also with white cross
in a red square in the Pin Selection pane and Pin Configuration pane in the main Pins tab. The
Pin Conflicts view provides a list of conflicts, so conflicts can be quickly identified and fixed.

In the example shown below, port P105 is already used by the External Memory peripheral, and the
attempt to connect this port to the Serial Communications Interface (SCI) results in a dangling
connection error. To fix this error, select another port from the pin drop-down list or disable the
External Memory peripheral in the Pin Selection pane on the left side of the tab.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 85 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

Figure 33: ISDE Pin Configurator

 The pin configurator also shows a package view and the selected electrical or functional
characteristics of each pin.

Figure 34: ISDE Pin Configurator

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 86 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

 When you press the Generate Project Content button, the pin configuration contents are written
to:

synergy_cfg/ssp_cfg/bsp/bsp_pin_cfg.h

This file will be created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
pressed.

To make it easy to share pinning information for your project, the ISDE exports your pin
configuration settings to a csv format and copies the csv file to synergy_cfg/ssp_cfg/bsp/pincfg_<
MCU package>.csv.

3.1.7 Adding Threads and Drivers

Every ThreadX-based Synergy Project includes at least one RTOS Thread and a stack of SSP modules
running in that thread. The Threads tab is a graphical user interface which helps you to add the
right modules to a thread and configure the properties of both the threads and the modules
associated with each thread. Once you have configured the thread, the ISDE automatically generates
the code reflecting your configuration choices.

For any driver or, more generally, any module that you add to a thread, the ISDE automatically
resolves all dependencies with other modules and creates the appropriate stack. This stack is
displayed in the Threads pane, which the ISDE populates with the selected modules and module
options for the selected thread. If there is more than one module that can fulfill a dependency
requirement, the ISDE prompts you to choose a module from a dropdown menu.

For example, when you add the Audio Playback Framework to a thread, you also must pick either the
DAC or the I2S framework for playback:

Figure 35: ISDE Project Configurator - Overview

 The default view of the Threads tab includes a Common Thread called HAL/Common. This thread
includes the drivers for I/O control (IOPORT), clock generation circuit (CGC), and the event link
controller (ELC). The default stack is shown in the HAL/Common Stacks pane. The default modules
added to the HAL/Common thread are special in that the SSP only requires a single instance of each,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 87 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers

which the ISDE then includes in every user-defined thread by default.

In applications that do not use an RTOS or run outside of the RTOS, the HAL/Common thread
becomes the default location where you can add additional drivers to your application.

For a detailed description on how to add and configure modules and threads, see the following
sections:

Adding and Configuring HAL Drivers
Adding Drivers to a Thread and Configuring the Drivers

Once you have added a module either to HAL/Common or to a new thread, you can access the
driver’s configuration options in the Properties view. If you added thread objects, you can access
the objects configuration options in the Properties view in the same way.

You can find details about how to configure threads here: Configuring Threads

Note
Driver and module selections and configuration options are defined in the SSP pack and can therefore change
when the SSP version changes.

3.1.7.1 Adding and Configuring HAL Drivers

For applications that run outside or without the RTOS, you can add additional HAL drivers to your
application using the HAL/Common thread. To add drivers, follow these steps:

1. Click on the HAL/Common icon in the Threads pane. The Modules pane changes to
HAL/Common Stacks.

Figure 36: ISDE Project Configurator - Adding Drivers

2. Click New Stack to see a drop-down list of HAL level drivers available in the SSP.
3. Select a driver from the menu New Stack > Driver. In addition, you can select a subset of

Framework modules for RTOS independent applications. All other modules can only be
added to a thread when ThreadX is present.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 88 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding and Configuring HAL Drivers

Figure 37: Select a Driver

The ISDE creates the stack for the selected driver and alerts you when the driver needs
additional resources that must be enabled. In the case below, you can configure the
interrupt in the Properties view.

Figure 38: Dependency Checking on the Threads Tab

4. Select the driver module in the HAL/Common Modules pane and configure the driver
properties in the Properties view.

The ISDE adds the following files when you click the Generate Project Content button:

The selected driver module and its files to the synergy/ssp directory.
The main() function and configuration structures and header files for your application as
shown in the table below.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 89 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding and Configuring HAL Drivers

File Contents Overwritten by Generate
Project Content?

src/synergy_gen/main.c Contains main() calling
generated and user code. When
called, the BSP already has
initialized the MCU.

Yes

src/synergy_gen/hal_data.c Configuration structures for HAL
Driver only modules.

Yes

src/synergy_gen/hal_data.h Header file for HAL driver only
modules.

Yes

src/hal_entry.c User entry point for HAL Driver
only code. Add your code here.

No

The configuration header files for all included modules are created or overwritten in this folder:

synergy_cfg/ssp_cfg/driver

3.1.7.2 Adding Drivers to a Thread and Configuring the Drivers

For an application that uses the ThreadX RTOS, you can add one or more threads, and for each
thread at least one module that runs in the thread. You can select modules from either the Driver or
Framework dropdown menu. To add modules to a thread, follow these steps:

1. In the Threads pane, click New Thread to add a Thread.

Figure 39: Adding a new RTOS Thread on the Threads Tab

2. In the Properties view, click on the Name and Symbol entries and enter a distinctive
name and symbol for the new thread.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 90 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

Note
The ISDE updates the name of the thread stacks pane to My Thread Stacks.

3. In the My Thread Stacks pane, click on New to see a list of modules and drivers. Both
Framework-level Modules and HAL-level drivers can be added here.

Figure 40: Adding Modules and Drivers to a Thread

4. Select a module or driver from the list.
5. If the module or driver indicates a dependency, select the missing resources.

Figure 41: Identifying Module or Driver Dependencies on the Threads Tab

6. Click on the added driver and configure the driver as required by the application by
updating the configuration parameters in the Properties view. To see the selected module
or driver and be able to edit its properties, make sure the Thread containing the driver is
highlighted in the Threads pane.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 91 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

Figure 42: Configuring Module or Driver Properties

7. If needed, add another thread by clicking New in the Threads pane.

When you press the Generate Project Content button for the example above, the ISDE creates the
files as shown in the following table:

File Contents Overwritten by Generate
Project Content?

src/synergy_gen/main.c Contains main() calling
generated and user code. When
called the BSP will have
initialized the MCU.

Yes

src/synergy_gen/my_thread.c Generated thread “my_thread”
and configuration structures for
modules added to this thread.

Yes

src/synergy_gen/my_thread.h Header file for thread
“my_thread”

Yes

src/synergy_gen/hal_data.c Configuration structures for HAL
Driver only modules.

Yes

src/synergy_gen/hal_data.h Header file for HAL Driver only
modules.

Yes

src/hal_entry.c User entry point for HAL Driver
only code. Add your code here.

No

src/my_thread_entry.c User entry point for thread
“my_thread”. Add your code
here.

No

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 92 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

The configuration header files for all included modules and drivers are created or overwritten in the
following folders:

synergy_cfg/ssp_cfg/driver

synergy_cfg/ssp_cfg/framework

3.1.7.3 Configuring Threads

If the application uses the ThreadX RTOS, the Threads tab can be used to simplify the creation of
ThreadX threads, semaphores, mutexes, and event flags.

The components of each thread can be configured from the Properties view as shown below.

Figure 43: ISDE Thread Properties

 The Properties view contains settings common for all Threads (Common) and settings for this
particular thread (Thread).

For this thread instance, the thread’s name and properties (such as priority level or stack size) can
be easily configured. The ISDE checks that the entries in the property field are valid. For example,
the ISDE ensures that the field Priority, which requires an integer value, only contains numeric
values between 0 and 9.

To add ThreadX resources to a Thread, select a thread and click on New Object in the Thread
Objects pane. The pane takes on the name of the selected thread, in this case My Thread Objects.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 93 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Configuring Threads

Figure 44: Configuring Thread Object Properties

 Make sure to give each thread object a unique name and symbol by updating the Name and
Symbol entries in the Properties view.

3.1.7.4 Configuring Interrupts

You can use the Properties view in the Threads tab to enable interrupts by setting the interrupt
priority. Select the thread in the Threads pane to view and edit its properties.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 94 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Configuring Interrupts

Figure 45: Configuring Interrupt on the Threads Tab

3.1.8 Configuring the SSP Messaging Framework

The Messaging Framework extends the ThreadX messaging queue functionality and is one of the
most important SSP modules. It provides the mechanism for threads to communicate with each other
through exchanging messages. The Messaging Framework allows threads to send (publish) or listen
to (pend on) messages when preconfigured or user-configured Events happen. Any thread can
publish a message with an attached Event Class that all threads subscribing to this Event class can
listen to and act upon. The list of Threads that can listen to a specific Event Class is called the
Subscriber List for that Event Class.

To use the Messaging Framework, you first must add one Messaging Framework instance in the
Threads tab. You may add the Messaging Framework to any thread which is not the HAL/Common
thread. All threads in your project can use this instance to communicate with each other. Some
modules like the Audio Playback Framework require the Messaging Framework and add it
automatically to the stack as shown below for the Audio Playback Framework. If your project includes
a thread with such a module, you do not need to add another instance of the Messaging Framework
even if you add more threads to your application. All threads can share one instance of the
Messaging framework.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 95 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring the SSP Messaging Framework

Figure 46: Adding the Messaging Module to a Thread

 Once you have added a Messaging Framework instance in the Threads tab, you can use the
Messaging tab to define your own event classes and events and determine which threads can listen
to which event class. The SSP contains a predefined event class and events for the Audio Playback
Framework module. If you have added the Audio Playback Framework module, the predefined event
class and events appear in the Messaging tab as well, as shown below.

Figure 47: Audio Playback Framework Predefined Event Class

3.1.8.1 Adding an Event Class

To add your own user-defined Event Class to the messaging system, follow these steps:

1. In the Messaging tab, select the Event Classes Pane, and click the add button.
2. Enter a unique name for your event class.

3. Click OK.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 96 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring the SSP Messaging Framework > Adding an Event Class

Note
User-defined Event Classes are marked with a golden square on the upper right of the Event Class icon.

Figure 48: Messaging – Add an Event Class

3.1.8.2 Adding an Event

To add your own user-defined Event to the messaging system, follow these steps:

1. In the Messaging tab, select the Event Pane, and click the add button.
2. Enter a unique name for your event class.

3. Click OK.

Note
User-defined Events are marked with a golden square on the upper right of the Events icon.

Figure 49: Messaging – Add an Event

3.1.8.3 Configuring the Messaging Subscriber List

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 97 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring the SSP Messaging Framework > Configuring the Messaging Subscriber List

In the Subscriber List, you select the threads that are listening to messages from the message
publisher. The connection between the publishing thread and the listening thread is established
through the Event Class. Therefore you define a subscriber list for each of the Event Classes in your
project. All threads in the Subscriber List then can listen and act upon messages belonging to the
selected Event Class.

To following assumes that you have two threads defined in the Threads tab, one of which uses the
Audio Playback Framework:

Figure 50: Messaging – Example Threads

 To configure the Subscriber List for an Event Class, follow these steps:

1. In the Messaging tab, select the Event Classes in the Event Classes Pane.

The Subscriber List pane takes its name from the selected Event Class.

2. Click the Add Icon.

The New Subscriber Dialog box opens.

3. Select the Thread to add to the Subscriber List from the Thread dropdown menu.

4. Fill out the instance range by selecting Start and End.

If you only have one instance of an Event Class, keep the Start and End values at their
default value (0). See the Messaging Framework User Guide for selecting an instance range
if you have more than one Event Class instance. Multiple Event Class instances can be
useful in an application that uses the same Event Class multiple times for example for audio
streaming on multiple channels.

5. Repeat steps 3 and 4 for each thread that you want to add to the Subscriber List for the
selected Event Class.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 98 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Configuring the SSP Messaging Framework > Configuring the Messaging Subscriber List

Figure 51: Messaging – Configuring the Subscriber List

3.1.8.4 Generating Files for the Messaging Framework

The ISDE generates the following files for the configured Messaging Framework when you click the
Generate Project button:

File Contents Overwritten by Generate
Project Content?

synergy_cfg/ssp_cfg/framework/
sf_message_port.h

Contains the event class and
event enumerations

Yes

synergy_cfg/ssp_cfg/framework/
sf_message_payloads.h

Contains pointers to the event
class payloads.

Yes

synergy_cfg/ssp_cfg/framework/
sf_message_payloads.h

Compiler options for the
Messaging Framework

Yes

3.1.9 Reviewing and Adding Components

The Components tab enables the individual modules required by the application to be included or
excluded. Modules common to all Synergy projects are preselected (for example: BSP > BSP > Board-
specific BSP and HAL Drivers > all > r_cgc). All modules that are necessary for the modules selected
in the Threads tab are included automatically. You can include or exclude additional modules by
ticking the box next to the required component.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 99 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Reviewing and Adding Components

Figure 52: Components Tab

 Components at the HAL and Framework layers are available as are components from Azure RTOS
such as the RTOS ThreadX, file system FileX, TCP/IP networking NetX. In addition, you can select
documentation to be added to a project or include complete projects.

While the components tab selects modules for a project, you must configure the modules themselves
in the other tabs. Pressing the Generate Project Content button copies the .c and .h files for each
component for a Pack file into the following folders:

synergy/ssp/inc/bsp

synergy/ssp/inc/driver

synergy/ssp/inc/framework

synergy/ssp/src/bsp

synergy/ssp/src/driver

synergy/ssp/src/framework

The ISDE also creates configuration files in the synergy_cfg/ssp_cfg folder with configuration options
included from the remaining Threads tabs.

3.1.10 Writing the Application

Once you have added Modules and drivers and set their configuration parameters in the Threads tab,
you can add the application code that calls the Modules and drivers.

Note
To check your configuration, build the project once without errors before adding any of your own application code.

3.1.10.1 RTOS-independent Applications

To write application code:

1. Add all drivers and modules in the Threads tab and resolve all dependencies flagged by
the ISDE such as missing interrupts or drivers.

2. Configure the drivers in the Properties view.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 100 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Writing the Application > RTOS-independent Applications

3. In the Project Configuration view, press the Generate Project Content button.
4. In the Project Explorer view, double-click on the src/hal_entry.c file to edit the source file.

Figure 53: hal_entry.c

Note
All configuration structures necessary for the driver to be called in the application are initialized in
src/synergy_gen/hal_data.c.
Do not modify the files in the directory src/synergy_gen. These files are overwritten every time you push
the Generate Project Content button.

5. Add your application code here:

Figure 54: Adding User Code to hal_entry.c

6. Build the project without errors by clicking on Project > Build Project.

The following tutorial shows how execute the steps above and add application code: Tutorial: Using
HAL Drivers - Programming the WDT

The WDT example is a HAL level application which does not use an RTOS. The user guides for each
module also include basic application code that you can add to hal_entry.c.

3.1.10.2 ThreadX Applications

To write RTOS-aware application code using ThreadX, follow these steps:

1. Add a thread using the Threads tab.
2. Provide a unique name for the thread in the Properties view for this thread.
3. Configure all drivers and resources for this thread and resolve all dependencies flagged by

the ISDE such as missing interrupts or drivers.
4. Configure the thread objects.
5. Provide unique names for each thread object in the Properties view for each object.
6. Add more threads if needed and repeat steps 1 to 5.
7. In the Synergy Project Editor, press the Generate Project Content button.
8. In the Project Explorer view, double-click on the src/my_thread_1_entry.c file to edit the

source file.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 101 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Writing the Application > ThreadX Applications

Figure 55: ISDE Generated Files for an RTOS Application

Note
All configuration structures necessary for the driver to be called in the application are initialized in
synergy_gen/my_thread_1.c and my_thread_2.c
Do not modify the files in the directory src/synergy_gen. These files are overwritten every time you push
the Generate Project Content button.

9. Add your application code here:

Figure 56: Adding User Code to my_thread_1.entry

10. Repeat steps 1 to 9 for the next thread.
11. Build your project without errors by clicking on Project > Build Project.

3.1.11 Debugging the Project

Once your project builds without errors, you can use the Debugger to download your application to
the board and execute it.

To debug an application follow these steps:

1. click Run > Debug Configurations.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 102 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Debugging the Project

Figure 57: Invoking the Debug Configurations Dialog

2. In the Debug Configurations view, click on your project listed as MyProject Debug.

Figure 58: Debug Configuration

3. Connect the board to your PC via either a standalone Segger J-Link debugger or a Segger J-
Link On-Board (included on all Synergy DKs and SKs) and click Debug.

Note
For details on using J-Link and connecting the board to the PC, see the Quick Start Guide included in the Synergy
Kit.

3.1.12 Using TraceX with a Synergy Project

Precondition
Before you can use TraceX with your Synergy Project, you must download the TraceX
executable file from the Microsoft Store.

TraceX™ is a host-based analysis tool that provides a graphical view of real-time system events.
TraceX collects data on the target device and displays the data for inspection and analysis. A TraceX
version for Synergy devices is available for downloading from the Microsoft Store.

To use TraceX, do the following:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 103 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Using TraceX with a Synergy Project

1. In e2 studio, add the ThreadX source code to your project by going to the Threads tab,
clicking the New Stack button in the Stacks pane, and selecting X-Ware > ThreadX >
ThreadX Source.

Figure 59: Add TraceX to your Source

2. Enable TraceX in the Properties Window of the Thread using the Threads tab. Keep the
default name for the TraceX buffer as g_tx_trace_buffer.

Figure 60: ISDE TraceX Configuration

3. Set the path to the TraceX application in Window > Preferences > Renesas > TraceX

Figure 61: ISDE TraceX Path

4. Build your project (Project > Build All).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 104 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Using TraceX with a Synergy Project

5. Connect your Synergy target board.
6. Start a debug session (Run > Debug)
7. In Run > Renesas Debug Tools > TraceX, select Launch TraceX Debugging.

Figure 62: ISDE TraceX Launch

8. In the TraceX Debugging window, set Buffer Start Address to &g_tx_trace_buffer.

In the TraceX Debugging window, set Buffer Size (bytes) to the buffer size selected in the
Properties Window in step 2. The default is 65536.

Figure 63: ISDE TraceX Debug

9. Click OK.
10. Run your code (Run > Resume) to collect TraceX data.
11. Suspend execution of your code (Run > Suspend).
12. Observe the collected data in TraceX.

Figure 64: TraceX Collected Data

13. To collect further TraceX data:
Resume execution of your code
Suspend execution of your code
Click Run > TraceX and select Update TraceX Data.

You can find more information on using TraceX on the Renesas TraceX webpage

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 105 / 5,198

https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Using TraceX with a Synergy Project

https://www.renesas.com/synergy/tracex.

3.1.13 Modifying Toolchain Settings

There are instances where it may be necessary to make changes to the toolchain being used (for
example, to change optimization level of the compiler or add a library to the linker). Such
modifications can be made from within the ISDE through the menu Project > Renesas C/C++
Project Settings when the project is selected. The following screenshot shows the settings dialog
for the GNU ARM toolchain. This dialog will look slightly different depending upon the toolchain being
used.

Figure 65: ISDE Project Toolchain Settings

 The scope for the settings is project scope which means that the settings are valid only for the
project being modified.

The settings for the linker which control the location of the various memory sections are contained in
a script file specific for the device being used. This script file is included in the project when it is
created and is found in the script folder (for example, /script/S7G2.ld).

3.1.14 e2 studio ISDE Usage Notes

3.1.14.1 Including ThreadX sources

You can use the Theads tab to include ThreadX source code in your project as follows:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 106 / 5,198

https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex
https://www.renesas.com/synergy/tracex

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > e2 studio ISDE Usage Notes > Including ThreadX sources

1. Click on the HAL/Common icon in the Threads pane. The Modules pane changes to
HAL/Common Modules.

2. Select New Stack > X-Ware > ThreadX > ThreadX Source.
3. Check the Properties window to configure the TheadX RTOS properties.
4. Click Generate Project.

The e2 studio ISDE extracts the ThreadX source code into the following directory:
synergy/ssp/src/framework/el/tx

Note
Extracting the ThreadX sources increases the compile time for your project.

3.1.14.2 Using Synergy Developer Assistance

This section describes a new feature, “Synergy Developer Assistance” included in e2 studio.

Developer Assistance Node

A new node Developer Assistance is now available in the project explorer. When expanded, the
Developer Assistance tree shows you the threads and module stacks and their respective API
information of the saved Synergy configuration.

The Developer Assistance node is available regardless of whether the Synergy Configuration Editor is
open. This allows a user to easily consult the Developer Assistance for a project’s stack modules
while application code is being written. It assists by providing code templates and an autocompletion
tool.

Configure Threads

Create a new project. In the Synergy configurator thread’s tab create a thread and add a new stack.

For example, Framework Device on sf_i2c:

Project Explorer View

Once the project is saved, expand the Developer Assistance node. Notice that the node is updated

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 107 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > e2 studio ISDE Usage Notes > Using Synergy Developer Assistance

with the new thread New Thread Information. Clicking on the module instance under the thread will
expand all the child nodes and show the API information of the modules.

Properties View

Selecting the module instance in the thread tab or in the project explorer will show the module and
module API information in the API info tab of properties view.

Tip: If the Properties view is not present in the current e2 studio perspective, you can open it by
selecting Window -> Show View -> Properties

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 108 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > e2 studio ISDE Usage Notes > Using Synergy Developer Assistance

Selecting the code template node shows the preview of the function in the Properties view

Drag and drop to source File

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 109 / 5,198

Synergy Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > e2 studio ISDE Usage Notes > Using Synergy Developer Assistance

The API function code templates or callbacks can be dragged and dropped to the source file. This will
autofill the parameters and return type of the function

Please also refer to Help-> Help Contents -> Synergy Contents -> Synergy Developer
Assistance page in e2 studio for any further information.

3.2 Tutorial: Your First Synergy Project - Blinky

3.2.1 Tutorial Blinky

The goal of this tutorial is to quickly get acquainted with the Synergy Platform by moving through
the steps of creating a simple application using e2 studio and running that application on a Synergy
board.

3.2.2 What Does Blinky Do?

The application used in this tutorial is Blinky, traditionally the first program run in a new embedded
development environment.

Blinky is the “Hello World” of microcontrollers. If the LED blinks you know that:

The toolchain is setup correctly and builds a working executable image for your chip.
The debugger has installed with working drivers and is properly connected to the board.
The board is powered up and its jumper and switch settings are probably correct.
The microcontroller is alive, the clocks are running, and the memory is initialized.

The Blinky example application used in this tutorial is designed to run the same way on all boards
offered by Renesas that hold the Synergy microcontroller. The code in Blinky is completely board
independent. It does the work by calling into the BSP (board support package) for the particular
board it is running on. This works because:

Every board has at least one LED connected to a GPIO pin.
That one LED is always labeled LED1 on the silk screen.
Every BSP supports an API that returns a list of LEDs on a board, and their port and pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 110 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Your First Synergy Project - Blinky > What Does Blinky Do?

assignments.

3.2.3 Prerequisites

To follow this tutorial, you need:

Windows based PC
e2 studio
Synergy Software Package
A Synergy board kit

3.2.4 Create a New Project for Blinky

The creation and configuration of a Synergy project is the first step in the creation of an application.
The base SSP pack includes a pre-written Blinky example application that is simple and works on all
Renesas Synergy boards.

Note
The e2 studio screens shown in this manual are examples. Some details may differ between different releases of the
e2 studio ISDE and the SSP.

Follow these steps to create a Synergy project:

1. In e2 studio ISDE, click File > New > Synergy C/C++ Project, select Renesas Synergy
C Executable Project, and click Next.

2. Assign a name to this new project. Blinky is a good name to use for this tutorial.

3. Click Next. The Project Configuration window shows your selection.

Figure 66: e2 studio ISDE Project Configuration Window (Part 1)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 111 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Your First Synergy Project - Blinky > Create a New Project for Blinky

4. Select the board support package by selecting the name of your board from the Device
Selection drop-down list and click Next.

Figure 67: e2 studio ISDE Project Configuration Window (Part 2)

5. Select the Blinky template for your board and click Finish.

Figure 68: e2 studio ISDE Project Configuration Window (Part 3)

Once the project has been created, the name of the project will show up in the Project
Explorer window of the ISDE. Now press the Generate Project Content button in the top
right corner of the Project Configuration window to generate your board specific files.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 112 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Your First Synergy Project - Blinky > Create a New Project for Blinky

Figure 69: e2 studio ISDE Project Configuration Tab

 Your new project is now created, configured, and ready to build.

3.2.4.1 Details about the Blinky Configuration

The Generate Project Content button creates configuration header files, copies source files from
templates, and generally configures the project based on the state of the Project Configuration
screen.

For example, if you check a box next to a module in the Components tab and press the Generate
Project Content button all the files necessary for the inclusion of that module into the project will
be copied or created. If that same check box is then unchecked those files will be deleted.

3.2.4.2 Configuring the Blinky Clocks

By selecting the Blinky template, the clocks are configured by the ISDE for the Blinky application.
The ISDE clock configuration tab (see Configuring Clocks) shows the Blinky clock configuration. The
Blinky clock configuration is stored in the BSP clock configuration file (see BSP Clock Configuration).

3.2.4.3 Configuring the Blinky Pins

By selecting the Blinky template, the GPIO pins used to toggle the LED1 are configured by the ISDE
for the Blinky application. The ISDE pin configuration tab shows the pin configuration for the Blinky
application (see Configuring Pins). The Blinky pin configuration is stored in the BSP configuration file
(see BSP Pin Configuration).

3.2.4.4 Configuring the Parameters for Blinky Components

The Blinky project automatically selects the following HAL components in the ISDE Component:

r_cgc
r_elc
r_fmi
r_ioport

To see the configuration parameters for any of the components, check the Properties tab in the HAL
window for the respective driver (see Adding and Configuring HAL Drivers).

3.2.4.5 Where is main()?

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 113 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Your First Synergy Project - Blinky > Create a New Project for Blinky > Where is main()?

The main function is located in < project >/src/synergy_gen/main.c. It is one of the files that are
generated during the project creation stage and only contains a call to hal_entry(). For more
information on generated files Adding and Configuring HAL Drivers .

3.2.4.6 Blinky Example Code

The blinky application is stored in the hal_entry.c file. This file is generated by the ISDE when you
select the Blinky Project template and is located in the project's src/ folder.

The application performs the following steps:

1. Get the LED information for the selected board by calling the BSP HAL function
R_BSP_LedsGet().

2. Define the output level HIGH for the GPIO pins controlling the LEDs for the selected board.
3. Get the selected system clock speed and scale down the clock, so the LED toggling can be

observed.
4. Toggle the LED by writing to the GPIO pin with

g_ioport.p_api->pinWrite()

3.2.5 Build the Blinky Project

Highlight your new project in the Project Explorer window and build it.

There are three ways to build a project:

a. Click on Project in the menu bar and select Build Project.

b. Click on the hammer icon.

c. Right-click on the project and select Build Project.

Figure 70: e2 studio ISDE Project Explorer Window

 Once the build is complete a message is displayed in the build Console window that displays the
final image file name and section sizes in that image.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 114 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Your First Synergy Project - Blinky > Build the Blinky Project

Figure 71: e2 studio ISDE Project Build Console

3.2.6 Debug the Blinky Project

3.2.6.1 Debug prerequisites

To debug the project on a board, you need:

The board to be connected to the ISDE
The debugger to be configured to talk to the board
The application to be programmed to the microcontroller

Applications run from the internal flash of your microcontroller. To run or debug the application, the
application must first be programmed to the microcontroller’s flash. There are two ways to do this:

JTAG debugger
Built-in boot-loader via UART or USB

Some boards have an on-board JTAG debugger and others require an external JTAG debugger
connected to a header on the board.

Refer to your board’s user manual to learn how to connect the JTAG debugger to your ISDE.

3.2.6.2 Debug steps

To debug the Blinky application, follow these steps:

1. Configure the debugger for your project by clicking Run > Debugger Configurations ...

Figure 72: e2 studio ISDE Debug Icon

 … or by selecting the drop-down menu next to the bug icon and selecting Debugger
Configurations ...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 115 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Your First Synergy Project - Blinky > Debug the Blinky Project > Debug steps

Figure 73: e2 studio ISDE Debugger Configurations Window

2. Select your debugger configuration in the window. If it is not visible then it must be created
by clicking the New icon in the top left corner of the window. Once selected, the Debug
Configuration window displays the Debug configuration for your Blinky project.

Figure 74: e2 studio ISDE Debugger Configurations Window with Blinky Project

3. Press Debug to begin debugging the application.

3.2.6.3 Details about the Debug Process

In debug mode, the ISDE executes the following tasks:

1. Downloading the application image to the microcontroller and programming the image to
the internal flash memory.

2. Setting a breakpoint at main().
3. Setting the stack pointer register to the stack.
4. Loading the program counter register with the address of the reset vector.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 116 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Your First Synergy Project - Blinky > Debug the Blinky Project > Details about the Debug Process

5. Displaying the startup code where the program counter points to.

Figure 75: e2 studio ISDE Debugger Memory Window

3.2.7 Run the Blinky Project

While in Debug mode, click Run > Resume or click on the Play icon twice.

Figure 76: e2 studio ISDE Debugger Play Icon

 The LED on the board marked LED1 should now be blinking.

3.3 Tutorial: Using HAL Drivers - Programming the WDT

3.3.1 Application WDT

This application uses the WDT Interface implemented by the WDT HAL Driver WDT. This document
describes how to use the ISDE and SSP to create an application for the Synergy MCU Watchdog
Timer (WDT) peripheral. This application makes use of the following SSP modules:

Board Support Package (Board Support Package)
CGC (Clock Generation Circuit)
WDT (Watchdog Timer)
IOPORT (GPIO)

3.3.2 Creating a WDT Application Using the Synergy SSP and ISDE

3.3.2.1 Using the SSP and the e2 studio ISDE

The Synergy Software Package (SSP) from Renesas provides a complete driver library for developing
Synergy applications. The SSP provides Hardware Abstraction Layer (HAL) drivers, Board Support
Package (BSP) drivers and higher level Framework applications for the developer to use to create
applications. The SSP is integrated into the Renesas e2 studio Integrated Solution Development
Environment (ISDE) based on eclipse providing build (editor, compiler and linker) and debug phases

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 117 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating a WDT Application Using the Synergy SSP and ISDE > Using the SSP and the e2 studio ISDE

with an extended GNU Debug (GDB) interface.

3.3.2.2 The WDT Application

The flowchart for the WDT application is shown below.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 118 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating a WDT Application Using the Synergy SSP and ISDE > The WDT Application

Figure 77: WDT Application Flow Diagram

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 119 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating a WDT Application Using the Synergy SSP and ISDE > WDT Application flow

3.3.2.3 WDT Application flow

These are the main parts of the WDT application:

1. main() calls hal_entry(). The function hal_entry() is created by the SSP with a placeholder
for user code. The code for the WDT will be added to this function.

2. Initialize the WDT, but do not start it.
3. Start the WDT by refreshing it.
4. The red LED is flashed 30 times and refreshes the watchdog each time the LED state is

changed.
5. Flash the green LED but DO NOT refresh the watchdog. After the timeout period of the

watchdog the device will reset which can be observed by the flashing red LED again as the
sequence repeats.

3.3.3 Creating the Project with the ISDE

Start the ISDE and choose a workspace folder in the Workspace Launcher. Configure a new Synergy
project as follows.

Note
The e2 studio screens shown in this manual are examples. Some details may differ between different releases of the
e2 studio ISDE and the SSP.

1. Select File > New > Synergy C/C++ Project. Then select the template for the project.

Figure 78: Creating a New Project

2. In the ISDE Project Configuration (Synergy Project) window, enter a project name (for

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 120 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with the ISDE

example, WDT_Application). Select the toolchain. If you want to choose a new location for
the project, deselect Use default location. Click Next.

Figure 79: Project Configuration (Part 1)

3. This application runs on the Synergy S7G2 based DK-S7G2 board. So, for the Board select
S7G2 DK.

This will automatically populate the Device drop-down with the correct device used on this
board. Select the Toolchain version. Select J-Link ARM as the Debugger. No RTOS is
being used in this application but it can be left at the default. Click Next to configure the
project.

Figure 80: Project Configuration (Part 2)

 The project template is now selected. As no RTOS is required select BSP.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 121 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with the ISDE

Figure 81: Project Configuration (Part 3)

4. Click Finish.

The ISDE creates the project and opens the Project Explorer and Project Configuration Settings
views with the Summary page showing a summary of the project configuration.

3.3.4 Configuring the Project with the ISDE

The e2 studio ISDE simplifies and accelerates the project configuration process by providing a GUI
interface for selecting the options to configure the project.

The ISDE offers a selection of perspectives presenting different windows to the user depending on
the operation in progress. The default perspectives are C/C++ , Synergy Configuration and
Debug. The perspective can be changed by selecting a new one from the buttons at the top right of
the ISDE.

Figure 82: Selecting a Perspective

 The C/C++ perspective provides a layout selected for code editing. The Synergy Configuration
perspective provides elements for configuring a Synergy project, and the Debug perspective
provides a view suited for debugging.

1. In order to configure the project settings ensure the Synergy Configuration perspective is
selected.

2. Ensure the Project Configuration [WDT Application] is open. It is already open if the
Summary information is visible. To open the Project Configuration now or at any time make
sure the Synergy Configuration perspective is selected and double-click on the
configuration.xml file in the Project Explorer pane on the right side of the ISDE.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 122 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE

Figure 83: Synergy Project Configuration Settings

At the base of the Project Configuration view there are several tabs for configuring the
project. A project may require changes to some or all of these tabs. The tabs are shown
below.

Figure 84: Project Configuration Tabs

3.3.4.1 BSP Tab

The BSP tab allows the Board Support Package (BSP) options to be modified from their defaults. For
this particular WDT project no changes are required. However, if you want to use the WDT in auto-
start mode, you can configure the settings of the OFS0 (Option Function Select Register 0) register in
the BSP tab. See the Synergy Hardware User’s Manual for details on the WDT autostart mode.

3.3.4.2 Clocks Tab

The clocks tab presents a graphical view of the clock tree of the device. Using the drop down boxes
in the GUI enables configuration of the various clocks. The WDT uses PCLCKB. The default output
frequency for this clock is 60 MHz. Ensure this clock is outputting this value.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 123 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Clocks Tab

Figure 85: Clock Configuration

3.3.4.3 Pins Tab

The Pins tab provides a graphical tool for configuring the functionality of the pins of the device. For
the WDT project no pin configuration is required. Although the project uses two LEDs connected to
pins on the device, these pins are pre-configured as output GPIO pins by the BSP.

3.3.4.4 Threads Tab

You can add any driver to the project using the Threads tab. The HAL drivers for the Clock
Generation Circuit, the Event Link Controller, and the IO port pins are added automatically by the
ISDE when the project is configured. The WDT application uses no ThreadX Resources, so you only
need to add the HAL WDT driver.

Figure 86: Threads Tab

 The HAL/Common Stacks panel and is populated with the modules preselected by the ISDE.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 124 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Threads Tab

1. Click on New Stack to find a pop-up window with the available HAL level drivers.
2. Select Watchdog Driver on r_wdt.

Figure 87: Module Selection

The selected HAL WDT driver is added to the HAL/Common Stacks Panel and the
Property Window shows all configuration options for the selected module. The Property
tab for the WDT should be visible at the bottom left of the screen. If it is not visible check
that the Synergy Configuration perspective is selected.

Figure 88: Module Properties

 Change parameter Start Watchdog After Configuration from True to False. The other
parameters can be left with their default values. Setting Start Watchdog After Configuration to
False instructs the WDT driver (via its open API call) to configure the WDT but not to start it. It will
be started later by refreshing it.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 125 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Threads Tab

Figure 89: g_wdt Watchdog Driver on WDT Properties

 With PCLKB running at 60 MHz the WDT will reset the device 2.23 seconds after the last refresh.

WDT clock = 60 MHz / 8192 = 7.32 kHz

Cycle time = 1 / 7.324 kHz = 136.53 us

Timeout = 136.53 us x 16384 = 2.23 seconds

Save the Project Configuration file and click the Generate Project Content button in the top
right corner of the Project Configuration pane.

Figure 90: Generate Project Content Button

 The ISDE generates the project files.

3.3.4.5 Components Tab

The components tab is included for reference to see which modules are included in the project.
Modules are selected automatically in the Components view when after they are added in the
Threads Tab.

For the WDT project ensure that the following modules are selected:

1. HAL_Drivers -> r_cgc
2. HAL_Drivers -> r_elc
3. HAL_Drivers -> r_ioport
4. HAL_Drivers -> r_wdt
5. HAL_Drivers -> r_fmi

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 126 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Components Tab

Figure 91: Component Selection

Note
The list of modules displayed in the Components tab depends on the installed SSP version.

3.3.5 WDT Generated Project Files

Pressing the Generate Project Content button performs the following tasks.

r_wdt folder and WDT driver contents created at:
synergy/ssp/src/driver/

r_wdt_api.h created in:
synergy/ssp/inc/driver/api

r_wdt.h created in:
synergy/ssp/inc/driver/instances

The above files are the standard files for the WDT HAL module. They contain no specific project
contents. They are the driver files for the WDT. Further information on the contents of these files can
be found in the documentation for the WDT HAL module.

Configuration information for the WDT HAL module in the WDT project is found in:

synergy_cfg/ssp_cfg/driver/r_wdt_cfg.h

The above file’s contents are based upon the Common settings in the g_wdt Watchdog Driver on
WDT Properties pane.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 127 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files

Figure 92: r_wdt_cfg.h Contents

Warning
Do not edit any of these files as they are recreated every time the Generate Project Content
button is pressed and so any changes will be overwritten.

r_ioport folder is not created at ssp/src/driver as this module is required by the BSP and so already
exists. It is included in the WDT project in order to include the correct header file in
src/synergy_gen/hal_data.h – see later in this document for further details. For the same reason the
other IOPORT header files – synergy/ssp/inc/api/r_ioport_api.h and
synergy/ssp/inc/instances/r_ioport.h are not created as they already exist.

In addition to generating the HAL driver files for the WDT and IOPORT files the ISDE also generates
files containing configuration data for the WDT and a file where user code can safely be added.
These files are shown below.

Figure 93: WDT Project Files

3.3.5.1 WDT hal_data.h

The contents of hal_data.h are shown below.

/* generated HAL header file - do not edit */

#ifndef HAL_DATA_H_

#define HAL_DATA_H_

#include <stdint.h>

#include "bsp_api.h"

#include "common_data.h"

#include "r_wdt.h"

#include "r_wdt_api.h"

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 128 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.h

#ifdef __cplusplus

extern "C"

{

#endif

extern const wdt_instance_t g_wdt0;

#ifndef NULL

void NULL(wdt_callback_args_t *p_args);

#endif

void hal_entry(void);

void g_hal_init(void);

#ifdef __cplusplus

} /* extern "C" */

#endif

#endif /* HAL_DATA_H_ */

hal_data.h contains the header files required by the ISDE generated project. In addition this file
includes external references to the g_wdt instance structure which contains pointers to the
configuration, control, api structures used for WDT HAL driver.

Warning
This file is regenerated each time Generate Project Content is pressed and must not be
edited.

3.3.5.2 WDT hal_data.c

The contents of hal_data.c are shown below.

/* generated HAL source file - do not edit */

#include "hal_data.h"

static wdt_instance_ctrl_t g_wdt0_ctrl;

static const wdt_cfg_t g_wdt0_cfg =

{ .start_mode = WDT_START_MODE_REGISTER,

 .autostart = false,

 .timeout = WDT_TIMEOUT_16384,

 .clock_division = WDT_CLOCK_DIVISION_8192,

 .window_start = WDT_WINDOW_START_100,

 .window_end = WDT_WINDOW_END_0,

 .reset_control = WDT_RESET_CONTROL_RESET,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 129 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.c

 .stop_control = WDT_STOP_CONTROL_ENABLE,

 .p_callback = NULL, };

/* Instance structure to use this module. */

const wdt_instance_t g_wdt0 =

{ .p_ctrl = &g_wdt0_ctrl, .p_cfg = &g_wdt0_cfg, .p_api = &g_wdt_on_wdt };

void g_hal_init(void)

{

 g_common_init ();

}

hal_data.c contains g_wdt_ctrl which is the control structure for this instance of the WDT HAL driver.
This structure should not be initialised as this is done by the driver when it is opened.

The contents of g_wdt_cfg are populated in this file using the g_wdt Watchdog Driver on WDT
Properties pane in the ISDE Project Configuration HAL tab. If the contents of this structure do
not reflect the settings made in the ISDE, ensure the Project Configuration settings are saved in
the ISDE before pressing the Generate Project Content button.

Warning
This file is regenerated each time Generate Project Content is pressed and so should not be
edited.

3.3.5.3 WDT main.c

Contains main() called by the BSP start-up code. main() calls hal_entry() which contains user
developed code (see next file). Here are the contents of main.c.

/* generated main source file - do not edit */

extern void hal_entry(void);

int main(void)

{

 hal_entry ();

 return 0;

}

Warning
This file is regenerated each time Generate Project Content is pressed and so should not be
edited.

3.3.5.4 WDT hal_entry.c

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 130 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

This file contains the function hal_entry() called from main(). User developed code should be placed
in this file and function.

For the WDT project edit the contents of this file to contain the code below. This code implements
the flowchart in overview section of this document.

/* HAL-only entry function */

#include "hal_data.h"

#define RED_LED_NO_OF_FLASHES 30

#define RED_LED_PIN IOPORT_PORT_06_PIN_01 ? In case of SK-S7G2

#define GREEN_LED_PIN IOPORT_PORT_06_PIN_00 ? In case of SK-S7G2

#define RED_LED_DELAY_COUNT 1500000

#define GRN_LED_DELAY_COUNT 1200000

volatile uint32_t delay_counter;

volatile uint16_t loop_counter;

void hal_entry(void)

{

 /* TODO: add your own code here */

 /* Open the WDT */

 g_wdt0.p_api->open(g_wdt0.p_ctrl, (wdt_cfg_t *const)g_wdt0.p_cfg);

 /* Start the WDT by refreshing it */

 g_wdt0.p_api->refresh(g_wdt0.p_ctrl);

 /* Flash the red LED and tickle the WDT for a few seconds */

 for(loop_counter=0; loop_counter<RED_LED_NO_OF_FLASHES; loop_counter++)

 {

 /* Turn red LED on */

 g_ioport.p_api->pinWrite(RED_LED_PIN, IOPORT_LEVEL_HIGH);

 /* Delay */

 for(delay_counter=0; delay_counter<RED_LED_DELAY_COUNT; delay_counter++);

 /* Refresh WDT */

 g_wdt0.p_api->refresh(g_wdt0.p_ctrl);

 /* Turn red off */

 g_ioport.p_api->pinWrite(RED_LED_PIN, IOPORT_LEVEL_LOW);

 /* Delay */

 for(delay_counter=0; delay_counter<RED_LED_DELAY_COUNT; delay_counter++);

 /* Refresh WDT */

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 131 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

 g_wdt0.p_api->refresh(g_wdt0.p_ctrl);

 }

 /* Flash green LED but STOP tickling the WDT. WDT should reset the

 device */

 while(1)

 {

 /* Turn green LED on */

 g_ioport.p_api->pinWrite(GREEN_LED_PIN, IOPORT_LEVEL_HIGH);

 /* Delay */

 for(delay_counter=0; delay_counter<GRN_LED_DELAY_COUNT; delay_counter++);

 /* Turn green off */

 g_ioport.p_api->pinWrite(GREEN_LED_PIN, IOPORT_LEVEL_LOW);

 /* Delay */

 for(delay_counter=0; delay_counter<GRN_LED_DELAY_COUNT; delay_counter++);

 }

}

The WDT HAL driver is called through the interface g_wdt_on_wdt defined in r_wdt.h. The WDT
HAL driver is opened through the open API call using the instance defined in r_wdt_api.h:

g_wdt0.p_api->open(g_wdt0.p_ctrl, (wdt_cfg_t *const)g_wdt0.p_cfg);

The first passed parameter is the pointer to the control structure g_wdt_ctrl instantiated in
hal_data.c. The second parameter is the pointer to the configuration data g_wdt_cfg instantiated in
the same hal_data.c file.

The WDT is started and refreshed through the API call:

g_wdt0.p_api->refresh(g_wdt0.p_ctrl);

Again the first (and only in this case) parameter passed to this API is the pointer to the control
structure of this instance of the driver.

3.3.6 Building and Testing the Project

Build the project in the ISDE Build > Build Project. The project should build without errors.

To debug the project

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 132 / 5,198

Synergy Software Package

User’s Manual
Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Building and Testing the Project

1. Connect the JLink debugger between the target board and host PC. Apply power to the
board.

2. In the Project Explorer pane on the right side of the ISDE right-click on the WDT project
WDT_Application and select Debug As > Debug Configurations.

3. Under Renesas GDB Hardware Debugging select WDT_Application Debug as shown
below.

Figure 94: Debug Configuration

4. Press the Debug button. Switch (Yes) to the Debug perspective if asked.
5. The code should run to the Reset_Handler() function.
6. Resume execution via Run > Resume. Execution will stop in main() at the call to

hal_entry().
7. Resume execution again.

The red LED should start flashing. After 30 flashes the green LED will start flashing and the red LED
will stop flashing.

While the green LED is flashing the WDT will underflow and reset the device resulting in the red LED
to flash again as the sequence repeats. However, this sequence does not occur when using the
debugger because the WDT does not run when connected to the debugger.

1. Stop the debugger in the ISDE via Run > Terminate.
2. Press the reset button on the target board. The LEDs begin flashing.

3.4 IAR Embedded Workbench for Renesas

3.4.1 Using IAR Embedded Workbench for Synergy

This section describes how to use the IAR Embedded Workbench for Renesas Synergy (IAR EW for
Synergy) in combination with the Renesas Synergy Standalone Configurator (SSC) to develop

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 133 / 5,198

Synergy Software Package

User’s Manual
Starting Development > IAR Embedded Workbench for Renesas > Using IAR Embedded Workbench for Synergy

applications with the Renesas Synergy Software Package (SSP). The architecture of the SSP directly
determines how you use the IAR EW for Synergy and SSC to develop a Synergy application. See the
following documents for details on the SSP architecture included in this manual:

SSP Architecture
BSP Architecture

3.4.2 What is IAR EW for Synergy?

IAR Embedded Workbench is now completely integrated with the Renesas Synergy Platform. The
new product IAR EW for Synergy provides add-on functionality to simplify and accelerate software
development, and provide the best performance and smallest code size.

Just like e2 studio, IAR EW for Synergy offers secure source-level visibility into the Synergy Software
Package (SSP) as well as secure source-level debugging. The developer can see protected source
code but not modify or save it. Once the application code is developed, IAR EW for Synergy includes
IAR C-STAT® and C-RUN® analyzers, tools which help and guide to improve application code quality.

3.4.3 IAR EW Key Features

Integrated development environment with project management tools and editor
Highly optimizing C and C++ compiler and Linker for Renesas Synergy devices
Integration support for Renesas Synergy Standalone Configurator (SSC)
C-STAT and C-RUN code analysis tools included
Extensive HW target system support
Power debugging to visualize power consumption in correlation with source code
C-SPY® Debugger with JTAG/SWD support and support for RTOS-aware debugging on
hardware
Support for ETM Trace
Comprehensive user and reference guides and context-sensitive help function
Compliant with ARM® Embedded Application Binary Interface (EABI) and ARM Cortex®
Microcontroller Software Interface Standard (CMSIS)

For detailed instructions on how to download and install IAR EW for Synergy, see the IAR EW for
Synergy Release Notes on the Synergy Gallery.

3.4.4 What is Synergy Standalone Configurator (SSC)?

The Synergy Standalone Configurator (SSC) is an Eclipse Rich Client Platform (RCP) application
containing the Synergy Project Generator and the Synergy Project Editor as implemented in the
Renesas e2 studio ISDE. SSC includes configurators like the Clock Configurator, Pin Configurator,
RTOS Configurator, SSP Module Selector/Configurator, and Interrupt Control Unit (ICU) Configurator
for use with 3rd party IDEs such as IAR EW for Synergy.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 134 / 5,198

Synergy Software Package

User’s Manual
Starting Development > IAR Embedded Workbench for Renesas > What is Synergy Standalone Configurator (SSC)?

Figure 95: IAR EW for Synergy and SSC Functional Block Diagram

Since the functionality of the SSC is identical to the Synergy Project Generator and the Synergy
Project Editor as implemented in the Renesas e2 studio ISDE, refer to e2 studio ISDE User Guide for
information on how to use it.

For detailed instructions on how to download and install the SSC and the SSP to use with IAR EW for
Synergy, see the SSC Release Notes and the SSP Release notes on the Synergy Gallery.

3.4.5 Installing the Tools

To install the tools, follow the steps below:

1. Download and install the Renesas Synergy Standalone Configurator (SSC) from the Renesas
Synergy Gallery. You can find it under Development Tools. The default installation directory
is C:\Renesas\Synergy\SSC_<SSCversion>.

2. Download and install the Renesas Synergy Software Package (SSP) from the Renesas
Synergy Gallery. During the installation you will be prompted to specify an installation
directory for the SSP. Point the SSP installer to the directory where you just installed the
SSC (for example C:\Renesas\Synergy\SSC_<SSCversion>).

3. Download and install IAR Embedded Workbench for Renesas Synergy from the Renesas
Synergy Gallery. To install IAR Embedded Workbench:

a. In your web browser, specify the URL https://synergygallery.renesas.com and
download IAR Embedded Workbench for Renesas Synergy from the Renesas
Synergy Gallery. You will also find information about how to obtain a license and
get a license number.

b. Execute the installer that is included in the downloaded file.

c. Specify the license number when prompted for in the IAR License Manager.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 135 / 5,198

https://synergygallery.renesas.com

Synergy Software Package

User’s Manual
Starting Development > IAR Embedded Workbench for Renesas > Installing the Tools

Note
The IAR EW for Synergy license entitles you to use this specific edition of IAR Embedded
Workbench, but not the Synergy Standalone Configurator for which separate licenses are
required.

3.4.6 Creating a Renesas Synergy Project using IAR EW for Synergy and
SSC

To create a Synergy Project using IAR EW for Synergy and SSC, follow the steps below:

1. In the IAR Embedded Workbench IDE, choose Project>Create New Project.

2. In the Create New Project dialog box, select Renesas Synergy Project and click OK.

Figure 96: Creating a New Synergy Project using IAR EW for Synergy

3. In the Save As dialog box that appears, choose a suitable destination directory for your
workspace (the container that holds your project), for example MyWorkspace, and click
Save.

Note
Do not save your workspace in the root directory of your operating system (C:).

4. In the Renesas Synergy Setting dialog box that appears, specify the location of your
installed Synergy Standalone Configurator (SSC), which by default is installed in
C:\Renesas\Synergy\SSC_<SSCversion>.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 136 / 5,198

Synergy Software Package

User’s Manual
Starting Development > IAR Embedded Workbench for Renesas > Creating a Renesas Synergy Project using IAR EW for Synergy and SSC

You do not need to specify a license file. You can click OK with the License file field empty. An SSP
license file is not required and the source files are not encrypted for SSP v2.0.0 and later.

Figure 97: Renesas Synergy Settings in IAR EW for Synergy

5. Click OK.

6. In the Save As dialog box that appears, specify the name of your project, for example
MyProject.

Note
Do not save your project in the root directory of your operating system (C:).

7. The IAR Embedded Workbench IDE now connects with the Renesas Synergy Standalone
Configurator (SSC). Specify the board support you require:

Figure 98: SSC selection Dialog for SSP, Board, and MCU to be used

Note
The SSP versions available in the drop-down list correspond to the versions you have previously

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 137 / 5,198

Synergy Software Package

User’s Manual
Starting Development > IAR Embedded Workbench for Renesas > Creating a Renesas Synergy Project using IAR EW for Synergy and SSC

installed on your computer.

Click Next.

8. The Synergy Software Packages come with several example projects, which include source
code files, header files, and linker configuration files, adapted for your device. Select the
example packages that you want to add to your project:

Figure 99: Project Template Selection Dialog

 Click Finish.

9. In the Synergy Project Editor that opens up, you can now configure MCU pin function
assignments, clock and peripheral settings, and interrupt source assignments. When
finished configuring, click the Generate Project Content button. The source code is now
generated.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 138 / 5,198

Synergy Software Package

User’s Manual
Starting Development > IAR Embedded Workbench for Renesas > Creating a Renesas Synergy Project using IAR EW for Synergy and SSC

Figure 100: Generate Project Content Button

Note
You can always add or change the configuration of your Synergy project later on.

10. After a couple of seconds, your Renesas Synergy project is displayed in the IAR EW
Workspace window:

Figure 101: IAR EW for Synergy Workspace and Project Window

11. If you close the SSC, you can re-open it again by clicking the Synergy Configuration button

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 139 / 5,198

Synergy Software Package

User’s Manual
Starting Development > IAR Embedded Workbench for Renesas > Creating a Renesas Synergy Project using IAR EW for Synergy and SSC

in the toolbar, or by selecting Renesas Synergy > Configurator from the menu.
12. Whenever you switch back to the SSC to change configuration settings, click the Generate

Project Content button when finished. The affected source code files are now re-
generated.

13. You can now continue building and debugging according to the standard routines in the IAR
Embedded Workbench IDE, see the IAR Embedded Workbench® IDE User Guide on the IAR
web site.

As the SSC works just like the Synergy Project Editor in e2 studio, refer to e2 studio ISDE
User Guide for more details on how to use it.

Note that the Synergy Project is by default configured for the J-Link debugging probe.

If you have another debugging probe, for example I-jet or I-jet Trace, choose
Project>Options>Debugger in the IDE and select I-jet/JTAGjet from the Driver drop-down
list.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 140 / 5,198

Synergy Software Package

User’s Manual
Module Overviews

Chapter 4 Module Overviews

You can find a list of Module Overviews on the following pages:

Framework Layer
HAL Layer
Azure RTOS Modules

The Module Overviews for each SSP module have been significantly improved since the last release.
The new Module Overviews should provide all the information necessary for a developer to evaluate
a specific modules fitness for use in a target application and significantly help with the development
process. The intent of these notes is to provide all the information needed to begin develop0ment
with the target module in one easy to find location.

Each Module Overview includes the following sections:

1. A short introduction to the module includes a short description, a block diagram of key
module components, and a list of features

2. An API table lists all the available APIs, and example use of the API and a short description
of the APIs function. A list of some of the key Status Return values is provided to help
determine the result of the API call.

3. A functional overview describes key module operations and includes a list of important
module limitations.

4. A step-by-step description of how to include the module in an application using the ISDE
threads tab and stack selection process.

5. A set of tables showing the configuration parameters for the module and key lower level
modules is provided so the developer can easily see the modules key capabilities. Note that
these configurable properties vary by MCU series and by SSP Release. Treat the tables in
these notes as illustrations and refer to the actual parameters available within the ISDE for
your target MCU and for your chosen SSP release. Example pin and clock configuration and
selection information is also provided to help guide development.

6. A simple implementation using the target module is provided and shows the steps used in a
typical application, the associated flow diagram, and the API use at each step. This helps
describe how APIs are commonly used and will give the developer a head start with their
implementation.

Module Guide Application Notes
These six sections are also found in the Module Guide Application Notes for a specific module. In the
Application Note additional sections provide detailed descriptions of the associated application
project that demonstrates the module working in an actual design. Development can be dramatically
simplified when the application project is used as a starting point or reference for a new design.
Module guide application notes can be found with the following search:
https://www.renesas.com/us/en/support/document-search?doc_file_all_types%5BApplication+Note%5
D=Application+Note&doc_file_all_types%5BSample+Code+-+FIT+Module%5D=Sample+Code+-+FI
T+Module&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&
doc_category_tier_2=469306&doc_part_numbers=&keywords=&sort_order=DESC&sort_by=field_do
cument_revision_date#documentation-tools-results. More module guide application notes are being
added all the time so check back frequently to find when new ones have been released.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 141 / 5,198

https://www.renesas.com/us/en/support/document-search?doc_file_all_types%5BApplication+Note%5D=Application+Note&doc_file_all_types%5BSample+Code+-+FIT+Module%5D=Sample+Code+-+FIT+Module&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_part_numbers=&keywords=&sort_order=DESC&sort_by=field_document_revision_date#documentation-tools-results
https://www.renesas.com/us/en/support/document-search?doc_file_all_types%5BApplication+Note%5D=Application+Note&doc_file_all_types%5BSample+Code+-+FIT+Module%5D=Sample+Code+-+FIT+Module&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_part_numbers=&keywords=&sort_order=DESC&sort_by=field_document_revision_date#documentation-tools-results
https://www.renesas.com/us/en/support/document-search?doc_file_all_types%5BApplication+Note%5D=Application+Note&doc_file_all_types%5BSample+Code+-+FIT+Module%5D=Sample+Code+-+FIT+Module&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_part_numbers=&keywords=&sort_order=DESC&sort_by=field_document_revision_date#documentation-tools-results
https://www.renesas.com/us/en/support/document-search?doc_file_all_types%5BApplication+Note%5D=Application+Note&doc_file_all_types%5BSample+Code+-+FIT+Module%5D=Sample+Code+-+FIT+Module&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_part_numbers=&keywords=&sort_order=DESC&sort_by=field_document_revision_date#documentation-tools-results
https://www.renesas.com/us/en/support/document-search?doc_file_all_types%5BApplication+Note%5D=Application+Note&doc_file_all_types%5BSample+Code+-+FIT+Module%5D=Sample+Code+-+FIT+Module&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_part_numbers=&keywords=&sort_order=DESC&sort_by=field_document_revision_date#documentation-tools-results

Synergy Software Package

User’s Manual
Module Overviews

Using the Module Guide Module Overviews
The Module Overviews provide sufficient details to begin development, but there will be cases when
additional information is useful in implementing a design. The SSP User Manual provides a wealth of
information on the details of API implementation, structures, enumerations and more. Simply jump to
the API reference section and find your module of interest to find any additional information you
might need.

HAL modules have chapters that cover the above topics as well. It is highly recommended that you
spend some time looking at the reference material available in ALL the reference chapters so you
know where to look when an API implementation question, not answered in the module guide usage
note or associated module guide application note, comes up.

4.1 Framework Layer

Some SSP framework modules are not included in the following list of Module Overviews. This is
because some modules, although they can be selected and added to a thread, are only used as
lower level modules and are not expected to be used by a developer separately. These modules are
included in the Module Overview for the higher level module however. So if additional information is
desired, just refer to the associated higher level Module Overview. The following list shows how to
find these 'missing' modules:

Module Included In

D/AVE 2D Port on sf_tes_2d_drw GUIX Port on sf_el_gx under the Azure RTOS
Modules section as GUIX Port

D/AVE 2D Driver on dave2d GUIX Port on sf_el_gx under the Azure RTOS
Modules section as GUIX Port

ADC Periodic Framework

Audio Playback Framework

Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac

Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s

Audio Record ADC Framework

Audio Record I2S Framework

Block Media Framework on sf_block_media_lx_nor

Block Media Framework on sf_block_media_qspi

Block Media Framework on sf_block_media_ram

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 142 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer

Block Media Framework on sf_block_media_sdmmc

BLE Framework

Cellular Framework

Telnet Communications Framework on sf_comms_telnet

Communications Framework on sf_el_ux_comms_v2

Console Framework

Crypto Framework

Capacitive Touch v2 Framework

External IRQ Framework

I2C Framework

JPEG Decode Framework

Memory Framework on sf_memory_qspi_nor

Messaging Framework

Power Profiles V2 Framework

SPI Framework

Thread Monitor Framework

Touch Panel V2 Framework

UART Communications Framework

Wi-Fi Framework

Wi-Fi QCA4010 Framework

4.1.1 ADC Periodic Framework

4.1.1.1 ADC Periodic Framework Module Introduction

The ADC Periodic Framework provides a high-level API for signal processing applications. The module
configures the ADC/SDADC to sample any of the available channels (using the single-scan mode) at a
configurable rate and buffers the data for a configurable number of sampling iterations before
notifying the application. The ADC Periodic Framework uses the ADC/SDADC, GPT or AGT and DTC
peripherals on a Renesas Synergy™ Microcontroller. A user‑defined callback can be created to

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 143 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > ADC Periodic Framework Module Introduction

process the data each time a new sample is available.

ADC Periodic Framework Module Features

24-bit Sigma-Delta A/D Converter (S1JA only).
16-bit A/D Converter (S1JA)
14-bit A/D Converter (S3A7, S3A6, S3A3, S124, S128)
12-bit A/D Converter (S7G2, S5D9, S5D5)
Multiple Operation Modes

Single Scan
Group Scan
Continuous Scan

Multiple Channels
1 channel (S1JA)
13 channels (unit 0), 12 channels (unit 1) (S7G2 and S5D9)
13 channels (unit 0), 9 channels (unit 1) (S5D5)
18 channels (S124)
21 channels (S128)
25 channels (S3A6)
28 channels (S3A7)
Temperature sensor channel
Voltage sensor channel

Figure 102: ADC Periodic Framework Module Block Diagram

4.1.1.2 ADC Periodic Framework Module APIs Overview

The ADC Periodic Framework defines APIs for opening, closing, starting and stopping the ADC scans.
A complete list of the available APIs, an example API call and a short description of each can be
found in the following table. A table of status return values follows the API summary table.

ADC Periodic Framework Module API Summary

Function Name Example API Call and Description

open g_sf_adc_periodic.p_api->open(g_sf_adc_periodic
.p_ctrl, g_sf_adc_periodic.p_cfg);
Acquires mutex, then initializes module at the
HAL layer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 144 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > ADC Periodic Framework Module APIs Overview

start g_sf_adc_periodic.p_api->start(g_sf_adc_periodic
.p_ctrl);
Starts the scan.

stop g_sf_adc_periodic.p_api->stop(g_sf_adc_periodic.
p_ctrl);
Stops the hardware trigger (timer) from
triggering any more ADC scans.

close g_sf_adc_periodic.p_api->close(g_sf_adc_periodi
c.p_ctrl);
Releases channel mutex and closes channel at
HAL layer.

versionGet g_sf_adc_periodic.p_api->versionGet(&version);
Retrieve the API version using the version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_UNSUPPORTED Command not found in the current menu.

SSP_ERR_NOT_OPEN Driver control block not valid.
CallSF_ADC_PERIODIC_Open to configure.

SSP_ERR_ASSERTION Version get error- p_version was NULL.

SSP_ERR_INTERNAL An internal ThreadX® error has occurred. This is
typically a failure to create/use a mutex or to
create an internal thread.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.1.3 ADC Periodic Framework Module Operational Overview

The ADC Periodic Framework module samples and buffers ADC data. The Framework notifies the
application once the configured number of samples are buffered. The ADC Periodic Framework works
as follows:

After initial configuration and after the scan process is started, the framework uses a
hardware timer to trigger an ADC scan in one-shot mode. Each scan can consist of one or
more channels. When each scan is completed, the ADC interrupt is intercepted by the DTC,
which moves the result of the scan into the user buffer.
Each scan is defined as a sampling iteration, and the number of samples generated for each
scan is equal to the number of channels. If the channels are sequential, for example,
channels 1, 2, 3, 4, the data is captured in order. If the channels are not in sequence, for

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 145 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > ADC Periodic Framework Module Operational Overview

example, channels 1, 3, 4, 5, then the samples generated by each scan also include data
from the unused channels in between. Thus, in the second example, five samples are
stored to the user buffer each time.
The user specifies the total number of sample iterations that need to occur before being
notified. When the specified number of sampling iterations have occurred and the data for
each iteration has been stored into the user buffer, the user is notified via a callback with
an index for the valid data in the buffer and an event indicating that sampling for the
specified number of iterations is complete.

Unless the user stops the scan process, the scan continues to be triggered by the timer (using AGT
or GPT) and data will be written into the user buffer, which is treated by the Framework as a circular
buffer. The name and length of the buffer are specified via the ISDE configurator.

ADC Periodic Framework Module Important Operational Notes and Limitations

ADC Periodic Framework Module Operational Notes

1. At least one channel must be chosen while configuring the ADC/SDADC HAL driver to avoid
an API return error.

2. When configuring the scan rate for the ADC Framework (the GPT or AGT timer period),
make sure that the period is long enough to accommodate scanning of all selected
channels (about 2 microseconds for each channel conversion on a Synergy S7G2 device).

3. The ADC Periodic Framework stores data for all the channels from each scan into the user
specified buffer. When the specified number of sample iterations are completed, the user is
notified. If five channels are selected (channels 1,2,3,4,5) and the sample count is set to 3,
the user will be notified when 5 x 3 = 15 samples are available. The samples are ordered as
follows:

Figure 103: ADC Periodic Framework Module Sample Order

 When selecting the data buffer length in the ADC Periodic Framework configuration, make sure that
the buffer length is at least twice the length of the number of samples that will be generated (15 x 2
= 30 in this example). This is because once the user application is notified that the data is available,
the Framework will keep buffering in new data at the sample rate. Since the buffer is treated as a
circular buffer, you can inadvertently overwrite the data. If the size is not larger than the number of
samples generated, the data is overwritten before the application can use it.

The application callback has an index into the appropriate location in the buffer where valid data is
present.

ADC Periodic Framework Module Limitations

The ADC Periodic framework does not currently support the following features:
The use of Group Scan mode
The use of DMA

When configuring the ADC channels to be used with this framework, the temperature or
voltage sensors must not be selected if any of the other available channels are also
selected. It is possible to use only the temperature sensor, only the voltage sensor, or any
number of the regular ADC channels.
ADC Periodic framework does not support DTC transfer when lower lever driver is SDADC.
When using ADC Periodic framework with lower level SDADC of 24-bit, user should not

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 146 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > ADC Periodic Framework Module Operational Overview

access output data through "p_args" in callback function. User should access output data
only through user defined buffer.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.1.4 Including the ADC Periodic Framework Module in an Application

This section describes how to include the ADC Periodic Framework Module in an application using the
SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the ADC Periodic Framework to an application, simply add it to a thread using the stacks
selection sequence given in the following table. (The default name for the ADC Periodic Framework is
g_adc_periodic0. This name can be changed in the associated Properties window.)

ADC Periodic Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_adc_periodic0ADC Periodic
Framework on sf_adc_periodic

Threads New Stack> Driver>
Analog> ADC Periodic
Framework on
sf_adc_periodic

When the ADC Periodic Framework on sf_adc_periodic is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with a
Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 147 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > Including the ADC Periodic Framework Module in an Application

Figure 104: ADC Periodic Framework Module Stack

Note
The above diagram will have an "Add ADC Driver" block instead of the "g_adc0" block for the S1JA only.

4.1.1.5 Configuring the ADC Periodic Framework Module

The ADC Periodic Framework Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the ADC Periodic Framework Module on sf_adc_periodic

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_sf_adc_periodic0 Module name.

Name of the data-buffer to
store samples

g_user_buffer Name of the 16-bit data buffer
to store samples.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 148 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > Configuring the ADC Periodic Framework Module

Length of the data-buffer 128 Length of the buffer to which
data is to be stored.

Number of sampling iterations 10 Priority of ADC Periodic
Framework internal thread.

Callback g_adc_framework_user_callback User function that will be called
once "sample_counts" number
of data has been buffered.

Name of generated initialization
function

sf_adc_periodic_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the ADC Periodic Framework Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module.

Configuration Settings for the ADC HAL Module on r_adc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: Enabled

If selected code for parameter
checking is included in the
build.

Name g_adc0 Module name.

Unit 0, 1 (S7G2 Only)

Default: 0

Specify the ADC Unit to be
used. The S7G2 has two units; 0
and 1.

Resolution 14-Bit (S3A7/S124 Only), 12-Bit,
10-Bit (S7G2)

Default: 8-Bit (S7G2 Only)

Specify the conversion
resolution for this unit.

Alignment Right, Left

Default: Right

Specify the conversion result
alignment.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 149 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > Configuring the ADC Periodic Framework Module

Clear after read Off, On

Default: On

Specify if the result register
must be automatically cleared
after the conversion result is
read.

Note: If this is enabled, then
watching the result register
using a debugger always
results in a 0.

Mode Single Scan The ADC Framework
preconfigures and locks this
field.

Channels 0-6 Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channels 7-10 (S3A7/S124
Only)

Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channels 11-15 (S3A7 Only) Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channels 16-20 Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 150 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > Configuring the ADC Periodic Framework Module

Channel 21 (Unit 0 Only) Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channel 22 (S3A7/S124 Only) Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channels 23-27 (S3A7 Only) Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Temperature Sensor Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

Temperature sensor use
selection for Channel Scan
Mask.

Voltage Sensor Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

Voltage sensor use selection for
Channel Scan Mask.

Normal/Group A Trigger ELC Event The ADC Framework
preconfigures and locks this
field.

Group B Trigger (Valid Only in
Group Scan Mode)

ELC Event (The only valid
trigger for either group in Group
Scan Mode)

The ADC Framework
preconfigures and locks this
field.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 151 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > Configuring the ADC Periodic Framework Module

Group Priority (Valid only in
Group Scan Mode)

Group A cannot interrupt Group
B, Group A can interrupt Group
B; Group B scan restarts at next
trigger, Group A can interrupt
Group B; Group B scan restarts
immediately, Group A can
interrupt Group B; Group B scan
restarts immediately and scans
continuously

Default: Group A cannot
interrupt Group B

Do not use with ADC
Framework since the mode is
locked to Single Scan Mode.

Add/Average Count Disabled, Add two samples, Add
three samples, Add four
samples, Add sixteen samples,
Average two samples, Average
four samples

Default: Disabled

Specify if addition or averaging
needs to be done for any of the
channels in this unit. The actual
channels are specified by using
a channel mask
adc_channel_cfg_t::add_mask.

Channels 0-27 Disabled, Enabled

Default: Disabled

This field is valid only if
adc_cfg_t::add_average_count
is enabled. This field
determines what channels
results are to be averaged or
summed.

Temperature Sensor Disabled, Enabled

Default: Disabled

Temperature sensor use
selection for Addition/Averaging
Mask.

Voltage Sensor Disabled, Enabled

Default: Disabled

Voltage sensor use selection for
Addition/Averaging Mask.

Channels 0-2 Disabled, Enabled

Default: Disabled

Determines which of channels
0, 1 and 2 are using the
updated sample-and-hold
states value specified in
adc_channel_cfg_t::sample_hold
_states. This field must only be
set if it is desired to modify the
default sample and hold count
value for channels 0, 1 and 2.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 152 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > Configuring the ADC Periodic Framework Module

Sample Hold States (Applies
only to the 3 channels selected
above)

24 Specifies the updated sample-
and-hold count for the channel
dedicated sample-and-hold
circuit. This field is valid only if
adc_channel_cfg_t::sample_hold
_mask is not 0. Only channels
0, 1 and 2 have dedicated
sample and hold circuits.

Note: Use this to modify the
default number of states (24)
for which the value is sampled.
Each state is equal to 1/ADCLK
time.

Callback NULL The ADC Framework uses the
callback internally.

Scan End Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Scan End Interrupt Priority
selection.

Scan End Group B Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Scan End Group B Interrupt
Priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the SDADC HAL Module on r_sdadc(Only for S1JA)

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable parameter
error checking.

Name g_adc0 Module name.

Mode Single Scan, Continuous Scan

Default: Continuous Scan

In single scan mode, all
channels are converted once
per start trigger, and
conversion stops after all
enabled channels are scanned.
In continuous scan mode,
conversion starts after a start
trigger, then continues until
stopped in software.

Resolution 16 Bit, 24 Bit

Default: 24 Bit

Select 24-bit or 16-bit
resolution.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 153 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > Configuring the ADC Periodic Framework Module

Alignment Right, Left

Default: Right

Select left or right alignment.

Trigger ELC Hardware Event, Software

Default: Software

Select conversion start trigger.
Conversion can be started in
software, or conversion can be
started when a hardware event
occurs if the hardware event is
linked to the SDADC peripheral
using the ELC API.

Vref Source Internal, External

Default: Internal

Vref can be sourced internally
and output on the SBIAS pin, or
Vref can be input from VREFI.

Vref Voltage 0.8 V, 1.0 V, 1.2 V, 1.4 V, 1.6 V,
1.8 V, 2.0 V, 2.2 V, 2.4 V

Default: 1.0 V

Select Vref voltage. If Vref is
input externally, the voltage on
VREFI must match the voltage
selected within 3%.

Internal Calibration During
Open()

Enabled, Disabled

Default: Enabled

Calibration is required for all
channels configured for
differential input. Internal
calibration is performed
automatically during open for
these channels unless it is
disabled here.

Callback NULL Enter the name of the callback
function to be called when
conversion completes or a scan
ends.

Conversion End Interrupt
Priority

Priority 0 (highest), Priority 1,
Priority 2, Priority 3 (lowest -
not valid if using ThreadX)

Default: Priority 2

Select the interrupt priority for
the conversion end interrupt.
[Required]

Scan End Interrupt Priority Priority 0 (highest), Priority 1,
Priority 2, Priority 3 (lowest -
not valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
the scan end interrupt.
[Required]

Calibration End Interrupt
Priority

Priority 0 (highest), Priority 1,
Priority 2, Priority 3 (lowest -
not valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
the calibration end interrupt.
[Required]

Configuration Settings for the AGT HAL Module on r_agt

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 154 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > Configuring the ADC Periodic Framework Module

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables parameter
checking.

Name g_timer0 Module name.

Channel 0 Physical hardware channel.

Mode Periodic Warning: One-shot functionality
is not available in the GPT
hardware, so it is implemented
in software by stopping the
timer in the ISR called when the
period expires. For this reason,
ISRs must be enabled for one-
shot mode even if the callback
is unused.

Period Value 10 See Timer Period Calculation.

Period Unit Raw Counts, Nanoseconds,
Microseconds, Milliseconds,
Seconds, Hertz, Kilohertz

Default: Microseconds

See Timer Period Calculation.

Auto Start False Set to true to start the timer
after configuring or false to
leave the timer stopped until
timer_api_t::start is called.

Count Source PCLKB, PCLKB/8, PCLKB/2,
LOCO, AGT0 Underflow, AGT0
fSub

Default: PCLKB

The clock source for the AGT
counter.

AGTO Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for AGT (AGTO pin). Set to false
for no output of the timer
signal.

AGTIO Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for AGT (AGTIO pin). Set to false
for no output of the timer
signal.

Output Inverted True, False

Default: True

Set to false to start the output
signal low. Set to true to start
the output signal high.

Enable comparator A output pin True, False

Default: False

Enable comparator A output pin
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 155 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > Configuring the ADC Periodic Framework Module

Enable comparator B output pin True, False

Default: False

Enable comparator B output pin
selection.

Callback NULL A user callback function can be
registered in timer_api_t::open.
If this callback function is
provided, it will be called from
the interrupt service routine
(ISR) each time the timer period
elapses.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Underflow Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Timer interrupt priority. 0 is the
highest priority.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the GPT HAL Module on r_gpt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_timer0 Module name.

Channel 0 The ADC Framework
preconfigures and locks this
field based on channel selected
in the ADC Framework.

Mode Periodic The ADC Framework
preconfigures and locks this
field.

Period Value 10 Configure timer period to
trigger ADC scans.

Period Unit Raw Counts, Nanoseconds,
Microseconds, Milliseconds,
Seconds, Hertz, Kilohertz

Default: Milliseconds

Configure units of the timer
period set above.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 156 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > Configuring the ADC Periodic Framework Module

Duty Cycle Value 50 Duty cycle value selection.

Duty Cycle Unit Unit Raw Counts, Unit Percent,
Unit Percent x 1000

Default: Unit Raw Counts

Duty cycle unit selection.

Auto Start False The ADC Framework
preconfigures and locks this
field.

GTIOCA Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for GPT. Set to false for no
output of the timer signal.

GTIOCA Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

Controls output pin level when
the timer is stopped.

GTIOCB Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for GPT. Set to false for no
output of the timer signal.

GTIOCB Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

Controls output pin level when
the timer is stopped.

Callback NULL The ADC Framework
preconfigures and locks this
field.

Overflow Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Interrupt priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the DTC HAL Module on r_dtc Software Activation

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 157 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > Configuring the ADC Periodic Framework Module

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer0 Module name.

Mode Block Mode selection.

Transfer Size 2 Bytes Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 1 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

1 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1 Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

ADC Periodic Framework Module Pin Configuration

To access a channel, ADC channels must be set in the Pins tab of the ISDE. The following table
illustrates the method for selecting the pins within the SSP configuration window:

Pin Selection for the ADC HAL Module on r_adc

Resource ISDE Tab Pin selection Sequence

ADC Pins Select Peripherals > **Analog:
ADC > ADC0\1** > AN_XX

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 158 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > Configuring the ADC Periodic Framework Module

SDADC Pins Select Peripherals > Analog:
SDADC > SDADC0 > AN_XX

Note
In the cases of the internal temperature sensor and the internal voltage sensor, there are no pin configurations
required.

4.1.1.6 Using the ADC Periodic Framework Module in an Application

The steps in using the ADC Periodic Framework module on sf_audio_record_adc in a typical
application are:

1. Initialize the ADC using the sf_adc_periodic_api_t::open API.
2. Start the Scan of channels using the sf_adc_periodic_api_t::start API.
3. Stop the scan with the sf_adc_periodic_api_t::stop API.
4. Read the results of the conversion using the callback in application code.
5. Close the instance using the sf_adc_periodic_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 159 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > ADC Periodic Framework > Using the ADC Periodic Framework Module in an Application

Figure 105: Flow Diagram of a Typical ADC/SDADC Periodic Framework Module Application

4.1.2 Audio Playback Framework

4.1.2.1 Audio Playback Framework Introduction

The Audio Playback Framework module provides a high-level API for audio playback applications and
is implemented on either sf_audio_playback_hw_dac or sf_audio_playback_hw_i2s. The Audio
Playback Framework handles the synchronization needed to play 16-bit and 8-bit pulse-code
modulation (PCM) samples and uses the DAC (DAC12 or DAC8) or I2S, timer (AGT or GPT) and data-
transfer (DMA or DTC) peripherals on a Synergy MCU. A user-defined callback can be created to
respond to the need for additional data.

Audio Playback Framework Module Features

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 160 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Audio Playback Framework Introduction

Plays long buffers by splitting the data into manageable chunks.
Repeats playback until a ThreadX timeout (for repeated audio like sine wave tones or
looped background music).
Requests next data using callback after last buffer playback begins.
Software volume control.
Pause and resume functions.
Scaling, for example to move signed 16-bit PCM data into range of the unsigned 12-bit DAC
or unsigned 8-bit DAC8.
Basic mixing for multiple streams.

Figure 106: Audio Playback Framework Module Block Diagram

4.1.2.2 Audio Playback Framework Module APIs Overview

The Audio Playback Framework module defines APIs for operations such as opening, starting, playing
and stopping. A complete list of the available APIs, an example API call and a short description of
each can be found in the following table. A table of status return values follows the API summary
table.

Audio Playback Framework Module API Summary

Function Name Example API Call and Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 161 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Audio Playback Framework Module APIs Overview

open g_sf_audio_playback0.p_api->open(
g_sf_audio_playback0.p_ctrl,
g_sf_audio_playback0.p_cfg);
Open a device channel for read/write and
control.

start g_sf_audio_playback0.p_api->start(
g_sf_audio_playback0.p_ctrl, p_data, Timeout);
Start Audio Playback Hardware.

pause g_sf_audio_playback0.p_api->pause(
g_sf_audio_playback0.p_ctrl);
Pause Audio Playback Hardware.

stop g_sf_audio_playback0.p_api->stop(
g_sf_audio_playback0.p_ctrl);
Stop Audio Playback Hardware.

resume g_sf_audio_playback0.p_api->resume(
g_sf_audio_playback0.p_ctrl, &buffer, length);
Resume playback.

volumeSet g_sf_audio_playback0.p_api->volumeSet(
g_sf_audio_playback0.p_ctrl, volume);
Sets volume.

close g_sf_audio_playback0.p_api->close(
g_sf_audio_playback0.p_ctrl);
Close the audio module.

versionGet g_sf_audio_playback0.p_api->versionGet(&versi
on);
Return the version of the module using the
version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function successful.

SSP_ERR_ASSERTION A pointer is NULL or a parameter is invalid.

SSP_ERR_OUT_OF_MEMORY The number of streams open at once is limited
to SF_AUDIO_PLAYBACK_CFG_MAX_STREAMS. If
this number is exceeded, an out of memory
error occurs.

SSP_ERR_TIMEOUT Timeout occurred before playback finished.

SSP_ERR_NOT_OPEN The stream control block p_ctrl is not initialized.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 162 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Audio Playback Framework Module APIs Overview

Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status-return values.

4.1.2.3 Audio Playback Framework Module Operational Overview

The Audio Playback Framework module creates a thread internally to support audio playback. The
following figure shows a flowchart of the audio playback framework thread and its interactions with
public Audio Playback Framework API functions:

Figure 107: Audio Playback Framework Module Flow Chart

 Suggested use of the audio playback framework:

Create a semaphore (for example, g_sf_audio_playback_semaphore). This can be done on
the Threads tab. Set the initial value to 2 (the audio playback framework can store up to
two data messages per stream).
Create a callback function (for example, sf_audio_playback_callback). Enter the name of
your callback function in the Audio Playback Framework instance. The callback function will
be called when the audio playback framework is done with the data. In the callback, put the
semaphore created above.
In your main loop, get the semaphore before playing data. To play data, first acquire a

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 163 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Audio Playback Framework Module Operational Overview

buffer from the messaging framework, then create your audio playback data structure
inside the buffer.

The Audio Playback Framework supports multiple audio streams on a single hardware port. A block
diagram of the modules required if two streams are used is shown in the following figure:

Figure 108: Audio Playback Framework Module Audio Streams

Audio Playback Framework Module Important Operational Notes and Limitations

Audio Playback Framework Module Operational Notes

Configuring Messages

Use the Messaging Framework configurator on the Messaging tab to configure the messaging
framework:

1. Highlight the Audio Playback event class.
2. Add a new subscriber. Select the following configurations and make sure the Message Class

Instance property set in the Properties tab of the Audio Playback Framework on
sf_audio_playback module is between the Start and End instance.

Thread: Any thread in the application.
Start: First audio instance used in application.
End: Last audio instance used in application.

3. Highlight the new Subscriber in the Audio Playback Subscribers. Record the Symbol name.
4. Go back to the Threads tab.
5. Highlight the Audio Playback Framework Shared module in HAL/Common, and set the Audio

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 164 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Audio Playback Framework Module Operational Overview

Message Queue Name to the Symbol name from the Audio Playback Subscriber.

Using the I2S Implementation

The audio framework I2S hardware port has dependencies on the I2S Driver module. The I2S driver
module can be accelerated with DTC.

Set the ISDE properties for the I2S driver module.
Set the Audio Clock Frequency (Hertz) to the frequency of the input audio clock
used.
Set the Sampling Frequency (Hertz) to the sampling frequency of your audio data.
Set the Data Bits and Word Length to 16 bits (audio framework accepts 16 bit
samples only).
Enable the SSIn TXI and SSIn INT interrupts.

The Transfer module on r_dtc is added automatically.

Using the DAC Implementation

The audio framework DAC hardware port has dependencies on the Timer, DAC, and Transfer API
modules.

Add a Timer module.
Set the Frequency in Hz to the sampling frequency of your audio data.
Enable the interrupt if using DTC as the transfer module (recommended).

Add a DAC (DAC12 or DAC8) module.
Add a Transfer module on r_dtc.

Set Destination pointer to &R_DAC->DADRn[0] if using DAC channel 0 or
&R_DAC->DADRn[1] if using DAC channel 1.
Set Destination pointer to &R_DAC8->DADRn[2] if using DAC8 channel 2 (S128) or
&R_DAC8->DADRn[0] if using DAC8 channel 0 (S1JA).
Set the Activation source to the timer interrupt chosen above.

Other Operational Notes

The Queue used must match the name specified in Properties for Audio Playback Framework Shared
on sf_audio_playback (default is g_sf_audio_playback_queue).

Audio Playback Framework Module Limitations

Refer to the latest SSP Release Notes for any additional operational limitations for this
module.

4.1.2.4 Including the Audio Playback Framework Module in an Application

This section describes how to include the Audio Playback Framework module in an application using
the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Audio Playback Framework module to an application, simply add it to a HAL /Common
thread using the stacks selection sequence given in the following table. (The default name for the
Audio Playback Framework module is g_sf_audio_playback0. This name can be changed in the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 165 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Including the Audio Playback Framework Module in an Application

associated Properties window.)

Audio Playback Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_audio_playback Audio
Playback Framework on
g_sf_audio_playback

Threads New Stack> Framework>
Audio> Audio Playback
Framework on
g_sf_audio_playback

When the Audio Playback Framework module on sf_audio_playback is added to the thread stack as
shown in the following figure, the configurator automatically adds any needed lower‑level modules.
Any modules needing additional configuration information have the box text highlighted in Red.
Modules with a Gray band are individual modules that stand alone. Modules with a Blue band are
shared or common; they need only be added once and can be used by multiple stacks. Modules with
a Pink band can require the selection of lower-level modules; these are either optional or
recommended. (This is indicated in the block with the inclusion of this text.) If the addition of lower-
level modules is required, the module description include Add in the text. Clicking on any Pink
banded modules brings up the New icon and displays possible choices.

Figure 109: Audio Playback Framework Module Stack

4.1.2.5 Configuring the Audio Playback Framework Module

The Audio Playback Framework module must be configured by the user for the desired operation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 166 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

The SSP configuration window will automatically identify (by highlighting the block in red) any
required configuration selections, such as interrupts or operating modes, which must be configured
for lower-level modules in order to ensure successful operation. Furthermore, only those properties
that can be changed without causing conflicts are available for modification. Other properties are
'locked' and are not available for changes, and are identified with a lock icon for the 'locked' property
in the Properties window in the ISDE. This approach simplifies the configuration process and makes it
much less error-prone than previous 'manual' approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP configurator, and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

Configuration Settings for the Audio Playback Framework Module on sf_audio_playback

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Buffer Size Bytes 512 Buffer size bytes selection.

Maximum Number of Streams 1 Maximum number of streams
selection.

Thread Stack Size 512 Thread stack size selection.

Name g_sf_audio_playback0 Module name.

Message Class Instance 0 Message class instance
selection.

Callback NULL Callback selection.

Name of generated initialization
function

sf_audio_playback_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
Increasing the buffer size will increase the RAM consumption of this module.
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select the DAC Channel based on the target hardware
implementation. The configurable properties for the lower-level stack modules are given in the
following sections for completeness and as a reference.

Note
Most of the property settings for lower level modules are fairly intuitive and can usually be determined by
inspection of the associated Properties window from the SSP configurator.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 167 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

Configuring the Audio Playback Framework Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower-level drivers
as indicated with red text in the thread stack block. Notice that some of the configuration properties
must be set to a certain value for proper framework operation and will be locked to prevent user
modification. The following table identifies all the settings within the properties section for the
module.

Configuration Settings for the Audio Playback Framework Shared on sf_audio_playback

ISDE Property Value Description

Name g_sf_audio_playback_common0 Module name.

Thread Priority 3 Thread priority selection.

Audio Message Queue Name g_sf_audio_playback_queue Audio message queue name
selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Messaging Framework on sf_message

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Message Queue Depth (Total
number of messages to be
enqueued in a Message Queue)

16 Specify the size of Thread X
Message Queue in bytes for
Message Subscribers. This
value is applied to all the
Message Queues.

Name g_sf_message0 The name of Messaging
Framework module control
block instance.

Work memory size in bytes 2048 Specify the work memory size
in bytes. Choosing a small
number results in a small
number of buffers, which can
be allocated at the same time
(you can confirm the total
buffer number on
sf_message_instance_ctrl_t::nu
mber_of_buffers). If the value is
smaller than the peak number
of messages to be posted at the
same time, the Framework has
a buffer allocation failure,
affecting system performance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 168 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

Pointer to subscriber list array p_subscriber_lists Specify the name of pointer to
the Subscriber List array.

name of the block pool
internally used in the
messaging framework

sf_msg_blk_pool The name of memory block
memory the Framework creates
in the control block. This
parameter might be useful for
debugging purpose but NULL
can be specified for saving
memory.

Name of generated initialization
function

sf_message_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Audio Playback Hardware Framework Shared on
sf_audio_playback_hw_dac

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

DMAC Support Disabled, Enabled

Default: Disabled

DMAC support selection.

Name g_sf_audio_playback_hw0 Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dmac Software Activation

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_transfer0 Module name.

Channel 0 Channel selection.

Mode Normal Mode selection.

Transfer Size 2 Bytes Transfer size selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 169 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source Software Activation, Peripheral
Events

Default: Software Activation

Activation source selection.

Auto Enable False Auto enable selection.

Callback NULL Callback selection.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Interrupt priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dmac Software Activation 1

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section selection.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 2 Bytes Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 170 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1, Software
Activation 2, Peripheral Events

Default: Software Activation 1

Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Timer Driver on r_agt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables parameter
checking.

Name g_timer0 Module name.

Channel 0 Physical hardware channel.

Mode Periodic Warning: One-shot functionality
is not available in the GPT
hardware, so it is implemented
in software by stopping the
timer in the ISR called when the
period expires. For this reason,
ISRs must be enabled for one-
shot mode even if the callback
is unused.

Period Value 10 See Timer Period Calculation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 171 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

Period Unit Hertz See Timer Period Calculation.

Auto Start False Set to true to start the timer
after configuring or false to
leave the timer stopped until
timer_api_t::start is called.

Count Source PCLKB, PCLKB/8, PCLKB/2,
LOCO, AGT0 Underflow, AGT0
fSub

Default: PCLKB

The clock source for the AGT
counter.

AGTO Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for AGT (AGTO pin). Set to false
for no output of the timer
signal.

AGTIO Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for AGT (AGTIO pin). Set to false
for no output of the timer
signal.

Output Inverted True, False

Default: False

Set to false to start the output
signal low. Set to true to start
the output signal high.

Enable comparator A output pin True, False

Default: False

Enable comparator A output pin
selection.

Enable comparator B output pin True, False

Default: False

Enable comparator B output pin
selection.

Callback NULL A user callback function can be
registered in timer_api_t::open.
If this callback function is
provided, it will be called from
the interrupt service routine
(ISR) each time the timer period
elapses.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Timer interrupt priority. 0 is the
highest priority.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 172 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Timer Driver on r_gpt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_timer0 Module name.

Channel 0 Channel selection.

Mode Periodic Warning: One-shot functionality
is not available in the GPT
hardware, so it is implemented
in software by stopping the
timer in the ISR called when the
period expires. For this reason,
ISRs must be enabled for one-
shot mode even if the callback
is unused.

Period Value 10 See Timer Period Calculation.

Period Unit Hertz See Timer Period Calculation.

Duty Cycle Value 50 Duty cycle value selection.

Duty Cycle Unit Unit Raw Counts, Unit Percent,
Unit Percent x 1000

Default: Unit Raw Counts

Duty cycle unit selection.

Auto Start False Set to true to start the timer
after configuring or false to
leave the timer stopped until
timer_api_t::start is called.

GTIOCA Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for GPT. Set to false for no
output of the timer signal.

GTIOCA Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

Controls output pin level when
the timer is stopped.

GTIOCB Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for GPT. Set to false for no
output of the timer signal.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 173 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

GTIOCB Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

Controls output pin level when
the timer is stopped.

Callback NULL A user callback function can be
registered in timer_api_t::open.
If this callback function is
provided, it will be called from
the interrupt service routine
(ISR) each time the timer period
elapses.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Interrupt priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the DAC HAL Module on r_dac

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_dac0 Module name.

Channel 0 Set to 0 for output DA0 or 1 for
output DA1.

Synchronize with ADC Enabled, Disabled

Default: Disabled

Set to true for anti-interference
synchronization with the Analog-
to-Digital Converter (ADC)
Module. Set to false if power
supply interference between
the analog modules is not a
problem, or if asynchronous
conversion by the DAC module
is desired.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 174 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

Data Format Right Justified Set to zero, if 12-bit data values
are loaded in bits 11 through 0,
or right justified. Set to one, if
12-bit data values are loaded in
bits 15 through 4, or left
justified.

Output Amplifier Enable, Disable

Default: Disable

Set to true, if output amplifier
hardware function is desired.
Set to false to bypass output
amplifier hardware function.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Audio Playback Framework Shared on
sf_audio_playback_hw_i2s

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_sf_audio_playback_hw0 Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the I2S HAL Module on r_ssi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_i2s0 Module name.

Channel 0 Physical hardware channel.

Audio Clock Frequency (Hertz) 2822400 Input audio clock frequency,
used to generate the I2S clock.
Must be a multiple between 1
and 128 of (sampling_freq_hz *
word_length_in_bits).

Sampling Frequecy (Hertz) 44100 Sampling frequency of audio
data.

Data Bits 8 bits, 16, 18, 20, 22, 24

Default: 16 bits

Bit depth of audio data, which is
the size in bits of one sample of
audio data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 175 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

Word Length 8 bits, 16, 24, 32

Default: 16 bits

Word length of audio data,
must be at least the same size
as the bit depth (Data Bits
field).

WS Continue Mode Enabled, Disabled

Default: Disabled

Enable WS continue mode to
continue to output the word
select line when the peripheral
is idle. Disable to stop
outputting the word select line
when the peripheral is idle.

Name of I2S callback function
to be defined by user

NULL A user callback function must
be registered in open. The
callback will be called from the
interrupt service routine (ISR)
when the transmission FIFO
reaches the high watermark
point after all data for
transmission is transmitted or
when reception is complete
(the requested number of bytes
have been received).

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Transmit Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Transmit interrupt priority
selection.

Receive Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Receive interrupt priority
selection.

Idle/Error Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Idle/error interrupt priority
selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Software Activation 1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 176 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer0 Driver name.

Mode Normal Mode selection.

Transfer Size 4 Bytes Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1, Software
Activiation 2, Peripheral Events

Default: Software Activation 1

Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC software event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Software Activation 1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 177 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer1 Driver name.

Mode Normal Mode selection.

Transfer Size 4 Bytes Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1, Software
Activiation 2, Peripheral Events

Default: Software Activation 1

Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC software event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Timer Driver on r_agt

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 178 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer1 Driver name.

Mode Normal Mode selection.

Transfer Size 4 Bytes Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1, Software
Activation 2, Peripheral Events

Default: Software Activation 1

Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC software event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Timer Driver on r_gpt

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 179 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Name g_timer0 Module name.

Channel 0 Channel selection.

Mode Periodic Mode selection.

Period Value 2822400 *2 Period value selection.

Period Unit Hertz Period unit selection.

Duty Cycle Value 50 Duty cycle value selection.

Duty Cycle Unit Unit Raw Counts, Unit Percent,
Unit Percent x 1000

Default: Unit Raw Counts

Duty cycle unit selection.

Auto Start FALSE Auto start selection.

GTIOCA Output Enabled True, False

Default: False

GTIOCA output enabled
selection.

GTIOCA Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

GTIOCA stop level selection.

GTIOCB Output Enabled True, False

Default: False

GTIOCB output enabled
selection.

GTIOCB Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

GTIOCB stop level selection.

Callback NULL Callback selection.

Overflow Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Interrupt priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Audio Playback Framework Module Clock Configuration

The Audio Playback Framework hardware modules use the peripheral clocks available in the clock
configuration window.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 180 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Configuring the Audio Playback Framework Module

Audio Playback Framework Module Pin Configuration

The DAC or SSI peripheral module uses pins on the MCU to communicate with external devices. I/O
pins must be selected and configured as required by the external device. The following tables
illustrate the method for selecting the pins within the SSP configuration window, and show an
example selection for the associated pins.

Pin Selection Sequence for the Audio Playback Framework Module

Resource ISDE Tab Pin selection Sequence

DAC Pins Select Peripherals >
Analog:DAC12 >
DAC120/121

SSI Pins Select Peripherals >
Connectivity:SSI > SSI/0/1

Note
The selection sequence assumes the DAC0/DAC1 or the SSI0/SSI1 is the desired hardware target of the driver.

Pin Configuration Settings for the DAC Driver on r_dac

Pin Configuration Property Value Description

Operation Mode Enabled, Disabled Operation selection.

DAC None, P014
(Default: P014)

DAC pin selection.

Note
The example values are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

4.1.2.6 Using the Audio Playback Framework Module in an Application

The typical steps in using the Audio Playback Framework module in an application are:

1. Initialize an audio stream using the sf_audio_playback_api_t::open API.
2. Use the callback function to post to a semaphore with an initial count equal to the number

of buffers required. This is implemented in the application code.

Note
Get this semaphore in the application thread before calling sf_audio_playback_api_t::start
API.

3. Acquire a buffer from the Messaging Framework using sf_message_api_t::bufferAcquire API.

Note
Create the Audio Framework Data Structure using sf_audio_playback_data_t inside the
buffer.

4. Start the Audio Playback Framework using the sf_audio_playback_api_t::start API.

Note
If multiple streams are desired, repeat steps 1-4 for any additional audio streams. A separate audio stream should
only be used if the streams need to play simultaneously using mixing. If audio sounds are always played in

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 181 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Framework > Using the Audio Playback Framework Module in an Application

sequence and never overlap, the stream can be reused.

These common steps are illustrated in a typical operational flow in the following figure:

Figure 110: Flow Diagram of a Typical Audio Playback Framework Module Application

4.1.3 Audio Playback Hardware Framework Shared on
sf_audio_playback_hw_dac

4.1.3.1 Audio Playback DAC Framework Introduction

The Audio Playback Framework DAC module provides a high-level API for audio playback applications
and handles the synchronization needed to play 8-bit or 16-bit pulse-code modulation (PCM)
samples. The Audio Playback DAC Framework uses the DAC/DAC8, timer (AGT or GPT) and data-
transfer (DMA or DTC) peripherals on a Synergy MCU. A user-defined callback can be created to
respond to the need for additional data.

Audio Playback DAC Framework Module Features

Plays long buffers by splitting the data into manageable chunks.
Repeats playback until a ThreadX timeout (for repeated audio like sine wave tones or

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 182 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Audio Playback DAC Framework Introduction

looped background music).
Requests next data using callback after last buffer playback begins.
Software volume control.
Pauses and resumes functions.
Scaling, for example, to move signed 16-bit PCM data into range of the unsigned 12-bit or
8-bit DAC.
Basic mixing for multiple streams.

Figure 111: Audio Playback DAC Framework Module Block Diagram

Note
Selection options of DAC or DAC8 Driver is MCU specific.

4.1.3.2 Audio Playback DAC Framework Module APIs Overview

The Audio Playback DAC Framework module defines APIs for operations such as opening, starting,
playing and stopping. A complete list of the available APIs, an example API call and a short
description of each can be found in the following table. A table of status return values follows the API
summary table.

Audio Playback DAC Framework Module API Summary

Function Name Example API Call and Description

open g_sf_audio_playback_hw0.p_api->open(
g_sf_audio_playback_hw0.p_ctrl,
g_sf_audio_playback_hw0.p_cfg);
Open a device channel for read/write and
control.

start g_sf_audio_playback_hw0.p_api->start(
g_sf_audio_playback_hw0.p_ctrl, &p_data,
Timeout);
Start Audio Playback Hardware.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 183 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Audio Playback DAC Framework Module APIs Overview

stop g_sf_audio_playback_hw0.p_api->stop(
g_sf_audio_playback_hw0.p_ctrl);
Stop Audio Playback Hardware.

play g_sf_audio_playback_hw0.p_api->play
(g_sf_audio_playback_hw0.p_ctrl, p_buffer,
length);
Play audio buffer.

dataTypeGet g_sf_audio_playback_hw0.p_api->dataTypeGet(
g_sf_audio_playback_hw0.p_ctrl, p_data_type);
Store expected data type in provided pointer
p_data_type.

close g_sf_audio_playback_hw0.p_api->close(
g_sf_audio_playback_hw0.p_ctrl);
Close the audio module.

versionGet g_sf_audio_playback_hw0.p_api->versionGet(&v
ersion);
Return the version of the module with the
version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function successful.

SSP_ERR_ASSERTION A pointer is NULL or a parameter is invalid.

SSP_ERR_OUT_OF_MEMORY The number of streams open at once is limited
to SF_AUDIO_PLAYBACK_CFG_MAX_STREAMS. If
this number is exceeded, an out of memory
error occurs.

SSP_ERR_TIMEOUT Timeout occurred before playback finished.

SSP_ERR_NOT_OPEN The stream control block p_ctrl is not initialized.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status-return values.

4.1.3.3 Audio Playback DAC Framework Module Operational Overview

The Audio Playback Framework DAC module creates a thread internally to support audio playback.
The following figure shows a flowchart of the Audio Playback Framework thread and its interactions
with public Audio Playback Framework APIs.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 184 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Audio Playback DAC Framework Module Operational Overview

Figure 112: Audio Playback DAC Framework Module Flow Chart

 Suggested use of the Audio Playback Framework:

Create a semaphore (for example, 'g_sf_audio_playback_semaphore'). This can be done on
the Threads tab. Set the initial value to 2 (the audio playback framework can store up to
two data messages per stream).
Create a callback function (for example, 'sf_audio_playback_callback)'. Enter the name of
your callback function in the Audio Playback Framework instance. The callback function will
be called when the Audio Playback Framework is done with the data. In the callback, put
the semaphore created above.
In your main loop, get the semaphore before playing data. To play data, first acquire a
buffer from the messaging framework, then create your audio playback data structure
inside the buffer.

The Audio Playback DAC Framework supports multiple audio streams on a single hardware port. A

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 185 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Audio Playback DAC Framework Module Operational Overview

block diagram of the modules required if two streams are used is shown in the following figure:

Figure 113: Audio Playback DAC Framework Implementing Multiple Audio Streams

Audio Playback DAC Framework Module Important Operational Notes and Limitations

Audio Playback DAC Framework Module Operational Notes

The Audio Framework DAC hardware port uses the transfer API to transfer audio data from a
playback buffer to DAC at a sampling frequency defined by an internal timer.
The Audio Framework DAC hardware port has dependencies on the Timer, DAC/DAC8, and
Transfer API modules.
Add a Timer module.

Set the Frequency in Hz to the sampling frequency of your audio data.
Enable the interrupt if using DTC as the transfer module (recommended).

Add a Transfer module: select either the DTC or DMAC.
For DTC:

Set Destination pointer to &R_DAC->DADRn[0] if using DAC channel 0 or
&R_DAC->DADRn[1] if using DAC channel 1.
Set Destination pointer to &R_DAC8->DADRn[2] if using DAC8 channel 2 (S128) or
&R_DAC8->DADRn[0] if using DAC8 channel 0 (S1JA).
Set the activation source to the timer interrupt chosen above.

For DMAC:
Enable the DMAC support
Set Destination pointer to &R_DAC->DADRn[0] if using DAC channel 0 or
&R_DAC->DADRn[1] if using DAC channel 1.
Set Destination pointer to &R_DAC8->DADRn[2] if using DAC8 channel 2 (S128) or

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 186 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Audio Playback DAC Framework Module Operational Overview

&R_DAC8->DADRn[0] if using DAC8 channel 0 (S1JA).
Set the activation source to the timer interrupt chosen above.

The Audio Playback DAC Framework is designed to support the following MCU families with
no changes to the API:

S7G2
S3A3
S5D9
S3A7
S124
S3A6
S5D5
S3A1
S128
S1JA
S5D3

Audio Playback DAC Framework Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.3.4 Including the Audio Playback DAC Framework Module in an Application

This section describes how to include the Audio Playback DAC Framework module in an application
using the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Audio Playback DAC Framework module to an application, simply add it to a HAL
/Common thread using the stacks selection sequence given in the following table. (The default name
for the Audio Playback DAC Framework module is g_sf_audio_playback_hw0. This name can be
changed in the associated Properties window.)

Audio Playback DAC Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_audio_playback_hw0 Audio
Playback Hardware Framework
on g_sf_audio_playback_hw0

Threads New Stack> Framework>
Audio> Audio Playback
Hardware Framework on
g_sf_audio_playback_hw_dac

When the Audio Playback DAC Framework module on sf_audio_playback_hw_dac is added to the
thread stack as shown in the following figure, the configurator automatically adds any needed
lower‑level modules. Any modules needing additional configuration information have the box text
highlighted in Red. Modules with a Gray band are individual modules that stand alone. Modules with
a Blue band are shared or common; they need only be added once and can be used by multiple
stacks. Modules with a Pink band can require the selection of lower-level modules; these are either
optional or recommended. (This is indicated in the block with the inclusion of this text.) If the
addition of lower-level modules is required, the module description include Add in the text. Clicking
on any Pink banded modules brings up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 187 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Including the Audio Playback DAC Framework Module in an Application

Figure 114: Audio Playback DAC Framework Module Stack

Note
Selection options of DAC or DAC8 Driver is MCU specific

4.1.3.5 Configuring the Audio Playback DAC Framework Module

The Audio Playback DAC Framework module must be configured by the user for the desired
operation. The SSP configuration window will automatically identify (by highlighting the block in red)
any required configuration selections, such as interrupts or operating modes, which must be
configured for lower-level modules in order to ensure successful operation. Furthermore, only those
properties that can be changed without causing conflicts are available for modification. Other
properties are 'locked' and are not available for changes, and are identified with a lock icon for the
'locked' property in the Properties window in the ISDE. This approach simplifies the configuration
process and makes it much less error-prone than previous 'manual' approaches to configuration. The
available configuration settings and defaults for all the user-accessible properties are given in the
Properties tab within the SSP configurator, and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

Configuration Settings for the Audio Playback DAC Framework Module on
sf_audio_playback_hw_dac

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

DMAC Support Disabled, Enabled

Default: Disabled

DMAC support selection.

Name g_sf_audio_playback_hw0 Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 188 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Configuring the Audio Playback DAC Framework Module

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select the DAC channel based on the target hardware implementation.
The configurable properties for the lower-level stack modules are given in the following sections for
completeness and as a reference.

Note
Most of the property settings for lower level modules are fairly intuitive and can usually be determined by
inspection of the associated Properties window from the SSP configurator.

Configuring the Audio Playback DAC Framework Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower-level drivers
as indicated with red text in the thread stack block. Notice that some of the configuration properties
must be set to a certain value for proper framework operation and will be locked to prevent user
modification. The following table identifies all the settings within the properties section for the
module.

Configuration Settings for the Transfer Driver on r_dmac Software Activation

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_transfer0 Module name.

Channel 0 Channel selection.

Mode Normal Mode selection.

Transfer Size 2 Bytes Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source Software Activation, Peripheral
Events

Default: Software Activation

Activation source selection.

Auto Enable False Auto enable selection.

Callback NULL Callback selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 189 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Configuring the Audio Playback DAC Framework Module

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Interrupt priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dmac Software Activation 1

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section selection.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 2 Bytes Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1, Software
Activation 2, Peripheral Events

Default: Software Activation 1

Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 190 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Configuring the Audio Playback DAC Framework Module

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Timer Driver on r_agt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables parameter
checking.

Name g_timer0 Module name.

Channel 0 Physical hardware channel.

Mode Periodic Warning: One-shot functionality
is not available in the GPT
hardware, so it is implemented
in software by stopping the
timer in the ISR called when the
period expires. For this reason,
ISRs must be enabled for one-
shot mode even if the callback
is unused.

Period Value 10 See Timer Period Calculation.

Period Unit Hertz See Timer Period Calculation.

Auto Start False Set to true to start the timer
after configuring or false to
leave the timer stopped until
timer_api_t::start is called.

Count Source PCLKB, PCLKB/8, PCLKB/2,
LOCO, AGT0 Underflow, AGT0
fSub

Default: PCLKB

The clock source for the AGT
counter.

AGTO Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for AGT (AGTO pin). Set to false
for no output of the timer
signal.

AGTIO Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for AGT (AGTIO pin). Set to false
for no output of the timer
signal.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 191 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Configuring the Audio Playback DAC Framework Module

Output Inverted True, False

Default: False

Set to false to start the output
signal low. Set to true to start
the output signal high.

Enable comparator A output pin True, False

Default: False

Enable comparator A output pin
selection.

Enable comparator B output pin True, False

Default: False

Enable comparator B output pin
selection.

Callback NULL A user callback function can be
registered in timer_api_t::open.
If this callback function is
provided, it will be called from
the interrupt service routine
(ISR) each time the timer period
elapses.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Timer interrupt priority. 0 is the
highest priority.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Timer Driver on r_gpt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_timer0 Module name.

Channel 0 Channel selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 192 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Configuring the Audio Playback DAC Framework Module

Mode Periodic Warning: One-shot functionality
is not available in the GPT
hardware, so it is implemented
in software by stopping the
timer in the ISR called when the
period expires. For this reason,
ISRs must be enabled for one-
shot mode even if the callback
is unused.

Period Value 10 See Timer Period Calculation.

Period Unit Hertz See Timer Period Calculation.

Duty Cycle Value 50 Duty cycle value selection.

Duty Cycle Unit Unit Raw Counts, Unit Percent,
Unit Percent x 1000

Default: Unit Raw Counts

Duty cycle unit selection.

Auto Start False Set to true to start the timer
after configuring or false to
leave the timer stopped until
timer_api_t::start is called.

GTIOCA Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for GPT. Set to false for no
output of the timer signal.

GTIOCA Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

Controls output pin level when
the timer is stopped.

GTIOCB Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for GPT. Set to false for no
output of the timer signal.

GTIOCB Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

Controls output pin level when
the timer is stopped.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 193 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Configuring the Audio Playback DAC Framework Module

Callback NULL A user callback function can be
registered in timer_api_t::open.
If this callback function is
provided, it will be called from
the interrupt service routine
(ISR) each time the timer period
elapses.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Interrupt priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the DAC HAL Module on r_dac

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_dac0 Module name.

Channel 0 Set to 0 for output DA0 or 1 for
output DA1.

Synchronize with ADC Enabled, Disabled

Default: Disabled

Set to true for anti-interference
synchronization with the Analog-
to-Digital Converter (ADC)
Module. Set to false if power
supply interference between
the analog modules is not a
problem, or if asynchronous
conversion by the DAC Module
is desired.

Data Format Right Justified Set to zero, if 12-bit data values
are loaded in bits 11 through 0,
or right justified. Set to one, if
12-bit data values are loaded in
bits 15 through 4, or left
justified.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 194 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Configuring the Audio Playback DAC Framework Module

Output Amplifier Enable, Disable

Default: Disable

Set to true, if output amplifier
hardware function is desired.
Set to false to bypass output
amplifier hardware function.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the DAC8 HAL Module r_dac8

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
error checking.

Name g_dac8_0 Module name.

Channel 0 Channel selection.

Synchronize with ADC Enabled, Disabled
Default: Disabled

Choose whether to sync with
the ADC module.

Data Format Right Justified Data format selection.

DAC Mode Normal Mode, Real-time (Event
Link) Mode
Default: Normal Mode

DAC mode selection.

Charge Pump Enabled
(Requires MOCO active)

Enabled, Disabled
Default: Enabled

Enable or disable the charge
pump.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Audio Playback DAC Framework Module Clock Configuration

The Audio Playback DAC Framework hardware modules use the peripheral clocks available in the
Clocks configuration window.

Audio Playback DAC Framework Module Pin Configuration

The DAC or SSI peripheral module uses pins on the MCU to communicate to external devices. I/O pins
must be selected and configured as required by the external device. The following tables illustrate
the method for selecting the pins within the SSP configuration window and show an example
selection for the associated pins.

Note
For some peripherals, the operation mode selection determines what peripheral signals are available and what
MCU pins are required.

Pin Selection Sequence for the Audio Playback DAC Framework Module

Resource ISDE Tab Pin selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 195 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Configuring the Audio Playback DAC Framework Module

DAC Pins Select Peripherals >
Analog:DAC12 >
DAC120/121

SSI Pins Select Peripherals >
Connectivity:SSI > SSI/0/1

Note
The selection sequence assumes the DAC0/DAC1 or the SSI0/SSI1 is the desired hardware target of the driver.

Pin Configuration Settings for the DAC HAL Module on r_dac

Pin Configuration Property Value Description

Operation Mode Enabled, Disabled Operation selection.

DAC None, P014

Default: P014

DAC pin selection.

Note
The example values are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

4.1.3.6 Using the Audio Playback DAC Framework Module in an Application

The typical steps in using the Audio Playback DAC Framework module in an application are:

1. Initialize the Audio Playback DAC Framework using the sf_audio_playback_hw_api_t::open
API

2. Start the low level hardware of the Audio Playback DAC Framework using the
sf_audio_playback_hw_api_t::start API.

3. Play the PCM audio samples using the sf_audio_playback_hw_api_t::play API.
4. PCM audio samples supported by the hardware is provided by the

sf_audio_playback_hw_api_t::dataTypeGet API.
5. Stop the low level hardware of the Audio Playback DAC Framework using

sf_audio_playback_hw_api_t::stop API.
6. Close the Audio Playback DAC Framework using the sf_audio_playback_hw_api_t::close API.

These common steps are illustrated in a typical operational flow in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 196 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac > Using the Audio Playback DAC Framework Module in an Application

Figure 115: Flow Diagram of a Typical Audio Playback DAC Framework Module Application

4.1.4 Audio Playback Hardware Framework Shared on
sf_audio_playback_hw_i2s

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 197 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Audio Playback I2S Framework Introduction

4.1.4.1 Audio Playback I2S Framework Introduction

The I2S Audio Playback Framework module provides a high-level API for Audio Playback applications
and handles the synchronization needed to play 8-bit or 16-bit pulse-code modulation (PCM)
samples. The Audio Playback Framework uses the I2S, Timer (AGT or GPT) and Data Transfer (DMA
or DTC) peripherals on a Synergy MCU. A user defined callback can be created to respond to the
need for additional data.

Audio Playback I2S Framework Module Features

Plays long buffers by splitting the data into manageable chunks.
Repeats playback until ThreadX timeout (for repeated audio like sine wave tones or looped
background music).
Requests next data using callback after last buffer playback begins.
Software volume control.
Pauses and resumes functions.
Basic mixing for multiple streams.

Figure 116: Audio Playback I2S Framework Module Block Diagram

4.1.4.2 Audio Playback I2S Framework Module APIs Overview

The Audio Playback I2S Framework module defines APIs for operations such as opening, starting,
playing and stopping. A complete list of the available APIs, an example API call and a short
description of each can be found in the following table. A table of status return values follows the API
summary table.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 198 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Audio Playback I2S Framework Module APIs Overview

Audio Playback I2S Framework Module API Summary

Function Name Example API Call and Description

open g_sf_audio_playback_hw0.p_api->open(
g_sf_audio_playback_hw0.p_ctrl,
g_sf_audio_playback_hw0.p_cfg);
Open a device channel for read/write and
control.

start g_sf_audio_playback_hw0.p_api->start(
g_sf_audio_playback_hw0.p_ctrl, &p_data,
Timeout);
Start Audio Playback Hardware.

stop g_sf_audio_playback_hw0.p_api->stop(
g_sf_audio_playback_hw0.p_ctrl);
Stop Audio Playback Hardware.

play g_sf_audio_playback_hw0.p_api->play
(g_sf_audio_playback_hw0.p_ctrl, p_buffer,
length);
Play audio buffer.

dataTypeGet g_sf_audio_playback_hw0.p_api->dataTypeGet(
g_sf_audio_playback_hw0.p_ctrl, p_data_type);
Stores expected data type in provided pointer
p_data_type.

close g_sf_audio_playback_hw0.p_api->close(
g_sf_audio_playback_hw0.p_ctrl);
Close the audio module.

versionGet g_sf_audio_playback_hw0.p_api->versionGet(&v
ersion);
Return the version of the module with the
version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function successful.

SSP_ERR_OUT_OF_MEMORY The number of streams open at once is limited
to SF_AUDIO_PLAYBACK_CFG_MAX_STREAMS. If
thisnumber is exceeded, an out of memory error
occurs.

SSP_ERR_TIMEOUT Timeout occurred before playback finished.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 199 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Audio Playback I2S Framework Module APIs Overview

Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status-return values.

4.1.4.3 Audio Playback I2S Framework Module Operational Overview

The I2S Audio Playback Framework module creates a thread internally to support audio playback.
The figure below shows a flowchart of the audio playback framework thread and its interactions with
public Audio Playback Framework APIs.

Figure 117: Audio Playback DAC Framework Module Flow Chart

 Suggested use of the audio playback framework:

Create a semaphore (for example g_sf_audio_playback_semaphore). This can be done on
the Threads tab. Set the initial value to 2 (the audio playback framework can store up to
two data messages per stream).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 200 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Audio Playback I2S Framework Module Operational Overview

Create a callback function (for example sf_audio_playback_callback). Enter the name of
your callback function in the Audio Playback Framework instance. The callback function will
be called when the audio playback framework is done with the data. In the callback, put the
semaphore created above.
In your main loop, get the semaphore before playing data. To play data, first acquire a
buffer from the messaging framework, then create your audio playback data structure
inside the buffer.

The Audio Playback Framework supports multiple audio streams on a single hardware port. A block
diagram of the modules required if two streams are used is shown in following figure:

Figure 118: Audio Playback DAC Framework Implementing Multiple Audio Streams

Audio Playback I2S Framework Module Important Operational Notes and Limitations

Audio Playback I2S Framework Module Operational Notes

The queue used must match the name specified in Properties for Audio Playback
Framework Shared on sf_audio_playback (default is g_sf_audio_playback_queue).
The audio framework I2S hardware port has dependencies on the I2S driver module. The
I2S driver module can be accelerated with DTC (recommended).
I2S driver module.

Set the Audio Clock Frequency (Hertz) to the frequency of the input audio clock
used.
Set the Sampling Frequency (Hertz) to the sampling frequency of your audio data.
Set the Data Bits and Word Length to 16 bits (audio framework accepts 16 bit
samples only).
Enable the SSIn TXI and SSIn INT interrupts.

Transfer module on r_dtc (recommended).
Set the activation source to the SSIn TXI interrupt.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 201 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Audio Playback I2S Framework Module Operational Overview

The Audio Playback I2S Framework is designed to support the following MCU families with
no changes to the API:

S7G2
S3A7
S5D9
S3A3
S3A6
S5D5
S3A1
S5D3

Audio Playback I2S Framework Module Limitations

Refer to the latest SSP Release Notes for any additional operational limitations for this
module.

4.1.4.4 Including the Audio Playback I2S Framework Module in an Application

This section describes how to include the Audio Playback I2S Framework module in an application
using the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Audio Playback I2S Framework module to an application, simply add it to a HAL /Common
thread using the stacks selection sequence given in the following table. (The default name for the
Audio Playback I2S Framework module is g_sf_audio_playback_hw0. This name can be changed in
the associated Properties window.)

Audio Playback I2S Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_audio_playback_hw0 Audio
Playback Hardware Framework
on sf_audio_playback_hw_i2s

Threads New Stack> Framework>
Audio> Audio Playback
Hardware Framework on
sf_audio_playback_hw_i2s

When the Audio Playback I2S Framework module on sf_audio_playback_hw_i2s is added to the
thread stack as shown in the following figure, the configurator automatically adds any needed
lower‑level modules. Any modules needing additional configuration information have the box text
highlighted in Red. Modules with a Gray band are individual modules that stand alone. Modules with
a Blue band are shared or common; they need only be added once and can be used by multiple
stacks. Modules with a Pink band can require the selection of lower-level modules; these are either
optional or recommended. (This is indicated in the block with the inclusion of this text.) If the
addition of lower-level modules is required, the module description include Add in the text. Clicking
on any Pink banded modules brings up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 202 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Including the Audio Playback I2S Framework Module in an Application

Figure 119: Audio Playback I2S Framework Module Stack

4.1.4.5 Configuring the Audio Playback I2S Framework Module

The Audio Playback I2S Framework module must be configured by the user for the desired operation.
The SSP configuration window will automatically identify (by highlighting the block in red) any
required configuration selections, such as interrupts or operating modes, which must be configured
for lower-level modules in order to ensure successful operation. Furthermore, only those properties
that can be changed without causing conflicts are available for modification. Other properties are
'locked' and are not available for changes, and are identified with a lock icon for the 'locked' property
in the Properties window in the ISDE. This approach simplifies the configuration process and makes it
much less error-prone than previous 'manual' approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP configurator, and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

Configuration Settings for the Audio Playback I2S Framework Module on
sf_audio_playback_hw_i2s

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 203 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Configuring the Audio Playback I2S Framework Module

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_sf_audio_playback_hw0 Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower level modules can be desirable. For
example, it might be useful to select the DAC or I2S Channel based on the target hardware
implementation. The configurable properties for the lower level stack modules are given in the
following sections for completeness and as a reference.

Note
Most of the property settings for lower level modules are fairly intuitive and can usually be determined by
inspection of the associated Properties window from the SSP configurator.

Configuring the Audio Playback I2S Framework Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower-level drivers
as indicated with red text in the thread stack block. Notice that some of the configuration properties
must be set to a certain value for proper framework operation and will be locked to prevent user
modification. The following table identifies all the settings within the properties section for the
module.

Configuration Settings for the I2S HAL Module on r_ssi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_i2s0 Module name.

Channel 0 Physical hardware channel.

Audio Clock Frequency (Hertz) 2822400 Input audio clock frequency,
used to generate the I2S clock.
Must be a multiple between 1
and 128 of: (sampling_freq_hz *
word_length_in_bits).

Sampling Frequecy (Hertz) 44100 Sampling frequency of audio
data.

Data Bits 8 bits, 16, 18, 20, 22, 24

Default: 16 bits

Bit depth of audio data, which is
the size in bits of one sample of
audio data.

Word Length 8 bits, 16, 24, 32

Default: 16 bits

Word length of audio data,
must be at least the same size
as the bit depth (Data Bits
field).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 204 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Configuring the Audio Playback I2S Framework Module

WS Continue Mode Enabled, Disabled

Default: Disabled

Enable WS continue mode to
continue to output the word
select line when the peripheral
is idle. Disable to stop
outputting the word select line
when the peripheral is idle.

Name of I2S callback function
to be defined by user

NULL A user callback function must
be registered in open. The
callback will be called from the
interrupt service routine (ISR)
when the transmission FIFO
reaches the high watermark
point after all data for
transmission is transmitted or
when reception is complete
(the requested number of bytes
have been received).

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Transmit Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Transmit interrupt priority
selection.

Receive Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Receive interrupt priority
selection.

Idle/Error Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Idle/error interrupt priority
selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Software Activation 1

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 205 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Configuring the Audio Playback I2S Framework Module

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer0 Driver name.

Mode Normal Mode selection.

Transfer Size 4 Bytes Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1, Software
Activiation 2, Peripheral Events

Default: Software Activation 1

Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC software event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Software Activation 1

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 206 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Configuring the Audio Playback I2S Framework Module

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer1 Driver name.

Mode Normal Mode selection.

Transfer Size 4 Bytes Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1, Software
Activiation 2, Peripheral Events

Default: Software Activation 1

Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC software event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Timer Driver on r_agt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables parameter
checking.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 207 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Configuring the Audio Playback I2S Framework Module

Name g_timer0 Module name.

Channel 0 Physical hardware channel.

Mode Periodic Warning: One-shot functionality
is not available in the GPT
hardware, so it is implemented
in software by stopping the
timer in the ISR called when the
period expires. For this reason,
ISRs must be enabled for one-
shot mode even if the callback
is unused.

Period Value 10 See Timer Period Calculation.

Period Unit Hertz See Timer Period Calculation.

Auto Start False Set to true to start the timer
after configuring or false to
leave the timer stopped until
timer_api_t::start is called.

Count Source PCLKB, PCLKB/8, PCLKB/2,
LOCO, AGT0 Underflow, AGT0
fSub

Default: PCLKB

The clock source for the AGT
counter.

AGTO Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for AGT (AGTO pin). Set to false
for no output of the timer
signal.

AGTIO Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for AGT (AGTIO pin). Set to false
for no output of the timer
signal.

Output Inverted True, False

Default: False

Set to false to start the output
signal low. Set to true to start
the output signal high.

Enable comparator A output pin True, False

Default: False

Enable comparator A output pin
selection.

Enable comparator B output pin True, False

Default: False

Enable comparator B output pin
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 208 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Configuring the Audio Playback I2S Framework Module

Callback NULL A user callback function can be
registered in timer_api_t::open.
If this callback function is
provided, it will be called from
the interrupt service routine
(ISR) each time the timer period
elapses.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Timer interrupt priority. 0 is the
highest priority.

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables parameter
checking.

Name g_timer0 Module name.

Channel 0 Physical hardware channel.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Timer Driver on r_gpt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Name g_timer0 Module name.

Channel 0 Channel selection.

Mode Periodic Mode selection.

Period Value 2822400 *2 Period value selection.

Period Unit Hertz Period unit selection.

Duty Cycle Value 50 Duty cycle value selection.

Duty Cycle Unit Unit Raw Counts, Unit Percent,
Unit Percent x 1000

Default: Unit Raw Counts

Duty cycle unit selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 209 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Configuring the Audio Playback I2S Framework Module

Auto Start FALSE Auto start selection.

GTIOCA Output Enabled True, False

Default: False

GTIOCA output enabled
selection.

GTIOCA Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

GTIOCA stop level selection.

GTIOCB Output Enabled True, False

Default: False

GTIOCB output enabled
selection.

GTIOCB Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

GTIOCB stop level selection.

Callback NULL Callback selection.

Overflow Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Interrupt priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Audio Playback I2S Framework Module Clock Configuration

The Audio Playback I2S Framework hardware modules use the peripheral clocks available in the
clock configuration window.

Audio Playback I2S Framework Module Pin Configuration

The SSI peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following tables illustrate the
method for selecting the pins within the SSP configuration window and shows an example selection
for the associated pins.

Pin Selection Sequence for the Audio Playback I2S Framework Module

Resource ISDE Tab Pin selection Sequence

I2S Pins Select Peripherals >
Connectivity:SSI >
SSI0/SSI1.

Note
The selection sequence assumes the ADC0/ADC1 or the SSI0/SSI1 is the desired hardware target of the driver.

Pin Configuration Settings for the I2S Driver on r_ssi

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 210 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Configuring the Audio Playback I2S Framework Module

Pin Configuration Property Value Description

Pin Group Selection _A only, _B only, Mixed Pin group for I2S port.

Operation Mode Enabled, Custom, Disabled Operation selection.

SSISCK None, P204

Default: None

SSI Serial clock.

SSIWS None, P205

Default: None

SSI Stereo pin selection.

SSIDATA None, P206

Default: None

SSI Data pin selection.

Note
The example values are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

4.1.4.6 Using the Audio Playback I2S Framework Module in an Application

The typical steps in using the Audio Playback I2S Framework module in an application are:

1. Initialize the Audio Playback I2S Framework using the sf_audio_playback_hw_api_t::open API.

2. Start the low level hardware of the Audio Playback I2S framework using the
sf_audio_playback_hw_api_t::start API.

3. Play the PCM audio samples using the sf_audio_playback_hw_api_t::play API.

4. PCM audio samples supported by the hardware is provided by the
sf_audio_playback_hw_api_t::dataTypeGet API.

5. Stop the low level hardware of the Audio Playback I2S Framework using
sf_audio_playback_hw_api_t::stop API.

6. Close the Audio Playback I2S framework using the sf_audio_playback_hw_api_t::close API.

These common steps are illustrated in a typical operational flow in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 211 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s > Using the Audio Playback I2S Framework Module in an Application

Figure 120: Flow Diagram of a Typical Audio Playback I2S Framework Module Application

4.1.5 Audio Record ADC Framework

4.1.5.1 Audio Record ADC Framework Module Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 212 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Audio Record ADC Framework Module Introduction

The Audio Record ADC Framework module provides a high-level API for audio recording applications
and uses the sf_adc_periodic and its lower layer ADC, GPT and DTC peripherals on the Synergy MCU.
A user-defined callback can be created to indicate that the sample count has been completed.

Audio Record ADC Framework Module Features

Currently supports 12-bit ADCs (supports 8, 10, and 12 bits) and 14-bit ADCs (supports 14
or 12-bit PCM data)
Uses ADC Periodic Framework to simplify configuration and integration
Uses a ThreadX object (for example, mutex) to protect hardware from improper access
APIs for high-level functions simplify coding:

sf_audio_record_api_t::open, sf_audio_record_api_t::start
sf_audio_record_api_t::stop, sf_audio_record_api_t::infoGet
sf_audio_record_api_t::close

Figure 121: Audio Record ADC Framework Module Block Diagram

4.1.5.2 Audio Record ADC Framework Module APIs Overview

The Audio Record ADC Framework module defines APIs for opening, closing, starting and stopping
the record process. A complete list of the available APIs, an example API call and a short description
of each can be found in the following table. A table of status return values follows the API summary
table.

Audio Record ADC Framework Module API Summary

Function Name Example API Call and Description

open g_sf_audio_record_adc.p_api->open(g_sf_audio_r
ecord_adc.p_ctrl, g_sf_audio_record_adc.p_cfg);
Initialize the module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 213 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Audio Record ADC Framework Module APIs Overview

start g_sf_audio_record_adc.p_api->start(g_sf_audio_r
ecord_adc.p_ctrl);
Start audio recording.

stop g_sf_audio_record_adc.p_api->stop(g_sf_audio_r
ecord_adc.p_ctrl);
Stop audio recording.

infoGet g_sf_audio_record_adc.p_api->infoGet(g_sf_audi
o_record_adc.p_api.p_ctrl;
Get the channel information (mono or Stereo).

close g_sf_audio_record_adc.p_api->close(g_sf_audio_r
ecord_adc.p_ctrl);
Close the module.

versionGet g_sf_audio_record_adc.p_api->versionGet(&versi
on);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUME Parameter has invalid value.

SSP_ERR_IN_USE The adc periodic framework mutex may be
unavailable for the unit requested. See HAL
driver for other possible causes.

SSP_ERR_INTERNAL An internal ThreadX error has occurred. This is
typically a failure to create/use a mutex or to
create an internal thread.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION The parameter p_ctrl or p_sample is NULL.

SSP_ERR_UNSUPPORTED This function is not supported by the HAL driver
(p_ctrl->p_api->close is NULL).

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.5.3 Audio Record ADC Framework Module Operational Overview

The Audio Record ADC Framework Module samples audio analog data using the ADC Periodic
Framework and the data samples captured are stored in the user buffer. The data is made available
for further processing as needed by the application. The Audio Record ADC Framework has a
configuration parameter that is initialized during the framework initialization, which also initializes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 214 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Audio Record ADC Framework Module Operational Overview

the underlying ADC periodic framework for data capture.

The captured data is stored in a user defined buffer and this is done in the callback function as
illustrated below:

Assuming the name of the callback has been configured to be sf_audio_record_user_callback:

uint16_t * audio_record_buffer;

void sf_audio_record_user_callback (sf_audio_record_callback_args_t *p_args)

{

audio_record_buffer = ((uint16_t *)g_sf_audio_record_adc.p_cfg->

p_capture_data_buffer + (p_args->buffer_index/2)); }

Audio Record ADC Framework Module Important Operational Notes and Limitations

Audio Record ADC Framework Module Operational Notes

The Audio Record ADC Framework Module configuration data can specify the length of the
data buffer, data width, sampling rate and the number of sampling iterations.

Audio Record ADC Framework Module Limitations

Currently, the Audio Record ADC only supports the ADC Periodic Framework as the lower
level; recording via the I2S is not supported.
The framework currently supports recording 8 bit or 12 bit PCM data.
Currently, the Audio Record ADC only supports mono channel.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.5.4 Including the Audio Record ADC Framework Module in an Application

This section describes how to include the Audio Record ADC Framework Module in an application
using the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Audio Record ADC Framework to an application, simply add it to a thread using the stacks
selection sequence given in the following table. (The default name for the ADC Audio Record ADC
Framework is g_adc_record_adc0. This name can be changed in the associated Properties window.)

Audio Record ADC Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_audio_record_adc0 Audio
Record ADC Framework on
sf_audio_record_adc

Threads New Stack> Driver> Audio>
Audio Record ADC
Framework on
sf_audio_record_adc

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 215 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Including the Audio Record ADC Framework Module in an Application

When the Audio Record ADC Framework on sf_audio_record_adc is added to the thread stack as
shown in the following figure, the configurator automatically adds any needed lower‑level modules.
Any modules needing additional configuration information have the box text highlighted in Red.
Modules with a Gray band are individual modules that stand alone. Modules with a Blue band are
shared or common; they need only be added once and can be used by multiple stacks. Modules with
a Pink band can require the selection of lower-level modules; these are either optional or
recommended. (This is indicated in the block with the inclusion of this text.) If the addition of lower-
level modules is required, the module description include Add in the text. Clicking on any Pink
banded modules brings up the New icon and displays possible choices.

Figure 122: Audio Record ADC Framework Module Stack

4.1.5.5 Configuring the Audio Record ADC Framework Module

The Audio Record ADC Framework Module must be configured by the user for the desired operation.
The available configuration settings and defaults for all the user-accessible properties are given in
the properties tab within the SSP configurator and are shown in the following tables for easy
reference. Only properties that can be changed without causing conflicts are available for
modification. Other properties are locked and not available for changes and are identified with a lock
icon for the locked property in the Properties window in the ISDE. This approach simplifies the
configuration process and makes it much less error-prone than previous manual approaches to
configuration. The available configuration settings and defaults for all the user-accessible properties
are given in the Properties tab within the SSP Configurator and are shown in the following tables for
easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Audio Record ADC Framework Module on
sf_audio_record_adc

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 216 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Configuring the Audio Record ADC Framework Module

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_sf_audio_record_adc0 Module name.

Name of the data-buffer to
store samples

p_capture_data_buffer Name of the 16-bit data buffer
to store samples.

Length of the data-buffer 2048 Length of the buffer to which
data is to be stored.

Audio Record Data Size 8-Bit, 16-Bit

Default: 8-Bit

The data width of captured data
8 bit or 16 bit.

Sampling Rate in HZ 8000 Sampling rate to be used to
capture data.

Number of sampling iterations 256 Samples to be captured.

Callback g_audio_record_framework_user
_callback

Callback to user after capturing
the sample count.

Name of generated initialization
function

sf_audio_record_adc_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Audio Record ADC Framework Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module.

Configuration Settings for the ADC Periodic Framework on sf_adc_periodic

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_sf_adc_periodic0 Module name.

Name of the data-buffer to
store samples

g_user_buffer Name of the 16-bit data buffer
to store samples.

Length of the data-buffer 2048 Length of the buffer to which
data is to be stored.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 217 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Configuring the Audio Record ADC Framework Module

Number of sampling iterations 256 Priority of ADC Periodic
Framework internal thread.

Callback NULL User function that will be called
once "sample_counts" number
of data has been buffered.

Name of generated initialization
function

sf_adc_periodic_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the ADC HAL Module on r_adc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: Enabled

If selected code for parameter
checking is included in the
build.

Name g_adc0 Module name.

Unit 0, 1 (S7G2 Only)

Default: 0

Specify the ADC Unit to be
used. The S7G2 has two units; 0
and 1.

Resolution 14-Bit (S3A7/S124 Only), 12-Bit,
10-Bit (S7G2)

Default: 8-Bit (S7G2 Only)

Specify the conversion
resolution for this unit.

Alignment Right, Left

Default: Right

Specify the conversion result
alignment.

Clear after read Off, On

Default: On

Specify if the result register
must be automatically cleared
after the conversion result is
read.

Note: If this is enabled, then
watching the result register
using a debugger always
results in a 0.

Mode Single Scan The ADC Framework
preconfigures and locks this
field.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 218 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Configuring the Audio Record ADC Framework Module

Channels 0-6 Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channels 7-10 (S3A7/S124
Only)

Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channels 11-15 (S3A7 Only) Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channels 16-20 Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channel 21 (Unit 0 Only) Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 219 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Configuring the Audio Record ADC Framework Module

Channel 22 (S3A7/S124 Only) Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channels 23-27 (S3A7 Only) Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Temperature Sensor Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

Temperature sensor use
selection for Channel Scan
Mask.

Voltage Sensor Unused, Use in Normal/Group A,
Use in Group B

Default: Unused

Voltage sensor use selection for
Channel Scan Mask.

Normal/Group A Trigger ELC Event The ADC Framework
preconfigures and locks this
field.

Group B Trigger (Valid Only in
Group Scan Mode)

ELC Event (The only valid
trigger for either group in Group
Scan Mode)

The ADC Framework
preconfigures and locks this
field.

Group Priority (Valid only in
Group Scan Mode)

Group A cannot interrupt Group
B, Group A can interrupt Group
B; Group B scan restarts at next
trigger, Group A can interrupt
Group B; Group B scan restarts
immediately, Group A can
interrupt Group B; Group B scan
restarts immediately and scans
continuously

Default: Group A cannot
interrupt Group B

Do not use with ADC
Framework since the mode is
locked to Single Scan Mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 220 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Configuring the Audio Record ADC Framework Module

Add/Average Count Disabled, Add two samples, Add
three samples, Add four
samples, Add sixteen samples,
Average two samples, Average
four samples

Default: Disabled

Specify if addition or averaging
needs to be done for any of the
channels in this unit. The actual
channels are specified by using
a channel mask
adc_channel_cfg_t::add_mask.

Channels 0-27 Disabled, Enabled

Default: Disabled

This field is valid only if
adc_cfg_t::add_average_count
is enabled. This field
determines what channels
results are to be averaged or
summed.

Temperature Sensor Disabled, Enabled

Default: Disabled

Temperature sensor use
selection for Addition/Averaging
Mask.

Voltage Sensor Disabled, Enabled

Default: Disabled

Voltage sensor use selection for
Addition/Averaging Mask.

Channels 0-2 Disabled, Enabled

Default: Disabled

Determines which of channels
0, 1 and 2 are using the
updated sample-and-hold
states value specified in
adc_channel_cfg_t::sample_hold
_states. This field must only be
set if it is desired to modify the
default sample and hold count
value for channels 0, 1 and 2.

Sample Hold States (Applies
only to the 3 channels selected
above)

24 Specifies the updated sample-
and-hold count for the channel
dedicated sample-and-hold
circuit. This field is valid only if
adc_channel_cfg_t::sample_hold
_mask is not 0. Only channels
0, 1 and 2 have dedicated
sample and hold circuits.

Note: Use this to modify the
default number of states (24)
for which the value is sampled.
Each state is equal to 1/ADCLK
time.

Callback NULL The ADC Framework uses the
callback internally.

Scan End Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Scan End Interrupt Priority
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 221 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Configuring the Audio Record ADC Framework Module

Scan End Group B Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Scan End Group B Interrupt
Priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the AGT HAL Module on r_agt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables parameter
checking.

Name g_timer0 Module name.

Channel 0 Physical hardware channel.

Mode Periodic Warning: One-shot functionality
is not available in the GPT
hardware, so it is implemented
in software by stopping the
timer in the ISR called when the
period expires. For this reason,
ISRs must be enabled for one-
shot mode even if the callback
is unused.

Period Value 10 See Timer Period Calculation.

Period Unit Raw Counts, Nanoseconds,
Microseconds, Milliseconds,
Seconds, Hertz, Kilohertz

Default: Microseconds

See Timer Period Calculation.

Auto Start False Set to true to start the timer
after configuring or false to
leave the timer stopped until
timer_api_t::start is called.

Count Source PCLKB, PCLKB/8, PCLKB/2,
LOCO, AGT0 Underflow, AGT0
fSub

Default: PCLKB

The clock source for the AGT
counter.

AGTO Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for AGT (AGTO pin). Set to false
for no output of the timer
signal.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 222 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Configuring the Audio Record ADC Framework Module

AGTIO Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for AGT (AGTIO pin). Set to false
for no output of the timer
signal.

Output Inverted True, False

Default: True

Set to false to start the output
signal low. Set to true to start
the output signal high.

Enable comparator A output pin True, False

Default: False

Enable comparator A output pin
selection.

Enable comparator B output pin True, False

Default: False

Enable comparator B output pin
selection.

Callback NULL A user callback function can be
registered in timer_api_t::open.
If this callback function is
provided, it will be called from
the interrupt service routine
(ISR) each time the timer period
elapses.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Underflow Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Timer interrupt priority. 0 is the
highest priority.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the GPT HAL Module on r_gpt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_timer0 Module name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 223 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Configuring the Audio Record ADC Framework Module

Channel 0 The ADC Framework
preconfigures and locks this
field based on channel selected
in the ADC Framework.

Mode Periodic The ADC Framework
preconfigures and locks this
field.

Period Value 10 Configure timer period to
trigger ADC scans.

Period Unit Raw Counts, Nanoseconds,
Microseconds, Milliseconds,
Seconds, Hertz, Kilohertz

Default: Milliseconds

Configure units of the timer
period set above.

Duty Cycle Value 50 Duty cycle value selection.

Duty Cycle Unit Unit Raw Counts, Unit Percent,
Unit Percent x 1000

Default: Unit Raw Counts

Duty cycle unit selection.

Auto Start False The ADC Framework
preconfigures and locks this
field.

GTIOCA Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for GPT. Set to false for no
output of the timer signal.

GTIOCA Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

Controls output pin level when
the timer is stopped.

GTIOCB Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for GPT. Set to false for no
output of the timer signal.

GTIOCB Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

Controls output pin level when
the timer is stopped.

Callback NULL The ADC Framework
preconfigures and locks this
field.

Overflow Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Interrupt priority selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 224 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Configuring the Audio Record ADC Framework Module

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the DTC HAL Module on r_dtc Software Activation

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer0 Module name.

Mode Block Mode selection.

Transfer Size 2 Bytes Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 1 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

1 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1 Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 225 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Configuring the Audio Record ADC Framework Module

different default values and available configuration settings.

Audio Record ADC Framework Module Clock Configuration

The ADC peripheral module uses the PCLKC as its clock source.

Audio Record ADC Framework Module Pin Configuration

The ADC peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. ADC pins must be configured as
analog pins. The following table illustrates the method for selecting the pins within the SSP
configuration window and the subsequent table illustrates an example selection for the pins.

Note
For some peripherals, the operation mode selection determines what peripheral signals are available and what
MCU pins are required.

Pin Selection for the Audio Record ADC Framework Module on sf_audio_record_adc

Resource ISDE Tab Pin selection Sequence

ADC Pins Select Peripherals >
Analog:ADC > ADC0

Note
The selection sequence assumes KINT0 is the desired hardware target for the driver.

Pin Configuration Settings for the Audio Record ADC Framework Module on
sf_audio_record_adc

Property Value Description

Operation Mode Disabled, Custom
Default: Custom

Select operating mode for ADC.

ADTRG None, P407, P102
Default: None)

ADTRG pin.

AN00-19 None, Pnnn, Pmmm
Default: None

Analog input pins.

PGAVSS0 None, P003
Default: None

PGAVSS pin.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.

4.1.5.6 Using the Audio Record ADC Framework Module in an Application

The steps in using the Audio Record ADC Framework module on sf_audio_record_adc in a typical
application are:

1. Open the module using the sf_audio_record_api_t::open API.
2. Start the recording using the sf_audio_record_api_t::start API.
3. Store data in a user buffer with the callback.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 226 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record ADC Framework > Using the Audio Record ADC Framework Module in an Application

4. Operate on data as needed.
5. Close the module using the sf_audio_record_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 123: Flow Diagram of a Typical Audio Record ADC Framework Module Application

4.1.6 Audio Record I2S Framework

4.1.6.1 Audio Record I2S Framework Introduction

The Audio Record I2S Framework module provides a high-level API for audio recording applications
and uses the I2S interface. The Audio Record I2S Framework module uses the SSI, GPT and DTC
peripherals on the Synergy MCU. A user-defined callback can be created to indicate that new
samples are stored in the user buffer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 227 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record I2S Framework > Audio Record I2S Framework Introduction

Audio Record I2S Framework Module Features

Thread safe
Records data in 8 or 16-bit PCM
Periodic callback function when new samples are available
Configurable number of samples (sample count) per callback

Figure 124: Audio Record I2S Framework Module Block Diagram

4.1.6.2 Audio Record I2S Framework Module APIs Overview

The Audio Record I2S Framework module defines APIs to open, start, stop and close the recording
module. A complete list of the available APIs, an example API call and a short description of each can
be found in the following table. A table of status return values follows the API summary table.

Audio Record I2S Framework Module API Summary

Function Name Example API Call and Description

open g_sf_audio_record_i2s0.p_api->open
(g_sf_audio_record_i2s0.p_ctrl,
g_sf_audio_record_i2s0.p_cfg);
Initializes audio recording framework.

start g_sf_audio_record_i2s0.p_api->start
(g_sf_audio_record_i2s0.p_ctrl);
Starts audio recording.

stop g_ sf_audio_record_i2s0.p_api->stop
(g_sf_audio_record_i2s0.p_ctrl);
Stops audio recording.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 228 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record I2S Framework > Audio Record I2S Framework Module APIs Overview

infoGet g_sf_audio_record_i2s0.p_api->infoGet
(g_sf_audio_record_i2s0.p_ctrl, p_info);
Gets channel information (Mono/Stereo).

close g_sf_audio_record_i2s0.p_api->close
(g_sf_audio_record_i2s0.p_ctrl);
Releases channel mutex and closes channel at
HAL layer.

versionGet g_ sf_audio_record_i2s0.p_api->versionGet(&ver
sion);
Gets version and stores it in provided version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_INTERNAL An internal TheadX error has occurred.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION The parameter p_ctrl or p_sample is NULL.

SSP_ERR_IN_USE Peripheral is still running in another mode;
perform Close first.

SSP_ERR_UNSUPPORTED Command not supported.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status-return values.

4.1.6.3 Audio Record I2S Framework Module Operational Overview

The Audio Record I2S Framework Module uses the I2S HAL layer as the underlying interface for the
audio data transfer and the data captured is stored in the user buffer. The data is made available for
further processing as needed by the application.

The captured data is stored in a user defined buffer and this is done in the callback function as
illustrated below:

Assuming the name of the callback has been configured to be sf_audio_record_user_callback.

uint16_t * audio_buffer;

void audio_record_user_callback (sf_audio_record_callback_args_t * p_args)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 229 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record I2S Framework > Audio Record I2S Framework Module Operational Overview

{

 audio_buffer = ((uint16_t *)sf_audio_record_i2s.p_cfg->p_capture_data_buffer

 + (p_args->buffer_index));

}

Audio Record I2S Framework Module Important Operational Notes and Limitations

Audio Record I2S Framework Module Operational Notes

The Audio Record I2S Framework Module configuration data can specify the name of the data buffer,
length of the data buffer, data size (8-bit or 16-bit samples), sampling iterations and the name of the
callback.

Audio Record I2S Framework Module Limitations

The framework currently supports recording 8-bit or 16-bit PCM data.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.6.4 Including the Audio Record I2S Framework Module in an Application

This section describes how to include the Audio Record I2S Framework module in an application
using the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Audio Record I2S Framework module to an application, simply add it to a HAL /Common
thread using the stacks selection sequence given in the following table. (The default name for the
Audio Record I2S Framework module is g_sf_audio_record_i2s0. This name can be changed in the
associated Properties window.)

Audio Record I2S Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_audio_record_i2s0 Audio
Record I2S Framework on
sf_audio_record_i2s

Threads New Stack> Framework>
Audio> Audio Record I2S
Framework on
sf_audio_record_i2s

When the Audio Record I2S Framework module on sf_audio_record_i2s is added to the thread stack
as shown in the following figure, the configurator automatically adds any needed lower‑level
modules. Any modules needing additional configuration information have the box text highlighted in
Red. Modules with a Gray band are individual modules that stand alone. Modules with a Blue band
are shared or common; they need only be added once and can be used by multiple stacks. Modules
with a Pink band can require the selection of lower-level modules; these are either optional or
recommended. (This is indicated in the block with the inclusion of this text.) If the addition of lower-
level modules is required, the module description include Add in the text. Clicking on any Pink

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 230 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record I2S Framework > Including the Audio Record I2S Framework Module in an Application

banded modules brings up the New icon and displays possible choices.

Figure 125: Audio Record I2S Framework Module Stack

4.1.6.5 Configuring the Audio Record I2S Framework Module

The Audio Record I2S Framework module must be configured by the user for the desired operation.
The SSP configuration window will automatically identify (by highlighting the block in red) any
required configuration selections, such as interrupts or operating modes, which must be configured
for lower-level modules in order to ensure successful operation. Furthermore, only those properties
that can be changed without causing conflicts are available for modification. Other properties are
'locked' and are not available for changes, and are identified with a lock icon for the 'locked' property
in the Properties window in the ISDE. This approach simplifies the configuration process and makes it
much less error-prone than previous 'manual' approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP configurator, and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

Configuration Settings for the Audio Record I2S Framework Module on
sf_audio_record_i2s

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enables or disables the
parameter checking.

Name g_sf_audio_record_i2s0 Module name.

Name of the data-buffer to
store samples

p_capture_data_buffer Data-buffer name.

Length of the data buffer 2048 Length of the data buffer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 231 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record I2S Framework > Configuring the Audio Record I2S Framework Module

Audio Record Data Size 8-Bit, 16-Bit

Default: 16-Bit

Audio record data size
selection.

Number of sampling iterations 256 Number of sampling iterations.

Callback g_audio_record_framework_user
_callback

Callback name.

Name of generated initialization
function

sf_audio_record_i2s_init0 Name of generated initialization
function.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower level modules can be desirable. The
configurable properties for the lower level stack modules are given in the below sections for
completeness and as a reference.

Note
Most of the property settings for lower level modules are fairly intuitive and can usually be determined by
inspection of the associated Properties window from the SSP configurator.

Configuring the Audio Record I2S Framework Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower-level drivers
as indicated with red text in the thread stack block. Notice that some of the configuration properties
must be set to a certain value for proper framework operation and will be locked to prevent user
modification. The following table identifies all the settings within the properties section for the
module.

Configuration Settings for the I2S HAL Module on r_ssi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_i2s0 Module name.

Channel 0 Physical hardware channel.

Audio Clock Frequency (Hertz) 2822400 Input audio clock frequency,
used to generate the I2S clock.
Must be a multiple between 1
and 128 of: (sampling_freq_hz *
word_length_in_bits).

Sampling Frequency (Hertz) 44100 Sampling frequency of audio
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 232 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record I2S Framework > Configuring the Audio Record I2S Framework Module

Data Bits 8 bits, 16, 18, 20, 22, 24

Default: 16 bits

Bit depth of audio data, which is
the size in bits of one sample of
audio data.

Word Length 8 bits, 16, 24, 32

Default: 16 bits

Word length of audio data,
must be at least the same size
as the bit depth (Data Bits
field).

WS Continue Mode Enabled, Disabled

Default: Disabled

Enable WS continue mode to
continue to output the word
select line when the peripheral
is idle. Disable to stop
outputting the word select line
when the peripheral is idle.

Audio Clock Frequency (Hertz) External, GTIOC1A

Default: External

Select External for external
signal to AUDIO_CLK input pin
or GTIOCA1.

Name of I2S callback function
to be defined by user

NULL A user callback function must
be registered in open. The
callback will be called from the
interrupt service routine (ISR)
when the transmission FIFO
reaches the high watermark
point after all data for
transmission is transmitted or
when reception is complete
(the requested number of bytes
have been received).

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Transmit Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Transmit interrupt priority
selection.

Receive Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Receive interrupt priority
selection.

Idle/Error Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Idle/error interrupt priority
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 233 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record I2S Framework > Configuring the Audio Record I2S Framework Module

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the DTC HAL Module on r_dtc Software Activation 1

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer0 Driver name.

Mode Normal Mode selection.

Transfer Size 4 Bytes Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1, Software
Activation 2, Peripheral Events

Default: Software Activation 1

Activation source selection.

Auto Enable FALSE Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC software event interrupt
priority selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 234 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record I2S Framework > Configuring the Audio Record I2S Framework Module

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the DTC HAL Module on r_dtc Software Activation 1

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer1 Driver name.

Mode Normal Mode selection.

Transfer Size 4 Bytes Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1, Software
Activation 2, Peripheral Events

Default: Software Activation 1

Activation source selection.

Auto Enable FALSE Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC software event interrupt
priority selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 235 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record I2S Framework > Configuring the Audio Record I2S Framework Module

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the AGT HAL Module on r_agt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Name g_timer0 Module name.

Channel 0 Channel selection.

Mode Periodic Mode selection.

Period Value 2822400 *2 Period value selection.

Period Unit Hertz Period unit selection.

Auto Start FALSE Auto start selection.

Count Source PCLKB, PCLKB/8, PCLKB/2,
LOCO, AGT0 Underflow, AGT0
fSub

Default: PCLKB

Count source selection.

AGTO Output Enabled True, False

Default: False

AGTO output selection.

AGTIO Output Enabled True, False

Default: False

AGTIO output selection.

Output Inverted True, False

Default: False

Output inverted selection.

Enable comparator A output pin True, False

Default: False

Enable comparator A output pin
selection.

Enable comparator B output pin True, False

Default: False

Enable comparator B output pin
selection.

Callback NULL Callback selection.

Underflow Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Interrupt priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 236 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record I2S Framework > Configuring the Audio Record I2S Framework Module

different default values and available configuration settings.

Configuration Settings for the GPT HAL Module on r_gpt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Name g_timer0 Module name.

Channel 0 Channel selection.

Mode Periodic Mode selection.

Period Value 2822400 *2 Period value selection.

Period Unit Hertz Period unit selection.

Duty Cycle Value 50 Duty cycle value selection.

Duty Cycle Unit Unit Raw Counts, Unit Percent,
Unit Percent x 1000

Default: Unit Raw Counts

Duty cycle unit selection.

Auto Start FALSE Auto start selection.

GTIOCA Output Enabled True, False

Default: False

GTIOCA output enabled
selection.

GTIOCA Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

GTIOCA stop level selection.

GTIOCB Output Enabled True, False

Default: False

GTIOCB output enabled
selection.

GTIOCB Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

GTIOCB stop level selection.

Callback NULL Callback selection.

Overflow Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Interrupt priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Audio Record I2S Framework Module Clock Configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 237 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record I2S Framework > Configuring the Audio Record I2S Framework Module

The Audio Record I2S Framework module uses the PCLKB as its clock source.

To change the clock frequency at run-time, use the CGC Interface.

Audio Record I2S Framework Module Pin Configuration

To use the Audio Record I2S Framework module, the port pins for the peripheral inputs and outputs
must be set in the pin configurator in the ISDE. The following table illustrates the method for
selecting the pins within the ISDE configuration window:

Pin Selection Sequence for the Audio Record I2S Framework Module

Resource ISDE Tab Pin selection Sequence

SSI Pins Select Peripherals>
Connectivity:SSI>
SSI/SSI0/SSI1

4.1.6.6 Using the Audio Record I2S Framework Module in an Application

The typical steps in using the Audio Record I2S Framework module in an application are:

1. Initialize the module using the sf_audio_record_api_t::open API.
2. Start the recording using the sf_audio_record_api_t::start API.
3. Operate on data from the periodic callback function as needed.
4. Close the module using the sf_audio_record_api_t::close API.

These common steps are illustrated in a typical operational flow in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 238 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Audio Record I2S Framework > Using the Audio Record I2S Framework Module in an Application

Figure 126: Flow Diagram of a Typical Audio Record I2S Framework Module Application

4.1.7 Block Media Framework on sf_block_media_lx_nor

4.1.7.1 Block Media Framework Module Introduction

The Block Media Framework on sf_block_media_lx_nor module provides a high-level API for
interfacing with QSPI NOR flash memory devices. It provides API functions for reading, writing and
controlling the QSPI NOR Flash memory. The framework includes the Azure RTOS wear
leveling component LevelX NOR. The LevelX functions to support wear leveling are automatic and
transparent to the developer. File system accesses, using the Azure RTOS FileX system, are also
supported, making it easy to implement file system based applications.

Block Media Framework Module Features

Supports Block Media Framework interface for NOR flash memory device.
Supports file system access on NOR flash memory.
Supports LevelX wear leveling functions transparently to the developer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 239 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_lx_nor > Block Media Framework Module Introduction

Figure 127: Block Media Framework Module Block Diagram

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 240 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_lx_nor > Block Media Framework Module APIs Overview

4.1.7.2 Block Media Framework Module APIs Overview

The Block Media Framework module defines API functions to open, read from, write to and close the
module. A complete list of the available API functions, an example API call and a short description of
each can be found in the following table. A table of status return values follows the API summary
table.

Block Media Framework Module API Summary

Function Name Example API Call and Description

open g_sf_block_media_lx_nor0.p_api->open(g_sf_bloc
k_media_lx_nor0.p_ctrl,
g_sf_block_media_lx_nor0.p_cfg);
Open LevelX flash device for read/write and
control. This function initializes the LevelX driver
and hardware the first time it is called out of
reset. The underlying flash needs to either be
erased or already initialized with LevelX.

read g_sf_block_media_lx_nor0.p_api->read(g_sf_bloc
k_media_lx_nor0.p_ctrl, p_dest, start_sector,
sector_count);
Read data from flash using LevelX.

write g_sf_block_media_lx_nor0.p_api->write(g_sf_bloc
k_media_lx_nor0.p_ctrl, p_src, start_sector,
sector_count);
Write data to flash using LevelX.

ioctl g_sf_block_media_lx_nor0.p_api->ioctl(g_sf_bloc
k_media_lx_nor0.p_ctrl, command, p_data);
Send control commands to Block Media LevelX
NOR driver.

close g_sf_block_media_lx_nor0.p_api->close(g_sf_bloc
k_media_lx_nor0.p_ctrl);
Close an open Block Media LevelX NOR driver.

versionGet g_sf_block_media_lx_nor0.p_api->versionGet(&v
ersion);
Return the version of the firmware and API using
the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS LevelX flash is available and is now open for
read, write and control access.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 241 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_lx_nor > Block Media Framework Module APIs Overview

SSP_ERR_ASSERTION p_ctrl, p_cfg or an input pointer is NULL.

SSP_ERR_ALREADY_OPEN The block media LevelX NOR instance has
already been opened. No configurations were
changed. Call the associated Close function or
use associated Control commands to reconfigure
the instance.

SSP_ERR_MEDIA_OPEN_FAILED LevelX NOR or the underlying flash failed to
open. The underlying flash needs to either be
erased or already initialized with LevelX.

SSP_ERR_NOT_OPEN The block media is not open.

SSP_ERR_READ_FAILED Data read failed.

SSP_ERR_WRITE_FAILED Data write failed.

SSP_ERR_UNSUPPORTED This module does not support requested
command.

SSP_ERR_SECTOR_RELEASE_FAILED Sector release command failed.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.7.3 Block Media Framework Module Operational Overview

The Block Media Framework on sf_block_media_lx_nor framework module provides a high-level API
for interfacing with QSPI NOR flash memory devices while supporting wear leveling and file system
operations. Wear leveling is implemented, transparently to the developer, using the Azure
RTOS LevelX component within the SSP. File system support is implemented using the Azure
RTOS FileX component, integrated with the SSP. These components work together to make it easy to
support embedded applications that require QSPI NOR Flash file system operations.

The Block Media Framework provides API functions for reading, writing and controlling the QSPI NOR
Flash memory. In addition to these functions, all FileX related API functions become available once
the Block Media Framework module is successfully opened and initialized. Refer to the FileX User's
Manual for a complete description of these functions.

The Block Media Framework module uses a standard interface that is common to other SSP media
modules. For example, the modules that support SDMMC, SPI Flash and SDRAM/RAM memories use
the same API calls, so the programming interface remains the same for any media driver. These
modules can be interchanged with one another easily. Device adaptation drivers, such as r_qspi, are
accessed through the Memory Framework interface and provide device specific code needed to
perform media I/O operations. Configuration and control structures passed through memory
interface function calls are generally device specific as well.

Block Media Framework Module Important Operational Notes and Limitations

Block Media Framework Module Operational Notes

The media must be erased and formatted before using sf_block_media_lx_nor for creating, writing
and reading files.

Block Media Framework Module Limitations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 242 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_lx_nor > Block Media Framework Module Operational Overview

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4.1.7.4 Including the Block Media Framework Module in an Application

This section describes how to include the Block Media Framework Module in an application using the
SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Block Media Framework to an application, simply add it to a thread using the stacks
selection sequence given in the following table. (The default name for the Block Media Framework is
g_sf_block_media_lx_nor. This name can be changed in the associated Properties window.)

Block Media Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_block_media_lx_nor0 Block
Media Framework on
sf_block_media_lx_nor

Threads New Stack> Framework>
File System> Block Media
Framework on
sf_block_media_lx_nor

When the Block Media Framework on sf_block_media_lx_nor is added to the thread stack as shown in
the following figure, the configurator automatically adds any needed lower‑level modules. Any
modules needing additional configuration information have the box text highlighted in Red. Modules
with a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description includes Add in the text. Clicking on any Pink banded modules
brings up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 243 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_lx_nor > Including the Block Media Framework Module in an Application

Figure 128: Block Media Framework Module Stack

4.1.7.5 Configuring the Block Media Framework Module

The Block Media Framework Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Block Media Framework Module on sf_block_media_lx_nor

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 244 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_lx_nor > Configuring the Block Media Framework Module

Name g_sf_block_media_lx_nor0 Module name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Block Media Framework Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module.

Configuration Settings for the LevelX NOR Common Instance

ISDE Property Value Description

Name g_lx_nor0 Module name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the LevelX Common Instance

ISDE Property Value Description

Thread Safety Enabled, Disabled

Default: Disabled

If Enabled, this makes LevelX
thread-safe by using a ThreadX
mutex object throughout the
API.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Port LevelX Framework Module on sf_el_lx_nor

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_sf_el_lx_nor0 Module name.

Event Callback NULL Name of the function to call
when an event occurs.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 245 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_lx_nor > Configuring the Block Media Framework Module

Configuration Settings for the Memory Framework on sf_memory_qspi_nor

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_sf_memory_qspi_nor0 Module name.

Write of Erase Timeout (in ticks) 30000 Timeout ticks for waiting on
write or erase to complete.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the QSPI HAL Module on r_qspi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_qspi0 Module name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Block Media Framework Module Clock Configuration

The Block Media framework module uses the QSPI peripheral which uses PCLKA as its clock source.

To change the clock frequency at run-time, use the CGC Interface.

Block Media Framework Module Pin Configuration

To use the Block Media framework module, the port pins for the QSPI peripheral must be set as
needed. The following table illustrates the method for selecting the pins within the ISDE
configuration window:

Pin Selection for the Block Media Framework Module on sf_block_media_lx_nor

Resource ISDE Tab Pin selection Sequence

QSPI Pins Select Peripherals>
Storage:QSPI QSPI0

4.1.7.6 Using the Block Media Framework Module in an Application

The typical steps in using the Block Media Framework module in an application are:

1. Initialize the media using the FileX API function fx_system_initialize (sf_el_fx calls it automatically).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 246 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_lx_nor > Using the Block Media Framework Module in an Application

2. Initialize the LevelX NOR using the API function lx_nor_flash_initialize (g_common_init calls it
automatically).

3. Format the media using the FileX API function fx_media_format (sf_el_fx calls it automatically if
"Format media during initialization" property is set to Enabled). This Format media is optional if
media has already been formatted. Anything on the media will erase while media format. (Optional)

4. Open the media using the FileX API function fx_media_open (sf_el_fx opens the media
automatically).

5. Read the media as required using the sf_block_media_api_t::read API function (Block Media
Framework) or one of the FileX API functions, for example, fx_media_read(), fx_file_read().

6. Write to the media as required using the sf_block_media_api_t::write API function (Block Media
Framework) or one of the FileX API functions, for example, fx_media_write(), fx_file_write().

Note

1. After a successful fx_media_open call, all FileX APIs can be used (not just read and write).
2. If the media has been formatted by FileX without LevelX earlier, erase it using the

qspi_api_t::erase API function before initializing the file media. The erase size should be not
less than the size of the memory FileX uses. Users can disable the "Format media during
initialization" property in the project configuration, erase the FileX media and then format it
in the application.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 247 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_lx_nor > Using the Block Media Framework Module in an Application

Figure 129: Flow Diagram of a Typical Block Media Framework Module Application

4.1.8 Block Media Framework on sf_block_media_qspi

4.1.8.1 Block Media QSPI Framework Module Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 248 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_qspi > Block Media QSPI Framework Module Introduction

The Block Media Framework Module can implement the QSPI channel for reading, writing and
controlling the QSPI Flash memory peripheral through the r_qspi driver. The driver has all the
functionality needed to interface with a file system through a block media interface.

Block Media QSPI Framework Module Features

Supports QSPI channel interface for QSPI flash memory device.
Support file system on QSPI flash memory.

Figure 130: Block Media QSPI Framework Module Block Diagram

4.1.8.2 Block Media QSPI Framework Module APIs Overview

The Block Media QSPI Framework module defines APIs to open, control, read and write to the media.
A complete list of the available APIs, an example API call and a short description of each can be
found in the following table. A table of status return values follows the API summary table.

Block Media QSPI Framework Module API Summary

Function Name Example API Call and Description

open g_sf_block_media_qspi0.p_api->open
(g_sf_block_media_qspi0.p_ctrl,
g_sf_block_media_qspi0.p_cfg);
Open a device channel for read/write and
control.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 249 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_qspi > Block Media QSPI Framework Module APIs Overview

read g_sf_block_media_qspi0.p_api->read
(g_sf_block_media_qspi0.p_ctrl, p_dest,
start_block, block_count);
Read data from a media channel.

write g_sf_block_media_qspi0.p_api->write
(g_sf_block_media_qspi0.p_ctrl, p_src,
start_block, block_count);
Write data to a media channel.

ioctl g_sf_block_media_qspi0.p_api->ioctl
(g_sf_block_media_qspi0.p_ctrl, command,
p_data);
Send control commands to and receives the
status from the media port.

close g_sf_block_media_qspi0.p_api->close
(g_sf_block_media_qspi0.p_ctrl);
Close the open media channel.

versionGet g_sf_block_media_qspi0.p_api->versionGet(&ver
sion);
Return the version of the driver using the
version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_INTERNAL An internal TheadX error has occurred.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION The parameter p_ctrl or p_sample is NULL.

SSP_ERR_IN_USE Peripheral is still running in another mode;
perform Close first.

SSP_ERR_UNSUPPORTED Command not supported.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.8.3 Block Media QSPI Framework Module Operational Overview

The Block Media Framework Interface is simply an abstract interface using function pointers instead
of direct function calls. Functions are called between FileX and the SSP block media drivers, such as
the SDMMC, SPI Flash and SDRAM/RAM. The interface remains the same for any media driver so all

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 250 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_qspi > Block Media QSPI Framework Module Operational Overview

media drivers appear functionally identical at file I/O layer and can be interchanged with one another
without changing code. Device adaptation drivers, such as sf_block_media_qspi, are accessed
through the Block Media Framework Interface and provide device specific code needed to perform
media I/O operations. Configuration and control structures passed through block media function calls
are generally device specific as well.

Block Media QSPI Framework Module Important Operational Notes and Limitations

Block Media QSPI Framework Module Operational Notes

The media must be formatted at least once before you can begin creating, writing and
reading files.

Block Media QSPI Framework Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.8.4 Including the Block Media QSPI Framework Module in an Application

This section describes how to include the Block Media QSPI Framework Module in an application
using the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Block Media QSPI Framework to an application, simply add it to a thread using the stacks
selection sequence given in the following table. (The default name for the Block Media QSPI
Framework is g_sf_block_media_qspi0. This name can be changed in the associated Properties
window.)

Block Media QSPI Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_block_media_qspi0Block
Media Framework on
sf_block_media_qspi

Threads New Stack> Framework>
File System> Block Media
Framework on
sf_block_media_qspi

When the Block Media QSPI Framework on sf_block_media_qspi is added to the thread stack as
shown in the following figure, the configurator automatically adds any needed lower‑level modules.
Any modules needing additional configuration information have the box text highlighted in Red.
Modules with a Gray band are individual modules that stand alone. Modules with a Blue band are
shared or common; they need only be added once and can be used by multiple stacks. Modules with
a Pink band can require the selection of lower-level modules; these are either optional or
recommended. (This is indicated in the block with the inclusion of this text.) If the addition of lower-
level modules is required, the module description include Add in the text. Clicking on any Pink
banded modules brings up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 251 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_qspi > Including the Block Media QSPI Framework Module in an Application

Figure 131: Block Media QSPI Framework Module Stack

4.1.8.5 Configuring the Block Media QSPI Framework Module

The Block Media QSPI Framework Module must be configured by the user for the desired operation.
The available configuration settings and defaults for all the user-accessible properties are given in
the properties tab within the SSP configurator and are shown in the following tables for easy
reference. Only properties that can be changed without causing conflicts are available for
modification. Other properties are locked and not available for changes and are identified with a lock
icon for the locked property in the Properties window in the ISDE. This approach simplifies the
configuration process and makes it much less error-prone than previous manual approaches to
configuration. The available configuration settings and defaults for all the user-accessible properties
are given in the Properties tab within the SSP Configurator and are shown in the following tables for
easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Block Media QSPI Framework Module on
sf_block_media_qspi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

Name g_sf_block_media_qspi Module name.

Block size of media in bytes 4096 Block size selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 252 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_qspi > Configuring the Block Media QSPI Framework Module

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Block Media QSPI Framework Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module.

Configuration Settings for the QSPI HAL Module on r_qspi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

Name g_qspi0 Module name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Block Media QSPI Framework Module Clock Configuration

The Block Media QSPI Framework module uses the PCLKA as its clock source.

To change the clock frequency at run-time, use the CGC Interface.

Block Media QSPI Framework Module Pin Configuration

To use the Block Media QSPI Framework module, the port pins for the peripheral inputs and outputs
must be set in the pin configurator in the ISDE. The following table illustrates the method for
selecting the pins within the ISDE configuration window:

Pin Selection for the Block Media QSPI Framework Module on sf_block_media_qspi

Resource ISDE Tab Pin selection Sequence

QSPI Pins Select Peripherals>
Storage:QSPI> QSPI0

4.1.8.6 Using the Block Media QSPI Framework Module in an Application

The steps in using the Block Media QSPI Framework module on sf_block_media_qspi in a typical
application are:

1. Initialize the media using the FileX API fx_system_initialize (sf_el_fx calls it automatically).
2. Format the media using FileX API fx_media_format (sf_el_fx calls it automatically if "Format

media during initialization" property is set to Enabled). This Format media is optional if
media has already been formatted. Anything on the media will erase while media format.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 253 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_qspi > Using the Block Media QSPI Framework Module in an Application

(Optional)
3. Open the media using the FileX API fx_media_open (sf_el_fx opens the media

automatically).
4. Read the media as required using the sf_block_media_api_t::read API (Block Media

Framework) or one of the FileX APIs, for example, fx_media_read(), fx_file_read().
5. Write to the media as required using the sf_block_media_api_t::write API (Block Media

Framework) or one of the FileX APIs, for example, fx_media_write(), fx_file_write().

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 132: Flow Diagram of a Typical Block Media QSPI Framework Module Application

4.1.9 Block Media Framework on sf_block_media_ram

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 254 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_ram > Block Media RAM Framework Module Introduction

4.1.9.1 Block Media RAM Framework Module Introduction

The Block Media Framework Module can implement the file system on RAM for reading from, writing
to and controlling the read/write region of the RAM memory. The framework has all the functionality
needed to interface with a file system through a block media interface.

Block Media RAM Framework Module Features

Enables FileX to be run on linear memory-mapped devices.
Temporary and fast storage of data on RAM.

Figure 133: Block Media RAM Framework Module Block Diagram

4.1.9.2 Block Media RAM Framework Module APIs Overview

The Block Media RAM Framework module implements APIs to open, read from, write to and close the
module. A complete list of the available APIs, an example API call and a short description of each can
be found in the following table. A table of status return values follows the API summary table.

Block Media RAM Framework Module API Summary

Function Name Example API Call and Description

open g_sf_block_media_ram0.p_api->open
(g_sf_block_media_ram0.p_ctrl,
g_sf_block_media_ram0.p_cfg);
Open device for read, write and control.

read g_sf_block_media_ram0.p_api->read
(g_sf_block_media_ram0.p_ctrl, p_dest,
start_block, block_count);
Read data from RAM buffer.

write g_sf_block_media_ram0.p_api->write
(g_sf_block_media_ram0.p_ctrl, p_source,
start_block, block_count);
Write data to RAM buffer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 255 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_ram > Block Media RAM Framework Module APIs Overview

ioctl g_sf_block_media_ram0.p_api->ioctl
(g_sf_block_media_ram0.p_ctrl, command,
p_data);
Send control commands to and receive status of
RAM buffer.

close g_sf_block_media_ram0.p_api->close
(g_sf_block_media_ram0.p_ctrl);
Close the framework.

versionGet g_sf_block_media_ram0.p_api->versionGet(&ver
sion);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_UNSUPPORTED Command not supported.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION A parameter is NULL.

SSP_ERR_IN_USE Framework is already open.

SSP_ERR_INVALID_BLOCKS Invalid block passed.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.9.3 Block Media RAM Framework Module Operational Overview

The Block Media Framework Interface is simply an abstract interface using function pointers instead
of direct function calls. Functions are called between the FileX and the SSP block media drivers, such
as the SDMMC, SPI Flash and SDRAM/RAM. The interface remains the same for any media driver, so
all media drivers appear functionally identical at the file I/O layer and can be interchanged with one
another without changing code. Device adaptation drivers, such as the sf_block_media_ram, are
accessed through the Block Media Framework Interface and provide device specific code needed to
perform media I/O operations. Configuration and control structures passed through block media
function calls are generally device specific as well.

Block Media RAM Framework Module Important Operational Notes and Limitations

Block Media RAM Framework Module Operational Notes

The media must be formatted before you can open the media and begin creating, writing to and
reading from files. The memory area used must be directly readable and writable by the core.
Internal SRAM or SDRAM size should be sufficient for the Block Media RAM and there will be no

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 256 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_ram > Block Media RAM Framework Module Operational Overview

persistence of data across the power cycles. Block count must be assigned by considering the boot
record, FAT area, root directory and directory sector. If the File System is used on RAM then the
minimum block count must be 4, as the first 3 sectors are reserved for boot record, FAT area and
root directory and the 4th sector is used for data sector. The "Format media during initialization"
property needs to be enabled to use RAM for FileX. The "File System is on block media" property
needs to be true inorder to configure the block count and block size from the block media RAM.

Block Media RAM Framework Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4.1.9.4 Including the Block Media RAM Framework Module in an Application

This section describes how to include the Block Media RAM Framework Module in an application
using the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Block Media RAM Framework to an application, simply add it to a thread using the stacks
selection sequence given in the following table. (The default name for the Block Media RAM
Framework is g_sf_block_media_ram0. This name can be changed in the associated Properties
window.)

Block Media RAM Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_block_media_ram0 Block
Media Framework on
sf_block_media_ram

Threads New Stack> Framework>
File System> Block Media
Framework on
sf_block_media_ram

When the Block Media RAM Framework on sf_block_media_ram is added to the thread stack as
shown in the following figure, the configurator automatically adds any needed lower‑level modules.
Any modules needing additional configuration information have the box text highlighted in Red.
Modules with a Gray band are individual modules that stand alone. Modules with a Blue band are
shared or common; they need only be added once and can be used by multiple stacks. Modules with
a Pink band can require the selection of lower-level modules; these are either optional or
recommended. (This is indicated in the block with the inclusion of this text.) If the addition of lower-
level modules is required, the module description includes Add in the text. Clicking on any Pink
banded modules brings up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 257 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_ram > Including the Block Media RAM Framework Module in an Application

Figure 134: Block Media RAM Framework Module Stack

4.1.9.5 Configuring the Block Media RAM Framework Module

The Block Media RAM Framework Module must be configured by the user for the desired operation.
The available configuration settings and defaults for all the user-accessible properties are given in
the properties tab within the SSP configurator and are shown in the following tables for easy
reference. Only properties that can be changed without causing conflicts are available for
modification. Other properties are locked and not available for changes and are identified with a lock
icon for the locked property in the Properties window in the ISDE. This approach simplifies the
configuration process and makes it much less error-prone than previous manual approaches to
configuration. The available configuration settings and defaults for all the user-accessible properties
are given in the Properties tab within the SSP Configurator and are shown in the following tables for
easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Block Media RAM Framework Module on
sf_block_media_ram

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

Name g_sf_block_media_ram0 Module name.

Block size of media in bytes 512 Block size of media in bytes
selection.

Number of blocks to allocate 16 To make use of file system,
block count must be assigned
by considering the boot record,
FAT area and root directory.

Enter the valid section for RAM
buffer allocation

noinit Enter the valid section for RAM
buffer allocation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 258 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_ram > Configuring the Block Media RAM Framework Module

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Block Media RAM Framework Module Clock Configuration

The Block Media RAM Framework module uses the ICLK as the source for the internal RAM.

Block Media RAM Framework Module Pin Configuration

The Block Media RAM Framework module uses internal RAM so no external pins are required.

4.1.9.6 Using the Block Media RAM Framework Module in an Application

The steps in using the Block Media RAM Framework module on sf_block_media_ram in a typical
application are:

1. Initialize the media using the FileX API, fx_system_initialize (sf_el_fx calls it automatically).
2. Format the media using FileX API, fx_media_format (sf_el_fx calls it automatically if "Format

media during initialization" property is set to Enabled). This Format media is optional if
media has already been formatted. Anything on the media will erase while media is
formatted. (Optional)

3. Open the media using the FileX API fx_media_open (sf_el_fx opens the media
automatically).

4. Read the media as required using the sf_block_media_api_t::read API (Block Media
Framework) or one of the FileX APIs, for example, fx_media_read(), fx_file_read().

5. Write to the media as required using the sf_block_media_api_t::write API (Block Media
Framework) or one of the FileX APIs, for example, fx_media_write(), fx_file_write().

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 259 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_ram > Using the Block Media RAM Framework Module in an Application

Figure 135: Flow Diagram of a Typical Block Media RAM Framework Module Application

4.1.10 Block Media Framework on sf_block_media_sdmmc

4.1.10.1 Block Media SDMMC Framework Module Introduction

The Block Media Framework module can implement the SD/MMC bus protocol for reading from,
writing to and the control of SD cards and eMMC embedded devices through the SDHI (SD Host
Interface) peripheral and the SD/MMC media driver. The driver has all the functionality needed to
interface with a file system through a block media interface.

Block Media SDMMC Framework Module Features

Supports SDHI host interface for SD/MMC.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 260 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_sdmmc > Block Media SDMMC Framework Module Introduction

Supports SDSC (SD Standard Capacity), SDHC (SD High Capacity) and eMMC (embedded).
Supports 1, 4 or 8-bit (eMMC only) data bus.

Figure 136: Block Media SDMMC Framework Module Block Diagram

4.1.10.2 Block Media SDMMC Framework Module APIs Overview

The Block Media Framework defines APIs for opening, reading from, writing to, controlling and
closing the SDMMC. A complete list of the available APIs, an example API call and a short description
of each can be found in the following table. A table of status return values follows the API summary
table.

Block Media SDMMC Framework Module API Summary

Function Name Example API Call and Description

open g_sf_block_media_sdmmc_api->open(g_sf_block_
media_sdmmc.p_ctrl,
g_sf_block_media_sdmmc.p_cfg);
Open device for read/write and control.

read g_sf_block_media_sdmmc_api->read(g_sf_block_
media_sdmmc.p_ctrl, &destination, startsector,
sectorcount);
Read data from SD/MMC.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 261 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_sdmmc > Block Media SDMMC Framework Module APIs Overview

write g_sf_block_media_sdmmc_api->write(g_sf_block
_media_sdmmc.p_ctrl, &source, startsector,
sectorcount);
Write data to SDMMC channel.

ioctl g_sf_block_media_sdmmc_api->ioctl(g_sf_block_
media_sdmmc.p_ctrl, command, &data);
Send control commands to the SD/MMC port and
receive the status of the SD/MMC port.

close g_sf_block_media_sdmmc_api->close(g_sf_block
_media_sdmmc.p_ctrl);
Close open device port.

versionGet g_sf_block_media_sdmmc_api->versionGet(&ver
sion);
Get version of Block Media SD/MMC driver.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_IN_USE The channel specified has already been opened.
No configurations were changed. Call the
associated Close function or use associated
control commands to reconfigure the channel.

SSP_ERR_ASSERTION The parameter p_ctrl or p_sample is NULL.

SSP_ERR_WRITE_PROTECTED SD or MMC card is Write Protected.

SF_INFO_NOT_AVAILABLE Information is not available possibly because
card has been removed or is defective.

SSP_ERR_NOT_OPEN The channel is not opened.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.10.3 Block Media SDMMC Framework Module Operational Overview

The Block Media Framework Interface is simply an abstract interface using function pointers instead
of direct function calls. Functions are called between FileX and the SSP block media drivers, such as
the SDMMC and the SPI Flash. The interface remains the same for any media driver, so all media
drivers appear functionally identical at the file I/O layer and can be interchanged with one another
without changing code. Device adaptation drivers, such as sf_block_media_sdmmc, are accessed
through the Block Media Framework Interface and provide device specific code needed to perform

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 262 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_sdmmc > Block Media SDMMC Framework Module Operational Overview

media I/O operations. Configuration and control structures passed through block media function calls
are generally device specific as well.

Block Media SDMMC Framework Module Important Operational Notes and Limitations

Block Media SDMMC Framework Module Operational Notes

The media must be formatted at least once before you can begin creating, writing and
reading files.

Block Media SDMMC Framework Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.10.4 Including the Block Media SDMMC Framework Module in an Application

This section describes how to include the Block Media SDMMC Framework Module in an application
using the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Block Media SDMMC Framework to an application, simply add it to a thread using the
stacks selection sequence given in the following table. (The default name for the Block Media
SDMMC Framework is g_sf_block_media_sdmmc0. This name can be changed in the associated
Properties window.)

Block Media SDMMC Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_block_media_sdmmc0
Block Media Framework on
sf_block_media_sdmmc

Threads New Stack> Framework>
File system> Block Media
Framework

When the Block Media SDMMC Framework on sf_block_media_sdmmc is added to the thread stack as
shown in the following figure, the configurator automatically adds any needed lower‑level modules.
Any modules needing additional configuration information have the box text highlighted in Red.
Modules with a Gray band are individual modules that stand alone. Modules with a Blue band are
shared or common; they need only be added once and can be used by multiple stacks. Modules with
a Pink band can require the selection of lower-level modules; these are either optional or
recommended. (This is indicated in the block with the inclusion of this text.) If the addition of lower-
level modules is required, the module description include Add in the text. Clicking on any Pink
banded modules brings up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 263 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_sdmmc > Including the Block Media SDMMC Framework Module in an Application

Figure 137: Block Media SDMMC Framework Module Stack

4.1.10.5 Configuring the Block Media SDMMC Framework Module

The Block Media SDMMC Framework Module must be configured by the user for the desired
operation. The available configuration settings and defaults for all the user-accessible properties are
given in the properties tab within the SSP configurator and are shown in the following tables for easy
reference. Only properties that can be changed without causing conflicts are available for
modification. Other properties are locked and not available for changes and are identified with a lock
icon for the locked property in the Properties window in the ISDE. This approach simplifies the
configuration process and makes it much less error-prone than previous manual approaches to
configuration. The available configuration settings and defaults for all the user-accessible properties
are given in the Properties tab within the SSP Configurator and are shown in the following tables for
easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Block Media SDMMC Framework Module on
sf_block_media_sdmmc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

Name g_sf_block_media_sdmmc0 The name to be used for
sf_block_media_sdmmc module
control block instance.

Block size of media in bytes 512 Media Block size.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 264 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_sdmmc > Configuring the Block Media SDMMC Framework Module

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Block Media SDMMC Framework Module Lower Level
Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module.

Configuration Settings for the SDMMC HAL Module on r_sdmmc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable parameter
error checking.

Name g_sdmmc0 The name to be used for
SDMMC module control block
instance. This name is also
used as the prefix of the other
variable instances.

Channel 0, 1

Default: 1

Channel of SD/MMC peripheral,
channel 0 or 1.

Media Type Embedded, Card

Default: Embedded

Media is a card or an embedded
device. This allows to firmware
to know whether to look for
card insertion/removal and
write protect pins.

Bus Width 1 Bit, 4 Bits, 8 Bits

Default: 4 Bits

Data bus with as defined by
hardware interface. (8 bits for
eMMC only).

Block Size 512 Block size selection.

Card Detection Not Used, CD Pin

Default: CD Pin

Card detection selection.

Callback NULL (Not required if using Filex) Set
to name of user callback
function. Provides event that
caused interrupt: SDMMC_EVEN
T_CARD_REMOVED, SDMMC_EV
ENT_CARD_INSERTED,
SDMMC_EVENT_ACCESS,
SDMMC_EVENT_SDIO, SDMMC_
EVENT_TRANSFER_COMPLETE,
SDMMC_EVENT_TRANSFER_ERR
OR

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 265 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_sdmmc > Configuring the Block Media SDMMC Framework Module

Access Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Access interrupt priority
selection.

Card Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Card interrupt priority selection.

DMA Request Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

DMA request interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dmac Software Activation

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
(Default: BSP)

Selects if code for parameter
checking is to be included in
the build.

Name g_transfer0 Module name.

Channel 0

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation Activation source selection.

Auto Enable False Auto enable selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 266 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_sdmmc > Configuring the Block Media SDMMC Framework Module

Callback (Only valid with
Software start)

NULL Callback selection.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Interrupt priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Software Activation 1

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1 Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 267 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_sdmmc > Configuring the Block Media SDMMC Framework Module

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Block Media SDMMC Framework Module Clock Configuration

The SDHI block (used to implement SDMMC and SDIO functions) uses the PCLKA for its clock source.
There is no need to configure the clock specifically for the SDMMC peripheral unless you need to
optimize the data rate. The SDMMC driver selects the appropriate built-in divider based on the PCLKA
frequency and the maximum clock rate allowed by the SD, SDIO or eMMC device, obtained at media
device initialization.

Block Media SDMMC Framework Module Pin Configuration

Use the e2 studio pin configurator to configure the I/O pins for the SDMMC peripheral. The drive
capacity for each pin should be set to "Medium" or "High" for most boards and high-speed memory
and SDIO devices. The following table illustrates the method for selecting the pins within the SSP
configuration window and the subsequent table illustrates an example selection for the pins.

Note
For some peripherals, the operation mode selection determines what peripheral signals are available and what
MCU pins are required.

Pin Selection for the Block Media SDMMC Framework Module on sf_block_media_sdmmc

Resource ISDE Tab Pin selection Sequence

SDHI Pins Select Peripherals>
Storage:SHDI> SDHI0

Note
The selection sequence assumes SCI1 is the desired hardware target for the driver.

Pin Configuration Settings for the Block Media SDMMC Framework Module on
sf_block_media _sdmmc

Property Value Description

Operation Mode Disabled,
Custom,
SD_MMC 1 bit
SD_MMC 4 bit
MMC 8 bit

Select mode as per application.

CLK None, P413

Default: None

Clock Pin.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 268 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_sdmmc > Configuring the Block Media SDMMC Framework Module

CMD None, P412

Default: None

Command Pin.

DAT0-7 None, PXXX

Default: None

Data Pin.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.

Other Settings

The read and write media and extended read and write SDIO functions are non-blocking and require
interrupts and a transfer function, either DMAC or DTC. The read and write functions return
SSP_SUCCESS to indicate that the initial operations have started successfully. However, the user
application must wait for the user callback and check for event
SDMMC_EVENT_TRANSFER_COMPLETE or SDMMC_EVENT_TRANSFER_ERROR to indicate completion
of the read or write.

4.1.10.6 Using the Block Media SDMMC Framework Module in an Application

The steps in using the Block Media SDMMC Framework module on sf_block_media_sdmmc in a
typical application are:

1. Initialize media using the sf_block_media_api_t::open API.
2. Read media as required using the sf_block_media_api_t::read API.
3. Write media as required using the sf_block_media_api_t::write API.
4. Operate on data as required.
5. Close media as required using the sf_block_media_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 269 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_sdmmc > Using the Block Media SDMMC Framework Module in an Application

Figure 138: Flow Diagram of a Typical Block Media SDMMC Framework Module Application

 The typical steps for using the sf_block_media_sdmmc using the sf_el_fx in an application are:

1. Initialize media using the FileX API, fx_system_initialize (sf_el_fx calls it automatically)
2. Format media using FileX API, fx_media_format (sf_el_fx calls it automatically if "Format

media during initialization" property is set to Enabled)
3. Open the media using FileX API, fx_media_open (sf_el_fx opens the media automatically)
4. Read media as required using the sf_block_media_api_t::read API (Block Media Framework)

or one of the FileX API, for example, fx_media_read(), fx_file_read()
5. Write to media as required using the sf_block_media_api_t::write API (Block Media

Framework) or one of the FileX API, for example, fx_media_write(), fx_file_write().

Note
After successful fx_media_open call, all FileX APIs can be used (not only read and write).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 270 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Block Media Framework on sf_block_media_sdmmc > Using the Block Media SDMMC Framework Module in an Application

Figure 139: Flow Diagram of a Typical Block Media SDMMC Framework Module Application

4.1.11 BLE Framework

4.1.11.1 BLE Framework Introduction

Bluetooth® Low Energy (BLE), sometimes referred to as Bluetooth Smart, is a light-weight subset of
Classic Bluetooth, and was introduced as part of the Bluetooth 4.0 core specification. In contrast to
Classic Bluetooth, BLE is designed to provide significantly lower power consumption. This allows
Internet of Thing (IoT) devices that have stricter power capacity to transfer small amounts of data
between nearby devices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 271 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Introduction

Application developers access the functionality provided by the BLE stack using its APIs. The BLE
stack APIs provided by different vendors are not standardized, and as a result, Application
developers have to update their code when porting to different BLE stacks.

The Synergy BLE Framework handles this issue by providing a generic interface for the underlying
BLE stack provided by various vendors, thereby preventing coupling between application and vendor-
specific BLE stack code. The use of generic APIs makes application development simpler and
portable.

The BLE Framework provides a high-level API for BLE applications and uses the Synergy Software
Package (SSP) communication framework, which in turn enables the UART driver for communication
to the underlying BLE module. It also integrates the generic BLE profile framework
(g_sf_ble_onboard_profile), which provides a uniform interface to BLE profiles. For the RL78G1D BLE
hardware module, the generic BLE profiles are implemented by the BLE module firmware.

BLE Framework Module Features

ThreadX® RTOS Aware and thread safe
Bluetooth v4.2 compliant framework
Generic Access Profile (GAP) Features

User-defined advertising data
Security modes 1 and 2
Peripheral and central roles
White list support for up to 6 devices
Bonding support

Generic Attribute Profile (GATT) features
GATT client and server

Generic Attribute Profile (GATT) APIs
Generic Access Profile (GAP) APIs
Generic On-board Profiles APIs

Figure 140: BLE Framework Module Block Diagram

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 272 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Introduction

Note
The BLE and GATT on sf_ble_rl78g1d can be used as a lower-level implementation of the On-Board Profile on
RL789G1D BLE Framework or on its own.

4.1.11.2 BLE Framework Module APIs Overview

The BLE Framework defines APIs for initializing, setting and getting values, and stopping modules. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

BLE Framework Module API Summary

Function Name Example API Call and Description

open g_sf_ble0.p_api->open(g_ sf_ble_0.p_cfg);
This function initializes and enables the BLE
module. It accepts the BLE module configuration
as an argument, which has the following
parameters:
- 48-bit Bluetooth Address
- Device scan interval
- Device scan window
- Device discoverable time
- Device connection interval
- Slave latency
- Supervision timeout
- Own address type
- Maximum slaves allowed to be connected

close g_sf_ble0.p_api->close (g_ sf_ble0.p_cfg);
This API de-initializes the interface and may put
the BLE module in low power mode or power it
off. It also closes the driver, disables the driver
link, disables the interrupt in the BLE module
driver.

infoGet g_sf_ble0.p_api->infoGet (g_sf_ble_0.p_cfg,
p_handle, p_ble_info);
The infoGet API takes the BLE control structure
as an argument. It returns the following
information obtained from the BLE module:
- Chipset/driver information string
- RSSI value (unsigned integer 16 bits)

provisionGet g_sf_ble0.p_api->provisionGet (g_sf_ble_0.p_cfg,
p_ble_provisioning);
The provisionGet API gets the BLE GAP
provisioning information and takes the BLE
control structure as an argument. It returns the
following parameters:
- Bonding Mode
- Security Mode
- GAP Role (Central/Master or Peripheral/Slave)
- Security Keys

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 273 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module APIs Overview

provisionSet g_sf_ble0.p_api->provisionSet (g_sf_ble_0.p_cfg,
p_ble_provisioning);
The provisionSet() function provisions the BLE
module. It takes the BLE control structure and
the provisioning structure as an argument.
- Bonding Mode
- Security Mode
- GAP Role (Central/Master or Peripheral/Slave)
- Security Keys
- GAP user event callback

scan g_sf_ble0.p_api->scan (g_sf_ble_0.p_cfg, p_scan,
p_cnt, p_scan_info);
The scan() function takes BLE control structure
as an argument. The scan() function returns a
list of BLE devices scanned by the BLE module
with below parameters.
- Bluetooth address (48-bits)
- RSSI
- Scan data
- Advertising Event type

The scan() function takes device count as an
argument, which acts as an in/out parameter. It
specifies the size of the scan result array and
the BLE framework sets it to count indicating the
number of scan results stored in the array. The
function takes scan type as an argument
(active/passive).

advertisementStart g_sf_ble0.p_api->advertisementStart
(g_sf_ble_0.p_cfg, p_advt_info);
The advertisementStart() function takes the
following parameters:
- Discovery mode (General/Limited)
- Filter policy – Support for scan/connect request
filtering combinations
- Advertisement data
- Connection mode
- Advertisement intervals
- Channel map
- Address type
- Advertising type
- Scan response data

advertisementStop g_sf_ble0.p_api->advertisementStop
(g_sf_ble_0.p_cfg);
Stops advertisement.

whitelistAdd g_sf_ble0.p_api->whitelistAdd (g_sf_ble_0.p_cfg,
p_bp_addr);
The whitelistAdd() function adds devices to the
whitelist for advertisements, scan requests and
connection requests.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 274 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module APIs Overview

whitelistDel g_sf_ble0.p_api->whitelistDel (g_sf_ble_0.p_cfg,
p_bp_addr);
The whitelistDel() function deletes devices from
the whitelist for advertisements, scan requests
and connection requests.

bondingStart g_sf_ble0.p_api->bondingStart (g_sf_ble_0.p_cfg,
p_handle, p_bp_addr, p_bonding_start);
The bondingStart() function starts bonding with
a remote device.

bondingResponse g_sf_ble0.p_api->bondingResponse
(g_sf_ble_0.p_cfg, p_handle, p_bp_addr,
p_bonding_resp);
The bondingResponse() function responds to a
bonding request.

startEncryption g_sf_ble0.p_api->startEncryption
(g_sf_ble_0.p_cfg, p_enc_info);
The startEncryption() function begins an
encryption operation.

connect g_sf_ble0.p_api->connect (g_sf_ble_0.p_cfg,
p_handle, p_conn);
The connect() function connects to a remote
device.

disconnect g_sf_ble0.p_api->disconnect (g_sf_ble_0.p_cfg,
p_handle);
The disconnect() function disconnects from a
remote device.

listen g_sf_ble0.p_api->listen (g_sf_ble_0.p_cfg);
The listen() function listens for an incoming
connect request from aremote device.

authorization g_sf_ble0.p_api->authorization (g_sf_ble_0.p_cfg,
&conhandle);
The authorization() function authorizes a remote
device after connection.

setTxPower g_sf_ble0.p_api->setTxPower(g_sf_ble_0.p_cfg,
&con_handle, &tx_power_info);
The setTxPower() function sets the transmit
power for the procedure specified by the
connection handle.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

BLE Framework On-Board Profiles Module API Summary

Function Name Example API Call and Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 275 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module APIs Overview

open g_sf_ble_onboard_profile0.p_api->open (g_
sf_ble_onboard_profile0.p_cfg);
This API initializes the interface for data
transfers.

close g_sf_ble_onboard_profile0.p_api->close (g_
sf_ble_onboard_profile0.p_cfg);
This API de-initializes the interface and may put
it in low power mode or power it off. The API
closes the driver, and disables the driver link
and interrupt.

onbpEnable g_sf_ble_onboard_profile0.p_api->onbpEnable
(sf_ble_onboard_profile0.p_cfg, p_handle, profile,
p_prf_cb, sec);
Enables the profile in server mode or client
mode.

onbpServerWriteData g_sf_ble_onboard_profile0.p_api->onbpServerWri
teData (sf_ble_onboard_profile0.p_cfg, p_handle,
profile, characteristics, p_data);
Updates the value of the characteristic in the
local database.

onbpServerSendNotification g_sf_ble_onboard_profile0.p_api->onbpServerSe
ndNotification (sf_ble_onboard_profile0.p_cfg,
p_handle, profile, characteristics, p_data);
Sends notifications.

onbpServerSendIndication g_sf_ble_onboard_profile0.p_api->onbpServerSe
ndIndication (sf_ble_onboard_profile0.p_cfg,
p_handle, profile, characteristics, p_data);
Sends indications.

onbpClientWriteCCCD g_sf_ble_onboard_profile0.p_api->onbpClientWrit
eCCCD (sf_ble_onboard_profile0.p_cfg, p_handle,
profile, cccd_char, cccd_val);
Sets the Client Configuration Control Descriptor
on the remote device.

onbpDisable g_sf_ble_onboard_profile0.p_api->onbpDisable
(sf_ble_onboard_profile0.p_cfg, p_handle,
profile);
Disables the profile in server mode and
clientmode.

onbpClientReadChar g_sf_ble_onboard_profile0.p_api->onbpClientRea
dChar (sf_ble_onboard_profile0.p_cfg, p_handle,
profile, characteristics);
Reads a GATT characteristic associated with the
profile or service.

onbpClientWriteChar g_sf_ble_onboard_profile0.p_api->onbpClientWrit
eChar (sf_ble_onboard_profile0.p_cfg, p_handle,
profile, characteristics);
Writes a GATT characteristic associated with the
profile or service.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 276 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module APIs Overview

versionGet g_sf_ble_onboard_profile0.p_api->
versionGet(&version);
Retrieves the API version using the version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.
All the details related to BLE standard profiles can be found in BLE profile specifications.
BLE APIs will return SSP_ERR_UNSUPPORTED if the module does not support the feature.

BLE Framework GATT API Summary

Function Name Example API Call and Description

gattAddCustomProfiles g_sf_ble0.p_api->gattAddCustomProfiles
(g_sf_ble_0.p_cfg, p_handle,
p_sf_ble_svc_dscv_req, p_sf_ble_svc_dscv_rsp,
p_rsp_cnt);
This function adds custom profiles to the GATT
database.

gattServiceDiscovery g_sf_ble0.p_api->gattServiceDiscovery
(g_sf_ble_0.p_cfg, p_handle,
p_sf_ble_svc_dscv_req, p_sf_ble_svc_dscv_rsp,
p_rsp_cnt);
The gattServiceDiscovery() function performs
service discovery.

gattCharDiscovery g_sf_ble0.p_api->gattCharDiscovery
(g_sf_ble_0.p_cfg, p_handle,
p_sf_ble_svc_dscv_req, p_sf_ble_svc_dscv_rsp,
p_rsp_cnt);
The gattCharDiscovery() function performs the
Char discovery operation.

gattCharDescDiscovery g_sf_ble0.p_api->gattCharDescDiscovery
(g_sf_ble_0.p_cfg, p_handle, start_handle,
end_handle, p_sf_ble_svc_dscv_rsp, p_rsp_cnt);
Discovers GATT characteristics descriptor on a
remote device.

gattCharRead g_sf_ble0.p_api->gattCharRead
(g_sf_ble_0.p_cfg, p_handle, start_handle,
p_char_read_req, p_char_read_rsp);
Reads GATT characteristics on a remote device.

gattCharWrite g_sf_ble0.p_api->gattCharWrite
(g_sf_ble_0.p_cfg, p_handle, p_char_read_req);
Writes GATT characteristics on a remote device.

gattCharExecuteWrite g_sf_ble0.p_api->gattCharExecuteWrite
(g_sf_ble_0.p_cfg, p_handle, execute_flag);
Executes a write (commit) on GATT
characteristics on a remote device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 277 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module APIs Overview

gattCharWriteLocal g_sf_ble0.p_api->gattCharWriteLocal
(g_sf_ble_0.p_cfg, char_handle, data_length);
Updates the local GATT database.

gattSendNotify g_sf_ble0.p_api->gattSendNotify
(g_sf_ble_0.p_cfg, p_handle, char_handle);
Sends notifications from local GATT server to
remote GATT client.

gattSendIndicate g_sf_ble0.p_api->gattSendIndicate
(g_sf_ble_0.p_cfg, p_handle, char_handle);
Sends indications from local GATT server to
remote GATT client.

gattWriteResponse g_sf_ble0.p_api->gattWriteResponse
(g_sf_ble_0.p_cfg, p_handle, char_handle);
Responds to the write characteristic value
request from the remote GATT client.

versionGet g_sf_ble0.p_api->versionGet(&version);
Retrieves the API version using the version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_ASSERTION Parameter has invalid value.

SSP_ERR_INVALID_PTR p_version is NULL.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.11.3 BLE Framework Module Operational Overview

This section provides the Synergy BLE Framework software architecture overview and highlights the
major SSP modules used as part of BLE framework along with the operational flow sequence from
the user's application level.

Note
A more comprehensive description of the operation of the BLE Framework module is available in the BLE
Framework Application Project. The complete project and associated application note can be found by doing a
search for "r30qan0309eu" in the search bar at the top of the www.renesas.com home page.

BLE Framework Module Important Operational Notes and Limitations

BLE Framework Module Operational Notes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 278 / 5,198

http://www.renesas.com

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

The BLE framework provides a common interface for the application. The implementation of the
interface is specific for each module. The Synergy BLE framework currently defines an interface
implemented for RL78G1D BLE module. Each implementation interacts with the corresponding BLE
device driver. The BLE device driver uses the underlying SSP communication framework
(g_sf_comms), which in turn interacts with the SSP HAL components such as Universal Asynchronous
Receiver/Transmitter (UART), Data Transfer Controller (DTC), and General PWM Timer (GPT) drivers
to communicate with the BLE module. The following figure shows a high-level architectural
description of the BLE Framework module.

Figure 141: Typical BLE Module Architecture Types

 GAP and GATT APIs

The BLE framework provides a generic interface for the application to configure and provision the
BLE module. The BLE module has various configuration parameters as specified by the family of
Bluetooth Smart standards. It is possible that individual device drivers and/or BLE modules might not
support all configuration parameters. At a bare minimum, the provisioning API provides a mechanism

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 279 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

to set the operating mode, security mode, security keys, and bonding mode of the BLE interface. It
also provides an API for the GAP/GATT layers.

On-Board Profiles APIs

The on-board profiles APIs provide a uniform interface to the BLE profiles implemented by the BLE
module firmware.

BLE Stack

The BLE module host stack is typically provided by the BLE module vendor. The BLE module typically
comes in three different flavors depending on the HW/SW partitioning between the host MCU and
BLE module. The RL78G1D BLE module is part of the Network Controller Implementation
architecture, where the BLE chipset includes all the implementation for the BLE link layer, GAP,
GATT, and on-board profiles. The module interfaces with the MCU over the sf_comms framework
provided by SSP.

Figure 142: BLE Module Architecture Types

 A: BLE radio-only mode

Link layer, L2CAP, GATT, GAP layers, profiles, and application run on the host MCU. Physical layer
runs on BLE chipset.

B: BLE controller implementation

Link layer runs on BLE chipset, L2CAP, and higher BLE protocol (GATT, GAP) layers. Profiles and
application run on the host MCU.

C: Network controller implementation

Link layer, L2CAP, GATT, GAP layers, and generic profiles run on the BLE chipset. Optional profiles
and application run on the host processor.

BLE Framework Instances

An application must define the BLE Framework instance before using it. The instance is a structure
that includes pointers to any of the following:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 280 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

BLE Framework Control Structure

This structure is used in all BLE Framework APIs. This structure includes pointer to driver handle,
which is used by the framework for storing the required information by the BLE device driver.

BLE Framework Configuration Structure

This structure is passed to sf_ble_api_t::open API and you can use this structure to configure the BLE
module. This configuration is applied either during initialization, such as open or provisioning such as
sf_ble_api_t::provisionSet API. Configuration parameters that are not supported by the BLE module
are ignored by the framework.

BLE Framework APIs Structure

This structure contains pointers to the BLE Framework APIs that are specific to a given module. See
Configuring the BLE Framework Module for more details on these APIs.

BLE Framework Module Operational Flow

The steps for using the BLE Framework module in an application are:

1. Initialize the BLE hardware module.
2. Select the GATT layer role such as GATT client or GATT server. It is most common for the

slave (peripheral) device to be the GATT server and the master (central) device to be the
GATT client.

3. The application controls operations using generic (on-board) profile APIs or GAP/GATT APIs.

Note
The GAP provisioning structure has a BLE user callback that runs in the driver thread context. An application
should make sure that callback logic is as minimal as possible without any blocking calls. Print statements or
blocking calls may introduce delays in BLE driver execution. Make sure that no BLE APIs are called in user
callbacks as it may also lead to code failure.

BLE Module Initialization Flow Sequence

The following BLE module initialization sequence is part of the Synergy auto-generated code:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 281 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

Figure 143: Auto-Generated Initialization Sequence Flow Chart

 On-Board Profile-Based Client Application Flow Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 282 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 283 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

Figure 144: On-Board Profile Client Application Flow

 On-Board Profile-Based Server Application Flow Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 284 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

Figure 145: On-Board Profile Server Application Flow

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 285 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

 GAP/GATT-Based Client Application Flow Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 286 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 287 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

Figure 146: GAP/GATT Client Application Flow

 GAP/GATT-Based Server Application Flow Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 288 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 289 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

Figure 147: GAP/GATT Client Application Flow

BLE Framework Security

Security Manager provides BLE protocol stack the ability to generate and exchange security keys
which is used to encrypt communication link. The Security Manager has two functions:

Initiator - This is the GAP Master/Central device
Responder - This is the GAP Slave/Peripheral device.

The initiator is the master device that initiate the security procedure, however the slave device can
asynchronously request the initiator to begin the security procedure.

BLE Framework Security Modes

BLE Security provides modes with levels associated with each mode. Security mode and level is a
combination of support for authenticated or unauthenticated pairing, encryption or data signing.
Pairing is required to satisfy various security requirements. Two types of pairing are available:

Authenticated pairing where devices are protected from MITM (Man In The Middle) attacks

Unauthenticated pairing where they are not protected from MITM.

Security Mode 1

Security Level 1: No Security
Security Level 2: Unauthenticated pairing with encryption
Security Level 3: Authenticated pairing with encryption
Security Level 4: Authenticated LE secure connections pairing with encryption

Security Mode 2

Security Level 1: Unauthenticated pairing with data signing
Security Level 2: Authenticated pairing with data signing

Note
RL78G1D BLE module does not support Security Mode 1 with Security Level 4.

On-Board Profile Security Modes

No Security: If On-Board Profile security is set to No Security then Profile communication works in
unsecured mode regardless of BLE GAP Security Mode and Level.

Unauthenticated: For this Profile Security method to work any of the BLE GAP Security Method other
than Security Mode 1 Level 1 should be used. Module should have completed Pairing with the remote
device.

Authenticated: For this Profile Security method to work any of the following BLE GAP Security Method
should be used. Module should have completed Pairing with the remote device.

Security Mode 1 Level 3
Security Mode 2 Level 2

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 290 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

Authorization: For this Profile Security method to work the remote device should have been
Authorized during GAP connection using BLE Framework authorization API. This On-Board profile
security parameter is specific to server API only.

Encryption: In this Security procedure, the profile will use encrypted communication. For this Profile
Security method to work, any of the BLE GAP Security methods other than Security Mode 1 Level 1
should be used. If any security method that does not use encryption is used, then the profile works in
unencrypted mode.

1. On-Board Profile security can be set in the sf_ble_onboard_profile_api_t::onbpEnable
function. The sf_ble_onboard_profile_api_t::onbpEnable API enables the profile in server
mode or client mode. It is a generic API to enable client and server mode. But, the profile
security parameter is specific to server API only. Security parameter can be set for server
only in driver APIs. So, user needs to set profile security for server enable API.

2. Profile security enums are in bit pattern, so more than one profile security can be set using
bitwise operators. There are a few points to keep in mind while setting the profile security:

If profile security is none, then other security bits should not be set.
Security bits should not be set to both authenticated and unauthenticated.

BLE Framework Security Procedure

BLE Security has the following procedures:

Pairing: This procedure is used to generate temporary encryption key to encrypt
communication link. Permanent encryption keys can be shared over this encrypted
communication link for additional communication.
Bonding: This is a combination of pairing and storing of permanent keys. After pairing, the
permanent keys are stored in a non-volatile memory, which creates a permanent bond
between two devices. For subsequent communication, it is not necessary for devices to
perform the bonding procedure.
Encryption Establishment: Communication is encrypted using permanent keys.

Pairing creates a secure link that lasts for the lifetime of the connection, whereas bonding creates a
permanent association called bond.

BLE Security Phases

BLE Security goes through three phases. Two devices establish connection using the GAP connection
procedure, followed by the three phases to establish a secure communication link:

Phase 1 (Pairing Phase, Information Sharing): Initially in phase 1, all information required to
generate the temporary keys are shared between two devices.
Phase 2 (Pairing Phase, Temporary Key Sharing): In this phase, temporary encryption key
(Short Term Key or STK) is generated on both devices. This is used to encrypt the
connection. This encrypted link can be used for additional communication. This
communication link remains encrypted until the peer devices stay connected.
Phase 3 (Bonding, Sharing and Storage of Permanent keys): Devices enter this phase if
bonding is required. In this phase, permanent keys (Long Term Key or LTK) are exchanged
between two devices using the encrypted link, which was established in phase 2 using
temporary keys. These permanent keys are then stored in non-volatile memory to be made
available for the devices over each connection.

BLE Framework Module Limitations

1. The BLE framework is tested only on the RL78G1D BLE hardware module. Support for

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 291 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > BLE Framework Module Operational Overview

different BLE modules will be added in later versions.
2. BLE Framework using RL78G1D will see compilation warnings. All the warnings are in the 3rd

party RL78G1D driver code. The BLE framework files do not have any warning. These
warnings should not impact the user applications.

3. The custom profile support in the BLE framework is limited to the RL78G1D type BLE
hardware module only.

4. HID profile client mode, not supported by the RL78G1D BLE hardware module. As a result,
the BLE framework implementation of the HID profile will also not support the HID profile
client mode. Applications using BLE framework for RL78G1D will not be able to use the HID
profile in client mode.

5. Multiple slave BLE devices cannot be connected to the RL78G1D BLE module.

The BLE framework is only tested on the following boards:

DK-S7G2 Version 3.1
DK-S3A7 Version 2.0
PK-S5D9 Version 1.0
ADK-S3A3
TB-S5D5 Version 0.5D
TB-S3A6 Version 0.5D
DK-S128 Version 0.5b
DK-S124 Version 3.1

Refer to the most recent SSP Release Notes for module limitations.

4.1.11.4 Including the BLE Framework Module in an Application

This section describes how to include the BLE Framework module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the BLE Framework module to an application, simply add it to a HAL /Common thread using
the stacks selection sequence given in the following table. (The default name for the BLE Framework
module is g_sf_ble0. This name can be changed in the associated Properties window.)

BLE Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_ble0 RL78G1D BLE GAP
and GATT on sf_ble_rl78g1d

Threads New Stack> Framework>
Networking> BLE> RL78G1D
BLE GAP and GATT on
sf_ble_rl78g1d

g_sf_ble_onboard_profile0 On-
Board Profile on RL78G1D BLE
Framework

Threads New Stack> Framework>
Networking> BLE>
On-Board Profile on
RL78G1D BLE Framework

When the BLE Framework module on sf_ble is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 292 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > Including the BLE Framework Module in an Application

additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 148: BLE Framework Module Stack

 In the stack above, the Add Communication Framework block has not been populated yet. There are
multiple possible selections for the Communication Frameowork; they are not all provided so as to
not complicate needlessly, the figure and the following configuration tables. Typical options include:

Communications Framework on sf_comms_telnet
Communications Framework on sf_el_ux_comms_v2
Communications Framework on sf_uart_comms

4.1.11.5 Configuring the BLE Framework Module

The BLE Framework module must be configured by the user for the desired operation. The SSP
configuration window will automatically identify (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules in order to ensure successful operation. Furthermore, only those properties that can
be changed without causing conflicts are available for modification. Other properties are 'locked' and
are not available for changes, and are identified with a lock icon for the 'locked' property in the
Properties window in the ISDE. This approach simplifies the configuration process and makes it much
less error-prone than previous 'manual' approaches to configuration. The available configuration
settings and defaults for all the user-accessible properties are given in the Properties tab within the
SSP configurator, and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 293 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > Configuring the BLE Framework Module

Configuring the On-Board Profile Profile on RL78G1D BLE Framework

Configuration Settings for the On-Board Profile on RL78G1D BLE Framework

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Heart Rate Profile Enabled, Disabled

Default: Enabled

Heart rate profile selection.

Alert Notification Profile Enabled, Disabled

Default: Disabled

Alert notification profile
selection.

Blood Pressure Profile Enabled, Disabled

Default: Disabled

Blood pressure profile selection.

Find Me Profile Enabled, Disabled

Default: Disabled

Find me profile selection.

HID Over GATT Profile Enabled, Disabled

Default: Disabled

HID gatt profile selection.

Health Thermometer Profile Enabled, Disabled

Default: Disabled

Health thermometer profile
selection.

Phone Status Alert Profile Enabled, Disabled

Default: Disabled

Phone alert profile selection.

Proximity Profile Enabled, Disabled

Default: Disabled

Proximity profile selection.

Scan Parameter Profile Enabled, Disabled

Default: Disabled

Scan parameter profile
selection.

Time Profile Enabled, Disabled

Default: Disabled

Time profile selection.

Name g_sf_ble_onboard_profile0 Module name.

Name of generated initialization
function

sf_ble_rl78g1d_onboard_profile_
init0

Name of generated initialization
function.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 294 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > Configuring the BLE Framework Module

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the BLE GAP and GATT on sf_ble_rl78g1d

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_sf_ble0 Module name.

Bluetooth Device Address
(Restart Board after first run to
see changed Address)

{0x0, 0x0, 0x0, 0x0, 0x0} Bluetooth device address
selection.

Address Type Public Address, Random
Address

Default: Public Address

Address type selection.

Scan Interval 48 Scan interval selection.

Scan Window 48 Scan window selection.

Maximum Connection Interval 40 Maximum connection interval
selection.

Connection Slave Latency 0 Connection slave latency
selection.

Supervision Timeout 80 Supervision timeout selection.

BLE Driver Thread Priority 1 BLE Driver thread priority
selection.

BLE Serial Thread Priority 1 BLE Serial thread priority
selection.

Name of generated initialization
function

sf_ble_rl78g1d_init0 Name of generated initialization
function.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuring the On-Board Profile Profile on RL78G1D BLE Framework Lower-Level
Modules

Typically, only a small number of settings must be modified from the default for lower-level drivers
as indicated with red text in the thread stack block. Notice that some of the configuration properties
must be set to a certain value for proper framework operation and will be locked to prevent user
modification. The following tables identify all the settings within the properties section for the lower-

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 295 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > Configuring the BLE Framework Module

level modules.

Configuration Settings for the Timer Driver on r_gpt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_timer0 Module name.

Channel 0 Channel selection.

Mode Periodic Warning: One-shot functionality
is not available in the GPT
hardware, so it is implemented
in software by stopping the
timer in the ISR, called when
the period expires. For this
reason, ISRs must be enabled
for one-shot mode even if the
callback is unused.

Duty Cycle Range (only
applicable in PWM mode)

Shortest: 2 PCLK, Longest
(Period-1) PCLK/Shortest: 1
PCLK, Longest: (Period-2) PCLK

Default: Shortest 2 PCLK,
Longest: (Period-1) PCLK

Select the duty cycle range.
Due to hardware limitations,
one PCLK is added before the
output pin toggles after the
duty cycle is reached. This
extra clock cycle is added to
the ON time (if Shortest: 2 PCLK
is selected) or the OFF time (if
Shortest: 1 PCLK is selected)
based on this configuration.

Period Value 10 See Timer Period Calculation.

Period Unit Milliseconds See Timer Period Calculation.

Duty Cycle Value 50 Duty cycle value selection.

Duty Cycle Unit Unit Raw Counts Duty cycle unit selection.

Auto Start True Set to true to start the timer
after configuring or false to
leave the timer stopped until
timer_api_t::start is called.

GTIOCA Output Enabled False Set to true to output the timer
signal on a port pin configured
for GPT. Set to false for no
output of the timer signal.

GTIOCA Stop Level Pin Level Low Controls output pin level when
the timer is stopped.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 296 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > Configuring the BLE Framework Module

GTIOCB Output Enabled False Set to true to output the timer
signal on a port pin configured
for GPT. Set to false for no
output of the timer signal.

GTIOCB Stop Level Pin Level Low Controls output pin level when
the timer is stopped.

Callback RBLE_Timer_cb A user callback function can be
registered in timer_api_t::open.
If this callback function is
provided, it will be called from
the interrupt service routine
(ISR) each time the timer period
elapses.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Overflow Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

Overflow interrupt priority
selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

BLE Framework Module Clock Configuration

The BLE Framework module uses the clocks specified by the lower-level modules.

BLE Framework Module Pin Configuration

The BLE Framework module uses the pins specified by the lower-level modules.

4.1.11.6 Using the BLE Framework Module in an Application

The steps in using the Bluetooth Low Energy Framework module in a typical application are:

1. Initialization- registration of callback functions, provisioning, and advertisement using the
sf_ble_api_t::open API.

2. Provision the BLE module using the sf_ble_api_t::provisionSet API.

3. Scan for advertisement using the sf_ble_api_t::scan API.

4. Connect to remote BLE device using the sf_ble_api_t::connect API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 297 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > BLE Framework > Using the BLE Framework Module in an Application

5. Enable the on-board profile using the sf_ble_onboard_profile_api_t::onbpEnable API.

6. Enable notification using the sf_ble_onboard_profile_api_t::onbpClientWriteCCCD API.

7. Write profile characteristics using the sf_ble_onboard_profile_api_t::onbpServerWriteData API.

8. Read profile characteristics using the sf_ble_onboard_profile_api_t::onbpClientReadChar API.

9. Disable the profile using the sf_ble_onboard_profile_api_t::onbpDisable API.

10. Disconnect from the remote BLE device using the sf_ble_api_t::disconnect API.

11. Close the BLE module using the sf_ble_api_t::close API.

The following figure illustrates common steps in a typical operational flow diagram:

Figure 149: Application Control Flow using BLE Module Initialization

4.1.12 Cellular Framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 298 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Introduction

4.1.12.1 Cellular Framework Introduction

The Cellular Framework module provides a high-level application layer interface for cellular modem
integration in SSP. The Cellular Framework provides a common interface for the applications to
interface with the cellular modems from various vendors.

The Cellular Framework provides a set of APIs to provision, configure, and communicate with the
cellular network for data communication. The Cellular Framework uses the UART Comms Framework
to communicate with cellular modems over a serial interface by using AT commands. The Cellular
framework creates the serial data pipe over a serial interface for the data communication, leveraging
the PPP WAN protocol provided by NetX™. Data communication using TCP/IP can be established over
this Wide Area Network (WAN) link using NetX Application protocols, sockets or IoT protocols such as
MQTT.

The Cellular Framework also provides the framework-level socket APIs to communicate with the
TCP/IP stack present on-chip (inside cellular hardware module) in certain cellular hardware modules
and with the TCP/IP link for the network using socket APIs.

Cellular Framework Module Features

Supports connectivity using:
BSD Socket interface for On-Chip stack present on the Cellular Module
NetX Stack on Synergy MCU (Host) using NSAL interface

Supports a common a set of APIs to interface to the networking stack and a generic
interface for the different Cellular hardware modules.
Using generic APIs and abstraction, applications developed for the cellular hardware module
can be easily migrated to work with another cellular hardware module.
Supported Cellular modems:

RYZ014A CAT M1 (PMOD Expansion Board for RYZ014A) (For information on this
kit, see:
https://www.renesas.com/us/en/products/interface-connectivity/wireless-communic
ations/cellular-iot-modules/rtkyz014a0b00000be-pmod-expansion-board-ryz014a)
Quectel BG96 (CAT M1, NB-IoT and GPRS) Rev F

Note
The following boards are obsolete and are no longer supported in SSP:

NimbeLink CAT3 (NL-SW-LTE-TSVG, REVISION 17.01.571) Verizon-US
NimbeLink CAT3 (NL-SW-LTE-TEUG, REVISION 17.01.571) India and Europe
NimbeLink CAT1 (NL-SW-LTE-GELS3-B and NL-SW-LTE-GELS3-C, REVISION 4.3.3.0c) Verizon-
US

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 299 / 5,198

https://www.renesas.com/us/en/products/interface-connectivity/wireless-communications/cellular-iot-modules/rtkyz014a0b00000be-pmod-expansion-board-ryz014a
https://www.renesas.com/us/en/products/interface-connectivity/wireless-communications/cellular-iot-modules/rtkyz014a0b00000be-pmod-expansion-board-ryz014a

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Introduction

Figure 150: Cellular Framework Module Block Diagram

Note
Any of the four BSD Socket On-Chip stacks can implement any of the four Cellular Framework modules below it.
Similarly, the NetX Port on sf_cellular_nsal_nx can implement any of the four Cellular Framework modules below
it.

4.1.12.2 Cellular Framework Module APIs Overview

The Cellular Framework defines APIs for each of the related modules. The following descriptions
explain the operation of each API.

Note
A more detailed description of the Cellular framework module APIs are available in the Cellular Application Note,
downloadable from the Renesas web site. Just search, in the top search bar, for R30AN0311 and the application
note and application project will be listed in the search results.

Cellular Framework Module APIs

Cellular Framework Module API Summary

Function Name Example API Call and Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 300 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module APIs Overview

open g_sf_cellular0.p_api->open (g_sf_cellular0.p_ctrl,
g_sf_cellular0.p_cfg);
This API function initializes and enables the
Cellular module. The open function returns the
Cellular control structure, uniquely identifying
the instance of the Cellular framework. The
Cellular framework open function accepts the
Cellular module configuration as an argument,
with the following parameters:
- Operator Selection Mode (enumeration)
- Operator Name Format (enumeration)
- Operator Name (string)
- Preferred Operator List (array of structures)
- Time zone update policy (enumeration)

close g_sf_cellular0.p_api->close
(g_sf_cellular0.p_ctrl);
This API uninitializes the Cellular module and
disables it. It takes the Cellular control structure
as an argument.

infoGet g_sf_cellular0.p_api->infoGet
(g_sf_cellular0.p_ctrl, p_cellular_info);
This API takes the Cellular control structure as
an argument and returns the following
information obtained from the Cellular module:
- Chipset/driver information (string)
- Manufacturer name (string)
- Firmware version (string)
- IMEI number (string)
- RSSI value (unsigned integer 16 bits)
- Bit Error Rate (unsigned integer 16 bits)

statisticsGet g_sf_cellular0.p_api->statisticsGet
(g_sf_cellular0.p_ctrl, p_stats);
This API gets the data statistics from the Cellular
module. It takes the Cellular control structure as
an argument and returns the following statistics:
- Received packets (unsigned integer 32 bits)
- Transmitted packets (unsigned integer 32 bits)
- Transmit packet errors (unsigned integer 32
bits)

transmit g_sf_cellular0.p_api->transmit
(g_sf_cellular0.p_ctrl, p_buffer, length);
This API sends the data/packet out. It takes the
Cellular control structure, the data buffer and
the data buffer length as an argument. The
Cellular framework transmit function passes the
data buffer to the PPP driver for transmission.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 301 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module APIs Overview

provisioningGet g_sf_cellular0.p_api->provisioningGet
(g_sf_cellular0.p_ctrl, p_cellular_provisioninfo);
This API takes the Cellular control structure as
an argument and returns the following
parameters:
- Authentication type(enumeration)
- Username (string)
- Password (string)
- APN Name(string)
- PDP Context ID (integer)
- PDP Context Type (enumeration)
- Airplane mode (enumeration)

provisioningSet g_sf_cellular0.p_api->provisioningSet
(g_sf_cellular0.p_ctrl, p_cellular_provisioninfo);
This API sets the authentication credential
information. It takes the Cellular control
structure and the following parameters as
argument to provision the Cellular module:
- Authentication type(enumeration)
- Username (string)
- Password (string)
- APN Name(string)
- PDP Context ID (integer)
- PDP Context Type (enumeration)
- Airplane mode (enumeration)

networkConnect g_sf_cellular0.p_api-> networkConnect
(g_sf_cellular0.p_ctrl);
This API establishes the Network connection
over Cellular Network, using which the
application can communicate to remote host
with the help of Network stack. It takes the
Cellular control structure as an argument.

networkDisconnect g_sf_cellular0.p_api->networkDisconnect
(g_sf_cellular0.p_ctrl);
This API terminates the Network connection
established using networkConnect API. It takes
the Cellular control structure as an argument.

simPinSet g_sf_cellular0.p_api->simPinSet
(g_sf_cellular0.p_ctrl, p_pin);
This API allows the application/user to change
the PIN required to register on Cellular Network.
It takes the Cellular control structure, old PIN
and New PIN as arguments.

simLock g_sf_cellular0.p_api->simLock
(g_sf_cellular0.p_ctrl, p_pin);
This API locks the SIM. It takes the Cellular
control structure and Sim PIN as arguments.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 302 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module APIs Overview

simUnlock g_sf_cellular0.p_api->simUnlock
(g_sf_cellular0.p_ctrl, p_pin);
This API unlocks the SIM. It takes the Cellular
control structure and Sim PIN as arguments.

simIDGet g_sf_cellular0.p_api->simIDGet
(g_sf_cellular0.p_ctrl, p_sim_id);
This API reads the Sim ID from the Cellular
module. It takes the Cellular control structure as
argument and returns the SIM ID read from the
Cellular module.

commandSend g_sf_cellular0.p_api->commandSend
(g_sf_cellular0.p_ctrl, p_input_at_commmand,
p_output, timeout);
Send AT command directly to Cellular Modem.

networkStatusGet g_sf_cellular0.p_api-> networkStatusGet
(g_sf_cellular0.p_ctrl, p_status);
This API gets Cellular Module Network Status
information. It takes the Cellular control
structure as argument and returns following
parameters:
- Country code (integer)
- Operator code (integer)
- RSSI (integer)
- Cell ID (string)
- IMSI (string)
- Operator name (string)
- Service Domain (integer)
- Active Band (integer).

versionGet g_sf_cellular0.p_api->versionGet (p_version);
This API retrieves the version for the API using
the version pointer.

reset g_sf_cellular0.p_api->reset (g_sf_cellular0.p_ctrl,
reset_type);
Reset the cellular hardware module.

Note
** **When using commandSend API with RYZ014 cellular modem always give the exact size of the AT command in
the p_input_at_commmand parameter.
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables review the SSP User's Manual API References for the associated
module.

Cellular Framework Module Socket APIs Summary

These APIs can be used to configure the cellular module when using an on-chip networking stack,
which helps to ping particular ip address, opening and closing of scokets and also to perform socket
operations like TCP/UDP data transfer.

On-Chip Networking Stack Support Cellular Framework Module API Summary

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 303 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module APIs Overview

Function Name Example API Call and Description

open g_sf_cellular_socket0.p_api->open
(g_sf_cellular_socket0.p_ctrl,
g_sf_cellular_socket0.p_cfg);
This API calls the Cellular Framework's lower
level open () API to Initialize the Cellular Device
Driver.

close g_sf_cellular_socket0.p_api->close
(g_sf_cellular_socket0.p_ctrl);
This API calls the Cellular Framework's lower
level close () API to close the Cellular Device
Driver.

versionGet g_sf_cellular_socket0.p_api->versionGet
(p_version);
This API retrieves the version for the API using
the version pointer.

ping g_sf_cellular_socket0.p_api->ping
(g_sf_cellular_socket0.p_ctrl,
p_ip_address, count, interval_ms);
This api pings the IP address provided by user.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

These API functions can be used by an application to perform data transfers using sockets. They
include socket API functions which are compliant with these BSD API functions:

socket
close
connect
send
recv
sendto
recvfrom
select

Note
Ping functionality is supported only for RYZ014A CATM1 modem and is an unsupported feature for Quectel
CATM1 modems.

Cellular Framework Error Codes

The following table lists the Cellular Framework specific error codes. These error codes are part of
ssp_err_t.

Cellular Framework Error Codes

Error Codes Description

SSP_SUCCESS Call successful.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 304 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module APIs Overview

SSP_ERR_CELLULAR_CONFIG_FAILED Configuration failed.

SSP_ERR_CELLULAR_INIT_FAILED Initialization failed.

SSP_ERR_CELLULAR_TRANSMIT_FAILED Transmit failed.

SSP_ERR_CELLULAR_FW_UPTODATE Up to date.

SSP_ERR_CELLULAR_FW_UPGRADE_FAILED Upgrade failed.

SSP_ERR_CELLULAR_FAILED General failure.

SSP_ERR_CELLULAR_INVALID_STATE Invalid state.

SSP_ERR_CELLULAR_REGISTRATION_FAILED Registration failure.

4.1.12.3 Cellular Framework Module Operational Overview

The Cellular Framework provides a generic interface for applications to seamlessly communicate
with the cellular hardware module from various vendors without the necessity of changing the
applications. The framework mainly consists of a common set of APIs to interface to the networking
stack and different cellular hardware modules. This section introduces the Cellular Framework's basic
blocks and key features that enable you to determine whether the intended cellular application can
be developed using the Cellular Framework.

Note
Additional operational descriptions of the Cellular Framework module are available in the Cellular Application
Note, downloadable from the Renesas web site. Search (in the search bar at the top of the screen) for R30AN0311
and the application note and application project will be listed in the search results.

With the provided API and abstraction, the applications developed for the cellular hardware module
can be easily ported to use another cellular hardware module. The networking stack NetX is also
integrated with the framework using the Network Software Abstraction Layer (NSAL).

The Synergy Cellular Framework consists of the following logical blocks:

Synergy Cellular Framework Application Interface.
Network Stack Abstraction Layer (NSAL) for NetX TCP/IP stack.
Cellular Device Driver (AT command interface for interacting with the cellular chipset).
BSD Socket compatible APIs for interfacing with Cellular hardware module that supports on-
chip networking stack.
Synergy Software Package(SSP) HAL Interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 305 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module Operational Overview

Figure 151: Cellular Framework Module Application Perspective

 The Cellular Framework provides a common set of interfaces for the application to configure,
provision and to communicate with the cellular hardware module. By using these generic interfaces,
the user can develop a cellular-based application using Synergy MCUs. The cellular hardware module
has various configuration parameters as specified by the family of 3GPP standards. It is possible that
individual device drivers and/or cellular chipsets/modules will not support configuration of all
parameters. At a bare minimum, the network operator, Access Point Name (APN) and security
credentials are required to make the module functional.

Network Stack Abstraction Layer

The Cellular Framework provides a network stack abstraction layer (NSAL). The NSAL is layer that
connects the NetX and the cellular driver by using a (PPP) stack that is used for data communication
over a WAN link.

Socket Interface Layer

The Cellular Framework provides a socket-level API for the application to interact with the on-chip
networking stack present on the cellular hardware module. This requires the cellular hardware
module/driver to support an on-chip networking stack and socket interface. When the application
uses these APIs, it uses the on-chip networking stack present on the cellular hardware module and
does not use the NSAL or the NetX and its socket APIs and does not use the Networking stack
running on the Synergy MCU Group.

PPP Stack

Point to point protocol (PPP) is a widely used WAN protocol in data communication. The PPP stack is a
part of the NetX stack available in the SSP. The NSAL leverages the PPP stack to communicate over

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 306 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module Operational Overview

the serial interface to the cellular service provider's network. PPP configuration provides options for
authentication methods like PAP/CHAP; these authentication mechanisms are optional for the link
establishment. The NSAL makes use of framework APIs to send/receive data from the cellular
hardware module. The NSAL also allows the cellular device driver to be re-used without any specific
changes to the network stack.

Cellular Device Driver (AT Command Interface For Interacting With The Cellular Chipset)

The Cellular Framework uses the AT command set to interact with the cellular modem using the
serial driver. The serial interface used to interact with the modem is the UART. The UART speed used
in the framework defaults ranges up to 115200 bits/sec.

Cellular Framework Module Important Operational Notes and Limitations

Cellular Framework Module Operational Notes

The application can be used in two different paths for the communication using the framework,
depending on the support available on the cellular modems. Some modules provide options to use
the TCP/IP stack at the host end and other modules provide options to use the TCP/IP stack present
on the cellular modem itself. In some cases, the cellular hardware module provides both. When the
host TCP/IP stack (NetX) is used, the logical layers of NetX, the NSAL and the PPP are used as
described in the architecture diagram. When the on‑chip stack is used, the socket APIs are used to
communicate with the TCP/IP stack present on the cellular modem. However, the user cannot use
both at the same time.

In the sf_cellular_qctlcatm1 framework, AT commands should be passed after the "APP RDY" string.
However, in the current sf_cellular_qctlcatm1 framework, AT commands are being passed before the
"APP RDY" string is received. There is no functional impact because, in the current
sf_cellular_qctlcatm1 framework, instead of checking the "APP RDY" string, "OK" response is being
checked in the BG 96 modem, which ensures that the modem is working.

Cellular Framework Module Initialization

As shown in the following control flow diagram, during the initialization using the configuration
supplied by the user as required for the cellular modem, nx_ip_create is called. This API internally
invokes the NSAL driver entry function that takes care of the link-level initialization and initializes the
cellular hardware module. Additionally, it provisions the module and establishes the Network
connection using the PPP interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 307 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module Operational Overview

Figure 152: Cellular Framework Module Initialization Sequence

Cellular Hardware Module Provisioning

During the provisioning of the cellular modem, control structure and user configuration structures
are passed as arguments. The details of the user arguments used for provisioning are the
authentication, APN, username and password.

Application Flow Control Using the Socket Interface

The following flow diagram shows the flow for the on-chip stack path usage with the Cellular Socket
interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 308 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module Operational Overview

Figure 153: Cellular Framework Module Socket Interface

Cellular Packet Transmission

The following flow diagram shows the sequence of steps that the packet transmission uses for the
NetX application.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 309 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module Operational Overview

Figure 154: Cellular Framework Module Packet Transmission Sequence

Cellular Packet Reception

The following flow diagram shows the Packet reception for the Cellular Framework using NetX. In the
case of a receive, when the data is received on the serial interface, the processing thread triggers
the callback function and the callback functions handles the data and sends it to the NetX layers for
further processing.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 310 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module Operational Overview

Figure 155: Cellular Framework Module Packet Reception Sequence

Cellular Module baud rate

The Cellular Framework baud rate update feature works in the following stages:

Check if the modem is operating at the baud rate set by the user in ISDE. If so, proceed
with modem initialization.
If the modem is not responding over the user specified baud rate, auto detect the baud rate
at which the modem is currently operating.
Switch the modem to the baud rate configured by the user in the ISDE. (This baud rate is
then saved on the module).

The developer can configure the Baud rate of the UART under SF_CELLULAR in ISDE configuration as
shown in the below image. This is the baud rate at which user wants the Modem to operate.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 311 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module Operational Overview

Figure 156: ISDE configuration for baud rate

 Operational Steps

1. The Cellular Framework will try to communicate over the baud rate specified in the ISDE. If
the module responds over that Baud rate, then the baud rate change feature will not be
initiated.

2. If the Modem does not respond to the ISDE configured baud rate, then the Cellular
Framework will detect the baud rate at which the Modem is operating currently. Once the
baud rate is detected, the Cellular Framework will change the baud rate of the Modem to
the user configured baud rate. The Framework will then save the baud rate configuration in
the Modem.

Note
The Cellular Framework will detect the baud rate of the Modem from the following list of
baud rates {115200, 9600, 921600, 4800, 14400, 19200, 38400, 57600, 230400, 460800}.
The baud rate configured in the ISDE will be skipped from the above list.

3. Once the Baud rate of the Modem is configured, the Cellular Framework will proceed with
Modem initialization.

Framework close sequence

When using the Cellular framework with NSAL, that is, with NetX/NetX Duo, the application should
call the NetX nx_ip_delete() API directly.

When using the On chip networking stack, the application shouldcall the sf_cellular_api_t::close API
from the BSD socket interface, which internally calls the Cellular framework module
sf_cellular_api_t::close API.

Runtime configuration support for SIM Properties

The cellular framework provides provision to set the SIM Pin and PUK value of SIM as a ISDE XML
properties to unlock the SIM Card. These properties are used by SF Cellular framework to unblock the
SIM access if SIM is in Lock state. In addition to these properties, Cellular framework also provides a
callback function property to read the SIM Pin and PUK value at runtime. If user sets this callback
function, and Cellular framework founds that SIM is in Locked state (either SIM Pin or SIM PUK Lock)
then Cellular framework calls the callback function with the SIM Lock status. Based on the Sim Lock
status, user should provide SIM Pin and/or SIM PUK information to callback function as mentioned

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 312 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module Operational Overview

below:

1. If SIM Status is SF_CELLULAR_SIM_STATUS_PIN_REQUIRED, user should provide SIM Pin
information.

2. If SIM Status is SF_CELLULAR_SIM_STATUS_PIN_PUK_REQUIRED then user should provide
SIM Pin and PUK information in callback function.

Below is an illustrative code snippet for the callback function showing the configuration of the SIM
Pin/PUK information at runtime.

Note
If SIM is in SIM Lock state and user entered invalid SIM Pin for 3 times, SIM get locked to SIM PUK state. SIM
PUK pin is needed to collect from Cellular network providers. Entering invalid SIM PUK can block SIM
permanently.

Cellular Framework Module Limitations

The current framework supports the following Cellular modules:
RYZ014 CATM1 (RYZ014A PMOD).
Quectel BG96 (CAT M1, NB-IoT and GPRS) with firmware version
BG96MAR02A07M1G_01.008.01.008

RYZ014 does not support
NBIOT network band.
GSM network and GSM fallback sequence.

The next section, Updating the Quectel BG96 firmware, includes instructions for
downloading and updating the firmware for BG96 on the modules. Refer to the most recent
SSP Release Notes for any additional operational limitations for this module.

Updating the Quectel BG96 Firmware

To determine the current version of firmware on the module, issue the following commands:

ATI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 313 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Cellular Framework Module Operational Overview

AT+QGMR

To update (flash) the firmware for the Quectel BG96 (CAT M1, NB-IoT and GPRS), follow these
instructions:

1. First, download the QFLASH firmware update utility from the Quectel BG96 product
download page: https://www.quectel.com/ProductDownload/BG96.html. Click the Download
button and open the zip file.

2. From the Tool folder, extract the QFLASH tool.
3. From the Driver folder, extract the Quectel LTE Windows USB Driverand follow the steps

below to install the LTE Driver:

a. Unzip and install the LTE Driver on your PC, then connect the USB port of the
module to the PC with a USB cable. Check if the DM port of USB appears in device
manager:

4. Download the firmware from https://support.quectel.com. For information on this process,
see the Renesas Knowledge Base: https://en-
support.renesas.com/knowledgeBase/18243404.

5. Upzip firmware and QFLASH file and follow these steps:

a. Click Load FW Files and load the firmware path (shown as 1 in the figure below):

b. Choose DM port (shown as 2 in the figure above).
c. Choose 460800 baud rate (shown as 3 in the figure above).
d. Click Start.
e. Normally, it takes a while for the upgrade to complete and display the success

message. Check module firmware with "ATI" command.

4.1.12.4 Including the Cellular Framework Module in an Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 314 / 5,198

https://www.quectel.com/ProductDownload/BG96.html
https://support.quectel.com
https://en-support.renesas.com/knowledgeBase/18243404
https://en-support.renesas.com/knowledgeBase/18243404

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Including the Cellular Framework Module in an Application

This section describes how to include the Cellular Framework module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Cellular Framework module to an application, simply add it to a HAL /Common thread
using the stacks selection sequence given in the following table. (The default name for the Cellular
Framework module is g_sf_cellular0. This name can be changed in the associated Properties
window.)

Cellular Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_cellular_socket0 BSD
Socket using RYZ014 CATM1 /
Quectel CATM1 On-Chip Stack
on RYZ014 CATM1 / Quectel
CATM1 Cellular Framework

Threads New Stack> Framework>
Networking> Cellular> BSD
Socket using RYZ014 CATM1 /
Quectel CATM1 On-Chip Stack
on RYZ014 CATM1 / Quectel
CATM1 Cellular Framework

g_sf_cellular_0 Cellular
Framework on RYZ014 CATM1 /
Quectel CATM1 Modem

Threads New Stack> Framework>
Networking> Cellular> Cellular
Framework on RYZ014 CATM1
/Quectel CATM1 Modem

g_sf_el_nx0 NetX Port using
Cellular Framework on
sf_cellular_nsal_nx

Threads New Stack> Framework>
Networking> Cellular> NetX
Port using Cellular Framework
on sf_cellular_nsal_nx

When the Cellular Framework module on sf_cellular is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with a
Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 315 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Including the Cellular Framework Module in an Application

Figure 157: Cellular Framework Module Stack

 In the stack above, the Add SF Communications Framework block has not been populated yet. There
are multiple possible selections for the Communication Framework; they are not all provided so as
not to needlessly complicate the figure and the following configuration tables. Communications
Framework on sf_uart_comms should be used when using the sf_cellular framework.

4.1.12.5 Configuring the Cellular Framework Module

The Cellular Framework module must be configured by the user for the desired operation. The SSP
configuration window will automatically identify (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules in order to ensure successful operation. Furthermore, only those properties that can
be changed without causing conflicts are available for modification. Other properties are 'locked' and
are not available for changes, and are identified with a lock icon for the 'locked' property in the
Properties window in the ISDE. This approach simplifies the configuration process and makes it much
less error-prone than previous 'manual' approaches to configuration. The available configuration
settings and defaults for all the user-accessible properties are given in the Properties tab within the
SSP configurator, and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

Configuration Settings for the BSD Socket Using RYZ014 CATM1 On-Chip Stack on RYZ014
CATM1 Cellular Framework

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 316 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Configuring the Cellular Framework Module

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
checking.

Name g_sf_cellular_socket0 Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the BSD Socket Using Quectel CATM1 On-Chip Stack on Quectel
CATM1 Cellular Framework

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
checking.

Name g_sf_cellular_socket0 Module name.

Name of generated initialization
function

sf_cellular_qctcatm1_socket_init
0

Name of generated initialization
function selection.

Auto Initialization Enable, Disable
Default: Enable

Auto initialization selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Cellular Framework on Quectel CATM1 Modem

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
checking.

On-Chip Stack Support Enabled, Disabled
Default: Disabled

On-chip stack support selection.

AT Command Retry Count 5 Modem selection.

Name g_sf_cellular0 Module name.

SIM Pin (Used to Unlock SIM) 1111 SIM Pin selection.

SIM PUK Pin (Used to Unlock
SIM)

12345678 SIM PUK Pin selection.

SIM Pin/PUK Callback to read
SIM Pin/PUK value at
runtimeNULL

NULL SIM Pin/PUK read callback
selection.

Number of Preferred Operator 0 Number of preferred operator
selection.

Preferred Operator 1 Name 40422 Preferred operator 1 name
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 317 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Configuring the Cellular Framework Module

Preferred Operator 1 Name
Format

Long, Short, Numeric
Default: Numeric

Preferred operator 1 name
format selection.

Preferred Operator 2 Name 40424 Preferred operator 2 name
selection.

Preferred Operator 2 Name
Format

Long, Short, Numeric
Default: Numeric

Preferred operator 2 name
format selection.

Preferred Operator 3 Name 40422 Preferred operator 3 name
selection.

Preferred Operator 3 Name
Format

Long, Short, Numeric
Default: Numeric

Preferred operator 3 name
format selection.

Preferred Operator 4 Name 40424 Preferred operator 4 name
selection.

Preferred Operator 4 Name
Format

Long, Short, Numeric
Default: Numeric

Preferred operator 4 name
format selection.

Preferred Operator 5 Name 40422 Preferred operator 5 name
selection.

Preferred Operator 5 Name
Format

Long, Short, Numeric
Default: Numeric

Preferred operator 5 name
format selection.

Operator Select Mode Auto, Manual, Deregister,
Manual Fallback
Default: Auto

Operator select mode selection.

Operator Name (Manual Mode
Selection)

40422 Operator name selection.

Operator Name Format (Manual
Mode Selection)

Long, Short, Numeric
Default: Numeric

Operator name format
selection.

Time Zone Update Policy Enabled, Disabled
Default: Enabled

Time zone update policy
selection.

Receive Data Callback sf_cellular_nsal_recv_callback Receive data callback selection.

Provisioning Callback celr_prov_callback Provisioning callback selection.

Circular Queue Size in Bytes 256 Circular queue size selection.

SF Communications Framework
Thread Stack Size

512 SF communications framework
thread stack size selection.

Numerical priority of SF
Communication Framework
Thread. Legal values range
from 0 through
(TX_MAX_PRIORITIES-1), where
a value of 0 represents the
highest priority.

5 Numerical priority of SF
communication framework
thread selection.

Cellular Module Reset IO Pin IOPORT_PORT_01_PIN_06 Cellular module reset IO pin
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 318 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Configuring the Cellular Framework Module

Network Scan Sequence LTE cat.M1-> LTE Cat.NB1->
GSM, LTE Cat.M1-> GSM-> LTE
Cat.NB1, GSM-> LTE Cat.NB1->
LTE Cat.M1, GSM-> LTE
Cat.M1-> LTE Cat.NB1, LTE
Cat.NB1 -> LTE Cat.M1 -> GSM,
LTE Cat.NB1 -> GSM -> LTE
Cat.M1
Default: LTE cat.M1-> LTE
Cat.NB1-> GSM

Network scan sequence
selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Cellular Framework on RYZ014 CATM1 Modem

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
checking.

On-Chip Stack Support Enabled, Disabled
Default: Disabled

On-chip stack support selection.

AT Command Retry Count 5 Modem selection.

Name g_sf_cellular0 Module name.

SIM Pin (Used to Unlock SIM) 1111 SIM Pin selection.

SIM PUK Pin (Used to Unlock
SIM)

12345678 SIM PUK Pin selection.

SIM Pin/PUK Callback to read
SIM Pin/PUK value at
runtimeNULL

NULL SIM Pin/PUK read callback
selection.

Number of Preferred Operator 0 Number of preferred operator
selection.

Preferred Operator 1 Name 40422 Preferred operator 1 name
selection.

Preferred Operator 1 Name
Format

Long, Short, Numeric
Default: Numeric

Preferred operator 1 name
format selection.

Preferred Operator 2 Name 40424 Preferred operator 2 name
selection.

Preferred Operator 2 Name
Format

Long, Short, Numeric
Default: Numeric

Preferred operator 2 name
format selection.

Preferred Operator 3 Name 40422 Preferred operator 3 name
selection.

Preferred Operator 3 Name
Format

Long, Short, Numeric
Default: Numeric

Preferred operator 3 name
format selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 319 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Configuring the Cellular Framework Module

Preferred Operator 4 Name 40424 Preferred operator 4 name
selection.

Preferred Operator 4 Name
Format

Long, Short, Numeric
Default: Numeric

Preferred operator 4 name
format selection.

Preferred Operator 5 Name 40422 Preferred operator 5 name
selection.

Preferred Operator 5 Name
Format

Long, Short, Numeric
Default: Numeric

Preferred operator 5 name
format selection.

Operator Select Mode Auto, Manual
Default: Auto

Operator select mode selection.

Operator Name (Manual Mode
Selection)

40422 Operator name selection.

Operator Name Format (Manual
Mode Selection)

Long, Short, Numeric
Default: Numeric

Operator name format
selection.

Time Zone Update Policy Enabled, Disabled
Default: Enabled

Time zone update policy
selection.

Receive Data Callback sf_cellular_nsal_recv_callback Receive data callback selection.

Provisioning Callback celr_prov_callback Provisioning callback selection.

Circular Queue Size in Bytes 256 Circular queue size selection.

SF Communications Framework
Thread Stack Size

512 SF communications framework
thread stack size selection.

Numerical priority of SF
Communication Framework
Thread. Legal values range
from 0 through
(TX_MAX_PRIORITIES-1), where
a value of 0 represents the
highest priority.

5 Numerical priority of SF
communication framework
thread selection.

Cellular Module Reset IO Pin IOPORT_PORT_04_PIN_14 Cellular module reset IO pin
selection.

Note
To use BSD Socket over RYZCATM1 on-chip stack, the "On-Chip Stack Support" property must be enabled.
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Cellular Framework Common Instance

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
checking.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 320 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Configuring the Cellular Framework Module

Configuring the NetX Port using the Cellular Framework

Typically, only a small number of settings must be modified from the default for lower-level drivers
as indicated with red text in the thread stack block. Notice that some of the configuration properties
must be set to a certain value for proper framework operation and will be locked to prevent user
modification. The following tables identify all the settings within the properties section for the lower-
level modules.

Configuration Settings for the NetX Port using the Cellular Framework on
sf_cellular_nsal_nx

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
checking.

Name g_sf_el_nx0 Module name.

PPP Stack Size in Bytes 2048 PPP stack size selection.

Name g_nx_ppp0 Module name.

Numerical priority of PPP
Thread

3 Specify the PPP thread priority.
The priority must be lower than
IP Helper thread. Legal values
range from 0 through
(TX_MAX_PRIORITIES-1), where
a value of 0 represents the
highest priority.

Authentication Method None, PAP, CHAP
Default: None

Authentication method
selection.

Invalid Packet Handler Callback NULL Invalid packet handler callback
selection.

Link Down Callback ppp_link_down_callback Link down callback selection.

Link Up Callback ppp_link_up_callback Link up callback selection.

PAP Login Callback NULL A user callback function can be
provided.

PAP Verify Login Callback NULL A user callback function can be
provided.

Get Challenges Values Callback NULL A user callback function can be
provided.

Get Responder Values Callback NULL A user callback function can be
provided.

Get Verification Callback NULL A user callback function can be
provided.

Local IPv4 Address (use
commas for separation)

0,0,0,0 Local IPv4 address selection.

Peer IPv4 Address (use commas
for separation)

0,0,0,0 Peer IPv4 address selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 321 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Configuring the Cellular Framework Module

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX PPP Common Instance

ISDE Property Value Description

Name g_nx_ppp_common0 Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name.

Packet Size (bytes) 1568 Packet size selection.

Number of Packets in Pool 16 Number of packets in pool
selection.

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection.

Auto initialization Enable, Disable
Default: Enable

Auto initialization selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Common on nx Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection.

Auto initialization Enable, Disable
Default: Enable

Auto initialization selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.
Most of the property settings for modules are fairly intuitive and usually can be determined by inspection of the
associated properties window from the SSP configurator.

Configuration changes for file download over cellular framework

HTTP file download of up to 2 MB is tested on BG96. Following is the list of ISDE properties that must
be updated for downloading of files over HTTP while using Cellular framework.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 322 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Configuring the Cellular Framework Module

ISDE configuration parameters for HTTP download using BG96 RevF module

ISDE Property Value Description

Packet Size of NetX packet pool
instance (bytes)

1568
Default: 1568

Packet size selection.

Number of Packets in Pool for
NetX packet pool instance

64
Default:16

Number of packets in pool
selection.

IP thread priority 2
Default: 3

Thread priority of IP helper
thread for NetX IP instance.

Numerical priority of SF
Communication Framework
thread

3
Default: 5

Priority value of SF Comms
thread in g_sf_cellular block.

TCP socket Window Size 16384 (for GSM network 8192)
Default: 1024

TCP socket window size of
g_http_client.

ISDE configuration parameters for HTTP download using RYZ014 module

ISDE Property Value Description

Packet Size of NetX packet pool
instance (bytes)

1568
Default: 1568

Packet size selection.

Number of Packets in Pool for
NetX packet pool instance

64
Default:16

Number of packets in pool
selection.

IP thread priority 2
Default: 3

Thread priority of IP helper
thread for NetX IP instance.

Numerical priority of SF
Communication Framework
thread

3
Default: 5

Priority value of SF Comms
thread in g_sf_cellular block.

TCP socket Window Size 16384
Default: 1024

TCP socket window size of
g_http_client.

Cellular Framework Module Clock Configuration

The Cellular Framework module uses the clocks required for the specific selections of the lower-level
modules.

Cellular Framework Module Pin Configuration

The Cellular Framework module uses input and output pins depending on the selections of the lower-
level modules.

4.1.12.6 Using the Cellular Framework Module in an Application

In a typical Cellular application, much of the work is done by SSP based on the configured cellular
module stack. When the IP instance along with the Cellular framework is added using the
configurator, it includes the PPP stack as part of the framework. In addition, it also includes the NSAL
and cellular device driver code. The auto-generated code is responsible for cellular initialization.

The user added code is responsible for the data connections and the ICMP ping. It is responsible for

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 323 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Cellular Framework > Using the Cellular Framework Module in an Application

sending the ping request to the user entered Public IP address and for verifying the ping response.
Callback functions can be implemented for PPP link down, PPP link up and cellular provisioning.

The steps in using the Cellular Framework in a typical application are:

1. Initialization from generated code.
2. Wait for link to come up using the nx_ip_status_check API.
3. Ping the network using the nx_icmp_ping API.
4. Check for Event flag using the nx_event_flags_set API.

The following figure illustrates common steps in a typical operational flow diagram:

Figure 158: Application Control Flow using Cellular Module Initialization

4.1.13 Telnet Communications Framework on sf_comms_telnet

4.1.13.1 Telnet Communications Framework Introduction

The Communications Framework on NX provides a high-level API for communications framework
applications and uses the Ethernet peripheral on the Synergy MCU.

Telnet Communications Framework Module Features

High-level connectivity is supported on Ethernet but is easily changeable to UART and USB
connectivity without API modification
Supports channel locking for exclusive access
Thread-aware implementation uses mutex and event flags internally

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 324 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Telnet Communications Framework on sf_comms_telnet > Telnet Communications Framework Introduction

Figure 159: Telnet Communications Framework Module Block Diagram

4.1.13.2 Telnet Communications Framework Module APIs Overview

The Telnet Communications Framework module defines APIs to open, read from, write to, lock,
unlock and close the module. A complete list of the available APIs, an example API call and a short
description of each can be found in the following table. A table of status return values follows the API
summary table.

Telnet Communications Framework Module API Summary

Function Name Example API Call and Description

open g_sf_comms_telnet0.p_api->open
(g_sf_comms_telnet0.p_ctrl,
g_sf_comms_telnet0.p_cfg);
Initialize the module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 325 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Telnet Communications Framework on sf_comms_telnet > Telnet Communications Framework Module APIs Overview

read g_sf_comms_telnet0.p_api->read
(g_sf_comms_telnet0.p_ctrl, p_dest, bytes,
timeout);
Read a number of bytes of data into the
destination.

write g_ sf_comms_telnet0.p_api->write
(g_sf_comms_telnet0.p_ctrl, P_src, bytes,
timeout);
Write a number of bytes from the source.

lock g_sf_comms_telnet0.p_api->lock
(g_sf_comms_telnet0.p_ctrl, locktype, timeout);
Acquire lock type for the Telnet comms instance.

unlock g_sf_comms_telnet0.p_api->unlock
(g_sf_comms_telnet0.p_ctrl, locktype);
Release the lock type for the Telnet comms
instance.

close g_sf_comms_telnet0.p_api->close
(g_sf_comms_telnet0.p_ctrl);
Disconnect Telnet server and clean up
resources.

versionGet g_
sf_comms_telnet0.p_api->versionGet(&version);
Get version and store it in provided version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_INTERNAL An internal TheadX error has occurred.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION A parameter is NULL.

SSP_ERR_IN_USE Peripheral is still running in another mode;
perform Close first.

SSP_ERR_UNSUPPORTED Command not supported.

SSP_ERR_OUT_OF_MEMORY Cannot allocate pool memory.

SSP_ERR_TIMEOUT An event timed out.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 326 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Telnet Communications Framework on sf_comms_telnet > Telnet Communications Framework Module APIs Overview

Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status-return values.

4.1.13.3 Telnet Communications Framework Module Operational Overview

The Communications Framework using Telnet on NX provides an easy to use connection over an
Ethernet port. The high-level APIs are compatible with other connection protocols, such as UART and
USB, so that it is easy to switch from one implementation to another without changing APIs.

Operations supported by the framework include initializing the module using the
sf_comms_api_t::open API, and closing the module using the sf_comms_api_t::close API. A
communications read is implemented by the sf_comms_api_t::read API and a communications write
by the sf_comms_api_t::write API. The sf_comms_api_t::read and sf_comms_api_t::write lock the
module only until the called API is in action.

During a read operation, when using the TX_WAIT_FOREVER timeout, if the Ethernet link goes down,
the sf_comms_api_t::read API will continue to wait for the data from the read queue. Once the
Ethernet link is back up, the read operation resumes and exits. To exit the read operation during a
link down event, the user must explicitly abort the read operation by calling the
sf_comms_api_t::close API in the link status change callback function. The sf_comms_api_t::lock API
locks the module until the sf_comms_api_t::unlock API is called on the same module instance. This
helps ensure that processing is completed before moving to the next API function call.

A user defined disconnect callback function (Telnet client disconnect callback) can be defined by the
user to handle the Telnet client disconnection due to Client inactivity timeout. This callback will be
called when the configured Client inactivity timeout occurs.

The underlying NetX driver supports the configuration of the IP address, the Network mask, and the
Ethernet channel. When a different communications implementation is used (like USB) different low-
level module configuration settings are used to define its interface. Thus, no code needs to be
changed in the application, only need changes to configuration settings. The same API calls are
retained at the application level.

Telnet Communications Framework Module Important Operational Notes and Limitations

Telnet Communications Framework Module Operational Notes

The Ethernet peripheral can use either RMII or MII depending on MCU capabilities.

Telnet Communications Framework Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.13.4 Including the Telnet Communications Framework Module in an Application

This section describes how to include the Telnet Communications Framework module in an
application using the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Telnet Communications Framework module to an application, simply add it to a HAL

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 327 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Telnet Communications Framework on sf_comms_telnet > Including the Telnet Communications Framework Module in an Application

/Common thread using the stacks selection sequence given in the following table. (The default name
for the Telnet Communications Framework module is sf_comms_telnet0. This name can be changed
in the associated Properties window.)

Telnet Communications Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

sf_comms_telnet0 Telnet
Communications Framework on
sf_comms_telnet

Threads New Stack> Framework>
Connectivity> Telnet
Communications Framework
on sf_comms_telnet

When the Telnet Communications Framework module on sf_comms_telnet is added to the thread
stack as shown in the following figure, the configurator automatically adds any needed lower‑level
modules. Any modules needing additional configuration information have the box text highlighted in
Red. Modules with a Gray band are individual modules that stand alone. Modules with a Blue band
are shared or common; they need only be added once and can be used by multiple stacks. Modules
with a Pink band can require the selection of lower-level modules; these are either optional or
recommended. (This is indicated in the block with the inclusion of this text.) If the addition of lower-
level modules is required, the module description include Add in the text. Clicking on any Pink
banded modules brings up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 328 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Telnet Communications Framework on sf_comms_telnet > Including the Telnet Communications Framework Module in an Application

Figure 160: Telnet Communications Framework Module Stack

4.1.13.5 Configuring the Telnet Communications Framework Module

The Telnet Communications Framework module must be configured by the user for the desired
operation. The SSP configuration window will automatically identify (by highlighting the block in red)
any required configuration selections, such as interrupts or operating modes, which must be
configured for lower-level modules in order to ensure successful operation. Furthermore, only those
properties that can be changed without causing conflicts are available for modification. Other
properties are 'locked' and are not available for changes, and are identified with a lock icon for the
'locked' property in the Properties window in the ISDE. This approach simplifies the configuration
process and makes it much less error-prone than previous 'manual' approaches to configuration. The
available configuration settings and defaults for all the user-accessible properties are given in the
Properties tab within the SSP configurator, and are shown in the following tables for easy reference.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 329 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Telnet Communications Framework on sf_comms_telnet > Configuring the Telnet Communications Framework Module

You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

Configuration Settings for the Telnet Communications Framework Module on
sf_comms_telnet

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
checking.

Packet size in pool memory
(bytes)

1536 Packet size in pool memory
selection.

Packets to allocate in pool
memory (units)

5 Packets to allocate in pool
memory selection.

Timeout for internal options
(ticks)

10 Timeout for internal options
selection.

Maximum number of instances 4 Maximum instances that can be
open at any given time.

Name sf_comms_telnet0 Module name.

Name of generated initialization
function

sf_comms_telnet_init0 Name of generated initialization
selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Telnet client disconnect
callback

NULL User defined callback invoked
when the client is disconnected.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower-level modules can be desirable. The
configurable properties for the lower-level stack modules are given in the following sections for
completeness and as a reference.

Note
Most of the property settings for lower level modules are fairly intuitive and can usually be determined by
inspection of the associated Properties window from the SSP configurator.

Configuring the Telnet Communications Framework Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower-level drivers
as indicated with red text in the thread stack block. Notice that some of the configuration properties
must be set to a certain value for proper framework operation and will be locked to prevent user
modification. The following table identifies all the settings within the properties section for the
module.

Configuration Settings for the NetX/NetX Duo Telnet Server on telnet_server

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 330 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Telnet Communications Framework on sf_comms_telnet > Configuring the Telnet Communications Framework Module

ISDE Property Value Description

Internal thread priority 16 Internal thread priority
selection.

Maximum clients to serve
simultaneously

4 Maximum clients to serve
simultaneously selection.

Socket window size (bytes) 2048 Socket window size selection.

Server time out (seconds) 10 Duration internal services will
suspend for.

Client inactivity timeout
(seconds)

600 Client inactivity duration for
disconnection.

Timeout check period (seconds) 60 Client activity timeout check
interval.

Option negotiation Enable, Disable

Default: Enable

Option negotiation selection.

Use application packet pool Enable, Disable

Default: Disable

Use application packet pool
selection.

Packet size in the pool (bytes) 300 Telnet Server only creates this
packet pool if 'Option
negotiation' is enabled.

Total packet pool size (bytes) 2048 Telnet Server only creates this
packet pool if NX_TELNET_SERV
ER_OPTION_DISABLE.

Name g_telnet_server0 Module name.

Thread Stack Size (bytes) 2048 Thread stack size selection.

Name of Client Connect
Callback Function

NULL Name of client connect callback
function selection.

Name of Receive Data Callback
Function

NULL Name of receive data callback
function selection.

Name of Client Disconnect
Callback Function

NULL Name of client disconnect
callback function selection.

Name of generated initialization
function

telnet_server_init0 Name of generated initialization
function selection.

Auto Initialization Disable Auto initialization selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 331 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Telnet Communications Framework on sf_comms_telnet > Configuring the Telnet Communications Framework Module

Name g_ip0 Module name.

IPv4 Address (use commas for
separation)

0,0,0,0 IPv4 Address selection.

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection.

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection.

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address
selection.

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection.

IP Helper Thread Priority 3 IP Helper Thread Priority
selection.

ARP Enable ARP selection.

ARP cache storage units Bytes, Entries
Default: Bytes

ARP cache storage units
selection.

ARP Cache Size (in storage
units)

520 ARP Cache Size in Bytes/Entries
selection.
Note: 1 Entry = 52 Bytes.

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection.

TCP Enable TCP selection.

UDP Enable, Disable

Default: Enable

UDP selection.

ICMP Enable, Disable

Default: Enable

ICMP selection.

IGMP Enable, Disable

Default: Enable

IGMP selection.

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection.

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Link status change callback NULL Link status change callback
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 332 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Telnet Communications Framework on sf_comms_telnet > Configuring the Telnet Communications Framework Module

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings NetX Telnet Common

ISDE Property Value Description

Type of Service for TCP
requests

Normal, Minimum delay,
Maximum data, Maximum
reliability, Minimum cost

Default: Normal

Type of service UDP requests
selection.

Fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Fragment option selection.

Server TCP port number 23 Server TCP port number
selection.

Time to live 128 Time to live selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Common on nxd

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name.

Packet Size in Bytes 1568 Packet size selection.

Number of Packets in Pool 16 Number of packets in pool
selection.

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 333 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Telnet Communications Framework on sf_comms_telnet > Configuring the Telnet Communications Framework Module

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Port ETHER

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

Channel 0 Phy Reset Pin IOPORT_PORT_09_PIN_03 Channel 0 Phy reset pin
selection.

Channel 0 MAC Address High
Bits

0x00002E09 Channel 0 MAC address high
bits selection.

Channel 0 MAC Address Low
Bits

0x0A0076C7 Channel 0 MAC address low bits
selection.

Channel 1 Phy Reset Pin IOPORT_PORT_07_PIN_06 Channel 1 PHY reset pin
selection.

Channel 1 MAC Address High
Bits

0x00002E09 Channel 1 MAC address high
bits selection.

Channel 1 MAC Address Low
Bits

0x0A0076C8 Channel 1 MAC address low bits
selection.

Number of Receive Buffer
Descriptors

8 Number of receive buffer
descriptors selection.

Number of Transmit Buffer
Descriptors

32 Number of transmit buffer
descriptors selection.

Ethernet Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Ethernet interrupt priority
selection.

Link status monitoring method PHY Interrupt (Uses LINKSTA
Pin), PHY Polling

Default: PHY Polling

Link status monitoring method
selection.

Name g_sf_el_nx Module name.

Channel 0 Channel selection.

Callback NULL Callback selection.

Unknown packet receive
Callback

NULL Unknown packet receive
callback selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 334 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Telnet Communications Framework on sf_comms_telnet > Configuring the Telnet Communications Framework Module

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Telnet Communications Framework Module Clock Configuration

The Telnet Communications Framework module uses the Ethernet peripheral which uses the PCLKA
as its clock source.

To change the clock frequency at run-time, use the CGC Interface.

Telnet Communications Framework Module Pin Configuration

To use the Telnet Communications Framework module, the port pins for the peripheral inputs and
outputs must be set in the pin configurator in the ISDE. The following table illustrates the method for
selecting the pins within the ISDE configuration window:

Pin Selection Sequence for the Telnet Communications Framework Module

Resource ISDE Tab Pin selection Sequence

SSI Pins Select Peripherals>
Peripherals>
Connectivity:ETHERC>
ETHERC0.RMI or
ETHERC1.RMII

4.1.13.6 Using the Telnet Communications Framework Module in an Application

The typical steps in using the Telnet Communications Framework module in an application are:

1. Initialize the Communications Framework on NX using the sf_comms_api_t::open API
2. Lock the channel for continuous communications using the sf_comms_api_t::lock API if

needed
3. Receive data using the sf_comms_api_t::read API
4. Send data using the sf_comms_api_t::write API
5. Unlock the channel from continuous communication using the sf_comms_api_t::unlock

command if needed
6. Close the channel using the sf_comms_api_t::close API

These common steps are illustrated in a typical operational flow in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 335 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Telnet Communications Framework on sf_comms_telnet > Using the Telnet Communications Framework Module in an Application

Figure 161: Flow Diagram of a Typical Telnet Communications Framework Module Application

4.1.14 Communications Framework on sf_el_ux_comms_v2

4.1.14.1 Communications Framework on USBX v2 Module Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 336 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Communications Framework on USBX v2 Module Introduction

The Communications Framework on USBX™ (sf_el_ux_comms_v2) implements a high-level API for
communications applications that provides an easy-to-use connection over the USB port. The high-
level API functions in the framework are compatible with other connection implementations (such as
UART and Ethernet), so it is easy to switch from one implementation to another without changing
application code. The Communications Framework on USBX uses the USB peripheral on the Synergy
MCU device.

Communications Framework on USBX v2 Module Features

High-level connectivity is supported on USB but is easily changed to UART and Ethernet
connectivity without API modification
Supports channel locking for exclusive access
Supports USB high speed (HS) or full speed (FS) operation
Supports data-transfer (DMAC or DTC) peripherals on a Synergy MCU
ThreadX®-aware implementation uses mutex

Note
Currently, DTC is not supported by both the host and device side driver (only DMAC is supported).

Figure 162: Communications Framework on USBX Module Block Diagram

4.1.14.2 Communications Framework on USBX v2 Module APIs Overview

The Communications Framework on USBX defines API functions for opening, closing, reading and
writing over the USB connection. A complete list of the available APIs, an example API call and a
short description of each can be found in the following table. A table of status return values follows

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 337 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Communications Framework on USBX v2 Module APIs Overview

the API summary table.

Communications Framework on USBX Module API Summary

Function Name Example API Call and Description

open g_sf_comms0.p_api->open(g_sf_comms0.p_ctrl,
g_sf_comms0.p_cfg);
Initialize communications driver.

close g_sf_comms0.p_api->close(g_sf_comms0.p_ctrl);
Clean up communications driver.

read g_sf_comms0.p_api->read(g_sf_comms0.p_ctrl,
&destination, bytes, timeout);
Read data from communications driver. This call
returns after the number of bytes requested is
read or if a timeout occurs while waiting for
access to the driver or read operation times out.

write g_sf_comms0.p_api->write(g_sf_comms0.p_ctrl,
&source, bytes, timeout);
Write data to communications driver. This call
returns after all bytes are written or if a timeout
occurs while waiting for access to the driver or
write operation times out.

lock g_sf_comms0.p_api->lock(g_sf_comms0.p_ctrl,
lock_type, timeout);
Lock the communications driver. Reserve
exclusive access to the communications driver.

unlock g_sf_comms0.p_api->unlock(g_sf_comms0.p_ctrl
, lock_type);
Unlock the communications driver. Release
exclusive access to the communications driver.

versionGet g_sf_comms0.p_api->versionGet(&version);
Retrieve the API version in the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Channel opened successfully.

SSP_ERR_IN_USE Channel already in use.

SSP_ERR_ASSERTION Pointer to UART control block or configuration
structure is NULL.

SSP_ERR_INTERNAL Internal error occurs.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 338 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Communications Framework on USBX v2 Module APIs Overview

SSP_ERR_TIMEOUT Timeout error.

SSP_ERR_NOT_OPEN Module is not opened.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.14.3 Communications Framework on USBX v2 Module Operational Overview

The Communications Framework on USBX provides an easy-to-use connection over the USB port.
The high-level API functions in the framework are compatible with other connection implementations
(such as UART and Ethernet), so it is easy to switch from one implementation to another without
changing applications code. The module uses ThreadX objects like mutex for synchronization for the
completion of a transaction. The USBX communication Framework module supports the locking
functionality, meaning that the user can lock the communication framework to a thread so that
multiple thread can use the same USBX port safely. The locking allows the application to reserve a
USB port for a given period of time available between call made to sf_comms_api_t::lock API and
sf_comms_api_t::unlock API. The high-level APIs are used to sf_comms_api_t::read API,
sf_comms_api_t::write API to support receive or send data to host over USBX CDC-ACM
communication interface.

Communications Framework on USBX v2 Module Important Operational Notes and
Limitations

Communications Framework on USBX v2 Module Operational Notes

The USBX driver can be implemented on either the HS or FS USB peripherals, depending on the
version supported by the target MCU.

A pre-defined weak callback function is available for the USBX CDC-ACM instance activate and
another for the USBX CDC-ACM instance deactivate. The user can override these two callback
functions if required, by defining a user function using the callback function name given in the
Synergy configurator.

Communications Framework on USBX v2 Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4.1.14.4 Including the Communications Framework on USBX v2 Module in an Application

This section describes how to include the Communications Framework on USBX Module in an
application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Communications Framework on USBX Module to an application, simply add it to a thread
using the stacks selection sequence given in the following table.

Communications Framework on USBX Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 339 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Including the Communications Framework on USBX v2 Module in an Application

g_sf_comms0 Communications
Framework on
sf_el_ux_comms_v2

Threads New Stack> Framework>
Connectivity>
Communications Framework
on sf_el_ux_comms_v2

When the Communications Framework on USBX Module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 163: Communications Framework on USBX Module Stack

4.1.14.5 Configuring the Communications Framework v2 on USBX Module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 340 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Configuring the Communications Framework v2 on USBX Module

The Communications Framework on USBX Module must be configured by the user for the desired
operation. The SSP configuration window automatically identifies (by highlighting the block in red)
any required configuration selections, such as interrupts or operating modes, which must be
configured for lower-level modules for successful operation. Only properties that can be changed
without causing conflicts are available for modification. Other properties are locked and not available
for changes and are identified with a lock icon for the locked property in the Properties window in the
ISDE. This approach simplifies the configuration process and makes it much less error-prone than
previous manual approaches to configuration. The available configuration settings and defaults for
all the user-accessible properties are given in the Properties tab within the SSP Configurator and are
shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Communications Framework on USBX Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Read Input Buffer Size (Bytes) 128 Maximum number of bytes that
can be received at a time in the
read() API.

Timeout in ticks 1000 Timeout value to suspend a
USBX CDC instance creation in
the open() API.

Name g_sf_comms0 Module name.

Name of the generated
initialization function

sf_comms_init0 Name of helper function to
initialize Communications
Framework. The function will be
presented in the auto-
generated code in the
<xxx_thread>.c, where
<xxx_thread> is the name of
your thread symbol given to the
Thread property. The function is
to be called in the auto-
generated code if Auto
sf_comms Initialization property
is Enabled. If Disabled, the
function can be called in the
user application.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 341 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Configuring the Communications Framework v2 on USBX Module

Auto Initialization Enable, Disable

Default: Enable

Auto Initialization support of
Communications Framework.
The helper function above will
be called in the auto-generated
code if this configuration is
enabled. Else, the function will
not be called automatically and
user can call it sometime later.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the Communications Framework on USBX v2 Lower-Level
Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module.

Configuration Settings for the USBX Device Class CDC-ACM Module

ISDE Property Value Description

Name g_ux_device_class_cdc_acm0 Specify the name of the USBX
Device CDC-ACM Class module
instance. It must be a valid C
symbol.

USBX CDC-ACM
instance_activate Function
Callback

ux_cdc_device0_instance_activa
te

Specify the name of the
instance_activate user callback
function for the USBX Device
CDC-ACM Class module. Name
must be a valid C symbol. See
the USBX Stack User's Manual
"Chapter 5: USBX Device Class
Considerations USB Device CDC-
ACM Class" for more
information about the
instance_activate callback
function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 342 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Configuring the Communications Framework v2 on USBX Module

USBX CDC-ACM
instance_deactivate Function
Callback

ux-cdc_device0_instance_deacti
vate

Specify the name of the
instance_deactivate user
callback function for the USBX
Device CDC-ACM Class module.
Name must be a valid C
symbol. Refer to the USBX
Stack User's Manual "Chapter 5:
USBX Device Class
Considerations USB Device CDC-
ACM Class" for more
information about the
instance_activate callback
function.

Name of generated initialization
function

ux_device_class_cdc_acm_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Device Configuration Instance

ISDE Property Value Description

Vendor ID 0x045B Specify Vendor ID assigned by
USB-IF. This configuration is a
part of the USB Device
Descriptor (idVendor).

Product ID 0x0000 Specify Product ID assigned by
manufacturer. This
configuration is a part of the
Device Descriptor (idProduct).

Device Release Number 0x0000 Specify Device Release Number
in binary-coded decimal. This
configuration is a part of the
USB Device Descriptor
(bcdDevice).

Index of Manufacturing String
Descriptor

0x00 Specify the Index of
Manufacturer String Descriptor
defined in the USBX String
Framework. This configuration
is a part of the USB Device
Descriptor (iManufacturer). Set
zero if String Descriptor is not
used. See section USBX-String-
Framework-Configuration for
more information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 343 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Configuring the Communications Framework v2 on USBX Module

Index of Product String
Descriptor

0x00 Specify the Index of Product
String Descriptor defined in the
USBX String Framework. This
configuration is a part of the
USB Device Descriptor
(iProduct). Set zero if String
Descriptor is not used. See
section "USBX String
Framework Configuration" for
more information.

Index of Serial Number String
Descriptor

0x00 Specify the Index of Serial
Number String Descriptor
defined in the USBX String
Framework. This configuration
is a part of the USB Device
Descriptor (iSerialNumber). Set
zero if the String Descriptor is
not used. See section "USBX
String Framework
Configuration" for more
information.

Class Code Communications(CDC), HID,
Mass Storage, Miscellaneous,
Vendor specific

Default: Communications(CDC)

Select the USB Device Class
Code. This configuration is a
part of the USB Configuration
Descriptor (bDeviceClass).

Index of String Descriptor
describing this configuration

0x00 Specify the Index of String
Descriptor describing this
configuration. This
configuration is a part of the
USB Configuration Descriptor
(iConfiguration). Set zero if
String Descriptor is not used.
See section "USBX String
Framework Configuration" for
more information.

Size of USB Descriptor in bytes
for this configuration (Modify
this value only for Vendor-
specific Class, otherwise set
zero)

0x00 Specify the size of USB
Descriptor in bytes. Modify the
value for Vendor-specific Class,
otherwise you can set zero to
calculate the size automatically
in the auto-generated code
from Synergy Configuration
tool. This configuration is a part
of the USB Configuration
Descriptor (wTotalLength).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 344 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Configuring the Communications Framework v2 on USBX Module

Number of Interfaces (Modify
this value only for Vendor-
specific Class, otherwise set
zero)

0x00 Specify the Number of
interfaces supported by this
configuration. Modify the value
for Vendor-specific Class,
otherwise you can set zero to
calculate the value
automatically in the auto-
generated code from Synergy
Configuration tool. This
configuration is a part of the
USB Configuration Descriptor
(bNumInterfaces).

Self-Powered Enable, Disable

Default: Enable

Enable this configuration if your
USB Device is a self- powered
device. This configuration is a
part of the USB Configuration
Descriptor (bmAttributes bit6).

Remote Wakeup Enable, Disable

Default: Disable

Enable this configuration if your
USB Device supports remote
wakeup. This configuration is a
part of the USB Configuration
Descriptor (bmAttributes bit5).

Maximum Power Consumption
(in 2mA units)

50 Set the maximum power
consumption of your device to
indicate the amount of bus
power required. This
configuration is 2 mA units,
thus, the maximum 500 mA can
be specified. This configuration
is a part of the USB
Configuration Descriptor
(bMaxPower).

Supported Language Code 0x0409 Specify the Language ID Code.
For example, 0x0409 English -
United States. This
configuration is used for
Language ID Framework code
generation. See section "USBX
Language Framework
Configuration" for more
information.

Name of USBX String
Framework

NULL Specify the name of user
defined USBX String
Framework. This must be a
valid C symbol. Set NULL if the
String Descriptor is not used.
See section "USBX String
Framework Configuration" for
more information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 345 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Configuring the Communications Framework v2 on USBX Module

Total index number of USB
String Descriptors in USB String
Framework

0 Specify the total number of
index for String Descriptor. See
section "USBX String
Framework Configuration" for
more information.

Name of USBX Language
Framework

NULL Specify the name of user
defined USBX Language
Framework. This must be a
valid C symbol. If '0' is set to
the property "Total Number of
Language Support", this
configuration is ignored. See
section "USBX Language
Framework Configuration" for
more information.

Number of Languages to
support (US English is applied if
zero is set)

0 Specify the total number of
languages to support. See
section "USBX String
Framework Configuration" for
more information. If '0' is set
here, US English (0x0409) is
applied as the default
language.

Name of generated initialization
function

ux_device_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Interface Configuration CDC-ACM Instance

ISDE Property Value Description

Name g_usb_interface_desc_cdcacm_
0

Specify the name of USBX
Interface Descriptor for CDC-
ACM. It must be a valid C
symbol.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 346 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Configuring the Communications Framework v2 on USBX Module

Interface Number of
Communications Class interface

0x00 Specify the index number of
Communications Class
interface. This configuration is a
part of the USB Interface
Descriptor (bInterface). The
number must not be duplicated
with the Interface Number of
Data Class interface. Also must
not be duplicated with any
Interface Numbers if your USB
device consists of a USB
composite device.

Interrupt Transfer endpoint to
use for Communications Class

Endpoint 1-9

Default: Endpoint 3

Specify the Endpoint Number of
Interrupt Endpoint. It must not
be duplicated with ones for the
other Endpoints.

Polling period for Interrupt
Endpoint (in mS/125us units for
FS/HS)

0x0F Specify the Interval for polling
Endpoint transfers. This
configuration is valid for
Interrupt Endpoint and ignored
for Bulk Endpoints. Value is in
frame counts (1 ms units for FS
mode and 125 us units for HS
mode).

Interface Number of Data Class
interface

0x01 Specify the index number of
Data Class interface. This
configuration is a part of the
USB Interface Descriptor
(bInterface). The number must
not be duplicated with the
Interface Number of
Communications Class
interface. Also must not be
duplicated with any Interface
Numbers if your USB device
consists of a USB composite
device.

Bulk In Transfer endpoint to use
for Data Class

Endpoint 1-9

Default: Endpoint 1

Specify the Endpoint Number of
Bulk In Endpoint. It must not be
duplicated with ones for the
other Endpoints.

Bulk Out Transfer endpoint to
use for Data Class

Endpoint 1-9

Default: Endpoint 2

Specify the Endpoint Number of
Bulk Out Endpoint. It must not
be duplicated with ones for the
other Endpoints.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 347 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Configuring the Communications Framework v2 on USBX Module

Index of String Descriptor
Describing Communications
Class interface (Interface
Descriptor: Interface)

0x00 Specify the index number of
String Descriptor Describing
Communications Class
interface. This configuration is a
part of the USB Interface
Descriptor (iInterface). Set '0' if
do not have String information
for the interface.

Index of String Descriptor
Describing Data Class interface
(Interface Descriptor: Interface)

0x00 Specify the index number of
String Descriptor Describing
Data Class interface. This
configuration is a part of the
USB Interface Descriptor
(iInterface). Set '0' if do not
have String information for the
interface.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port DCD on sf_el_ux for USBFS

ISDE Property Value Description

Full Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
full-speed USB.

LDO Regulator (Only for S3 and
S1 part MCUs)

Enable, Disable

Default: Disable

Select the LDO regulator will be
enabled.

Name g_sf_el_ux_dcd_fs_0 Module name.

USB Controller Selection USBFS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port DCD on USBHS

ISDE Property Value Description

High Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
high speed USB.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 348 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Configuring the Communications Framework v2 on USBX Module

Name g_sf_el_ux_dcd_hs_0 Module name.

USB Controller Selection USBHS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX on ux Instance

ISDE Property Value Description

USBX Pool Memory Name g_ux_pool_memory Name must be a valid C
symbol.

USBX Pool Memory Size 18432 See section "Azure RTOS USBX
Memory Requirements" for the
required memory size for each
classes.

User Callback for Host Event
Notification (Only valid for USB
Host)

NULL Name must be a valid C
symbol. The name of User
defined USBX Host event
notification can be given to this
property.

Name of generated initialization
function

ux_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Communications Framework on USBX v2 Module Clock Configuration

The USB peripheral module uses the UCLK as its clock source; the UCLK should be configured for 48
MHz operation. In the SSP configuration window, select the Clocks tab to view the clock-source
setting.

Communications Framework on USBX v2 Module Pin Configuration

The USB peripheral module uses MCU pins to communicate with external devices. Select I/O pins and
configure to the external device requirements. The following table lists the pin selection method
within the SSP Configuration Window and the subsequent tables demonstrate the selection process
using USB pins as an example.

Note
The selected operation mode determines what peripheral signals are available and what MCU pins are required.

USBFS and USBHS Pin Selection Sequence

Resource ISDE Tab Pin selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 349 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Configuring the Communications Framework v2 on USBX Module

USBFS Pins Select Peripherals>
Connectivity: USBFS>
USBFS0

USBHS Pins Select Peripherals>
Connectivity: USBHS>
USBHS0

Note
The selection sequence assumes USBFS0 or USBHS0 is the desired hardware target for the driver.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select device as the Operation
Mode.

USBDP USBDP USBDP pin.

USBDM USBDM USBDM pin.

OVRCURB None OVRCURB pin.

OVRCURA None OVRCURA pin.

VBUSEN None VBUSEN pin.

VBUS None, P407

Default: P407

VBUS pin.

EXICEN None EXICEN pin.

ID None ID pin.

VCCUSB VCCUSB VCCUSB pin.

VSSUSB VSSUSB VSSUSB pin.

Note
The example settings are for a project using the S7G2 Synergy MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and other Synergy Kits may have different available pin configuration settings.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select Device as the Operation
Mode.

USBHSDP USBHSDP USBHSDP pin.

USBHSDM USBHSDM USBHSDM pin.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 350 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Configuring the Communications Framework v2 on USBX Module

OVRCURB None OVRCURB pin.

OVRCURA None OVRCURA pin.

VBUSEN PB00 VBUSEN pin.

VBUS PB01 VBUS pin.

EXICEN None EXICEN pin.

ID None ID pin.

USBHSRREF USBHSRREF USBHSRREF pin.

AVCCUSBHS AVCCUSBHS AVCCUSBHS pin.

AVSSUSBHS AVSSUSBHS AVSSUSBHS pin.

PVSSUSBHS PVSSUSBHS PVSSUSBHS pin.

VCCUSBHS VCCUSBHS VCCUSBHS pin.

VSS1USBHS VSS1USBHS VSS1USBHS pin.

VSS2USBHS VSS2USBHS VSS2USBHS pin.

Note
The example settings are for a project using the S7G2 Synergy MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and other Synergy Kits may have different available pin configuration settings.

4.1.14.6 Using the Communications Framework on USBX v2 Module in an Application

The typical steps in using the Communications Framework on USBX V2 module in an application are:

1. Initialize the Communications Framework on USBX V2 using the sf_comms_api_t::open API.

2. Lock the channel for continuous communications using the sf_comms_api_t::lock API if needed.

3. Receive data using the sf_comms_api_t::read API.

4. Send data using the sf_comms_api_t::write API.

5. Unlock the channel from continuous communication using the sf_comms_api_t::unlock command if
needed.

6. Close the channel using the sf_comms_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 351 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Communications Framework on sf_el_ux_comms_v2 > Using the Communications Framework on USBX v2 Module in an Application

Figure 164: Flow Diagram of a Typical Communications Framework on USBX Module Application

4.1.15 Console Framework

4.1.15.1 Console Framework Introduction

The Console Framework provides a complete API implementation for a menu-driven console
command line interface (CLI) using the ThreadX RTOS. The Console Framework module uses a lower-
level communications interface, which connects to a hardware option for either UART, USB or
Ethernet Telnet connectivity. The Console Framework module has a user-defined menu of commands
and various APIs to present a prompt, identify and issue a callback for menu commands and read,
write and parse input strings.

Console Framework Module Features

The console framework supports the following features:

Creation of a menu-based command-line interface
Submenus and navigation through multiple menus in a single call
Menu navigation to go up to the parent menu or back to the root
A help menu for each menu
Writing NULL terminated strings and reading until return character is received
An API to help parse arguments to the command line
Case-insensitive inputs

The Console Framework module organization, as depicted in the thread stack window in the SSP
configurator, is shown in the following figure. Each implementation choice, Ethernet, UART, and USB

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 352 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Console Framework > Console Framework Introduction

has its own lower-level modules that are added automatically based on the developer's
implementation choice. In most cases, all the needed configuration information is automatically
added to the modules leaving the developer with just a few important configuration settings that
need to be selected.

Figure 165: Console Framework Module Block Diagram

4.1.15.2 Console Framework Module APIs Overview

The Console Framework defines APIs for opening, closing, reading, writing and issuing an input
prompt. A complete list of the available APIs, an example API call and a short description of each can
be found in the following table. A table of status return values follows the API summary table.

Console Framework Module API Summary

Function Name Example API Call and Description

open g_sf_console0.p_api->open(g_sf_console0.p_ctrl,
g_sf_console0.p_cfg);
The open API configures the console. This
function must be called before any other console
functions.

Note
This call is made automatically during system
initialization, prior to entering the users thread.
Unless the user closes the console, open will not
need to be called.

close g_sf_console0.p_api->close(g_sf_console0.p_ctrl)
;
The close API handles the clean-up of internal
driver data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 353 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Console Framework > Console Framework Module APIs Overview

prompt g_sf_console0.p_api->prompt(g_sf_console0.p_ct
rl, NULL, TX_WAIT_FOREVER);
The prompt API prints the prompt string from the
menu, waits for input, parses the input based on
the menu, and calls the appropriate callback
function if a command is identified.

parse g_sf_console0.p_api->parse(g_sf_console0.p_ctrl,
commands, input, s_length);
The parse API looks for an input string in the
command menu and, if one is found, calls the
appropriate callback function.

read g_sf_console0.p_api->read(g_sf_console0.p_ctrl,
ch, 1, TX_WAIT_FOREVER);
The read API puts data into the destination, byte-
by-byte and echoes the input to the console.
Backspace, delete, and left/right arrow keys are
supported. Read completes when a line ending
with CR, CR+LF, or CR+NULL is received, or
when the input exceeds the number of bytes
allowed. If the buffer overflows
SF_CONSOLE_MAX_INPUT_LENGTH, the read will
return an error code.

write g_sf_console0.p_api->write(g_sf_console0.p_ctrl,
(uint8_t*)data_string, TX_WAIT_FOREVER);
The write API gets the buffer mutex object and
handles data transmission at the HAL layer. It
obtains the event flag to synchronize the
completion of a data transfer.

argumentFind g_sf_console0.p_api->argumentFind("LED",
p_args->p_remaining_string, NULL, &led_num);
The argumentFind API locates a command line
argument in an input string and returns the
index of the character immediately following the
argument. Any string numbers are converted to
integers.

versionGet g_sf_console0.p_api->versionGet(&version);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_ASSERTION p_ctrlis NULL.

SSP_ERR_UNSUPPORTED Command not found in the current menu.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 354 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Console Framework > Console Framework Module APIs Overview

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status-return values.

4.1.15.3 Console Framework Module Operational Overview

The Console Framework module is a ThreadX-aware Command Line Interface (CLI). The module uses
ThreadX objects like mutex for blocking and synchronization techniques like event flags for the
completion of a transaction. The key operational elements of the Console Framework are
initialization and input processing, each of which are described in the following sections.

Console Framework Module Initialization

The open call is automatically generated by the ISDE and is in the file where the module was added.
The open call requires the application to define a root menu with a variable name that matches the
one in the configurator (g_sf_console_root_menu) by default. By the time execution reaches the
thread entry function the module is ready to use, provided the necessary hardware connection is
established.

Console Framework Module Input Processing

The Console Framework module requires a set of menus, command structures, and callbacks. The
Console Framework module typically operates from the prompt, often located within a while loop in
the entry thread. The framework sf_console_api_t::prompt API will print the current menu as a
prompt, then read input and echo it back to the console (unless echo is disabled in the properties.)

Following operations are performed against the user input:

While the console is accepting input,

Backspace will remove characters before the cursor.
Delete will remove characters after the cursor.
The left and right arrow keys move the cursor.
The up-arrow key will fill in the last command only when nothing else has been entered.

Note
There is no history beyond the last command; if the up-arrow key is pressed twice, the console does not know what
command was entered prior to the last command and it will continue to display the last command.

When the console sees a return character on the read input, it parses the input string and calls the
associated callback or switches to the next menu if SF_CONSOLE_CALLBACK_NEXT_FUNCTION is used
in place of the callback for the command. The console will continue parsing until a callback function
is called. If sf_console_api_t::prompt API is called again, it will prompt using the menu that contains
the callback function. To navigate up to the parent menu, enter '^'. To navigate to the root menu
from any submenu, enter '~'.

The parser will parse the input command till a white space or end of the string.

For example:

With the list of commands[2] = {"echo", "setbitrate"};

1. >echoIs valid
2. >echo<space>Is valid
3. >echo3Is an unsupported command

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 355 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Console Framework > Console Framework Module Operational Overview

4. >setbitrateIs valid
5. >setbitrate 9600Results in the bit rate being set to 9600

Creating Console Framework Module Required Structures – The Menu

The Console Framework requires a menu and it is up to the developer to create the structure that is
used by the Console Framework to implement the menu. The console menu structure (depicted in
the following figure) includes a pointer to the previous menu, (for creating multi-level menus) a
name for the menu, the number of commands in the menu, and a pointer to an array of command
structures. As seen in the following figure, each entry in the array of commands includes pointers to
the command name string, the help command description string, the associated command callback
function, and a context parameter provided to the callback.

Figure 166: Console Framework Module Menu Structures

 The application project example illustrates a Console Framework with a single menu; it controls the
toggle of an LED from the CLI. The console command array (g_sf_console_commands, seen on the
right in the following figure) stores the array of commands (in this case, just a single command.) The
command structure defines the command as "LED TOGGLE", the help description as "Toggle an
LED", the callback as led_toggle_callback, and the context as NULL, since it is unused for this
example.

The root menu, seen on the left side of the following figure, is identified by the
g_sf_console_root_menu structure. The structure defines the menu_prev entry as NULL, since there is
only the single menu, the menu_name as "Root", the num_commands as the size of the array divided
by the size of an entry (to determine the total number of entries) as "1", and the command_list
starting address as "address", the location of the first entry in the command array.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 356 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Console Framework > Console Framework Module Operational Overview

Figure 167: Console Framework Module Menu Structure Example Diagram

Console Framework Module Important Operational Notes and Limitations

Console Framework Module Operational Notes

To use the Console Framework module sf_console_api_t::prompt API, first set up the menu,
command structures and callbacks.

Console Framework Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.15.4 Including the Console Framework Module in an Application

This section describes how to include the Console Framework module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Console Framework module to an application, simply add it to a HAL /Common thread
using the stacks selection sequence given in the following table. (The default name for the Console
Framework module is g_sf_console0. This name can be changed in the associated Properties
window.)

Console Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_console0 Console
Framework on sf_console

Threads New Stack> Framework>
Services> Console
Framework on sf_console

When the Console Framework module on sf_console is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with a
Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 357 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Console Framework > Including the Console Framework Module in an Application

band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 168: Console Framework Module Stack

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 358 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Console Framework > Including the Console Framework Module in an Application

Figure 169: Example Console Framework with UART Communications Framework

4.1.15.5 Configuring the Console Framework Module

The Console Framework module must be configured by the user for the desired operation. The SSP
configuration window will automatically identify (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules in order to ensure successful operation. Furthermore, only those properties that can
be changed without causing conflicts are available for modification. Other properties are 'locked' and
are not available for changes, and are identified with a lock icon for the 'locked' property in the
Properties window in the ISDE. This approach simplifies the configuration process and makes it much
less error-prone than previous 'manual' approaches to configuration. The available configuration
settings and defaults for all the user-accessible properties are given in the Properties tab within the
SSP configurator, and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 359 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Console Framework > Configuring the Console Framework Module

Configuration Settings for the Console Framework Module on sf_console

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enables or disables the
parameter checking.

Maximum Input String Length 128 Maximum input string length
selection.

Maximum Write String Length 128 Maximum input string length
selection.

Console print timeout value 0xFFFFFFFF Console print timeout value
selection.

Name g_sf_console0 Module name.

Name of Initial Menu
(Application Defined)

g_sf_console_root_menu Initial menu name.

Echo True, False
Default: True

Echo selection.

Autostart True, False

Default: False

Autostart selection.

Name of generated initialization
function

sf_console_init0 Name of generated initialization
function.

Auto Initialization Enable, Disable

Default: Enable

Auto Initialization selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuring the Console Framework Lower-Level Modules

The Console Framework provides three different options for Communication Framework
implementations: the Telnet Communications Framework, the Communications Framework on USBX
v2, and the UART Communications Framework. Each of these frameworks have several lower-level
module options themselves; configuration information for these frameworks is provided in the
module overviews for the sf_comms_telnet, sf_el_ux_comms_v2, and sf_uart_comms modules.

4.1.15.6 Using the Console Framework Module in an Application

The typical steps in using the Console Framework module in an application are:

1. Create menu and command structures.
2. Implement needed callbacks.
3. Initialize the Console Framework using hte sf_console_api_t::open API.
4. Use the sf_console_api_t::prompt API to generate the prompt and process commands.
5. Use other APIs (sf_console_api_t::read, sf_console_api_t::write, sf_console_api_t::parse or

sf_console_api_t::argumentFind) as needed to process commands.
6. Use sf_console_api_t::close API to close the module if desired.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 360 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Console Framework > Using the Console Framework Module in an Application

These common steps are illustrated in a typical operational flow in the following figure:

Figure 170: Flow Diagram of a Typical Console Framework Module Application

4.1.16 Crypto Framework

4.1.16.1 Crypto Framework Introduction

The Crypto Framework layer is composed of multiple Crypto modules providing varied cryptographic
services. It includes:

SF_CRYPTO for resource synchronization between the crypto modules.

SF_CRYPTO_TRNG for true random number generation.

SF_CRYPTO_HASH for message digest generation. Provides support for MD5, SHA1, SHA 224, SHA
256 algorithms.

SF_CRYPTO_KEY for Key Generation services. Provides support for AES, ECC and RSA keys.

SF_CRYPTO_CIPHER for encryption and decryption services. Provides support for AES and RSA
algorithms.

SF_CRYPTO_SIGNATURE for RSA signature generation and verification services.

SF_CRYPTO_KEY_INSTALLATION for key installation services. Provides support for AES, ECC and RSA
keys.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 361 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Introduction

Crypto Framework Module Features

The terms "key wrapping" and "key installation" in the context of SSP are defined as follows:

Key Wrapping: The APIs to generate symmetric keys or asymmetric key pairs on the Synergy
platform where the private / secret key is a wrapped key (encrypted key).

Key Installation: User generated private /secret keys on a PC (system outside of the Synergy
platform) will be installed (no storage) on the Synergy platform and the wrapped private /secret key
returned to the user.

Wrapped keys provide the following advantages:

The wrapped key can only be used on the Synergy platform (MCU) on which it was
generated.
It cannot be moved to another Synergy platform (MCU).
Original Key cannot be recovered from the wrapped key.

Figure 171: Crypto Framework Module Block Diagram

4.1.16.2 Crypto Framework Module APIs Overview

The Crypto Framework Module defines APIs for a variety of cryptographic services. A complete list of
the available APIs, an example API call and a short description of each can be found in the following
table. A table of status return values follows the API summary table.

Crypto Framework Module API Summary

Function Name Example API Call and Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 362 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module APIs Overview

open g_sf_crypto0.p_api->open(g_sf_crypto0.p_ctrl,
g_sf_crypto0.p_cfg);
This function is used to open the crypto
framework module and the r_sce HAL module.

close g_sf_crypto0.p_api->close(g_sf_crypto0.p_ctrl);
This function is used to close the crypto
framework module and the r_sce HAL module.

lock g_sf_crypto0.p_api->lock(g_sf_crypto0.p_ctrl);
This function locks shared resources for
cryptography operations.

unlock g_sf_crypto0.p_api->unlock(g_sf_crypto0.p_ctrl);
Unlock shared resources for cryptography
operations.

getStatus g_sf_crypto0.p_api->statusGet(g_sf_crypto0.p_ct
rl, &p_status);
This function gets the status of the Crypto
Framework common module.

versionGet g_sf_crypto0.p_api->versionGet(&version);
This function retrieves the API version using the
version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Crypto HASH Framework Module API Summary

Function Name Example API Call and Description

open g_sf_crypto_hash0.p_api->open(g_sf_crypto_has
h0.p_ctrl, g_sf_crypto_hash0.p_cfg);
This function is used to open the crypto hash
framework module.

close g_sf_crypto_hash0.p_api->close(g_sf_crypto_has
h0.p_ctrl);
This function is used to close the crypto hash
framework module.

hashInit g_sf_crypto_hash0.p_api->hashInit(g_sf_crypto_h
ash0.p_ctrl);
This function initializes the calculation of the
hash function. It has to be invoked first and only
once, at the beginning of each new calculation.

hashUpdate g_sf_crypto_hash0.p_api->hashUpdate(g_sf_cryp
to_hash0.p_ctrl, &p_data_in);
This function calculates the hash on the data
pointed to by the p_data_in pointer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 363 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module APIs Overview

hashFinal g_sf_crypto_hash0.p_api->hashFinal(g_sf_crypto
_hash0.p_ctrl, &p_data_in, &p_size);
This function finalizes the hash operation on the
data pointed to by the p_data_in pointer and
stores the output size in the 32-bit word defined
by the p_size pointer.

versionGet g_sf_crypto_hash0.p_api->versionGet(&version);
This function retrieves the API version using the
version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Crypto TRNG Framework Module API Summary

Function Name Example API Call and Description

open g_sf_crypto_trng0.p_api->open(
g_sf_crypto_trng0.p_ctrl,
g_sf_crypto_trng0.p_cfg);
This function is used to open the Crypto TRNG
framework module.

close g_sf_crypto_trng0.p_api->close(
g_sf_crypto_trng0.p_ctrl);
This function is used to close the Crypto TRNG
framework module.

randomNumberGenerate g_sf_crypto_trng0.p_api->
randomNumberGenerate (&p_buffer);
This function generates the random number and
stores it in memory starting at the address
defined by the p_buffer pointer.

versionGet g_sf_crypto_trng0.p_api->versionGet(&version);
This function retrieves the API version using the
version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Crypto Key Framework Module API Summary

Function Name Example API Call and Description

open g_sf_crypto_key0.p_api->open(
g_sf_crypto_key0.p_ctrl, g_sf_crypto_key0.p_cfg);
This function is used to open the crypto key
framework module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 364 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module APIs Overview

keyGenerate g_sf_crypto_key0.p_api->keyGenerate(
g_sf_crypto_key0.p_ctrl, &p_secret_key,
&p_public_key);
This function is used to generate a key or key
pair and store it at the p_secret_key and
p_public_key pointers.

EcdhSharedSecretCompute g_sf_crypto_key0.p_api->EcdhSharedSecretCom
pute(g_sf_crypto_key0.p_ctrl,
&p_local_secret_key, &p_remote_public_key,
&p_shared_secret);
This function is used to perform ECC scalar
multiplication

close g_sf_crypto_key0.p_api->close(
g_sf_crypto_key0.p_ctrl);
This function is used to close the crypto key
framework module and the r_sce HAL module.

versionGet g_sf_crypto_key0.p_api->versionGet(&version);
This function retrieves the API version using the
version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Crypto Key Installation Framework Module API Summary

Function Name Example API Call and Description

open g_sf_crypto_key_installation.p_api->open(
g_sf_crypto_key_installation.p_ctrl,
g_sf_crypto_key_installation.p_cfg);
This function is used to open the crypto key
initialization framework module.

keyInstall g_sf_crypto_key_installation.p_api->keyInstall(
g_sf_crypto_key_installation.p_ctrl,
p_user_key_input, p_install_key_input,
p_key_data_out);
This function is used to install a key using the
p_user_key_input, p_install_key_input and
p_key_data_out pointers.

close g_sf_crypto_key_installation.p_api->close(
g_sf_crypto_key_installation.p_ctrl);
This function is used to close the crypto key
installation framework module.

versionGet g_sf_crypto_key_installation.p_api->versionGet(
&version);
This function retrieves the API version using the
version pointer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 365 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module APIs Overview

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Crypto Cipher Framework Module API Summary

Function Name Example API Call and Description

open g_sf_crypto_cipher.p_api->open(
g_sf_crypto_cipher.p_ctrl,
g_sf_crypto_cipher.p_cfg);
This function is used to open the crypto cipher
framework module.

cipherInit g_sf_crypto_cipher.p_api->cipherInit(
g_sf_crypto_cipher.p_ctrl, mode, p_key,
p_params);
This function is used to initialize the crypto
cipher framework module.

signUpdate g_sf_crypto_cipher.p_api->cipherUpdate(
g_sf_crypto_cipher.p_ctrl, p_datain, p_dataout);
This function performs the cipher encrypt or
decrypt operation. It can be called multiple
times on additional blocks of data. Result is
placed in p_dataout.

cipherFinal g_sf_crypto_cipher.p_api->cipherFinal(
g_sf_crypto_signature.p_ctrl, p_datain,
p_dataout);
This function performs the final encrypt or
decrypt operation. Result is placed in p_dataout.

cipherAadUpdate g_sf_crypto_cipher.p_api->cipherAadUpdate(
g_sf_crypto_cipher.p_ctrl, p_aad);
This function updates AAD (Additional
Authenticated Data) for AES GCM operation
using the p_aad pointer to the AAD data and
length. It can be called multiple times on
additional blocks of data.

close g_sf_crypto_cipher.p_api->close(
g_sf_crypto_cipher.p_ctrl);
This function is used to close the crypto
signature framework module.

versionGet g_sf_crypto_cipher.p_api->versionGet(&version);
This function retrieves the API version using the
version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Crypto Signature Framework Module API Summary

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 366 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module APIs Overview

Function Name Example API Call and Description

open g_sf_crypto_signature.p_api->open(
g_sf_crypto_signature.p_ctrl,
g_sf_crypto_signature.p_cfg);
This function is used to open the crypto
signature framework module.

contextInit g_sf_crypto_signature.p_api->contextInit(
g_sf_crypto_signature.p_ctrl, mode, p_params,
p_key);
This function is used to initialize the crypto
signature framework module.

signUpdate g_sf_crypto_signature.p_api->signUpdate(
g_sf_crypto_signature.p_ctrl, p_message);
This function performs the signature update
operation. It can be called multiple times to
accumulate the message to be signed.

verifyUpdate g_sf_crypto_signature.p_api->verifyUpdate(
g_sf_crypto_signature.p_ctrl, p_message);
This function performs the signature verification
update operation. It can be called multiple times
to accumulate the message whose signature is
to be verified.

signFinal g_sf_crypto_signature.p_api->signFinal(
g_sf_crypto_signature.p_ctrl, p_message,
p_dest);
This function generates the signature and writes
it to the destination.

verifyFinal g_sf_crypto_signature.p_api->verifyFinal(
g_sf_crypto_signature.p_ctrl, p_signature,
p_message);
This function performs the signature verify
operation.

close g_sf_crypto_signature.p_api->close(
g_sf_crypto_signature.p_ctrl);
This function is used to close the crypto
signature framework module.

versionGet g_sf_crypto_signature.p_api->versionGet(&versi
on);
This function retrieves the API version using the
version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

 The Framework APIs return common SSP error codes and in addition may return error codes from
low level modules. Crypto Framework specific error codes can be found in the API Reference section
for the specific function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 367 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module Operational Overview

4.1.16.3 Crypto Framework Module Operational Overview

The following notes apply to SF_CRYPTO, SF_CRYPTO_TRNG, SF_CRYPTO_HASH, SF_CRYPTO_KEY,
SF_CRYPTO_KEY_INSTALLATION, SF_CRYPTO_CIPHER and SF_CRYPTO_SIGNATURE modules.

Endianness configuration parameter

In the Synergy Configurator (if only the Crypto HAL drivers are selected without the Crypto
Framework modules), endianness is a configurable parameter and set to big endian by
default. This is the mode that was supported in previous releases.
In the Synergy Configurator, if Crypto Framework modules are selected (the respective HAL
component is included automatically), the endianness flag is locked to the little endian
mode where only the byte array format is supported.
The Crypto Framework Layer APIs support only byte arrays for input and output data.
The Crypto HAL APIs support WORD / 32-bit (uint32_t) arrays for input and output data.
Users with data in byte array format should use the Crypto Framework modules.
For any existing projects using the Crypto HAL API without the respective Framework API,
Big Endian data may have been used and in that case, it needs to be converted to little
Endian to use framework API or continue to use the existing HAL API directly.
If using the HAL APIs directly, the user needs to make sure that the data cast as (uint32_t)
matches the endianness of the HAL module used.

Alignment for data buffers

All data buffers allocated to be passed in as input buffers must be aligned on WORD
boundary.

Blocking calls

All Crypto Framework APIs are blocking calls.

SF CRYPTO Framework Services

The SF CRYPTO Framework modules include:
SF_CRYPTO for HW initialization and resource synchronization between the crypto
modules.
SF_CRYPTO_TRNG for true random number generation.
SF_CRYPTO_HASH for message digest generation. Provides the ability to process
data in chunks before finalizing the hash operation.
SF_CRYPTO_KEY for RSA, AES, ECC. Provides the option to generate wrapped keys
in addition to plain text keys.
SF_CRYPTO_KEY_INSTALLATION provides key installation services for RSA, AES and
ECC keys.
SF_CRYPTO_CIPHER provides encryption and decryption services for AES and RSA
keys.
SF_CRYPTO_SIGNATURE provides RSA signature generation and verification
services.

VersionGet API

This API can be called at any time, that is, even before a module is opened.

SF CRYPTO Framework Module Overview Description

The SF CRYPTO Framework provides a high-level API and is implemented on sf_crypto. The SF

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 368 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module Operational Overview

CRYPTO Framework provides a foundation for the Framework Crypto services through the Secure
Cryptographic Engine (SCE) HAL module.

SF CRYPTO Framework Module Features

The SF CRYPTO Framework opens/ initializes the underlying HW Secure Crypto Engine.
Provides services for access to shared resources for other Crypto Framework modules
SF_CRYPTO_TRNG, SF_CRYPTO_HASH, SF_CRYPTO_KEY, SF_CRYPTO_CIPHER,
SF_CRYPTO_SIGNATURE and SF_CRYPTO_KEY_INSTALLATION.

SF CRYPTO Framework Module Operational Notes

sf_crypto_api_t::open API is called during initialization because the "Auto Initialization"
configuration option is enabled by default.
sf_crypto_api_t::lock API and sf_crypto_api_t::unlock API are for the SF_CRYPTO_XXX
modules to to be used.

However, if the application is making a direct call to HAL APIs, use sf_crypto_api_t::lock API just
before making the call to HAL module.

Use sf_crypto_api_t::unlock API just after returning from the call to HAL module.
sf_crypto_api_t::statusGet API requires the control block / p_ctrl as input parameter. Hence
it should be called only after the open API of SF_CRYPTO module is called.

Configuration Settings for the SF CRYPTO Framework Module

Configuration parameter Description

uint32_t wait_option Wait option for RTOS service calls
Defines how the service behaves if there is not
enough memory available. The wait options are
defined as follows:
TX_NO_WAIT (0x00000000) T
X_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through
0xFFFFFFFE)
Selecting TX_NO_WAIT results in an immediate
return from this service regardless of whether or
not it was successful. This is the only valid
option if the service is called from initialization.
Selecting TX_WAIT_FOREVER causes the calling
thread to suspend indefinitely until enough
memory is available.
Selecting a numeric value (1-0xFFFFFFFE)
specifies the maximum number of timer-ticks to
stay suspended while waiting for the memory.
Default set through ISDE isTX_WAIT_FOREVER.

crypto_instance_t * p_lower_lvl_crypto Pointer to a low-level Crypto engine HAL driver
instance.
Configured by Synergy Configurator.

void const * p_extend Extension parameter for hardware specific
settings.
Configured by Synergy Configurator.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 369 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module Operational Overview

void const * p_context Placeholder for user data.
For future expansion.

void * p_memory_pool Byte pool address.
Configured by Synergy Configurator.

uint32_t memory_pool_size Byte pool size.
Default set by ISDE is 128 bytes.
Caller to allocate pool based on the number of
SF_CRYPTO_XXX module instances created.
Recommended sizes:
In addition to the default byte pool:

Note
An additional 12 bytes per instance is needed for
RTOS housekeeping.
24 + 12 bytes per instance of SF_CRYPTO_KEY
module if RSA Key is required.
264 +12bytes per instance of SF_CRYPTO_KEY
module if AES Key is required.
SF_CRYPTO_KEY module if AES Key is required.
112 +12 bytes per instance of SF_CRYPTO_HASH
module.
1200 bytes per instance of SF_CRYPTO_CIPHER
module for RSA algorithm is required.
600 bytes per instance of SF_CRYPTO_CIPHER
module for AES algorithm is required.
1450 bytes per instance of
SF_CRYPTO_SIGNATURE module.

sf_crypto_close_option_t close_option Close option
Selects how the SCE module can be closed.
SF_CRYPTO_CLOSE_OPTION_DEFAULT - Close
the module only if none of the other
SF_CRYPTO_XXX modules are opened.

Note
This is the default setting.
SF_CRYPTO_CLOSE_OPTION_FORCE_CLOSE
- Close the module regardless of
SF_CRYPTO_XXX modules status.

With either option, It is the responsibility of the
caller to ensure that the SF CRYPTO module is not
closed when any of the other Crypto Framework
modules are open.

SF CRYPTO Framework Module Limitations

It is the responsibility of the caller to ensure that the SF CRYPTO module is not closed when any of
the other Crypto Framework modules are open.

Using the SF CRYPTO Framework Module in an Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 370 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module Operational Overview

The typical steps in using the SF CRYPTO Framework module in an application are:

To use the SF CRYPTO module.

Ensure that the configuration parameters (given in the previous table) are set as per the
needs of the application.
Use the sf_crypto_api_t::open API to Initialize the SF_CRYPTO and the SCE HAL module
(R_SCE) through the SCE common driver. This is done by Synergy Configurator when the
Auto Initialize setting is at default.
The little endian mode is set by default. It is locked and not configurable.
The open function cannot be called again until the module is closed.
Use the sf_crypto_api_t::close API to close the Crypto Framework services and the HW SCE.

SF CRYPTO TRNG Framework Module Overview Description

The SF CRYPTO TRNG Framework provides a high-level API and is implemented on sf_crypto_trng.
The SF CRYPTO TRNG Framework provides True Random Number Generation services through the
Secure Cryptographic Engine (SCE) HAL module.

SF CRYPTO TRNG Framework Module Features

The SF CRYPTO TRNG Framework module uses the TRNG HAL interfaces to the underlying
Secure Crypto Engine.
Access to shared resources through SF CRYPTO Framework module.

Configuration Settings for the SF TRNG CRYPTO Framework Module

Configuration Parameter Description

sf_crypto_instance_t * p_lower_lvl_common; Pointer to a low-level Crypto engine HAL driver
instance.
Configured by Synergy Configurator.

trng_instance_t * p_lower_lvl_instance; Pointer to a TRNG HAL driver instance.
Configured by Synergy Configurator.

void * p_extend; Extension parameter for hardware specific
settings.
For future use.

The configuration is set through the ISDE for the TRNG HAL driver:

Configuration Parameter for the TRNG HAL Module on r_sce_trng

Configuration parameter Description

uint32_t num_attempts Number of attempts within which a true random
number is to be generated.
Set to 2 by default.

SF CRYPTO TRNG Framework Module Limitations

None.

SF CRYPTO HASH Framework Module Overview Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 371 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module Operational Overview

The SF CRYPTO HASH Framework provides a high-level API and is implemented on sf_crypto_hash.
The SF CRYPTO HASH Framework provides hash/message digest services through the Secure
Cryptographic Engine (SCE) HAL module.

The hash functions supported are MD5, SHA-1, SHA-224 and SHA-256.

From FIPS Secure Hash Standard:

All of the algorithms are iterative, one-way hash functions that can process a message to produce a
condensed representation called a message digest. These algorithms enable the determination of a
message's integrity: any change to the message will, with a very high probability, result in a
different message digest. This property is useful in the generation and verification of digital
signatures and message authentication codes, and in the generation of random numbers or bits.

For the supported hash functions, the message size should be < 264 bits.

The message digest sizes are as follows:

MD5 : 16 bytes

SHA-1 : 20 bytes

SHA-224: 28 bytes

SHA-256: 32 bytes

SF CRYPTO HASH Framework Module Features

The SF CRYPTO HASH Framework utilizes the underlying Secure Crypto Engine to provide
HASH services.
This module provides enhancements over the HAL Driver such as:

Initializing the HASH value.
Processing chunks of data through sf_crypto_hash_api_t::hashUpdate API before
finalizing the hash operation.
Formatting the final block for the final HASH operation.

Configuration Settings for the SF CRYPTO HASH Framework Module

Configuration Parameter Description

sf_crypto_hash_type_t hash_type; HASH algorithm type. Select MD5, SHA1, SHA
224 or SHA256.
See the header file for the definitions.

crypto_instance_t * p_lower_lvl_crypto Pointer to a low-level Crypto engine HAL driver
instance.
Configured by Synergy Configurator.

hash_instance_t *
p_lower_lvl_instance;

pointer to HASH lower-level module instance.
Configured by ISDE.

void * p_extend Extension parameter for hardware specific
settings. Optional.
Configured by Synergy Configurator.

SF CRYPTO HASH Framework Module Limitations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 372 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module Operational Overview

None

SF CRYPTO KEY Framework Module Overview Description

The SF CRYPTO KEY Framework provides a high-level API and is implemented on sf_crypto_key. The
SF CRYPTO KEY Framework provides cryptographic key generation services through the Secure
Cryptographic Engine (SCE) HAL module.

The wrapped keys are often referred to by different names, for example encrypted key, key handle,
wrapped key. Key wrapping on Synergy platform is considered secure as those keys cannot be used
outside of the platform.

SF CRYPTO KEY Framework Module Features

The following key types can be generated using the services of the SF CRYPTO KEY module:

RSA 2048-bit, 1024-bit plain text / raw keys.
RSA 2048-bit, 1024-bit standard format wrapped private keys (public keys in plain).
AES 128-bit, 192-bit and 256-bit wrapped keys for ECB, CBC, CTR and GCM chaining modes.
AES 128-bit and 256-bit wrapped keys for XTS chaining mode.
ECC 192-bit, 224-bit, 256-bit, 384-bit plain-text and wrapped keys.

SF CRYPTO KEY Framework Module Operational Notes

AES Keys

AES wrapped key sizes are as follows:

/* Return Wrapped AES secret key size in bytes for a 128-bit AES Key */

#define AES128_WRAPPPED_SECRET_KEY_SIZE_BYTES (36U)

/* Return Wrapped AES secret key size in bytes for a 192-bit AES Key */

#define AES192_WRAPPPED_SECRET_KEY_SIZE_BYTES (52U)

/* Return Wrapped AES secret key size in bytes for a 256-bit AES Key */

#define AES256_WRAPPPED_SECRET_KEY_SIZE_BYTES (52U)

/* Return Wrapped AES-XTS secret key size in bytes for a 128-bit AES XTS Mode Key */

#define AES_XTS_128_WRAPPPED_SECRET_KEY_SIZE_BYTES (52U)

/* Return AES-XTS secret key size in bytes for a 256-bit AES XTS Mode Key */

#define AES_XTS_256_WRAPPPED_SECRET_KEY_SIZE_BYTES (84U)

RSA Keys

The format of RSA plain text keys generated by the keyGenerate API is as follows:

RSA Public key

Byte 0 to Byte 3: Public key exponent

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 373 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module Operational Overview

Byte 4 : Start of RSA modulus

 (128 bytes for RSA 1024-bit and 256 bytes for RSA 2048-bit keys)

RSA Private key in standard format

Byte 0: Private key exponent (128 bytes for RSA 1024-bit and 256 bytes for RSA 2048-bit keys)

Followed by RSA modulus. (128 bytes for RSA 1024-bit and 256 bytes for RSA 2048-bit keys)

RSA Private key in CRT format

The components are ordered in the following order with exponent2 at byte 0:

exponent2 // the second factor's CRT exponent, a positive integer

prime2 // the second factor, a positive integer

exponent1 // the first factor's CRT exponent, a positive integer

prime1 // the first factor, a positive integer

coefficient // the (first) CRT coefficient, a positive integer

The format of RSA wrapped keys generated by the keyGenerate API is as follows:

RSA Public key is always in plain text.

Byte 0 to Byte 3: Public key exponent

Byte 4 : Start of RSA modulus

 (128 bytes for RSA 1024-bit and 256 bytes for RSA 2048-bit keys)

RSA Private key in standard format

Byte 0: Private key exponent is wrapped. (Length is 148 bytes for RSA 1024-bit and 276 bytes for
RSA 2048-bit keys)

Followed by RSA modulus in plain text. (Length is 128 bytes for RSA 1024-bit and 256 bytes for RSA
2048-bit keys)

Configuration Settings for the SF CRYPTO KEY Framework Module

Configuration parameter Description

sf_crypto_key_type_t key_type Key type to be generated. Plain text or Wrapped
keys.
See the header file for the definitions.

sf_crypto_key_size_t key_size Key size to be generated.
See the header file for the definitions.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 374 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module Operational Overview

sf_crypto_data_handle_t domain_params; Pointer to domain parameters for the requested
key type.
Structure contains, pointer to the data (contains
the domain data) and data length.
Structure contains the domain data in the order
a||b||p||n for ECC as defined in FIPS186-3 and
data length.
To be filled appropriately for ECC and set to
NULL for RSA and AES Key types, since this
parameter only applies to the ECC function.

sf_crypto_data_handle_t generator_point Pointer to the generator base point of curve in
the order Gx||Gy for ECC (where Gx and Gy are x
and y coordinates respectively) and data length.
To be set to NULL for RSA and AES key types.

sf_crypto_instance_t *
p_lower_lvl_crypto_common

Pointer to a Crypto Framework common
instance.
Configured by Synergy Configurator.

void const * p_extend Extension parameter for hardware specific
settings (Reserved for future use).
Configured by Synergy Configurator.

SF Crypto Signature Framework Module Overview Description

The SF CRYPTO Signature Framework provides a high-level API and is implemented on
sf_crypto_signature. This module is in the SSP framework layer that interfaces with Synergy HAL
drivers for the hardware level cryptography operations. The module functions specified herein are
used to sign / verify messagethat is provided as input.

SF Crypto Signature Module Features

This module currently supports signature generation and signature-verification for RSA
algorithm. There is support for both 1024-bits and 2048-bits key lengths for standard
format plain-text, standard format wrapped private key and CRT plain-text keys.
RSASSA-PKCS1 v1.5 is the supported signature scheme. The input message can be passed
as raw message to be signed/verified or can be PKCS1 v1.5 encoded and padded before
sign/verify.
SHA1, SHA224, SHA256 are the supported hashing algorithms for PKCS1 v1.5 encoding
/padding schemes.
This module allows signature generation / verification on data which is smaller than a block
size.
If all of the data is not available at once, update APIs can be used to accumulate the
incoming chunks of data and finally sign/verify the message only when all the message is
gathered.
Module allows to switching between sign and verify operations with less expensive API calls
which are not involved in allocating and deallocating memory.

SF Crypto Signature Framework Module Operational Notes

1. Operation modes for Signature Framework Module:
a. SF_CRYPTO_SIGNATURE_MODE_SIGN
b. SF_CRYPTO_SIGNATURE_MODE_VERIFY

2. Input Message Format to the Signature Framework APIs to perform sign or verify operation:
a. SF_CRYPTO_SIGNATURE_MESSAGE_OPERATION_NONE

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 375 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module Operational Overview

b. SF_CRYPTO_SIGNATURE_MESSAGE_OPERATION_RSA_SHA1_PKCS1_1_5
c. SF_CRYPTO_SIGNATURE_MESSAGE_OPERATION_RSA_SHA224_PKCS1_1_5
d. SF_CRYPTO_SIGNATURE_MESSAGE_OPERATION_RSA_SHA256_PKCS1_1_5

Configuration Settings for SF CRYPTO Signature Framework Module

Configuration parameter Description

sf_crypto_key_type_t key_type; Type of Key
RSA plain text or wrapped. See the header file
for the definitions.

sf_crypto_key_size_t key_size Size of Key
RSA 1024-bit /2048-bit key.
See the header file for the definitions.

sf_crypto_hash_instance_t *
p_lower_lvl_sf_crypto_hash

Pointer to the Crypto Hash framework module
instance structure.
Configured by Synergy Configurator.

sf_crypto_instance_t *
p_lower_lvl_crypto_common

Pointer to Crypto Common module instance.
Configured by Synergy Configurator.

void const * p_extend Extension parameter for hardware specific
settings. Optional. Configured by Synergy
Configurator.

void const * p_extend Extension parameter for hardware specific
settings (Reserved for future use).
Configured by Synergy Configurator.

SF CRYPTO Signature Framework Module Limitations

None

SF Crypto Cipher Framework Module Overview Description

The SF CRYPTO Cipher Framework provides a high-level API and is implemented on sf_crypto_cipher.
This module is in the SSP framework layer and provides encryption and decryption services through
the Secure Cryptographic Engine (SCE) HAL module.

SF Crypto Cipher Module Features

This module currently supports encryption and decryption for AES and RSA algorithms.
This module allows encryption/ decryption of data when available in chunks through the
sf_crypto_cipher_api_t::cipherUpdate API and final() when the last chunk /all the data is
gathered.
Once the module is opened for a specific key type and key size, the encrypt and decrypt
modes can be switched by calling the sf_crypto_cipher_api_t::cipherInit API.

AES algorithm support:

AES 128-bit, 192-bit and 256-bit plain text and wrapped keys for the following chaining
modes:

ECB (Electronic Code Book)
CBC (Cipher Block Chaining)
CTR (Counter Mode)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 376 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module Operational Overview

GCM (Galois Counter Mode)
AES 128-bit and 256-bit plain text and wrapped keys for XTS (XEX-based tweaked code-
book mode with ciphertext stealing) are supported.
IV provided for AES GCM operations can be either 96-bits or a 96-bit IV formatted to
128-bits.

Example:
96-bit IV: 94c1935afc061cbf254b936f
96-bit IV formatted to 128-bits: 94c1935afc061cbf254b936f00000001

PKCS#7 padding scheme is supported for ECB and CBC modes. This scheme can be used
when the data is of any block size from 1 to 255 bytes.
No padding option is supported for all modes where the data is exactly a multiple of the
AES block size.

For GCM, no padding option is to be selected even when the data is not a multiple
of the block size.

RSA algorithm support:

RSA 1024-bit and 2048-bit plain-text standard format, plain-text CRT format and standard
format wrapped keys are supported.
RSA encrypt operation requires RSA public key and RSA decrypt operation requires RSA
private key.
RSAES-PKCS1-v1_5 (RSA Encryption Scheme)

RSA-PKCS1 v1.5 encoding /padding scheme is supported.
The input raw message is encoded and formatted to be encrypted. It requires that
the message be less than k-11 where k is the length of the modulus of the
selected key.

No padding option should be selected when an encoded and formatted block (exactly the
size as the modulus of the selected key) needs to be encrypted / decrypted.

SF Crypto Cipher Framework Module Operational Notes

Configuration Settings for the SF Crypto Cipher Framework Module

Configuration Parameter Description

sf_crypto_key_type_t key_type Key type for cipher operation: AES or RSA plain
text or wrapped. Please refer to the header file
for the definitions.

sf_crypto_key_size_t key_size Key size for cipher operation: AES 128-bit /
192-bit/256-bit key or RSA 1024-bit /2048-bit
key.
Please refer to the header file for the definitions.

sf_crypto_cipher_mode_t cipher_chaining_mode Applicable only to AES algorithm: ECB, CBC,
CTR, XTS or GCM chaining modes
Set to ECB for RSA.
Please refer to the header file for the definitions.

sf_crypto_instance_t *
p_lower_lvl_crypto_common

Pointer to Crypto Framework Common module
instance.
Configured by Synergy Configurator.

sf_crypto_trng_instance_t *
p_lower_lvl_crypto_trng

Pointer to Crypto Framework TRNG module
instance.
Configured by Synergy Configurator.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 377 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module Operational Overview

void const * p_extend Extension parameter for hardware specific
settings.Optional.
Configured by Synergy Configurator.

SF CRYPTO Cipher Framework Module Limitations

AES XTS mode only supports lengths which are a multiple of 32-bits / 4 bytes.

SF Crypto Key Installation Framework Module Overview Description

The SF Crypto Key Installation Framework provides a high-level API and is implemented on
sf_crypto_key_installation. The SF Crypto Key Installation Framework Key Installation services
through the Secure Cryptographic Engine (SCE) HAL module.

Note

1. The API returns the wrapped key (please refer to the SF CRYPTO KEY Module section for the
wrapped key format and size details) to the user and does not store the key for future use.
It is the responsibility of the application to store the wrapped key in non-volatile memory for
future use.

2. This Framework module provides the same level of service as the Crypto HAL module
without any enhancements. It is provided for thread safe operation and for completeness of
Crypto support in the Framework layer.

SF Crypto Key Installation Framework Module Features

The SF Crypto Key Installation Framework module uses the KEY INSTALLATION HAL
interfaces to the underlying Secure Crypto Engine.
Access to shared resources through SF CRYPTO Framework module.
This module supports key installation for the following keys:

RSA:
1024-bit and 2048-bit plain text standard format keys.

Note
CRT keys are not supported.

AES:
128-bit, 192-bit and 256-bit plain text keys for ECB, CBC, CTR and GCM
chaining modes.
128-bit and 256-bit plain text keys for XTS chaining mode.

ECC:
192-bit and 256-bit plain text keys.

The session key, iv and shared index must be provided to the key installation API in the
specified format.
Upon installation the key installation service returns a wrapped key to the caller for any
future usage of installed key on that device.
ECC 224-bit and 384-bit keys are supported by the HAL module and not by the framework.

Configuration Settings for the SF Crypto Key Installation Framework Module

Configuration parameter Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 378 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Crypto Framework Module Operational Overview

sf_crypto_key_type_t key_type; Type of key to be installed.
The prepared key will be of the encrypted type.
Please refer to the header file for the definitions.

sf_crypto_key_size_t key_size; Size of key to be installed.
Please refer to the header file for the definitions.

sf_crypto_instance_t * p_lower_lvl_common; Pointer to a Crypto Framework common
instance.
Configured by Synergy Configurator.

key_installation_instance_t *
p_lower_lvl_instance;

Pointer to Crypto Key Install HAL instance
Configured by Synergy Configurator.

void const * p_extend; Extension parameter for hardware specific
settings.
For future use.

4.1.16.4 Including the Crypto Framework Module in an Application

This section describes how to include the Crypto Framework module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Crypto Framework module to an application, simply add it to a HAL /Common thread
using the stacks selection sequence given in the following table. (The default name for the Crypto
Framework module is g_sf_crypto0. This name can be changed in the associated Properties window.)

Crypto Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_crypt0 Crypto Framework
on sf_crypto

Threads New Stack> Framework>
Crypto> Crypto Framework
on sf_crypto

g_sf_crypt_key0 Crypto Key
Framework on sf_crypto_key

Threads New Stack> Framework>
Crypto> Crypto Key
Framework on sf_crypto_key

g_sf_crypt0 Crypto TRNG
Framework on sf_crypto_trng

Threads New Stack> Framework>
Crypto> Crypto TRNG
Framework

g_sf_crypt0 Crypto HASH
Framework on sf_crypto_hash

Threads New Stack> Framework>
Crypto> Crypto HASH
Framework

g_sf_crypt_key0 Crypto Key
Installation Framework on
sf_crypto_key_installation

Threads New Stack> Framework>
Crypto> Crypto Key
Installation Framework on
sf_crypto_key_installation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 379 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Including the Crypto Framework Module in an Application

g_sf_crypt0 Crypto cipher
Framework on sf_crypto_cipher

Threads New Stack> Framework>
Crypto> Crypto cipher
Framework

g_sf_crypt0 Crypto signature
Framework on
sf_crypto_signature

Threads New Stack> Framework>
Crypto> Crypto signature
Framework

When the Crypto Framework module on sf_crypto is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with a
Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 172: Crypto Framework Module Stack

4.1.16.5 Configuring the Crypto Framework Module

The Crypto Framework module must be configured by the user for the desired operation. The SSP
configuration window will automatically identify (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules in order to ensure successful operation. Furthermore, only those properties that can
be changed without causing conflicts are available for modification. Other properties are 'locked' and
are not available for changes, and are identified with a lock icon for the 'locked' property in the
Properties window in the ISDE. This approach simplifies the configuration process and makes it much
less error-prone than previous 'manual' approaches to configuration. The available configuration
settings and defaults for all the user-accessible properties are given in the Properties tab within the
SSP configurator, and are shown in the following tables for easy reference.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 380 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Configuring the Crypto Framework Module

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

Configuration Settings for the Crypto Framework on sf_crypto

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Select if code for parameter
checking is to be included in
the build.

Name g_sf_crypto0 Module name.

Wait time TX_WAIT_FOREVER Value must be a non-negative
integer.

Byte Pool Size 128 Specify the size of the byte pool
in bytes.

Auto Initialization Enable, Disable

Default: Enable

Select if sf_crypto will be
initialized during startup.

Force Closure Support Default, Force Close

Default: Default

Select Force Close to close the
crypto module regardless of the
status of submodules.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Crypto HASH Framework on sf_crypto_hash

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Select if code for parameter
checking is to be included in
the build.

Instance Name g_sf_crypto_hash0 Module name.

Name of generated initialization
function

sf_crypto_hash_init0 Select the name of the
generated initialization
function.

Auto Initialization Enable, Disable

Default: Enable

Select if sf_crypto_hash will be
initialized during startup.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Crypto TRNG Framework on sf_crypto_trng

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 381 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Configuring the Crypto Framework Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Select if code for parameter
checking is to be included in
the build.

Name g_sf_crypto_trng0 Module name.

Name of generated initialization
function

sf_crypt_trng_init0 Select the name of the
generated initialization
function.

Auto Initialization Enable, Disable

Default: Enable

Select if sf_crypto_trng will be
initialized during startup.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Crypto Cipher Framework on sf_crypto_cipher

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Select if code for parameter
checking is to be included in
the build.

Name g_sf_crypto_cipher0 Module name.

Key type RSA Plain text, RSA CRT Plain
text, RSA Wrapped, AES
Wrapped, ECC Plain text, ECC
Wrapped

Default: RSA Plain text

Select the key type.

Key size RSA 1024-bits, RSA 2048-bits,
AES 128-bits, AES XTS 128-bits,
AES 192-bits, AES 256-bits, AES
XTS 256-bits, ECC 192-bits, ECC
256-bits

Default: RSA 2048-bits

Select the key size.

Cipher chaining mode ECB, CBC, CTR, GCM, XTS

Default: ECB

Select the cipher chaining
mode.

Name of generated initialization
function

sf_crypto_cipher_init0 Select the name of the
generated initialization
function.

Auto Initialization Enable, Disable

Default: Enable

Select if sf_crypto_cipher will be
initialized during startup.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 382 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Configuring the Crypto Framework Module

The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Crypto Key Framework on sf_crypto_key

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Select if code for parameter
checking is to be included in
the build.

Name g_sf_crypto_key0 Module name.

Key type RSA Plain text, RSA CRT Plain
text, RSA Wrapped, AES
Wrapped, ECC Plain text, ECC
Wrapped

Default: RSA Plain text

Select the key type. For AES,
the byte pool size defined in
sf_crypto must be >= 280
bytes.

Key size RSA 1024-bits, RSA 2048-bits,
AES 128-bits, AES XTS 128-bits,
AES 192-bits, AES 256-bits, AES
XTS 256-bits, ECC 192-bits, ECC
224-bits, ECC 256-bits, ECC
384-bits

Default: RSA 2048-bits

Select the key size.

Name of generated initialization
function

sf_crypto_key_init0 Select the name of the
generated initialization
function.

Name of Domain Parameter
(Applicable only for ECC)

sf_crypto_key_domain_params0 Specify the name of the ECC
domain partner.

Name of Generator Point
(Applicable only for ECC)

sf_crypto_key_generator_point0 Specify the name of the ECC
generator point.

Auto Initialization Enable, Disable

Default: Enable

Select if sf_crypto_key_will be
initialized during startup.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Crypto Key Installation Framework on
sf_crypto_key_installation

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Select if code for parameter
checking is to be included in
the build.

Name g_sf_crypto_key_installation0 Module name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 383 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Configuring the Crypto Framework Module

Key type Encrypted RSA Key, Encrypted
AES Key, Encrypted ECC Key

Default: Encrypted RSA Key

Select the key type.

Key size RSA 1024-bits, RSA 2048-bits,
AES 128-bits, AES XTS 128-bits,
AES 192-bits, AES 256-bits, AES
XTS 256-bits, ECC 192-bits, ECC
256-bits

Default: RSA 2048-bits

Select the key size.

Name of generated initialization
function

sf_crypto_key_installation_init0 Select the name of the
generated initialization
function.

Auto Initialization Enable, Disable

Default: Enable

Select if
sf_crypto_key_installation will
be initialized during startup.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Crypto Signature Framework on sf_crypto_signature

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Select if code for parameter
checking is to be included in
the build.

Name g_sf_crypto_signature0 Module name.

Key type RSA Plain text, RSA CRT Plain
text, RSA Wrapped

Default: RSA Plain text

Select the key type. Byte Pool
size in sf_crypto must be > =
1450 bytes.

Key size RSA 1024-bits, RSA 2048-bits

Default: RSA 2048-bits

Select the key size.

Name of generated initialization
function

sf_crypto_signature_init0 Select the name of the
generated initialization
function.

Auto Initialization Enable, Disable

Default: Enable

Select if sf_crypto_signature will
be initialized during startup.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

4.1.16.6 Using the Crypto Framework Module in an Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 384 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Using the Crypto Framework Module in an Application

The typical steps in using the SF CRYPTO Framework module in an application are:

To use the SF CRYPTO module.

Ensure that the configuration parameters (given in the previous table) are set as per the
needs of the application.
Use the sf_crypto_api_t::open API to Initialize the SF_CRYPTO and the SCE HAL module
(R_SCE) through the SCE common driver. This is done by Synergy Configurator when the
Auto Initialize setting is at default.
The little endian mode is set by default. It is locked and not configurable.
The open function cannot be called again until the module is closed.
Use the sf_crypto_api_t::close API to close the Crypto Framework services and the HW SCE.

Using the SF CRYPTO HASH Framework Module in an Application

The typical steps in using the SF CRYPTO HASH Framework module in an application are:

Calling the APIs in this order: sf_crypto_hash_api_t::open -> sf_crypto_hash_api_t::hashInit ->
sf_crypto_hash_api_t::hashUpdate -> sf_crypto_hash_api_t::hashFinal -> sf_crypto_hash_api_t::close.

Details:

Add SF_CRYPTO HASH Framework module in the Synergy Configurator. The HASH algorithm
for this instance is set to SHA 256 by default.
The little endian mode is set by default. It is locked and not configurable. (Please refer to
note on endianness and data format in the Module Operational Notes.)
The SF CRYPTO Module has to be first opened. (The Synergy Configurator will do this
provided the Auto start option set by default is retained.)
Set the chosen HASH algorithm (specified in Table 4) as the configuration parameter for the
module open API.
Use the sf_crypto_hash_api_t::open API to initialize the SF CRYPTO HASH Framework module
and the SCE HASH HAL module (R_SCE_HASH) through the SCE HASH driver. (The Synergy
Configurator will do this provided the Auto init option set by default is retained.)
The open function cannot be called again until the module is closed.
Use the sf_crypto_hash_api_t::hashInit API to initialize the HASH operation for the chosen
HASH algorithm.

The sf_crypto_hash_api_t::hashInit can be called after the
sf_crypto_hash_api_t::open API, sf_crypto_hash_api_t::hashUpdate API or
sf_crypto_hash_api_t::hashFinal API to initialize a new operation with the
configured HASH algorithm.

Use the sf_crypto_hash_api_t::hashUpdate API to hash input data. It can be called multiple
times until all the data is completely used up.
Use the sf_crypto_hash_api_t::hashFinal API to get the message digest for all the data
hashed with the sf_crypto_hash_api_t::hashUpdate API.

Once the sf_crypto_hash_api_t::hashFinal API is called, either the
sf_crypto_hash_api_t::hashInit can be called to initialize operation for the next set
of data using the same HASH algorithm or the sf_crypto_hash_api_t::close API can
be called to close the module. It can then be re-opened for a different HASH
algorithm.

Use the sf_crypto_hash_api_t::close API to close the Crypto HASH Framework services.

Note
In a particular thread, a single instance of the SF CRYPTO HASH module can be re-used for different HASH
algorithms without having to create multiple instances.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 385 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Using the Crypto Framework Module in an Application

Using the SF CRYPTO TRNG Framework Module in an Application

The typical steps in using the SF CRYPTO TRNG Framework module in an application are:

Use the sf_crypto_trng_api_t::open API to initialize the SF_CRYPTO_TRNG and the SCE TRNG
HAL module (R_SCE_TRNG). This is done by the ISDE when the auto initialization setting is
set to default.
The little endian mode is set by default. It is locked and not configurable. (Please refer to
the note on endianness and data format in the module Operational Notes.)
The open function cannot be called again until the module is closed.
Use sf_crypto_trng_api_t::randomNumberGenerate API to generate random numbers. The
minimum length of random number bytes that can be requested is 1.
Use sf_crypto_trng_api_t::close API to close the Crypto Framework services and the SCE
when the TRNG services are no longer required.

Note
In the rare event that the sf_crypto_trng_api_t::randomNumberGenerate API returns an error, all the CRYPTO
Framework modules have to closed and SF CRYPTO module re-opened.
There will be only one instance of the TRNG HAL module, so the configuration parameters set for each instance of
the Crypto TRNG Framework will be overwrite any previously configured instances. The last value configured is
applicable to all instances.

Using the SF CRYPTO Cipher Framework Module in an Application

The typical steps in using the SF CRYPTO Cipher Framework module in an application are:

Calling the APIs in this order: sf_crypto_cipher_api_t::open -> sf_crypto_cipher_api_t::cipherInit ->
sf_crypto_cipher_api_t::cipherUpdate -> sf_crypto_cipher_api_t::cipherFinal ->
sf_crypto_cipher_api_t::close.

Details:

Please refer to the note on endianness and data format in the module Operational Notes.
The Crypto Framework module has to be opened first; the ISDE will do this provided the
auto initialization option set by default is retained. Refer to the section regarding using the
Crypto Framework module in an Application.
Set the configuration parameters for the module sf_crypto_cipher_api_t::open API per the
needs of the application.
Use the sf_crypto_cipher_api_t::open API to open the Crypto Cipher Framework module (This
is done by the ISDE when the auto start option is set to the default setting) and the SCE
HAL modules through the SCE drivers.
The open function cannot be called again until the module is closed.
Use the sf_crypto_cipher_api_t::cipherInit API to initialize the context by assigning
appropriate operation mode, key and padding scheme option and algorithm specific
parameters.
If the data for encrypt / decrypt operation is not available all at once but is available in
chunks, use the sf_crypto_cipher_api_t::cipherUpdate API. The
sf_crypto_cipher_api_t::cipherUpdate API can be called multiple times.

Note
For RSA operations, no data is outputted from the sf_crypto_cipher_api_t::cipherUpdate API. The message will
only be accumulated until the sf_crypto_cipher_api_t::cipherFinal API is called.

In order to complete the encrypt or decrypt operation call the
sf_crypto_cipher_api_t::cipherFinal API. This API accepts last chunk of incoming data. In case

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 386 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Using the Crypto Framework Module in an Application

all the data has been passed through the sf_crypto_cipher_api_t::cipherUpdate APIs the
length for last message chunk can be set to 0.
In case all the data to be encrypted/decrypted is available at once,
sf_crypto_cipher_api_t::cipherFinal API can be called directly without using the
sf_crypto_cipher_api_t::cipherUpdate API.
Use sf_crypto_cipher_api_t::close API to close the Crypto Cipher Framework Module
services.

AES GCM operation specifics:

For AES GCM encrypt / decrypt operations, AAD (Additional Authenticated Data) is optional.
If it is to be used, it has to be provided for the cipher operation through the
sf_crypto_cipher_api_t::cipherAadUpdate API after the sf_crypto_cipher_api_t::cipherInit is
called and prior to calling the sf_crypto_cipher_api_t::cipherUpdate or
sf_crypto_cipher_api_t::cipherFinal APIs.
For AES GCM encrypt operation, the tag (Authentication Tag) will be generated when
cipherFinal API is executed. The caller has to supply the buffer to hold the tag through the
cipherInit API.
For AES GCM decrypt operation, the tag has to be provided prior to providing any ciphertext
data through the cipherUpdate / cipherFinal APIs. Hence the caller is required to provide the
tag through the cipherInit API.
The AES GCM decrypt operation may output plain text data through the cipherUpdate /
cipherFinal APIs but it should not be consumed if the decrypt operation returns an error
code. This is to ensure that the tag is verified before the data is used.

Note
In a particular thread, a single instance of the Crypto Cipher Framework module can be re-used for alternately
performing encrypt or decrypt operations by appropriately setting/re-setting the operation mode and other related
parameters. Two instances of the Crypto Cipher Framework module can also be used simultaneously.

Using the SF CRYPTO KEY Framework Module in an Application

The typical steps in using the SF CRYPTO KEY Framework module in an application are:

Calling the APIs in this order: sf_crypto_key_api_t::open -> sf_crypto_key_api_t::keyGenerate ->
sf_crypto_key_api_t::EcdhSharedSecretCompute -> sf_crypto_key_api_t::close.

Details:

Please refer to note on endianness and data format in the module Operational Notes.
The Crypto Key Framework has to be opened first; the ISDE will do this provided the auto
initialization option is set to the default setting. Refer to the Using the Crypto Framework
Module in an Application section.
Set the configuration parameters as per the needs of the application required for the
module sf_crypto_key_api_t::open API.
Use the sf_crypto_key_api_t::open API to initialize the Crypto Key Framework module; this is
done by the ISDE when the auto start option is set to the default setting) and the SCE HAL
modules through the SCE drivers.
The open function cannot be called again until the module is closed.
Use the sf_crypto_key_api_t::keyGenerate API to generate the cryptographic keys of the
type and size set by the configuration parameters at the open call.
Use sf_crypto_key_api_t::EcdhSharedSecretCompute API to perform scalar multiplication for
ECC algorithms only.
Use sf_crypto_key_api_t::close API to close the Crypto Key Framework Module services.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 387 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Using the Crypto Framework Module in an Application

Note
In a particular thread, a single instance of Crypto Key Framework module can be re-used for generating different
key types without having to create multiple instances.

Using the SF Crypto Key Installation Framework Module in an Application

The typical steps in using the SF Crypto Key Installation Framework module in an application are:

Calling the APIs in this order: sf_crypto_key_installation_api_t::open ->
sf_crypto_key_installation_api_t::keyInstall -> sf_crypto_key_installation_api_t::close.

Details:

Please refer to note on endianness and data format in the module Operational Notes.
The Crypto Framework Module has to be opened first; the ISDE will do this provided the
auto initialization option is set to the default setting. Refer to the Using the Crypto
Framework Module in an Application section.
Set the configuration parameters for the module sf_crypto_key_installation_api_t::open API
per the needs of the application.
Use the sf_crypto_key_installation_api_t::open API to open the Crypto Key Installation
Framework module (This is done by the ISDE when the auto start option is set to the default
setting) and the SCE HAL modules through the SCE drivers.
The open function cannot be called again until the module is closed.
Use the sf_crypto_key_installation_api_t::keyInstall API to install the user's key.
Use sf_crypto_key_installation_api_t::close API to close the Crypto Key Installation
Framework Module services.

Using the SF CRYPTO Signature Framework Module in an Application

The typical steps in using the SF CRYPTO Signature Framework module in an application are:

Calling the APIs in this order: sf_crypto_signature_api_t::open ->
sf_crypto_signature_api_t::contextInit -> sf_crypto_signature_api_t::signUpdate ->
sf_crypto_signature_api_t::signFinal -> sf_crypto_signature_api_t::close.

Calling the APIs in this order: sf_crypto_signature_api_t::open ->
sf_crypto_signature_api_t::contextInit -> sf_crypto_signature_api_t::verifyUpdate ->
sf_crypto_signature_api_t::verifyFinal -> sf_crypto_signature_api_t::close.

Details:

Please refer to note on endianness and data format in the module Operational Notes.
The Crypto Framework module has to be opened first; the ISDE will do this provided the
auto initialization option is set to the default setting. Refer to the Using the Crypto
Framework Module in an Application section.
Set the configuration parameters per the needs of the application required for the module
sf_crypto_signature_api_t::open API.
Use the sf_crypto_signature_api_t::open API to open the Crypto Signature Framework
module (This is done by ISDE when the auto start option is set to the default setting) and
the SCE HAL modules through the SCE drivers.
The open function cannot be called again until the module is closed.
Use the sf_crypto_signature_api_t::contextInit API to initialize the context by assigning
appropriate operation mode, key (public key for verify operation mode and private key for
sign operation mode), message formatting option.
If the data is coming in as smaller chunks for sign operation mode, use the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 388 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Crypto Framework > Using the Crypto Framework Module in an Application

sf_crypto_signature_api_t::signUpdate API to accumulate the data for future signing
operation or for verify operation mode use the sf_crypto_signature_api_t::verifyFinal API to
accumulate the data for future signature verification.
In order to complete the sign or verify operation call the sf_crypto_signature_api_t::signFinal
or sf_crypto_signature_api_t::verifyFinal APIs, respectively. These APIs support accepting
the last chunk of incoming data. In case all the data has been passed through, one of the
update API parameters for last message chunk can be set to NULL.
In case all the data to be signed or verified is available at once,
sf_crypto_signature_api_t::signFinal or sf_crypto_signature_api_t::verifyFinal can be called
directly without using either of the update APIs.
Use sf_crypto_signature_api_t::close API to close the Crypto Signature Framework module
services.

Note
In a particular thread, a single instance of the Crypto Signature Framework module can be re-used for alternately
performing sign or verify operations by appropriately setting/re-setting the operation mode and other related
parameters. In order to perform sign or verify operations simultaneously, two instances of the SF Crypto Signature
Framework module need to be used.

4.1.17 Capacitive Touch v2 Framework

4.1.17.1 Capacitive Touch v2 Module Introduction

The Capacitive Touch v2 Framework uses the CTSU v2 Driver API and provides application-level APIs
for scanning touch buttons, sliders, and wheels. This module is configured via the QE for Capacitive
Touch.

4.1.17.2 Capacitive Touch v2 Module Features

Supports touch buttons (Self and Mutual), sliders, and wheels
Can retrieve the status of up to 64 buttons at once
Software and external triggering
Callback on scan end
Collects and calculates usable scan results:

Slider position from 0 to 100 (percent)
Wheel position from 0 to 359 (degrees)

Optional (build time) support for real-time monitoring functionality through the QE tool over
UART

4.1.17.3 Capacitive Touch v2 Module Configuration

Note
This module is configured via the QE for Capacitive Touch. For information on how to use the QE tool, once the
tool is installed click Help -> Help Contents in e2 studio and search for "QE".
Multiple configurations can be defined within a single project allowing for different scan procedures or button
layouts.

The following build time configurations are defined in ssp_cfg/framework/sf_touch_ctsuv2_cfg.h:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 389 / 5,198

https://www.renesas.com/qe-capacitive-touch
https://www.renesas.com/qe-capacitive-touch
https://www.renesas.com/qe-capacitive-touch

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Capacitive Touch v2 Framework > Capacitive Touch v2 Module Configuration

Build Time Configurations for sf_touch_ctsuv2

Configuration Options Default Description

Parameter Checking - Default (BSP)
- Enabled
- Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Support for QE
monitoring using UART

- Enabled
- Disabled

Disabled Enable SCI_UART
support for QE
monitoring.

This module can be added to the Stacks tab by selecting New Stack > Framework > Input > Cap
Touch Framework on sf_touch_ctsuv2.

Capacitive Touch v2 Module Interrupt Configuration

Refer to the CTSU v2 Driver section for details.

Capacitive Touch v2 Module Clock Configuration

Refer to the CTSU v2 Driver section for details.

Capacitive Touch v2 Module Pin Configuration

Refer to the CTSU v2 Driver section for details.

4.1.17.4 Capacitive Touch v2 Module Usage Notes

Capacitive Touch v2 Module Sliders and Wheels

Sliders and wheels are subject to some limitations:

Slider Wheel

Electrode type Self capacitance only Self capacitance only

Number of electrodes 3 to 10 4 or 8

Touch position output range 0-100 0-359

Default value (no touch) 0xFFFF 0xFFFF

Capacitive Touch v2 Module Touch Judgement

Touch data is judged as touched or not-touched based on the threshold and hysteresis values
determined during the QE tool tuning process. Refer to the QE for Capacitive Touch tool
documentation in e2 studio Help for details on how these values are set.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 390 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Capacitive Touch v2 Framework > Capacitive Touch v2 Module Usage Notes

Figure 173: Touch/Non-touch judgement Image

4.1.17.5 Capacitive Touch v2 Module Examples

Capacitive Touch v2 Module Basic Example

This is a basic example of minimal use of the TOUCH in an application.

void touch_basic_example (void)

{

 ssp_err_t err = SSP_SUCCESS;

 err = SF_TOUCH_CTSU_Open(&g_touch_ctrl, &g_touch_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (true)

 {

 SF_TOUCH_CTSU_ScanStart(&g_touch_ctrl);

 while (0 == g_flag)

 {

 /* Wait scan end callback */

 }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 391 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Capacitive Touch v2 Framework > Capacitive Touch v2 Module Examples

 g_flag = 0;

 err = SF_TOUCH_CTSU_DataGet(&g_touch_ctrl, &button, slider, wheel);

 if (SSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

}

Capacitive Touch v2 Module Multi-Mode Example

This is a optional example of using both Self-capacitance and Mutual-capacitance. Refer to the Multi
Mode Example in CTSUV2 usage notes.

void touch_optional_example (void)

{

 ssp_err_t err = SSP_SUCCESS;

 err = SF_TOUCH_CTSU_Open(&g_touch_ctrl, &g_touch_cfg);

 handle_error(err);

 err = SF_TOUCH_CTSU_Open(&g_touch_ctrl_mutual, &g_touch_cfg_mutual);

 handle_error(err);

 while (true)

 {

 SF_TOUCH_CTSU_ScanStart(&g_touch_ctrl);

 while (0 == g_flag)

 {

 /* Wait scan end callback */

 }

 g_flag = 0;

 SF_TOUCH_CTSU_ScanStart(&g_touch_ctrl_mutual);

 while (0 == g_flag)

 {

 /* Wait scan end callback */

 }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 392 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Capacitive Touch v2 Framework > Capacitive Touch v2 Module Examples

 g_flag = 0;

 err = SF_TOUCH_CTSU_DataGet(&g_touch_ctrl, &button, slider, wheel);

 if (SSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 err = SF_TOUCH_CTSU_DataGet(&g_touch_ctrl_mutual, &button, slider, wheel);

 if (SSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

}

4.1.18 External IRQ Framework

4.1.18.1 External IRQ Framework Module Introduction

The External IRQ Framework provides a high-level API for applications using the external pin
interrupts with the ThreadX RTOS and supports the external IRQ pins on the Synergy microcontroller.
A callback function (sf_external_irq_callback) is available that will be called from the interrupt service
routine (ISR) each time the IRQn triggers.

External IRQ Framework Module Features

Responds to external interrupt inputs
RTOS aware implementation using an internal semaphore for thread synchronization

Can signal internal threads
Can trigger transfers via the Event Link Controller (ELC)

Uses the port pins available on Synergy MCUs
Pins may differ between MCUs so refer to MCU User's Manuals for specifics

Supports several hardware features such as
Channel selection
Trigger conditions
Digital filtering
Auto-start

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 393 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > External IRQ Framework > External IRQ Framework Module Introduction

Figure 174: External IRQ Framework Module Block Diagram

4.1.18.2 External IRQ Framework Module APIs Overview

The External IRQ framework module defines APIs for opening, waiting or closing the module. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

External IRQ Framework Module API Summary

Function Name Example API Call and Description

open g_sf_external_irq.p_api->open(g_sf_external_irq.
p_ctrl, g_sf_external_irq.p_cfg);
Acquire mutex, then handle driver initialization
at the HAL layer.

wait g_sf_external_irq.p_api->wait(g_sf_external_irq.p
_ctrl, TX_WAIT_FOREVER);
Wait for the next external interrupt expiration,
then return.

versionGet g_sf_external_irq.p_api->versionGet(&version);
Retrieve the API version and store it in the
version pointer.

close g_sf_external_irq.p_api->close(g_sf_external_irq.
p_ctrl);
Release channel mutex and close channel at
HAL layer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 394 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > External IRQ Framework > External IRQ Framework Module APIs Overview

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function successful.

SSP_ERR_ASSERTION Assertion error.

SSP_ERR_IN_USE Device in use.

SSP_ERR_NOT_OPEN Device unopened.

SSP_ERR_TIMEOUT Timeout error.

SSP_ERR_WAIT_ABORTED Suspension aborted.

SSP_ERR_UNSUPPORTED Function unsupported by the HAL driver.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.18.3 External IRQ Framework Module Operational Overview

The External IRQ framework is a set of ThreadX-aware framework APIs. The External IRQ Framework
external inputs can signal, via an internal semaphore, threads or trigger transfers via the Event Link
Controller (ELC). Both the External IRQ framework module and the External IRQ HAL module need to
be configured for proper operation. The HAL configuration settings allow control over hardware
options such as triggering level and digital filtering settings.

External IRQ Framework Module Important Operational Notes and Limitations

External IRQ Framework Module Operational Notes

Refer to the Datasheet for the Synergy device to be programmed to find the port pins which
support the external interrupt functions and to obtain the External IRQ number for a given
port pin.
The External IRQ number corresponds to the channel setting in the ISDE Properties window
for the External IRQ driver.

External IRQ Framework Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.18.4 Including the External IRQ Framework Module in an Application

This section describes how to include the External IRQ Framework Module in an application using the
SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 395 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > External IRQ Framework > Including the External IRQ Framework Module in an Application

configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the External IRQ Framework to an application, simply add it to a thread using the stacks
selection sequence given in the following table. (The default name for the External IRQ Framework is
g_sf_external_irq0. This name can be changed in the associated Properties window.)

External IRQ Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_external_irq0 External IRQ
Framework on sf_external_irq

Threads New Stack> Framework>
Input> External IRQ
Framework on
sf_external_irq

When the External IRQ Framework on sf_external_irq is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 175: External IRQ Framework Module Stack

4.1.18.5 Configuring the External IRQ Framework Module

The External IRQ Framework Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 396 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > External IRQ Framework > Configuring the External IRQ Framework Module

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the External IRQ Framework Module on sf_external_irq

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Controls whether to include
code for API parameter
checking.

Name g_sf_external_irq0 Framework name.

Event None, Semaphore Put

Default: Semaphore Put

Event selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the External IRQ Framework Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module.

Configuration Settings for the External IRQ HAL Module on r_icu

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter checking setting
enables or disables the addition
of parameter checking code.

Name g_external_irq0 Module name.

Channel 0 Specifies the hardware IRQ
channel used.

Trigger Falling, Rising, Both Edges, Low
Level

Default: Rising

Configures edge or level
triggering.

Digital Filtering Enabled, Disabled

Default: Disabled

Digital filter enable/disable.

Digital Filtering Sample Clock
(Only valid when Digital
Filtering is Enabled)

PCLK/1, PLCK/8, PLCK/32,
PCLK/64

Default: PCKL/64

Sets noise filter sampling
period.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 397 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > External IRQ Framework > Configuring the External IRQ Framework Module

Interrupt enabled after
initialization

True, False

Default: True

Determines if the interrupt is
enabled immediately after
initialization.

Callback NULL A user callback function can be
registered in
external_irq_api_t::open. If this
callback function is provided, it
is called from the interrupt
service routine (ISR) each time
the IRQn triggers.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

An Interrupt priority can be
registered in
external_irq_cfg_t::irq_ipl.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

External IRQ Framework Module Clock Configuration

The External IRQ Framework does not require clock configuration.

External IRQ Framework Module Pin Configuration

The External IRQ Framework does not require pin configuration.

4.1.18.6 Using the External IRQ Framework Module in an Application

The steps in using the External IRQ Framework module in a typical application are:

1. Open the External IRQ Framework module with the sf_external_irq_api_t::open API.
2. Wait for an interrupt using the sf_external_irq_api_t::wait API.
3. Process External IRQ event.
4. Close the module using the sf_external_irq_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 398 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > External IRQ Framework > Using the External IRQ Framework Module in an Application

Figure 176: Flow Diagram of a Typical External IRQ Framework Module Application

4.1.19 I2C Framework

4.1.19.1 I2C Framework Introduction

The I2C Framework module provides a ThreadX-aware high-level API for I2C industry standard serial
device communications and configures the I2C peripheral in order to enable serial communication to
be used by the framework. The I2C Framework module uses the I2C and SCI peripherals on the
Synergy MCU.

I2C Framework Module Features

ThreadX-aware framework
Handles integration and synchronization of multiple I2C peripherals on the I2C bus
Provides a single interface to access both SCI I2C and RIIC drivers
The I2C framework module configures I2C communication in master mode
The I2C framework module supports three data rates: 100 kHz, 400 kHz, and 1 MHz
The I2C framework module supports both 7-bit addressing and 10-bit addressing
The I2C framework module also provides support for callbacks internally. User defined

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 399 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > I2C Framework Introduction

callback is not used. The callback functions are called with the following events i2c_event_t
Transfer aborted
Transmit complete
Receive complete

The callback structure i2c_callback_args_t also provides the number of bytes that were sent
or received
Implemented by:

Simple I2C on SCI
RIIC

Figure 177: I2C Framework Module Block Diagram

4.1.19.2 I2C Framework Module APIs Overview

The I2C Framework interface defines APIs for opening, closing, reading, writing, locking, unlocking
and resetting the bus using the I2C Framework. A complete list of the available APIs, an example API
call and a short description of each can be found in the following table. A table of status return
values follows the API summary table.

I2C Framework Module API Summary

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 400 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > I2C Framework Module APIs Overview

Function Name Example API Call and Description

open g_sf_i2c_device.p_api->open(g_sf_i2c_device.p_c
trl, g_sf_i2c_device.p_cfg);
Opens a designated I2C device on the bus.

close g_sf_i2c_device.p_api->close
(g_sf_i2c_device.p_ctrl);
Disables I2C device designated by control
handle. Closes the RTOS services used by the
bus if no devices are connected to the bus.

read g_sf_i2c_device.p_api->read
(g_sf_i2c_device.p_ctrl, &destination,
no_of_bytes_to_read, restart,timeout);
Receives data from I2C device.

write g_sf_i2c_device.p_api->write
(g_sf_i2c_device.p_ctrl, &source,
no_of_bytes_to_write , restart, timeout);
Transmits data to I2C device

lock g_sf_i2c_device.p_api->lock
(g_sf_i2c_device.p_ctrl);
Locks the bus for a device. Locking reserves the
bus until unlocking and allows several reads and
writes without interrupt.

unlock g_sf_i2c_device.p_api->unlock
(g_sf_i2c_device.p_ctrl);
Unlocks the bus from a particular device and
makes it available for other devices.

reset g_sf_i2c_device.p_api->reset
(g_sf_i2c_device.p_ctrl, timeout);
Aborts any in-progress transfer and forces the
I2C peripheral into ready state.

version g_sf_i2c_device.p_api->version(version);
Retrieves the version information using the
version pointer.

lockWait g_sf_i2c_device.p_api->lockWait
(g_sf_i2c_device.p_ctrl, timeout);
Locks the bus for a device. Locking reserves the
bus until unlocking and allows several reads and
writes without intervention from other devices
on the same I2C bus. Timeout value is user
configurable.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 401 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > I2C Framework Module APIs Overview

Name Description

SSP_SUCCESS I2C function performed successfully.

SSP_ERR_INVALID_MODE Illegal I2C mode is specified.

SSP_ERR_IP_CHANNEL_NOT_PRESENT Omitted I2C channel is specified.

SSP_ERR_IN_USE I2C channel has already been opened.

SSP_ERR_INVALID_ARGUMENT Argument is not one of the predefined values.

SSP_ERR_INTERNAL Internal error has occurred.

SSP_ERR_ASSERTION A critical assertion has failed or Null pointer(s) is
(are) given.

SSP_ERR_NOT_OPEN Device instance not opened.

SSP_ERR_TRANSFER_ABORTED The data transfer was aborted.

SSP_ERR_INVALID_RATE The requested rate cannot be set.

SSP_ERR_TIMEOUT Timeout error occurs.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status-return values.

4.1.19.3 I2C Framework Module Operational Overview

The I2C Framework module complies with the layered driver architecture of the SSP. It uses the
lower-level I2C HAL modules to communicate with I2C peripherals and controls the I2C-capable
peripherals on a Synergy microcontroller (as configured by a user). With the I2C Framework module,
one or more I2C buses can be created and multiple I2C peripherals can be connected to each I2C
bus. The I2C Framework module APIs use a ThreadX-Mutex to acquire and release the shared bus for
I2C Slave devices. Acquire and release are implemented by sf_i2c_api_t::lock or
sf_i2c_api_t::lockWait and sf_i2c_api_t::unlock APIs respectively in the I2C Framework module.

As I2C framework module configures I2C communication in master mode, this allows the user to:

Initialize the driver
Read from a slave device
Write to a slave device
Reset the MCU I2C peripheral
Lock the I2C bus
Unlock the I2C bus

The I2C Framework module works with the Synergy MCU I2C hardware modules; the RIIC and SCI
HAL modules. Both I2C modules support the I2C fast-mode with bit rates of up to 400 kHz. The IIC
peripheral and the RIIC HAL module support fast-mode plus with 1-MHz bit-rates. The module
supports only master mode for both implementations.

Multiple Slave Devices on the Same Bus

The I2C Framework module uses a bus and device on bus architecture. If multiple slaves are
connected to the I2C bus, each slave communicates with an associated and separate SF_I2C module
instance. Each SF_I2C instance is created in a separate thread. Every slave device is linked to the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 402 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > I2C Framework Module Operational Overview

bus to which it will be connected and shares the bus with all other slave devices. The user must
configure the framework shared-bus and the lower-level I2C HAL layer for each framework device
connecting to the bus. The user can add the existing framework shared-bus when configuring
multiple devices on the same bus. A common start and stop procedure is used for all I2C data-
transfer operations. Only one device is configured to the lower level and the remaining devices
perform read or write operations by switching the device address within the framework.

All I2C Framework devices on the same bus must use the same lower-level configuration settings,
(for example, the I2C HAL module) except for the slave address and addressing mode. The
framework will use the configuration of the first device that it opens in the application to configure
the bus; this means that all I2C Framework devices on the same bus must have the same lower-level
configuration settings (except for the slave address and addressing mode). If different configurations
are used, proper operation cannot be guaranteed.

Bus Locking

The I2C Framework supports bus-locking functionality, meaning the bus can be locked for a given
slave peripheral. The locking allows devices to reserve a bus to themselves for the period between
the lock and unlock commands. This allows devices to complete several reads and writes on the bus
without interruption (which can be required in some situations.)

The I2C bus is locked when sf_i2c_api_t::lock or sf_i2c_api_t::lockWait API is called. This API locks the
I2C bus by acquiring the mutex for the thread in which the I2C Framework device is used. Once
locked, the I2C bus can only be utilized by the associated device. The other I2C Framework devices
or the same I2C Framework device from other threads, cannot acquire the mutex so they will not be
able to access the bus. Once the bus is unlocked by calling the sf_i2c_api_t::unlock API from the
sf_i2c device that locked it, the mutex will be released and the bus becomes available for other
sf_i2c devices. The sf_i2c_api_t::lockWait API is similar to the sf_i2c_api_t::lock API except it provides
user an option to set timeout value. The sf_i2c_api_t::lockWait API waits for the specified timeout
period if the I2C bus is already locked by another device. In case of the sf_i2c_api_t::lock API, the
thread waits forever, if the I2C bus is not released by the other device.

I2C Framework Module Important Operational Notes and Limitations

I2C Framework Module Operational Notes

The closest possible baud rate that can be achieved (less than or equal to the requested
rate) at the current PCLKB settings is calculated and used. If a valid clock rate could not be
calculated, an error is returned.
The I2C can trigger the start of other peripherals available from the ELC. See the ELC
Module Guide for further information.
The I2C Framework can support multiple I2C devices on the same bus if the clock rate
remains the same for all the devices. That means multiple devices can be opened in the
same bus if they are of the same clock rate. If devices have different clock rates, only one
device can be opened at a time.
SDA and SCL output pin type should be n-channel open drain when using I2C on SCI.
In the I2C Framework configuration, the channel number given to this bus overrides the
channel number given in the HAL module.
Shared bus can be used by multiple slave devices with the respective configuration. The
framework also handles mutual exclusion in lock and unlock APIs when multiple devices are
using the same I2C channel.
To configure multiple I2C devices on the same bus, add and configure the following
modules for each device connecting to the bus:

I2C Framework device module
Configure the I2C shared bus module for the first device being configured, then

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 403 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > I2C Framework Module Operational Overview

use the same bus for the remaining devices.
I2C HAL module
DTC module (Optional)

Lock functionality will be effective for devices from different threads. If multiple devices
connected to the bus are from the same thread, the I2C bus will be locked for all devices
from that thread. In such cases, even if the bus is locked, all devices from the same thread
can access the bus.
In case a device is being used from multiple threads, and the device locks the I2C bus from
one thread, the same device cannot access the I2C bus from other threads.

Note
Each I2C Framework device must be configured with a unique name in the ISDE configurator.
Provide the same configuration settings for all the devices connected on the same bus (except the slave address and
addressing modes.)

I2C Framework Module Limitations

The I2C framework module does not currently support the following feature:

The use of DMA

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4.1.19.4 Including the I2C Framework Module in an Application

This section describes how to include the I2C Framework module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the I2C Framework module to an application, simply add it to a HAL/Common thread using
the stacks selection sequence given in the following table. (The default name for the I2C Framework
module is g_sf_ i2c_device0. This name can be changed in the associated Properties window.)

I2C Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_i2c_device0 I2C
Framework on sf_i2c

Threads New Stack> Framework>
Connectivity> I2C
Framework on sf_i2c

When the I2C Framework module on sf_i2c is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 404 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Including the I2C Framework Module in an Application

Figure 178: I2C Framework Module Stack

4.1.19.5 Configuring the I2C Framework Module

The I2C Framework module must be configured by the user for the desired operation. The SSP
configuration window will automatically identify (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules in order to ensure successful operation. Furthermore, only those properties that can
be changed without causing conflicts are available for modification. Other properties are 'locked' and
are not available for changes, and are identified with a lock icon for the 'locked' property in the
Properties window in the ISDE. This approach simplifies the configuration process and makes it much
less error-prone than previous 'manual' approaches to configuration. The available configuration
settings and defaults for all the user-accessible properties are given in the Properties tab within the
SSP configurator, and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

Configuration Settings for the I2C Framework Device Module on sf_ i2c

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 405 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Configuring the I2C Framework Module

Parameter Checking BSP, Enabled, Disabled

Default: Enabled

Selects if code for parameter
checking is to be included in
the build.

Name g_sf_i2c_device0 Give a name to identify the I2C
Framework device. API, Config
and Control instances will be
created based on this name.

Slave Address 0x00 Specify the address of the I2C
slave device.

Address Mode 7-Bit, 10-Bit

Default: 7-Bit

Select the I2C address mode.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults can be desirable. For example, it might be useful to
select different byte ordering or pixel-color format. The configurable properties for the lower-level
stack modules are given in the following sections for completeness and as a reference.

Note
Most of the property settings for lower level modules are fairly intuitive and can usually be determined by
inspection of the associated Properties window from the SSP configurator.

Configuring the I2C Framework Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower-level drivers
as indicated with red text in the thread stack block. Notice that some of the configuration properties
must be set to a certain value for proper framework operation and will be locked to prevent user
modification. The following tables identify all the settings within the properties section for the lower-
level modules:

Configuration Settings for the I2C Framework Shared Bus on sf_i2c

ISDE Property Value Description

Name g_sf_i2c_bus0 Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the I2C Master Driver on r_riic

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Name g_i2c0 Module name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 406 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Configuring the I2C Framework Module

Channel 0 Specify the IIC channel to be
used with this configuration.

Rate Standard, Fast-mode, Fast-
mode Plus

Default: Standard

Standard, Fast, and Fast-plus.
(See IIC Rate Calculation.)

Slave Address 0x00 Set the address of the slave
device the I2C master will be
communicating with.

Address Mode 7-Bit, 10-Bit

Default: 7-Bit

Only 7-bit addresses are
currently supported.

SDA Output Delay
(nanoseconds)

Default: 300 SDA output delay in
nanoseconds.

Timeout Mode Short Mode, Long Mode

Default: Short Mode

Select the timeout mode.

Callback NULL A user callback function can be
registered in
i2c_api_master_t::open. If this
callback function is provided, it
will be called from the interrupt
service routine (ISR) for each of
the conditions defined in
i2c_event_t. The exact
hardware generated error event
is also provided when
i2c_event_t is
I2C_EVENT_ABORTED.

Warning: Since the callback is
called from an ISR, do not use
blocking calls or lengthy
processing. Spending excessive
time in an ISR can affect the
responsiveness of the system.

Receive Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX),

Default: Priority 12

Select the receive interrupt
priority.

Transmit Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX),

Default: Priority 12

Select the transmit interrupt
priority.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 407 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Configuring the I2C Framework Module

Transmit End Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX),

Default: Priority 12

Select the transmit end
interrupt priority.

Error Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX),

Default: Priority 12

Select the error interrupt
priority.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event IIC0 TXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Software Start Enabled, Disabled

Default: Disabled

Include code for software start
in the build.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Section to place the DTC vector
table.

Name g_transfer0 Module name.

Mode Normal Specify the hardware channel.

Transfer Size 1 Byte Select the transfer mode.

Destination Address Mode Fixed Select the transfer size.

Source Address Mode Incremented Select the address mode for the
destination.

Repeat Area (Unused in Normal
Mode)

Source Select the address mode for the
source.

Interrupt Frequency After all transfers have
completed

Select the repeat area. Either
the source or destination
address resets to its initial
value after completing Number
of Transfers in Repeat or Block
mode.

Destination Pointer NULL Specify the transfer destination
pointer.

Source Pointer NULL Specify the transfer source
pointer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 408 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Configuring the I2C Framework Module

Number of Transfers 0 Specify the number of
transfers.

Number of Blocks (Valid only in
Block Mode)

0 Specify the number of blocks to
transfer in Repeat or Block
mode.

Activation Source (Must enable
IRQ)

Event IIC0 TXI Select the DTC transfer start
event.

Auto Enable False Auto enable the transfer in
open().

Callback (Only valid with
Software start)

NULL A user callback that is called at
the end of the transfer.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

Select the transfer end
interrupt priority.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event IIC0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Software Start Enabled, Disabled

Default: Disabled

Include code for software start
in the build.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Section to place the DTC vector
table.

Name g_transfer1 Module name.

Mode Normal Specify the hardware channel.

Transfer Size 1 Byte Select the transfer mode.

Destination Address Mode Incremented Select the transfer size.

Source Address Mode Fixed Select the address mode for the
destination.

Repeat Area (Unused in Normal
Mode

Destination Select the address mode for the
source.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 409 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Configuring the I2C Framework Module

Interrupt Frequency After all transfers have
completed

Select the repeat area. Either
the source or destination
address resets to its initial
value after completing Number
of Transfers in Repeat or Block
mode.

Destination Pointer NULL Specify the transfer destination
pointer.

Source Pointer NULL Specify the transfer source
pointer.

Number of Transfers 0 Specify the number of
transfers.

Number of Blocks (Valid only in
Block Mode)

0 Specify the number of blocks to
transfer in Repeat or Block
mode.

Activation Source (Must enable
IRQ)

Event IIC0 RXI Select the DTC transfer start
event.

Auto Enable False Auto enable the transfer in
open().

Callback (Only valid with
Software start)

NULL A user callback that is called at
the end of the transfer.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

Select the transfer end
interrupt priority.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the I2C Master Driver on r_sci_i2c

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Name g_i2c0 Module name.

Channel 0 to 9 Specify the SCI channel to be
used with this configuration. SCI
has channels as follows: Series
S7: 0 1 2 3 4 5 6 7 8 9; Series
S3 : 0 1 2 3 4 - - - - 9; Series S1
: 0 1 - - - - - - - 9.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 410 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Configuring the I2C Framework Module

Rate Standard, Fast-mode, Fast-
mode plus

Default: Standard

Select the I2C data rate.

Slave Address 0x00 Specify the slave address.

Address Mode 7-Bit, 10-Bit

Default: 7-Bit

Only 7-bit addresses are
currently supported.

SDA Output Delay (nano
seconds)

300 SDA output delay in
nanoseconds.

Bit Rate Modulation Enable Enable, Disable

Default: Enable

Enables bitrate modulation
function.

Callback NULL A user callback function can be
registered in
i2c_api_master_t::open. If this
callback function is provided, it
will be called from the interrupt
service routine (ISR) for each of
the conditions defined in
i2c_event_t.

Warning: Since the callback is
called from an ISR, do not use
blocking calls or lengthy
processing. Spending excessive
time in an ISR can affect the
responsiveness of the system.

Receive Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Select the receive interrupt
priority.

Transmit Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Select the transmit interrupt
priority.

Transmit End Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Select the transmit end
interrupt priority.

Error Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Select the error interrupt
priority.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 411 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Configuring the I2C Framework Module

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 TXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Software Start Enabled, Disabled

Default: Disabled

Include code for software start
in the build.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Section to place the DTC vector
table.

Name g_transfer0 Module name.

Mode Block Specify the hardware channel.

Transfer Size 1 Byte Select the transfer mode.

Destination Address Mode Fixed Select the transfer size.

Source Address Mode Incremented Select the address mode for the
destination.

Repeat Area (Unused in Normal
Mode

Source Select the address mode for the
source.

Interrupt Frequency After all transfers have
completed

Select the repeat area. Either
the source or destination
address resets to its initial
value after completing Number
of Transfers in Repeat or Block
mode.

Destination Pointer NULL Specify the transfer destination
pointer.

Source Pointer NULL Specify the transfer source
pointer.

Number of Transfers 0 Specify the number of
transfers.

Number of Blocks (Valid only in
Block Mode)

0 Specify the number of blocks to
transfer in Repeat or Block
mode.

Activation Source (Must enable
IRQ)

Event SCI0 TXI Select the DTC transfer start
event.

Auto Enable False Auto enable the transfer in
open().

Callback (Only valid with
Software start)

NULL A user callback that is called at
the end of the transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 412 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Configuring the I2C Framework Module

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the transfer end
interrupt priority.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Software Start Enabled, Disabled

Default: Disabled

Include code for software start
in the build.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Section to place the DTC vector
table.

Name g_transfer1 Module name.

Mode Normal Specify the hardware channel.

Transfer Size 1 Byte Select the transfer mode.

Destination Address Mode Incremented Select the transfer size.

Source Address Mode Fixed Select the address mode for the
destination.

Repeat Area (Unused in Normal
Mode

Destination Select the address mode for the
source.

Interrupt Frequency After all transfers have
completed

Select the repeat area. Either
the source or destination
address resets to its initial
value after completing Number
of Transfers in Repeat or Block
mode.

Destination Pointer NULL Specify the transfer destination
pointer.

Source Pointer NULL Specify the transfer source
pointer.

Number of Transfers 0 Specify the number of
transfers.

Number of Blocks (Valid only in
Block Mode)

0 Specify the number of blocks to
transfer in Repeat or Block
mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 413 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Configuring the I2C Framework Module

Activation Source (Must enable
IRQ)

Event SCI0 RXI Select the DTC transfer start
event.

Auto Enable False Auto enable the transfer in
open().

Callback (Only valid with
Software start)

NULL A user callback that is called at
the end of the transfer.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the transfer end
interrupt priority.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

I2C Framework Module Clock Configuration

The SCI peripheral module uses the PCLKB as its clock source. The PCLKB frequency is set by using
the SSP configurator clock tab prior to a build or by using the CGC Interface at run-time. During
configuration, the I2C transfer rate is calculated and set internally by the driver based on the user-
selected PCLB rate and the user-selected transfer rate. If the PCLKB is configured in such a manner
that the user-selected rate cannot be achieved, an error will be returned when initializing the driver.

I2C Framework Module Pin Configuration

The SCI peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following table illustrates the
method for selecting the pins within the SSP configuration window and the subsequent table
illustrates an example selection for the pins.

Note
For some peripherals, the operation-mode selection determines what peripheral signals are available and what
MCU pins are required.

Pin Selection Sequence for the I2C Framework Module

Resource ISDE Tab Pin selection Sequence

SCI Pins Select Peripherals>
SCI1_3_5_7_9> SCI1

Note
The selection sequence assumes the SCI1 is the desired hardware target of the driver.

Pin Configuration Settings for the I2C Framework Module

Pin Configuration Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 414 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Configuring the I2C Framework Module

Operation Mode Disabled, Asynchronous UART,
Synchronous UART, Simple I2C,
Simple SPI, SmartCard

Default: Disabled

Select Simple I2C as the
Operation Mode for I2C on SCI.

RXD1_SCL1_MISO1 None, P212, P708

Default: None

SCL pin.

TXD1_SDA1_MOSI1 None, P213, P709

Default: None

SDA pin.

Note
The example values are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

I2C Framework Module Additional Settings

In addition to the SCL and SDA pins, an I2C RESET signal may be required to reset the I2C slave
device. If this is the case, the RESET signal can be added using a GPIO pin and must be controlled
directly by the application program. The external device reset function is not supported within the
r_sci_i2c module.

4.1.19.6 Using the I2C Framework Module in an Application

A common application for the I2C framework module requires multiple slave devices on a single bus.
The implementation for this common application is described below. (For an application where
multiple busses are required, just duplicate the single bus example as needed for each separate
bus.)

Implementation Steps for Two Slave Devices on the Same Shared Bus

When using the I2C framework module to create a single bus with multiple slave devices, create two
thread stacks each with an I2C framework instance. These instances will each use the same shared
bus instance. Follow the steps below to see how this is done within the SSP Configurator.

Note
The following example puts both sf_i2c module instances in the same thread. If the bus locking function is needed,
the sf_i2C modules should be put in different threads. Locking applies to all the devices within the locked thread.
The following steps assume some familiarity with the use of the SSP development environment. If any of the
following steps are confusing, read over the first few chapters of the SSP User's Manual to become familiar with
the SSP development environment.

1. Add the first I2C framework device to a new or existing thread. This creates the I2C master stack.
A shared bus on sf_i2c is added along with the I2C driver. The I2C driver can be selected for
implementation on r_riic or r_sci_i2c. The DTC transfer driver is also added by default. This can be
removed if the CPU transfer mode is needed instead.

The resulting module stack is shown in the following figure. Example configuration settings are given
in the tables that follow the figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 415 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Using the I2C Framework Module in an Application

 Example configuration setting for the first thread stack are given below:

Configuration Settings for the I2C Framework Device on sf_i2c (Slave #1)

Property Value Description

Parameter Checking Default(BSP) Enable Or Disable Parameter
Checking.

Name g_sf_i2c_device0 Give a name to identify the I2C
Framework device. API, Config
and Control instances will be
created based on this name.

Slave Address 0x21 Specify the address of I2C slave
1.

Address Mode 7-bit Select the I2C address mode.

Configuration Settings for the I2C Framework Shared Bus on sf_i2c

Property Value Description

Name g_sf_i2c_bus0 Give a name to identify the I2C
Framework shared bus. This
shared bus will be shared by
multiple I2C Framework
Devices.

Configuration Settings for the I2C Master Driver on r_riic

Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 416 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Using the I2C Framework Module in an Application

Parameter Checking Default(BSP) Enable Or Disable Parameter
Checking.

Name g_i2c0 Give a name to identify the I2C
Driver device. This will be used
internally by Framework.

Channel 0 Specify the I2C channel.

Rate Standard Select the speed of the I2C bus.

Slave Address 0 This field will be locked as slave
address already configured in
the I2C Framework Device on
sf_i2c.

Address Mode 7-bit This field will be locked as
address mode already
configured in the I2C
Framework Device on sf_i2c.

Timeout Mode Short Mode Select Timeout mode: Short
mode or Long mode.

Callback NULL This field will be locked as
Framework does not provide
callback handling to the user.

Receive Interrupt Priority Priority 2 Receive interrupt priority
selection.

Transmit Interrupt Priority Priority 2 Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 2 Transmit end interrupt priority
selection.

Error Interrupt Priority Priority 2 Error interrupt priority
selection.

Configuration Settings for the I2C Master Driver on r_sci_i2c

Property Value Description

Parameter Checking Default(BSP) Enable Or Disable Parameter
Checking.

Name g_i2c0 Give a name to identify the I2C
Driver device. This will be used
by Framework internally.

Channel 0 Specify the address of I2C
slave.

Rate Standard Select the speed of the I2C bus.

Slave Address 0 This field will be locked as slave
address already configured in
the I2C Framework Device on
sf_i2c.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 417 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Using the I2C Framework Module in an Application

Address Mode 7-bit This field will be locked as
address mode already
configured in the I2C
Framework Device on sf_i2c.

Slave Output Delay 300 SDA output delay in
nanoseconds.

Bit Rate Modulation Enable Enable Enables bitrate modulation
function.

Callback NULL This field will be locked as
Framework does not provide
callback handling to the user.

Receive Interrupt Priority Priority 2 Receive interrupt priority
selection.

Transmit Interrupt Priority Priority 2 Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 2 Transmit end interrupt priority
selection.

Configuration Settings for the Transfer Driver on r_dtc Event IIC0 TXI

Property Value Description

Parameter Checking Default(BSP) Enable Or Disable Parameter
Checking.

Software Start Disabled

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer0 Module name.

Mode Normal Mode selection. This field is
locked.

Transfer Size 1 Byte Transfer size selection. This
field is locked.

Destination Address Mode Fixed Destination address mode
selection. This field is locked.

Source Address Mode Incremented Source address mode selection.
This field is locked.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection. This field
is locked.

Interrupt Frequency After all transfers have
completed

This field is locked.

Destination Pointer NULL Destination pointer selection.
This field is locked.

Source Pointer NULL Source pointer selection. This
field is locked.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 418 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Using the I2C Framework Module in an Application

Number of Transfers 0 Number of transfer selection.
This field is locked.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.
This field is locked.

Activation Source (Must enable
IRQ)

Event IIC0 TXI Activation source selection. This
field is locked.

Auto Enable False Auto enable selection. This field
is locked.

Callback (Only valid with
Software start)

NULL Callback selection. This field is
locked.

ELC Software Event Interrupt
Priority

Disabled ELC software event interrupt
priority selection.

Configuration Settings for the Transfer Driver on r_dtc Event IIC0 RXI

Property Value Description

Parameter Checking Default(BSP) Enable Or Disable Parameter
Checking.

Software Start Disabled Software Start Selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer0 Module name.

Mode Normal Mode selection. This field is
locked.

Transfer Size 1 Byte Transfer size selection. This
field is locked.

Destination Address Mode Incremented Destination address mode
selection. This field is locked.

Source Address Mode Fixed Source address mode selection.
This field is locked.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection. This field
is locked.

Interrupt Frequency After all transfers have
completed

This field is locked.

Destination Pointer NULL Destination pointer selection.
This field is locked.

Source Pointer NULL Source pointer selection. This
field is locked.

Number of Transfers 0 Number of transfer selection.
This field is locked.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.
This field is locked.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 419 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Using the I2C Framework Module in an Application

Activation Source (Must enable
IRQ)

Event IIC0 RXI Activation source selection. This
field is locked.

Auto Enable False Auto enable selection. This field
is locked.

Callback (Only valid with
Software start)

NULL Callback selection. This field is
locked.

ELC Software Event Interrupt
Priority

Disabled ELC software event interrupt
priority selection.

2. Add the second I2C Framework Device to the same thread. The I2C Framework Shared Bus on
sf_i2c will not get added automatically. Select the option to use the existing shared bus. Then
Configurator will automatically add the I2C Framework Shared Bus on sf_i2c and remaining modules.
The lower level modules will be added and configured automatically to be consistent with the
previously defined settings from the first I2C framework instance. In fact, if any lower level settings
are changed in on stack, they are automatically updated in the other.

The resulting module stack is shown in the following figure:

 Example configuration settings for the second thread stack (Slave Device #2) are as follows:

Configuration Settings for the I2C Framework Device on sf_i2c (Slave #2)

Property Value Description

Parameter Checking Default(BSP) Enable Or Disable Parameter
Checking.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 420 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Using the I2C Framework Module in an Application

Name g_sf_i2c_device1 Give a name to identify the I2C
Framework device. API, Config
and Control instances will be
created based on this name.

Slave Address 0x28 Specify the address of I2C
slave2.

Address Mode 7-bit Select the I2C address mode.

The step above can be repeated as needed to add more slave devices to the same bus, if they share
the same low-level settings.

If a set of slave devices have different lower-level settings than another set, they must use a
different bus and can be implemented by repeating the two steps outlined above- defining a
different bus and the different lower-level characteristics for the set of slave devices.

Adding Another Shared Bus

1. The I2C framework module which will use a second shared bus can be added to any thread.
Starting with the previous example, if it is added to the I2C_Device1 thread, then the module stack
would appear as shown below. Available options for the shared bus are New or Use.

 2. Select New to and add another I2C Framework Shared Bus on sf_i2c module. Configure the
shared bus properties as needed for the application. Select the desired low-level I2C driver. The
channel number for the g_i2c1 I2C driver module, must be different from the channel number for the
g_i2c0 I2C driver module. The resulting thread stack is shown below:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 421 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Using the I2C Framework Module in an Application

 3. A second device can be added in the I2C_Device2 thread using the same steps described above.
The resulting thread stack is shown below:

 The typical steps in using the I2C Framework module in an application are:

1. Initialize the I2C Framework module using the sf_i2c_api_t::open API. Each I2C framework
module needs to call sf_i2c_api_t::open API at least once before performing any operations
on the bus.

2. Reset the I2C MCU peripheral using the sf_i2c_api_t::reset API (if needed)
3. Lock the bus using the sf_i2c_api_t::lock or sf_i2c_api_t::lockWait API for a particular

framework module. Once the bus is locked by an I2C framework module it cannot be used
by any other I2C framework module on the same bus. This ensures that ownership of the
bus remains with the I2C framework module until it unlocks it. Any operation from other I2C

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 422 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > I2C Framework > Using the I2C Framework Module in an Application

framework modules on the bus will fail while the bus is locked. It is not mandatory to lock
the bus before any read/write operations on the bus. It is optional (if needed). If thread is
not supposed to wait forever when locking the I2C bus, call sf_i2c_api_t::lockWait API with
desired timeout value.

4. Write data to the slave using the sf_i2c_api_t::write API. The write operation will not be
successful if the bus is already locked by any other I2C framework module.

5. Read data from the slave using sf_i2c_api_t::read API. The read operation will not be
successful if the bus is already locked by any other I2C framework module.

6. Unlock the bus using the sf_i2c_api_t::unlock API if it is already locked by the same I2C
framework module. Once the bus is unlocked other I2C framework modules can use it. It is
necessary to unlock the locked bus after the protected read or write operations are over (if
needed).

7. Close the I2C framework module using the sf_i2c_api_t::close API. Each I2C framework
module can call the sf_i2c_api_t::close API after all its read and write operations on the bus
are completed (if needed).

These common steps are illustrated in a typical operational flow in the following figure:

Figure 179: Flow Diagram of a Typical I2C Framework Module Application

4.1.20 JPEG Decode Framework

4.1.20.1 JPEG Decode Framework Module Introduction

The JPEG Decode HAL module provides a high-level API for industry standard JPEG image decode
processing and supports the Renesas Synergy™ JPEG Codec peripheral. The JPEG Decode Framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 423 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > JPEG Decode Framework > JPEG Decode Framework Module Introduction

Module is a ThreadX®-aware implementation and provides thread-safe access to the Synergy JPEG
hardware on a Synergy MCU. A user-defined callback can be created to detect hardware supported
events.

JPEG Decode Framework Module Features

Provides thread-safe access to the Synergy JPEG hardware.
Supports JPEG decompression using the JPEG Decode HAL module.
Supports a polling mode that allows an application to wait for the JPEG Decoder to
complete.
Supports an interrupt mode with user-supplied callback functions.
Configures parameters such as horizontal and vertical subsample values, horizontal stride,
decoded pixel format, input and output data format, and color space.
Obtains the size of the image prior to decoding it.
Supports putting coded data in an input buffer and an output buffer to store the decoded
image frame.
Supports streaming coded data into the JPEG Decoder module. This feature allows an
application to read a coded JPEG image from a file or from a network without buffering the
entire image.
Configures the number of image lines to decode. This feature enables the application to
process the decoded image on the fly without buffering the entire frame.
Supports the input decoded formats YCbCr444, YCbCr422, YCbCr420 and YCbCr411.
Supports the output formats ARGB8888 and RGB565.
Returns an error when the JPEG image's size, height, and width do not meet the
requirements.
Supports the sf_jpeg_decode_api_t::wait API function to suspend/resume the thread for
synchronizing with the JPEG hardware supported events.

Figure 180: JPEG Decode Framework Module Block Diagram

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 424 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > JPEG Decode Framework > JPEG Decode Framework Module APIs Overview

4.1.20.2 JPEG Decode Framework Module APIs Overview

The JPEG Decode Framework module defines APIs for opening, closing, setting alarms and starting
and stopping RTC operations. A complete list of the available APIs, an example API call and a short
description of each can be found in the following table. A table of status return values follows the API
summary table.

JPEG Decode Framework Module API Summary

Function Name Example API Call and Description

open g_sf_jpeg_decode0.p_api->open(g_sf_jpeg_deco
de0.p_ctrl, g_sf_jpeg_decode0.p_cfg);
Open the JPEG Decode Framework.

inputBufferSet g_sf_jpeg_decode0.p_api->close(g_sf_jpeg_deco
de0.p_ctrl);
Close the JPEG Decode Framework.

outputBufferSet g_sf_jpeg_decode0.p_api->outputBufferSet(g_sf_
jpeg_decode0.p_ctrl, p_buffer, buffer_size);
Assign output buffer to JPEG codec for storing
output data.

linesDecodedGet g_sf_jpeg_decode0.p_api->linesDecodedGet
g_sf_jpeg_decode0.p_ctrl, p_lines);
Return the number of lines decoded into the
output buffer.

horizontalStrideSet g_sf_jpeg_decode0.p_api->horizontalStrideSet(g
_sf_jpeg_decode0.p_ctrl, stride);
Configure the horizontal stride value.

imageSubsampleSet g_sf_jpeg_decode0.p_api->imageSubsampleSet(
g_sf_jpeg_decode0.p_ctrl, horizontal, vertical);
Configure the horizontal and vertical subsample
settings.

wait g_sf_jpeg_decode0.p_api->wait(g_sf_jpeg_decod
e0.p_ctrl, p_status, timeout);
Wait for the current JPEG codec operation to
finish with a timeout value given in ThreadX
ticks.

statusGet g_sf_jpeg_decode0.p_api->statusGet(g_sf_jpeg_d
ecode0.p_ctrl, p_status);
Retrieve current status of the JPEG codec
module.

imageSizeGet g_sf_jpeg_decode0.p_api->imageSizeGet(g_sf_jp
eg_decode0.p_ctrl, p_horizontal, p_vertical);
Retrieve image size during decoding operation.

pixelFormatGet g_sf_jpeg_decode0.p_api->pixelFormatGet(g_sf_j
peg_decode0.p_ctrl, p_color_space);
Get the input pixel format.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 425 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > JPEG Decode Framework > JPEG Decode Framework Module APIs Overview

close g_sf_jpeg_decode0.p_api->close(g_sf_jpeg_deco
de0.p_ctrl);
Cancel an outstanding operation.

versionGet g_sf_jpeg_decode0.p_api->versionGet(&version);
Get version and store it in provided pointer
p_version.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS JPEG Decode driver is successfully opened.

SSP_ERR_ASSERTION Assertion error.

SSP_ERR_IN_USE Module already in use.

SSP_ERR_TIMEOUT The wait operation times out, the underlying
driver did not respond in time.

SSP_ERR_WAIT_ABORTED System internal error occurred.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.20.3 JPEG Decode Framework Module Operational Overview

The JPEG Decode Framework module implements the standard JPEG decode operation. It takes the
data in an input buffer and applies the defined JPEG decode algorithm to the buffer, the output is
then delivered to the defined output buffer location. A wait API function can be used to
suspend/resume the thread for synchronization with JPEG hardware supported events.

JPEG Decode Framework Module Important Operational Notes and Limitations

JPEG Decode Framework Module Operational Notes

Start decoding JPEG-encoded data by calling the sf_jpeg_decode_api_t::open API. To open
the module, use the JPEG Decode Framework module instance, that includes the API
function pointer, the pointer to the control block and static configuration that is generated
through the Synergy Project configurator in the e2 studio for ISDE.
Stop the JPEG Decode Framework module by calling the sf_jpeg_decode_api_t::close API.
An input buffer-streaming mode is available when an input-centric function is needed.
An output buffer-streaming mode is available when an output-centric function is needed.
Supports RGB565 and ARGBB888 output data-color formats.
The JPEG Decode Framework module has a status flag in the control block, which provides
the current status of the module through the sf_jpeg_decode_api_t::statusGet API. The
status is also reported through a user-callback function when specific events occur in the
module.
The JPEG Decode Framework module supports buffer-streaming mode for the input buffer in

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 426 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > JPEG Decode Framework > JPEG Decode Framework Module Operational Overview

cases when the input buffer is smaller than the source image size. Set the next input frame
as an input buffer every time there is a hardware-generated INPUT_PAUSE interrupt.
The JPEG Decode Framework module supports buffer-streaming mode for the output buffer
in cases when the resultant image is larger than the output buffer-size. Read and store data
from the output buffer to make space for upcoming data every time there is a hardware
generated OUTPUT_PAUSE interrupt.
The input and output buffers should be 8-bytes aligned for the JPEG Decode Framework
module to be successful. Otherwise, API functions will return error codes that indicate
unsuccessful execution.

JPEG Decode Framework Module Limitations

The JPEG Decode Framework module does not support JPEG-encode processing.
Check for timeout error (SSP_ERR_TIMEOUT) using sf_jpeg_decode_api_t::wait API; if it
returns timeout error, close the framework, re-open it and then perform the decoding
operation.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.20.4 Including the JPEG Decode Framework Module in an Application

This section describes how to include the JPEG Decode Framework Module in an application using the
SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the JPEG Decode Framework to an application, simply add it to a thread using the stacks
selection sequence given in the following table. (The default name for the JPEG Decode Framework is
g_sf_jpeg_decode0. This name can be changed in the associated Properties window.)

JPEG Decode Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_jpeg_decode0 JPEG
Framework

Threads New Stack> Framework>
Graphics> JPEG Decode
Framework on
sf_jpeg_decode

When the JPEG Decode Framework on sf_jpeg_decode is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 427 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > JPEG Decode Framework > Including the JPEG Decode Framework Module in an Application

Figure 181: JPEG Decode Framework Module Stack

 Decompression Process Interrupt (JEDI)

The JPEG decompression-process interrupt occurs when:

The current decompression process is successfully completed.
An error happens in the decompression process.
Image size and pixel format are successfully read out.

Data Transfer Interrupt (JDTI)

The JPEG data-transfer interrupt occurs when:

All the JPEG-coded data has successfully completed.
The number of output image-data lines specified by sf_jpeg_decode_api_t::linesDecodedGet
has been transferred.

The number of input image-data lines specified by sf_jpeg_decode_api_t::inputBufferSet has been
transferred.

4.1.20.5 Configuring the JPEG Decode Framework Module

The JPEG Decode Framework Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 428 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > JPEG Decode Framework > Configuring the JPEG Decode Framework Module

properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the JPEG Decode Framework Module on sf_jpeg_decode

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

Name g_sf_jpeg_decode0 The name to be used for a JPEG
Decode Framework module
instance.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the JPEG Decode Framework Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module.

Configuration Settings for the JPEG HAL Module on r_jpeg

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_jpeg_decode0 The name to be used for a JPEG
Decode module instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 429 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > JPEG Decode Framework > Configuring the JPEG Decode Framework Module

Byte Order for Input Data
Format

Normal byte order
(1)(2)(3)(4)(5)(6)(7)(8),
Byte Swap
(2)(1)(4)(3)(6)(5)(8)(7), Word
Swap (3)(4)(1)(2)(7)(8)(5)(6),
Word-Byte Swap
(4)(3)(2)(1)(8)(7)(6)(5),
Longword Swap
(5)(6)(7)(8)(1)(2)(3)(4),
Longword-Byte Swap
(6)(5)(8)(7)(2)(1)(4)(3),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2)

Default: Normal Byte order

Specify the byte order for input
data. The order is swapped as
specified in every 8-byte.

Byte Order for Output Data
Format

Normal byte order
(1)(2)(3)(4)(5)(6)(7)(8),
Byte Swap
(2)(1)(4)(3)(6)(5)(8)(7), Word
Swap (3)(4)(1)(2)(7)(8)(5)(6),
Word-Byte Swap
(4)(3)(2)(1)(8)(7)(6)(5),
Longword Swap
(5)(6)(7)(8)(1)(2)(3)(4),
Longword-Byte Swap
(6)(5)(8)(7)(2)(1)(4)(3),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2)

Default: Normal Byte order

Specify the byte order for
output data. The order is
swapped as specified in every
8-byte.

Output Data Color Format Pixel Data RGB565 format, Pixel
Data ARGBB888 format

Default: Pixel Data RGB565
format

Specify the output data format.

Alpha value to be applied to
decoded pixel data (only valid
for ARGB8888 format)

255 Specify the alpha value for the
output data format (only valid
for ARGB8888 format).

Name of user callback function NULL Specify the name of user
callback function.

Decompression Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Decompression interrupt
priority selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 430 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > JPEG Decode Framework > Configuring the JPEG Decode Framework Module

Data Transfer Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Data transfer interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the JPEG Common Module

ISDE Property Value Description

Name g_jpeg_common0 Module name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

JPEG Decode Framework Module Clock Configuration

The JPEG Framework module uses the peripheral module clock A (PCLKA) to run the internal logic.

JPEG Decode Framework Module Interrupt Configuration

To enable interrupts, set the priority of the decompression interrupt and the data-transfer interrupt
in the Properties window of the JPEG Decode Framework module in the ISDE.

JPEG Decode Framework Module Pin Configuration

The JPEG Decode Framework module does not use any pins.

4.1.20.6 Using the JPEG Decode Framework Module in an Application

The steps in using the JPEG Decode Framework module in a typical application are:

1. Initialize the JPEG Decode peripheral using the sf_jpeg_decode_api_t::open API.
2. Set Image Subsample using the sf_jpeg_decode_api_t::imageSubsampleSet API.
3. Set Horizontal stride using the sf_jpeg_decode_api_t::horizontalStrideSet API.
4. Set output buffer using the sf_jpeg_decode_api_t::outputBufferSet API.
5. Set Input buffer using the sf_jpeg_decode_api_t::inputBufferSet API.
6. Wait for decode to complete with the sf_jpeg_decode_api_t::wait API.
7. Check decode status with the sf_jpeg_decode_api_t::statusGet API.
8. Close the instance with the sf_jpeg_decode_api_t::close API (if needed).

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 431 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > JPEG Decode Framework > Using the JPEG Decode Framework Module in an Application

Figure 182: Flow Diagram of a Typical JPEG Decode Framework Module Application

4.1.21 Memory Framework on sf_memory_qspi_nor

4.1.21.1 Memory Framework Module Introduction

The Memory Framework on sf_memory_qspi_nor module provides a high-level API for interfacing with
QSPI NOR memory devices. It provides API functions for reading, writing, and erasing data in QSPI
NOR Flash memory. The Memory Framework on sf_memory_qspi_nor module is also used by the
higher-level Port LevelX Framework on sf_el_lx_nor framework module when support for LevelX wear
leveling is required.

Memory Framework Module Features

Supports memory interface for QSPI NOR flash memory device.
Supports I/O Operations on QSPI NOR flash memory device.

Read
Write
Erase

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 432 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Memory Framework on sf_memory_qspi_nor > Memory Framework Module Introduction

Figure 183: Memory Framework Module Block Diagram

4.1.21.2 Memory Framework Module APIs Overview

The Memory Framework module defines API functions to read, write and erase QSPI NOR flash
memory devices. A complete list of the available API functions, an example API call and a short
description of each can be found in the following table. A table of status return values follows the API
summary table.

Memory Framework Module API Summary

Function Name Example API Call and Description

open g_sf_memory_qspi_nor0.p_api->open(g_sf_mem
ory_qspi_nor0.p_ctrl,
g_sf_memory_qspi_nor0.p_cfg);
Open the SF Memory QSPI NOR driver module
for the purposes of reading and writing flash
memory.

close g_sf_memory_qspi_nor0.p_api->close(g_sf_mem
ory_qspi_nor0.p_ctrl);
Close the Memory QSPI NOR driver module.

read g_sf_memory_qspi_nor0.p_api->read(g_sf_memo
ry_qspi_nor0.p_ctrl, p_dest_address,
memory_address, num_bytes);
Read specified number of bytes of data from a
particular address on the QSPI flash device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 433 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Memory Framework on sf_memory_qspi_nor > Memory Framework Module APIs Overview

write g_sf_memory_qspi_nor0.p_api->write(g_sf_mem
ory_qspi_nor0.p_ctrl, p_src_address,
memory_address, num_bytes);
Program data to the flash.

flush g_sf_memory_qspi_nor0.p_api->flush(g_sf_mem
ory_qspi_nor0.p_ctrl);
Flush any pending data to the disk. This is not
required for QSPI NOR flash.

erase g_sf_memory_qspi_nor0.p_api->erase(g_sf_mem
ory_qspi_nor0.p_ctrl, memory_address,
num_bytes);
Erase a number of bytes from the flash.

infoGet g_sf_memory_qspi_nor0.p_api->infoGet(g_sf_me
mory_qspi_nor0.p_ctrl, p_info);
Returns the information about the flash.

versionGet g_sf_memory_qspi_nor0.p_api->versionGet(&ver
sion);
Get the driver version based on compile time
macros.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Configuration was successful.

SSP_ERR_ASSERTION The parameter p_ctrl or p_cfg is NULL.

SSP_ERR_ALREADY_OPEN Driver is already open.

SSP_ERR_NOT_OPEN Driver is not opened.

SSP_ERR_INVALID_ARGUMENT Number of bytes requested is invalid.

SSP_ERR_TIMEOUT Wait timed out.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.21.3 Memory Framework Module Operational Overview

The Memory Framework module supports memory data transfers for a QSPI memory. High-level API
functions are available to open, read, write, erase and close the module. If LevelX support is needed,
the higher-level Port LevelX Framework on sf_el_lx_nor framework module can be used in
conjunction with this module.

The Memory Framework module uses a standard interface that is common for other SSP media

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 434 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Memory Framework on sf_memory_qspi_nor > Memory Framework Module Operational Overview

modules. For example, the modules that support SDMMC, SPI Flash and SDRAM/RAM memories use
the same API calls, so the programming interface remains the same for any media driver. These
modules can be interchanged with one another easily. Device adaptation drivers, such as r_qspi, are
accessed through the Memory Framework Interface and provide device specific code needed to
perform media I/O operations. Configuration and control structures passed through memory
interface function calls are generally device specific as well.

A user-defined delay callback function can be specified to fine tune the amount of time to wait
before starting to poll the QSPI chip after a write or erase operation. This option is provided since
there is a large variation in the delay that could be required for a QSPI operation to complete and it
varies from chip to chip.

If the delay callback is not specified, then the QSPI driver sleeps for one tick, before polling the
status again.

The number of ticks to wait before a timeout error occurs, on a chip erase or write, can be specified
in the "Write or Erase Timeout" field. The default is set to 30,000 ticks.

Memory Framework Module Important Operational Notes and Limitations

Memory Framework Module Operational Notes

The media must be erased before using sf_memory_qspi_nor for I/O operations.

Memory Framework Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4.1.21.4 Including the Memory Framework Module in an Application

This section describes how to include the Memory Framework Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Memory Framework to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the Memory Framework is
g_sf_memory_qspi_nor0. This name can be changed in the associated Properties window.)

Memory Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_memory_qspi_nor0
Memory Framework on
sf_memory_qspi_nor

Threads New Stack> Framework>
Memory> Memory
Framework on
sf_memory_qspi_nor

When the Memory Framework on sf_memory_qspi_nor is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 435 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Memory Framework on sf_memory_qspi_nor > Including the Memory Framework Module in an Application

common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 184: Memory Framework Module Stack

4.1.21.5 Configuring the Memory Framework Module

The Memory Framework Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Memory Framework Module on sf_memory_qspi_nor

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_sf_memory_qspi_nor0 Module name.

Delay Callback (Optional) NULL Callback used to add a delay
between polling the QSPI chip.

Write or Erase Timeout (in
ticks)

30000 Timeout ticks for waiting on
write or erase to complete.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 436 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Memory Framework on sf_memory_qspi_nor > Configuring the Memory Framework Module

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Memory Framework Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module.

Configuration Settings for the QSPI HAL Module on r_qspi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_qspi0 Module name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Memory Framework Module Clock Configuration

The Memory Framework module uses the QSPI peripheral, which uses PCLKA as its clock source.

To change the clock frequency at run-time, use the CGC Interface.

Memory Framework Module Pin Configuration

To use the Memory Framework module, the port pins for the QSPI peripheral must be set as needed.
The following table illustrates the method for selecting the pins within the ISDE configuration
window:

Pin Selection for the Memory Framework Module on sf_memory_qspi_nor

Resource ISDE Tab Pin selection Sequence

QSPI Pins Select Peripherals>
Storage:QSPI QSPI0

4.1.21.6 Using the Memory Framework Module in an Application

The typical steps in using the Memory Framework module in an application are:

1. Initialize the instance using sf_memory_api_t::open API function.

2. Write data to QSPI flash using sf_memory_api_t::write API function.

3. Read data from QSPI flash using sf_memory_api_t::read API function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 437 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Memory Framework on sf_memory_qspi_nor > Using the Memory Framework Module in an Application

4. Erase data from QSPI flash using sf_memory_api_t::erase API function.

5. Read QSPI flash information using sf_memory_api_t::infoGet API function.

6. Close the instance using sf_memory_api_t::close API function.

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 185: Flow Diagram of a Typical Memory Framework Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 438 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework

4.1.22 Messaging Framework

4.1.22.1 Messaging Framework Module Introduction

The Messaging Framework implements a lightweight and event-driven API for passing messages
between threads. The Messaging Framework module allows applications to communicate messages
between two or more threads. The framework uses the ThreadX message-queue primitive for
message passing and provides more benefits than the ThreadX RTOS message-queue services alone.
The Messaging Framework API is purely a software API and does not access any hardware
peripherals. The Messaging Framework callback is used to allow an event-producer thread and a
message-subscriber thread to handshake after the message passing is done.

The Messaging tab is used to either create custom event classes, events and subscribers for the
Messaging Framework module or to customize preconfigured events such as the touch event used
by the Touch Panel Framework module.

Messaging Framework Module Features

The Messaging Framework module supports the following functions:

Inter-Thread communication - The framework allows application threads which control
disparate devices or manage subsystems to communicate with each other.
Publishing/Subscribe scheme - The framework design is based on the loosely-coupled
messaging paradigm. The design allows multiple threads to listen to an event class. The
message producer thread does not need to know who is subscribing to a message for the
event class. Subscribers do not need to know who produces the message.
Message management - The framework supports buffer control blocks to manage each
message including flags to control the buffer and a callback function pointer for
handshaking.
Message buffering - The framework manages buffer allocation and release for messaging.
An application can make use of the allocated buffer to write a message and discard the
message if it is no longer needed.
Synchronous communication - The framework supports asynchronous messaging by using
the ThreadX message-queue but also provides an option to create a handshake between a
message producer and a subscriber thread. The handshake is implemented by invoking a
user-callback function of the producer thread from a subscriber thread.
Message formatting - The framework provides a predefined common message header. It
also provides some typical payload structure templates as examples.
Message Priority - The framework can send a high-priority message so that a subscriber
thread can retrieve the message prior to other messages which are located in the message
queue.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 439 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Messaging Framework Module Introduction

Figure 186: Messaging Framework Module Block Diagram

4.1.22.2 Messaging Framework Module APIs Overview

The Messaging Framework module defines APIs for opening and closing the framework, acquiring
and releasing buffers, and posting messages to subscribers. A complete list of the available APIs, an
example API call and a short description of each can be found in the following table. A table of status
return values follows the API summary table.

Messaging Framework Module API Summary

Function Name Example API Call and Description

open g_sf_message.p_api->open
(g_sf_message.p_ctrl, g_sf_message.p_cfg);
Initialize message framework. Initiate the
messaging framework control block, configure
the work memory corresponding to the
configuration parameters.

close g_sf_message.p_api->close
(g_sf_message.p_ctrl);
Finalize message framework.

bufferAcquire g_sf_message.p_api->bufferAcquire (
g_sf_message.p_ctrl, &p_buffer, &acquire_cfg,
wait_option);
Acquire buffer for message passing from the
block.

bufferRelease g_sf_message.p_api->bufferRelease (
g_sf_message.p_ctrl, &p_buffer, option);
Release buffer obtained from
SF_MESSAGE_BufferAcquire.

post g_sf_message.p_api->post (g_sf_message.p_ctrl,
(sf_message_header_t *) p_payload, &post_cfg,
&err_post, wait_option);
Post message to the subscribers.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 440 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Messaging Framework Module APIs Overview

pend g_sf_message.p_api->pend
(g_sf_message.p_ctrl,
&my_queue, (sf_message_header_t
**)&p_buffer, &p_header, wait_option);
Pend message.

versionGet g_sf_message.p_api->versionGet (&version);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API call successful.

SSP_ERR_ASSERTION Required pointer is NULL.

SSP_ERR_BUFFER_RELEASED The buffer is released.

SSP_ERR_ILLEGAL_SUBSCRIBER_LISTS Message subscriber lists is illegal.

SSP_ERR_IN_USE The messaging framework is in use.

SSP_ERR_INTERNAL OS service call fails.

SSP_ERR_INVALID_MSG_BUFFER_SIZE Message buffer size is invalid.

SSP_ERR_INVALID_WORKBUFFER_SIZE Invalid work buffer size.

SSP_ERR_MESSAGE_QUEUE_EMPTY Queue is empty. (Timeout occurs before
receiving a message if timeout option is
specified.)

SSP_ERR_MESSAGE_QUEUE_FULL Queue is full. (Timeout occurs before sending a
message if timeout option is specified.)

SSP_ERR_NO_MORE_BUFFER No more buffer found in the memory block pool.

SSP_ERR_NO_SUBSCRIBER_FOUND No subscriber found.

SSP_ERR_NOT_OPEN Message framework module has yet to be
opened.

SSP_ERR_TIMEOUT OS service call returns timeout.

SSP_ERR_TOO_MANY_BUFFERS Too many message buffers.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.22.3 Messaging Framework Module Operational Overview

The following figure shows the overview of the messaging data flow between a message producer
thread and subscriber thread(s) in the system making use of the Messaging Framework module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 441 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Messaging Framework Module Operational Overview

Figure 187: Messaging Framework Module Data Flow

 The following is a description for each stage of the message passing procedure:

Note: A thread in the system has been called using the sf_message_api_t::open API and message
subscriber threads have called the sf_message_api_t::pend API to pend on a message for the event
class.

1. An event (Event A) happens on a message producer thread.
2. A message producer thread calls sf_message_api_t::bufferAcquire to acquire a buffer from

the ThreadX memory pool managed by the Messaging Framework module;
sf_message_api_t::bufferAcquire returns the address of allocated buffer.

3. A message producer writes the message to the allocated buffer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 442 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Messaging Framework Module Operational Overview

4. A message producer calls sf_message_api_t::post to post the message.
5. The Messaging Framework module looks up the event subscriber list and sends a message

to the message queue of the message subscriber threads using the ThreadX message-
queue primitive. The framework just sends the pointer to the buffer but does not send the
entire message, thereby performing lightweight message passing.

6. The message reaches the message queue of the message subscriber threads and the
message subscriber threads return from sf_message_api_t::pend. The API function returns
the buffer address where the message is stored to message subscriber threads.

7. The message subscriber threads receive the message and perform an action corresponding
to the event.

8. The message subscriber threads call sf_message_api_t::bufferRelease to try to release the
allocated buffer for the message. If the message subscriber thread is not the last one
subscribing to the message, the framework does not release the buffer as the message has
to be kept in the buffer until all subscribers have received the message.

9. The Messaging Framework module invokes a user-callback function which is specified by an
event producer thread if the message subscriber thread is the last one in the message
subscriber group.

10. The Messaging Framework module releases the buffer if all the subscribers in the group
have notified the framework that they have consumed the message. (Note that the release
option SF_MESSAGE_RELEASE_OPTION_FORCED_RELEASE in the
sf_message_api_t::bufferRelease API function should not be used in a multiple subscriber
scenario.)

Messaging Framework Module Message Producer and Subscribers

The Message Framework module is an inter-thread messaging system based on the
publish/subscribe model. A message is posted with an event class code by an event producer thread.
The message subscriber threads can check for pending messages which subscribe to the event
class. Subscribers are registered in the subscriber list, which is referred to by the framework. The
subscriber list allows the framework to deliver a message to multiple subscribers.

Every thread which joins the Messaging Framework module system network can send a message,
and all threads in the network can listen to the message.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 443 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Messaging Framework Module Operational Overview

Figure 188: Messaging Framework Module Subscribing

 Messaging Framework Module Events, Subscribers, and Messages

Messaging Framework Module Event Class Code

The event class code is the most important definition for the Messaging module. The Messaging
module uses the event class code as the mechanism to connect a message producer with
subscribers; the event class code is the class definition of the events which occur in the application.
The classification of the event class relies on the user definition, but it is intended to be the group
name of the particular events which can occur in a subsystem.

For example, you can use the 'Audio Playback' event class, which is part of the Audio Playback
Framework module. The 'Audio Playback' Event Class is automatically loaded into the event classes
window. This window is available on the Messaging tab in the Project Configurator when you add the
Audio Playback Framework to your Synergy project.

The event class code is defined in the sf_message_event_class_t enumeration and has a prefix
SF_MESSAGE_EVENT_CLASS_XXX. Since the definition of the event class code is different for each
system, the framework does not provide a concrete event class code but instead provides a set of
event class codes as examples. (See the Configuring the Messaging Framework Module section.) The
maximum number for the event class is 255.

An application can use the event class code as follows:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 444 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Messaging Framework Module Operational Overview

The message producer thread sets the event class code to the event_b.class_code bit fields
in the sf_message_header_t type common message header before posting the message.
The message subscriber-thread branches to the event processing corresponding to the
event class code which is set to the message header after receiving the message.
The subscribers for the event class code must be grouped and registered in the subscriber
list so that the Message Framework can deliver the message to the subscribers.

The following figure shows how you can configure an event class using the ISDE:

Figure 189: Messaging Framework Module ISDE Event Class Configuration

 Messaging Framework Module Event Class Instance Number

The event class instance number is used when an application needs to have different event class
instances. For example, the audio streaming event class can have instance N which represents the
streaming channel N. Message subscribers can receive a message only if the event class instance
number in the message common header matches to the number it owns.

In other words, messages for which the event class instance number is out of range for the
subscriber are filtered out and not delivered to the subscriber even though it is the event class
subscriber. The maximum for the event class instance number is 255.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 445 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Messaging Framework Module Operational Overview

Note
The Touch Panel Framework typically only has one instance, and therefore the event class instance number is 0
with the start and end values of the subscriber list set to 0.

An application can use the event class instance number as follows:

The message producer thread sets the event class instance number to the
event_b.class_instance bit fields in the sf_message_header_t type common message header
before posting the message.
Each subscriber instance in the Subscriber List has to specify the range of the event class
instance numbers to receive the message (sf_message_subscriber_t::instance_range.start
and sf_message_subscriber_t::instance_range.end).
If there is no need for multiple instances for an event class, just specify zero to
sf_message_header_t::event_b.class_instance,
sf_message_subscriber_t::instance_range.start, and
sf_message_subscriber_t::instance_range.end in the subscriber instance for the subscriber
list.

Messaging Framework Module Event Code

The event code includes the details of the event definition. For instance, the event codes for the
audio playback event class are "playback start" and "playback stop." Another example is 'set' or 'get'
for the 'time' Event Class. The event code is enumerated in the sf_message_event_t and has a prefix
SF_MESSAGE_EVENT_XXX. The definition of the event code relies on the user code as well as the
event class code. The framework provides some code as examples. See Configuring the event class
code and event code for configuring the event code. The maximum for the event class instance
number is 65535.

An application can use the event code as follows:

The message producer thread sets the event code to the event_b.code bit fields in the
sf_message_header_t type common message header before posting the message.

The message subscriber thread performs an action corresponding to the event code which is set to
the message header after receiving the message.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 446 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Messaging Framework Module Operational Overview

Figure 190: Messaging Framework Module ISDE Event Configuration

 Messaging Framework Module Subscriber List

The subscriber list is used for message delivery and is looked up by the framework.

The framework starts to look up the message queues of each subscriber thread from the subscriber
group listed in the head of the pointer array to the sf_message_subscriber_list_t instance. The
important point of the subscriber list is that it is grouped by event class code (event_class).

When the framework looks up the subscriber list in the post API function at runtime, it compares the
Event Class code in the message header (sf_message_header_t::event_b.class), which is included in
the message payload data, with the one in the subscriber group instance (event_class). If there is a
match, the Framework goes to the next level to get the message queue instance
(sf_message_subscriber_t::queue) until the iterations reach number_of_nodes). If there is no match,
the framework looks up the next subscriber group and continues until encountering a NULL in the
pointer array to the sf_message_subscriber_list_t instance.

In the look-up procedure, the subscriber group listed at the head of the Subscriber List gets the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 447 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Messaging Framework Module Operational Overview

highest throughput for messaging, but lower subscriber groups encounter a penalty and get lower
throughput for messaging.

The subscriber list is the look-up table for all message subscribers. The subscriber list is configured
at compile time. It is statically mapped to the memory and looked up by the framework when the
post API function is called. The subscriber list allows the framework to determine message queues to
deliver a message to. The subscriber list consists of two structures sf_message_subscriber_list_t and
sf_message_subscriber_t as shown in the following figure:

A queue for a subscriber thread is registered in sf_message_subscriber_t instance.
The instances above for the same event class code are grouped and listed in a pointer
array.
The pointer array for a subscriber group is registered in a sf_message_subscriber_list_t
instance.
The subscriber list is the pointer array to the subscriber group structures. Subscribers are
grouped by the event class code.
The pointer array must be terminated by NULL.

Figure 191: Messaging Framework Module Subscriber List

 In the ISDE, you can configure a subscriber grouped by the event class for the thread you named in
the Threads tab. In the following example, the thread is named "My Thread" in the Threads tab.
The start and end values reflect the event class instance numbers this thread accepts.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 448 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Messaging Framework Module Operational Overview

Figure 192: Messaging Framework Module ISDE Subscriber Configuration

 Messaging Framework Module Message Payload

The message payload is structured data used by the message producer and the message
subscribers to communicate with each other. The message payload contains event class and event
code in the common header (sf_message_header_ttype data, see event class and event code) so
that a message producer can post a message to the subscribers to inform the subscribers which
event happened.

You must define a system specific message payload structure except for modules for which the SSP
provides predefined structures such as the Audio Playback Framework module. The message
payload can contain additional data, which are required for the event processing, in addition to the
common header.

Messaging Framework Module SSP Predefined Payload

The SSP contains the predefined message payload structure sf_audio_playback_data_t type for the
Audio Playback Framework module.

The Audio Playback Framework module uses the Messaging Framework internally and defines a

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 449 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Messaging Framework Module Operational Overview

suitable message payload structures. An application thread that posts audio event messages to the
Audio Playback Framework module can use sf_audio_playback_api.h.

Messaging Framework Module User-Defined Payload

You must define a message payload structure for each event class code; exceptions include the SSP
predefined payloads described previously or payloads that require only the common header. To
create a new message payload structure, add a common message header (sf_message_header_t
type structure) at the head in the user-specific message payload structure. The size of the header is
4 bytes.

Note
The payload size must not be greater than the buffer size.

The buffer size limit is critical; oversized data written beyond the buffer may destroy data in the
block memory pool, which is required by ThreadX kernel. Violating the size limit results in a hard
fault exception. The buffer size can be configured insf_message_ctrl_t::buffer_size.

Messaging Framework Module Important Operational Notes and Limitations

Messaging Framework Module Operational Notes

Messaging Framework and OS Message Queue Service

The Messaging Framework module uses the ThreadX primitive-message queue and kernel services
and supports some enhancement over the ThreadX RTOS features. For this reason, the Messaging
Framework module does not work exactly the same as the ThreadX message-queue service.
However, a messaging system with the Messaging Framework module can work simultaneously with
the ThreadX message queue services in an application if the two messaging systems are separated.

API Calls Contexts

The sf_message_api_t::open API can only be called from a thread; it can be called only once
per the message framework control block instance. The behavior is undefined if the
function is called twice.
The sf_message_api_t::close API can only be called from a thread.
The sf_message_api_t::bufferAcquire API can be called from a thread and an ISR.
The sf_message_api_t::bufferRelease API can only be called from a thread.
The sf_message_api_t::post API can be called from a thread and an ISR.
The sf_message_api_t::pend API can be called from a thread and an ISR.

Estimating the Number of Buffers

The number of buffers available to be allocated in the work memory should be estimated properly
when designing the messaging system. The number of buffers is estimated as follows:

 where:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 450 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Messaging Framework Module Operational Overview

N – number of buffers,
Wm – work memory size (in bytes),
Mb – message buffer size (in bytes),
Bcb = 12 bytes – size of buffer control block,
Tx - 4 bytes – reserved bytes for ThreadX.

The maximum number possible for buffers allocated at the same time equals the total amount of
depth of message queues in the system. Ideally, the number of buffers for a robust system should be
the sum of the depths of the message queues in the system.

Message Queue Size and Depth Setting

The Messaging Framework module needs a 4-byte memory block on the message queue as it
delivers the pointer to the buffer which contains a message payload. For this reason, the size of the
message queue is fixed to 4 bytes.

The depth of the message queue is arbitrary, but it should accommodate the number of queued
messages at runtime. As a guideline, estimate the value as follows:

 where:

D – queue depth,
Pavg – average message delivery rate from producers,
Savg – average event loop completion time in the subscriber.

Messaging Framework Module Limitations

In a multi-threaded and repeated message transfer application, keep the message Producer
thread priority higher than the subscriber thread. So that the producer thread completes all
its operation before the subscriber thread starts releasing the received buffer and avoid
sending the message to the wrong queue.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.22.4 Including the Messaging Framework Module in an Application

This section describes how to include the Messaging Framework Module in an application using the
SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Messaging Framework to an application, simply add it to a thread using the stacks
selection sequence given in the following table. (The default name for the Messaging Framework is
g_sf_message0. This name can be changed in the associated Properties window.)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 451 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Including the Messaging Framework Module in an Application

Messaging Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_message0 Messaging
Framework on sf_message

Threads New Stack> Framework>
Services> Messaging
Framework on sf_message

When the Messaging Framework on sf_message is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Note: While using sf_message framework for communication between the multiple threads having
different priorities,the priority of the thread in which sf_message stack is added should be kept high.

Figure 193: Messaging Framework Module Stack

4.1.22.5 Configuring the Messaging Framework Module

The Messaging Framework Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Messaging Framework Module on sf_message

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 452 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Configuring the Messaging Framework Module

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Message Queue Depth (Total
number of messages to be
enqueued in a Message Queue)

16 Specify the size of Thread X
Message Queue in bytes for
Message Subscribers. This
value is applied to all the
Message Queues.

Name g_sf_message0 The name of Messaging
Framework module control
block instance.

Work memory size in bytes 2048 Specify the work memory size
in bytes. Choosing a small
number results in a small
number of buffers which can be
allocated at the same time (You
can confirm the total buffer
number on: sf_message_ctrl_t::
number_of_buffers). If the value
is smaller than the peak
number of messages to be
posted at the same time, the
Framework has a buffer
allocation failure affecting
system performance.

Pointer to subscriber list array p_subscriber_lists Specify the name of pointer to
the Subscriber List array.

name of the block pool
internally used in the
messaging framework

sf_msg_blk_pool The name of the memory block
memory the Framework creates
in the control block. This
parameter might be useful for
debugging purpose but NULL
can be specified for saving
memory.

Name of generated initialization
function

sf_message_init0 Name of generated initialization
function.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Messaging Framework Module Creating a Messaging Queue

The messaging configurator automatically creates the message queue for the subscribers.

Messaging Framework Module Configuring an Event Class and Event

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 453 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Configuring the Messaging Framework Module

To use the Messaging Framework with your own event class, use the Threads tab and the
Messaging tab of the project configurator in the ISDE.

In the Threads tab, do the following:

1. Add the Messaging Framework component in the Thread Stacks panel of the Threads
window.

2. Add a new thread in the Threads window and give it a unique name.
3. In the Messaging tab (see event class code), do the following:

a. In the Event Class window, add an event.

b. Enter the name of the event class for your thread to subscribe to in the New
Event Class dialog box.

Figure 194: Messaging Framework New Event Class Configuration

4. In the Events window, add any events that your application may support (see event code).

Figure 195: Messaging Framework New Event Configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 454 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Configuring the Messaging Framework Module

 Your custom event class code and event code are stored in a file named sf_message_port.h. The
audio playback and the touch event classes are two predefined event classes in the SSP. The Touch
Event Class only uses the new data event, SF_MESSAGE_EVENT_NEW_DATA.

Messaging Framework Module Configuring the Subscriber List

In the Messaging tab (see also Subscriber List), do the following:

1. Select the event class in the Event Classes window and configure a thread for the
subscriber list in the event class Subscribers window.

2. Select your thread from the drop-down list in the Threads dialog box.
3. Next to Start, enter the start number of the event class instance(s). If your system does not

use multiple event class instances for the event class, or you are not sure what number to
specify, just keep the default number (0.) Allowed values range from 0 to 255.

4. Next to End, enter the last number of the event class instance(s). If your system does not
use multiple event class instances for the event class, or you are not sure what number to
specify, just keep the default number (0.) Allowed values range from 0 to 255.

5. Click OK. A subscriber for your specified event is added in the subscriber list.
6. Repeat these steps for all event class instances if there are more than one.

Figure 196: Messaging Framework New Subscriber Configuration

Messaging Framework Module Configuring the Event Class Code and Event Code

Messaging Framework Module Defining the Message Payload

You can define your own message payload structure. Every user-defined message structure must
include the sf_message_header_t type structure as one of the members, but the other members are
entirely user-definable. The Messaging Framework does not care where the message payload
structures are defined. You can include the file which defines your own message payload structure in
the source file for your message producer and subscriber threads.

Opening the Messaging Module in the Messaging Framework Module

Configure the sf_message_cfg_t type configuration parameters to match your system. You can
generate code for the configuration structure through the Synergy Configuration tool. Add a
Messaging Framework component to the thread stacks in the Threads tab and modify the properties
for the Messaging Framework module in the Properties window. When you press the Generate

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 455 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Configuring the Messaging Framework Module

Project Content button, the code for the Messaging Framework module is generated on the thread
code.

Messaging Framework Module Acquiring a Buffer

Before posting a message, an event producer thread must acquire a buffer for the message from the
Messaging Framework module. An event producer thread can acquire the buffer by calling
sf_message_api_t::bufferAcquire.

When the API function returns SSP_SUCCESS, the buffer with message buffer size in bytes configured
on Synergy Configuration tool is allocated in the memory pool managed by the Messaging
Framework. The maximum number allowed to be allocated depends on the configuration Work
memory size in bytes specified on the Synergy Configuration tool. For the estimation of the
maximum number, see Estimating the Number of Buffers.

The sf_message_api_t::bufferAcquire API has several options to change the message passing
behavior:

buffer keep: This option allows the application thread to hold the buffer not to be released
by the API function sf_message_api_t::bufferRelease if set to true. Typically, the buffer is to
be released by sf_message_api_t::bufferRelease when the message passing is done;
however, in a scenario to have periodical or repeated message passing between threads,
we can reuse the same buffer for the messaging without allocating and releasing the buffer
each time. Enabling this option reduces the overhead in the buffer allocation/release
operation and improve the system throughput.
wait_options: This is the wait time option which is valid if all buffers have been acquired.
Any arbitrary thread tick count, TX_WAIT_FOREVER, TX_NO_WAIT can be set for this option.
For details, see the tx_block_allocate() description for the ThreadX service call in the
ThreadX User Guide.

Messaging Framework Module Releasing a Buffer

After message subscriber threads receive a message posted by an event producer, the message
subscriber threads must release the buffer to the framework. Buffer releasing is performed by calling
sf_message_api_t::bufferRelease. Since the API function can be called multiple times if there are
multiple event subscribers in the system, the actual buffer release is performed only by the last
message subscriber thread in the event subscribers. For instance, if there were three subscribers in
the subscriber group for the event class, the first and second thread which call
sf_message_api_t::bufferRelease do not release the buffer. Only the third thread releases the buffer.
Note, if the buffer keep option is specified by sf_message_api_t::bufferAcquire, the buffer is never
being released except when option SF_MESSAGE_RELEASE_OPTION_FORCED_RELEASE is passed to
the API function argument option. (Also see Messaging Framework callbacks for
sf_message_api_t::bufferRelease API function usage.)

The API is also used for invoking a user-callback function to create a handshake between an event
producer thread and a message subscriber thread.

Posting a message

1. After getting a buffer by sf_message_api_t::bufferAcquire, an event producer can write the
message payload data to the buffer location.

2. ATTENTION: Writing data to the buffer is the user's responsibility and writing more data
than the buffer size causes a fatal error in the Messaging Framework module.

3. Write an event class code to the sf_message_header_t::event_b.class_code in the payload
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 456 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Configuring the Messaging Framework Module

4. Write an event code to the sf_message_header_t::event_b.code in the payload structure. It
is not mandatory to specify this but necessary in most cases.

5. Write an event class instance number to sf_message_header_t::event_b.class_instance.
Specify a number from 0 to 255 if your system has multiple instances for an event class.
Specify 0 if your system simply uses single event class instance.

6. Post the message by the post API. Note that the pointer to the buffer needs to be casted
with sf_message_header_t * type when given to the API. The message will be delivered to
the message subscribers which are registered in the message subscriber list. The post API
has several options to change the message passing behavior.

Message priority: Message can take two level message priority,
SF_MESSAGE_PRIORITY_NORMAL or SF_MESSAGE_PRIORITY_HIGH. When
SF_MESSAGE_PRIORITY_HIGH is specified, the message is queued at the front of
the message queue of the message subscriber. This is typically used for the
emergency message to make the message subscribers handle the event prior to
the events which might have been queued in the message queue.
User-callback function: This function is registered in the buffer control block of
the Messaging Framework module. The callback function is invoked by
bufferRelease. This function can be used for handshaking between an event
producer thread and a message subscriber thread.
Wait_options: This is the wait time option which is valid if a message queue of
the message subscriber thread is full. Any arbitrary ThreadX tick count,
TX_WAIT_FOREVER and TX_NO_WAIT can be set to this option. For details, see the
description of tx_queue_send() ThreadX service call in ThreadX User Guide.

Checking for a Pending Message

1. After the Messaging Framework module is opened, the message subscriber threads can
wait for a message by calling pend. In general use, the second API argument specifies the
pointer to a message queue, which you configured for the message subscriber thread in the
Thread Subscribers pane in the Messaging tab, but you can specify the other message
queues instead if required.

2. When a message is delivered from an event producer, the thread returns from pend.
3. The API returns the pointer to the buffer which contains the message to the thread through

the third argument of the API.
4. The message subscriber casts the pointer above with a pointer type for the user custom

message payload structure and does the event processing corresponding to the Event Class
code sf_message_header_t::event_b.class_code, Event code
sf_message_header_t::event_b.code and the user defined arbitrary data in the message.

Note that pend has the wait_option to change the behavior of the API function:

The fourth argument of pend is the wait time option, which is only valid if the message queue of the
message subscriber thread is empty. Any arbitrary ThreadX tick count, TX_WAIT_FOREVER, and
TX_NO_WAIT can be set to this option. For details, see tx_queue_send()ThreadX service call in the
ThreadX User Guide.

Messaging Framework Module Interrupts

The Messaging Framework module does not use any interrupts.

4.1.22.6 Using the Messaging Framework Module in an Application

The steps in using the Messaging Framework on sf_message module in a typical application are:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 457 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Using the Messaging Framework Module in an Application

Create a Message Queue
Configure the Event Class and Event
Configure the Subscriber List
Configure the Event Class Code and Event Code

Once configuration is complete, the module's APIs can be used in the target application as follows:

1. Initialize the Messaging Framework with the sf_message_api_t::open API
2. Acquire a buffer with the sf_message_api_t::bufferAcquire API
3. Post a message with the sf_message_api_t::post API
4. Check for a pending message with the sf_message_api_t::pend API
5. Release a buffer using the sf_message_api_t::bufferRelease API
6. Close the Messaging Framework with the sf_message_api_t::close API

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 458 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Messaging Framework > Using the Messaging Framework Module in an Application

Figure 197: Flow Diagram of a Typical Messaging Framework Module Application

4.1.23 Power Profiles V2 Framework

4.1.23.1 Power Profiles V2 Framework Introduction

The Power Profiles V2 Framework provides a high-level API used to control the system clocks, the I/O
ports, the operating modes (indirectly through the clock control) and the low power modes of the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 459 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Power Profiles V2 Framework Introduction

MCU. The Power Profiles V2 Framework, when used with the LPM V2 Driver, CGC Driver and I/O Port
Driver, gives the user advanced control over the power consumption of the MCU.

Power Profiles V2 Framework Module Features

Uses Low Power Modes V2
Sets CGC clock configuration and I/O Port pin configuration when entering and exiting the
configured low power mode
Supports both threaded and non-threaded operations

Figure 198: Power Profiles V2 Framework Module Block Diagram

4.1.23.2 Power Profiles V2 Framework Module APIs Overview

There are different low-level LPM V2 HAL modules used in the framework depending on the target
MCU (as shown in the following table):

MCU Driver

S124 S124 Low Power Mode Sleep on r_lpmv2

S124 S124 Low Power Mode Standby on r_lpmv2

S128 S128 Low Power Mode Sleep on r_lpmv2

S128 S128 Low Power Mode Standby on r_lpmv2

S3A3 S3A3 Low Power Mode Sleep on r_lpmv2

S3A3 S3A3 Low Power Mode Standby on r_lpmv2

S3A7 S3A7 Low Power Mode Sleep on r_lpmv2

S3A7 S3A7 Low Power Mode Standby on r_lpmv2

S5D9 S5D9 Low Power Mode Sleep on r_lpmv2

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 460 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Power Profiles V2 Framework Module APIs Overview

S5D9 S5D9 Low Power Mode Standby on r_lpmv2

S5D9 S5D9 Low Power Mode Deep Standby on
r_lpmv2

S7G2 S7G2 Low Power Mode Sleep on r_lpmv2

S7G2 S7G2 Low Power Mode Standby on r_lpmv2

S7G2 S7G2 Low Power Mode Deep Standby on
r_lpmv2

Because of the large number of lower level LPM V2 HAL modules available, it would be difficult to
identify separate APIs and configuration settings. This module guide only goes into details for the
S7G2 MCU. All the APIs and configuration settings are the same (except for those MCUs that do not
support Deep Standby). It should be simple to extrapolate to any target MCU.

The Power Profiles defines APIs for common functions such as open, sleep and close. A complete list
of the available APIs, an example API call and a short description of each can be found in the
following table. A table of status return values follows the API summary table.

Power Profiles V2 Framework Module API Summary

Function Name Example API Call and Description

open g_sf_power_profiles_v2_common.p_api->open(g_
sf_power_profiles_v2_low_power_0.p_ctrl,
g_sf_power_profiles0.p_cfg);
Initialize the Power Profiles V2 Framework.

runApply g_sf_power_profiles_v2_common.p_api->runAppl
y(g_sf_power_profiles_v2_common.p_ctrl,
&g_sf_power_profiles_v2_run_0);
Apply the selected run power profile.

lowPowerApply g_sf_power_profiles_v2_common.p_api->lowPow
erApply(g_sf_power_profiles_v2_common.p_ctrl,
&g_sf_power_profiles_v2_low_power_0);
Apply the selected low power profile.

close g_sf_power_profiles_v2_common.p_api->close(g_
sf_power_profiles_v2_common.p_ctrl);
Close the module.

versionGet g_sf_power_profiles_v2_common.p_api->version
Get(&p_version);
Get version and store it in provided pointer
p_version.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 461 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Power Profiles V2 Framework Module APIs Overview

SSP_SUCCESS Function successful.

SSP_ERR_ASSERTION Assertion error.

SSP_ERR_IN_USE The framework has already been initialized.

SSP_ERR_INVALID_HW_CONDITION Incompatible system clock configuration.

SSP_ERR_NOT_OPEN Device not open.

SSP_ERR_UNSUPPORTED The function is not supported by the module.

SSP_ERR_INTERNAL Internal error.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status-return values.

4.1.23.3 Power Profiles V2 Framework Module Operational Overview

The Power Profiles V2 Framework provides a high-level API used to control the system clocks, the I/O
ports, the operating modes (indirectly through the clock control), and the low power modes of the
MCU. The Power Profiles V2 Framework, when used with the LPM V2 Driver, CGC Driver, and I/O Port
Driver, gives the user advanced control over the power consumption of the MCU.

The Power Profiles V2 Framework provides 2 main functions to control the MCU power consumption,
sf_power_profiles_v2_api_t::runApply and sf_power_profiles_v2_api_t::lowPowerApply. The runApply()
function uses a CGC Clocks configuration and an I/O Port pin configuration to set the system clocks
and I/O Port pins of the MCU. The lowPowerApply() function uses a LPM V2 configuration and two I/O
Port configuration to set the low power mode and I/O Port pins before entering the configured low
power mode and after waking from the low power mode. See LPM V2 module overview and the MCU
hardware manual for details about the available low power modes.

The Power Profiles V2 Framework uses the LPM V2, IOPORT, and CGC Drivers of the
Synergy Software Package and provides an easy-to-use software interface to control the power
consumption of the MCU.

Operational Description

The Power Profiles V2 Framework configures the system in both a Run state and a Low Power state.
The system clocks, I/O pins, and low power mode of the MCU can all be handled and controlled using
the Power Profiles V2 Framework.

The Power Profiles V2 Framework API function sf_power_profiles_v2_api_t::open initializes the Power
Profiles V2 Framework internal variables, instance variables, and the LPM V2 Driver. If the project
uses ThreadX, the Framework will ensure safe use in a multi-threaded environment.

The runApply() and lowPowerApply() functions optionally use I/O Port pin configurations to provide
control of the MCU I/O Ports. The lowPowerApply() function can use 2 pin configurations: one to set
the pins to a state appropriate for the low power mode when the MCU will not be executing
instructions, and a second for after waking from the low power mode, when instruction execution
resumes.

The Power Profiles V2 Framework runApply() function applies the user-defined optional pin
configuration, then applies the user-defined CGC clocks configuration. The user can switch clocks on
and off, change clock dividers, and switch the system clocks using the CGC Clocks configuration
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 462 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Power Profiles V2 Framework Module Operational Overview

The Power Profiles V2 Framework API function runApply() performs the following tasks in order:

1. If the project uses ThreadX, the function will get the ThreadX mutex prior to calling any
lower level driver.

2. Apply the user-specified optional pin configuration.
3. Apply the user-specified CGC Clocks configuration.
4. If the project uses ThreadX, the function will return the ThreadX mutex.

The lowPowerApply() function uses an LPM V2 configuration to set the low power mode, the triggers
for waking from the low power mode, the state of bus pins, and other settings that are MCU specific.
The lowPowerApply() function can optionally use an application callback function. The prototype can
be found in /src/synergy_gen/hal_data.c or /src/synergy_gen/<thread name>.c.

The Power Profiles V2 Framework lowPowerApply() function performs the following tasks in order:

1. If the project uses ThreadX, the function will get the ThreadX mutex prior to calling any lower level
driver.

2. Apply the optional user-specified low power entry pin configuration.

3. Call the user specified callback function with the enumeration
SF_POWER_PROFILES_V2_EVENT_PRE_LOW_POWER.

4. Apply the user-specified low power mode configuration. Any valid LPM V2 configuration can be
used.

5. Enter the low power mode.

6. If the low power mode chosen was other than Deep Standby the MCU will resume execution of
code from the same point once the wakeup trigger is detected. (If the LPM V2 low power mode
configuration was Deep Standby, the MCU will not resume code execution but will instead go through
a soft reset once the wakeup trigger is detected.)

7. Apply the optional user-specified low power exit pin configuration.

8. Call the user specified callback function with the enumeration
SF_POWER_PROFILES_V2_EVENT_POST_LOW_POWER.

9. If the project uses ThreadX, the function will return the ThreadX mutex.

The Power Profiles V2 Run or Low Power profiles should be added to the project by the user. The
Power Profiles V2 common module will be added automatically.

Outside of a thread:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 463 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Power Profiles V2 Framework Module Operational Overview

 Within a thread:

 After adding a Power Profiles V2 Run or Low Power Profile, you will need to add an LPM V2 Common

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 464 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Power Profiles V2 Framework Module Operational Overview

module. If an LPM V2 Common instance already exists in the project, it will be used. A Power Profiles
V2 Run Profile does not directly use the LPM V2, but it is still a dependency for a successful build.

 A Power Profiles V2 Run Profile depends upon a CGC Clocks Configuration. The configuration options
of the CGC Clocks Configuration instance are provided below. If a CGC Clocks Configuration instance
is not already present in the project, it will be automatically added. If one is present, it could be used
instead. Controlling system clocks is a critical part of controlling power consumption of an MCU. See
the CGC usage notes for more information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 465 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Power Profiles V2 Framework Module Operational Overview

 The Power Profiles V2 Low Power Profile uses an LPM V2 standby instance, but an LPM V2 deep
standby instance or LPM V2 sleep instance could be used instead depending on which MCU is
currently being used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 466 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Power Profiles V2 Framework Module Operational Overview

 The LPM V2 instance's properties can be configured by selecting the instance and reviewing the
Properties pane.

Configuring the Pins for the Power Profiles V2 Framework

Optional: Create additional I/O Port pin configurations using the Pins tab as follows:

1. In the top-level directory of your project, find the file with file extension *.pincfg.

2. Make a copy of this file and rename it, keeping the new file in the same top-level directory of the
project.

3. The new file is now available as an option on the Pins tab of the Synergy Configuration. Look for
the file name in the drop down list on the Pins tab below "Select pin configuration".

4. Check the Generate data checkbox and type in a pin configuration name. The checkbox and text
entry can be found to the right of the pin configuration drop down.

5. Configure the pins as desired for either a Run or Low Power Profile.

6. Save the project configuration and Generate Project Content.

7. To view the pin configuration that was generated, look in the file
{project_directory}/src/synergy_gen/pin_data.c for the ioport_cfg_t structure of the same name as
entered in the text box.

8. Add the name of the ioport_cfg_t structure to one of the pin configuration table entries for a Run
or Low Power Profile.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 467 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Power Profiles V2 Framework Module Operational Overview

For a Power Profiles V2 Run Profile:

 For a Power Profiles V2 Low Power Profile:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 468 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Power Profiles V2 Framework Module Operational Overview

 Configuring the Interrupts for the Power Profiles V2 Framework

The Power Profiles V2 Framework does not use any interrupts directly, although any interrupt is
capable of waking the MCU while in Sleep mode. This is handled through the LPM V2 driver
configuration.

Configuring the Power Profiles V2 Callbacks

Power Profiles V2 Low Power Profiles can notify the application before entering the low power mode
and after waking from low power mode. The prototype can be found in /src/hal_data.c or
/src/synergy_gen/<thread name>.c.

Fill in the callback used by the Power Profiles V2 Low Power Profile:

 Configuring the Low Power Module Parameters

See the LPM V2 usage notes for an in depth description of how to use LPM V2.

Power Profiles V2 Framework Module Important Operational Notes and Limitations

Power Profiles V2 Framework Module Operational Notes

An LPM V2 Driver instance is required to create Power Profiles V2 applications. The CGC
driver is included in a Synergy project by default. To use the Power Profiles V2 runApply()
function, another instance of the CGC Driver is required in order to create a CGC Clocks
configuration. Since the CGC Driver is included in all Synergy projects by default, this does
not add to the code size of the project.
The I/O Port pin configurations can be created without adding an additional instance of the
I/O Port driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 469 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Power Profiles V2 Framework Module Operational Overview

When used with ThreadX, this framework uses ThreadX intrinsic objects like mutexes.
Operation with ThreadX is optional.
Power Profiles V1 and Power Profiles V2 cannot be used in the same project. For all new
projects, it is recommended that applications use Power Profiles V2.

Power Profiles V2 Framework Module Limitations

The Power Profiles V2 Framework does not handle starting or stopping MCU peripherals.

The Power Profiles V2 Framework open function will not be called automatically prior to main if the
project does not use ThreadX. The initialization must be done explicitly by calling g_common_init() or
by explicitly calling the sf_power_profiles_v2_api_t::open API. This is not a Power Profiles V2 limitation
but a result of any Framework module that supports being used without an RTOS.

#include "hal_data.h"

void hal_entry(void)

{

 g_common_init();

 g_sf_power_profiles_v2_common.p_api->runApply(

 g_sf_power_profiles_v2_common.p_ctrl,

 &g_sf_power_profiles_v2_run_0);

 g_sf_power_profiles_v2_common.p_api->lowPowerApply(

 g_sf_power_profiles_v2_common.p_ctrl,

 &g_sf_power_profiles_v2_low_power_0);

 g_sf_power_profiles_v2_common.p_api->close(g_sf_power_profiles_v2_common.p_ctrl);

}

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4.1.23.4 Including the Power Profiles V2 Framework Module in an Application

This section describes how to include the Power Profiles V2 Framework module in an application
using the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Power Profiles V2 Framework module to an application, simply add it to a HAL /Common
thread using the stacks selection sequence given in the following table. (The default name for the
Power Profiles V2 Framework module is sf_power_profiles_v2_0. This name can be changed in the
associated Properties window.)

Power Profiles V2 Framework Module Selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 470 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Including the Power Profiles V2 Framework Module in an Application

Resource ISDE Tab Stacks Selection Sequence

g_sf_power_profiles_low_power_
0 Power Profiles V2 Low Power
Profile

Threads New Stack> Framework>
Services> Power Profiles V2
Low Power Profile

g_sf_power_profiles_run_0
Power Profiles V2 Run Profile

Threads New Stack> Framework>
Services> Power Profiles V2
Run Profile

When the Power Profiles V2 Framework module on sf_power_profiles_v2 is added to the thread stack
as shown in the following figure, the configurator automatically adds any needed lower‑level
modules. Any modules needing additional configuration information have the box text highlighted in
Red. Modules with a Gray band are individual modules that stand alone. Modules with a Blue band
are shared or common; they need only be added once and can be used by multiple stacks. Modules
with a Pink band can require the selection of lower-level modules; these are either optional or
recommended. (This is indicated in the block with the inclusion of this text.) If the addition of lower-
level modules is required, the module description include Add in the text. Clicking on any Pink
banded modules brings up the New icon and displays possible choices.

Figure 199: Power Profiles V2 Framework Module Stack

4.1.23.5 Configuring the Power Profiles V2 Framework Module

The Power Profiles V2 Framework module must be configured by the user for the desired operation.
The SSP configuration window will automatically identify (by highlighting the block in red) any
required configuration selections, such as interrupts or operating modes, which must be configured
for lower-level modules in order to ensure successful operation. Furthermore, only those properties
that can be changed without causing conflicts are available for modification. Other properties are
'locked' and are not available for changes, and are identified with a lock icon for the 'locked' property
in the Properties window in the ISDE. This approach simplifies the configuration process and makes it
much less error-prone than previous 'manual' approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP configurator, and are shown in the following tables for easy reference.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 471 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Configuring the Power Profiles V2 Framework Module

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

There are two different stack selections for the Power Profiles V2 Framework, the Run Profile and the
Low Power Profile. Their respective configuration settings will be covered separately in the following
sections.

Configuring the Power Profiles V2 Run Profile

Typically, only a small number of settings must be modified from the default for lower-level drivers
as indicated with red text in the thread stack block. Notice that some of the configuration properties
must be set to a certain value for proper framework operation and will be locked to prevent user
modification. The following table identifies all the settings within the properties section for the
module.

Configuration Settings for the Power Profiles V2 Run Profile

ISDE Property Value Description

Name g_sf_power_profiles_v2_run_0 Module name.

Pin configuration table NULL Pin configuration table
selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Power Profiles V2 Common

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_sf_power_profiles_v2_commo
n

Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the CGC Configuration Instance

ISDE Property Value Description

Name g_cgc_cfg0 Module name.

System Clock HOCO, MOCO, LOCO, Main
Oscillator, Sub Clock, PLL

Default: HOCO

System clock selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 472 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Configuring the Power Profiles V2 Framework Module

LOCO State Change None, Start, Stop

Default: None

LOCO state change selection.

MOCO State Change None, Start, Stop

Default: None

MOCO state change selection.

HOCO State Change None, Start, Stop

Default: None

HOCO state change selection.

Sub-Clock State Change None, Start, Stop

Default: None

Sub-clock state change
selection.

Main Clock State Change None, Start, Stop

Default: None

Main clock state change
selection.

PLL State Change None, Start, Stop

Default: None

PLL state change selection.

PLL Source Clock HOCO, MOCO, LOCO, Main
Oscillator, Sub Clock, PLL

Default: HOCO

PLL source clock selection.

PLL Divisor 1, 2, 3, 4

Default: 1

PLL divisor seiection.

PLL Multiplier 10.0, 10.5, 11.0, 11.5, 12.0,
12.5, 13.0, 13.5, 14.0, 14.5,
15.0, 15.5, 16.0, 16.5, 17.0,
17.5, 18.0, 18.5, 19.0, 19.5,
20.0, 20.5, 21.0, 21.5, 22.0,
22.5, 23.0, 23.5, 24.0, 24.5,
25.0, 25.5, 26.0, 26.5, 27.0,
27.5, 28.0, 28.5, 29.0, 29.5,
30.0, 31.0

Default: 10.0

PLL multiplier selection.

PCLKA Divisor 1, 2, 4, 8, 16, 64

Default: 1

PCLKA divisor selection.

PCKLB Divisor 1, 2, 4, 8, 16, 64

Default: 1

PCKLB divisor selection.

PCLKC Divisor 1, 2, 4, 8, 16, 64

Default: 1

PCLKC divisor selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 473 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Configuring the Power Profiles V2 Framework Module

PCLKD Divisor 1, 2, 4, 8, 16, 64

Default: 1

PCLKD divisor selection.

BCLK Divisor 1, 2, 4, 8, 16, 64

Default: 1

BCLK divisor selection.

FCLK Divisor 1, 2, 4, 8, 16, 64

Default: 1

FCLK divisor selection.

ICLK Divisor 1, 2, 4, 8, 16, 64

Default: 1

ICLK divisor selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Lower Power Mode Common

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_lpmv2_common Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Power Profiles V2 Low Power Profile

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the Thread Stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following table identifies all the settings within the properties section
for the module:

Configuration Settings for the Power Profiles V2 Low Power Profile

ISDE Property Value Description

Name g_sf_power_profiles_v2_low_po
wer_0

Module name.

Callback (Low Power Exit Event
N/A when using Deep Software
Standby)

NULL Callback selection.

Low power entry pin
configuration table

NULL Low power entry pin
configuration table selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 474 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Configuring the Power Profiles V2 Framework Module

Low power exit pin
configuration table

NULL Low power exit pin
configuration table selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Low Power Mode Deep Standby

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_lpmv2_deep_standby Module name.

Output port state in standby
and deep standby, applies to
address output, data output,
and other bus control output
pins

High impedance state, No
change

Default: No change

Output port state selection.

Maintain or reset the IO port
states on exit from deep
standby mode

Maintain the IO port states,
Reset the IO port states

Default: Maintain the IO port
states

Maintain or reset the IO port
states selection.

Internal power supply control in
deep standby mode

Maintain the internal power
supply, Cut the power supply to
standby RAM, low-speed on-
chip oscillator, AGTn, and
USPFS/HS resume detecting
unit, Cut the power supply to
LVDn, standby RAM, low-speed
on-chip oscillator, AGTn, and
USBFS/HS resume detecting
unit

Default: Maintain the internal
power supply

Internal power supply control
selection.

IRQ0-15 Enabled, Disabled

Default: Disabled

IRQ0-15 selection.

IRQ0-15 Edge Disabled, Rising Edge, Falling
Edge

Default: Disabled

IRQ0-15 Edge selection.

LVD1 Enabled, Disabled

Default: Disabled

LVD1 selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 475 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Configuring the Power Profiles V2 Framework Module

LVD1 Edge Disabled, Rising Edge, Falling
Edge

Default: Disabled

LVD1 Edge selection.

LVD2 Enabled, Disabled

Default: Disabled

LVD2 selection.

LVD2 Edge Disabled, Rising Edge, Falling
Edge

Default: Disabled

LVD2 Edge selection.

RTC Interval Enabled, Disabled

Default: Disabled

RTC Interval selection.

RTC Alarm Enabled, Disabled

Default: Disabled

RTC Alarm selection.

NMI Enabled, Disabled

Default: Disabled

NMI selection.

NMI Edge Disabled, Rising Edge, Falling
Edge

Default: Disabled

NMI Edge selection.

USBFS Enabled, Disabled

Default: Disabled

USBFS selection.

UBSHS Enabled, Disabled

Default: Disabled

UBSHS selection.

AGT1 Enabled, Disabled

Default: Disabled

AGT1 selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Low Power Mode Sleep

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_lpmv2_sleep0 Module name.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 476 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Configuring the Power Profiles V2 Framework Module

The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Low Power Mode Standby

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_lpmv2_standby0 Module name.

Choose the low power mode Standby, Standby with snooze
Enabled

Default: Standby

Low power mode selection.

Output port state in standby
and deep standby, applies to
address output, data output,
and other bus control output
pins

High impedance state, No
change

Default: No change

Output port state selection.

IRQ1-15 Enabled, Disabled

Default: Disabled

IRQ1-15 selection.

IWDT Enabled, Disabled

Default: Disabled

IWDT selection.

Key Interrupt Enabled, Disabled

Default: Disabled

Key Interrupt selection.

LVD1 Interrupt Enabled, Disabled

Default: Disabled

LVD1 Interrupt selection.

LVD2 Interrupt Enabled, Disabled

Default: Disabled

LVD2 Interrupt selection.

Analog Comparator High-speed
0 Interrupt

Enabled, Disabled

Default: Disabled

Analog Comparator High-speed
0 Interrupt selection.

RTC Alarm Enabled, Disabled

Default: Disabled

RTC Alarm selection.

RTC Period Enabled, Disabled

Default: Disabled

RTC Period selection.

USB High-speed Enabled, Disabled

Default: Disabled

USB High-speed selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 477 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Configuring the Power Profiles V2 Framework Module

USB Full-speed Enabled, Disabled

Default: Disabled

USB Full-speed selection.

AGT1 underflow Enabled, Disabled

Default: Disabled

AGT1 underflow selection.

AGT1 Compare Match A Enabled, Disabled

Default: Disabled

AGT1 Compare Match A
selection.

AGT1 Compare Match B Enabled, Disabled

Default: Disabled

AGT1 Compare Match B
selection.

12C 0 Enabled, Disabled

Default: Disabled

12C 0 selection.

Snooze Entry Source RXD0 falling edge, IRQ0-IRQ15,
KINT, ACMPHS0, RTC Alarm,
RTC Period, AGT1 Underflow,
AGT1 Compare Match A, AGT1
Compare Match B

Default: RXD0 falling edge

Snooze Entry Source selection.

AGT1 Underflow Enabled, Disabled

Default: Disabled

AGT1 Underflow selection.

DTC Transfer Completion Enabled, Disabled

Default: Disabled

DTC Transfer Completion
selection.

DTC Transfer Completion
Negated Signal

Enabled, Disabled

Default: Disabled

DTC Transfer Completion
Negated Signal selection.

ADC0 Compare Match Enabled, Disabled

Default: Disabled

ADC0 Compare Match selection.

ADC0 Compare Mismatch Enabled, Disabled

Default: Disabled

ADC0 Compare Mismatch
selection.

ADC1 Compare Match Enabled, Disabled

Default: Disabled

ADC1 Compare Match selection.

ADC1 Compare Mismatch Enabled, Disabled

Default: Disabled

ADC1 Compare Mismatch
selection.

SCI0 Address Match Enabled, Disabled

Default: Disabled

SCI0 Address Match selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 478 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Configuring the Power Profiles V2 Framework Module

DTC state in Snoooze Mode Enabled, Disabled

Default: Disabled

DTC state in Snoooze Mode
selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Power Profiles V2 Common

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_sf_power_profiles_v2_commo
n

Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Low Power Mode Common

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_lpmv2_common Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Power Profiles V2 Framework Module Clock Configuration

The Power Profiles V2 framework does not require any specific clock settings

Power Profiles V2 Framework Module Pin Configuration

The application may optionally maintain the I/OPort state during a low power mode.

4.1.23.6 Using the Power Profiles V2 Framework Module in an Application

The typical steps in using the Power Profiles V2 Framework module in an application are:

1. Define the body of the callback function configured in the Low Power profile. The callback
function notifies the application when the MCU is about to enter a low power mode and
when the MCU just woke up from a low power mode. Using a callback is optional, but if you
define a callback in the Power Profiles V2 properties, then there must be a definition for it.

2. If ThreadX is used, the Power Profiles V2 Framework sf_power_profiles_v2_api_t::open
function will be called by the Synergy generated code before the user application code is

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 479 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Power Profiles V2 Framework > Using the Power Profiles V2 Framework Module in an Application

reached. If ThreadX is not used, the application must call the open function.
3. Apply a Run Profile at any time using the runApply() function. The runApply() function

accepts a Run Profile as its second parameter. The parameter can be any valid Run Profile,
allowing the application to easily switch between Run Profiles.
g_sf_power_profiles_v2_common.p_api->runApply(g_sf_power_profiles_v2_common.p_ctrl,
&g_sf_power_profiles_v2_run_0);

4. Apply a Low Power Profile using the lowPowerApply() function. The lowPowerApply()
function accepts a Low Power Profile as its second parameter. The parameter can be any
valid Low Power Profile, allowing the application to easily switch between Low Power
Profiles g_sf_power_profiles_v2_common.p_api->lowPowerApply(g_sf_power_profiles_v2_co
mmon.p_ctrl, &g_sf_power_profiles_v2_low_power_0);

5. Close the framework by calling the sf_power_profiles_v2_api_t::close function. [Optional]
g_sf_power_profiles_v2_common.p_api->close(g_sf_power_profiles_v2_common.p_ctrl);

These common steps are illustrated in a typical operational flow in the following figure:

Figure 200: Flow Diagram of a Typical Power Profiles V2 Framework Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 480 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework

4.1.24 SPI Framework

4.1.24.1 SPI Framework Introduction

The SPI Framework module provides a ThreadX-aware framework API and handles the integration
and synchronization of multiple SPI peripherals on an SPI bus (including chip-select handling and its
level activation). With the SPI Framework, one or more SPI buses can be created and multiple SPI
peripherals can be connected to the SPI bus. The SPI Framework module uses a single interface to
access both SCI SPI and RSPI drivers. The SPI Framework module uses the SCI and RSPI peripherals
on the Synergy MCU.

SPI Framework Module Features

The SPI Framework module uses either the SCI in SPI mode (together with the SCI common lower-
level modules) or the RSPI lower-level driver module to communicate with the SPI peripherals on the
Synergy microcontroller.

Supports multiple devices on a bus
Provides high-level APIs for initialization, transfers and closing the module
Supports synchronized transfers
Supports chip-select operations
Supports bus-locking

Figure 201: SPI Framework Module Block Diagram

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 481 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > SPI Framework Module APIs Overview

4.1.24.2 SPI Framework Module APIs Overview

The SPI Framework module defines APIs for opening, closing, reading, writing and other useful
functions. A complete list of the available APIs, an example API call and a short description of each
can be found in the following table. A table of status return values follows the API summary table.

SPI Framework Module API Summary

Function Name Example API Call and Description

open g_sf_spi_device.p_api->open(g_sf_spi_device.p_c
trl, g_sf_spi_device.p_cfg);
Open a designated SPI device on a bus.

read g_sf_spi_device.p_api->read(g_sf_spi_device.p_ct
rl, &destination, length, SPI_BIT_WIDTH_8_BITS,
timeout);
Receive data from SPI device.

write g_sf_spi_device.p_api->write(g_sf_spi_device.p_c
trl, &source, length, SPI_BIT_WIDTH_8_BITS,
timeout);
Transmit data to SPI device.

writeRead g_sf_spi_device.p_api->writeRead
(g_sf_spi_device.p_ctrl, &source, &destination,
length, SPI_BIT_WIDTH_8_BITS, timeout);
Simultaneously transmits data to an SPI device
while receiving data from an SPI device (full
duplex). The writeread API gets a mutex object,
handles the SPI data transmission at SPI HAL
layer, and receives data from the SPI HAL layer.
The API uses the event flag wait to synchronize
to completion of data transfer.

close g_sf_spi_device.p_api->close(g_sf_spi_device.p_c
trl);
Disable the SPI device designated by the control
handle and close the RTOS services used by the
bus, if no devices are connected to the bus. This
function removes power to the SPI channel
designated by the handle and disables the
associated interrupts.

lock g_sf_spi_device.p_api->lock(g_sf_spi_device.p_ct
rl);
Lock the bus for a device. The locking allows
devices to reserve a bus to themselves for a
given period of time (such as between lock and
unlock). This allows devices to complete several
reads and writes on the bus without an interrupt.

unlock g_sf_spi_device.p_api->unlock(g_sf_spi_device.p
_ctrl);
Unlock the bus for a particular device and make
the bus usable for other devices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 482 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > SPI Framework Module APIs Overview

version g_sf_spi_device.p_api->version (&version);
Retrieve the API version with the version pointer.

lockWait g_sf_spi_device.p_api->lockWait(g_sf_spi_device.
p_ctrl, timeout);
Lock the bus for a device. The locking allows
devices to reserve a bus to themselves for a
given period of time (i.e. between lock and
unlock). This allows devices to complete several
reads and writes on the bus without interrupt.
The wait option allows thread to wait for the
specified timeout when acquiring the bus mutex.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function completed successfully.

SSP_ERR_INVALID_MODE Invalid mode.

SSP_ERR_INVALID_CHANNEL Invalid channel.

SSP_ERR_IN_USE In-use error.

SSP_ERR_INVALID_ARGUMENT Invalid argument.

SSP_ERR_QUEUE_UNAVAILABLE Queue unavailable.

SSP_ERR_INVALID_POINTER Invalid pointer.

SSP_ERR_INTERNAL Internal error.

SSP_ERR_TRANSFER_ABORTED Transfer aborted.

SSP_ERR_MODE_FAULT Mode fault.

SSP_ERR_READ_OVF Read overflow.

SSP_ERR_PARITY Parity error.

SSP_ERR_OVERRUN Overrun error.

SSP_ERR_UNDEF Unknown error.

SSP_ERR_TIMEOUT Timeout error.

SSP_ERR_NOT_OPEN Device not opened.

SSP_ERR_ALREADY_OPEN Requested channel is already open in a different
configuration.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status-return values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 483 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > SPI Framework Module Operational Overview

4.1.24.3 SPI Framework Module Operational Overview

The SPI Framework module complies with the layered-driver architecture of the SSP. It uses either
the SCI on SPI module or the RSPI module to communicate with the SPI peripherals on the Synergy
microcontroller.

Multiple Slave Devices on the Same Bus

The SPI framework module uses a bus and device on bus architecture. Only one device is configured
to the lower level driver at a time, and the other devices are reconfigured upon a read or write
operation as required. The lower level driver can only be reconfigured when the bus is not locked.
Every slave device is linked to the bus to which it will be connected and shares the bus with all other
slave devices.

The user must configure the SPI framework shared-bus and the lower-level SPI HAL layer for each SPI
framework module connecting to the bus. The user can add the existing framework shared-bus
module when configuring multiple devices on the same bus. Each SPI framework module must be
configured with a unique name in the ISDE configurator.

A common start and stop procedure is used for all SPI data-transfer operations (spi_api_t::read,
spi_api_t::write and spi_api_t::writeRead). During the start process, the SPI framework module checks
whether reconfiguration is required. Chip select is asserted during the transfer-start process and de-
asserted during the transfer-end process if the bus is not locked. The user must configure the chip-
select IO pin and the chip-select active level.

Bus Locking

The SPI Framework module supports bus-locking functionality, meaning that the bus can be locked
for a given slave peripheral. The locking allows slave devices to reserve a bus to themselves for the
period between the lock and unlock commands. This allows devices to complete several reads and
writes on the bus without interruption (which can be required in some situations). The chip select
becomes active during lock and becomes inactive when unlocked. Writes and reads in between the
lock and unlock do not alter the chip-select line.

SPI Framework Module Important Operational Notes and Limitations

SPI Framework Module Operational Notes

Multiple SPI devices can be configured to share a common bus. Once the SPI Framework
bus module is configured, different SPI peripherals (devices) can be connected to that bus.
For each SPI device connected to the bus, one SPI HAL module (new or shared) and one SPI
Framework device module must be added.
User defined Callback is not required as it has been internally taken care by framework.
Setting the interrupts to different priority levels could result in improper operation.
In the SPI Framework configuration, the channel number given to this bus overrides the
channel number given in the HAL module.
Shared bus can be used by multiple slave devices with the respective configuration. The
framework also handles mutual exclusion in lock and unlock APIs when multiple devices are
using the same SPI channel.
Lock functionality will be effective for devices from different threads. If multiple devices
connected to the bus are from the same thread, the SPI bus will be locked for all devices
from that thread. In such cases, even if the bus is locked, all devices from the same thread
can access the bus.
In case a device used from multiple threads, and the device locks the SPI bus from one
thread, the same device cannot access the SPI bus from other threads.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 484 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > SPI Framework Module Operational Overview

The behavior of chip-select pin depends on the slave device. Chip-select pin can be utilized
through framework or user can handle Chip-select pin in their application code based on the
hardware specification of particular slave device.

SPI Framework Module Limitations

Refer to the MCU specification manual for identifying SPI bus compatibility. Device
compatibility with the SPI bus is not checked in the framework hence incompatible SPI
device may result in improper operation.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.24.4 Including the SPI Framework Module in an Application

This section describes how to include the SPI Framework module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the SPI Framework module to an application, simply add it to a HAL /Common thread using
the stacks selection sequence given in the following table. (The default name for the SPI Framework
module is g_sf_spi_device0. This name can be changed in the associated Properties window.)

SPI Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_spi_device0 on sf_spi Threads New Stack> Framework>
Connectivity> SPI
Framework Device on sf_spi

When the SPI Framework module on sf_spi is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 485 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Including the SPI Framework Module in an Application

Figure 202: SPI Framework Module Stack

4.1.24.5 Configuring the SPI Framework Module

The SPI Framework module must be configured by the user for the desired operation. The SSP
configuration window will automatically identify (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules in order to ensure successful operation. Furthermore, only those properties that can
be changed without causing conflicts are available for modification. Other properties are 'locked' and
are not available for changes, and are identified with a lock icon for the 'locked' property in the
Properties window in the ISDE. This approach simplifies the configuration process and makes it much
less error-prone than previous 'manual' approaches to configuration. The available configuration
settings and defaults for all the user-accessible properties are given in the Properties tab within the
SSP configurator, and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

Configuration Settings for the SPI Framework Device Module on sf_ spi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_sf_spi_device0 Module name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 486 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Configuring the SPI Framework Module

Clock Phase Data sampling on odd edge,
data variation on even
edge/Data sampling on even
edge, data variation on odd
edge

Default: Data sampling on odd
edge, data variation on even
edge

Select the clock phase.

Clock Polarity Low when idle, High when idle

Default: Low when idle

Select the clock polarity.

Chip Select Port 00 thru 11

Default: 00

Select GPIO port used for the
chip select.

Chip Select Pin 00 thru 15

Default: 00

Select GPIO pin used for the
chip select.

Chip Select Active Level Low, High

Default: Low

Polarity of the Chip Select
signal, active High or Low.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults can be desirable. For example, it might be useful to
select different chip-select GPIOs or levels. The configurable properties for the lower-level stack
modules are given in the following sections for completeness and as a reference.

Note
Most of the property settings for lower level modules are fairly intuitive and can usually be determined by
inspection of the associated Properties window from the SSP configurator.

Configuring the SPI Framework Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower-level drivers
as indicated with red text in the thread stack block. Notice that some of the configuration properties
must be set to a certain value for proper framework operation and will be locked to prevent user
modification. The following tables identify all the settings within the properties section for the lower-
level modules:

Configuration Settings for the SPI Framework Shared Bus on sf_spi

ISDE Property Value Description

Name g_sf_spi_bus0 Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 487 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Configuring the SPI Framework Module

Configuration Settings for the RSPI HAL Driver on r_rspi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Name g_spi0 Module name.

Channel 0 SCI or SPI Channel number to
which the device has been
connected.

Operating Mode Master, Slave

Default: Master

Configure as a Master or Slave
device.

Note: Current version of SSP
supports only SPI Master mode.

Clock Phase Data sampling on odd edge,
data variation on even edge

Data sampling on odd or even
clock edge.

Clock Polarity Low when idle Clock level when idle.

Mode Fault Error Enable, Disable

Default: Disable

Indicates Mode fault error
(master/slave conflict) flag.

Bit Order MSB First, LSB First

Default: MSB First

Select transmit order MSB/LSB
first.

Bitrate 500000 Transmission or reception rate.
Bits per second.

Callback NULL Optional Callback function
pointer.

SPI Mode SPI Operation, Clock
synchronous operation

Default: SPI Operation

Select spi or clock syn mode
operation.

Slave Select Polarity(SSL0) Active Low, Active High

Default: Active Low

Select SSL0 signal polarity.

Slave Select Polarity(SSL1) Active Low, Active High

Default: Active Low

Select SSL1 signal polarity.

Slave Select Polarity(SSL2) Active Low, Active High

Default: Active Low

Select SSL2 signal polarity.

Slave Select Polarity(SSL3) Active Low, Active High

Default: Active Low

Select SSL3 signal polarity.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 488 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Configuring the SPI Framework Module

Select Loopback1 Normal, Inverted

Default: Normal

Select the data mode for
loopback 1.

Select Loopback2 Normal, Inverted

Default: Normal

Select the data mode for
loopback 2.

Enable MOSI Idle State Enable, Disable

Default: Disable

Select MOSI idle fixed value and
selection.

MOSI Ildle State MOSI Low, MOSI High

Default: MOSI Low

Select mosi idle fixed value and
selection.

Enable Parity Enable, Disable

Default: Disable

Enable/disable parity.

Parity Mode Parity Odd, Parity Even

Default: Parity Odd

Select parity.

Select SSL(Slave Select) SSL0, SSL1, SSL2, SSL3

Default: SSL0

Select which slave to use;
0-SSL0; 1-SSL1; 2-SSL2; 3-SSL3.

Select SSL Level After Transfer SSL Level Keep, SSL Level Do
Not Keep

Default: SSL Level Do Not Keep

Select SSL level after transfer
completion; 0-negate; 1-keep.

Clock Delay Enable Clock Delay Enable, Clock Delay
Disable

Default: Clock Delay Disable

Clock delay enable selection.

Clock Delay Count Clock Delay 1 thru 8 RSPCK

Default: Clock Delay 1 RSPCK

Clock delay count selection.

SSL Negation Delay Enable Negation Delay Enable,
Negation Delay Disable

Default: Negation Delay Disable

SSL negation delay enable
selection.

Negation Delay Count Negation Delay 1 thru 8 RSPCK

Default: Negation Delay 1
RSPCK

Negation delay count selection.

Next Access Delay Enable Next Access Delay Enable, Next
Access Delay Disable

Default: Next Access Delay
Disable

Next access delay enable
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 489 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Configuring the SPI Framework Module

Next Access Delay Count Next Access Delay 1 thru 8
RSPCK

Default: Next Access Delay 1
RSPCK

Next access delay count
selection.

Receive Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Receive interrupt priority
selection.

Transmit Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Transmit interrupt priority
selection.

Error Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Error interrupt priority
selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SPI0 TXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 2 Bytes Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 490 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Configuring the SPI Framework Module

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode)

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SPI0 TXI Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14 Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SPI0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_transfer1 Module name.

Mode Normal Mode selection.

Transfer Size 2 Bytes Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 491 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Configuring the SPI Framework Module

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SPI0 RXI Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the SPI Driver on r_sci_spi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_spi0 Module name.

Channel 0 SCI or SPI Channel number to
which the device has been
connected.

Operating Mode Master, Slave

Default: Master

Configure as a Master or Slave
device.

Note: Current version of SSP
supports only SPI Master mode.

Clock Phase Data sampling on odd edge,
data variation on even edge

Data sampling on odd or even
clock edge.

Clock Polarity Low when idle Clock level when idle.

Mode Fault Error Enable, Disable

Default: Disable

Indicates Mode fault error
(master/slave conflict) flag.

Bit Order MSB First, LSB First

Default: MSB First

Select transmit order MSB/LSB
first.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 492 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Configuring the SPI Framework Module

Bitrate 100000 Transmission or reception rate.
Bits per second.

Bit Rate Modulation Enable Enable, Disable

Default: Enable

Bitrate Modulation Function
enable or disable.

Callback NULL Optional Call back function
pointer.

Receive Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Bitrate Modulation Function
enable or disable.

Note: This is applicable only for
SCI SPI.

Transmit Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Transmit end interrupt priority
selection.

Error Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Error interrupt priority
selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 TXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 493 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Configuring the SPI Framework Module

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SCI0 TXI Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer1 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 494 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Configuring the SPI Framework Module

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SCI0 RXI Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

SPI Framework Module Clock Configuration

The SCI peripheral module uses the PCLKB as its clock source. The PCLKB frequency is set by using
the SSP configurator Clock tab prior to a build or by using the CGC Interface at run-time.

SPI Framework Module Pin Configuration

The SPI peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following table illustrates the
method for selecting the pins within the SSP configuration window and the subsequent table
illustrates an example selection for the pins.

Note
For some peripherals, the operation-mode selection determines what peripheral signals are available and what
MCU pins are required.

Pin Selection Sequence for the SPI Framework Module

Resource ISDE Tab Pin selection Sequence

SCI Pins Select Peripherals>
Connectivity: SCI> SCI1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 495 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Configuring the SPI Framework Module

RSPI Pins Select Peripherals>
Connectivity: SPI> SPI0

Note
The selection sequences assume SCI1 and SPI0 are the desired hardware targets of the drivers.

Pin Configuration Settings for the SPI Framework Module

Pin Configuration Property Value Description

Operation Mode Disabled, Asynchronous UART,
Synchronous UART, Simple I2C,
Simple SPI, SmartCard

Default: Disabled

Select Simple SPI as the
Operation Mode for SPI on SCI.

CTS0_RTS0_SS0 None, P103, P413

Default: None

SS0 pin selection.

RXD0_SCL0_MISO0 None, P100, P410

Default: None

MISO0 pin selection.

SCK0 None, P102, P412

Default: None

SCK0 pin selection.

TXD1_SDA1_MOSI0 None, P213, P709

Default: None

MOSI0 pin selection.

Note
The example values are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

SPI Framework Module Additional Settings

If external chip selects are being used, configure the chip select pins as GPIO outputs.

4.1.24.6 Using the SPI Framework Module in an Application

A common application for the SPI framework module requires multiple slave devices on a single bus.
The implementation for this common application is described below. A second implementation shows
two buses each with two slave devices attached.

Implementation Steps for Two Slave Devices on a Single Shared Bus

When using the SPI framework module to create a single bus with multiple slave devices create two
thread stacks each with an SPI framework instance. These instances will use the same shared bus
instance. Follow the steps below to see how this is done within the SSP Configurator.

Note
The following steps assume some familiarity with the use of the SSP development environment. If any of the
following steps are confusing, read over the first few chapters of the SSP User's Manual to become familiar with
the SSP development environment.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 496 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Using the SPI Framework Module in an Application

Step 1: Add the first SPI framework device module to a new or existing thread. This creates the SPI
master stack. A shared bus on sf_spi is added along with the SPI driver. The SPI driver can be
selected for implementation on r_rspi or r_sci_spi. The DTC transfer driver is also added by default.
This can be removed if the CPU transfer mode is needed instead.

The resulting module stack is shown in the following figure. Example configuration settings are given
in the tables that follow the figure.

Figure 203: SPI Framework Module Stack 1

 Example configuration settings for the key first thread stack modules for Slave Device #1 are as
follows:

Configuration Settings for the SPI Framework Module on sf_spi

Property Value Description

Parameter Checking Disabled Enable or Disable Parameter
Checking.

Name g_sf_spi_device1 Give a name to identify the SPI
Framework device. API, Config
and Control instances will be
created based on this name.

Clock Phase Data sampling on odd edge Specify the clock phase for data
variation and data sampling

Clock Polarity Low when idle Select the clock polarity when
clock is idle.

Clock Select Port 01 Select GPIO port used for the
chip select.

Chip Select Pin 04 Select GPIO pin used for the
chip select.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 497 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Using the SPI Framework Module in an Application

Chip Select Active Level Low Select Polarity of the chip select
signal.

Configuration Settings for the SPI Framework Shared Bus on sf_spi

Property Value Description

Name g_sf_spi_bus0 Give a name to identify the SPI
Framework shared bus. This
shared bus will be shared by
multiple SPI Framework
Devices.

Configuration Settings for the SPI Driver on r_rspi

Property Value Description

Parameter Checking BSP Enable or Disable Parameter
Checking.

Name g_spi0 Give a name to identify the SPI
Driver device. This will be used
by Framework internally.

Channel 0 Channel number.

Operating Mode Master Operating mode selection.

Clock Phase Data sampling on odd edge/
data variation on edge

Clock phase selection. This field
will be locked as these is
already set in the SPI
Framework Device on sf_spi
module.

Clock Polarity Low when idle Clock polarity selection. This
field will be locked as these is
already set in the SPI
Framework Device on sf_spi
module.

Mode Fault Error Enable Mode fault error selection.

Bit Order MSB First Bit order selection.

Bitrate 500000 Bit rate selection.

Callback NULL Callback function name.

SPI Mode SPI Operation SPI mode selection.

SPI Communication Mode Full Duplex SPI communication mode
selection.

Slave Select Polarity (SSL0) Active Low Slave select polarity selection
0.

Slave Select Polarity (SSL1) Active Low Slave select polarity selection
1.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 498 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Using the SPI Framework Module in an Application

Slave Select Polarity (SSL2) Active Low Slave select polarity selection
2.

Slave Select Polarity (SSL3) Active Low Slave select polarity selection
3.

Select Loopback 1 Normal Loopback 1 selection.

Select Loopback 2 Normal Loopback 2 selection.

Enable MOSI Idle Disable Enable MOSI idle selection.

MOSI Idle State MOSI Low Enable MOSI idle state
selection.

Enable Parity Disable Enable parity selection.

Parity Mode Parity Odd Enable parity mode selection.

Select SSL (Slave Select) SSL0 Select SSL selection.

Select SSL Level After Transfer SSL Level Keep Select SSL level after transfer
selection.

Clock Delay Enable Disable Clock delay enable selection.

Clock Delay Count Clock Delay 1 RSPCK Clock delay count selection.

SSL Negation Delay Enable Disable SSL Negation Delay Enable
selection.

Negation Delay Count Clock Delay 1 RSPCK Negation Delay Count selection.

Next Access Delay Enable Disable Next Access Delay Enable
selection.

Next Access Delay Count Clock Delay 1 RSPCK Next Access Delay Count
selection.

Receive Interrupt Priority Priority 2 Receive interrupt priority
selection.

Transmit Interrupt Priority Priority 2 Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 2 Transmit end interrupt priority
selection.

Configuration Settings for the SPI Driver on r_sci_spi

Property Value Description

Parameter Checking BSP Enable or Disable Parameter
Checking.

Name g_spi0 Give a name to identify the SPI
Driver device. This will be used
by Framework internally.

Channel 0 Channel number.

Operating Mode Master Operating mode selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 499 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Using the SPI Framework Module in an Application

Clock Phase Data sampling on odd edge/
data variation on even edge

Clock phase selection. This field
will be locked as these is
already set in the SPI
Framework Device on sf_spi
module.

Clock Polarity Standard Clock polarity selection. This
field will be locked as these is
already set in the SPI
Framework Device on sf_spi
module.

Mode Fault Error Disable Mode fault error selection.

Bit Order MSB First Bit order selection.

Bitrate 500000 Bit rate selection.

Bit Rate Modulation Enable Enable Enables/Disable the bit rate
modulation.

Callback NULL Callback function name. This
field will be locked as callback
is handled internally in the
framework.

Receive Interrupt Priority Priority 2 Receive interrupt priority
selection.

Transmit Interrupt Priority Priority 2 Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 2 Transmit end interrupt priority
selection.

Error Interrupt Priority Priority 2 Error interrupt priority
selection.

Note
 DTC configuration settings are not shown as a simplification.

Step 2: Add the second SPI Framework Device to a different thread. The SPI Framework Shared Bus
on sf_spi is not added automatically. To add it, select the option to use the existing shared bus. The
configurator will then automatically add the SPI Framework Shared Bus on sf_spi and the remaining
modules. The lower level modules will automatically be configured to be consistent with the
previously defined settings from the first SPI framework instance. This ensures that the SPI driver
configurations are the same for both devices except for the Clock Phase, Clock Polarity, Chip Select
Pin and Port, and Chip Select Active Level properties, as these are defined under the SPI Framework
Device module and can be different for each slave device.

The resulting module stack is shown in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 500 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Using the SPI Framework Module in an Application

Figure 204: SPI Framework Module Stack 2

 The only differences in the configuration parameters for the second stack are the name for the
second SPI framework device module, and any differences in the non-shared slave settings (Clock
Phase, Clock Polarity, Clock Select Port, Chip Select Pin and Chip Select Active Level). Example
settings are shown in the following table:

Configuration Settings for the SPI Framework Device on sf_spi (Slave #2)

Property Value Description

Parameter Checking BSP Enable or Disable Parameter
Checking.

Name g_sf_spi_device2 Give a name to identify the SPI
Framework device. API, Config
and Control instances will be
created based on this name.

Clock Phase Data sampling on odd edge/
data variation on even edge

Specify the clock phase for data
variation and data sampling

Clock Polarity High when idle Select the clock polarity when
clock is idle.

Clock Select Port 05 Select GPIO port used for the
chip select.

Chip Select Pin 01 Select GPIO pin used for the
chip select.

Chip Select Active Level Low Select Polarity of the chip select
signal.

Implementation Steps for Two Slave Devices on Two Shared Buses

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 501 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Using the SPI Framework Module in an Application

When using the SPI framework module to create a single bus with multiple slave devices create two
thread stacks each with an SPI framework instance. These instances will use the same shared bus
instance. Follow the steps below to see how this is done within the SSP Configurator.

Note
The following steps assume some familiarity with the use of the SSP development environment. If any of the
following steps are confusing, read over the first few chapters of the SSP User's Manual to become familiar with
the SSP development environment.

Adding Another Shared Bus

To add another shared bus, just follow the below steps. The previous example is used as the starting
point.

Step 3: The SPI framework module which will use a second shared bus can be added to any thread.
Starting with the previous example, if it is added to the SPI_Device1 thread, then the module stack
would appear as shown below. Available options for the shared bus are New or Use.

Figure 205: SPI Framework Module Stack 3

 Step 4: Select New to and add another SPI Framework Shared Bus on sf_spi module. Configure the
shared bus properties as needed for the application. Select the desired low-level SPI driver. The
channel number for the g_spi1 SPI driver module, must be different from the channel number for the
g_spi0 SPI driver module. The resulting thread stack is shown below:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 502 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Using the SPI Framework Module in an Application

Figure 206: SPI Framework Module Stack 4

 Step 5: A second device can be added in the SPI_Device2 thread using the same steps described
above. The resulting thread stack is shown below:

Figure 207: SPI Framework Module Stack 5

 The typical steps in using the SPI Framework module in an application are:

1. Initialize the SPI Framework device module using the sf_spi_api_t::open API function. Each
SPI framework device module needs to call the spi_api_t::open API function at least once
before performing any operations on the bus.

2. Lock the bus for continuous transfer using the sf_spi_api_t::lock or sf_spi_api_t::lockWait API

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 503 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Using the SPI Framework Module in an Application

function for a particular SPI Framework device module. Once the bus is locked by a
particular SPI Framework device module, it cannot be used by any other SPI Framework
device module on the bus. This ensures that ownership of the bus remains with the locked
module until it explicitly unlocks it. Any kind of operation from other SPI Framework device
modules on the bus will return a fail status during this period. It is not mandatory to lock
the bus before any read/write operations on the bus. It is optional.

3. Read data using the sf_spi_api_t::read API function. The read operation will not be
successful if the bus is already locked by any other SPI Framework device module.

4. Write data using the sf_spi_api_t::write API function. The write operation will not be
successful if the bus is already locked by any other SPI Framework device module.

5. Write and read data simultaneously using the sf_spi_api_t::writeRead API function. The
simultaneous read and write operation will not be successful if the bus is already locked by
any other SPI Framework device module.

6. Unlock the bus from continuous transfer using the sf_spi_api_t::unlock API function if it is
already locked by the same device. Once the bus is unlocked, other SPI Framework device
modules can use it. It is necessary to unlock the locked bus after the intended read/write
operation is completed.

7. Close the SPI Framework device module using the sf_spi_api_t::close API function. Each SPI
Framework device module can call the sf_spi_api_t::close API function after all read/write
operations on the bus are over.

These common steps are illustrated in a typical operational flow in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 504 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > SPI Framework > Using the SPI Framework Module in an Application

Figure 208: Flow Diagram of a Typical SPI Framework Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 505 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Thread Monitor Framework

4.1.25 Thread Monitor Framework

4.1.25.1 Thread Monitor Framework Module Introduction

The Thread Monitor Framework provides a high-level API for system monitoring applications using
the watchdog timer (WDT) or independent watchdog timer (IWDT) to monitor program execution.
The Thread Monitor Framework uses the WDT or IWDT peripherals on the Synergy MCU device.

Thread Monitor Framework Module Features

The Thread Monitor Framework interface monitors RTOS threads using a watchdog timer.
The Thread Monitor forces a watchdog reset of the microcontroller when any of the
monitored threads do not behave as expected.
The Thread Monitor is designed to support any Synergy device with either a WDT or IWDT
peripheral and a HAL module with no changes to the API.
In profiling mode, the minimum and maximum counter values for registered threads can be
determined. When in profiling mode, the watchdog timer is always refreshed and does not
reset the device.
Both the WDT and IWDT HAL modules are supported by this framework module.

Figure 209: Thread Monitor Framework Module Block Diagram

4.1.25.2 Thread Monitor Framework Module APIs Overview

The Thread Monitor Framework defines APIs for opening and closing the framework and registering
and unregistering threads for monitoring. A complete list of the available APIs, an example API call
and a short description of each can be found in the following table. A table of return status values
follows the API summary table.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 506 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Thread Monitor Framework > Thread Monitor Framework Module APIs Overview

Thread Monitor Framework Module API Summary

Function Name Example API Call and Description

open g_sf_thread_monitor.p_api->open (g_sf_thread_
monitor.p_ctrl,g_sf_thread_monitor.p_cfg);
Configures the WDT or IWDT module. From the
configuration data, the timeout period of the
WDT/IWDT is determined. A thread created to
monitor registered threads.

close g_sf_thread_monitor.p_api->close
(g_sf_thread_monitor.p_ctrl);
Suspends the thread monitoring thread. The
watchdog peripheral no longer refreshes.

threadRegister g_sf_thread_monitor.p_api-> threadRegister
(g_sf_thread_monitor.p_ctrl,
&p_min_max_struct);
Registers a thread for monitoring.

threadUnregister g_sf_thread_monitor.p_api-> threadUnregister
(g_sf_thread_monitor.p_ctrl);
Removes a thread from monitoring.

countIncrement g_sf_thread_monitor.p_api-> countIncrement
(g_sf_thread_monitor.p_ctrl);
Safely increments a monitored thread's count
value.

versionGet g_sf_thread_monitor.p_api->
versionGet(&version);
Retrieves the API version and stores it in the
version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_ASSERTION Pointer is null.

SSP_ERR_IN_USE Thread monitor has already been opened.

SSP_ERR_INVALID_MODE Low-level watchdog peripheral returns an error
when opened.

SSP_ERR_UNSUPPORTED Data structure could not be allocated.

SSP_ERR_INVALID_ARGUMENT One or more configuration options is invalid for
the low‑level driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 507 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Thread Monitor Framework > Thread Monitor Framework Module APIs Overview

SSP_ERR_NOT_OPEN sf_thread_monitor_api_t::open has either not
been called or was not called successfully.

SSP_ERR_INSUFFICIENT_SPACE Not enough entries in the threads-to-be-
monitored array to add this thread. Increases
the value of THREAD_MONITOR_CFG_MAX_NUMB
ER_OF_THREADS in sf_thread_moinitor_cfg.h.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.25.3 Thread Monitor Framework Module Operational Overview

The Thread Monitor performs as follows: a thread registers a counter variable with the thread
monitor along with the minimum and maximum expected values for this counter variable. The
thread which is monitored increments the counter variable while it runs. At a period of half the
watchdog timeout period, the thread monitor checks the counter variables of registered threads. If
any fall outside of the minimum and maximum values, the watchdog timer is allowed to reset the
microcontroller. If all fall within their expected range, the watchdog timer is refreshed and the
counter variables are cleared to zero.

Thread Monitor Framework Module Important Operational Notes and Limitations

Thread Monitor Framework Module Operational Notes

The following figure shows a flowchart for the operation of the Thread Monitor Framework module.

Figure 210: Thread Monitor Framework Operation Diagram

 The following figure shows when the WDT/IWDT refreshes. Note that the valid refresh period is the
central 50% of the count period, 25% on either side of the 50% count value.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 508 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Thread Monitor Framework > Thread Monitor Framework Module Operational Overview

Figure 211: WDT/IWDT Refresh Operation

The IWDT has its own clock source to improve safety.
The WDT can be started from the application.
When the thread is not executing sleep mode, set the stop-control property of the WDT to
WDT Count Enabled in Low Power Mode. When the thread is not executing (asleep), the
ThreadX® executes a WFI instruction effectively putting the device into soft sleep, which
causes the WDT to stop counting.

Note
Do not open or refresh the WDT in a monitored thread file; it is done automatically by the Thread Monitor
Framework.

Internally, the Thread Monitor Framework runs at the rate of half of the watchdog timer reset period.
This rate ensures the Thread Monitor Framework runs at 50% of the watchdog count value-well
within the valid refresh window. The Thread Monitor calculates the reset period internally by
querying the lower-level watchdog driver.

Thread Monitor Framework Profiling Calculation

The thread monitor framework provides a method to keep track of the number of times a thread is
registered. Any of the threads registered with the thread monitor framework need to call the
sf_thread_monitor_api_t::countIncrement API to update a counter which is an indication of the
number of times a specified thread was executed. A thread, which is part of the thread monitor
framework would run at a predefined time interval and keeps the count value of the thread
registered for monitoring. The monitor task will analyze count values taken over each interval and
keeps track of the minimum and maximum counts obtained for each of the threads.

For example, consider a WDT configured with a time-out cycle of 16384 and clock division ratio of
8192. Assuming a PCLK of 60 MHz and time for a system tick to be 10 ms, the total number of ticks
for WDT time out would be 223. Considering 50% of WDT time out, the thread monitor task would
run at every 111 ticks to keep track of the threads registered for monitoring.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 509 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Thread Monitor Framework > Thread Monitor Framework Module Operational Overview

In a scenario where a simple thread executing a continuous loop with a sleep of 2 ticks in between
each iteration, the max count value would be 56 (that is, 111/2).

When the thread monitor is run for the first time, it waits a full WDT time-out period of 111 counts
(223 ticks) before activating the framework. This feature ensures proper working of WDT. In addition,
whenever a new thread is registered, the max/min count value will not update unless the registered
thread is activated from the thread monitor. This results in an additional delay of 56 counts (111
ticks).

Note
For the very first task registered with the thread monitor, a total delay of 111 + 56 counts would be introduced
after which the Min/Max count is updated. The profiling calculation remains same for both WDT and IWDT clock
sources except for the refresh time-out period.

Thread Monitor Framework Module Limitations

The Thread Monitor Framework has a sf_thread_monitor_api_t::close API call. When WDT
and IWDT are being used, it is not possible to stop them. If the Thread Monitor Framework is
closed, some other provision for refreshing the watchdog must be made or the device
resets.
The Thread Monitor Framework has a sf_thread_monitor_api_t::threadUnregister API call
which removes the calling thread from being monitored. The API would return
SSP_SUCCESS for any thread that is not registered with the sf_thread_monitor framework
and also for threads which were already unregistered.
Debugging mode-support is required when running with a J-Link on some devices;
WDT/IWDT does not count when using J-Link debugging hardware. The Thread Monitor
Framework thread typically synchronizes to the WDT/IWDT counter, but skips this
synchronization step when it is running with J-Link.
Assign a high priority (low number in ThreadX) to the Thread Monitor Framework thread;
any delays in running the Thread Monitor Framework could refresh the watchdog outside of
the valid refresh window, causing the microcontroller to reset. The Thread Monitor
Framework thread does not run for long and does not impact the performance of the
system.
Refer to the latest SSP Release Notes for any additional operational limitations for this
module.

4.1.25.4 Including the Thread Monitor Framework Module in an Application

This section describes how to include the Thread Monitor Framework Module in an application using
the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Thread Monitor Framework to an application, simply add it to a thread using the stacks
selection sequence given in the following table. (The default name for the Thread Monitor Framework
is g_sf_thread_monitor. This name can be changed in the associated Properties window.)

Thread Monitor Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 510 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Thread Monitor Framework > Including the Thread Monitor Framework Module in an Application

g_thread_monitor0 Thread
Monitor Framework

Threads New Stack> Framework>
Services> Thread Monitor
Framework on
sf_thread_monitor

When the Thread Monitor Framework on sf_thread_monitor is added to the thread stack as shown in
the following figure, the configurator automatically adds any needed lower‑level modules. Any
modules needing additional configuration information have the box text highlighted in Red. Modules
with a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 212: Thread Monitor Framework Module Stack

4.1.25.5 Configuring the Thread Monitor Framework Module

The Thread Monitor Framework Module must be configured by the user for the desired operation.
The available configuration settings and defaults for all the user-accessible properties are given in
the properties tab within the SSP configurator and are shown in the following tables for easy
reference. Only properties that can be changed without causing conflicts are available for
modification. Other properties are locked and not available for changes and are identified with a lock
icon for the locked property in the Properties window in the ISDE. This approach simplifies the
configuration process and makes it much less error-prone than previous manual approaches to
configuration. The available configuration settings and defaults for all the user-accessible properties
are given in the Properties tab within the SSP Configurator and are shown in the following tables for
easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Thread Monitor Framework Module on sf_thread_monitor

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 511 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Thread Monitor Framework > Configuring the Thread Monitor Framework Module

Parameter Checking Enabled, Disabled, BSP

Default: BSP

Controls whether to include
code for API parameter
checking.

Maximum Number of Monitored
Threads

5 Maximum number of threads
that can be monitored.

Name g_sf_thread_monitor0 The name of the Thread
Monitor instance.

Profiling Mode Enabled, Disabled,

Default: Disabled

Whether profiling mode should
be enabled.

Thread Monitor Thread Priority 1 Priority of thread monitor
internal thread.

Name of generated initialization
function

sf_thread_monitor_init0 Name of generated initialization
function.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Thread Monitor Framework Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module.

Configuration Settings for the Independent Watchdog Timer on r_iwdt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_wdt0 Module name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 512 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Thread Monitor Framework > Configuring the Thread Monitor Framework Module

NMI Callback NULL Callback. A user callback
function can be registered in
external_irq_api_t::open. If this
callback function is provided, it
will be called from the interrupt
service routine (ISR) each time
the IRQn triggers.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Watchdog Timer on r_wdt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_wdt0 Module Name.

Start Mode Register, Auto

Default: Register

Configures the start mode as
register start or auto-start.

Start Watchdog After
Configuration

True, False

Default: True

Controls whether WDT is
started during initialization.

Timeout 1024 cycles, 4096 cycles, 8192
cycles, 16384 cycles

Default: 16384 cycles

WDT timeout period.

Clock Division Ratio PCLK/4, PCLK/64, PCLK/128,
PCLK/512, PCLK/2048,
PCLK/8192

Default: PCLK/8192

WDT clock divider.

Window Start Position 100% (Window Position Not
Specified), 75%, 50%, 25%

Default: 100% (Window Position
Not Specified)

Permitted refresh period start
postion.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 513 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Thread Monitor Framework > Configuring the Thread Monitor Framework Module

Window End Position 0% (Window Position Not
Specified), 25%, 50%, 75%

Default: 0% (Window Position
Not Specified)

Permitted refresh period end
postion.

Reset Control Reset Outpout, NMI Generated

Default: Reset Output

Select whether WDT should
reset the MCU or generate an
NMI.

Stop Control WDT Count Enabled in Low
Power Mode, WDT Count
Disabled in Low Power Mode

Default: WDT Count Disabled in
Low Power Mode

Select whether the WDT should
stop counting in low power
modes.

NMI Callback NULL Callback. A user callback
function can be registered in
open. If this callback function is
provided, it will be called from
the interrupt service routine
(ISR) each time the IRQn
triggers.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Thread Monitor Framework Module Clock Configuration

Use the ISDE to configure the WDT clock using the Clocks tab.

The WDT is initially based on the PCLKB frequency. Set the PCLKB frequency in the ISDE using the
clock configurator or the CGC Interface at run-time.

With the PCLKB running at 60 MHz, the WDT maximum timeout period is approximately 2.24
seconds.

The IWDT clock runs at 15 kHz resulting in a maximum possible timeout period of just under 35
seconds.

Thread Monitor Framework Module Pin Configuration

The Thread Monitor Framework does not require any pins for its operation.

Threads for the Thread Monitor Framework Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 514 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Thread Monitor Framework > Configuring the Thread Monitor Framework Module

Any thread monitored by the Thread Monitor Framework must be instrumented to work with the
monitoring module. When a thread to be monitored is registered with the Thread Monitor, the
expected minimum and maximum count values are passed via a pointer to a structure of type
sf_thread_monitor_counter_min_max_tcontaining the values.

The thread's counter and minimum and maximum values must be registered with the Thread
Monitor Framework by calling g_sf_thread_monitor.p_api->threadRegister().

Each time round the monitored thread's loop, the counter value should be updated by calling
g_sf_thread_monitor.p_api->countIncrement().

Other Thread Monitor Framework Module Settings

The Thread Monitor Framework does not use any interrupts; the WDT/IWDT must be configured to
generate a reset.

4.1.25.6 Using the Thread Monitor Framework Module in an Application

The steps in using the Thread Monitor Framework module on sf_thread_monitor in a typical
application are:

1. Initialize the Thread Monitor using the sf_thread_monitor_api_t::open API.
2. Register thread that needs to be monitored with the

sf_thread_monitor_api_t::threadRegister API.
3. Use the sf_thread_monitor_api_t::countIncrement API to increment the count every time the

registered thread is executed.
4. Unregister the thread with the sf_thread_monitor_api_t::threadUnregister API when there is

no longer a need to monitor the registered thread.
5. Close the Thread Monitor with the sf_thread_monitor_api_t::close API (only if the Thread

Monitor is no longer required in an application).

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 515 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Thread Monitor Framework > Using the Thread Monitor Framework Module in an Application

Figure 213: Flow Diagram of a Typical Thread Monitor Framework Module Application

4.1.26 Touch Panel V2 Framework

4.1.26.1 Touch Panel V2 Framework Introduction

The Touch Panel V2 Framework module provides a high-level API for obtaining touch data on
coordinates and events from the touch controller. The Touch Panel V2 Framework module uses the
touch chip driver SSP Supplement module for communication with the touch panel.

Touch Panel V2 Framework Module Features

Provides position data (X and Y coordinates).
Provides rotation of touch coordinates.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 516 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Touch Panel V2 Framework Introduction

Provides the touch event type (down, up, move, hold, or invalid).
A callback can be registered or an API function can be used to get touch data.
Supports calibration of the touch panel for key elements: scalar, rotation and mechanical
shifts.
Provides a common API interface to touch chip drivers.
Supports an adjustable update frequency.

Figure 214: Touch Panel V2 Framework Module Block Diagram

4.1.26.2 Touch Panel V2 Framework Module APIs Overview

The Touch Panel V2 Framework module defines API functions such as opening, calibrating, starting,
stopping or closing. A complete list of the available APIs, an example API call and a short description
of each can be found in the following table. A table of status return values follows the API summary
table.

Touch Panel V2 Framework Module API Summary

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 517 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Touch Panel V2 Framework Module APIs Overview

Function Name Example API Call and Description

open g_sf_touch_panel_v2_0.p_api->open(g_sf_touch_
panel_v2_0.p_ctrl, g_sf_touch_panel_v2_0.p_cfg);
Create required RTOS objects, call a lower level
module for hardware specific initialization and
create a thread to post touch data to a user
application.

calibrate g_sf_touch_panel_v2_0.p_api->calibrate(g_sf_tou
ch_panel_v2_0.p_ctrl, p_display, p_touchscreen,
timeout);
Begin calibration routine based on provided
expected and actual coordinates.

start g_sf_touch_panel_v2_0.p_api->start(g_sf_touch_
panel_v2_0.p_ctrl);
Start scanning for touch events.

stop g_sf_touch_panel_v2_0.p_api->stop
(g_sf_touch_panel_v2_0.p_ctrl);
Stop scanning for touch events.

touchDataGet g_sf_touch_panel_v2_0.p_api->touchDataGet
(g_sf_touch_panel_v2_0.p_ctrl, p_payload,
timeout);
Reads the touch data and fills in the touch
payload data.

reset g_sf_touch_panel_v2_0.p_api->reset(g_sf_touch_
panel_v2_0.p_ctrl);
Resets touch controller if reset pin is provided.

close g_sf_touch_panel_v2_0.p_api->close(g_sf_touch_
panel_v2_0.p_ctrl);
Terminates touch thread and closes channel at
HAL layer.

versionGet g_sf_touch_panel_v2_0.p_api->versionGet(g_sf_t
ouch_panel_v2_0.p_version);
Retrieves API version and stores it in the version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API call successful.

SSP_ERR_ASSERTION A pointer parameter was NULL, or a lower level
driver reported this error.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 518 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Touch Panel V2 Framework Module APIs Overview

SSP_ERR_INTERNAL The touch panel thread or event flags could not
be created, or a lower level driver reported this
error.

SSP_ERR_CALIBRATE_FAILED Actual touch value was not in expected range.

SSP_ERR_NOT_OPEN Touch panel is not configured. Call
SF_TOUCH_PANEL_V2_Open.

SSP_ERR_IN_USE Mutex was not available, or a lower level driver
reported this error.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status-return values.

4.1.26.3 Touch Panel V2 Framework Module Operational Overview

The Touch Panel V2 Framework module scans data from a touch controller and invokes the user
registered callback. If user callback is not registered the sf_touch_panel_v2_api_t::touchDataGet API
function can be used to retrieve the data. The touch data contains touch coordinates (X and Y
coordinates) and the touch event type (down, up, move, hold, or invalid). The Touch Panel V2
Framework uses an internal thread to read the touch controller.

Touch Panel V2 Framework Module Important Operational Notes and Limitations

Touch Panel V2 Framework Module Operational Notes

The key operational elements of the Touch Panel V2 Framework are described below:

Auto Initialization and Auto Start

The "Auto Initialization" property in the Synergy configurator window must be enabled to
automatically initialize the framework. The "Auto start" property in the configurator window must be
enabled to automatically receive touch data from the touch chip.

User Callback

The user callback must be registered to obtain touch data. If the user callback is registered then the
framework will invoke the callback when touch events occur.

API to Get the Touch Data

The sf_touch_panel_v2_api_t::touchDataGet API function can be used to obtain touch data. This
function will wait until new touch event data is available or it will timeout (based on the timeout
argument passed to the API).

Update Frequency

The application will be notified with repeated touch events (like touch event down and touch event
hold and touch event invalid) at the specified update frequency (Update Hz) configured in the
Synergy configurator property window.

Note
The touch event UP and touch event DOWN will be notified regardless of the update frequency.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 519 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Touch Panel V2 Framework Module Operational Overview

For example,

If the "Update Hz" property is set to 10 Hz, then only 10 repeated touch events will be notified to the
application in a second.

Calibration

The touch panel V2 framework supports calibration of touch data to overcome the issues in the
touch panel like: Scalar, rotation and Mechanical shifts.

To obtain the calibrated data the user needs to call the sf_touch_panel_v2_api_t::calibrate API
function and pass 3 sets of expected coordinates and the obtained coordinated.

Note
The framework must be initialized before calling sf_touch_panel_v2_api_t::calibrate API.

For ex ample:

Consider a scenario where a touch panel with resolution 480 x 272 is being used. The touch panel is
touched at upper left, upper right and lower right and the obtained coordinates (x, y) when touched
at these touch panel locations and their expected coordinates are as illustrated below:

 Table 3 Touch Panel Coordinates

Location on Touch Panel Expected Coordinates Obtained Coordinates

Upper left corner (0, 0) (17, 20)

Upper right corner (480, 0) (464, 17)

Lower right corner (480, 272) (463, 258)

These 3 sets of values (expected and obtained coordinates) are passed into the calibrate function in
the expected format. Once the sf_touch_panel_v2_api_t::calibrate API function is called, the required
calibration factors are calculated and stored in the control structure. The touch data now obtained
will be calibrated.

Note
Once the sf_touch_panel_v2_api_t::close API function is called the stored calibration factors are erased and the
calibrate API must be called again to obtain the calibrated touch data.

Create a Custom Touch Panel Chip Driver

To create your custom Touch Chip Driver, refer to the existing touch chip driver code in SSP which is
located at synergy/ ssp_supplemental / touch_drivers .

Note
This directory will only be visible if any existing touch chip driver touch_panel_chip_ft5x06 or
touch_panel_chip_sx8654 is selected in the Synergy configurator . To do this go to the Synergy configurator and
select New > Framework > Input > Touch Panel V2 Framework on sf_touch_panel_v2 > Add Touch Driver.
Select any existing touch driver for reference and generate project content .
Refer to the SSP Module Development Guide document to learn more about creating a custom driver. The
document can be found using this
link: https://www.renesas.com/us/en/document/apn/ssp-module-development-guide-application-note.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 520 / 5,198

https://www.renesas.com/us/en/document/apn/ssp-module-development-guide-application-note

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Touch Panel V2 Framework Module Operational Overview

The following instructions can be used to connect a custom touch chip driver to the Touch Panel V2
Framework:

Implement Touch Chip Driver Instance (synergy/ssp_supplemental/inc/framework/instances)
and source file (synergy/ssp_supplemental/touch_drivers).
Make sure the chip specific settings are configured based on the touch screen used and the
applications use case.
Implement the payloadGet function to obtain touch events and touch coordinates from the
Touch Panel Controller.
Implement a reset function reset to reset the touch chip.
If the touch chip is using communication protocol other than I2C or if it doesn't support
external IRQ then modify the open, payloadGet, reset and close functions. Also the touch
chip driver Configuration XML (located under .module_descriptions folder) must be
modified.

Configure the Custom Touch Panel Chip Driver

To configure a custom touch chip driver to a project, follow the steps below:

Step 1. Create a Synergy C project.

Step 2. Update existing touch driver XML for the custom touch driver by following these steps.
Modify any existing touch XML as described below:

Go to the .module_descriptions folder under the project root folder.
Edit touch chip driver XML:

Renesas##HAL Drivers##touch
panel##touch_panel_chip_ft5x06####<version>.xml Or
Renesas##HAL Drivers##touch
panel##touch_panel_chip_sx8654####<version>.xml

Change name of the instance structure with name of custom driver instance structure. For
example "g_touch_panel_chip_xxxxx"
Add the new instance declaration and api declaration in <header> tab. For example,

 <header>

 extern const sf_touch_panel_chip_instance_t g_touch_panel_chip_xxxxx;

 extern const sf_touch_panel_chip_api_t g_sf_touch_panel_chip_xxxxx;

 </header>

Rename all touch chip number in the XML with custom touch chip number.
If communication protocol other than I2C is used then change the interface and id under
the <requires> tag. For example,

 <requires>

 id="module.external.ex_touch_panel_chip_ft5x06.requires.spi " interface="

interface.framework . sf_spi_v2_on_sf_spi " display="Add framework"

 </requires >

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 521 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Touch Panel V2 Framework Module Operational Overview

Save and close the XML file

Step 3. Open project configurator and add Touch panel V2 framework, by selecting New >
Framework > Input > Touch Panel V2 Framework on sf_touch_panel_v2 (If the configurator
was already opened, close and open it again).

Step 4. Configure all components.

Step 5. Add the custom touch panel chip driver to the "Add Touch Driver" box. (The custom touch
driver open will be visible if XML is modified correctly).

Step 6. Generate Project Content and add new directory (for example, touch_panel_chip_xxxxxx)
structure under synergy/ ssp_supplemental/ touch_drivers, the directory structure will look like this:
synergy/ ssp_supplemental/ touch_drivers/ touch_panel_chip_xxxxxx (replace xxxxxx with touch
controller part no).

Step 7. Add the custom driver code into this directory (ssp_supplemental/ touch_drivers/
touch_panel_chip_xxxxxx).

Step 8. Exclude existing driver from build if any (right-click the .c file > Exclude from build... >
Select all > OK).

Step 9. Build the code.

Touch Panel V2 Framework Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.26.4 Including the Touch Panel V2 Framework Module in an Application

This section describes how to include the Touch Panel V2 Framework module in an application using
the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Touch Panel V2 Framework module to an application, simply add it to a HAL /Common
thread using the stacks selection sequence given in the following table. (The default name for the
Touch Panel V2 Framework module is g_sf_touch_panel_v2_0. This name can be changed in the
associated Properties window.)

Touch Panel V2 Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_touch_panel_v2_0 Touch
Panel V2 Framework on
sf_touch_panel_v2

Threads New Stack> Framework>
Input> Touch Panel V2
Framework on
sf_touch_panel_v2

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 522 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Including the Touch Panel V2 Framework Module in an Application

When the Touch Panel V2 Framework module on sf_touch_panel_v2 is added to the thread stack as
shown in the following figure, the configurator automatically adds any needed lower‑level modules.
Any modules needing additional configuration information have the box text highlighted in Red.
Modules with a Gray band are individual modules that stand alone. Modules with a Blue band are
shared or common; they need only be added once and can be used by multiple stacks. Modules with
a Pink band can require the selection of lower-level modules; these are either optional or
recommended. (This is indicated in the block with the inclusion of this text.) If the addition of lower-
level modules is required, the module description include Add in the text. Clicking on any Pink
banded modules brings up the New icon and displays possible choices.

Figure 215: Touch Panel V2 Framework Module Stack

4.1.26.5 Configuring the Touch Panel V2 Framework Module

The Touch Panel V2 Framework module must be configured by the user for the desired operation.
The SSP configuration window will automatically identify (by highlighting the block in red) any
required configuration selections, such as interrupts or operating modes, which must be configured
for lower-level modules in order to ensure successful operation. Furthermore, only those properties
that can be changed without causing conflicts are available for modification. Other properties are
'locked' and are not available for changes, and are identified with a lock icon for the 'locked' property
in the Properties window in the ISDE. This approach simplifies the configuration process and makes it

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 523 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Configuring the Touch Panel V2 Framework Module

much less error-prone than previous 'manual' approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP configurator, and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

Configuration Settings for the Touch Panel V2 Framework Module on sf_touch_panel_v2

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Thread Stack Size 512 Specify the touch panel thread
stack size.

Name g_sf_touch_panel_v2_0 Module name.

Thread Priority 3 Specify the thread priority.

Update Hz 10 Specify the update rate in
Hertz.

Touch Coordinate Rotation
Angle (Clockwise)

0, 90 (Select this if 'Screen
Rotation Angle' is 'CW' or '90'),
180 (Select this if 'Screen
Rotation Angle' is FLIP or '180'),
270 (Select this if 'Screen
Rotation Angle' is 'CCW' or
'270')

Default: 0

Select the touch coordinate
rotation angle.

Name of generated initialization
function

sf_touch_panel_v2_init0 Specify the name of the
generated initialization
function.

Auto Initialization Enable, Disable

Default: Enable

Select if sf_touch_panel_v2 will
be initialized during startup.

Auto Start Enable, Disable

Default: Enable

Enabling this will start to get
the touch data.

Name of touch panel callback
function to be defined by user

NULL Touch panel callback function
name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults can be desirable. The configurable properties for the
lower-level stack modules are given in the following sections for completeness and as a reference.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 524 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Configuring the Touch Panel V2 Framework Module

Note
Most of the property settings for lower level modules are fairly intuitive and can usually be determined by
inspection of the associated Properties window from the SSP configurator.

Configuring the Touch Panel V2 Framework Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower-level drivers
as indicated with red text in the thread stack block. Notice that some of the configuration properties
must be set to a certain value for proper framework operation and will be locked to prevent user
modification. The following tables identify all the settings within the properties section for the lower-
level modules:

Configuration Settings for the Touch Panel Chip sx8654

ISDE Property Value Description

Name g_touch_panel_chip_sx8654_0 Module name.

Horizontal pixel count 480 Specify the number of
horizontal pins.

Vertical pixel count 272 Specify the number of vertical
pixels.

Reset Port 00:11

Default: 07

Select the chip reset port.

Reset Pin 00:15

Default: 11

Select the chip reset pin.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Touch Panel Chip ft5x06

ISDE Property Value Description

Name g_touch_panel_chip_ft5x06 Module name.

Horizontal pixel count 800 Specify the number of
horizontal pins.

Vertical pixel count 480 Specify the number of vertical
pixels.

Reset Port 00:11

Default: 10

Select the chip reset port.

Reset Pin 00:15

Default: 02

Select the chip reset pin.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 525 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Configuring the Touch Panel V2 Framework Module

The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the I2C Framework Device on sf_i2c

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: Enabled

Selects if code for parameter
checking is to be included in
the build.

Name g_sf_i2c_device0 Give a name to identify the I2C
Framework device. API, Config
and Control instances will be
created based on this name.

Slave Address 0x00 Specify the address of the I2C
slave device.

Address Mode 7-Bit, 10-Bit

Default: 7-Bit

Select the I2C address mode.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the I2C Shared Bus on sf_i2c

ISDE Property Value Description

Name g_sf_i2c_bus0 Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the I2C Master Driver on r_riic

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Name g_i2c0 Module name.

Channel 0 Specify the IIC channel to be
used with this configuration.

Rate Standard, Fast-mode, Fast-
mode Plus

Default: Standard

Standard, Fast, and Fast-plus.
(See IIC Rate Calculation.)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 526 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Configuring the Touch Panel V2 Framework Module

Slave Address 0x00 Set the address of the slave
device the I2C master will be
communicating with.

Address Mode 7-Bit, 10-Bit

Default: 7-Bit

Only 7-bit addresses are
currently supported.

Timeout Mode Short Mode, Long Mode

Default: Short Mode

Select the timeout mode.

Callback NULL A user callback function can be
registered in
i2c_api_master_t::open. If this
callback function is provided, it
will be called from the interrupt
service routine (ISR) for each of
the conditions defined in
i2c_event_t.

Warning: Since the callback is
called from an ISR, do not use
blocking calls or lengthy
processing. Spending excessive
time in an ISR can affect the
responsiveness of the system.

Receive Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX),

Default: Priority 12

Select the receive interrupt
priority.

Transmit Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX),

Default: Priority 12

Select the transmit interrupt
priority.

Transmit End Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX),

Default: Priority 12

Select the transmit end
interrupt priority.

Error Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX),

Default: Priority 12

Select the error interrupt
priority.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event IIC0 TXI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 527 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Configuring the Touch Panel V2 Framework Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Software Start Enabled, Disabled

Default: Disabled

Include code for software start
in the build.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Section to place the DTC vector
table.

Name g_transfer0 Module name.

Mode Normal Specify the hardware channel.

Transfer Size 1 Byte Select the transfer mode.

Destination Address Mode Fixed Select the transfer size.

Source Address Mode Incremented Select the address mode for the
destination.

Repeat Area (Unused in Normal
Mode)

Source Select the address mode for the
source.

Interrupt Frequency After all transfers have
completed

Select the repeat area. Either
the source or destination
address resets to its initial
value after completing Number
of Transfers in Repeat or Block
mode.

Destination Pointer NULL Specify the transfer destination
pointer.

Source Pointer NULL Specify the transfer source
pointer.

Number of Transfers 0 Specify the number of
transfers.

Number of Blocks (Valid only in
Block Mode)

0 Specify the number of blocks to
transfer in Repeat or Block
mode.

Activation Source (Must enable
IRQ)

Event IIC0 TXI Select the DTC transfer start
event.

Auto Enable False Auto enable the transfer in
open().

Callback (Only valid with
Software start)

NULL A user callback that is called at
the end of the transfer.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

Select the transfer end
interrupt priority.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 528 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Configuring the Touch Panel V2 Framework Module

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event IIC0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Software Start Enabled, Disabled

Default: Disabled

Include code for software start
in the build.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Section to place the DTC vector
table.

Name g_transfer1 Module name.

Mode Normal Specify the hardware channel.

Transfer Size 1 Byte Select the transfer mode.

Destination Address Mode Incremented Select the transfer size.

Source Address Mode Fixed Select the address mode for the
destination.

Repeat Area (Unused in Normal
Mode

Destination Select the address mode for the
source.

Interrupt Frequency After all transfers have
completed

Select the repeat area. Either
the source or destination
address resets to its initial
value after completing Number
of Transfers in Repeat or Block
mode.

Destination Pointer NULL Specify the transfer destination
pointer.

Source Pointer NULL Specify the transfer source
pointer.

Number of Transfers 0 Specify the number of
transfers.

Number of Blocks (Valid only in
Block Mode)

0 Specify the number of blocks to
transfer in Repeat or Block
mode.

Activation Source (Must enable
IRQ)

Event IIC0 RXI Select the DTC transfer start
event.

Auto Enable False Auto enable the transfer in
open().

Callback (Only valid with
Software start)

NULL A user callback that is called at
the end of the transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 529 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Configuring the Touch Panel V2 Framework Module

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

Select the transfer end
interrupt priority.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the I2C Master Driver on r_sci_i2c

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Name g_i2c0 Module name.

Channel 0 to 9 Specify the SCI channel to be
used with this configuration. SCI
has channels as follows: Series
S7: 0 1 2 3 4 5 6 7 8 9; Series
S3 : 0 1 2 3 4 - - - - 9; Series S1
: 0 1 - - - - - - - 9.

Rate Standard, Fast-mode, Fast-
mode plus

Default: Standard

Select the I2C data rate.

Slave Address 0x00 Specify the slave address.

Address Mode 7-Bit, 10-Bit

Default: 7-Bit

Only 7-bit addresses are
currently supported.

SDA Output Delay (nano
seconds)

300 SDA output delay in
nanoseconds.

Bit Rate Modulation Enable Enable, Disable

Default: Enable

Enables bitrate modulation
function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 530 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Configuring the Touch Panel V2 Framework Module

Callback NULL A user callback function can be
registered in
i2c_api_master_t::open. If this
callback function is provided, it
will be called from the interrupt
service routine (ISR) for each of
the conditions defined in
i2c_event_t.

Warning: Since the callback is
called from an ISR, do not use
blocking calls or lengthy
processing. Spending excessive
time in an ISR can affect the
responsiveness of the system.

Receive Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Select the receive interrupt
priority.

Transmit Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Select the transmit interrupt
priority.

Transmit End Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Select the transmit end
interrupt priority.

Error Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Select the error interrupt
priority.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 TXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Software Start Enabled, Disabled

Default: Disabled

Include code for software start
in the build.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 531 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Configuring the Touch Panel V2 Framework Module

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Section to place the DTC vector
table.

Name g_transfer0 Module name.

Mode Block Specify the hardware channel.

Transfer Size 1 Byte Select the transfer mode.

Destination Address Mode Fixed Select the transfer size.

Source Address Mode Incremented Select the address mode for the
destination.

Repeat Area (Unused in Normal
Mode

Source Select the address mode for the
source.

Interrupt Frequency After all transfers have
completed

Select the repeat area. Either
the source or destination
address resets to its initial
value after completing Number
of Transfers in Repeat or Block
mode.

Destination Pointer NULL Specify the transfer destination
pointer.

Source Pointer NULL Specify the transfer source
pointer.

Number of Transfers 0 Specify the number of
transfers.

Number of Blocks (Valid only in
Block Mode)

0 Specify the number of blocks to
transfer in Repeat or Block
mode.

Activation Source (Must enable
IRQ)

Event SCI0 TXI Select the DTC transfer start
event.

Auto Enable False Auto enable the transfer in
open().

Callback (Only valid with
Software start)

NULL A user callback that is called at
the end of the transfer.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the transfer end
interrupt priority.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 RXI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 532 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Configuring the Touch Panel V2 Framework Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Software Start Enabled, Disabled

Default: Disabled

Include code for software start
in the build.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Section to place the DTC vector
table.

Name g_transfer1 Module name.

Mode Normal Specify the hardware channel.

Transfer Size 1 Byte Select the transfer mode.

Destination Address Mode Incremented Select the transfer size.

Source Address Mode Fixed Select the address mode for the
destination.

Repeat Area (Unused in Normal
Mode

Destination Select the address mode for the
source.

Interrupt Frequency After all transfers have
completed

Select the repeat area. Either
the source or destination
address resets to its initial
value after completing Number
of Transfers in Repeat or Block
mode.

Destination Pointer NULL Specify the transfer destination
pointer.

Source Pointer NULL Specify the transfer source
pointer.

Number of Transfers 0 Specify the number of
transfers.

Number of Blocks (Valid only in
Block Mode)

0 Specify the number of blocks to
transfer in Repeat or Block
mode.

Activation Source (Must enable
IRQ)

Event SCI0 RXI Select the DTC transfer start
event.

Auto Enable False Auto enable the transfer in
open().

Callback (Only valid with
Software start)

NULL A user callback that is called at
the end of the transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 533 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Configuring the Touch Panel V2 Framework Module

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the transfer end
interrupt priority.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the External IRQ Framework on sf_external_irq

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Controls whether to include
code for API parameter
checking.

Name g_sf_external_irq0 Framework name.

Event None, Semaphore Put

Default: Semaphore Put

Event selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the External IRQ Driver on r_icu

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter checking setting
enables or disables the addition
of parameter checking code.

Name g_external_irq0 Module name.

Channel 0 Specifies the hardware IRQ
channel used.

Trigger Falling, Rising, Both Edges, Low
Level

Default: Rising

Configures edge or level
triggering.

Digital Filtering Enabled, Disabled

Default: Disabled

Digital filter enable/disable.

Digital Filtering Sample Clock
(Only valid when Digital
Filtering is Enabled)

PCLK/1, PLCK/8, PLCK/32,
PCLK/64

Default: PCKL/64

Sets noise filter sampling
period.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 534 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Configuring the Touch Panel V2 Framework Module

Interrupt enabled after
initialization

True, False

Default: True

Determines if the interrupt is
enabled immediately after
initialization.

Callback NULL A user callback function can be
registered in
external_irq_api_t::open. If this
callback function is provided, it
is called from the interrupt
service routine (ISR) each time
the IRQn triggers.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Pin Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Priority 2

An Interrupt priority can be
registered in
external_irq_cfg_t::irq_ipl.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Touch Panel V2 Framework Module Clock Configuration

An example implementation of the I2C interface uses the SCI peripheral and is described here. Other
implementation choices might have different selections and can be inferred from the following
example. The SCI peripheral module uses the PCLKB as its clock source. The PCLKB frequency is set
by using the SSP configurator Clock tab prior to a build, or by using the CGC Interface at run-time.
During configuration, the I2C transfer rate is calculated and set internally by the driver based on the
user selected PCLB rate and the user selected transfer rate. If the PCLKB is configured in such a
manner that the user selected rate cannot be achieved, an error will be returned when initializing the
driver.

Touch Panel V2 Framework Module Pin Configuration

An example implementation of the I2C interface uses the SCI peripheral and is described here. Other
implementation choices might have different selections, but can be inferred from the below
example. Synergy Kit specific settings for pins are shown in the following section. The SCI peripheral
module uses pins on the MCU to communicate to external devices. I/O pins must be selected and
configured as required by the external device. The following table illustrates the method for selecting
the pins within the SSP configuration window and the subsequent table illustrates an example
selection for the I2C pins:

Pin Selection Sequence for the Touch Panel V2 Framework Module

Resource ISDE Tab Pin selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 535 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Configuring the Touch Panel V2 Framework Module

SCI0 Pins Select Peripherals>
Connectivity:SCI> SCI0

Note
The selection sequence assumes the SCI0 is the desired hardware target of the driver.

Pin Configuration Settings for the DAC Driver on r_dac

Pin Configuration Property Value Description

Operation Mode Disabled, Asynchronous UART,
Synchronous UART, Simple I2C,
Simple SPI, SmartCard

Default: Disabled

Simple I2C

Select Simple I2C as the
Operation Mode for SPI on SCI.

RXD1_SCL1_MISO1 None, P212, P708

Default: None

SCL pin.

TXD1_SDA1_MOSI1 None, P213, P709

Default: None

SDA pin.

Note
The example values are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

4.1.26.6 Using the Touch Panel V2 Framework Module in an Application

The typical steps in using the Touch Panel V2 Framework module in an application are:

1. Register a user callback in application code to receive touch data (if needed).
2. Initialize the touch panel V2 framework module using the sf_touch_panel_v2_api_t::open API

function (done automatically within SSP if "auto initialization" property is enabled).
3. Calibration of touch data can be done by using the sf_touch_panel_v2_api_t::calibrate API

function (If required).
4. Start the touch panel framework module to begin scanning the touch data from the touch

chip using the sf_touch_panel_v2_api_t::start API function (done automatically within SSP if
the "auto start" property is enabled).

5. The registered user callback is invoked by the framework when a touch event occurs and is
processed in application code.

6. Get the data using the sf_touch_panel_v2_api_t::touchDataGet API function (if the user
callback is not registered).

7. Operate on the received touch data as needed using application code.
8. Stop receiving the touch data using the sf_touch_panel_v2_api_t::stop API function.
9. Close the module using the sf_touch_panel_v2_api_t::close API function (if required).

These common steps are illustrated in a typical operational flow in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 536 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Touch Panel V2 Framework > Using the Touch Panel V2 Framework Module in an Application

Figure 216: Flow Diagram of a Typical Touch Panel V2 Framework Module Application

4.1.27 UART Communications Framework

4.1.27.1 UART Communications Framework Module Introduction

The UART communications framework implements a high-level API for serial communications
supporting the industry standard UART protocol on a UART-compliant Synergy MCU peripheral. It
utilizes the r_sci_uart HAL driver to configure and operate the Synergy MCU SCI peripheral in the
UART mode.

UART Communications Framework Module Features

This module is a ThreadX-aware communications framework; it uses ThreadX objects to ensure that
the operations are thread safe.

Key features include:

Support for UART Communications protocol
Support for locking a channel to reserve exclusive access
ThreadX-aware implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 537 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > UART Communications Framework > UART Communications Framework Module Introduction

Figure 217: UART Communications Framework Module Block Diagram

4.1.27.2 UART Communications Framework Module APIs Overview

The UART Communications Framework module defines APIs for opening, closing, reading and writing
to the communications channel. A complete list of the available APIs, an example API call and a short
description of each can be found in the following table. A table of status return values follows the API
summary table.

UART Communications Framework Module API Summary

Function Name Example API Call and Description

open g_sf_comms0.p_api->open(g_sf_comms0.p_ctrl,
g_sf_comms0.p_cfg);
Initialize communications driver.

close g_sf_comms0.p_api->close(g_sf_comms0.p_ctrl);
Clean up communications driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 538 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > UART Communications Framework > UART Communications Framework Module APIs Overview

read g_sf_comms0.p_api->read(g_sf_comms0.p_ctrl,
&destination, bytes, timeout);
Read data from communications driver. This call
will return after the number of bytes requested
is read or if a timeout occurs while waiting for
access to the driver.

write g_sf_comms0.p_api->write(g_sf_comms0.p_ctrl,
&source, bytes, timeout);
Write data to communications driver. This call
will return after all bytes are written or if a
timeout occurs while waiting for access to the
driver.

lock g_sf_comms0.p_api->lock(g_sf_comms0.p_ctrl,
lock_type, timeout);
Lock the communications driver. Reserve
exclusive access to the communications driver.

unlock g_sf_comms0.p_api->unlock(g_sf_comms0.p_ctrl
, lock_type);
Unlock the communications driver. Release
exclusive access to the communications driver.

versionGet g_sf_comms0.p_api->version(&version);
Store the driver version in the provided version.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Channel opened successfully.

SSP_ERR_IN_USE Channel already in use.

SSP_ERR_ASSERTION Pointer to UART control block or configuration
structure is NULL.

SSP_ERR_HW_LOCKED Channel is locked.

SSP_ERR_INVALID_MODE Channel is used for non-UART mode or illegal
mode is set.

SSP_ERR_INVALID_ARGUMENT Invalid parameter setting found in the
configuration structure.

SSP_ERR_QUEUE_UNAVAILABLE Cannot open transmit or receive queue or both.

SSP_ERR_INTERNAL Internal error occurs.

SSP_ERR_TIMEOUT Timeout error.

SSP_ERR_INSUFFICIENT_DATA Not enough data in receive circular buffer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 539 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > UART Communications Framework > UART Communications Framework Module APIs Overview

SSP_ERR_RXBUF_OVERFLOW Receive queue overflow.

SSP_ERR_OVERFLOW Hardware overflow.

SSP_ERR_FRAMING Framing error.

SSP_ERR_PARITY Parity error.

SSP_ERR_INSUFFICIENT_SPACE Not enough space in transmission circular buffer.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.1.27.3 UART Communications Framework Module Operational Overview

The UART Framework provides an easy-to-use communication framework using the standard UART
protocol. In addition to the high-level API functions to read and write data from the UART device in a
thread safe manner, the framework also provides API functions for applications to lock (and unlock)
the UART channel to a thread. This is particularly useful when multiple application threads try to
communicate with the same UART device and a context switch could upset the high-level application
protocols and/or state machines implemented on top of the UART (like Kermit, for example).

UART Communications Framework Module Important Operational Notes and Limitations

UART Communications Framework Module Operational Notes

The UART Framework module is reentrant for any channel.
The UART Framework uses the UART Driver on r_sci_uart module for communicating with a
UART device. The UART Driver can be augmented by adding DTC drivers (using the Synergy
Platform configurator in the ISDE) to perform read or write transactions with a UART device
without interrupting the CPU. When the UART Framework is used to read data from a UART
device, it will rely on the UART Driver's callback feature to read data and will not use the
DTC (even if the DTC module support is added to the UART Driver through the configurator).
This is done to avoid any potential timing and synchronization issues that could arise when
the driver uses the DTC to read data from the device. When using the UART Framework to
write data to a UART device, it will use the DTC to perform the transaction (if the driver is
configured to use the DTC).

UART Communications Framework Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.27.4 Including the UART Communications Framework Module in an Application

This section describes how to include the UART Communications Framework Module in an application
using the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the UART Communications Framework to an application, simply add it to a thread using the
stacks selection sequence given in the following table. (The default name for the UART

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 540 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > UART Communications Framework > Including the UART Communications Framework Module in an Application

Communications Framework is g_sf_comms0. This name can be changed in the associated Properties
window.)

UART Communications Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_comms0 Communications
Framework on sf_uart_comms

Threads Framework > Connectivity >
Communications Framework
on sf_uart_comms

When the UART Communications Framework on sf_uart_comms is added to the thread stack as
shown in the following figure, the configurator automatically adds any needed lower‑level modules.
Any modules needing additional configuration information have the box text highlighted in Red.
Modules with a Gray band are individual modules that stand alone. Modules with a Blue band are
shared or common; they need only be added once and can be used by multiple stacks. Modules with
a Pink band can require the selection of lower-level modules; these are either optional or
recommended. (This is indicated in the block with the inclusion of this text.) If the addition of lower-
level modules is required, the module description include Add in the text. Clicking on any Pink
banded modules brings up the New icon and displays possible choices.

Figure 218: UART Communications Framework Module Stack

4.1.27.5 Configuring the UART Communications Framework Module

The UART Communications Framework Module must be configured by the user for the desired
operation. The available configuration settings and defaults for all the user-accessible properties are
given in the properties tab within the SSP configurator and are shown in the following tables for easy
reference. Only properties that can be changed without causing conflicts are available for
modification. Other properties are locked and not available for changes and are identified with a lock
icon for the locked property in the Properties window in the ISDE. This approach simplifies the
configuration process and makes it much less error-prone than previous manual approaches to
configuration. The available configuration settings and defaults for all the user-accessible properties
are given in the Properties tab within the SSP Configurator and are shown in the following tables for
easy reference.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 541 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > UART Communications Framework > Configuring the UART Communications Framework Module

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the UART Communications Framework Module on
sf_uart_comms

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if parameter checking is
included.

Read Input Queue Size (4-Byte
Words)

15 Buffer size for data reception
queue. sf_uart_comms utilizes
the ThreadX Queue for the
queue management.

Name g_sf_comms0 Name of UART communications
framework module.

Name of generated initialization
function

sf_comms_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the UART Communications Framework Module Lower Level
Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module.

Configuration Settings for the UART HAL Module on r_sci_uart

ISDE Property Value Description

External RTS Operation Enable, Disable

Default: Disable

Enable an IOPORT pin to be
used as RTS signal. For RTS
functionality set this
configuration parameter to
"Enable" and specify the
configuration "Name of UART
callback function for the RTS
external pin control".

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 542 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > UART Communications Framework > Configuring the UART Communications Framework Module

Reception Enable, Disable

Default: Enable

Enable or disable UART
reception for all UART channels
on SCI. Setting this
configuration parameter to
"Disable" reduces code size
because the portion of code for
UART reception is not compiled.
You cannot set this parameter
for individual UART channels.

Transmission Enable, Disable

Default: Enable

Enable or disable UART
transmission for all UART
channels on SCI. Setting
"Disable" to this configuration
allows to get smaller code size
due to the portion of code for
UART transmission is compiled
out, however, you can only set
"Disable" to this configuration if
any other SCI channels which
work as UART ports do not
perform the transmission.

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_uart0 The name to be used for UART
on SCI module control block
instance. This name is also
used as the prefix of the other
variable instances.

Channel 0 SCI channel number.

Baud Rate 9600 Baud rate selection.

Data Bits 7 bits, 8, bits, 9 bits

Default: 8 bits

UART data bits.

Parity None, Odd, Even

Default: None

UART parity bits.

Stop Bits 1 bit, 2 bits

Default: 1 bit

UART stop bits.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 543 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > UART Communications Framework > Configuring the UART Communications Framework Module

CTS/RTS Selection CTS (Note that RTS is available
when enabling External RTS
Operation mode which uses 1
GPIO pin), RTS (CTS is disabled)

Default: RTS (CTS is disabled)

Select CTS or RTS for the
CTSn/RTSn pin of SCI channel n.
The SCI hardware supports
either the CTS or the RTS
control signal on this pin but
not both. For an application
that uses both CTS and RTS,
select "CTS" for this
configuration parameter and
enable the configuration
"External RTS Operation"
specifying the configuration
"Name of UART callback
function for the RTS external
pin control".

Name of UART callback function
to be defined by user

NULL Name must be a valid C
symbol.

Name of UART callback function
for the RTS external pin control
to be defined by user

NULL Name must be a valid C
symbol.

Clock Source Internal Clock, External Clock
8x baudrate, External Clock 16x
baudrate

Default: Internal Clock

Selection of the clock source to
be used in the baud-rate clock
generator block.

Baudrate Clock Output from
SCK pin

Enable, Disable

Defaualt: Disable

Optional setting to output the
baud-rate clock on the SCKn pin
for the selected channel n.

Start bit detection Fallling Edge, Low Level

Default: Falling Edge

Start bit detection mode in the
reception, usually set "Falling
Edge" to this configuration.

Noise Cancel Enable, Disable

Defaualt: Disable

Enable the digital noise
cancellation on RXDn pin. The
digital noise filter block in SCI
consists of two-stage flip-flop
circuits. For detail, refer to the
Noise cancellation section in
the Renesas Synergy hardware
manual.

Bit Rate Modulation Enable Enable, Disable

Defaualt: Enable

Bit rate modulation enable
selection.

Receive FIFO Trigger Level One, Max

Default: Max

Receive FIFO trigger level
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 544 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > UART Communications Framework > Configuring the UART Communications Framework Module

Receive Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Receive interrupt priority
selection.

Transmit Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Transmit interrupt priority
selecition.

Transmit End Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Transmit end interrupt priority
selection.

Error Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Error interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 TXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Defaualt: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 545 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > UART Communications Framework > Configuring the UART Communications Framework Module

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SCI0 TXI Activation source selection.

Auto Enable FALSE Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_transfer1 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 546 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > UART Communications Framework > Configuring the UART Communications Framework Module

Activation Source (Must enable
IRQ)

Event SPI0 RXI Activation source selection.

Auto Enable FALSE Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

UART Communications Framework Module Clock Configuration

The UART Communications Framework has no specific clock configuration requirements.

UART Communications Framework Module Pin Configuration

The UART Communications Framework uses pins on the MCU to communicate to external devices
based on the lower level implementation selected. I/O pins must be selected and configured as
required by the external device. The following table illustrates the method for selecting the pins
within the SSP configuration window and the subsequent table illustrates an example selection for
the lower level implementation pins.

Note
For some peripherals, the operation mode selection determines what peripheral signals are available and what
MCU pins are required.

Pin Selection for the UART Communications Framework Module on sf_uart_comms

Resource ISDE Tab Pin selection Sequence

UART Pins Select Peripherals>
Connectivity: SCI> SCI8

Note
The selection sequence assumes SCI0 is the desired hardware target for the driver.

Pin Configuration Settings for the UART Communications Framework Module on
sf_uart_comms

Property Value Description

Pin Group Selection Mixed, _A Only, _B Only Pin group selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 547 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > UART Communications Framework > Configuring the UART Communications Framework Module

Operation Mode Disabled, Custom,
Asynchronous UART,
Synchronous UART, Simple I2C,
Simple SPI, SmartCard

Default: Disabled

Select Asynchronous UART as
the Operation Mode for a UART
Receiver implementation.

TXD_MOSI None, PB05, P105

Default: None

TXD pin P105.

RXD_MISO None, PB05, P104

Default: None

RXD pin P104.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.

Pin Selection Sequence for Communications Framework on UART, USB or Telnet
(Transmitter)

Resource ISDE Tab Pin selection Sequence

UART Pins Select Peripherals >
Connectivity: SCI> SCI3

Note
These selection sequences are examples for selected implementations. Others are also possible depending on the
target hardware.

Pin Configuration Settings for UART

Pin Configuration Property Settings Description

Pin Group Selection Mixed, _A Only, _B Only Pin group selection.

Operation Mode Disabled, Custom,
Asynchronous UART,
Synchronous UART, Simple I2C,
Simple SPI, SmartCard

Default: Disabled

Select Asynchronous UART as
the Operation Mode for a UART
Transmitter implementation.

TXD_MOSI None, P707, P409

Default: None

TXD pin P707.

RXD_MISO None, P706, P408

Default: None

RXD pin P706.

Note
These selection sequences are examples for selected implementations. Others are also possible depending on the
target hardware.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 548 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > UART Communications Framework > Using the UART Communications Framework Module in an Application

4.1.27.6 Using the UART Communications Framework Module in an Application

The steps in using the UART Communications Framework module on sf_audio_record_adc in a typical
application are:

1. Initialize the UART Communications Framework using the sf_comms_api_t::open API.
2. Lock the channel for continuous communications using the sf_comms_api_t::lock API if

needed.
3. Receive data using the sf_comms_api_t::read API.
4. Send data using the sf_comms_api_t::write API.
5. Unlock the channel from continuous communication using the sf_comms_api_t::unlock API if

needed.
6. Close the channel using the sf_comms_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 219: Flow Diagram of a Typical UART Communications Framework Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 549 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > UART Communications Framework > Using the UART Communications Framework Module in an Application

4.1.28 Wi-Fi Framework

4.1.28.1 Wi-Fi Framework Introduction

The Wi-Fi framework provides a high-level API for configuring and provisioning Wi-Fi modules as well
as performing data transfers with or without on-chip networking capability. Currently, only the
Qualcomm GT202 module is supported. The Wi-Fi framework communicates through the SPI with the
underlying GT202 module.

Wi-Fi Framework Module Features

Provides high-level APIs to configure and provision a Wi-Fi module
Provides four different implementations for:

A Wi-Fi device driver stack using the sf_wifi_gt202 framework.
An on-chip stack using the sf_wifi_onchip_stack framework.
A BSD socket stack using the sf_wifi_onchip_stack framework.
A NetX and NetX Duo port using the sf_wifi_nsal_nx framework.

Using NetX and NASL:
Allows the same application code to be used across different Wi-Fi modules.
Allows for easy migration of the Ethernet-based application to a Wi-Fi based
application.
Allows for debugging and fine-tuning the application and TCP/IP stack as required
by the application.
The current NSAL implementation only provides NetX NSAL. Adding support for a
new network stack requires implementing the appropriate NSAL.

Using the On-chip networking stack:
Is beneficial when using MCUs with a small memory footprint.
Provides a BSD sockets interface to create socket-based applications with the On-
chip TCP/UDP.

Provides an option to integrate 3rd-party application protocols on top of TCP/IP such as
MQTT and COAP without using the NetX stack.
Provides support for Wi-Fi Protected Setup (WPS) router configuration using Push-Button
and PIN methods.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 550 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Wi-Fi Framework Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 551 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Wi-Fi Framework Introduction

Figure 220: WiFi Framework Module Block Diagram

Note
The On-Chip Stack on GT202 Wi-Fi Framework can be used as a lower-level implementation of the BSD Socket
Framework or on its own. The GT202 Wi-Fi Device Driver and its lower-level modules is included below all other
Wi-Fi Framework implementations.

4.1.28.2 Wi-Fi Framework Module APIs Overview

The Wi-Fi Framework defines API functions for each of the related modules. The following
descriptions explain the operation of each API. A table of common return codes follows at the end of
the section. Refer to the API reference section for the associated module for additional details.

Additionally, a more detailed API description, along with a working example application (which is too
lengthy to include in this document), is available on the Renesas web site. Just search for the
associated application note document number, r11an0226eu, in the top page search bar on
www.Renesas.com. It is highly recommended that you use the application note to augment the
summary descriptions found in this document.

Wi-Fi Framework Module APIs

WiFi Framework Module API Summary

Function Name Example API Call and Description

open g_sf_wifi0.p_api->open (g_sf_wifi0.p_ctrl,
g_sf_wifi0.p_cfg);
This API initializes and enables the Wi-Fi module.
The open function returns the Wi-Fi control
structure, uniquely identifying the instance of
the Wi-Fi framework.

close g_sf_wifi0.p_api->close(g_sf_wifi0.p_ctrl);
This API un-initializes the Wi-Fi module and
powers it off.

infoGet g_sf_wifi0.p_api->infoGet (g_sf_wifi0.p_ctrl,
wifi_info);
This API takes the WiFi control structure as an
argument and returns the following information
obtained from the WiFi module:
- Chipset/driver information string
- RSSI value (unsigned integer 16 bits)
- Noise level (unsigned integer 16 bits)
- Link Quality (unsigned integer 16 bits)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 552 / 5,198

http://www.Renesas.com

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Wi-Fi Framework Module APIs Overview

statisticsGet g_sf_wifi0.p_api->statisticsGet (g_sf_wifi0.p_ctrl,
p_stats);
This API gets the data statistics from the Wi-Fi
module. It takes the Wi-Fi control structure as an
argument and returns the following statistics:
- Received packets (unsigned integer 32 bits)
- Transmitted packets (unsigned integer 32 bits)
- Transmit packet errors (unsigned integer 32
bits)

transmit g_sf_wifi0.p_api->transmit (g_sf_wifi0.p_ctrl,
p_buffer, length);
This API sends the data/packet out. This function
takes the Wi-Fi control structure as an
argument. It takes the network packet buffer,
and the network packet buffer length as
arguments. The Wi-Fi framework transmit
function passes the packet buffer to the Wi-Fi
driver for transmission.

provisioningGet g_sf_wifi0.p_api->provisioningGet
(g_sf_wifi0.p_ctrl, &sf_wifi_provisioninfo);
This API takes the Wi-Fi control structure as an
argument and returns the following parameters:
- Mode (enumeration, that is, AP or client)
- Channel (unsigned integer 8 bits)
- SSID (string)
- Security type (enumeration)
- Encryption type (enumeration)
- Security key (string)

provisioningSet g_sf_wifi0.p_api->provisioningSet
(g_sf_wifi0.p_ctrl, &g_sf_wifi_provisioninfo);
This API sets the Wi-Fi module in the given mode
AP/Station. The provisioningSet function uses
the following parameters to provision the WiFi
module:
- Mode (enumeration, that is, AP or client)
- Channel (unsigned integer 8 bits), only used in
AP mode
- SSID (string)
- Security type (enumeration)
- Encryption type (enumeration)
- Security key (sting).
- Connection Status Notification Callback
function: Used to get connection status change
notification

*See note at the end of this table.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 553 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Wi-Fi Framework Module APIs Overview

scan g_sf_wifi0.p_api->scan (g_sf_wifi0.p_ctrl, p_scan,
p_count);
This API scans the available SSIDs (that is,
access points) in range. This function takes the
Wi-Fi control structure as an argument and
returns a list of SSIDs scanned by the WiFi
module with the following parameters:
- HW mode (enumeration a/b/g/n)
- RSSI (unsigned integer 16 bits)
- SSID (string)
- BSSID (byte array of size 6 bytes)
- Channel (unsigned integer 8 bits)
- Security type (enumeration)
- Encryption type(enumeration)
- BSS type (enumeration)

The Wi-Fi framework scan function takes the
SSID count as an argument, which acts as an
in/out parameter. It specifies the size of the scan
result array and the Wi-Fi framework sets it to
count the indicating number of scan results
stored in the array.

ACLAdd g_sf_wifi0.p_api->ACLAdd (g_sf_wifi0.p_ctrl,
peer_device_mac);
This API adds the given MAC address to the
access control list. This function takes the Wi-Fi
control structure and the MAC address as
arguments.

ACLDelete g_sf_wifi0.p_api->ACLDelete (g_sf_wifi0.p_ctrl,
peer_device_mac);
This API deletes the given MAC address from the
access control list. This function takes the Wi-Fi
control structure and MAC address as
arguments.

multicastListAdd g_sf_wifi0.p_api->multicastListAdd
(g_sf_wifi0.p_ctrl, p_mac_addr);
This API adds the given Multicast IP address to
the multicast filer list. This function takes the Wi-
Fi control structure and MAC address as
arguments.

multicastListDelete g_sf_wifi0.p_api->multicastListDelete
(g_sf_wifi0.p_ctrl, p_mac_addr);
This API deletes the given Multicast IP address
from the multicast filer list. This function takes
the Wi-Fi control structure and MAC address as
arguments.

macAddressGet g_sf_wifi0.p_api->macAddressGet
(g_sf_wifi0.p_ctrl, p_mac);
This API reads MAC address from WiFi module.
This function takes the Wi-Fi control structure as
argument and returns MAC address read from
Wi-Fi module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 554 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Wi-Fi Framework Module APIs Overview

macAddressSet g_sf_wifi0.p_api->macAddressSet
(g_sf_wifi0.p_ctrl, p_mac);
This API sets Wi-Fi module's MAC address. This
function takes the Wi-Fi control structure and
MAC address as arguments.

wpsStart g_sf_wifi0.p_api->wpsStart(g_sf_wifi0.p_ctrl,
&wps_data);

This API starts WPS on device. The wpsStart
function uses the following parameters passed
to a structure to start WPS on device:
- WPS method as Push-button or Pin
- WPS pin. Used only with WPS pin method
- WPS timeout value in seconds
- Pointer to callback function to be called on
change in client's connection status with AP or
client connected/disconnected

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.
Provisioning: When the device is provisioned in client mode, the callback will be called when a connection with the
AP is lost and then reestablished. When the device is provisioned in AP mode, this callback is called when any
client connects or disconnects with the AP. When the device is provisioned in client mode, arguments passed to
callback will have only the below valid field,

event = SF_WIFI_EVENT_AP_CONNECT or SF_WIFI_AP_DISCONNECT

When device is provisioned in AP mode then arguments passed to callback will have only below valid
fields,

event = SF_WIFI_EVENT_CLIENT_CONNECT or SF_WIFI_CLIENT_DISCONNECT
mac_addr = MAC address of client.

While calling the sf_wifi_api_t::provisioningSet API function to provision the device in client mode, the
framework will not call the callback function on the successful association with the AP or on a failure.
When the device is provisioned in AP mode, if the client tries to connect with the AP using the wrong
password, the callback will be called twice; first with the connected event and then immediately
after with the disconnected event.

On-Chip Networking Stack Support APIs

These APIs can be used to configure the Wi-Fi module when using an on-chip networking stack,
which helps to configure the IP address for the interface and start/stop the DHCP server (when
configured in the AP mode).

On-Chip Networking Stack Support Wi-Fi Framework Module API Summary

Function Name Example API Call and Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 555 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Wi-Fi Framework Module APIs Overview

open g_sf_wifi_onchip_stack0.p_api->open
(g_sf_wifionchip_stack0.p_ctrl,
g_sf_wifi_onchip_stack0.p_cfg);
This API calls the WiFi framework open API which
initializes the Wi-Fi module.

close g_sf_wifi_onchip_stack0.p_api->close(g_sf_wifi_o
nchip_stack0.p_ctrl);
This API calls the Wi-Fi framework close API
which un-initializes the Wi-Fi module.

ipAddressCfg g_sf_wifi_onchip_stack0.p_api->ipAddressCfg
(g_sf_wifi_onchip_stack0.p_ctrl, p_cfg);
This API configures the IP address of the
interface using an on-chip networking stack. It
provides facility to configure static IP address or
using DHCP.

dhcpServerStart g_sf_wifi_onchip_stack0.p_api->dhcpServerStart
(g_sf_wifi_onchip_stack0.p_ctrl, p_start_ip,
p_end_ip);
This API starts the DHCP server on the interface
(when configured in AP mode) using on-chip
networking stack. It takes the range of IP
addresses to be used by DHCP server.

dhcpServerStop g_sf_wifi_onchip_stack0.p_api->dhcpServerStop
(g_sf_wifi_onchip_stack0.p_ctrl);
This API stops the DHCP server.

versionGet g_sf_wifi_onchip_stack0.p_api->versionGet
(&version);
Retrieves the API version with the version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

BSD Socket APIs

These APIs can be used for BSD socket support using the GT202 on-chip stack implementation.

BSD Socket using GT202 On-Chip Stack Wi-Fi Framework Module API Summary

Function Name Example API Call and Description

open g_sf_socket0.p_api->open (g_sf_socket0.p_ctrl,
g_sf_socket0.p_cfg);
This API initializes the networking interface.

close g_sf_socket0.p_api->close(g_sf_socket0.p_ctrl);
This API closes the network interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 556 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Wi-Fi Framework Module APIs Overview

versionGet g_sf_socket0.p_api->versionGet (&version);
Retrieves the API version with the version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Additionally, this implementation includes socket APIs which are compliant with BSD APIs. These APIs
can be used by the application to perform data transfer using sockets. The following APIs are
available:

socket
close
bind
listen
accept
connect
send
recv
recvfrom
sendto
setsockopt
getsockopt
select

Note
While using on chip networking stack, application can use all BSD Socket APIs, all on chip Networking Stack
support APIs and few Synergy Wi-Fi framework APIs. The Synergy Wi-Fi framework APIs which application can
use are provisioningSet(), provisioningGet(), scan(), macAddressGet(), macAddressSet() and infoGet()

More information is available for these APIs as described in the NetX BSD 4.3 Sockets API Compliancy
Wrapper for NetX User Guide which can be found on the Synergy Gallery on the SSP page under the
documentation tab in the Azure RTOS Component Documents for Renesas Synergy zip file.

Wi-Fi NSAL

The Synergy Wi-Fi framework supports the NetX/NetX-Duo Network Services Abstraction Layer. This
includes the NetX/NetX-Duo driver, packet transmit and receive callback functions implementation.

NetX/NetX-Duo Driver Function

The NetX/NetX-Duo driver function takes the NetX IP instance, Wi-Fi framework instance and NSAL
configuration as arguments. The NSAL configuration controls the behavior of transmit and receive
callback functions. The NSAL configuration includes flags which indicates zero-copy support is
enabled or disabled in transmit and receive path. The NetX/NetX-Duo driver functions implement
various IP driver commands used by NetX/NetX-Duo. The interface attach command calls the Wi-Fi
framework open API to initialize the Wi-Fi module. The initialize command calls the Wi-Fi framework
macAddressGet API to read MAC address from the Wi-Fi module. The multicast-join command calls
the Wi-Fi framework multicastListAdd API to add the given MAC address to multicast list. The
multicast-leave command calls the Wi-Fi framework multicastListDelete API to delete the given MAC
address from the multicast list. The Send/Broadcast command calls the Wi-Fi framework transmit API
to transmit a packet.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 557 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Wi-Fi Framework Module APIs Overview

NSAL Transmit Function

The NSAL transmit function takes the NetX IP instance, the NetX packet, the Wi-Fi framework
instance and the NSAL configuration as arguments. If zero-copy support is enabled, then the same
NetX packet is transferred from NetX to the Wi-Fi driver. If zero-copy is not supported, then it copies
data from the NetX packet to the driver buffer. It calls the Wi-Fi framework transmit API, which
passes the buffer/packet to the Wi-Fi driver for further transmission.

NSAL Receive Callback

The NSAL receive callback function takes the NetX IP instance, the packet buffer, the packet buffer
length and the NSAL configuration as arguments. This callback is called from the Wi-Fi device driver.
If zero-copy support is enabled, then the same NetX packet is transferred from the Wi-Fi driver to
NetX. If zero-copy is not supported, then it copies data from the driver buffer to the NetX packet and
then passes the NetX stack for further processing. It calls the Wi-Fi framework transmit API, which
passes the buffer to the Wi-Fi driver for further transmission.

More information is available for these APIs as described in the NetX User Guide which can be found
on the Synergy Gallery on the SSP page under the documentation tab in the Azure RTOS Component
Documents for Renesas Synergy zip file.

Wi-Fi Framework Error Codes

The following table lists the Wi-Fi Framework specific error codes. These error codes are part of
ssp_err_t.

Wi-Fi Framework Error Codes

Error Codes Description

SSP_ERR_WIFI_CONFIG_FAILED Configuration failed.

SSP_ERR_WIFI_INIT_FAILED Initialization failed.

SSP_ERR_WIFI_TRANSMIT_FAILED Transmission failed.

SSP_ERR_WIFI_INVALID_MODE Invalid mode specified.

SSP_ERR_WIFI_FAILED WiFi failed.

SSP_ERR_WIFI_WPS_INVALID_START_INFO Invalid input parameters.

SSP_ERR_WIFI_WPS_MULTIPLE_PB_SESSIONS Another Push button session is already in
progress.

SSP_ERR_WIFI_WPS_WALK_TIMER_TIMEOUT WPS Timer expired.

SSP_ERR_WIFI_WPS_M2D_RECEIVED M2D Error code received which means Registrar
is unable to authenticate with the Enrollee.

SSP_ERR_WIFI_WPS_AUTHENTICATION_FAILED WPS authentication failed.

SSP_ERR_WIFI_WPS_CANCELLED WPS Request was not accepted by underlying
driver.

SSP_ERR_WIFI_WPS_INVALID_PIN Invalid WPS pin.

4.1.28.3 Wi-Fi Framework Module Operational Overview

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 558 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Wi-Fi Framework Module Operational Overview

The Wi-Fi framework provides a high-level interface for the application to configure the Wi-Fi module,
provision the Wi-Fi module and perform data transfers. This simplifies application development and
allows the same application code to be used across different Wi-Fi modules.

The following figure provides an overview of the Synergy Wi-Fi framework layered architecture:

The Wi-Fi framework includes the enclosed 5 blocks in the middle of the architecture graph:
NSAL, Wi-Fi Framework API, Wi-Fi on-chip Stack API, BSD Socket API, and the Wi-Fi Device
Driver Interface.
The vendor-provided Wi-Fi device drivers are included in the SSP package under
SSP_Supplemental.

Figure 221: WiFi Framework Organization, Options and Stack Implementation

 The Wi-Fi framework implementation allows Wi-Fi modules with or without On-chip networking stack
support to be integrated with the SSP low-level support blocks.

Path 1: Using NetX™/NetX Duo™, NSAL in addition to the Wi-Fi framework API blocks as
shown in in the previous figure. To simplify the description, throughout this document, NetX
refers to both NetX and NetX-Duo when the comment applies to both.
Path 2: Using On-chip networking stack support API and the BSD Socket APIs as shown in
the previous figure.

Wi-Fi Framework Module Important Operational Notes and Limitations

Wi-Fi Framework Module Operational Notes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 559 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Wi-Fi Framework Module Operational Overview

The Wi-Fi module has various parameters as specified by 802.11 standards. It is possible
that individual device drivers and Wi-Fi chipsets might not support the configuration of all
the functions.
For the Wi-Fi interface to become active, at least the channel, Service Set Identifier (SSID),
security scheme, and security credentials must be configured.
The current NSAL implementation includes support for NetX (IPv4) and NetX-Duo (IPv6).
NetX and NetX Duo support IPv4, however NetX Duo also supports IPv6. Adding support for
a new network stack requires implementing the appropriate NSAL.
For the security setting, WEP keys can be entered in either ASCII or Hex format and can be
configured to use either 40 or 104-bit keys. A WEP key has a 24-bit initialization vector in
addition to the secret key. Because of this and depending on the vendor, 64-bit WEP keys
can be referred to as 40-bit keys and 128-bit WEP keys can be referred to as 104-bit keys.
The Wi-Fi framework accepts 1 to 4 WEP keys of a specific format and type. In the
provisioning structure, you must fill in the security type as SF_WIFI_SECURITY_TYPE_WEP
and at least one (maximum is four) WEP key in the key buffer.

Wi-Fi Framework Module API Use Notes

Open:

When using the Wi-Fi framework module with NSAL, that is, with NetX/NeXDuo, the application
should not call the Wi-Fi framework module sf_wifi_api_t::open API directly; instead, it should call the
NetX nx_ip_create() API, which internally calls sf_wifi_api_t::open API from the NetX driver.

When using the On chip networking stack, the application should call the sf_wifi_api_t::open API from
the BSD socket interface, which internally calls the Wi-Fi framework sf_wifi_api_t::open API.

Close:

When using the Wi-Fi framework module with NSAL, that is, with NetX/NetX Duo, the application
should call the NetX nx_ip_delete() API directly.

When using the On chip networking stack, the application should call the sf_wifi_api_t::close API from
the BSD socket interface, which internally calls the Wi-Fi framework module sf_wifi_api_t::close API.

ProvisioningSet:

When the device is provisioned in client mode, the callback will be called when the connection with
the AP is lost and re-established. When the device is provisioned in AP mode, this callback is called
when any client connects/disconnects with the AP. When the device is provisioned in client mode,
the arguments passed to the callback will only have the following valid field:

event = SF_WIFI_EVENT_AP_CONNECT or SF_WIFI_AP_DISCONNECT

When the device is provisioned in AP mode, the arguments passed to the callback will only have the
following valid fields:

event = SF_WIFI_EVENT_CLIENT_CONNECT or SF_WIFI_CLIENT_DISCONNECT

mac_addr = MAC address of client.

While calling the sf_wifi_api_t::provisioningSet API to provision the device in client mode, the
framework will not call the callback function on successful association with the AP or on a failure.

When the device is provisioned in AP mode, if the client tries to connect with the AP using the wrong

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 560 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Wi-Fi Framework Module Operational Overview

password, the callback will be called twice, first with the connected event and then immediately after
this, with the disconnected event.

InfoGet:

When the device is provisioned in the client mode, the RSSI value obtained using the
sf_wifi_api_t::infoGet API call represents the SNR in dB. The noise_level and link_quality fields
returned by the sf_wifi_api_t::infoGet API call do not contain any information - they are set to zero.

wpsStart:

If user wants to connect with Wi-Fi access-point, then user must know the SSID name, password and
security type set on access-point. With this information, user can call Wi-Fi provisioning API to
connect the device with given access-point. Wi-Fi Protected Setup (WPS) is a wireless network
security standard that tries to make connections between a router and wireless devices faster and
easier. WPS automatically configures the network name (SSID) and security key for the access point.
User does not need to know the SSID and security key or passphrase when connecting WPS enabled
devices.

There are 2 primary methods used in the WiFi Protected Setup:

PIN entry – a mandatory method of setup for all WPS certified devices.
Push button configuration – an actual push button on the hardware or through a simulated
push button in the software.

Using the sf_wifi_api_t::wpsStart API, user can start WPS on device.

BSD Socket APIs:

While using the on-chip networking stack, applications can use all the BSD Socket APIs, all the On-
Chip Networking Stack support APIs, and few Synergy Wi-Fi Framework APIs. The available Wi-Fi
framework APIs are the sf_wifi_api_t::provisioningSet API, sf_wifi_api_t::provisioningGet API,
sf_wifi_api_t::scan API, sf_wifi_api_t::macAddressGet, sf_wifi_api_t::macAddressSet API, and the
sf_wifi_api_t::infoGet API.

Wi-Fi Framework Module Limitations

The Wi-Fi framework does not support the Synergy S1 MCU Series due to memory
constraints.
Due to memory constraints, S3A6 and S128 MCUs will support only on-chip networking
stack (that is, Path 2 for Wi-Fi use, where networking stack runs on Wi-Fi chipset).
The Synergy Wi-Fi Framework APIs implemented for GT-202 are not re-entrant. All these
APIs make calls to driver APIs to do the requested operation. If the GT-202 driver is working
on behalf of any Wi-Fi Framework APIs and any other Wi-Fi Framework APIs are called, it will
return SPP_ERR_IN_USE error until the ongoing operation is finished.
The Synergy Wi-Fi framework sf_wifi_api_t::provisioningSet API for GT-202 may fail if the
peripheral and IO pin drive capacity is not set to medium.
While configuring the GT-202 with the SPI driver on r_rspi, set the drive capacity of the
slave select pin, reset pin and SPI pins (that is, MISO, MOSI and RSPCK) to medium. While
the configuring GT-202 with the SPI driver on r_sci_spi, set the drive capacity of the slave
select pin, reset pin and SCI pins (that is, TXD_MOSI and RXD_MISO) to medium. Do not
change the drive capacity of the SCK pin when the r_sci_spi driver is used.
WiFi WPS functionality using GT-202 works only with WPA2 security in AP and Station mode.
GT202 driver hangs if WPS session is terminated on peer device before session completion.
However if user restarts WPS session on peer device and once WPS session is completed,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 561 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Wi-Fi Framework Module Operational Overview

GT202 driver will exit from the loop and hanging issue will not be observed.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.1.28.4 Including the Wi-Fi Framework Module in an Application

This section describes how to include the Wi-Fi Framework module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Wi-Fi Framework module to an application, simply add it to a HAL /Common thread using
the stacks selection sequence given in the following table. (The default name for the Wi-Fi
Framework module is g_sf_wifi0. This name can be changed in the associated Properties window.)

Wi-Fi Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_wifi0 GT202 Wi-Fi Device
Driver on sf_wifi_gt202

Threads New Stack> Framework>
Networking> WiFi> GT202
Wi-Fi Device Driver on
sf_wifi_gt202

g_sf_wifi_onchip_stack0 On-
Chip Stack on Gt202 Wi-Fi
Framework

Threads New Stack> Framework>
Networking> WiFi> On-Chip
Stack on Gt202 Wi-Fi
Framework

g_sf_socket0 BSD Socket using
On-Chip Stack on Gt202 Wi-Fi
Framework

Threads New Stack> Framework>
Networking> WiFi> BSD
Socket using On-Chip Stack
on Gt202 Wi-Fi Framework

g_sf_el_nx0 NetX Port using Wi-
Fi Framework on sf_wifi_nsal_nx

Threads New Stack> Framework>
Networking> WiFi> NetX
Port using Wi-Fi Framework
on sf_wifi_nsal_nx

When the Wi-Fi Framework module on sf_wifi is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description includes Add in the text. Clicking on any Pink banded modules brings up the New icon
and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 562 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Including the Wi-Fi Framework Module in an Application

Figure 222: WiFi Framework Module Stack

4.1.28.5 Configuring the Wi-Fi Framework Module

The Wi-Fi Framework module must be configured by the user for the desired operation. The SSP
configuration window will automatically identify (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules in order to ensure successful operation. Furthermore, only those properties that can
be changed without causing conflicts are available for modification. Other properties are 'locked' and
are not available for changes, and are identified with a lock icon for the 'locked' property in the
Properties window in the ISDE. This approach simplifies the configuration process and makes it much
less error-prone than previous 'manual' approaches to configuration. The available configuration
settings and defaults for all the user-accessible properties are given in the Properties tab within the
SSP configurator, and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings; this will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with the SSP.

Configuration Settings for the BSD Socket Using GT202 On-Chip Stack on GT202 Wi-Fi
Framework

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 563 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Configuring the Wi-Fi Framework Module

Name (Must be a valid C
Symbol)

g_sf_socket0 Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the On-Chip Stack on GT202 Wi-Fi Framework

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

Name (Must be a valid C
Symbol)

g_sf_wifi_onchip_stack0 Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

Name (Must be a valid C
Symbol)

g_sf_el_nx0 Module name.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Wi-Fi Device Driver on sf_wifi_gt202

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

On-Chip Stack Support Enabled, Disabled

Default: Disabled

On-chip stack support selection.

Driver Heap Size in Bytes
(Minimum 8192 bytes)

8192 Driver heap size selection.

Name (Must be a valid C
symbol)

g_sf_wifi0 Module name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 564 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Configuring the Wi-Fi Framework Module

Hardware Mode 802.11a, 802.11b, 802.11g,
802.11n

Default: 802.11n

Hardware mode selection.

Transmit (TX) Power (Valid
Range 1-17)

10 Transmit power selection.

Ready/Clear to Send (RTS/CTS)
Flag

Enabled, Disabled

Default: Enabled

Ready/Clear to send selection.

Delivery Traffic Indication
Message (DTIM) Interval (Valid
Range: 1-255)

3 Delivery traffic indication
message interval selection.

Broadcast SSID (AP mode only) Enabled, Disabled

Default: Enabled

Broadcast SSID selection.

Beacon Interval in
Microseconds (AP mode only
and must be greater than 1023)

1024 Beacon interval in
microseconds selection.

Station inactivity timeout in
seconds (AP mode only and
must be greater than 0)

100 Station inactivity timeout
selection.

Requested High Throughput Enabled, Disabled

Default: Disabled

Requested high throughput
selection.

Reset Pin (must be a valid C
symbol)

IOPORT_PORT_06_PIN_00 Reset pin selection.

Slave Select Pin (SSL)(Must be a
valid C symbol)

IOPORT_PORT_01_PIN_03 Slave select pin selection.

GT202 Driver Task Thread
Priority (Modifying Task Thread
Priority may cause Driver to
malfunction)

5 GT202 driver task thread
priority selection.

Callback NULL Callback selection.

Support NetX Packet Chaining Enabled, Disabled

Default: Enabled

Support NetX packet chaining
selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults can be desirable. For example, it might be useful to
select different screen sizes. The configurable properties for the lower-level stack modules are given
in the following sections for completeness and as a reference.

Note
Most of the property settings for lower-level modules are fairly intuitive and can usually be determined by

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 565 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Configuring the Wi-Fi Framework Module

inspection of the associated Properties window from the SSP configurator.

Configuring the Wi-Fi Framework Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower-level drivers
as indicated with red text in the thread stack block. Notice that some of the configuration properties
must be set to a certain value for proper framework operation and will be locked to prevent user
modification. The following tables identify all the settings within the properties section for the lower-
level modules:

Configuration Settings for the SPI HAL Module on r_rspi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_spi0 Module name.

Channel 0 SCI or SPI Channel number to
which the device has been
connected.

Operating Mode Master Configure as a Master or Slave
device.

Note: Current version of SSP
supports only SPI Master mode.

Clock Phase Data sampling on even edge,
data variation on odd edge

Data sampling on odd or even
clock edge.

Clock Polarity High when idle Clock level when idle.

Mode Fault Error Disable Indicates Mode fault error
(master/slave conflict) flag.

Bit Order MSB First Select transmit order MSB/LSB
first.

Bitrate 500000 Transmission or reception rate.
Bits per second.

Callback NULL Optional Callback function
pointer.

SPI Mode Clock synchronous operation Select spi or clock syn mode
operation.

Slave Select Polarity(SSL0) Active Low Select SSL0 signal polarity.

Slave Select Polarity(SSL1) Active Low Select SSL1 signal polarity.

Slave Select Polarity(SSL2) Active Low Select SSL2 signal polarity.

Slave Select Polarity(SSL3) Active Low Select SSL3 signal polarity.

Select Loopback1 Normal Select loopback1.

Select Loopback2 Normal Select loopback2.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 566 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Configuring the Wi-Fi Framework Module

Enable MOSI Idle State Disable Select MOSI idle fixed value and
selection.

MOSI Idle State MOSI Low Select mosi idle fixed value and
selection.

Enable Parity Disable Enable/disable parity.

Parity Mode Parity Even Select parity.

Select SSL(Slave Select) SSL0 Select which slave to use;
0-SSL0; 1-SSL1; 2-SSL2; 3-SSL3.

Select SSL Level After Transfer SSL Level Do Not Keep Select SSL level after transfer
completion; 0-negate; 1-keep.

Clock Delay Enable Clock Delay Disable Clock delay enable selection.

Clock Delay Count Clock Delay 1 RSPCK Clock delay count selection.

SSL Negation Delay Enable Negation Delay Disable SSL negation delay enable
selection.

Negation Delay Count Negation Delay 1 RSPCK Negation delay count selection.

Next Access Delay Enable Next Access Delay Disable Next access delay enable
selection.

Next Access Delay Count Next Access Delay 1 RSPCK Next access delay count
selection.

Receive Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Receive interrupt priority
selection.

Transmit Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Transmit end interrupt priority
selection.

Error Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Error interrupt priority
selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SPI0 TXI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 567 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Configuring the Wi-Fi Framework Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte, 2 Bytes, 4 Bytes

Default: 2 Bytes

Transfer size selection.
Note: For WiFi GT202 module,
this property should be set to 1
Byte.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SPI0 TXI Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SPI0 RXI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 568 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Configuring the Wi-Fi Framework Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_transfer1 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte, 2 Bytes, 4 Bytes

Default: 2 Bytes

Transfer size selection.
Note: For WiFi GT202 module,
this property should be set to 1
Byte.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SPI0 RXI Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the SPI HAL Module on r_sci_spi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 569 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Configuring the Wi-Fi Framework Module

Name g_spi0 Module name.

Channel 0 SCI or SPI Channel number to
which the device has been
connected.

Operating Mode Master Configure as a Master or Slave
device.

Note: Current version of SSP
supports only SPI Master mode.

Clock Phase Data sampling on even edge,
data variation on odd edge

Data sampling on odd or even
clock edge.

Clock Polarity High when idle Clock level when idle.

Mode Fault Error Disable Indicates Mode fault error
(master/slave conflict) flag.

Bit Order MSB First Select transmit order MSB/LSB
first.

Bitrate 100000 Transmission or reception rate.
Bits per second.

Bit Rate Modulation Enable Enable, Disable

Default: Enable

Bitrate Modulation Function
enable or disable.

Callback NULL Optional Call back function
pointer.

Receive Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Bitrate Modulation Function
enable or disable.

Note: This is applicable only for
SCI SPI.

Transmit Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Transmit end interrupt priority
selection.

Error Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Error interrupt priority
selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 570 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Configuring the Wi-Fi Framework Module

different default values and available configuration settings.

Configuration Settings for the Transfer Driver on Event SCI0 TXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SCI0 TXI Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 571 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Configuring the Wi-Fi Framework Module

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer1 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SCI0 RXI Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the External IRQ Driver on r_icu

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 572 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Configuring the Wi-Fi Framework Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter checking setting
enables or disables the addition
of parameter checking code.

Name g_external_irq0 Module name.

Channel 0 Specifies the hardware IRQ
channel used.

Trigger Falling Selection for trigger event
mode

Digital Filtering Disabled Digital filter enable/disable.

Digital Filtering Sample Clock
(Only valid when Digital
Filtering is Enabled)

PCKL/64 Sets noise filter sampling
period.

Interrupt enabled after
initialization

TRUE Determines if the interrupt is
enabled immediately after
initialization.

Callback custom_hw_irq_isr A user callback function can be
registered in
external_irq_api_t::open. If this
callback function is provided, it
is called from the interrupt
service routine (ISR) each time
the IRQn triggers.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Interrupt priority selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.
Most of the property settings for modules are fairly intuitive and usually can be determined by inspection of the
associated properties window from the SSP configurator.

Wi-Fi Framework Module Clock Configuration

The Wi-Fi Framework module uses the clocks required for the specific selections of the lower-level
modules (such as the SPI).

Wi-Fi Framework Module Pin Configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 573 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Configuring the Wi-Fi Framework Module

The Wi-Fi Framework module uses input and output pins depending on the selections of the low-level
modules (such as the SPI or the IRQ).

4.1.28.6 Using the Wi-Fi Framework Module in an Application

The following description is a high-level overview of some typical Wi-Fi use cases. A more detailed
description and a working application project (which is too lengthy to include in this document), is
available on the Renesas web site. Just search for the associated application note document number,
r11an0226eu, in the top page search bar on www.Renesas.com. It is highly recommended that you
use the application note to augment the summary descriptions found in this document.

Each of the Wi-Fi framework implementations are treated differently in a target application. The
typical control flow for initialization, packet transmission using NetX/NetX Duo, packet reception
using NetX/NetX Duo and using an on-chip networking stack are of particular interest. Example flow
diagrams for some typical implementations of these functions are shown as follows:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 574 / 5,198

http://www.Renesas.com

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Using the Wi-Fi Framework Module in an Application

Figure 223: Application Control Flow using Wi-Fi Module Initialization

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 575 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Using the Wi-Fi Framework Module in an Application

Figure 224: Application Control Flow Performing Packet Transmission using NetX

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 576 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Using the Wi-Fi Framework Module in an Application

Figure 225: Application Control Flow Receiving Packets using NetX

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 577 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi Framework > Using the Wi-Fi Framework Module in an Application

Figure 226: Application Control Flow using the On-Chip Networking Stack

 Wi-Fi WPS Connection Methods

Flow diagrams for implementations of WPS connections for an application in both Station and AP
modes for PIN and Button based connections are available in a Knowledge Base article here:
https://en-support.renesas.com/knowledgeBase/18380440

4.1.29 Wi-Fi QCA4010 Framework

4.1.29.1 Wi-Fi QCA4010 Framework Introduction

The SX-ULPGN is a low-power, compact IEEE 802.11b/g/n 2.4GHz 1x1 Wireless LAN module equipped
with the Qualcomm® QCA4010 Wireless SOC.

The Wi-Fi QCA4010 framework provides a high-level API for configuring and provisioning Silex
QCA4010 ULPGN module as well as perform TCP and UDP data transfers with on-chip networking
capability.

Wi-Fi QCA4010 Framework Module Features

Provides high-level APIs to configure and provision a SX-ULPGN Wi-Fi module.
Provides three different implementations for:

A Wi-Fi device driver stack using the sf_wifi_qca4010 framework.
An on-chip stack using the sf_wifi_qca4010_onchip_stack framework.
A socket stack using the sf_wifi_qca4010_socket framework.

Provides a socket interface to create socket-based applications with the On-chip TCP/UDP.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 578 / 5,198

https://en-support.renesas.com/knowledgeBase/18380440

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > Wi-Fi QCA4010 Framework Introduction

Figure 227: Wi-Fi QCA4010 Framework Module Block Diagram

Note
 The On-Chip Stack on qca4010 Wi-Fi Framework, qca4010 Wi-Fi Device Driver on sf_wifi_qca4010 can be used
as a lower-level implementation of the Socket Framework or on its own.

4.1.29.2 SF WIFI QCA4010 Framework APIs Overview

The QCA4010 Wi-Fi Framework provides APIs for features such as scanning, provisioning with access
points, initialization of access point with different security types (WPA2, WPA, WEP, Open),
enabling/disabling DHCP server in AP mode, sending AT commands directly to wifi module and obtain
the response, creation of TCP and UDP sockets, TCP and UDP data transfers.

Complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

Wi-Fi QCA4010 APIs

Wi-Fi QCA4010 APIs

API Name Example API call and description

open g_sf_wifi_qca4010.p_api->open(g_sf_wifi_qca401
0.p_ctrl, g_sf_wifi_qca4010.p_cfg);
Open lower level driver of Wi-Fi framework.

close g_sf_wifi_qca4010.p_api->close(g_sf_wifi_qca401
0.p_ctrl);
Close lower level driver of Wi-Fi framework.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 579 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > SF WIFI QCA4010 Framework APIs Overview

provisioningSet g_sf_wifi_qca4010.p_api->provisioningSet(g_sf_
wifi_qca4010.p_ctrl, &provisioning_info);
Provision/Connect to Access Point or Initiate an
access point with information provided by user
such as mode (AP/station), channel, SSID,
security type (WPA2/WPA/WEP/Open), WEP key
index, encryption type(TKIP/CCMP),
passphrase/key.

wifiStatusGet g_sf_wifi_qca4010.p_api->wifiStatusGet(g_sf_wifi
_qca4010.p_ctrl, &wifi_status);
Get the status of connected or Initiated Access
Point.

scan g_sf_wifi_qca4010.p_api->scan(g_sf_wifi_qca401
0.p_ctrl, scan_result, scan_count);
San for available access points.

versionGet g_sf_wifi_qca4010.p_api->versionGet(&version);
Get the version based on compile time macros.

CommandSend g_sf_wifi_qca4010.p_api->CommandSend(g_sf_w
ifi_qca4010.p_ctrl, &cmd, &resp, timeout);
Send AT command directly to Wifi module and
obtain the response.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.
For provisioningSet API, user has to provide information about the access point such as SSID, security type,
Key(Password), encryption type, channel and mode. SSID and passphrase cannot contain commas. This is a
current limitation of Silex module firmware.

Wi-Fi QCA4010 On chip Stack APIs

Wi-Fi QCA4010 On chip Stack APIs

API Name Example API call and description

open g_sf_wifi_qca4010_onchip_stack.p_api->open(g_
sf_wifi_qca4010_onchip_stack.p_ctrl,
g_sf_wifi_qca4010_onchip_stack.p_cfg);
Open on-chip stack layer of Wi-Fi framework.

close g_sf_wifi_qca4010_onchip_stack.p_api->close(g_
sf_wifi_qca4010_onchip_stack.p_ctrl);
Close on-chip stack layer of Wi-Fi framework.

ipAddressCfg g_sf_wifi_qca4010_onchip_stack.p_api->ipAddres
sCfg(g_sf_wifi_qca4010_onchip_stack.p_ctrl,
&ip_cfg);
Set static IP or Enable DHCP based on user
input.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 580 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > SF WIFI QCA4010 Framework APIs Overview

ping g_sf_wifi_qca4010_onchip_stack.p_api->ping(g_s
f_wifi_qca4010_onchip_stack.p_ctrl, &ping_ip,0,
0);
Ping the IP address provided by the user.

versionGet g_sf_wifi_qca4010_onchip_stack.p_api->versionG
et(&version);
Get the version based on compile time macros.

dhcpServerStart g_sf_wifi_qca4010_onchip_stack.p_api->dhcpSer
verStart (g_sf_wifi_qca4010_onchip_stack.p_ctrl,
&start_ip, &end_ip)
Start DHCP server in AP mode.

dhcpServerStop g_sf_wifi_qca4010_onchip_stack.p_api->dhcpSer
verStop(g_sf_wifi_qca4010_onchip_stack.p_ctrl,
&start_ip, &end_ip)
Stop DHCP server in AP mode.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.
DHCP server has to be used in AP mode and not recommended to be used with station mode. User must set a
fixed/static IP address to the AP using the API 'ipAddressCfg' and then start DHCP server.

Wi-Fi QCA4010 Socket APIs

Wi-Fi QCA4010 Socket APIs

API Name Example API call and description

open g_sf_wifi_qca4010_socket.p_api->open(g_sf_wifi_
qca4010_socket.p_ctrl,
g_sf_wifi_qca4010_socket.p_cfg);
Open Socket layer of Wi-Fi Framework.

close g_sf_wifi_qca4010_socket.p_api->close(g_sf_wifi
_qca4010_socket.p_ctrl);
Close Socket layer of Wi-Fi Framework.

versionGet g_sf_wifi_qca4010_socket.p_api->versionGet(&v
ersion);
Get the version based on compile time macros.

socketCreate g_sf_wifi_qca4010_socket.p_api->socketCreate(g
_sf_wifi_qca4010_socket.p_ctrl, 0,
SOCK_STREAM, AF_INET);
Create TCP/UDP socket

socketConnect g_sf_wifi_qca4010_socket.p_api->socketConnect
(g_sf_wifi_qca4010_socket.p_ctrl, 0,
(structsockaddr*)&sock_addr,addrlen);
Connect TCP/UDP client to Server.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 581 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > SF WIFI QCA4010 Framework APIs Overview

socketDisconnect g_sf_wifi_qca4010_socket.p_api->socketDisconn
ect(g_sf_wifi_qca4010_socket.p_ctrl, 0);
Disconnect socket connection and close the
network.

socketSend g_sf_wifi_qca4010_socket.p_api->socketSend(g_
sf_wifi_qca4010_socket.p_ctrl, 0,
(uint8_t*)&data, length, 1000);
Send data from TCP/UDP socket.

socketRecv g_sf_wifi_qca4010_socket.p_api->socketRecv(g_
sf_wifi_qca4010_socket.p_ctrl, 0,
(uint8_t*)&data, 1024, 1000);
Receive datafromTCP/UDPserver.

socketStatusGet g_sf_wifi_qca4010_socket.p_api->socketStatusG
et(g_sf_wifi_qca4010_socket.p_ctrl, 0, (uint32_t
*)&socket_status);
Check the status of socket created.

Note
 For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.
For socketCreate API, user has to pass parameter to select TCP or UDP socket, family (IPV4). The parameter
socket number should be '0' for single socket and while creating multiple sockets, socket number of first socket has
to be '0' and increments by 1 for the next socket.
For socketConnect API, user has to pass Server IP address, family (IPV4), Port number

Wi-Fi QCA4010 Framework Status Return Values

Wi-Fi QCA4010 Status Return Values

 Name Description

SSP_SUCCESS API call successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_WIFI_FAILED API call not successful.

SSP_ERR_ASSERTION An input pointer is Null

SSP_ERR_ALREADY_OPEN Unit is already opened

SSP_ERR_WIFI_INIT_FAILED Driver initialization failed.

SSP_ERR_IN_USE Module is already in use

SSP_ERR_NOT_OPEN Unit is not open

SSP_ERR_INTERNAL Internal error occurred

SSP_ERR_TIMEOUT Timeout error

SSP_ERR_UNSUPPORTED Functionality (IPV6) not supported

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 582 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > SF WIFI QCA4010 Framework APIs Overview

associated module for a definition of all relevant status return values.

4.1.29.3 SF_WIFI_QCA4010 Framework Module Operational Overview

The Wi-Fi framework provides a high-level interface for the application to configure the Wi-Fi
module, provision the Wi-Fi module in station or AP mode with different security types and perform
TCP/UDP data transfers in server and client mode.

The following figure provides an overview of the QCA4010 Wi-Fi framework layered architecture.

Figure 228: Wi-Fi QCA4010 Framework Module Stack Implementation

Socket stack using the sf_wifi_qca4010_socket framework provides APIs to create, connect
TCP/UDP sockets and perform data send and receive operations in client/server mode.
On-chip stack using the sf_wifi_qca4010_onchip_stack framework provides APIs to configure
static IP or enable DHCP, ping, Enable/Disable DHCP server.
Wi-Fi device driver stack using the sf_wifi_qca4010 framework provides APIs to initialize Wifi
module, provision the module in station or AP mode, scan for available access points, get

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 583 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > SF_WIFI_QCA4010 Framework Module Operational Overview

the status of connected or initiated access point, send AT commands directly to Wifi
module.

Note
 The On-Chip Stack on qca4010 Wi-Fi Framework, qca4010 Wi-Fi Device Driver on sf_wifi_qca4010 can be used
as a lower-level implementation of the Socket Framework or on its own.

SF_WIFI_QCA4010 Framework Module Important Operational notes and Limitations

SF_WIFI_QCA4010 Framework Module Operational Notes

Operational Overview

SF_WIFI_QCA4010 Framework is used to:

1. Scan available access points.
2. Provision/connect to the desired access point with the information provided by user such as

SSID, security type, Key, encryption type, WEP key index, channel, Mode.
3. Initiate an access point with different security types (WPA2/WPA/WEP/Open).
4. Enable/Disable DHCP server in AP mode.
5. Obtain the status of connected access point or initiated AP such as SSID, Phy Mode, MAC

Address, Mode, Channel.
6. Set a static IP or enable DHCP and obtain information such as IP Address, NetMask and

Gateway of the Wifi Module.
7. Ping the server IP address.
8. Send custom AT commands directly to wifi module and obtain the response.
9. Create single/multiple TCP/UDP sockets.

10. Connect TCP/UDP client to the server and vice-versa.
11. Obtain the current socket status.
12. Send or receive data from TCP/UDP server/client.
13. Disconnect the socket and close the connection.

Note
Wi-Fi framework supports 1 or 2 UARTs for interfacing with the SX-ULPGN module. The second UART is
considered optional for single socket and is mandatory for multiple socket operation.
The number of sockets that can be created is based on the memory availability of board.
SX-ULPGN supports WEP security with WEP key as 10 or 26 digit hexadecimal string.

SF_WIFI_QCA4010 Framework Module limitations

Wi-Fi QCA4010 Framework limitations

1. The Wi-Fi Framework does not support the Synergy S1 board series due to memory constraints.

2. Only IPV4 protocol version is supported as majority of the Silex AT commands does not support
IPV6.

1. The SX-ULPGN chip does not support ethernet pass through. Hence NetX stack and related
services are not supported. Only on-chip stack and related APIs are supported.

4. WPS (PUSH/PIN) method of station provisioning is not supported.

SX-ULPGN Hardware limitations:

1. SX-ULPGN chip doesn't support ethernet pass through.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 584 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > SF_WIFI_QCA4010 Framework Module Operational Overview

2. WPA 2 Enterprise is not supported by SX-ULPGN.

3. SX-ULPGN supports only 2.4GHz frequency band, 5GHz band is not supported.

4.1.29.4 Including the SF_WIFI_QCA4010 Framework in an Application

This section describes how to include SF_WIFI_QCA4010 framework in an application using the
SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the sf_wifi_qca4010 Framework module to an application, simply add it to a thread using the
stacks selection sequence given in the following table. (The default name for the Wi-Fi
QCA4010 Framework module is g_sf_wifi_qca4010_socket. This name can be changed in the
associated Properties window.)

Wi-Fi QCA4010 Framework Module Selection Sequence

Resource ISDE tab Stack selection sequence

g_sf_wifi_qca4010_socket
Socket using qca4010 On-Chip
Stack on qca4010 Wi-Fi
Framework

Threads New Stack> Framework>
Networking> Wi-Fi>Socket
using qca4010 On-Chip Stack
on qca4010 Wi-Fi Framework

g_sf_wifi_qca4010_onchip_stack
 On-Chip Stack on qca4010 Wi-
Fi Framework

Threads New Stack> Framework>
Networking> Wi-Fi>On-Chip
Stack on qca4010 Wi-
Framework

g_sf_wifi_qca4010 qca4010 Wi-
Fi Device Driver on
sf_wifi_qca4010

Threads New Stack> Framework>
Networking> Wi-Fi>qca4010 Wi-
Fi Device Driver on
sf_wifi_qca4010

When the SF_WIFI_QCA4010 Framework is added to the thread stack as shown in the above figure,
the configurator automatically adds any needed lower-level module. Any modules needing
additional configuration information have the box text highlighted in Red (Here additional UART
driver has to be added by the user for multiple socket operations). Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they
need only be added once and can be used by multiple stacks. Modules with a Pink band can require
the selection of lower-level modules; these are either optional or recommended. (This is indicated in
the block with the inclusion of this text.) If the addition of lower-level modules is required, the
module description include Add in the text. Clicking on any Pink banded modules brings up the New
icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 585 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > Including the SF_WIFI_QCA4010 Framework in an Application

4.1.29.5 Configuring the Wi-Fi QCA4010 Framework

The Wi-Fi QCA4010 must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification.
Other properties are locked and not available for changes and are identified with a lock icon for the
locked property in the Properties window in the ISDE. This approach simplifies the configuration
process and makes it much less error-prone than previous manual approaches to configuration. The
available configuration settings and defaults for all the user-accessible properties are given in the
Properties tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for g_sf_socket0 on qca4010 Wi-Fi Framework

ISDE Property Value Description

Parameter checking BSP, Enabled, Disabled
Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Number of supported socket
instances

1 – 12
Default :1

Number of sockets to be
created.

Name g_sf_socket0 Name of upper level framework
layer.

Name of generated initialization
function

sf_socket_init0 Name of auto generated
function.

Auto Initialization Enable, Disable
Default: Enable

Selects if code for auto-
initialization to be included in
the build.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 586 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > Configuring the Wi-Fi QCA4010 Framework

Configuration Settings for g_sf_wifi_onchip_stack0 on Wi-Fi Framework

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_sf_wifi_onchip_stack0 Name of on-chip stack layer.

Configuration Settings for g_sf_wifi_qca40100 on qca4010 Wi-Fi Framework

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Selects if code for parameter
checking is to be included in
the build.

AT command Retry count 5 – 255
Default: 10

Number of retries of issuing AT
command in case of failure in
response.

Hardware Mode 802.11b, 802.11g, 802.11n
Default: 802.11n

Hardware mode of Wi-Fi
Module.

Reset Pin Default: IOPORT_PORT_10_PIN_
05

Wi-Fi module reset IO pin
selection.

Queue size in bytes 256 - 512
Default: 256

UART reception queue size.

Response Buffer size 256 - 4096
Default: 2048

Response Buffer size selection.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Family. Other MCUs may have
different default values and available configuration settings.

Configuring the Wi-Fi QCA4010 Framework Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower-level drivers.
Notice that some of the configuration properties must be set to a certain value for proper framework
operation and will be locked to prevent user modification. The following tables identify all the
settings within the properties section for the lower-level modules:

Configuration Settings for r_sci_uart driver

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 587 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > Configuring the Wi-Fi QCA4010 Framework

External RTS Operation Disable, Enable
Default: Disable

Enable an IOPORT pin to be
used as RTS signal. For RTS
functionality, set this
configuration parameter to
Enable and specify the
configuration Name of UART
callback function for the RTS
external pin control.

Reception Enable, Disable
Default: Enable

Enable or disable UART
reception for all UART channels
on SCI. Setting this
configuration parameter to
Disable reduces code size
because the portion of code for
UART reception is not compiled.
You cannot set this parameter
for individual UART channels.

Transmission Enable, Disable
Default: Enable

Enable or disable UART
transmission for all UART
channels on SCI. Setting this
configuration to Disable
reduces code size because the
portion of code for UART
transmission is not compiled.
However, you can only set this
configuration to Disable if no
other SCI channels which work
as UART ports are transmitting.

Parameter checking BSP, Enabled, Disabled
Default: BSP

Enable or disable parameter
error checking.

Name g_uart0 The name to be used for UART
on SCI module control block
instance. This name is also
used as the prefix of the other
variable instances.

Channel 0-9
Default : 0

SCI channel number.

Baud rate Default : 9600 Baud rate selection.

Data bits 7 bits, 8, bits, 9 bits
Default: 8 bits

UART data bits.

Parity None, Odd, Even
Default: None

UART parity bits.

Stop bits 1 bit, 2 bits
Default: 1 bit

UART stop bits.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 588 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > Configuring the Wi-Fi QCA4010 Framework

CTS/RTS selection CTS (Note that RTS is available
when enabling External RTS
Operation mode which uses 1
GPIO pin), RTS (CTS is disabled)
Default: RTS (CTS is disabled)

Select CTS or RTS for
the CTSn/RTSn pin of SCI
channel n. The SCI hardware
supports either the CTS or the
RTS control signal on this pin
but not both. For an application
that uses both CTS and RTS,
select CTS for this configuration
parameter and enable the
configuration External RTS
Operation specifying the
configuration Name of UART
callback function for the RTS
external pin control.

Name of UART callback
function

sf_wifi_qca4010_serial_uart_call
back

UART callback to receive
data/AT command response.

Name of UART callback function
for the RTS external pin control
to be defined by the user

NULL Name must be a valid C
symbol.

Clock Source Internal Clock, External Clock
8x baudrate, External Clock
16x baudrate
Default: Internal Clock

Selection of the clock source to
be used in the baud-rate clock
generator block.

Baudrate Clock Output from
SCK pin

Enable, Disable
Default: Disable

Optional setting to output the
baud-rate clock on the SCKn pin
for the selected channel n.

Start bit detection Falling Edge, Low Level
Default: Falling Edge

Start bit detection mode in the
reception, usually set Falling
Edge to this configuration.

Noise Cancel Enable, Disable
Default: Disable

Enable the digital noise
cancellation on RXDn pin. The
digital noise filter block in SCI
consists of two-stage flip-flop
circuits. For details, refer to the
Noise cancellation section in
the Renesas Synergy hardware
manual.

Bit Rate Modulation Enable Enable, Disable
Default: Enable

Bit rate modulation enable
selection

Receive Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (CM4: valid, CM0+:
lowest- not valid if
using ThreadX), Priority 4:14
(CM4: valid, CM0+: invalid),
Priority 15 (CM4 lowest - not
valid if using ThreadX, CM0+:
invalid) Default: Disabled

Receive interrupt priority
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 589 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > Configuring the Wi-Fi QCA4010 Framework

Transmit Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (CM4: valid, CM0+:
lowest- not valid if
using ThreadX), Priority 4:14
(CM4: valid, CM0+: invalid),
Priority 15 (CM4 lowest - not
valid if using ThreadX, CM0+:
invalid)
Default: Disabled

Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (CM4: valid, CM0+:
lowest- not valid if
using ThreadX), Priority 4:14
(CM4: valid, CM0+: invalid),
Priority 15 (CM4 lowest - not
valid if using ThreadX, CM0+:
invalid) Default: Disabled

Transmit end interrupt priority
selection.

Error Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (CM4: valid, CM0+:
lowest- not valid if
using ThreadX), Priority 4:14
(CM4: valid, CM0+: invalid),
Priority 15 (CM4 lowest - not
valid if using ThreadX, CM0+:
invalid) Default: Disabled

Error interrupt priority
selection.

Baud rate Percent Error Value must be greater than 0.0
and less than 15.0
Default; 2.0

Maximum baud rate percent
error allowed in order for the
module to function

UART Communication Mode RS232, RS485
Default: RS232

UART communication mode
selection, usually it is RS232
mode

UART RS485 Communication
Mode

Half Duplex, Full Duplex
Default: Half duplex

UART RS485 communication
mode selection as half duplex
or full duplex

RS485 DE Port 00 to 11
Default: 09

Select the port number of
Driver Enable Pin

RS485 DE Pin 00 to 15
Default: 14

Select the pin number of Driver
Enable Pin

Note
Additional UART is mandatory for multiple socket operation and is optional for single socket operation.

Configuration of second UART driver instance is same as first UART instance which is described
above.

Note
 The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration for the Transfer Driver on r_dtc Event SCI0 TXI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 590 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > Configuring the Wi-Fi QCA4010 Framework

ISDE Property Value Description

Parameter Checking Enabled, Disabled
Default: Disabled

Selects if code for parameter
checking is to be included in
the build

Software Start Enabled, Disabled
Default: Disabled

Set start mode

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section setting

Name g_transfer0 Module name

Mode Normal Mode selection

Transfer Size 1 Bytes Transfer size selection

Destination Address Mode Fixed Destination address mode
selection

Source Address Mode Incremented Source address mode selection

Repeat Area (Unused in Normal
Mode)

Source Repeat area selection

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection

Destination Pointer NULL Destination pointer selection

Source Pointer NULL Source pointer selection

Number of Transfers 0 Number of transfers selection

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection

Activation Source (Must enable
IRQ)

Event SCI0 TXI Activation source selection

Auto Enable True, False Default: True Auto enable selection

Callback (Only valid with
Software start)

NULL Callback selection

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (CM4: valid, CM0+:
lowest- not valid if
using ThreadX), Priority 4:14
(CM4: valid, CM0+: invalid),
Priority 15 (CM4 lowest - not
valid if using ThreadX, CM0+:
invalid)
Default: Disabled

ELC Software Event interrupt
priority selection

Addition of DTC driver for reception is not recommended.

Note
The example values and defaults are for a project using the Synergy S7G2 MCU Family. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 591 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Framework Layer > Wi-Fi QCA4010 Framework > Configuring the Wi-Fi QCA4010 Framework

SF_WIFI_QCA4010 Framework Module Clock configuration

SF_WIFI_QCA4010 Framework has no specific clock configuration requirements.

SF_WIFI_QCA4010 Framework Module pin configuration

The SF_WIFI_QCA4010 Framework module uses input and output pins of the lower level UART driver.

4.1.29.6 Using the Wi-Fi QCA4010 Framework Module in an Application

Wi-Fi framework can be used to initialize access point (AP mode) or connect client to AP/router
(station mode)

The typical steps of using the Wi-Fi Framework in an application for station mode are:

1. Initialize the Wi-Fi module using sf_wifi_qca4010_socket_api_t::open API.
2. Scan for the available access points using sf_wifi_qca4010_api_t::scan API.
3. Connect to the desired access point using sf_wifi_qca4010_api_t::provisioningSet API. User

has to provide the information such as SSID, security type (WPA2/WPA/WEP/Open), Key,
Mode, Channel, encryption type, WEP key index of the access point to be connected.

4. After connection is successful, obtain the status of the connected AP using
sf_wifi_qca4010_api_t::wifiStatusGet API.

5. Configure IP address(static or Dynamic) using
sf_wifi_qca4010_onchip_stack_api_t::ipAddressCfg API.

6. Ping the server IP using sf_wifi_qca4010_onchip_stack_api_t::ping API.
7. After ping is successful, create and connect single/multiple TCP/UDP sockets in client or

server mode using sf_wifi_qca4010_socket_api_t::socketCreate and
sf_wifi_qca4010_socket_api_t::socketConnect API’s.

8. Send data from TCP/UDP client to server using sf_wifi_qca4010_socket_api_t::socketSend
API.

9. Receive data from TCP/UDP server using sf_wifi_qca4010_socket_api_t::socketRecv API.
10. Disconnect single/multiple sockets using sf_wifi_qca4010_socket_api_t::socketDisconnect

API to close the network connection.
11. De-Initialize the Wi-Fi module using sf_wifi_qca4010_socket_api_t::close API.

The typical steps of using the Wi-Fi Framework in an application for AP mode are:

1. Initialize the Wi-Fi module using sf_wifi_qca4010_socket_api_t::open API.
2. Initialize/provision access point using sf_wifi_qca4010_api_t::provisioningSet API. User has

to provide the information such as SSID, security type (WPA2/WPA/WEP/Open), Key, Mode,
Channel, encryption type, WEP key index to the access point.

3. Set a static IP address using sf_wifi_qca4010_onchip_stack_api_t::ipAddressCfg API.
4. Enable DHCP server using sf_wifi_qca4010_onchip_stack_api_t::dhcpServerStart API by

specifying start and end IP address.
5. Once the above mentioned steps are successful, client can connect to the initiated access

point and obtain the IP address in between the range set by DHCP server of AP.
6. After connection is successful, user can perform operations such as ping, TCP/UDP data

transfers.

Note
SX-ULPGN supports WEP security with either 10 or 26 digit hexadecimal string.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 592 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer

4.2 HAL Layer

Analog Connection Driver on r_analog_connect

Comparator Driver on r_acmphs

Comparator Driver on r_acmplp

ADC Driver

Timer Driver on r_agt

AGT Input Capture Driver on r_agt

Clock Accurate Circuit Driver

CAN Driver

CGC Driver

CTSU v2 Driver

CRC Driver

DAC Driver

DAC8 Driver

Display Driver

Data Operation Circuit Driver

Transfer Driver on r_dmac

Transfer Driver on r_dtc

ELC Driver

External IRQ Driver

Flash Driver

FMI Driver

Timer Driver on r_gpt

I2C SCI Driver

I2C Master Driver

I2C Slave Driver

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 593 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer

I2S Driver

GPT Input Capture on r_gpt Driver

I/O Port Driver

Watchdog Driver on r_iwdt

JPEG Decode Driver

JPEG Encode Driver

Key Matrix Driver

Low Power Modes Driver on r_lpmv2

Low Voltage Detection Driver

OPAMP Driver

PDC Driver

PTP Driver on r_ptp

PTPEDMAC Driver on r_ptpedmac

QSPI Driver

RTC Driver

SCE Crypto Driver

SDADC Driver

SD/MMC Driver and SDIO Driver

Segment LCD Driver

SCI SPI Driver

SPI Driver

UART Driver

Watchdog Driver

4.2.1 Analog Connection Driver on r_analog_connect

4.2.1.1 Analog Connection HAL Module Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 594 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Analog Connection Driver on r_analog_connect > Analog Connection HAL Module Introduction

The analog connection HAL module implements the analog connect API on r_analog_connect to
simplify the connection of the analog components that comprise the analog front end on select
Synergy MCUs. Previously these connections needed to be made using low-level register-based
configuration instead of using the Synergy configurator. The analog connection module supports the
OPAMP (operational amplifier), ACMPHS (high speed analog comparator), and ACMPLP (low power
analog comparator) peripherals, and their allowed interconnections, available on the Synergy
microcontroller hardware.

Analog Connection HAL Module Features

Simplifies the interconnection of internal analog connections
Selection of interconnects is limited to those available to the target MCU, simplifying the
configuration process and eliminating common configuration errors
Uses the time saving and intuitive SSP configuration GUI

Figure 229: Analog Connection HAL Module Block Diagram

4.2.1.2 Analog Connection HAL Module APIs Overview

The Analog Connection HAL module defines API functions for making single or multiple connections.
A complete list of the available APIs, an example API call and a short description of each can be
found in the following table. A table of status return values follows the API summary table.

Analog Connection HAL Module API Summary

Function Name Example API Call and Description

init g_analog_connect.p_api
->init(g_analog_connect.p_cfg);
Initialize the analog connection module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 595 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Analog Connection Driver on r_analog_connect > Analog Connection HAL Module APIs Overview

connect g_analog_connect.p_api ->connect(ANALOG_CO
NNECT_OPAMP0_AMPP_TO_PORT0_P013);
Make connection between specified analog
module input and output using a connection
option enum. Enum definitions are explained in
the operational notes later in this document.

connectMultiple g_analog_connect.p_api->connectMultiple(&con
nection_table);
Make all connection between specified analog
module input and output as specified in the
connection table analog_connect_table_t.

versionGet g_analog_connect.p_api ->versionGet
(&version);
Get the version information of the underlying
driver.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Analog Connection HAL Module Status Return Values

Name Description

SSP_SUCCESS Function completed successfully

SSP_ERR_ASSERTION Data table pointer is NULL or size is 0

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.1.3 Analog Connection HAL Module Operational Overview

The analog connection HAL module controls the internal analog connections for the OPAMP, ACMPLP,
and ACMPHS peripherals on a Synergy microcontroller. It directly controls the hardware without
using any RTOS elements and provides convenient APIs to simplify development.

Analog Connection HAL Module Important Operational Notes and Limitations

Analog Connection HAL Module Operational Notes

The following operational notes describe the available connections, the enumeration format used to
describe connections, general notes and module specific notes on operations important when using
the analog connect module in an application.

Available Connections

The list of connection options is unique for each MCU. This list is found in the analog_connect_t
enumeration in synergy\ssp\src\bsp\mcu\<mcu_name>\bsp_analog.h, where <mcu_name> is the
name of the MCU series, for example S7G2.

You can find the descriptions of the analog_connect_t enumeration for each MCU as follows:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 596 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Analog Connection Driver on r_analog_connect > Analog Connection HAL Module Operational Overview

analog_connect_t for S124
analog_connect_t for S128
analog_connect_t for S1JA
analog_connect_t for S3A1
analog_connect_t for S3D3
analog_connect_t for S3A6
analog_connect_t for S3A7
analog_connect_t for S5D5
analog_connect_t for S5D9
analog_connect_t for S7G2

The connection enum format is described below:

ANALOG_CONNECT_<NODE>_TO_<NODE> is used to make a connection
<NODE> can be further divided into <PERIPHERAL><CHANNEL>_<SIGNAL>
<PERIPHERAL> is the peripheral name: ACMPHS, ACMPLP, or OPAMP
<CHANNEL> is the channel number
<SIGNAL> is the signal name. The signal name corresponds to the signal name in
the hardware manual

ANALOG_CONNECT_<NODE>_BREAK is used to break all connections to a node. This option
is currently available for OPAMP connections only.

The connection options are grouped by peripheral, channel, and signal in the analog_connect_t
enumeration. All signals should be configured for each peripheral/channel combination used. For
example, if an application uses ACMPHS channel 0, then exactly one connection must be made for
each node that begins with ACMPHS0. Exactly one connection must be made for ACMPHS0_IVREF
and ACMPHS0_IVCMP. Likewise, if an application uses OPAMP channel 0, then a connection must be
made for OPAMP0_AMPP, OPAMP0_AMPM, and OPAMP0_AMPO.

General Notes Regarding Connections

The analog connect module makes internal connections only. If an application interfaces to analog
signals external to the MCU, it will also require pin configurations on the Pins tab in the Synergy
Configuration Tool.

Calling analog_connect_api_t::connect or analog_connect_api_t::connectMultiple overwrites any
existing connection and replaces it with the new connection.

The APIs in this module have no prerequisite. They can be called before or after the associated
driver's comparator_api_t::open() or opamp_api_t::open(). If the analog_connect_api_t::connect or
analog_connect_api_t::connectMultiple APIs are called before the open() of the associated driver, the
module stop bit for the associated peripheral channel is cleared.

The analog_connect_api_t::connectMultiple API is most efficient when connections for the same
peripheral/channel combination are grouped together in the list of connections.

Connection Aliases

Not all connection aliases are listed in the analog_connect_t enumeration. For example, take the
S1JA connection to connect the IVCMP input of the ACMPHS comparator to P013
(ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013). P013 can be used as the DAC8 channel 0
output. If P013 is used as the DAC8 channel 0 output, then making this connection connects the
DAC8 channel 0 output to the ACMPHS0 IVCMP input. Refer to the Synergy Configuration tool Pins
tab or the hardware manual I/O Ports chapter, "Peripheral Select Settings for each Product" section
for pin aliasing options.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 597 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Analog Connection Driver on r_analog_connect > Analog Connection HAL Module Operational Overview

Multiple Connection Table

The table used to make multiple connections includes the number of connections followed by the list
of connections. The multiple connection table structure follows the below definition:

typedef struct st_analog_connect_table_t

{

uint32_tnumber_of_connections;

analog_connect_tconst*p_connection_table;

} analog_connect_table_t;

ACMPLP Connections Operational Notes

ACMPLP connections should only be made before comparator_api_t::outputEnable() is called. To
modify connections, call comparator_api_t::close() first.

On some MCUs, the ACMPLP peripheral has 2 internal nodes that can be configured. They are called
ACMPLP0_IVREF0 and ACMPLP1_IVREF1. These nodes must be configured exactly once if they are
used. Two enums must be used to make connections involving these nodes. For example, to
connect ACMPLP channel 0 to the output of DAC8 channel 0, the following two connections must be
made:

To connect the - input of the comparator (IVREF) to the internal node IVREF0:
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0
To connect the internal node IVREF0 to the output of DAC8 channel 0:
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA

The node ACMPLP0_IVREF0 can be connected to the IVREF signal of either channel of the ACMPLP
(ACMPLP0_IVREF or ACMPLP1_IVREF). The user should be aware when modifying this node that it
may affect the setting of the other channel.

ACMPHS Connections Operational Notes

On MCUs that have an ADC PGA, the associated ADC PGA must be configured or bypassed to use
IVCMP2 as the IVCMP input to the comparator. If the associated ADC unit is open, the PGA is
bypassed. To enable the ADC PGA or bypass the PGA without opening the ADC driver, follow the
instructions in the Usage Notes section of the ADC chapter of the hardware manual. This chapter
typically starts with "Available Functions and Register Settings of AN000 to AN002".

ACMPHS connections can be reconfigured at runtime. If an ACMPHS connection is reconfigured after
comparator_api_t::outputEnable() is called, the comparator will be disabled before reconfiguring the
connection. If the comparator was already enabled, it will be re-enabled after a stabilization wait
time of 48 ICLK.

OPAMP Connections Operational Notes

OPAMP connections are only supported on MCUs that have AMPnPS, AMPnMS, and AMPnOS
registers. OPAMP connections are only listed in the analog_connect_t enumeration if they exist.

OPAMP connections require a change pump to be enabled if AVCC0 < 2.7 V. Make sure the setting

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 598 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Analog Connection Driver on r_analog_connect > Analog Connection HAL Module Operational Overview

for MCU Analog Power Supply AVCC0 (mV) on the BSP tab of the Synergy Configuration tool is
correct if OPAMP connections are used. If AVCC0 < 2.7 V, the MOCO must also be operating to use
the charge pump. When using the charge pump for the amplifier:

Turn on no more than a total of 5 connections for OPAMP0.
Turn on no more than a total of 5 connections for OPAMP1.
Turn on no more than a total of 2 connections for OPAMP2.

OPAMP connections can be reconfigured at runtime.

OPAMP connections can be combined by OR'ing connections for the same node. Connection
enumerations that start with the same value up to the '_TO_' part of the enum name
(ANALOG_CONNECT_<NODE>_TO_) can be OR'ed together. See the paragraph above regarding
charge pump operation for limits on the total number of connections that can be made when the
charge pump is operating. Any number of connections can be made if AVCC0 >= 2.7 V.

Warning
NEVER combine connections for different nodes. The analog connect module will not
behave as expected if connections for different nodes are combined.

An illustration of combining connections is shown in the code snippet below:

/* Connect OPAMP0 AMP+ to the output of DAC12 channel 0 and P013. These connections

can be combined since both start with ANALOG_CONNECT_OPAMP0_AMPP_TO_. */

g_analog_connect.p_api->connect(ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_DA |

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P013);

/* Connect OPAMP0 AMP+ to just P013 (this disconnects the DAC12 channel 0 input). */

g_analog_connect.p_api->connect(ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P013);

If a connection must be broken before a new connection is made, use the _BREAK enumeration. This
is illustrated by the code snippet that follows.

/* Connect OPAMP1 AMP+ to the output of DAC12 channel 0 and P002. */

g_analog_connect.p_api->connect(ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P002);

/* Break all connections to OPAMP1 AMP+ (in this case the connection to P002), then

establish a new connection to P003. */

g_analog_connect.p_api->connect(ANALOG_CONNECT_OPAMP1_AMPP_BREAK);

g_analog_connect.p_api->connect(ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P003);

Analog Connection HAL Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 599 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Analog Connection Driver on r_analog_connect > Including the Analog Connection HAL Module in an Application

4.2.1.4 Including the Analog Connection HAL Module in an Application

This section describes how to include the analog connection HAL Module in an application using the
SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the analog connection HAL module to an application, simply add it to a thread using the
stacks selection sequence given in the following table. (The default name for the analog connect
module is g_analog_connect0. This name can be changed in the associated Properties window.)

Analog Connection HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_analog_connect0 Analog
Connection Driver on
r_analog_connect

Threads New Stack> Driver>
Analog> Analog
ConnectionDriver on
r_analog_connect<MCU>

When the Analog Connection Driver on r_analog_connect is added to the thread stack as shown in
the following figure, the configurator automatically adds any needed lower‑level modules. Any
modules needing additional configuration information have the box text highlighted in Red. Modules
with a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 230: Analog Connection HAL Module Stack

4.2.1.5 Configuring the Analog Connection HAL Module

The Analog Connection HAL Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 600 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Analog Connection Driver on r_analog_connect > Configuring the Analog Connection HAL Module

You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Analog Connection HAL Module on r_analog_connect

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_analog_connect0 Module name.

Connection Table Name g_analog_connect0_table This connection table name is
passed to the connectMultiple
API function to make all
configured connections.

ACMPHS0 IVCMP No Connection, PORT5 P500,
PORT0 P013, PORT1 P100

Default: No Connection

Select the connection for
ACMPHS0 IVCMP.

ACMHS0 IVREF No Connection, PORT5 P501,
PORT0 P014, PORT1 P101,
DAC80 DA, DAC120 DA,
Analog0 VREF

Default: No Connection

Select the connection for
ACMPHS0 IVREF.

ACMPL0 IVREF0 No Connection, PORT1 P109,
DAC80 DA

Default: No Connection

Select the connection for
ACMPL0 IVREF0.

ACMPLP1 IVREF1 No Connection, PORT1 P110,
DAC81 DA

Default: No Connection

Select the connection for
ACMPLP1 IVREF1.

ACMPLP0 IVCMP No Connection, PORT4 P400,
OPAMP0 AMPO

Default: No Connection

Select the connection for
ACMPLP0 IVCMP.

ACMPLP0 IVREF No Connection, ANALOG0 VREF,
ACMPLP0 IVREF0

Default: No Connection

Select the connection for
ACMPLP0 IVREF.

ACMPLP1 IVCMP No Connection, PORT4 P408,
OPAMP1 AMPO

Default: No Connection

Select the connection for
ACMPLP1 IVCMP.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 601 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Analog Connection Driver on r_analog_connect > Configuring the Analog Connection HAL Module

ACMPLP1 IVREF No Connection, ANALOG0 VREF,
ACMPLP0 IVREF0, ACMPLP1
IVREF1

Default: No Connection

Select the connection for
ACMPLP1 VREF.

OPAMP0 AMPO No Connection, PORT0 P014,
PORT0 P013, PORT0 P003,
PORT0 P002

Default: No Connection

Select the connection for
OAMP0 AMPO.

OPAMP0 AMPM No Connection, PORT5 P501,
PORT5 500, PORT0 P014,
PORT0 P113, PORT0 P003,
OPAMP0 AMPO

Default: No Connection

Select the connection for
OPAMP0 AMPM.

OPAMP0 AMPP No Connection, PORT5 P500,
PORT0 P014, PORT0 P013,
PORT0 P002, DAC120 DA

Default: No Connection

Select the connection for
OPAMP0 AMPP.

OPAMP1 AMPM No Connection, PORT0 P014,
OPAMP1 AMPO

Default: No Connection

Select the connection for
OPAMP1 AMPM.

OPAMP1 AMPP No Connection, PORT0 P014,
PORT0 P013, PORT0 P003,
PORT0 P002, DAC80 DA

Default: No Connection

Select the connection for
OPAMP1 AMPP.

OPAMP2 AMPM No Connection, PORT0 P003,
OPAMP2 AMPO

Default: No Connection

Select the connection for
OPAMP2 AMPM.

OPAMP2 AMPP No Connection, PORT0 P003,
PORT0 P002, DAC81 DA

Default: No Connection

Select the connection for
OPAMP2 AMPP.

Note
The example settings and defaults are for a project using the Synergy S1JA MCU Group. Other MCUs may have
different default values and available configuration settings.

Analog Connection HAL Module Clock Configuration

The Analog Connection HAL module needs no clock. Clocks are supplied by the individual analog
modules.

Analog Connection HAL Module Pin Configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 602 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Analog Connection Driver on r_analog_connect > Configuring the Analog Connection HAL Module

The Analog Connection HAL module has no pins to configure. They are configured by the individual
analog modules as needed.

4.2.1.6 Using the Analog Connection HAL Module in an Application

Once the analog connect module has been configured and the files generated, it is ready to be used
in an application.

The typical steps in using the analog connect HAL module in an application are:

1. Initialize the analog connect module using analog_connect_api_t::init.
2. If analog connections are selected in the configurator, a connection table with a user

configurable name (Connection Table Name) is generated. To make the configured
connections with a module named g_analog_connect0 and a connection table named
g_analog_connect0_tabl, call:
g_analog_connect0.p_api->connectMultiple(&g_analog_connect0_table);

3. Before calling opamp_api_t::start or comparator_api_t::outputEnable, ensure that all
required analog connections are set correctly using analog_connect_api_t::connect or
analog_connect_api_t::connectMultiple.

4. [Optional] Connections for ACMPHS or OPAMP can be reconfigured at runtime using
analog_connect_api_t::connect or analog_connect_api_t::connectMultiple. To reconfigure
connections for ACMPLP after comparator_api_t::outputEnable has been called, first call
comparator_api_t::close().

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 231: Flow Diagram of a Typical Analog Connect HAL Module Application

4.2.2 Comparator Driver on r_acmphs

4.2.2.1 ACMPHS HAL Module Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 603 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmphs > ACMPHS HAL Module Introduction

The ACMPHS HAL module implements the comparator API for signal processing applications and
supports the ACMPHS peripheral available on the Synergy microcontroller hardware. A callback is
available to signal the user application on transition events.

ACMPHS HAL Module Features

Callback on rising edge, falling edge or both
Configurable debounce filter
Option to include comparator output on VCOUT pin

Figure 232: ACMPHS HAL Module Block Diagram

ACMPHS Hardware support details

The following hardware features are, or are not, supported by the SSP for the ACMPHS:

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 604 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmphs > ACMPHS HAL Module Introduction

MCU
Group

Query HS
Comparator

result

Callback on rising
edge, falling
edge, or both

Configurable
debounce filter

Option to include
comparator

output on VCOUT

S124 N/A N/A N/A N/A

S128 N/A N/A N/A N/A

S1JA ✓ ✓ ✓ ✓

S3A1 N/A N/A N/A N/A

S3A3 N/A N/A N/A N/A

S3A6 N/A N/A N/A N/A

S3A7 ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓

4.2.2.2 ACMPHS HAL Module APIs Overview

The ACMPHS HAL module defines APIs to open, enable, get status and close the module. A complete
list of the available APIs, an example API call and a short description of each can be found in the
following table. A table of status return values follows the API summary table.

ACMPHS HAL Module API Summary

Function Name Example API Call and Description

open g_comparator0.p_api->open(g_comparator0.p_ct
rl, g_comparator0.p_cfg);
Configures the comparator and starts operation.
Callbacks and pin output are not active until
outputEnable() is called. outputEnable() should
be called after the output has stabilized.

outputEnable g_comparator0.p_api->outputEnable(g_compara
tor0.p_ctrl);
Enables the comparator output, which can be
polled using statusGet(). Also enables pin output
and interrupts as configured during open().

infoGet g_comparator0.p_api->infoGet(g_comparator0.p
_ctrl, p_info);
Provides the minimum stabilization wait time in
microseconds.

statusGet g_comparator0.p_api->statusGet(g_comparator0
.p_ctrl, p_status);
Provides the operating status of the comparator.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 605 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmphs > ACMPHS HAL Module APIs Overview

close g_comparator0.p_api->close(g_comparator0.p_c
trl);
Close the module.

versionGet g_comparator0.p_api->read(&version);
Retrieves the version using the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION An input pointer is NULL.

SSP_ERR_IN_USE Peripheral is in use or hardware lock is taken.

SSP_ERR_TIMEOUT The debounce filter is off and 2 consecutive
matching values were not read within 1024
attempts.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.2.3 ACMPHS HAL Module Operational Overview

The ACMPHS HAL module controls the high-speed analog comparator peripheral on a Synergy
microcontroller. It directly controls the ACMPHS hardware without using any RTOS elements and
provides convenient APIs to simplify development.

ACMPHS HAL Module Important Operational Notes and Limitations

ACMPHS HAL Module Operational Notes

Comparator Output on VCOUT Pin

The signal on the VCOUT pin is a logical 'OR' of the outputs of all comparators (ACMPHS and ACMPLP)
with their output pin enabled.

Interrupts and Callbacks

When a comparator event occurs, the Comparator Driver on r_acmphs HAL module calls the callback
(comparator_cfg_t::p_callback) with the callback argument (comparator_callback_args_t).

ACMPHS HAL Module Limitations

This module only works for selected Synergy MCUs. Consult the release notes for your

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 606 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmphs > ACMPHS HAL Module Operational Overview

current SSP release to see which MCUs are supported by this module. The MCU Hardware
Manual shows which peripherals are available.
Refer to the latest SSP Release Notes for any additional operational limitations for this
module.

4.2.2.4 Including the ACMPHS HAL Module in an Application

This section describes how to include the ACMPHS HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Comparator Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the Comparator Driver is g_acmphs0.
This name can be changed in the associated Properties window.)

ACMPHS HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_comparator0 Comparator
Driver on r_acmphs

Threads New Stack> Driver>
Analog> Comparator Driver
on r_acmphs

When the Comparator Driver on r_acmphs is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 233: ACMPHS HAL Module Stack

4.2.2.5 Configuring the ACMPHS HAL Module

The ACMPHS HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 607 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmphs > Configuring the ACMPHS HAL Module

properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the ACMPHS HAL Module on r_acmphs

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Controls whether to include
code for API parameter
checking.

Name g_comparator Module name.

Channel 0 Select the hardware channel.

Trigger Edge Rising, Falling, Both Edge

Default: Both Edge

The trigger specifies when a
comparator callback event
should occur. Unused if the
interrupt priority is disabled or
the callback is NULL.

Debounce Filter No Filter, 8, 16, 32

Default: No Filter

Select the PCLK divisor for the
hardware digital debounce
filter. Larger divisors provide a
longer debounce and take
longer for the output to update.

Invert Not Inverted, Inverted

Default: Not Inverted

Turns this on to invest
comparator output. This affects
the output read from
StatusGet(), the pin output
level, and the edge trigger.

Pin Output Disabled, Enabled

Default: Disabled

Turn this on to include the
output from this comparator on
VCOUT. The comparator output
on VCOUT is ORed with output
from all other ACMPHS and
ACMPLP comparators.

Callback NULL Define this function in the
application. It is called when
the Trigger event occurs.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 608 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmphs > Configuring the ACMPHS HAL Module

Comparator Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
the comparator interrupt.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

ACMPHS HAL Module Clock Configuration

The ACMPHS HAL module uses the PCLKB as its clock source.

To change the clock frequency at run-time, use the CGC Interface.

ACMPHS HAL Module Pin Configuration

To use the ACMPHS HAL module, the port pins for the channels receiving the analog input must be
set as input pins in the pin configurator in the ISDE. The following table illustrates the method for
selecting the pins within the ISDE configuration window:

Pin Selection for the ACMPHS HAL Module on r_acmphs

Resource ISDE Tab Pin selection Sequence

ACMPHS Pins Select Peripherals>
Analog:ACMP

4.2.2.6 Using the ACMPHS HAL Module in an Application

The typical steps in using the ACMPHS HAL module in an application are:

1. Initialize the ACMPHSw using the comparator_api_t::open API.
2. Before enabling the output, consult the hardware manual to configure the internal

connections by setting the COMPSELn registers directly. If the internal reference voltage is
used, set COMPMDR.CiVRF.

3. After configuring the modules and internal connections, wait for the minimum stabilization
wait time before enabling output. The minimum stabilization wait time can be queried
using the comparator_api_t::infoGet API.

4. Enable the comparator output using the comparator_api_t::outputEnable API. This enables
pin output, interrupts and the comparator_api_t::statusGet API as configured during the
comparator_api_t::open API call.

5. [Optional] Use the comparator_api_t::statusGet API to poll comparator status.
6. [Optional] Use the comparator_api_t::close API to disable the comparator and power down

the peripheral.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 609 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmphs > Using the ACMPHS HAL Module in an Application

Figure 234: Flow Diagram of a Typical ACMPHS HAL Module Application

4.2.3 Comparator Driver on r_acmplp

4.2.3.1 ACMPLP HAL Module Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 610 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmplp > ACMPLP HAL Module Introduction

The ACMPLP HAL module implements the comparator API for signal processing applications and
supports the ACMPLP peripheral available on the Synergy microcontroller hardware. A callback is
available to signal the user application on transition events.

ACMPLP HAL Module Features

Normal mode or window mode
Callback on rising edge, falling edge or both
Configurable debounce filter
Option to include comparator output on VCOUT pin

Figure 235: ACMPLP HAL Module Block Diagram

ACMPLP Hardware support details

The following hardware features are, or are not, supported by the SSP for the ACMPLP:

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 611 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmplp > ACMPLP HAL Module Introduction

MCU
Group

Normal or window
mode

Callback on rising
edge, falling
edge, or both

Configurable
debounce filter

Option to include
comparator

output on VCOUT

S124 ✓ ✓ ✓ ✓

S128 ✓ ✓ ✓ ✓

S1JA ✓ ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓

S5D3 N/A N/A N/A N/A

S5D5 N/A N/A N/A N/A

S5D9 N/A N/A N/A N/A

S7G2 N/A N/A N/A N/A

4.2.3.2 ACMPLP HAL Module APIs Overview

The ACMPLP HAL module defines API functions to open, enable, get status and close the module. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

ACMPLP HAL Module API Summary

Function Name Example API Call and Description

open g_comparator0.p_api->open(g_comparator0.p_ct
rl, g_comparator0.p_cfg);
Configures the comparator and starts operation.
Callbacks and pin output are not active until
comparator_api_t::outputEnable is called.
comparator_api_t::outputEnable should be called
after the output has stabilized.

outputEnable g_comparator0.p_api->outputEnable(g_compara
tor0.p_ctrl);
Enables the comparator output, which can be
polled using statusGet(). Also enables pin output
and interrupts as configured during open().

infoGet g_comparator0.p_api->infoGet(g_comparator0.p
_ctrl, p_info);
Provides the minimum stabilization wait time in
microseconds.

statusGet g_comparator0.p_api->statusGet(g_comparator0
.p_ctrl, p_status);
Provides the operating status of the comparator.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 612 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmplp > ACMPLP HAL Module APIs Overview

close g_comparator0.p_api->close(g_comparator0.p_c
trl);
Close the module.

versionGet g_comparator0.p_api->read(&version);
Retrieves the version using the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION An input pointer is NULL.

SSP_ERR_IN_USE Peripheral is in use or hardware lock is taken.

SSP_ERR_TIMEOUT The debounce filter is off and 2 consecutive
matching values were not read within 1024
attempts.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.3.3 ACMPLP HAL Module Operational Overview

The Comparator Driver (r_acmplp) HAL module controls the Low-Power Analog Comparator (ACMPLP)
peripheral on a Synergy microcontroller. It directly controls the ACMPLP hardware without using any
RTOS elements and provides convenient APIs to simplify development.

ACMPLP HAL Module Important Operational Notes and Limitations

ACMPLP HAL Module Operational Notes

Comparator Output on VCOUT Pin

The signal on the VCOUT pin is a logical 'OR' of the outputs of all comparators (ACMPHS and ACMPLP)
with their output pin enabled.

Interrupts and Callbacks

When a comparator event occurs, the R_ACMPLP HAL module calls the callback
(comparator_cfg_t::p_callback) with the callback argument (comparator_callback_args_t).

ACMPLP HAL Module Limitations

This module does not support the Filter 16 option for PCLK divisor in the hardware digital

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 613 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmplp > ACMPLP HAL Module Operational Overview

debounce filter.
This module only works for selected Synergy MCUs. Consult the release notes for your
current SSP release to see which MCUs are supported by this module. The MCU Hardware
Manual shows which peripherals are available for each MCU.
Refer to the latest SSP Release Notes for any additional operational limitations for this
module.

4.2.3.4 Including the ACMPLP HAL Module in an Application

This section describes how to include the ACMPLP HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Comparator Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the Comparator Driver is g_acmplp0.
This name can be changed in the associated Properties window.)

ACMPLP HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_comparator0 Comparator
Driver on r_acmplp

Threads New Stack> Driver>
Analog> Comparator Driver
on r_acmplp

When the Comparator Driver on r_acmplp is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 236: ACMPLP Module Stack

4.2.3.5 Configuring the ACMPLP HAL Module

The ACMPLP HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 614 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmplp > Configuring the ACMPLP HAL Module

tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the ACMPLP HAL Module on r_acmplp

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Controls whether to include
code for API parameter
checking.

Name g_comparator Module name.

Channel 0 Select the hardware channel.

Mode Mode Normal, Mode Window
Default: Mode Normal

In normal mode, comparator
output is high if VCMP > VREF.
In window mode, comparator
output is high if VCMP is outside
the range of VREF0 to VREF1.

Trigger Trigger Rising, Trigger Falling,
Trigger Both Edge
Default: Trigger Both Edge

The trigger specifies when a
comparator callback event
should occur. Unused if the
interrupt priority is disabled or
the callback is NULL.

Filter Filter Off, Filter 1, Filter 8, Filter
32
Default: Filter Off

Select the PCLK divisor for the
hardware digital debounce
filter. Larger divisors provide a
longer debounce and take
longer for the output to update.

Invert Off, On
Default: Off

Turns this on to invest
comparator output. This affects
the output read from
StatusGet(), the pin output
level, and the edge trigger.

Pin Output Off, On
Default: Off

Turn this on to include the
output from this comparator on
VCOUT. The comparator output
on VCOUT is OR'd with output
from all other ACMPHS and
ACMPLP comparators.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 615 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmplp > Configuring the ACMPLP HAL Module

Callback NULL Define this function in the
application. It is called when
the Trigger event occurs.

Comparator Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled
Default: Disabled

Select the interrupt priority for
the comparator interrupt.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the ACMPLP HAL Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the Red text in the Thread Stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following table identifies all the settings within the properties section
for the module:

Configuration Settings for the Analog Connection HAL Module on r_analog_connect

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_analog_connect0 Module name.

Connection Table Name g_analog_connect0_table This connection table name is
passed to the connectMultiple
API function to make all
configured connections.

ACMPHS0 IVCMP No Connection, PORT5 P500,
PORT0 P013, PORT1 P100

Default: No Connection

Select the connection for
ACMPHS0 IVCMP

Note
Not required for ACMPLP
Module.

ACMHS0 IVREF No Connection, PORT5 P501,
PORT0 P014, PORT1 P101,
DAC80 DA, DAC120 DA,
Analog0 VREF

Default: No Connection

Select the connection for
ACMPHS0 IVREF

Note
Not required for ACMPLP
Module.

ACMPL0 IVREF0 No Connection, PORT1 P109,
DAC80 DA

Default: No Connection

Select the connection for
ACMPL0 IVREF0.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 616 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmplp > Configuring the ACMPLP HAL Module

ACMPLP1 IVREF1 No Connection, PORT1 P110,
DAC81 DA

Default: No Connection

Select the connection for
ACMPLP1 IVREF1.

ACMPLP0 IVCMP No Connection, PORT4 P400,
OPAMP0 AMPO

Default: No Connection

Select the connection for
ACMPLP0 IVCMP.

ACMPLP0 IVREF No Connection, ANALOG0 VREF,
ACMPLP0 IVREF0

Default: No Connection

Select the connection for
ACMPLP0 IVREF.

ACMPLP1 IVCMP No Connection, PORT4 P408,
OPAMP1 AMPO

Default: No Connection

Select the connection for
ACMPLP1 IVCMP.

ACMPLP1 IVREF No Connection, ANALOG0 VREF,
ACMPLP0 IVREF0, ACMPLP1
IVREF1

Default: No Connection

Select the connection for
ACMPLP1 VREF.

OPAMP0 AMPO No Connection, PORT0P014,
PORT0 P013, PORT0P003,
PORT0 P002

Default: No Connection

Select the connection for
OAMP0 AMPO.

Note
Not required for ACMPLP
Module.

OPAMP0 AMPM No Connection, PORT5 P501,
PORT5 500, PORT0 P014,
PORT0 P113, PORT0 P003,
OPAMP0 AMPO

Default: No Connection

Select the connection for
OPAMP0 AMPM.

Note
Not required for ACMPLP
Module.

OPAMP0 AMPP No Connection, PORT5 P500,
PORT0 P014, PORT0P013,
PORT0 P002, DAC120 DA

Default: No Connection

Select the connection for
OPAMP0 AMPP.

Note
Not required for ACMPLP
Module.

OPAMP1 AMPM No Connection, PORT0 P014,
OPAMP1 AMPO

Default: No Connection

Select the connection for
OPAMP1 AMPM.

Note
Not required for ACMPLP
Module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 617 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmplp > Configuring the ACMPLP HAL Module

OPAMP1 AMPP No Connection, PORT0 P014,
PORT0 P013, PORT0 P003,
PORT0 P002, DAC80 DA

Default: No Connection

Select the connection for
OPAMP1 AMPP.

Note
Not required for ACMPLP
Module.

OPAMP2 AMPM No Connection, PORT0 P003,
OPAMP2 AMPO

Default: No Connection

Select the connection for
OPAMP2 AMPM.

Note
Not required for ACMPLP
Module.

OPAMP2 AMPP No Connection, PORT0 P003,
PORT0 P002, DAC81DA

Default: No Connection

Select the connection for
OPAMP2 AMPP.

Note
Not required for ACMPLP
Module.

Note
The example settings and defaults are for a project using the Synergy S1JA MCU Group. Other MCUs may have
different default values and available configuration settings.

ACMPLP HAL Module Clock Configuration

The ACMPLP HAL module uses the PCLKB as its clock source.

To change the clock frequency at run-time, use the CGC Interface.

ACMPLP HAL Module Pin Configuration

To use the ACMPLP HAL module, the port pins for the channels receiving the analog input must be
set as input pins in the pin configurator in the ISDE. The following table illustrates the method for
selecting the pins within the ISDE configuration window:

Pin Selection for the ACMPLP HAL Module on r_acmplp

Resource ISDE Tab Pin selection Sequence

ACMPLP Pins Select Peripherals>
Analog:ACMP

Configuration Settings for the ACMPLP HAL Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the Red text in the Thread Stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following table identifies all the settings within the properties section
for the module:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 618 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmplp > Configuring the ACMPLP HAL Module

Configuration Settings for the Analog Connection HAL Module on r_analog_connect

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_analog_connect0 Module name.

Connection Table Name g_analog_connect0_table This connection table name is
passed to the connectMultiple
API function to make all
configured connections.

ACMPHS0 IVCMP No Connection, PORT5 P500,
PORT0 P013, PORT1 P100

Default: No Connection

Select the connection for
ACMPHS0 IVCMP.

Note
 Not required for ACMPLP
Module.

ACMHS0 IVREF No Connection, PORT5 P501,
PORT0 P014, PORT1 P101,
DAC80 DA, DAC120 DA,
Analog0 VREF

Default: No Connection

Select the connection
for ACMPHS0 IVREF.

Note
 Not required for ACMPLP
Module.

ACMPL0 IVREF0 No Connection, PORT1 P109,
DAC80 DA

Default: No Connection

Select the connection
for ACMPL0 IVREF0.

ACMPLP1 IVREF1 No Connection, PORT1 P110,
DAC81 DA

Default: No Connection

Select the connection
for ACMPLP1 IVREF1.

ACMPLP0 IVCMP No Connection, PORT4
P400, OPAMP0 AMPO

Default: No Connection

Select the connection for
ACMPLP0 IVCMP.

ACMPLP0 IVREF No Connection, ANALOG0 VREF,
ACMPLP0 IVREF0

Default: No Connection

Select the connection for
ACMPLP0 IVREF.

ACMPLP1 IVCMP No Connection, PORT4
P408, OPAMP1 AMPO

Default: No Connection

Select the connection for
ACMPLP1 IVCMP.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 619 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmplp > Configuring the ACMPLP HAL Module

ACMPLP1 IVREF No Connection, ANALOG0 VREF,
ACMPLP0 IVREF0, ACMPLP1
IVREF1

Default: No Connection

Select the connection for
ACMPLP1 VREF.

OPAMP0 AMPO No Connection, PORT0P014,
PORT0 P013, PORT0P003,
PORT0 P002

Default: No Connection

Select the connection
for OAMP0 AMPO.

Note
 Not required for ACMPLP
Module.

OPAMP0 AMPM No Connection, PORT5
P501, PORT5 500, PORT0 P014,
PORT0 P113, PORT0 P003,
OPAMP0 AMPO

Default: No Connection

Select the connection
for OPAMP0 AMPM.

Note
 Not required for ACMPLP
Module.

OPAMP0 AMPP No Connection, PORT5 P500,
PORT0 P014, PORT0P013,
PORT0 P002, DAC120 DA

Default: No Connection

Select the connection
for OPAMP0 AMPP.

Note
 Not required for ACMPLP
Module.

OPAMP1 AMPM No Connection, PORT0 P014,
OPAMP1 AMPO

Default: No Connection

Select the connection for
OPAMP1 AMPM.

Note
 Not required for ACMPLP
Module.

OPAMP1 AMPP No Connection, PORT0 P014,
PORT0 P013, PORT0 P003,
PORT0 P002, DAC80 DA

Default: No Connection

Select the connection for
OPAMP1 AMPP.

Note
 Not required for ACMPLP
Module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 620 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmplp > Configuring the ACMPLP HAL Module

OPAMP2 AMPM No Connection, PORT0 P003,
OPAMP2 AMPO

Default: No Connection

Select the connection for
OPAMP2 AMPM.

Note
 Not required for ACMPLP
Module.

OPAMP2 AMPP No Connection, PORT0 P003,
PORT0 P002, DAC81DA

Default: No Connection

Select the connection for
OPAMP2 AMPP.

Note
 Not required for ACMPLP
Module.

Note
The example settings and defaults are for a project using the Synergy S1JA MCU Group. Other MCUs may have
different default values and available configuration settings.

4.2.3.6 Using the ACMPLP HAL Module in an Application

The typical steps in using the ACMPLP HAL module in an application are:

1. Initialize the ACMPLP using the comparator_api_t::open API.
2. Before VCOUT is enabled, the low level corresponding hardware register must be configured

as mentioned below:
a. Either directly configuring HW registers (COMPMDR/COMPSELn) in application.
b. Or using Analog Connect module APIs which in turn configure low level registers.

3. After configuring the modules and internal connections, wait for the minimum stabilization
wait time before enabling output. The minimum stabilization wait time can be queried
using the comparator_api_t::infoGet API.

4. Enable the comparator output using the comparator_api_t::outputEnable API. This enables
pin output, interrupts and the comparator_api_t::statusGet API as configured during the
open API call.

5. [Optional] Use the comparator_api_t::statusGet API to poll comparator status.
6. [Optional] Use the comparator_api_t::close API to disable the comparator and power down

the peripheral.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 621 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Comparator Driver on r_acmplp > Using the ACMPLP HAL Module in an Application

Figure 237: Flow Diagram of a Typical ACMPLP HAL Module Application

4.2.4 ADC Driver

4.2.4.1 ADC HAL Module Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 622 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > ADC HAL Module Introduction

The ADC HAL module implements an API for analog-to-digital conversion applications. It supports the
ADC12, ADC14, and ADC16 (for supported MCUs) for the associated peripherals available on Synergy
MCUs. A user-defined callback can be used to process the data each time a new sample is complete.

ADC HAL Module Features

16-Bit A/D Converter (S1JA)
14-Bit A/D Converter (S3A7, S3A3, S3A6, S3A1, S128, S124)
12-Bit A/D Converter (S7G2, S5D9, S5D5)
Multiple Operation Modes

Single Scan
Group Scan
Continuous Scan

Multiple Channels
All analog channels on MCU

13 channels (unit 0) or 12 channels (unit 1) for S7G2
17 channels for S1JA
18 channels for S124
28 channels for S3A7

Temperature sensor channel
Voltage sensor channel

Reference voltage selection on 16-Bit A/D Converter (S1JA).
Programmable gain amplifier (PGA) (S7G2, S5D9, S5D3)

Single ended input mode
Differential input mode

Figure 238: ADC HAL Module Block Diagram

ADC Hardware support details

The following hardware features are, or are not, supported by the SSP for the ADC:

Legend:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 623 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > ADC HAL Module Introduction

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU
Group

Support
for all
Analog

Channels
(Unit 0 for
all MCUs

and Unit 0
& 1 for S5

and S7
series)

8-Bit 10-bit 12-Bit 14-bit 16-bit Single
scan
Mode

S124 ✓ N/A N/A ✓ ✓ N/A ✓

S128 ✓ N/A N/A ✓ ✓ N/A ✓

S1JA ✓ N/A N/A N/A N/A ✓ ✓

S3A1 ✓ N/A N/A ✓ ✓ N/A ✓

S3A3 ✓ N/A N/A ✓ ✓ N/A ✓

S3A6 ✓ N/A N/A ✓ ✓ N/A ✓

S3A7 ✓ N/A N/A ✓ ✓ N/A ✓

S5D3 ✓ ✓ ✓ ✓ N/A N/A ✓

S5D5 ✓ ✓ ✓ ✓ N/A N/A ✓

S5D9 ✓ ✓ ✓ ✓ N/A N/A ✓

S7G2 ✓ ✓ ✓ ✓ N/A N/A ✓

MCU
Group

Continuous Scan
Mode

Group Scan
Mode

Programmable
Gain

Amplifier

Event link function
through ELC
HAL driver*

S124 ✓ ✓ N/A ✓

S128 ✓ ✓ N/A ✓

S1JA ✓ ✓ N/A ✓

S3A1 ✓ ✓ N/A ✓

S3A3 ✓ ✓ N/A ✓

S3A6 ✓ ✓ N/A ✓

S3A7 ✓ ✓ N/A ✓

S5D3 ✓ ✓ ✓ ✓

S5D5 ✓ ✓ N/A ✓

S5D9 ✓ ✓ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 624 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > ADC HAL Module Introduction

S7G2 ✓ ✓ ✓ ✓

Note: ELC is supported but only for Group mode. This must be set up manually by
programming the Event Link Controller.

4.2.4.2 ADC HAL Module APIs Overview

The ADC HAL module defines APIs to open, configure scans, start scans, stop scans, read the
conversion results of the ADC scans, and close the ADC unit. A complete list of the available APIs, an
example API call, and a short description of each can be found in the following table. A table of
status return values follows the API summary table.

ADC HAL Module API Summary

Function Name Example API Call and Description

open g_adc.p_api->open(g_adc.p_ctrl, g_adc.p_cfg);
Initialize ADC Unit; apply power, set the
operational mode, trigger sources, interrupt
priority, and configurations common to all
channels and sensors.

scanCfg g_adc.p_api->scanCfg(g_adc.p_ctrl,
g_adc.p_channel_cfg);
Configure the scan including the channels,
groups and scan triggers to be used for the unit
that was initialized in the open call.

scanStart g_adc.p_api->scanStart(g_adc.p_ctrl);
Start the scan (in case of a software trigger), or
enable the hardware trigger.

scanStop g_adc.p_api->scanStop(g_adc.p_ctrl);
Stop the ADC scan (in case of a software
trigger), or disable the hardware trigger.

scanStatusGet g_adc.p_api->scanStatusGet(g_adc.p_ctrl);
Check scan status.

read g_adc.p_api->read(g_adc.p_ctrl,
ADC_REG_CHANNEL_13, &adc_data);
Read ADC conversion result(s).

sampleStateCountSet g_adc.p_api->sampleStateCountSet(g_adc.p_ctrl
,&adc_sample);
Set the sample state count for the specified
channel.

close g_adc.p_api->close(g_adc.p_ctrl);
Close the specified ADC unit by ending any scan
in progress, disabling interrupts, and removing
power to the specified A/D unit.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 625 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > ADC HAL Module APIs Overview

infoGet g_adc.p_api->infoGet(g_adc.p_ctrl, &adc_info);
Return the ADC data register address of the first
(lowest number) channel and the total number
of bytes to be read for the DTC/DMAC to read
the conversion results of all configured channels.

versionGet g_adc.p_api->versionGet(&version);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API call successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION The parameter p_ctrl or p_sample is NULL.

SSP_ERR_IN_USE Peripheral is still running in another mode;
perform R_ADC_Close first.

SSP_ERR_INVALID_POINTER The parameter p_data is NULL.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.4.3 ADC HAL Module Operational Overview

The ADC driver on r_adc HAL module controls the ADC peripherals on a Synergy microcontroller, as
configured by the user. It directly controls the ADC hardware without using any RTOS elements. It
provides convenient API functions to simplify development.

The driver supports three operation modes: single-scan, continuous-scan, and group-scan modes.

Single-scan Mode

In single scan mode, one or more specified channels are scanned once per trigger. A channel bit-
mask is used in the channel properties configuration settings to indicate the scanned channels.
Single-scan mode sequentially converts the analog inputs of the selected channels in the ascending
order of the channel number. A callback event is generated after all selected channels have
completed the conversion operation.

Continuous-scan Mode

Continuous-scan mode sequentially converts the analog inputs of selected channels continuously in
the ascending order of the channel numbers. A single trigger is required to start the scan. No
callback is used in this mode and interrupts must be disabled. The scanStatusGet API function is

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 626 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > ADC HAL Module Operational Overview

used to determine when data is available.

Group-scan Mode

Group-scan mode allows the application to allocate channels to one of two groups (A and B). Analog
inputs of the selected channels are converted for each group in the ascending order of the channel
numbers. Conversion begins when the specified start trigger for that group is received. A callback
interrupt is generated after all selected channels in the associated group have completed the
conversion operation. The interrupt event indicates which group has completed conversion.

In group mode, only hardware triggers can be used, as opposed to normal mode, where software
triggers or an external trigger can be used. With the priority configuration parameter, you can
specify:

Whether a trigger for one group can interrupt an ongoing scan for the other group.
Whether an interrupted scan resumes or restarts or simply aborts the current scan and
waits for the next trigger.

Interrupt and Callback Overview

When a scan or calibration (on supported MCUs) is complete and a callback is provided in the
application code, (and if interrupts are enabled) the module invokes the defined callback and
provides an argument that indicates the ADC unit, the event, the address of the converted data, and
the channel.

The module supports two interrupts:

The Normal/Group A Interrupt (Scan End Interrupt) fires when a scan is completed in single
scan mode, when a Group A scan is completed in group mode, or at the end of calibration
for supported MCUs.
The Group B Interrupt (Scan End Group B Interrupt) fires when a group B scan is completed
in group mode.

Interrupts function differently in each mode:

In single-scan mode, the Normal interrupt (Scan End Interrupt) is triggered when the scan is
completed.
In continuous scan-mode, the hardware will constantly scan the selected channels. In this
mode, the driver will return an error if interrupts are enabled, so they must be disabled in
this mode.
In group mode, the ADC unit provides two interrupts (when enabled). The Normal interrupt
(called Group A interrupt in this mode, even though it is the same vector as the Normal
interrupt) and the Group B interrupt. The Group A interrupt (Scan End Interrupt) is triggered
when a Group A scan is completed. The Group B interrupt (Scan End Group B Interrupt) is
triggered when a Group B scan is completed.

Note
You must change the Scan End Interrupt Priority and Scan End Group B Interrupt Priority configuration setting in
the selected units' properties window from the default Disabled setting to the desired Priority level to Enable the
associated interrupts.

When Interrupts Are Not Enabled

If interrupts are not enabled, the scanStatusGet API is used to poll the ADC to determine when the
scan has completed. The read API function is used to access the converted ADC result.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 627 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > ADC HAL Module Operational Overview

For MCUs that support calibration, if interrupts are not enabled, the application program must wait
24 ms and then check the status of the calibration function using the infoGet API. Once calibration is
complete, another API can be used.

ADC HAL Module Important Operational Notes and Limitations

ADC HAL Module Operational Notes

Sample-State Count Setting

The application program can modify the setting of the sample-state count by calling the
adc_api_t::sampleStateCountSet API function. The application program only needs to modify the
sample-state count settings from their default values to increase the sampling time. This can be
either because the impedance of the input signal is too high to secure sufficient sampling time under
the default setting or if the ADCLK is too slow. To modify the sample-state count for a given channel,
set the channel number and the number of states when calling the adc_api_t::sampleStateCountSet
API function. Valid sample state counts are 7-255.

Note
Although the hardware supports a minimum number of sample states of 5, some Synergy MCUs require 7 states, so
the minimum is set to 7. At the lowest supported ADC conversion clock rate (1 MHz), these extra states will lead to,
at worst case, a 2 microsecond increase in conversion time. At 60 MHz the extra states will add 33.4 ns to the
conversion time.

If the sample state count needs to be changed for multiple channels, the application program must
call the adc_api_t::sampleStateCountSet API function repeatedly, with appropriately modified
arguments for each channel.

Triggering a Data Transfer with the ADC

To trigger a transfer of data when the ADC scan completes, configure the data transfer with the
activation_source set to ELC_EVENT_ADCn_SCAN_END or ELC_EVENT_ADCn_SCAN_END_B (where n is
the ADC channel number). The adc_api_t::infoGet API function can be called to retrieve the ADC unit-
specific information to use with the transfer API. Refer to the ELC Module Overview for additional
information.

Triggering ELC Events with the ADC

The ADC unit can trigger the start of other peripherals by using the ELC. Refer to the ELC Module
Overview for additional information.

Using the Temperature Sensor with the ADC

The ADC HAL module supports reading the data from the on-chip temperature sensor. The value
returned from the sensor can be converted into degrees Celsius or Fahrenheit in the application
program using the following formula, T = (Vs – V1)/slope + T1, where:

T: Measured temperature (°C)
Vs: Voltage output by the temperature sensor at the time of temperature measurement
(Volts)
T1: Temperature experimentally measured at one point (°C)
V1: Voltage output by the temperature sensor at the time of measurement of T1 (Volts)
T2: Temperature at the experimental measurement of another point (°C)
V2: Voltage output by the temperature sensor at the time of measurement of T2 (Volts)
Slope: Temperature gradient of the temperature sensor (V/°C); slope = (V2 – V1)/ (T2 – T1)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 628 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > ADC HAL Module Operational Overview

Note
The slope value can be obtained from the hardware manual for each device in the Electrical Characteristics
Chapter- TSN Characteristics Table, Temperature slope entry. The slope is positive for S7 and S5 devices and
negative for S3 and S1 devices.

ADC HAL Module Limitations

When configuring the module, the temperature and voltage sensors must not be selected if any of
the other available channels are also selected. The temperature sensor and the voltage sensor can
both be used together, but neither can be used if any of the regular ADC channels are used.

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4.2.4.4 Including the ADC HAL Module in an Application

This section describes how to include the ADC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the ADC Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the ADC Driver is g_adc0. This name
can be changed in the associated Properties window.)

ADC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_adc0 ADC Driver on r_adc Threads New Stack> Driver>
Analog> ADC Driver on
r_adc

When the ADC Driver on r_adc is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone.

Figure 239: ADC HAL Module Stack

4.2.4.5 Configuring the ADC HAL Module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 629 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > Configuring the ADC HAL Module

The ADC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module, and explore the property settings in parallel with looking
over the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the ADC HAL Module on r_adc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: Enabled

If selected, code for parameter
checking is included in the
build.

Name g_adc0 Module name.

Unit 0, 1 (S7G2, S5D9 and S5D5)
Default: 0

Specify the ADC Unit to be
used. The S7G2 has two units; 0
and 1.

Resolution (resolution varies by
MCU)

14-Bit, 12-Bit, 10-Bit, 8-Bit
Default: 8-Bit

Specify the conversion
resolution for this unit.

Alignment Right, Left
Default: Right

Specify the conversion result
alignment.

Clear after read Off, On
Default: On

Specify if the result register
must be automatically cleared
after the conversion result is
read.

Note
If this is enabled, then
watching the result register
using a debugger always
results in a 0.

Mode Single Scan, Continuous Scan,
Group Scan
Default: Single Scan

Specify the mode that this ADC
unit is used in.

Internal Calibration During
Open()

Disabled, Enabled
Default: Enabled

Internal calibration during open
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 630 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > Configuring the ADC HAL Module

Channel 0 - Unused, PGA 0: Configure gain
from below field.
- Use in Normal/Group A,
- Use in Group B

Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled.
In group mode, this field is used
to specify which channels
belong to group A.

Channel 1 - Unused,
- Use in Normal/Group A,
- Use in Group B
PGA 1: Configure gain from
below field.
Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled.
In group mode, this field is used
to specify which channels
belong to group A.

Channel 2 - Unused,
- Use in Normal/Group A,
- Use in Group B
PGA 2: Configure gain from
below field.
Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled.

Channels 3-13 Unused, Use in Normal/Group A,
Use in Group B
Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channel 14 (S3 Series Only) Unused, Use in Normal/Group A,
Use in Group B
Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 631 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > Configuring the ADC HAL Module

Channel 15 (S3A7/S3A3 Only) Unused, Use in Normal/Group A,
Use in Group B
Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channels 16-20 Unused, Use in Normal/Group A,
Use in Group B
Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channel 21 (Unit 0 Only) Unused, Use in Normal/Group A,
Use in Group B
Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channels 22-24 Unused, Use in Normal/Group A,
Use in Group B
Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channel 25 (S3 series only) Unused, Use in Normal/Group A,
Use in Group B
Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 632 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > Configuring the ADC HAL Module

Channel 26 (S3A7/S3A3 Only) Unused, Use in Normal/Group A,
Use in Group B
Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Channel 27 (S3A7/S3A3 Only) Unused, Use in Normal/Group A,
Use in Group B
Default: Unused

In Normal mode of operation,
this bitmask field is used to
specify the channels that are
enabled in that ADC unit. For
example, if it is set to 0x101,
then channels 0 and 2 are
enabled. In group mode, this
field is used to specify which
channels belong to group A.

Temperature Sensor Unused, Use in Normal/Group A,
Use in Group B
Default: Unused

Temperature sensor use
selection for Channel Scan
Mask.

Voltage Sensor Unused, Use in Normal/Group A,
Use in Group B
Default: Unused

Voltage sensor use selection for
Channel Scan Mask.

Normal/Group A Trigger None, Asynchronous External
Trigger 0, ELC Event, Software
Default: Software

Specify the trigger type to be
used for this unit. If group mode
is used adc_cfg_t::mode, then
this field is used to set the
Group A trigger.

Note
The only valid option in group
mode is the ELC trigger.

Group B Trigger (Valid Only in
Group Scan Mode)

ELC Event (The only valid
trigger for either group in Group
Scan Mode)

Specify the group B trigger.
This option is only valid if group
mode is chosen in
adc_cfg_t::mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 633 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > Configuring the ADC HAL Module

Group Priority (Valid only in
Group Scan Mode)

Group A cannot interrupt Group
B, Group A can interrupt Group
B; Group B scan restarts at next
trigger, Group A can interrupt
Group B; Group B scan restarts
immediately, Group A can
interrupt Group B; Group B scan
restarts immediately and scans
continuously
Default: Group A cannot
interrupt Group B

Determines whether an ongoing
group B scan can be
interrupted by a group A
trigger, whether it should abort
on a group A trigger, or if it
should pause to allow group A
scan and restart immediately
after group A scan is complete.

Note
This field is valid only in
group mode.

Add/Average Count Disabled, Add two samples, Add
three samples, Add four
samples, Add sixteen samples,
Average two samples, Average
four samples, Average eight,
Average sixteen
Default: Disabled

Specify if addition or averaging
needs to be done for any of the
channels in this unit. The actual
channels are specified by using
a channel mask
adc_channel_cfg_t::add_mask.
Average eight and Average
sixteen options are applicable
only for S1JA.
Add count option is not
applicable for S1JA.

Channels 0-27 Disabled, Enabled
Default: Disabled

This field is valid only if
adc_cfg_t::add_average_count
is enabled. This field
determines what channels
results are to be averaged or
summed.

Temperature Sensor Disabled, Enabled
Default: Disabled

Temperature sensor use
selection for Addition/Averaging
Mask.

Voltage Sensor Disabled, Enabled
Default: Disabled

Voltage sensor use selection for
Addition/Averaging Mask.

Sample and Hold Mask Select channels for which
individual sample and hold
circuit is to be enabled

Sample and hold mask
selection.

Channels 0-2 Disabled, Enabled
Default: Disabled

Determines which of channels
0, 1 and 2 are using the
updated sample-and-hold
states value specified in
adc_channel_cfg_t::sample_hold
_states. This field must only be
set if it is desired to modify the
default sample and hold count
value for channels 0, 1 and 2.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 634 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > Configuring the ADC HAL Module

Sample Hold States (Applies
only to the 3 channels selected
above)

24 Specifies the updated sample-
and-hold count for the channel
dedicated sample-and-hold
circuit. This field is valid only if
adc_channel_cfg_t::sample_hold
_mask is not 0. Only channels
0, 1 and 2 have dedicated
sample and hold circuits.

Note
Use this to modify the default
number of states (24) for
which the value is sampled.
Each state is equal to
1/ADCLK time.

Callback NULL A user callback function can be
registered in adc_api_t::open. If
this callback function is
provided, it is called from the
interrupt service routine (ISR)
each time the ADC scan
completes.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Scan End Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Disabled

Scan End Interrupt Priority
selection.

Scan End Group B Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Disabled

Scan End Group B Interrupt
Priority selection.

Voltage reference (Only for
S1JA)

- External VREFH0
- Internal VREF 1.5V
- Internal VREF 2.0V
- Internal VREF 2.5V

The ADC module will use the
selected one as reference
voltage.

Over-current protection (Only
for S1JA)

- Enable
- Disabled

Enables or disable over-current
detection on sensor module.

Programmable Gain Amplifier Select PGA channel from
'Channel Mask Scan' and Gain
from below options

Select PGA channel from
'Channel Mask Scan' and Gain
from below options.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 635 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > Configuring the ADC HAL Module

PGA 0 - Disabled
- Single Input_x2
- Single Input_x2.5
- Single Input_x_2.66
- Single Input_x_2.85
- Single Input_x_3.07
- Single Input_x_3.33
- Single Input_x_3.63
- Single Input_x_4.00
- Single Input_x_4.44
- Single Input_x_5.00
- Single Input_x_5.71
- Single Input_x_6.66
- Single Input_x_8.00
- Single Input_x_10.0
- Single Input_x_13.33
- Diff Input_x_1.5"
- Diff Input_x_2.3"
- Diff Input_x_4.0"
- Diff Input_x_5.66"

Applicable only for S7G2, S5D9,
S5D3.

PGA 1 - Disabled
- Single Input_x2
- Single Input_x2.5
- Single Input_x_2.66
- Single Input_x_2.85
- Single Input_x_3.07
- Single Input_x_3.33
- Single Input_x_3.63
- Single Input_x_4.00
- Single Input_x_4.44
- Single Input_x_5.00
- Single Input_x_5.71
- Single Input_x_6.66
- Single Input_x_8.00
- Single Input_x_10.0
- Single Input_x_13.33
- Diff Input_x_1.5"
- Diff Input_x_2.3"
- Diff Input_x_4.0"
- Diff Input_x_5.66"

Applicable only for S7G2, S5D9,
S5D3.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 636 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > Configuring the ADC HAL Module

PGA 2 - Disabled
- Single Input_x2
- Single Input_x2.5
- Single Input_x_2.66
- Single Input_x_2.85
- Single Input_x_3.07
- Single Input_x_3.33
- Single Input_x_3.63
- Single Input_x_4.00
- Single Input_x_4.44
- Single Input_x_5.00
- Single Input_x_5.71
- Single Input_x_6.66
- Single Input_x_8.00
- Single Input_x_10.0
- Single Input_x_13.33
- Diff Input_x_1.5"
- Diff Input_x_2.3"
- Diff Input_x_4.0"
- Diff Input_x_5.66"

Applicable only for S7G2, S5D9,
S5D3.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

ADC HAL Module Clock Configuration

The ADC HAL module uses the PCLKC as its clock source (ADCLK.) The only restriction when
configuring this clock is that it should be set to less than the max ADC clock; there is also a
restriction on the ratio of the PCLKC and PCLKB clocks specified in the hardware manual.

The ADC-conversion time depends on the PCLKC setting.

To set the PCLKB and PCLKC frequencies, use the clock configurator in the ISDE.

To change the clock frequency at run-time, use the CGC Interface.

ADC HAL Module Pin Configuration

To use the ADC HAL module, the port pins for the channels receiving the analog input must be set as
input pins in the pin configurator in the ISDE. The following table illustrates the method for selecting
the pins within the ISDE configuration window:

Pin Selection for the ADC HAL Module on r_adc

Resource ISDE Tab Pin selection Sequence

ADC Pins Select Peripherals> Analog
Pins> **ADC0\1**> AN_XX

4.2.4.6 Using the ADC HAL Module in an Application

The typical steps in using the ADC HAL module in an application are:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 637 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > Using the ADC HAL Module in an Application

1. Initialize the ADC using the adc_api_t::open API. (If calibration is enabled in the
configuration, it will be performed as a part of the open call for the MCUs that support
calibration.)

2. Configure the channels using the adc_api_t::scanCfg API. For MCUs that support calibration,
if the calibration was not enabled in the configuration, then it must be performed before
starting the first scan. Start the calibration (for supported MCUs) using the
adc_api_t::calibrate API.

a. If interrupts are disabled wait for at least 24 ms (for 32 MHz PCLKB), check status
using the adc_api_t::infoGet API to insure the calibration is complete before using
other ADC APIs.

b. If interrupts are enabled, the callback will be invoked when the calibration is
complete.

3. Start a conversion using the desired trigger with the adc_api_t::scanStart API.
a. If a hardware trigger is used, this call enables the ADC unit to be triggered by the

hardware trigger. If a software trigger is used, then this call starts the ADC scan.
4. If interrupts are disabled, use the adc_api_t::scanStatusGet API to determine if the scan is

complete.
5. If interrupts are enabled, the callback will be invoked when the scan is complete.
6. Read the results of the conversion using the adc_api_t::read API.
7. Stop the ADC scan by calling the adc_api_t::scanStop API

a. This prevents the ADC from being triggered by an external trigger or a hardware
trigger; it also forces a stop of a software-triggered scan if one is ongoing.

8. Operate on the received data as needed by the application.
9. Use the adc_api_t::close API to power down the peripheral.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 638 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ADC Driver > Using the ADC HAL Module in an Application

Figure 240: Flow Diagram of a Typical ADC HAL Module Application

4.2.5 Timer Driver on r_agt

4.2.5.1 AGT HAL Module Introduction

The AGT HAL module implements a high-level API for timing applications and uses the AGT
peripheral on a Synergy MCU. A user-defined callback can be created to respond to a timer event.

AGT HAL Module Features

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 639 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_agt > AGT HAL Module Introduction

Configures a timer for a set period and generates one of the following events when the
period expires:

Interrupt the CPU, which calls a user-callback function (if provided)
Toggle a port pin
Transfer data using DMAC/DTC (if configured with transfer interface)
Start another peripheral (if configured with events and peripheral definitions)

Multiple Channels: 16-bit x 2 channels
Channel 1 can be clocked by the channel 0 underflow, creating a cascaded 32-bit
timer

Core Clock: Can be clocked using PCLKB, LOCO, or Fsub. When clocked by LOCO or Fsub, it
can be used to wake up the MCU from sleep modes

Figure 241: AGT HAL Module Block Diagram

AGT Hardware support details

The following hardware features are, or are not, supported by the SSP for the AGT.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU
Group

Timer Mode Pulse Output
Mode

Event Counter
Mode

Pulse width
measurement

mode

S124 ✓ ✓ ⌧ ⌧

S128 ✓ ✓ ⌧ ⌧

S1JA ✓ ✓ ⌧ ⌧

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 640 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_agt > AGT HAL Module Introduction

S3A1 ✓ ✓ ⌧ ⌧

S3A3 ✓ ✓ ⌧ ⌧

S3A6 ✓ ✓ ⌧ ⌧

S3A7 ✓ ✓ ⌧ ⌧

S5D3 ✓ ✓ ⌧ ⌧

S5D5 ✓ ✓ ⌧ ⌧

S5D9 ✓ ✓ ⌧ ⌧

S7G2 ✓ ✓ ⌧ ⌧

MCU
Group

Pulse period
measurement mode

Event link function
through ELC HAL driver

Compare/Match
Function

S124 ⌧ ⌧ ✓

S128 ⌧ ⌧ ✓

S1JA ⌧ ⌧ ✓

S3A1 ⌧ ⌧ ✓

S3A3 ⌧ ⌧ ✓

S3A6 ⌧ ⌧ ✓

S3A7 ⌧ ⌧ ✓

S5D3 ⌧ ⌧ ✓

S5D5 ⌧ ⌧ ✓

S5D9 ⌧ ⌧ ✓

S7G2 ⌧ ⌧ ✓

4.2.5.2 AGT HAL Module APIs Overview

The AGT HAL module defines APIs for opening, closing, starting and stopping timers. A complete list
of the available APIs, an example API call and a short description of each can be found in the
following table. A table of status return values follows the API summary table.

AGT HAL Module API Summary

Function Name Example API Call and Description

open g_timer0.p_api->open(g_timer0.p_ctrl,
g_timer0.p_cfg)
Initial configuration.

stop g_timer0.p_api->stop(g_timer0.p_ctrl)
Stop the counter.

start g_timer0.p_api->start(g_timer0.p_ctrl)
Start the counter.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 641 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_agt > AGT HAL Module APIs Overview

reset g_timer0.p_api->reset(g_timer0.p_ctrl)
Reset the counter initial value.

counterGet g_timer0.p_api->counterGet(&value)
Get current counter value and store it in the
provided pointer, value.

periodSet g_timer0.p_api->periodSet(g_timer0.p_ctrl,
period, unit)
Set the time until the timer expires.

dutyCycleSet g_timer0.p_api->dutyCycleSet(g_timer0.p_ctrl,
period, unit, pin)
Sets the time until the duty cycle expires.

infoGet g_timer0.p_api->infoGet(&info)
Get the time until the timer expires in clock
counts and store it in provided pointer, info.

close g_timer0.p_api->close(g_timer0.p_ctrl)
Allows driver to be reconfigured and may reduce
power consumption.

versionGet g_timer0.p_api->versionGet(g_timer0.p_ctrl,
&version)
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Operation is successful.

SSP_ERR_ASSERTION Parameter is NULL or configuration setting is not
allowed.

SSP_ERR_IN_USE The channel specified is already open.

SSP_ERR_IRQ_BSP_DISABLED A required interrupt is not enabled in the BSP.

SSP_ERROR_NOT_OPEN The channel is not open.

SSP_ERR_INVALID_ARG Invalid argument provided.

SSP_ERR_INVALID_HW_CONDITION Invalid hardware setting detected.

SSP_ERR_INVALID_PTR A pointer parameter was NULL, but needed a
non-NULL value.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.5.3 AGT HAL Module Operational Overview

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 642 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_agt > AGT HAL Module Operational Overview

The AGT HAL module configures a timer to a user-specified period. When the period elapses, the CPU
can be interrupted, a port pin can be toggled, a transfer of data using the DMAC or DTC can be
initiated, or another peripheral can be triggered to begin operation.

The following figure shows a flowchart for toggling a port pin or generating a CPU interrupt after a
specified period. This flowchart is appropriate for both AGT and GPT counters. (Replace the GPT
references with AGT references for AGT operation. AGT is a down counter so change overflow to
underflow.)

Figure 242: AGT HAL Module Flow Chart

 Two different timer modules, the GPT and the AGT, are supported in the SSP. The following sections
provide information on both modules so that the developer can compare and contrast the
capabilities of each module for a particular application. For additional information on the GPT, refer
to the GPT User's Guide.

The GPT module is recommended for most generic timer applications, but either module can be used
for a basic timer functionality. The use cases in which one timer module would be preferred over the
other are described as follows:

Selecting the GPT Timer Module

The GPT module uses a high-resolution 32-bit counter that can only be clocked by PCLKA. There are
more GPT channels than AGT channels on Synergy devices, so using the GPT is less likely to cause a
resource conflict.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 643 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_agt > AGT HAL Module Operational Overview

Selecting the AGT Timer Module

The AGT module uses a 16-bit counter that can be clocked by PCLKB, LOCO or Fsub. If clocked by
LOCO or Fsub, the AGT interrupt can be used to wake the MCU from sleep modes. There are two
channels, and channel 1 can be clocked by channel 0 underflow, effectively creating a 32-bit
cascaded timer.

AGT HAL Module Important Operational Notes and Limitations

AGT HAL Module Operational Notes

The maximum time period depends on the timer type and the input clock frequency.

On a GPT with 32-bit resolution with PCLKA running at 120 MHz, the maximum period is
approximately 36650 seconds, which is just over 10 hours.
On a GPT with 16-bit resolution with PCLKA running at 32 MHz, the maximum period is
approximately 2.09 seconds.
On an AGT with 16-bit resolution with PCLKB running at 60 MHz, the maximum period is
approximately 8.7 ms.
On an AGT with 16-bit resolution with Fsub or LOCO at 32 kHz as its count source, the
maximum period is approximately 262 seconds using pre-scalar up to 128.

The AGT counter underflow interrupt for the selected channel used must be enabled in the BSP in the
following situations:

To get a software interrupt when the timer period has elapsed.
To use one-shot mode.

When the count source selected as AGTO Fsub or AGTO LOCO, turn on the count source using call
cgc_api_t::clockStart API before calling timer_api_t::open.

When the AGTn AGTI interrupt is enabled in the BSP, the corresponding ISR is defined in the timer
driver. The ISR calls a user-callback function if one was registered in open.

Note
Interrupts may be skipped when used with the DTC peripheral with the IRQ set to TRANSFER_IRQ_END.

AGT Output Timer Signal

If the timer output is configured, (AGTO Output Enabled set to true) the output pin starts at a high
level if the output inverted is configured to True and a low level if it is configured to False. The
output pin toggles every time the period elapses, beginning with the first time the period elapses
after the timer is started.

In one-shot mode, the output is also configured to toggle when the timer starts counting. This
generates a pulse - the timer toggles from the stop level when counting begins and toggles back to
the stop level when counting ends.

Timer Period Calculation

The timer period is defined as the time until the timer expires. When output compare is used, the
output pin toggles once per period, so the traditional period (from rising edge to rising edge) is twice
the period specified in the software.

Runtime period calculation based on the current clock settings is available from timer_api_t::open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 644 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_agt > AGT HAL Module Operational Overview

and timer_api_t::periodSet.

If the specified timer period is different than the raw counts, the period is calculated using the
current timer clock frequency (see Configuring the GPT Clocks or Configuring the AGT Clocks). The
current timer clock frequency is determined using systemClockFreqGet. This frequency is used in the
appropriate formula from the following table as clk_freq_hz.

Timer Period Calculation

Timer Units Description

TIMER_UNIT_PERIOD_NSEC Counts = (period * clk_freq_hz)/ (1000000000 *
channel_0_period)

TIMER_UNIT_PERIOD_USEC Counts = (period * clk_freq_hz)/ (1000000 *
channel_0_period)

TIMER_UNIT_PERIOD_MSEC Counts = (period * clk_freq_hz)/ (1000 *
channel_0_period)

TIMER_UNIT_PERIOD_SEC Counts = (period * clk_freq_hz) /
(channel_0_period)

TIMER_UNIT_FREQUENCY_HZ Counts = (clk_freq_hz)/ (period *
channel_0_period)

TIMER_UNIT_FREQUENCY_KHZ Counts = (clk_freq_hz)/ (1000 * period *
channel_0_period)

Note
 In normal mode channel_0_period value will be 1 and in cascade mode channel_0_period value will be the timer
T0 count value.

Timer Period Calculation

If the requested period is larger than the counter size (32-bit or 16-bit), the driver selects the
smallest divisor that allows the result to fit in the counter size. If the counter value is larger than the
counter size with the largest divisor (1024), an error code (SSP_ERR_INVALID_ARGUMENT) is
returned.

Triggering DMAC/DTC with GPT

To trigger a transfer of data using the DMAC or DTC peripheral when the timer period elapses,
configure the DMAC/DTC transfer with activation_source set to
ELC_EVENT_GPTn_COUNTER_OVERFLOW (where n is the GPT channel number). See the DMAC or DTC
guides for further information.

Note
If you use the timer in one-shot mode with the DTC, the entire transfer completes before the interrupt stops the
timer if the IRQ is set to TRANSFER_IRQ_END. To generate only one transfer after the timer period elapses, set
the IRQ to TRANSFER_IRQ_EACH or use the DMAC for the transfer.

Triggering ELC Events with GPT

The GPT timer can trigger the start of other peripherals. The ELC guide provides a list of all available
peripherals.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 645 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_agt > AGT HAL Module Operational Overview

Triggering DMAC/DTC with AGT

To trigger a transfer of data using the DMAC or DTC peripheral when the timer period elapses,
configure the DMAC/DTC transfer with activation_source set to ELC_EVENT_AGTn_AGTI (where n is
the AGT channel number). See the Transfer Interface for further information.

Note
If you use the timer in one-shot mode with the DTC, the entire transfer completes before the interrupt stops the
timer if irq is set to TRANSFER_IRQ_END. To generate only one transfer after the timer period elapses, set irq to
TRANSFER_IRQ_EACH, or use the DMAC for the transfer.

Triggering ELC Events with AGT

The AGT timer can trigger the start of other peripherals. The ELC guide provides a list of all available
peripherals listed in elc_peripheral_t. (See events and peripheral definitions for further information.)

Cascading AGT Timers to Create a 32-bit timer

AGT Channel 1 can be clocked by the AGT Channel 0 underflow, creating a cascaded 32-bit timer. In
this mode, the AGT Channel 0 output frequency will be the input frequency of AGT Channel 1. With
cascaded operation, longer time periods are achievable:

On a cascaded AGT with PCLKB running at 60 MHz, the maximum possible period is
approximately 574.1 seconds.
On a cascaded AGT with LOCO running at 32 kHz, the maximum possible period is
approximately 1048560 seconds.

Cascaded Timer Period Calculation

AGT Channel 0 period calculation will be the same as normal timer period calculation as shown in the
preceding table. If the requested period is larger than the counter size (32-bit or 16-bit), the driver
selects the smallest divisor that allows the result to fit in the counter size.

AGT Channel 1 period calculation will be same as shown in the preceding table, except the
"channel_0_period" value will be equal to AGT Channel 0's output period value (that is, after divisor
selection).

Note
The cascaded timer output will have the granularity error of 1 / (clock source).

AGT HAL Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4.2.5.4 Including the AGT HAL Module in an Application

This section describes how to include the AGT HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Timer Driver to an application, simply add it to a thread using the stacks selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 646 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_agt > Including the AGT HAL Module in an Application

sequence given in the following table. (The default name for the Timer Driver is g_agt0. This name
can be changed in the associated Properties window.)

AGT HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

r_agt0 Timer Driver on r_agt Threads New Stack> Driver>
Timers> Timer Driver on
r_agt

When the Timer Driver on r_agt is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 243: AGT HAL Module Stack

4.2.5.5 Configuring the AGT HAL Module

The AGT HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 647 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_agt > Configuring the AGT HAL Module

Configuration Settings for the AGT HAL Module on r_agt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables parameter
checking.

Name g_timer0 Module name.

Channel 0 Physical hardware channel.

Mode Periodic, One Shot

Default: Periodic

Warning: One Shot functionality
is not available in the GPT
hardware, so it is implemented
in software by stopping the
timer in the ISR called when the
period expires. For this reason,
ISR's must be enabled for one-
shot mode even if the callback
is unused.

Period Value 10 See Timer Period Calculation.

Period Unit Raw Counts, Nanoseconds,
Microseconds, Milliseconds,
Seconds, Hertz, Kilohertz

Default: Microseconds

See Timer Period Calculation.

Auto Start True, False

Default: True

Set to true to start the timer
after configuring or false to
leave the timer stopped until
timer_api_t::start is called.

Count Source PCLKB, PCLKB/8, PCLKB/2,
LOCO, AGT0 Underflow, AGT0
fSub

Default: PCLKB

The clock source for the AGT
counter.

AGTO Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for AGT (AGTO pin). Set to false
for no output of the timer
signal.

AGTIO Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for AGT (AGTIO pin). Set to false
for no output of the timer
signal.

Output Inverted True, False

Default: False

Set to false to start the output
signal low. Set to true to start
the output signal high.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 648 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_agt > Configuring the AGT HAL Module

Enable comparator A output pin True, False

Default: False

Enable comparator A output pin
selection.

Enable comparator B output pin True, False

Default: False

Enable comparator B output pin
selection.

Callback NULL A user callback function can be
registered in timer_api_t::open.
If this callback function is
provided, it will be called from
the interrupt service routine
(ISR) each time the timer period
elapses.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Timer interrupt priority. 0 is the
highest priority.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

AGT HAL Module Clock Configuration

The AGT timer is clocked based on the PCLKB, LOCO, Fsub or AGT Underflow frequency. The AGT
clock is selectable in the Properties window in e2 studio. You can set the clock frequencies using
the clock configurator in e2 studio or the CGC Interface at run-time.

AGT HAL Module Pin Configuration

The AGT peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following table illustrates the
method for selecting the pins within the SSP configuration window and the subsequent table
illustrates an example selection for the associated pins.

Note
The operation mode selection determines what peripheral signals are available and what MCU pins are required.

Pin Selection for the AGT HAL Module on r_agt

Resource ISDE Tab Pin selection Sequence

AGT Pins Select Peripherals> Timer:
AGT> AGT0

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 649 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_agt > Configuring the AGT HAL Module

Note
The selection sequence assumes AGT0 is the desired hardware target for the driver.

Pin Configuration Settings for the AGT HAL Module on r_agt

Property Value Description

Operation Mode Disabled, Custom, Timer
Output, Compare Match, Count
Measurement, Gated Count

Default: Disabled

Select timer operation mode.

AGTIO None

Default: None

AGTIO Pin.

AGTO None, P102

Default: P102

AGTO Pin.

AGTOA None

Default: None

AGTOA Pin.

AGTOB None

Default: None

AGTOB Pin.

AGTEE None, P101

Default: P101

AGTEE Pin.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.

4.2.5.6 Using the AGT HAL Module in an Application

The typical steps in using the AGT HAL Module in an application are:

1. Initialize the AGT HAL module using the timer_api_t::open API.
2. Start the AGT HAL module by calling the timer_api_t::start API.
3. Read the counter value by calling the timer_api_t::counterGet API.
4. Set the period value by using thetimer_api_t::periodSet API
5. Set the duty cycle by using timer_api_t::dutyCycleSet API
6. Get the timer information using timer_api_t::infoGet API
7. Respond to the AGT HAL module callback as needed.
8. Resets the counter value using the timer_api_t::reset API
9. Stop the AGT channel using timer_api_t::stop API

10. Use the timer_api_t::close call to power down the peripheral.

Note
The timer-period and duty-cycle parameters can be reconfigured based on the application's needs.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 650 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_agt > Using the AGT HAL Module in an Application

Figure 244: Flow Diagram of a Typical AGT HAL Module Application

4.2.6 AGT Input Capture Driver on r_agt

4.2.6.1 Input Capture HAL Module Introduction

The Input Capture HAL module provides an API for measuring input pulse-width, period measurement
and event count measurement. The Input Capture HAL module also configures the input capture
parameters to use with the AGT peripheral on the Synergy MCU. A user-defined callback can be
created to acquire the value each time a new measurement is complete.

Input Capture HAL Module Features

The Input Capture HAL module configures the AGT for an input capture function.

The Input Capture HAL allows the user to perform the following tasks:
Initialize the module
Enable input capture measurement
Disable input capture measurement
Get the status (running or not) of the measurement counter
Get the last captured timer/overflows counter value
Close the input capture operation

The Input Capture HAL module supports:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 651 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > AGT Input Capture Driver on r_agt > Input Capture HAL Module Introduction

Pulse-width measurement, period measurement and event count measurement
Rising-edge or falling-edge measurement start
One-shot or periodic mode
Callback function with the following events:

Measurement and overflow interrupt
Capture compare interrupt

Callback structure (input_capture_callback_args_t) that provides data on the interrupting
event, including which interrupt occurs and the associated counter values.

Figure 245: Input Capture HAL Module Block Diagram

AGT Input Capture Hardware support details

The following hardware features are, or are not, supported by SSP for AGT Input Capture.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU
Group

Timer Mode Pulse Output
Mode

Event Counter
Mode

Pulse width
measurement

mode

S124 ⌧ ⌧ ✓ ✓

S128 ⌧ ⌧ ✓ ✓

S1JA ⌧ ⌧ ✓ ✓

S3A1 ⌧ ⌧ ✓ ✓

S3A3 ⌧ ⌧ ✓ ✓

S3A6 ⌧ ⌧ ✓ ✓

S3A7 ⌧ ⌧ ✓ ✓

S5D3 ⌧ ⌧ ✓ ✓

S5D5 ⌧ ⌧ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 652 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > AGT Input Capture Driver on r_agt > Input Capture HAL Module Introduction

S5D9 ⌧ ⌧ ✓ ✓

S7G2 ⌧ ⌧ ✓ ✓

MCU
Group

Pulse period
measurement mode

Event link function
through ELC HAL driver

Compare/Match
Function

S124 ✓ ⌧ ⌧

S128 ✓ ⌧ ⌧

S1JA ✓ ⌧ ⌧

S3A1 ✓ ⌧ ⌧

S3A3 ✓ ⌧ ⌧

S3A6 ✓ ⌧ ⌧

S3A7 ✓ ⌧ ⌧

S5D3 ✓ ⌧ ⌧

S5D5 ✓ ⌧ ⌧

S5D9 ✓ ⌧ ⌧

S7G2 ✓ ⌧ ⌧

4.2.6.2 Input Capture HAL Module APIs Overview

The Input Capture HAL module interface defines APIs for opening, closing, enabling, disabling,
accessing status information, and accessing the last-capture value using the Asynchronous General-
Purpose Timer (AGT) with Input Capture. A complete list of the available APIs, an example API call
and a short description of each can be found in the following table. A table of status return values
follows the HAL Module API Summary.

Input Capture HAL Module API Summary

Function Name Example API Call and Description

open g_input_capture.p_api->open(g_input_capture.p_
ctrl, g_input_capture.p_cfg);
Opens the Input Capture HAL and initializes
configuration.

close g_input_capture.p_api->close(g_input_capture.p
_ctrl);
Closes the input capture operation. Allow drive
to be reconfigured, and may reduce power
consumption.

enable g_input_capture.p_api->enable(g_input_capture.
p_ctrl);
Enables input capture measurement.

disable g_input_capture.p_api->disable(g_input_capture.
p_ctrl);
Disables input capture measurement.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 653 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > AGT Input Capture Driver on r_agt > Input Capture HAL Module APIs Overview

infoGet g_input_capture.p_api->infoGet(g_input_capture.
p_ctrl, &input_capture_info);
Gets the status (running or not) of the
measurement counter.

lastCaptureGet g_input_capture.p_api->lastCaptureGet(g_input_
capture.p_ctrl, &input_capture_counter);
Gets the last captured timer/overflows counter
value.

versionGet g_input_capture.p_api->versionGet(&input_capt
ure_version);
Retrieve the API version with the
input_capture_version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_ASSERTION One of the parameters is NULL. Or the channel
requested in the p_cfg parameter may not be
available on the device selected in r_bsp_cfg.h.
Or, p_cfg->mode is invalid.

SSP_ERR_IRQ_BSP_DISABLED A required interrupt does not exist in the vector
table.

SSP_ERR_IN_USE Attempted to open an already open device
instance.

SSP_ERR_NOT_OPEN The channel is not opened.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.6.3 Input Capture HAL Module Operational Overview

The Input Capture HAL module controls the AGT HAL module units on a Synergy microcontroller (as
configured by the user). It directly accesses the AGT hardware without using any RTOS elements and
provides convenient APIs to simplify development.

When a normal measurement is complete and a callback is available (with interrupts enabled,) the
Input Capture HAL module invokes the callback with the argument input_capture_callback_args_t.

The argument input_capture_callback_args_t indicates the channel, the event input_capture_event_t,
the value of the timer captured when the interrupt occurred, and the number of counter overflows
that occurred during this measurement.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 654 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > AGT Input Capture Driver on r_agt > Input Capture HAL Module Operational Overview

If the interrupts are not enabled, the values read by the APIs would be the last captured
timer/overflows counter value.

Input Capture HAL Module Important Operational Notes and Limitations

Input Capture HAL Module Operational Notes

AGT Input Capture Measurement and overflow

The input capture interface provides support for pulse-width, period measurement, and event count
measurement. The input capture interface also provides support for one-shot measurement and
periodic measurement. The AGT hardware does not natively support one-shot functionality. Code is
automatically included in the interrupt service routine (ISR) to stop and clear the timer.

The AGT hardware doesn't have a hardware interrupt vector for event count measurement.
Therefore, the compare match vector triggers a callback when the counter reaches the count value
supplied by user.

AGT Input Capture Signal

The input capture measurement starts when the input capture signal edge (rising or falling) is
detected on the input capture signal pin (AGTIO). The input could be captured in any one of the AGT
input capture pin (such as AGTIO0_A, AGTIO0_B, or AGTIO0_C) as configured by user. The pin
corresponding to this selection must also be configured in AGT peripheral in the configurator.xml
(that is, under configuration.xml > pins > peripherals > Timer:AGT). The details on pins to be
configured are in the user manual under the AGT block diagram and in the I/O ports section. Note
that in the S3 and S5 series MCUs, AGTIO0_B is P402, AGTIO0_C is P403, and all other AGTIO pins are
AGTIO0_A. The S1 MCU Series have only AGTIO0_A pins.

The noise filter samples the external signal at intervals of the PCLK divided by one of the values.
When three consecutive samples are at the same level (high or low), then that level is passed on as
the observed state of the signal.

For event count measurement, the module can be configured to count a single or both edges. That
is, if it is configured as single edge, the signal edge as input by the user is counted, and if it is
configured as both edges, pulses are counted on the starting edge of the pulse (either rising or
falling edge). And the module will generate a callback when the pulse count reaches the event count
value set by the user.

Event count measurement uses the capture compare interrupt to compare the counter value with
the user expected value (and trigger a callback when they are the same), and uses the
measurement and overflow interrupt to keep track of the overflow. Hence the priority of the
measurement and overflow interrupt must be set higher than the latter, as the capturing of overflow
takes precedence to compare match callback.

For pulse width measurement, if the input capture module is opened in the middle of an active level
input by user, the module will start capturing the width from where it opened, and hence the
captured width will not be the right width of the pulse.

Converting Measurement Counts to Time

When a measurement completes, the raw-count data and the number of overflows is returned to the
user in the callback function.

If desired, the raw measurement data can be converted to logical time units in the callback or user

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 655 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > AGT Input Capture Driver on r_agt > Input Capture HAL Module Operational Overview

application. To convert the raw data, the current clock frequency and its pre-scaler value, number of
overflows, maximum counter value, and measurement counts should be considered. The
measurement counts and the number of overflows are provided in the callback arguments
input_capture_callback_args_t.

The recommended method to obtain the current clock frequency is to use the
cgc_api_t::systemClockFreqGet API. The input clock frequency is the clock frequency divided by the
pre-scaler value and is represented as clk_freq_hz in the following Input Capture Time Calculation
table. Note that pre-scaler are only available for AGTLCLK and AGTSCLK clocks

The maximum counter value for all boards is 0xFFFF. This maximum counter value plus one (since
counter starts from zero) is represented as max_counts in the following table:

Input Capture Time Calculation

Desired Time Units Formula

Nanoseconds (ns) time_s = ((overflows * max_counts) + counter) *
1000000000 / clk_freq_hz

Microseconds (us) time_s = ((overflows * max_counts) + counter) *
1000000 / clk_freq_hz

Milliseconds (ms) time_s = ((overflows * max_counts) + counter) *
1000 / clk_freq_hz

Seconds (s) time_s = ((overflows * max_counts) + counter) /
clk_freq_hz

Input Capture HAL Module Limitations

The input capture interface does not support the limited capture with Vbatt, that is, when
running on battery power (which is available only for S3 MCU Series).
Refer to the latest SSP Release Notes for any additional operational limitations for this
module.
When the count source selected is AGTSCLK or AGTLCLK, turn on the count source using
call cgc_api_t::clockStart API before calling input_capture_api_t::open.

4.2.6.4 Including the Input Capture HAL Module in an Application

This section describes how to include the Input Capture HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Input Capture Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the Input Capture Driver is
g_input_capture0. This name can be changed in the associated Properties window.)

Input Capture HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 656 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > AGT Input Capture Driver on r_agt > Including the Input Capture HAL Module in an Application

g_input_captureInput Capture
Driver on r_agt_input_capture

Threads->HAL/Common Stacks New Stack> Driver>
Timers> Input Capture
Driver on
r_agt_input_capture

When the Input Capture Driver on r_agt_input_capture is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 246: Input Capture HAL Module Stack

4.2.6.5 Configuring the Input Capture HAL Module

The Input Capture HAL Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator. They are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Input Capture HAL Module on r_agt_input_capture

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
error checking.

Name g_input_capture Module name.

Channel 0 Physical hardware channel.

Mode Pulse Width, Period, Event
count
Default: Pulse Width

Measures the input signal.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 657 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > AGT Input Capture Driver on r_agt > Configuring the Input Capture HAL Module

Signal Edge Rising, Falling
Default: Rising

Start measurement on rising or
falling edge. Measurement
stops on the opposite edge.

AGTIO Pin Select AGTIO_A, AGTIO_B, AGTIO_C
Default: AGTIO_A

Captures the input signal
through one of these pins.

Event Edge Polarity Single Edge, Both Edge
Default: Both Edge

Counts the pulses on single
edges (that is, on either rising
or falling) or on both edges
(that is, on either rising or
falling) is received, in the event
counter mode.

Repetition Periodic, One Shot
Default: Periodic

Capture a single measurement,
then disable captures (one
shot) until enable is called, or
capture measurements
continuously (periodic).

Auto Start True, False
Default: True

Set to true to enable
measurements after configuring
or false to leave the
measurements disabled until
enable is called.

Input Signal Filter None, PCLK/1, PCLK/8, PCLK/32.
Default: None

The noise filter samples the
external signal at intervals of
the PCLKB divided by one of the
values. When 3 consecutive
samples are at the same level
(high or low), that level is
passed on as the observed
state of the signal.

Clock source PCLKB, PCLKB/8, PCLKB/2,
AGTLCLK, AGTSCLK
Default: PCLKB

Input capture clock source.

Clock Divider PCLK/1, PCLK/2, PCLK/4, PCLK/8,
PCKL/16, PCLK/32, PCLK/64,
PCLK/128
Default: PCLK/1

Clock divider used to scale the
measurement counter.

Callback NULL A user callback function must
be registered in open. The
callback will be called from the
interrupt service routine (ISR)
each time the measurement or
overflow occurs.
Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 658 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > AGT Input Capture Driver on r_agt > Configuring the Input Capture HAL Module

Measurement and Overflow
Interrupt Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Priority 12

Select the measurement and
overflow interrupt priority.

Capture Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Priority 12

Select the capture interrupt
priority, captured interrupt is
used only for event count
mode.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Input Capture HAL Module Clock Configuration

The AGT HAL module uses the PCLKB, AGTLCLK and AGTSCLK as its clock source. The clock
frequency is set using the SSP configurator Clocks tab prior to a build, or using the CGC Interface at
run-time.

Input Capture HAL Module Pin Configuration

The AGT peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following table illustrates the
method for selecting the pins within the SSP configuration window and the subsequent table
illustrates an example selection for the associated pins.

Note
The operation mode selection determines what peripheral signals are available and what MCU pins are required.

Pin Selection for the AGT HAL Module on r_agt

Resource ISDE Tab Pin selection Sequence

AGT Pins Select Peripherals > Timer:
AGT> AGT0

Note
The selection sequence assumes AGT0 is the desired hardware target for the driver.

Pin Configuration Settings for the Input capture HAL Module on r_agt_input_capture

Property Value Description

Operation Mode Disabled, Custom, Timer
Output, Compare Match, Count
Measurement, Gated Count
Default: Disabled

Select timer operation mode.

AGTIO None, P100, P402, P403
Default: None

AGTIO pin.

AGTO None
Default: None

AGTO pin.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 659 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > AGT Input Capture Driver on r_agt > Configuring the Input Capture HAL Module

AGTOA None
Default: None

AGTOA pin.

AGTOB None
Default: None

AGTOB pin

AGTEE None
Default: None

AGTEE pin.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.

4.2.6.6 Using the Input Capture HAL Module in an Application

The typical steps in using the Input Capture HAL module in an application are:

1. Initialize the module using the input_capture_api_t::open API.
2. The capture and overflow interrupt can be enabled and the timer started using the

input_capture_api_t::enable API.
3. The status of the captured counter (running or stopped) can be queried using

input_capture_api_t::infoGet API.
4. The desired value can be found either in the main loop routine using the

input_capture_api_t::lastCaptureGet API or in the callback function.
5. The capture and overflow interrupt can be disabled and the timer stopped using

theinput_capture_api_t::disable API.
6. The module can be closed using the input_capture_api_t::close API once done.

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 247: Flow Diagram of a Typical Input Capture HAL Module Application

4.2.7 Clock Accurate Circuit Driver

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 660 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Clock Accurate Circuit Driver > CAC HAL Module Introduction

4.2.7.1 CAC HAL Module Introduction

The CAC HAL module provides a high-level API for clock accuracy control applications and uses the
Clock Frequency Accuracy Measurement Circuit (CAC) peripheral on a Synergy MCU. This is
particularly useful function when implementing a fail-safe mechanism for reliability-oriented
applications. A user-defined callback can be created to respond to various error indications.

CAC HAL Module Features

Supports clock frequency-measurement and monitoring based on a reference signal input.
Reference can be either an externally supplied clock source or an internal clock sources.
An interrupt request may optionally be generated by a completed measurement, a detected
frequency error, or a counter overflow.
A digital filter is available for an externally supplied reference clock, and dividers are
available for both internally supplied measurement and reference clocks.
Edge-detection options for the reference clock are configurable as rising, falling, or both.

Figure 248: CAC HAL Module Block Diagram

CAC Hardware support details

The following hardware features are, or are not, supported by SSP for the CAC.

Legend:

Symbol Meaning

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 661 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Clock Accurate Circuit Driver > CAC HAL Module Introduction

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU
Group

Measurement
Clock Targets:

Main Clock
Oscillator

Measurement
Clock Targets:

Sub-Clock
Oscillator

Measurement
Clock

Targets:
HOCO Clock

Measurement
Clock

Targets:
MOCO Clock

Measurement
Clock Targets:

LOCO Clock

S124 ✓ ✓ ✓ ✓ ✓

S128 ✓ ✓ ✓ ✓ ✓

S1JA ✓ ✓ ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓

MCU
Group

Measurement
Clock

Targets:
IWDTCLK

Measurement
Clock Targets:

Peripheral
Module Clock B

Measurement
Reference

Clocks:
External clock
input to the
CACREF pin

Measurement
Reference

Clocks: Main
Clock

Oscillator

Measurement
Reference

Clocks: Sub-
Clock

Oscillator

S124 ✓ ✓ ✓ ✓ ✓

S128 ✓ ✓ ✓ ✓ ✓

S1JA ✓ ✓ ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 662 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Clock Accurate Circuit Driver > CAC HAL Module Introduction

MCU
Group

Measurement
Reference

Clocks:
HOCO Clock

Measurement
Reference

Clocks:
MOCO Clock

Measurement
Reference

Clocks:
LOCO Clock

Measurement
Reference

Clocks:
IWDTCLK

Clock

Measurement
Reference

Clocks:
Peripheral

Module
Clock B

S124 ✓ ✓ ✓ ✓ ✓

S128 ✓ ✓ ✓ ✓ ✓

S1JA ✓ ✓ ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓

MCU
Group

Selectable
Function:

Digital Filter

Interrupt
Sources:

Measurement
End

Interrupt
Sources:

Frequency
Error

Interrupt
Sources:
Overflow

Module-stop
function to

reduce power
consumption

S124 ✓ ✓ ✓ ✓ ✓

S128 ✓ ✓ ✓ ✓ ✓

S1JA ✓ ✓ ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓

4.2.7.2 CAC HAL Module APIs Overview

The CAC HAL module defines APIs for opening, closing, reading, starting, stopping and resetting the
CAC. A complete list of the available APIs, an example API call and a short description of each can be
found in the following table. A table of status return values follows the API summary table.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 663 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Clock Accurate Circuit Driver > CAC HAL Module APIs Overview

CAC HAL Module API Summary

Function Name Example API Call and Description

open g_cac0.p_api->open(g_cac0.p_ctrl, g_cac0.p_cfg)
Open function for CAC device.

read g_cac0.p_api->read(g_cac0.p_ctrl, &cac0_status,
&cac0_counter)
Read function for CAC peripheral.

close g_cac0.p_api->close(g_cac0.p_ctrl)
Close function for CAC device.

stopMeasurement g_cac0.p_api->stopMeasurement(g_cac0.p_ctrl)
Ends a measurement for the CAC peripheral.

startMeasurement g_cac0.p_api->startMeasurement(g_cac0.p_ctrl)
Begin a measurement for the CAC peripheral.

reset g_cac0.p_api->reset(g_cac0.p_ctrl)
Reset function for CAC device.

versionGet g_cac0.p_api->versionGet(&cac0_version)
Get the CAC API and code version information.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful

SSP_ERR_INVALID_ARGUMENT One or more configuration options are invalid

SSP_ERR_NOT_OPEN Open has not been successfully called

SSP_ERR_ASSERTION Null provided for p_ctrl, p_cfg and others

SSP_ERR_INVALID_POINTER Interrupt specified with NULL callback

SSP_ERR_HW_LOCKED Hardware lock for CAC peripheral is already
taken

SSP_ERR_INVALID_CAC_REF_CLOCK Measured clock rate smaller than reference
clock rate

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.7.3 CAC HAL Module Operational Overview

The CAC HAL module API interfaces with a clock frequency-measurement circuit capable of
monitoring the clock frequency based on a reference signal input. The reference signal may be an

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 664 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Clock Accurate Circuit Driver > CAC HAL Module Operational Overview

externally supplied clock source or one of several available internal clock sources. An interrupt
request may optionally be generated by a completed measurement, a detected frequency error, or a
counter overflow. A digital filter is available for an externally supplied reference clock, and dividers
are available for both internally supplied measurement and reference clocks. Edge-detection options
for the reference clock are configurable as rising, falling, or both.

The frequency of the following clocks can be measured:

Clock output from main-clock oscillator (main clock)
Clock output from sub-clock oscillator (sub clock)
Clock output from high-speed on-chip oscillator (HOCO clock)
Clock output from mid-speed on-chip oscillator (MOCO clock)
Clock output from low-speed on-chip oscillator (LOCO clock)
Clock output from IWDT-dedicated on-chip oscillator (IWDTCLK clock)
Peripheral module clock (PCLKB)

The measurement clock is monitored using a reference clock. The reference clock may be an
external clock (supplied on the CACREF input pin) or one of the following internal clocks:

Clock output from main-clock oscillator (main clock)
Clock output from sub-clock oscillator (sub clock)
Clock output from high-speed on-chip oscillator (HOCO clock)
Clock output from mid-speed on-chip oscillator (MOCO clock)
Clock output from low-speed on-chip oscillator (LOCO clock)
Clock output from IWDT-dedicated on-chip oscillator (IWDTCLK clock)
Peripheral module clock (PCLKB)

Operational Description

The CAC HAL module measures the operation and accuracy of a selected clock. Once the
measurement is requested, counting begins on the first valid edge detected for the reference clock
and ends on the next valid edge. A valid edge can be configured to be rising, falling, or both. The
count is incremented at each cycle of the measurement clock after it has passed through the divider
circuit which is capable of dividing the clock by 1, 4, 8, or 32. An internally supplied reference clock
also passes through a divider circuit which is capable of dividing the clock by 32, 128, 1024, or 8192.
An externally supplied reference clock does not pass through a divider circuit, but may pass through
a digital filter if it is configured to do so.

For example, if the sub-clock is specified as the measurement clock (32 kHz) and a divisor of 1 is
specified, then the counter will increment at a 32 kHz rate. If a reference clock of 1 kHz is provided,
then after one cycle of the reference clock you would expect the counter to be 32. This is where the
CAC upper and lower-limit settings are examined. Part of the setup for a CAC measurement is the
specification of an upper and lower limit for the measurement. When a measurement is complete,
the CAC compares the counter contents to the limits configured for the measurement. If both the
counter ≤ upper limit and the counter ≥ lower limit, then the measurement has completed without
error and the measured frequency is operating within the defined limits. If the counter fails to meet
these requirements, then a frequency error is indicated. A completed measurement may be
identified by making API calls to poll the driver, or by establishing a callback function.

CAC HAL Module Important Operational Notes and Limitations

CAC HAL Module Operational Notes

Continuous Mode

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 665 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Clock Accurate Circuit Driver > CAC HAL Module Operational Overview

The CAC module may be operated in either a single or continuous measurement mode. In continuous
mode, the measuring process is restarted after each completed measurement. In non-continuous, or
single measurement mode, measuring stops after the first completed measurement. The
cac_cfg_t::continuous_mode configuration member controls this feature.

Interrupts and Callbacks

When a measurement is complete and a callback is provided by the user, (with one or more
interrupts enabled) the CAC HAL module invokes the callback (cac_cfg_t::p_callback) with the
argument cac_callback_args_t, indicating the event cac_event_t. If interrupts are not enabled, the API
supports checking the measurement status to poll if the measurement is complete (cac_api_t::read),
which will provide both the status of the measurement and the current value of the CAC counter
register.

The CAC driver supports three interrupts:

A frequency error interrupt occurs when a measurement completes and the CAC counter
register value is outside of the range that was specified as part of the cac_api_t::open call.
The configuration cac_cfg_t::ferr_interrupt_enabled member provided in the cac_api_t::open
call must be enabled for this interrupt to be generated.
An overflow error interrupt occurs when the CAC counter register overflows its maximum
(0xFFFF) value. The configuration cac_cfg_t::ovf_interrupt_enabled member provided in the
cac_api_t::open call must be enabled for this interrupt to be generated.
A measurement complete interrupt occurs when a measurement completes and the CAC
counter register value is within the range that was specified as part of the CAC driver
cac_api_t::open. The configuration cac_cfg_t::mei_interrupt_enabled member provided in
the cac_api_t::open call must be enabled for this interrupt to be generated.

Reset

The cac_api_t::reset API can be used to reset the overflow, measurement end and frequency error
interrupt flags after measurement has been stopped to eliminate any false triggers.

CAC HAL Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.7.4 Including the CAC HAL Module in an Application

This section describes how to include the CAC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Clock Accuracy Circuit Driver to an application, simply add it to a thread using the stacks
selection sequence given in the following table. (The default name for the Clock Accuracy Circuit
Driver is g_cac0. This name can be changed in the associated Properties window.)

CAC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 666 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Clock Accurate Circuit Driver > Including the CAC HAL Module in an Application

g_comparator0 Comparator
Driver on r_acmphs

Threads New Stack> Driver>
Analog> Comparator Driver
on r_acmphs

When the Clock Accuracy Circuit Driver on r_cac is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 249: CAC HAL Module Stack

4.2.7.5 Configuring the CAC HAL Module

The CAC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the CAC HAL Module on r_cac

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 667 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Clock Accurate Circuit Driver > Configuring the CAC HAL Module

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Controls whether to include
code for API parameter
checking.

Name g_cac0 Identifies this instance.

Continuous Measurement
Operation

Enabled, Disabled

Default: Enabled

If Enabled, measurement will
continuously restart after
completing.

Measurement Complete
Interrupt

Enabled, Disabled

Default: Enabled

Enabling allows the CAC driver
to generate an interrupt when a
measurement is complete,
providing the CAC
MEASUREMENT END interrupt is
enabled in the ICU.

Overflow Interrupt Enabled, Disabled

Default: Enabled

Enabling allows the CAC driver
to generate an interrupt when a
CAC overflow occurs, providing
the CAC OVERFLOW interrupt is
enabled in the ICU.

Frequency Error Interrupt Enabled, Disabled

Default: Enabled

Enabling allows the CAC driver
to generate an interrupt when a
frequency error occurs,
providing the CAC FREQUENCY
ERROR interrupt is enabled in
the ICU.

Upper Limit Threshold 0 Top end of allowable range for
measurement complete.

Lower Limit Threshold 0 Bottom end of allowable range
for measurement complete.

Reference Clock Source Main Oscillator, Sub-clock,
HOCO, MOCO, LOCO, PCLKB,
IWDT

Default: Main Oscillator

Reference clock source.

Reference Clock Divider 32,128,1024,8192

Default:32

Reference clock divider.

Reference Clock Edge Detect Rising, Falling, Both

Default: Rising

Reference clock edge detection.

Reference Clock Digital Filter Disabled, Sampling clock =
measuring frequency, Sampling
clock = measuring/4, Sampling
clock = measuring/16

Default: Disabled

Reference clock digital filter.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 668 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Clock Accurate Circuit Driver > Configuring the CAC HAL Module

Measurement Clock Source Main Oscillator, Sub-clock,
HOCO, MOCO, LOCO, PCLKB,
IWDT

Default: HOCO

Measurement clock source.

Measurement Clock Divider 1,4,8,32

Default: 1

Measurement clock divider.

Callback NULL Function name for callback.

Frequency Error Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

CAC Frequency Error interrupt
priority selection.

Measurement End Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

CAC Measurement End
interrupt priority selection.

Overflow Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

CAC Overflow interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

CAC HAL Module Clock Configuration

Clocks are selected from the Clock tab as needed by the application.

CAC HAL Module Pin Configuration

The pins for the CAC HAL module are selected as shown in the following table; the pin settings are
shown in the subsequent table. If CACREF is used to the input pin of reference clock, you must
configure this pin.

Pin Selection for the CAC HAL Module on r_cac

Resource ISDE Tab Pin selection Sequence

CAC HAL Module Pins Peripherals> Monitoring:
CAC> CAC0

Note
The selection sequence assumes CAC0 is the desired hardware target for the driver

Pin Configuration Settings for the CAC HAL Module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 669 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Clock Accurate Circuit Driver > Configuring the CAC HAL Module

Pin Configuration Property Value Description

Operation Mode Disabled, External Reference

Default: Disabled

Select Enable as the Operation
Mode for CAC.

CACREF: None, P204

Default: None

CACREF Pin.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 kit. Other Synergy
kits and MCUs may have different available pin configuration settings.

4.2.7.6 Using the CAC HAL Module in an Application

The typical steps in using the CAC HAL module in an application are:

1. Start reference clock and measurement clock using the CGC cgc_api_t::clockStart API if
needed.

a. For started clock, use the CGC cgc_api_t::clockCheck API to confirm oscillation
stability or active state.

2. Get the API and code version information using the cac_api_t::versionGet if needed.
3. Initialize the CAC HAL module using the cac_api_t::open API.
4. Start a measurement using the cac_api_t::startMeasurement API.
5. Poll using the cac_api_t::read function to look for the measurement result or get

measurement status and result using callback function called in ISR.
6. Stop the measurement using the cac_api_t::stopMeasurement API.
7. Reset the overflow, measurement end, and frequency error interrupt flags using the

cac_api_t::reset API.
8. Close the CAC HAL module if no more measurements are needed using the cac_api_t::close

API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 670 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Clock Accurate Circuit Driver > Using the CAC HAL Module in an Application

Figure 250: Flow Diagram of a Typical CAC HAL Module Application

4.2.8 CAN Driver

4.2.8.1 CAN HAL Module Introduction

The CAN HAL module provides a high-level API for CAN network applications and supports the CAN
peripherals available on the Synergy microcontroller hardware. A user-callback function must be
defined, which the driver will invoke when transmit, receive or error interrupts are received. The
callback returns with a parameter which indicates the channel, mailbox and event.

CAN HAL Module Features

Supports both standard (11-bit) and extended (29-bit) messaging formats
Support for bit timing configuration as defined in the CAN specification
Supports up to 32 transmit or receive mailboxes with standard or extended ID frames
Receive mailboxes can be configured to capture either data or remote CAN Frames
Receive mailboxes can be configured to receive a range of IDs using mailbox masks
Supports a user-callback function when transmit, receive, or error interrupts are received

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 671 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > CAN HAL Module Introduction

Figure 251: CAN HAL Module Block Diagram

CAN Hardware support details

The following hardware features are, or are not, supported by SSP for CAN:

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU
Group

Programmab
le

Bit Rate

Support up
to 32

Mailboxes

Mailbox
Normal
Mode

Mailbox
FIFO Mode

Support for
Data Frame
Reception

Support for
Remote
Frame

Reception

S124 ✓ ✓ ✓ ⌧ ✓ ✓

S128 ✓ ✓ ✓ ⌧ ✓ ✓

S1JA ✓ ✓ ✓ ⌧ ✓ ✓

S3A1 ✓ ✓ ✓ ⌧ ✓ ✓

S3A3 ✓ ✓ ✓ ⌧ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 672 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > CAN HAL Module Introduction

S3A6 ✓ ✓ ✓ ⌧ ✓ ✓

S3A7 ✓ ✓ ✓ ⌧ ✓ ✓

S5D3 ✓ ✓ ✓ ⌧ ✓ ✓

S5D5 ✓ ✓ ✓ ⌧ ✓ ✓

S5D9 ✓ ✓ ✓ ⌧ ✓ ✓

S7G2 ✓ ✓ ✓ ⌧ ✓ ✓

MCU
Group

Programmable
one-shot
reception

Overwrite
mode

reception

Overrun mode
reception

Support all 8
Acceptance

Masks

Support Masks
independently

enabled
or disabled for
each Mailbox

S124 ⌧ ✓ ✓ ✓ ✓

S128 ⌧ ✓ ✓ ✓ ✓

S1JA ⌧ ✓ ✓ ✓ ✓

S3A1 ⌧ ✓ ✓ ✓ ✓

S3A3 ⌧ ✓ ✓ ✓ ✓

S3A6 ⌧ ✓ ✓ ✓ ✓

S3A7 ⌧ ✓ ✓ ✓ ✓

S5D3 ⌧ ✓ ✓ ✓ ✓

S5D5 ⌧ ✓ ✓ ✓ ✓

S5D9 ⌧ ✓ ✓ ✓ ✓

S7G2 ⌧ ✓ ✓ ✓ ✓

MCU
Group

Support for
transmission

request
abort

Mode
transition

for bus-off:
ISO11898-1
specification
-compliant

Mode
transition

for bus-off:
Automatic
invoking of
CAN halt
mode on

bus-off entry

Mode
transition for

bus-off:
Automatic
invoking of
CAN halt
mode on

bus-off end

Mode
transition for

bus-off:
Invoking of
CAN halt

mode
through
software

Mode
transition

for bus-off:
Transition
to error
active
state

through
software.

S124 ⌧ ✓ ⌧ ⌧ ⌧ ⌧

S128 ⌧ ✓ ⌧ ⌧ ⌧ ⌧

S1JA ⌧ ✓ ⌧ ⌧ ⌧ ⌧

S3A1 ⌧ ✓ ⌧ ⌧ ⌧ ⌧

S3A3 ⌧ ✓ ⌧ ⌧ ⌧ ⌧

S3A6 ⌧ ✓ ⌧ ⌧ ⌧ ⌧

S3A7 ⌧ ✓ ⌧ ⌧ ⌧ ⌧

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 673 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > CAN HAL Module Introduction

S5D3 ⌧ ✓ ⌧ ⌧ ⌧ ⌧

S5D5 ⌧ ✓ ⌧ ⌧ ⌧ ⌧

S5D9 ⌧ ✓ ⌧ ⌧ ⌧ ⌧

S7G2 ⌧ ✓ ⌧ ⌧ ⌧ ⌧

MCU
Group

Monitoring
of all CAN
bus errors

{Stuff,
Form, ACK,
15-bit CRC,
Bit error,

ACK
Delimiter}

Detection of
all transition

to error
states {error

warning,
error

passive,
bus-off

entry, and
bus-off

Recovery}

Support
Interrupt
Sources
{Receive

FIFO,
Transmit
FIFO }

Support
Interrupt
Sources

{Reception
complete.

Transmissio
n

complete,
Error

interrupts}

Support
CAN sleep

mode 1
{stop CAN

clock}

Support all 3
software

units
{Acceptance

filter
support,
Mailbox
search

support,
including
receive
mailbox
search,
transmit
mailbox

search, and
message

lost Search,
Channel
search

support}

S124 ✓ ✓ ⌧ ✓ ✓ ✓

S128 ✓ ✓ ⌧ ✓ ✓ ✓

S1JA ✓ ✓ ⌧ ✓ ✓ ✓

S3A1 ✓ ✓ ⌧ ✓ ✓ ✓

S3A3 ✓ ✓ ⌧ ✓ ✓ ✓

S3A6 ✓ ✓ ⌧ ✓ ✓ ✓

S3A7 ✓ ✓ ⌧ ✓ ✓ ✓

S5D3 ✓ ✓ ⌧ ✓ ✓ ✓

S5D5 ✓ ✓ ⌧ ✓ ✓ ✓

S5D9 ✓ ✓ ⌧ ✓ ✓ ✓

S7G2 ✓ ✓ ⌧ ✓ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 674 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > CAN HAL Module Introduction

MCU
Group

CAN
Source
Clock:
PCLKB

CAN
Source
Clock:

CANMCLK

Support all 3
Test

Modes
{Listen-only,
Self-Test 1
(external

loopback),
Self Test

2 (internal
loopback)}

Module-stop
Function

Support
Standard

CAN (11 bit)

Support
Extended

CAN (29 bit)

S124 N/A ✓ ✓ ✓ ✓ ✓

S128 N/A ✓ ✓ ✓ ✓ ✓

S1JA N/A ✓ ✓ ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓

4.2.8.2 CAN HAL Module APIs Overview

The CAN HAL defines APIs for opening, closing, writing (transmitting) and reading (receiving) CAN
data; it also provides some additional functions to assist in processing more complex commands. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

CAN HAL Module API Summary

Function Name Example API Call and Description

open g_can0.p_api->open(g_can0.p_ctrl,
g_can0.p_cfg)
The open API configures CAN Channel 0. This
function must be called before any other CAN
functions.
Note: This call is made automatically during
system initialization, prior to entering the users
thread. Unless the user closes the module, open
will not need to be called.

close g_can0.p_api->close(g_can0.p_ctrl)
The close API handles the clean-up of internal
driver data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 675 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > CAN HAL Module APIs Overview

read g_can0.p_api->read (g_can0.p_ctrl,
p_args->mailbox, &receiveFrame)
The read API reads received CAN data.

write g_can0.p_api->write (g_can0.p_ctrl, 0,
&transmitFrame)
The write API write data into the CAN transmit
frame buffer and send it out.

control g_can0.p_api->control(g_can0.p_ctrl,
CAN_COMMAND_MODE_SWITCH, &mode);
withcan_mode_t mode =
CAN_MODE_LOOPBACK_INTERNAL;
The control API will be able to change the CAN
mode of operation.

infoGet g_can0.p_api->infoGet(g_can0.p_ctrl, p_info)
The infoGet API retrieves the CAN mode of
operation.

versionGet g_can0.p_api->versionGet(version)
The versionGet API retrieves the module version
information.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_HW_LOCKED Lock already owned by another user.

SSP_ERR_CAN_MODE_SWITCH_FAILED Channel failed to switch modes.

SSP_ERR_CAN_INIT_FAILED Channel failed to initialize.

SSP_ERR_ASSERTION Null pointer presented.

SSP_ERR_NOT_OPEN Port is not open.

SSP_ERR_CAN_DATA_UNAVAILABLE No data available.

SSP_ERR_CAN_TRANSMIT_MAILBOX Mailbox is not setup for receive.

SSP_ERR_CAN_TRANSMIT_NOT_READY Transmit in progress, cannot write data at this
time.

SSP_ERR_CAN_RECEIVE_MAILBOX Mailbox is setup for receive and cannot send.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 676 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > CAN HAL Module Operational Overview

4.2.8.3 CAN HAL Module Operational Overview

The CAN HAL module controls the CAN peripherals on Synergy microcontrollers according to the user
configuration. The API provides open, close, read, write, control and information functions. The driver
allows for bit-timing configuration as defined in the CAN specification; it can be configured for up to
32 transmit or receive mailboxes with standard or extended ID frames. Receive mailboxes can be
configured to capture either data or remote CAN frames. The user callback is invoked with the
channel, mailbox and event information when a transmit, receive or error interrupt occurs.

Using the CAN IDs and Masks

Each CAN Mailbox configured to receive messages has an ID and Mask set. Incoming messages will
be placed in the lowest mailbox where the following is true:

Incoming ID & Mailbox Mask == Mailbox ID & Mailbox Mask

Example 1: A mailbox with an ID of 0x25 and a mask of 0x1FFFFFFF can receive messages with IDs
of 0x25.

Example 2: A mailbox with an ID of 0x25 and a mask of 0x1FFFFFF0 can receive messages with IDs
of 0x20 through 0x2F.

Using the CAN HAL Module Test Modes

The CAN Module has three test modes, listen only, external loopback and internal loopback.

In the listen only mode valid data frames and remote frames can be received. However,
only recessive bits can be sent on the CAN bus. The ACK bit, overload flag, and active error
flag cannot be sent. Listen only mode can be used for baud rate detection
In the external loopback mode the protocol module treats its own transmitted messages as
those received by the CAN transceiver and stores them into the receive mailbox. To be
independent from external stimulation, the protocol module generates the ACK bit. Connect
the CTX and CRX pins to the transceiver.
The internal loopback mode is similar to the external loopback mode except the protocol
controller performs internal loopback from the internal CTX pin to the internal CRX pin. The
input value of the external CRX pin is ignored. The external CTX pin outputs only recessive
bits. The CTX and CRX pins are not required to be connected to the CAN bus or any external
device.

Changing the CAN HAL Module Operating Modes

The CAN Module can be switched between modes using the can_api_t::control API. Pass
CAN_COMMAND_MODE_SWITCH and a pointer to a can_mode_t variable set to the desired mode into
the can_api_t::control API.

Mode can_mode_t value Reason for use

Normal CAN_MODE_NORMAL Normal operation mode

Internal Loopback CAN_MODE_LOOPBACK_INTERN
AL

Internal loopback testing

External Loopback CAN_MODE_LOOPBACK_EXTERN
AL

External loopback testing

Listen Only CAN_MODE_LISTEN Baud rate detection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 677 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > CAN HAL Module Operational Overview

Halt CAN_MODE_HALT Mailbox configuration and test
mode setting

Sleep CAN_MODE_SLEEP Stops the clock supply to the
CAN module reducing current
consumption

Exit Sleep CAN_MODE_EXIT_SLEEP Internal use only

Reset CAN_MODE_RESET Communication configuration

Example usage:

 /* Switch the device into internal loopback mode for easy testing. */

 can_mode_t mode = CAN_MODE_LOOPBACK_INTERNAL;

 ssp_err_t error = g_can0.p_api->control(g_can0.p_ctrl, CAN_COMMAND_MODE_SWITCH,

&mode);

CAN HAL Module Important Operational Notes and Limitations

CAN HAL Module Operational Notes

The user application must start the main-clock oscillator (CANMCLK or XTAL) at run-time
using the CGC Interface if it has not already started (for example, if it is not used as the
MCU clock source.)
For S7, S5, S3 and S1 MCUs, the following clock restriction must be satisfied for the CAN
HAL module when the clock source is the main-clock oscillator (CANMCLK).fPCLKB >=
fCANCLK (XTAL / Baud Rate Prescaler)
For S7, S5 and S3 MCUs, the source of the peripheral module clocks must be PLL for the
CAN HAL module when the clock source is PCLKB.
For S3 MCUs, the clock frequency ratio of PCLKA and PCLKB must be 2:1 when using the
CAN HAL module. Operation is not guaranteed for other settings.
For S1 MCUs, the clock frequency ratio of ICLK and PCLKB must be 2:1 when using the CAN
HAL module. Operation is not guaranteed for other settings.
SJW (Synchronization Jump Width) is often given by the bus administrator. Select 1 <= SJW
<= 4.
Time segment and SJW settings must adhere to the following constraints: TS1 > TS2 >=
SJW.

CAN HAL Module Limitations

Refer to the latest SSP Release Notes for any additional operational limitations for this
module.

4.2.8.4 Including the CAN HAL Module in an Application

This section describes how to include the CAN HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 678 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > Including the CAN HAL Module in an Application

the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the CAN Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the CAN Driver is g_can0. This name
can be changed in the associated Properties window.)

CAN HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_can0 CAN Driver on r_can Threads New Stack> Driver>
Connectivity> CAN Driver on
r_can

When the CAN Driver on r_can is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 252: CAN HAL Module Stack

4.2.8.5 Configuring the CAN HAL Module

The CAN HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 679 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > Configuring the CAN HAL Module

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the CAN HAL Module on r_can

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable parameter
error checking.

Name g_can0 Specify CAN Module instance
name.

Channel 0 Specify if the CAN channel is to
use 0 or 1 (S7G2 only).

Baud Rate Prescaler 5 Specify the baud rate prescaler
(0-1023). See CAN Bit Rate
Calculation.

Time Segment 1 4 Time Quanta thru 16 Time
Quanta

Default: 15 Time Quanta

Specify the time segment 1
value (4-16). See CAN Bit Rate
Calculation.

Time Segment 2 2 Time Quanta thru 8 Time
Quanta

Default: 8 Time Quanta

Specify the time segment 2
value (2-8). See CAN Bit Rate
Calculation.

Synchronization Jump Width 1 Time Quanta thru 4 Time
Quanta

Default: 2 Time Quanta

Specify the Synchronization
Jump Width value (1-4). See
CAN Bit Rate Calculation.

Clock Source PCLKB (S7G2 and S3A7 only),
CAN MCLK

Default: CAN MCLK

CAN clock source, CANMCLK or
PCLKB (S7G2 and S3A7 only).

Callback NULL A user callback function can be
registered in open. If this
callback function is provided, it
is called from the interrupt
service routine (ISR) each time
any interrupt occurs.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 680 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > Configuring the CAN HAL Module

Overwrite/Overrun Mode Overwrite Mode, Overrun Mode

Default: Overwrite Mode

Select whether receive mailbox
will be overwritten or overrun if
data is not read in time.

Standard or Extended ID Mode Standard ID Mode, Extended ID
Mode

Default: Standard ID Mode

Select whether the driver will
be using CAN standard or
extended IDs.

Number of Mailboxes 4, 8, 16, 32 Mailboxes

Default: 32 Mailboxes

Select 4, 8, 16 or 32 mailboxes.

Mailbox 0-31 ID 0-31 Select the receive ID for
mailbox 0, between 0 and 0x7ff
when using standard IDs,
between 0 and 0x1FFFFFFF
when using extended IDs. Value
is not used when the mailbox is
set as transmit type.

Mailbox 0 Type Receive Mailbox, Transmit
Mailbox

Default: Transmit Mailbox

Select whether the mailbox is
used for receive or transmit.

Mailbox 1-31 Type Receive Mailbox, Transmit
Mailbox

Default: Receive Mailbox

Select whether the mailbox is
used for receive or transmit.

Mailbox 0 Frame Type Data Mailbox, Remote Mailbox

Default: Remote Mailbox

Select whether the mailbox is
used to capture data frames or
remote frames (receive only).

Mailbox 1-31 Frame Type Data Mailbox, Remote Mailbox

Default: Data Mailbox

Select whether the mailbox is
used to capture data frames or
remote frames (receive only).

Mailbox 0-3 Group Mask 0x1FFFFFFF Select the Mask for mailboxes
0-3. See Setting the Mailbox
Group Masks.

Mailbox 4-7 Group Mask 0x1FFFFFFF Select the Mask for mailboxes
4-7. See Setting the Mailbox
Group Masks.

Mailbox 8-11 Group Mask 0x1FFFFFFF Select the Mask for mailboxes
8-11. See Setting the Mailbox
Group Masks.

Mailbox 12-15 Group Mask 0x1FFFFFFF Select the Mask for mailboxes
12-15. See Setting the Mailbox
Group Masks.

Mailbox 16-19 Group Mask 0x1FFFFFFF Select the Mask for mailboxes
16-19. See Setting the Mailbox
Group Masks.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 681 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > Configuring the CAN HAL Module

Mailbox 20-23 Group Mask 0x1FFFFFFF Select the Mask for mailboxes
20-23. See Setting the Mailbox
Group Masks.

Mailbox 24-27 Group Mask 0x1FFFFFFF Select the Mask for mailboxes
24-27. See Setting the Mailbox
Group Masks.

Mailbox 28-31 Group Mask 0x1FFFFFFF Select the Mask for mailboxes
28-31. See Setting the Mailbox
Group Masks.

Error Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Specify the error interrupt
priority 0-15 (required).

Receive Mailbox Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Specify the receive interrupt
priority 0-15 (required).

Transmit Mailbox Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Specify the transmit interrupt
priority 0-15 (required).

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

CAN HAL Module Clock Configuration

The CAN peripheral uses the CANMCLK (main-clock oscillator) or PCLKB (S7G2, S5D9, S5D5, S3A7
and S3A7 only) as its clock source (fCAN, CAN System Clock.) Using the PCLKB with the default of 60
MHz and the Synergy default, (S7G2 DK) CAN configuration will provide a CAN bit rate of 500 Kbit.

To set the PCLKB frequency, use the clock configurator in e2 studio. To change the clock frequency
at run-time, use the CGC Interface. Refer to the CGC module guide for more information on
configuring clocks.

CAN HAL Module Pin Configuration

The CAN peripheral module uses the pins on the MCU to communicate to external devices connected
on the CAN bus. Under Peripherals, select CAN and then CAN0 for channel 0 or CAN1 (S7G2 and
S3A7 only) for channel 1. The operation mode for the channel must be enabled and the CRXn and
CTXn pins must be selected to match your PC board layout. The pin configurator sets appropriate
CAN pin configuration in the pin_cfg field for the associated pin. The following table illustrates the
method for selecting the pins within the SSP configuration window and the subsequent table
illustrates an example selection for the CAN pins.

Note
The operation mode selection determines what peripheral signals are available and what MCU pins are required.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 682 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > Configuring the CAN HAL Module

Pin Selection for the CAN HAL Module on r_ can

Resource ISDE Tab Pin selection Sequence

CAN Pins Select Peripherals> CAN>
CAN0

Note
The selection sequence assumes CAN0 is the desired hardware target for the driver.

Pin Configuration Settings for the CAN HAL Module on r_ can

Property Value Description

Operation Mode Disabled, Enabled Enable the mode to use CAN0.

CRX None, P202, P402
Default: P402

CAN0_CRX0.

CTX None, P203 P401
Default: P401

CAN0_CTX0.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.

CAN Bit Rate Calculation

A time quanta (Tq) is one bit-time of the CAN communication clock, fCANCLK. This is not the CAN bit-
time but the internal clock period of the CAN peripheral. The frequency is determined by the baud-
rate prescaler value and the CAN source clock, fCAN (CANMCLK or PCLKB). One bit-time is divided
into a number of time quanta, Tqtot. One time quantum is equal to the period of the fCANCLK. Each
bitrate register is then given a certain number of Tq of the total of Tq that make up one CAN-bit
period. The default ISDE bitrate setting (S7G2 DK template) is 500 Kbps for a fCAN at 60 MHz (using
PCLKB.)

The formulas to calculate the bitrate register settings are as follows:

fCAN = (fPCLKB or fCANMCLK)

The baud-rate prescaler scales the CAN peripheral clock down.

fCANCLK = fCAN/ Baud Rate Prescaler = 60 MHz (default)/ 5(default) = 12 MHz

One time quantum is one clock period of the CAN clock.

Tqtot =1/fCANCLK

Tqtot is the total number of CAN peripheral clock cycles during one CAN bit time and is by the
peripheral built by the sum of the "time segments" and "SS" which is always 1.

Tqtot = TSEG1 + TSEG2 + SS (TSEG1 must be > TSEG2) = 15 + 8 + 1 = 24 (default)

The bitrate is then:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 683 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > Configuring the CAN HAL Module

Bitrate = fCANCLK/Tqtot = 12 MHz / 24 = 500 Kbps

Important notes:

The user application must start the main-clock oscillator (CANMCLK or XTAL) at run-time
using the CGC Interface if it is not already started (for example, if it is not used as the MCU
clock source.)
For S7G2, S3A7 and S124 MCUs, the following clock restriction must be satisfied for the CAN
module when the clock source is the main-clock oscillator (CANMCLK): fPCLKB >=
fCANMCLK
For S7G2 and S3A7 MCUs, the source of the peripheral module clocks must be PLL for the
CAN HAL module when the clock source is PCLKB.
For S3A7 MCUs, the clock frequency ratio, PCLKA and PCLKB must be 2:1 when using the
CAN HAL module. Operation is not guaranteed for other settings.
For S124 MCUs, the clock frequency ratio of ICLK and PCLKB must be 2:1 when using the
CAN HAL module. Operation is not guaranteed for other settings.
SJW (Synchronization Jump Width) is often given by the bus administrator. Select 1 <= SJW
<= 4.

Configurator sample values for different CAN bit-rate

fCAN
(either

PCLKB or
CAN

MCLK)

Baud
Rate

Prescalar

fCANCLK
= fCAN /

Baud
Rate

Prescalar

Time
Segment
1 (TSEG1)

Time
Segment
2 (TSEG2)

Synchron
ization
Jump
Width
(SS)

Tqtot =
TSEG1 +
TSEG2
+SS

Bitrate =
fCA NCLK

/ Tqtot

240 10 24 15 8 1 24 1 Mbps

60 5 12 15 8 1 24 500 kbps

240 48 5 16 2 2 20 250 kbps

240 96 2.5 16 2 2 20 125 kbps

Setting the Mailbox Group Masks

There are 8 mailbox group-masks, one for each group of 4 mailboxes. These masks allow the
mailboxes to be configured to receive more than one ID. If the mask is all ones (0x7ff for standard
IDs or 0x1FFFFFFF for extended ID) the mailboxes within the group do not mask any bits of the ID,
requiring all bits of the mailbox ID to match the mailbox ID before a message is captured. If any bits
of the mask are set to zero, those bits will not be necessary to match the same bits of the mailbox
ID. For example, if Mailbox ID 1 is set to 0x7ff and Mailbox 0-3 Group Mask is set to 0x7ff, mailbox 1
will only capture messages with the ID of 0x7ff. If the mailbox 0-3 group mask is set to 0x7fe,
mailbox 1 will still capture messages with IDs of 0x7f but will also capture messages with IDs of
0x7fe.

4.2.8.6 Using the CAN HAL Module in an Application

A CAN application requires a minimum of two nodes to demonstrate CAN communication. One node
can be a transmitter, while the other can be a receiver (or both can behave as transmitter and
receiver.)

The typical steps in using the CAN HAL Module in an application are:

1. Initialize the CAN HAL Module using the can_api_t::open API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 684 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CAN Driver > Using the CAN HAL Module in an Application

2. (Optional) Enter internal loopback or external loopback test modes using can_api_t::control
API.

3. (Optional) Information about the module status, including bit rate, can be retrieved using
the can_api_t::infoGet API.

4. To transmit a message:
a. Create and configure the CAN frame ensuring correct ID and frame type.
b. Write the CAN frame to a mailbox configured in transmit mode using the

can_api_t::write API.
5. To receive a message:

a. Read from a mailbox that has received a frame using the can_api_t::read API.
6. Close the CAN HAL Module using the can_api_t::close API (if needed).

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 253: Flow Diagram of a Typical CAN HAL Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 685 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver

4.2.9 CGC Driver

4.2.9.1 CGC HAL Module Introduction

The CGC HAL module provides a high-level API for clock-control applications and configures and
controls the clock-control functions of a Synergy MCU using the clock-control peripheral. Since every
project requires a clock function, the CGC HAL module is added to a project by default. (The module
is configured in the ISDE.) A user-defined callback can be created to signal when the main oscillator
has stopped.

CGC HAL Module Features

The CGC HAL module supports the configuration and control of the various clocking functions on the
Synergy MCU. Key features include the following:

Selects the system clock source

• HOCO (high-speed on-chip oscillator), MOCO (middle-speed on-chip oscillator), LOCO (low-speed on-
chip oscillator), Main Clock, PLL, or Sub-Oscillator

Configures internal clocks and turns them on or off
Configures the output clocks
Sets up the Oscillation Stop Detection feature
Sets up clock divisors on each of the up to six clock domains
Some Synergy MCUs also support controllable external clock outputs, which may have
independent divisors

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 686 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > CGC HAL Module Introduction

Figure 254: CGC HAL Module Block Diagram

CGC Hardware support details

The following hardware features are, or are not, supported by SSP for the Clock Generation Circuit
specifications for the clock sources.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU
Group

MOSC SOSC PLL Circuit HOCO MOCO LOCO

S124 ✓ ✓ N/A ✓ ✓ ✓

S128 ✓ ✓ N/A ✓ ✓ ✓

S1JA ✓ ✓ N/A ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 687 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > CGC HAL Module Introduction

S3A6 ✓ ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓

MCU
Group

IWDTLOCO JTAG External
clock input

SWD External
clock input

Low Voltage
Operating Power

Control Mode

S124 ✓ N/A ⌧ ✓

S128 ✓ N/A ⌧ ✓

S1JA ✓ N/A ⌧ ✓

S3A1 ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ N/A

S5D5 ✓ ✓ ✓ N/A

S5D9 ✓ ✓ ✓ N/A

S7G2 ✓ ✓ ✓ N/A

4.2.9.2 CGC HAL Module APIs Overview

The CGC HAL module defines APIs for initializing, starting, controlling and stopping the MCU clock. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following API Summary table. A table of status return values are listed after the API summary.

CGC HAL Module API Summary

Function Name Example API Call and Description

init g_cgc.p_api->init();
Initial clock configuration called by BSP
automatically.

clocksCfg g_cgc.p_api->clocksCfg(&p_clock_cfg);
The BSP calls this function at startup, but it can
also be called from the application to change
clocks at runtime.

clockStart g_cgc.p_api->clockStart(clock_source,
&p_clock_cfg);
Start a clock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 688 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > CGC HAL Module APIs Overview

clockStop g_cgc.p_api->clockStop(clock_source);
Stop a clock.

systemClockSet g_cgc.p_api->systemClockSet(clock_source,
&p_clock_cfg);
Set the system clock.

systemClockGet g_cgc.p_api->systemClockGet(&clock_source,
&clock_config);
Get the system clock information.

systemClockFreqGet g_cgc.p_api->systemClockFreqGet(&clock_sourc
e, &frequency_hz);
Return the frequency of the selected clock.

clockCheck g_cgc.p_api->clockCheck(clock_source);
Check the stability of the selected clock.

oscStopDetect g_cgc.p_api->oscStopDetect(callback, enable);
Configure the Main Oscillator stop detection.

oscStopStatusClear g_cgc.p_api->oscStopStatusClear();
Clear the oscillator stop detection flag.

busClockOutCfg g_cgc.p_api->busClockOutCfg (divider);
Configure the bus clock output secondary
divider. The primary divider is set using the BSP
clock configuration and the systemClockSet
function (S7G2 and S3A7 MCU only).

busClockOutEnable g_cgc.p_api->busClockOutEnable ();
Enable the bus clock output (S7G2 and S3A7
MCU only).

busClockOutDisable g_cgc.p_api->busClockOutDisable ();
Disable the bus clock output (S7G2 and S3A7
MCU only).

clockOutCfg g_cgc.p_api->clockOutCfg(clock_source,
clock_dividers);
Configure clockOut.

clockOutEnable g_cgc.p_api->clockOutEnable();
Enable clock output on the CLKOUT pin. The
source of the clock is controlled by clockOutCfg.

clockOutDisable g_cgc.p_api->clockOutDisable();
Disable clock output on the CLKOUT pin. The
source of the clock is controlled by clockOutCfg.

lcdClockCfg g_cgc.p_api->lcdClockCfg(clock);
Configure the segment LCD Clock (S3A7 and
S124 MCUs only).

lcdClockEnable g_cgc.p_api->lcdClockEnable();
Enable the LCD clock (S3A7 and S124 MCUs
only).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 689 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > CGC HAL Module APIs Overview

lcdClockDisable g_cgc.p_api->lcdClockDisable();
Disables the LCD clock (S3A7 and S124 MCUs
only).

sdadcClockCfg g_cgc.p_api->sdadcClockCfg(clock);
Configure the source for the SDADCCLK (S1JA
only).

cgc_api_t::sdadcClockEnable g_cgc.p_api->sdadcClockEnable();
Enable the SDADCCLK output (S1JA only)

cgc_api_t::sdadcClockDisable g_cgc.p_api->sdadcClockDisable();
Disable the SDADCCLK output (S1JA only)

sdramClockOutEnable g_cgc.p_api->sdramClockOutEnable();
Enables the SDRAM clock output (S7G2 MCU
only).

sdramClockOutDisable g_cgc.p_api->sdramClockOutDisable();
Disables the SDRAM clock (S7G2 only).

usbClockCfg g_cgc.p_api->usbClockCfg(divider);
Configures the USB clock (S7G2 only).

systickUpdate g_cgc.p_api->systickUpdate(period_count,
units);
Update the Systick timer.

versionGet g_cgc.p_api->versionGet(&version);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_ABORTED Attempt to update systick timer failed.

SSP_ERR_HARDWARE_TIMEOUT Hardware timed out.

SSP_ERR_STABILIZED Clock stabilized.

SSP_ERR_CLOCK_INACTIVE Clock not turned on.

SSP_ERR_MAIN_OCO_INACTIVE Main OCO off/unstable.

SSP_ERR_CLOCK_ACTIVE Clock active.

SSP_ERR_NOT_STABILIZED Clock source un-stabilized.

SSP_ERR_CLKOUT_EXCEEDED Clock out exceeded.

SSP_ERR_NULL_PTR Pointer null.

SSP_ERR_OSC_DET_ENABLED Oscillation stop detection enabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 690 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > CGC HAL Module APIs Overview

SSP_ERR_OSC_STOP_DETECTED The Oscillation stop detect status flag is set.
Under this condition it is not possible to disable
the Oscillation stop detection function.

SSP_ERR_OSC_STOP_CLOCK_ACTIVE The Oscillation Detect Status flag cannot be
cleared if the Main Osc or PLL is set as the
system clock. Change the system clock before
attempting to clear this bit.

SSP_ERR_INVALID_ARGUMENT Invalid argument.

SSP_ERR_INVALID_MODE Attempt to start a clock in a restricted operating
power control mode.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.9.3 CGC HAL Module Operational Overview

The CGC HAL module interface provides the ability to configure and use all of the CGC HAL module's
capabilities. Among those capabilities are the selection of several clock sources to use as the system
clock source; additionally, the system clocks can be divided down to provide a wide range of
frequencies for various system and peripheral needs.

Clock stability can be checked and clocks may also be stopped to save power when not needed. The
API has a function to return the frequency of the system and system peripheral clocks at run time.
There is also a feature to detect when the main oscillator has stopped, with the option of calling a
user provided callback function.

The CGC HAL module can be used to:

Configure any of the available clocks (HOCO, MOCO, LOCO, Main Clock, PLL, Sub-Oscillator)
as the system clock source
Configure the internal clocks (ICLK, PCLK, and so on)
Switch the clocks on and off
Configure the output clocks
Set up the Oscillation Stop Detection feature

The Clock Generation Circuit peripheral features the following oscillators and clock generators:

Main oscillator input of up to 24 MHz
A 32.768 kHz sub-clock oscillator
HOCO running at up to 64 MHz (depending on the device version)
MOCO running at 8 MHz
LOCO running at 32.768 kHz
PLL circuit output running between 24 MHz and 240 MHz, depending on the device

The Synergy microcontrollers have six internal clock domains. Each of them has independent
divisors but are dependent upon the clock input selected in the System Clock Control Register. These
are:

ICLK – The core clock, for CPU, DMAC, ROM and RAM (max 32/48/240 MHz)
PCLKA – Peripheral clock for modules including EtherC, EDMAC, USB2.0 HS, QSPI and SCIF
(max 32/48/120 MHz)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 691 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > CGC HAL Module Operational Overview

PCLKB – Peripheral clock for modules like IIC, CAN, DAC12, RTC, USBFS, I/O Ports, WDT and
IWDT (max 32/60 MHz)
PCLKC – Peripheral clock for ADC12 conversion clock (max 64/60 MHz)
PCLKD – Peripheral clock for GPT count clock (max 64/120 MHz)
FCLK –Clock source for the flash memory (max 32/60 MHz)

In addition, some of the Synergy microcontrollers also support controllable external clock outputs,
some of which have independent divisors. These are:

CLKOUT – CLOCKOUT/BUZZER clock (max 24 MHz) (independent clock selector and divisor)
BCLK – External bus clock to external bus controller (max 16/120 MHz)
SDCLK – SDRAM clock (max 120 MHz)
UCLK – USB clock (max 120 MHz) (independent divisor/selector on Synergy version 2)
LCD_CLK – LCD Clock (independent clock selector but no divisor)

CGC HAL Module Changing the System Clock Peripheral Clock Divisors at Runtime

The CGC HAL module also has the option to change the system clock and clock tree settings at
runtime via the cgc_api_t::clocksCfg API function. Choose New Stack > System > CGC
Configuration Instance to create a configuration structure for use with the cgc_api_t::clocksCfg API
function.

The cgc_api_t::clocksCfg function allows changes to the system clock, the peripheral clock dividers,
the PLL multiplier and divider, and the state of the system clocks (stop/start) (HOCO, Main Oscillator,
Subclock oscillator, and so on). The options in the following figure show an example where the
system clock is being changed from HOCO to MOCO, and the peripheral clock dividers are also being
updated. The options for each clock are Start, Stop, and None (meaning no change.) Not all clocks
are available on all MCUs. Not all peripheral clocks are available on all MCUs.

Figure 255: CGC Configuration Properties

 The function call for the above example is:

g_cgc.p_api->clocksCfg(&g_cgc_cfg0);

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 692 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > CGC HAL Module Operational Overview

CGC HAL Module Option Setting Memory

 Synergy microcontrollers all include an Option-Setting Memory, this memory can be used to set the
operating state of peripherals after a reset. The OFS can be used to set the state of the IWDT, WDT,
LVD and CGC HOCO. The following table lists CGC HOCO parameters that can be configured by OFS
registers.

OFS register setting possibilities

Control Description

HOCO oscillation enable Automatically starts the HOCO after a Reset, if
enabled.

HOCO Frequency S7 and S5 Series
- 16 MHz
- 18 MHz
- 20 MHz
S3 and S1 Series
- 24 MHz
- 32 MHz
- 48 MHz
- 64 MHz

You can set the OFS register values through the properties dialog, the properties dialog is available
on the Synergy Configuration editor when you select the BSP tab.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 693 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > CGC HAL Module Operational Overview

Figure 256: OFS Register Settings

Low Power Operation

The CGC HAL module also handles operating power control modes of the MCU since the Low Power
Modes Version 2 HAL module will no longer handle operation-power control modes of the MCU.

When the operating power control mode is set to Sub-Oscillator Speed Mode, all system clocks
except the Sub-Oscillator and the LOCO clock are turned off. To further lower the power
consumption, the application program can call the clockStop API function to turn off the LOCO clock.

CGC HAL Module Important Operational Notes and Limitations

CGC HAL Module Operational Notes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 694 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > CGC HAL Module Operational Overview

The CGC HAL module has no dependencies with respect to the ThreadX RTOS.
The CGC HAL module is a core function of the MCU and is set after by the BSP initialization
process. It is quite possible that the CGC can be left unchanged. However, the CGC HAL
module provides functions that change the clock configuration that can balance the
requirements of operating speed and power consumption, depending on application
requirements.
The CGC peripheral of the Synergy microcontrollers support Oscillator Stop Detection. If
enabled in the application, the Oscillator Stop Detection function will automatically detect if
the Main/PLL clock has stopped and switches operation to the MOCO. When enabling this
functionality in the SSP a callback function has to be manually created by the user. The
following steps detail this procedure.

Figure 257: Oscillator Stop Detect Enable/Disable

Note
In SSP 1.4.0 and later, the Oscillator Stop Detect property is set to default as Enabled. Previous versions of SSP set
the default to Disabled.

If the Configure Subclock Drive on Reset is set to Disabled, then the subclock will not be
configured at startup. In order to configure the subclock the user has to create a definition
of a weakly linked function R_BSP_WarmStart(). In this function if the argument is
"BSP_WARM_START_POST_C", the user can call the API cgc_api_t::clockStart clockStart to
start the subclock.

Figure 258: Configure Sub-Clock Drive on Reset

 In the application code, create a callback function. In this example, it is called osc_stop_callback.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 695 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > CGC HAL Module Operational Overview

void osc_stop_callback(cgc_callback_args_t * p_args)

{

/* perform Oscillator Stop Detection processing */

}

Enable the oscillator stop detection by calling the API with the previously declared callback.

/* Enable the Osc Stop Detect functionality */

g_cgc.p_api->oscStopDetect(osc_stop_callback, true);

Enable the interrupt within the ICU

/* Osc Stop Detect is an NMI interrupt. Enable the NMI in ICU */

R_ICU->NMIER_b.OSTEN = 1;

CGC HAL Module Limitations

Refer to the most recent SSP release notes for limitations on the use of this module.

4.2.9.4 Including the CGC HAL Module in an Application

This section describes how to include the CGC HAL module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

The CGC Driver is automatically added to the HAL/Common thread, so it only needs to be added to a
new thread if it has been removed. (The default name for the CGC is g_cgc0. This name can be
changed in the associated Properties window.)

CGC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_cgc CGC HAL on r_cgc Threads New Stack> Driver>
System> CGC Driver on
r_cgc

When the CGC Driver on r_cgc is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 696 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > Including the CGC HAL Module in an Application

individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 259: CGC HAL Module Stack

4.2.9.5 Configuring the CGC HAL Module

The CGC HAL module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the CGC HAL Module on r_cgc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
error checking.

Main Oscillator Wait Time 3,35,67,131,259,547,1059,214
7,4291,8163 cycles
Default: 8163 cycles

Set to 0 if a resonator, or
crystal, is used. Set to 1 if an
external oscillator input is used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 697 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > Configuring the CGC HAL Module

Main Oscillator Clock Source External Oscillator, Crystal or
Resonator
Default: Crystal or Resonator

Set to one of these values. It
should be at least as long as
the main clock stabilization
time. This delay will be
configured only if #define CGC_
CFG_MAIN_OSC_CLOCK_SOURC
E is set to 0, indicating that a
resonator/ crystal is used. Set
the main clock oscillation
stabilization time to longer than
or equal to the stabilization
time recommended by the
oscillator manufacturer.

Oscillator Stop Detect Enabled, Disabled
Default: Enabled

This allows the
R_CGC_OscStopDetect function
code to be generated if
enabled. The user must call this
function with a callback pointer
to use this feature.

Subclock Drive Middle (4.4pf), Standard
(12.5pf)
Default: Standard (12.5pf)

This setting is for matching the
subclock oscillator drive
capacitance based on the
crystal parameters #define
CGC_CFG_SUBCLOCK_ DRIVE.

Low Voltage Mode Enable, Disable
Default: Disable

Low voltage mode selection.

Name g_cgc Module name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for the CGC HAL module can be desirable. For
example, it might be useful to selectively turn clocks on or off or change frequency to optimize
power and performance characteristics.

Note
Most of the property settings for modules are fairly intuitive and usually can be determined by inspection of the
associated properties window from the SSP configurator.

CGC HAL Module Clock Configuration

The default CGC HAL module clock frequencies that will be set by the BSP initialization process are
configurable in the ISDE by using the Clocks tab in the configurator. Invalid selections are indicated
in red when selected.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 698 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > Configuring the CGC HAL Module

Figure 260: Default Clock Settings via the Clocks Tab

 In this example, the Clock Source is HOCO, and various clock dividers are chosen for the peripheral
clocks. If a valid USB Clock (UCLK) cannot be achieved, it is highlighted in RED. It should be noted
that this is only advisory, and the project will still build, as such a clock frequency may be required.

CGC HAL Module Pin Configuration

The CGC peripheral module controls the output of BCLK and SDCLK signals. Use the Clocks tab to
enable/disable this functionality. The BCLK_SDCLK I/O pin must be selected and configured as
required via the Pins tab.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 699 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > Configuring the CGC HAL Module

Figure 261: Enabling/Disabling SDCLK and BCLK via the Clock Tab

 In this example, SDRAM Clock is enabled, BUS Clock is disabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 700 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > Configuring the CGC HAL Module

Figure 262: Enabling/Disabling SDCLK and BCLK via the Pins Tab

 In this example, SDRAM Clock/BUS Clock is enabled on P602.

Additional pin settings associated with the CGC allow for the enabling/disabling of the external
oscillator pins and the setting of the system Clock Out pin.

The Synergy devices can run from its on chip oscillators, in which case there is no requirement for
the main clock external oscillator pins XTAL and EXTAL. These could be used as input pins by the
application. The functionality of the sub clock external oscillator pins XCIN and XCOUT is fixed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 701 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > Configuring the CGC HAL Module

Figure 263: Enabling/Disabling EXTAL, XTAL and CLKOUT via the Pins Tab

 In this example, an external Main Oscillator is used via pins P212 and P213 and the CLKOUT is
enabled on P205.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and Synergy MCUs may have different available pin configuration settings.

4.2.9.6 Using the CGC Module in an Application

The typical steps in using the CGC HAL module in an application are:

1. The CGC is automatically set after the system reset.
2. Configure the clock as desired using the cgc_api_t::clocksCfg API.
3. Start clocks using the cgc_api_t::clockStart API if needed.
4. Stop clocks using the cgc_api_t::clockStop API if needed.
5. Other CGC functions as needed.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 702 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CGC Driver > Using the CGC Module in an Application

Figure 264: Flow Diagram of a Typical CGC HAL Module Application

4.2.10 CTSU v2 Driver

4.2.10.1 CTSU v2 HAL Module Introduction

The capacitive touch sensing unit version 2 HAL driver (r_ctsu v2) provides an API to control the
CTSU peripheral. This module performs capacitance measurement based on various settings defined
by the configuration. This module is configured via the QE for Capacitive Touch.

CTSU v2 HAL Module Features

Supports both Self-capacitance multi scan mode and Mutual-capacitance full scan mode
Scans may be started by software or an external trigger
Returns measured capacitance data on scan completion

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 703 / 5,198

https://www.renesas.com/qe-capacitive-touch

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CTSU v2 Driver > CTSU v2 HAL Module Introduction

Optional DTC support
Built-in function that diagnoses its own circuit.

4.2.10.2 CTSU v2 HAL Module Configuration

Note
This module is configured via the QE for Capacitive Touch. For information on how to use the QE tool, once the
tool is installed click Help -> Help Contents in e2 studio and search for "QE".

The following build time configurations are defined in ssp_cfg/r_ctsu_cfg.h:

Build Time Configurations for r_ctsu

Configuration Options Default Description

Parameter Checking - Default (BSP)
- Enabled
- Disabled

Default (BSP) If selected code for
parameter checking is
included in the build.

Support for using DTC - Enabled
- Disabled

Disabled Enable DTC support for
the CTSU module.

Interrupt priority level MCU Specific Options Priority level of all
CTSU interrupt (CSTU_
WR,CTSU_RD,CTSU_FN)

This module can be added to the Stacks tab via New Stack > Driver > CapTouch > CTSU Driver on
r_ctsu.

Configurations for Driver > CapTouch > CTSU Driver on r_ctsu

Configuration Options Default Description

Scan Start Trigger MCU Specific Options CTSU Scan Start
Trigger Select

CTSU v2 HAL Module Interrupt Configuration

The first R_CTSU_Open function call sets CTSU peripheral interrupts. The user should provide a
callback function to be invoked at the end of the CTSU scan sequence. The callback argument will
contain information about the scan status.

CTSU v2 HAL Module Clock Configuration

The CTSU peripheral module uses PCLKB as its clock source. You can set the PCLKB frequency using
the Clocks tab of the RA Configuration editor or by using the CGC Interface at run-time.

Note
The CTSU Drive pulse will be calculated and set by the tooling depending on the selected transfer rate.

CTSU v2 HAL Module Pin Configuration

The TSn pins are sensor pins for the CTSU.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 704 / 5,198

https://www.renesas.com/qe-capacitive-touch

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CTSU v2 Driver > CTSU v2 HAL Module Configuration

The TSCAP pin is used for an internal low-pass filter and must be connected to an external
decoupling capacitor.

4.2.10.3 CTSU v2 HAL Module Usage Notes

CTSU v2 HAL Module Sensor ICO Correction

In order to improve the measurement accuracy, the correction coefficient is generated at the first
R_CTSU_Open.

Therefore, the first R_CTSU_Open process takes about 40ms.

CTSU v2 HAL Module Initial Offset Tuning

CTSU v2 has a current offset mechanism to cancel the parasitic capacitance. This module
automatically adjusts to be within the dynamic range of the Sensor ICO, taking into account the
amount of current that changes with touch. This adjustment uses normal measurement process and
requires several R_CTSU_ScanStart and R_CTSU_DataGet. R_CTSU_DataGet returns
SSP_ERR_CTSU_INCOMPLETE_TUNING if it is being adjusted. The member "so" of ctsu_element_cfg_t
is used as the starting point for adjustment, so if this value is appropriate, it can be completed
quickly. Normally, this value uses the value adjusted by QE for Capacitive Touch.

CTSU v2 HAL Module Scan Trigger

Scanning of sensors may begin by either a software trigger or an external event initiated by the
Event Link Controller (ELC). This trigger can be set with the member "cap" of ctsu_cfg_t. Typically, a
software trigger is used. Common usage is to have a periodic timer initiate scans. For software
triggers, a periodic timer such as the CMT is configured whose interval is large enough to allow for all
sensors to be scanned and data to be updated. Software triggers are issued by calling
R_CTSU_ScanStart. Using an external trigger is processed almost identically to using software
triggers. Call R_CTSU_ScanStart before starting the timer to set the measurement and prepare for
external trigger measurement. After that, when the timer is started, the measurement start trigger is
applied.

CTSU v2 HAL Module Self-Capacitance Multi-Scan Mode

In self-capacitance mode each TS pin is assigned to one touch button. Electrodes of multiple TS pins
can be physically aligned to create slider or wheel interfaces.

Scan Order
 The hardware scans the specified pins in ascending order.
 For example, if pins TS05, TS08, TS02, TS03, and TS06 are specified in your
application, the hardware will scan them in the order TS02, TS03, TS05, TS06,
TS08.

Element
 -n element refers to the index of a pin within the scan order. Using the previous
example, TS05 is element 2.

Scan Time
 Scanning is handled directly by the CTSU peripheral and does not utilize any
main processor time.
 It takes approximately 500us to scan a single sensor.
 If DTC is not used additional overhead is required for the main processor to
transfer data to/from registers when each sensor is scanned.

Set CTSU_MODE_SELF_MULTI_SCAN to "md" of ctsu_cfg_t. Also, add the number of terminals used for

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 705 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CTSU v2 Driver > CTSU v2 HAL Module Usage Notes

this measurement to CTSU_CFG_NUM_SELF_ELEMENTS. For details, refer to the configuration and
sample application output by QE for Capacitive Touch.

CTSU v2 HAL Module Mutual-Capacitance Full Scan Mode

In mutual-capacitance mode each TS pin acts as either a 'row' or 'column' in an array of sensors. As
a result, this mode uses fewer pins when more than five sensors are configured. Mutual-capacitance
mode is ideal for applications where many touch sensors are required, like keypads, button matrices
and pads.

As an example, consider a standard phone keypad comprised of a matrix of four rows and three
columns.

In mutual capacitance mode only 7 pins are necessary to scan 12 buttons. In self mode, 12 pins
would be required.

Scan Order
The hardware scans the matrix by iterating over the TX pins first and the RX pins
second.
For example, if pins TS10, TS11, and TS03 are specified as RX sensors and pins
TS02, TS07, and TS04 are specified as TX sensors, the hardware will scan them in
the following sensor-pair order:
TS03-TS02, TS03-TS04, TS03-TS07, TS10-TS02, TS10-TS04, TS10-TS07,
TS11-TS02, TS11-TS04, TS11-TS07

Element
An element refers to the index of a sensor-pair within the scan order. Using the
previous example, TS10-TS07 is element 5.

Scan Time
Because mutual-capacitance scans two patterns for one element it takes twice as
long as self-capacitance (1ms vs 0.5ms per element).

Set CTSU_MODE_MUTUAL_FULL_SCAN to "md" of ctsu_cfg_t. Also, add the number of matrix used for
this measurement to CTSU_CFG_NUM_MUTUAL_ELEMENTS. For details, refer to the configuration and
sample application output by QE for Capacitive Touch.

CTSU v2 HAL Module Self Diagnosis

The CTSU peripheral has a built-in function that diagnoses its own inner circuit. The diagnostic
requirements are providing 5 types of diagnosis. The diagnosis function is executed by calling the
R_CTSU_Diagnosis() API function. This is executed independently from the other measurements and
does not affect them.

Note
To enable the diagnosis function, set CTSU_CFG_DIAG_SUPPORT_ENABLE to 1.
A 27pF condenser should be connected externally.

4.2.10.4 CTSU v2 HAL Module Examples

CTSU v2 HAL Module Basic Example

This is a basic example of minimal use of the CTSU in an application.

volatile bool g_scan_flag = false;

void ctsu_callback (ctsu_callback_args_t * p_args)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 706 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CTSU v2 Driver > CTSU v2 HAL Module Examples

{

 if (CTSU_EVENT_SCAN_COMPLETE == p_args->event)

 {

 g_scan_flag = true;

 }

}

void ctsu_basic_example (void)

{

 ssp_err_t err = SSP_SUCCESS;

 uint16_t data[CTSU_CFG_NUM_SELF_ELEMENTS];

 err = R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

 /* Handle any errors. This function should be defined by the user. */

 handle_error(err);

 while (true)

 {

 err = R_CTSU_ScanStart(&g_ctsu_ctrl);

 handle_error(err);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 if (SSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 707 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CTSU v2 Driver > CTSU v2 HAL Module Examples

}

CTSU v2 HAL Module Multi-Configuration Example

This is a optional example of using both Self-capacitance and Mutual-capacitance configurations in
the same project.

void ctsu_optional_example (void)

{

 ssp_err_t err = SSP_SUCCESS;

 uint16_t data[CTSU_CFG_NUM_SELF_ELEMENTS + (CTSU_CFG_NUM_MUTUAL_ELEMENTS * 2)];

 err = R_CTSU_Open(&g_ctsu_ctrl, &g_ctsu_cfg);

 handle_error(err);

 err = R_CTSU_Open(&g_ctsu_ctrl_mutual, &g_ctsu_cfg_mutual);

 handle_error(err);

 while (true)

 {

 R_CTSU_ScanStart(&g_ctsu_ctrl);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 R_CTSU_ScanStart(&g_ctsu_ctrl_mutual);

 while (!g_scan_flag)

 {

 /* Wait for scan end callback */

 }

 g_scan_flag = false;

 err = R_CTSU_DataGet(&g_ctsu_ctrl, data);

 handle_error(err);

 if (SSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 708 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CTSU v2 Driver > CTSU v2 HAL Module Examples

 err = R_CTSU_DataGet(&g_ctsu_ctrl_mutual, data);

 handle_error(err);

 if (SSP_SUCCESS == err)

 {

 /* Application specific data processing. */

 }

 }

}

CTSU v2 HAL Module Self Diagnosis Example

This is an example code of using self-diagnosis functionality.

ssp_err_t err;

uint16_t dummy;

/* Open the Diagnosis function */

R_CTSU_Open(g_qe_ctsu_instance_diagnosis.p_ctrl, g_qe_ctsu_instance_diagnosis.p_cfg);

/* Scan the Diagnosis function */

R_CTSU_ScanStart(g_qe_ctsu_instance_diagnosis.p_ctrl);

while (0 == g_qe_touch_flag) {}

g_qe_touch_flag = 0;

err = R_CTSU_DataGet(g_qe_ctsu_instance_diagnosis.p_ctrl,&dummy);

/* Call diagnosis function when the return value of R_CTSU_DataGet is SSP_SUCCESS. */

if (SSP_SUCCESS == err)

{

 err = R_CTSU_Diagnosis(g_qe_ctsu_instance_diagnosis.p_ctrl);

 if (SSP_SUCCESS == err)

 {

 /* Diagnosis is done successfully */

 }

}

4.2.11 CRC Driver

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 709 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CRC Driver > CRC HAL Module Introduction

4.2.11.1 CRC HAL Module Introduction

The CRC HAL module provides a high-level API to calculate 8, 16 and 32-bit CRC values on a block of
data in memory or a stream of data over a Serial Communication Interface (SCI) channel using
industry standard polynomials.

CRC HAL Module Features

CRC HAL module can calculate CRC on a block of data in memory.
CRC HAL module can calculate CRC on a stream of data being transmitted or received over
a serial communication Interface (SCI) channel (snoop mode).
CRC HAL module supports the following 8-and 16-bit CRC polynomials which operates on
8-bit data in parallel

X8 + X2 + X + 1 (CRC-8)
X16 + X15 + X2 + 1 (CRC-16)
X16 + X12 + X5 + 1 (CRC-CCITT)

CRC HAL module supports the following 32 bit CRC polynomials which operates on 32-bit
data in parallel

X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1
(CRC-32)
X32 + X28 + X27 + X26 + X25 + X23 + X22 + X20 + X19 + X18 + X14 + X13 + X11 + X10 +
X9 + X8 + X6 + 1 (CRC-32C)

CRC HAL module can calculate CRC with LSB first or MSB first bit order.

Figure 265: CRC HAL Module Block Diagram

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 710 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CRC Driver > CRC HAL Module Introduction

CRC Hardware support details

The following hardware features are, or are not, supported by SSP for the CRC.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU
Group

8-bit Data Size 32-bit Data
Size

CRC
Calculation
Switching

Module Stop
Function

CRC Snoop

S124 ✓ ✓ ✓ ✓ ✓

S128 ✓ ✓ ✓ ✓ ✓

S1JA ✓ ✓ ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓

4.2.11.2 CRC HAL Module APIs Overview

The CRC HAL module defines APIs for opening, closing, enabling and calculating. A complete list of
the available APIs, an example API call and a short description of each can be found in the following
table. A table of status return values follows the API summary table.

CRC HAL Module API Summary

Function Name Example API Call and Description

open g_crc.p_api->open(g_crc.p_ctrl, g_crc.p_cfg);
Open the CRC driver module.

close g_crc.p_api->close(g_crc.p_ctrl);
Close the CRC module driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 711 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CRC Driver > CRC HAL Module APIs Overview

crcResultGet g_crc.p_api->crcResultGet(g_crc.p_ctrl, &result);
Return the current calculated value.

snoopEnable g_crc.p_api->snoopEnable(g_crc.p_ctrl, seed);
Enable snooping.

snoopDisable g_crc.p_api->snoopDisable(g_crc.p_ctrl);
Disable snooping.

snoopCfg g_crc.p_api->snoopCfg(g_crc.p_ctrl, g_crc.p_cfg);
Configure the snoop channel and direction.

calculate g_crc.p_api->calculate(g_crc.p_ctrl,
&input_buffer, num_bytes, crc_seed,
&crc_result);
Perform a CRC calculation on a block of data.

versionGet g_crc.p_api->versionGet(&version);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Configuration was successful.

SSP_ERR_ASSERTION Assertion error.

SSP_ERR_INVALID_ARGUMENT Invalid argument error.

SSP_ERR_NOT_OPEN The driver is not opened.

SSP_ERR_IN_USE If driver is already open.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.11.3 CRC HAL Module Operational Overview

When the CRC HAL module is used to calculate the CRC value for a block of data in memory, the
crc_api_t::calculate API can be used to take the input buffer pointer, length and the CRC seed value
as input and outputs the calculated CRC value.

When the CRC HAL module is used to calculate the CRC on a stream of data being transmitted or
received over a serial communication Interface (SCI) channel (snoop mode), then first the module
should be configured to be in snoop mode by calling the crc_api_t::snoopCfg followed by the
crc_api_t::snoopEnable APIs. After the requested number of data is transmitted or received on the
SCI channel, the calculated CRC value can be polled from the module using crc_api_t::crcResultGet
API.

CRC HAL Module Important Operational Notes and Limitations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 712 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CRC Driver > CRC HAL Module Operational Overview

CRC HAL Module Operational Notes

General CRC HAL Operational Notes

The CRC block does not use any interrupts.
There is no clock configuration for the CRC module.
There are no callbacks for the CRC module.
When using 32 bit CRC polynomials for calculating CRC values of data block in memory, the
data block is interpreted using little-endian byte order.

CRC HAL Snoop Mode Operational Notes

The CRC snoop function monitors reads from (receive) and writes to (transfer) a specified
I/O register address.
It performs a CRC calculation on the serial data read from (receive) and written to (transfer)
the register address automatically.
The CRC calculation is performed 1 byte at a time. When the target I/O register address is
accessed in words (16 bits) or long words (32 bits), the CRC code is generated on the lower
byte (1 byte) of data.
The CRC snoop mode is useful in monitoring writes to the serial transmit buffer, and reads
from the serial receive buffer. If the user is trying to write data through the SCI interface,
then the data will be present in the TDR register of that particular channel. When the user
enables the Snoop mode with the proper configuration then the CRC module will
automatically calculate the CRC value for the data present in that TDR register and then
stores the generated CRC value in the CRC Data output register.

CRC HAL Module Limitations

Refer to the latest SSP Release Notes for any additional operational limitations for this
module.

4.2.11.4 Including the CRC HAL Module in an Application

This section describes how to include the CRC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the CRC Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the CRC Driver is g_crc0. This name can
be changed in the associated Properties window.)

CRC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

r_crc0 CRC Driver on r_crc Threads New Stack> Driver>
Monitoring> CRC Driver on
r_crc

When the CRC Driver on r_crc is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 713 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CRC Driver > Including the CRC HAL Module in an Application

configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 266: CRC HAL Module Stack

4.2.11.5 Configuring the CRC HAL Module

The CRC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the CRC HAL Module on r_crc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g-crc0 Module name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 714 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CRC Driver > Configuring the CRC HAL Module

CRC Polynomial CRC-8, CRC-16, CRC-CCITT,
CRC-32, CRC-32C

Default: CRC-32C

Specify the polynomial to
use for calculation.

Bit Order LSB, MSB

Default: MSB

Specify the bit order of the
calculation.

FIFO Mode Enable, Disable

Default : Disable

Enable this property when
using SCI_UART with FIFO mode
during CRC snoop operation.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.
CRC snoop mode operation for SCI_UART with FIFO must be enabled when the SCI channel supports FIFO mode.

CRC HAL Module Clock Configuration

The CRC HAL module is clocked via the Peripheral Clock A (PCLKA.)

The CRC HAL module does not support any APIs for setting the frequency at which it operates.

CRC HAL Module Pin Configuration

The CRC HAL module does not have any configurable pins.

4.2.11.6 Using the CRC HAL Module in an Application

There are two main types of CRC implementations- normal mode and snoop mode. The typical steps
for each mode are shown below.

The typical steps in using the CRC HAL module in an application are:

1. Initialize the CRC HAL module using the crc_api_t::open API.
2. Compute the CRC HAL module using the crc_api_t::calculate API.
3. Close the CRC HAL module using the crc_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 715 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CRC Driver > Using the CRC HAL Module in an Application

Figure 267: Flow Diagram of a Typical CRC HAL Module Application

 The typical steps in using the CRC HAL module for computing in Snoop mode are:

1. Initialize the CRC HAL module using the crc_api_t::open API.
2. Snoop channel and snoop direction must be set manually by using snoop configuration

structure crc_snoop_cfg_t.
3. Configure the CRC module to snoop an SCI channel (and its direction) using

crc_api_t::snoopCfg API.
4. Enable snooping of the SCI channel using crc_api_t::snoopEnable API.
5. Once the required number of bytes are transmitted or received on the SCI channel, get the

calculated CRC value using crc_api_t::crcResultGet API.
6. Disable the snooping operation using crc_api_t::snoopDisable API.
7. Close the CRC HAL module using the crc_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 716 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > CRC Driver > Using the CRC HAL Module in an Application

Figure 268: Flow Diagram of a Typical CRC HAL Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 717 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC Driver

4.2.12 DAC Driver

4.2.12.1 DAC HAL Module Introduction

The DAC HAL module provides a high-level API for digital-to-analog conversion applications and
supports a dual-channel 12-bit D/A converter (DAC12) peripheral on Synergy MCUs.

DAC HAL Module Features

This module configures the dual-channel 12-bit D/A Converter (DAC12) to output one of 4096 voltage
levels between the positive and negative reference voltages. The module includes configuration
settings to:

Set either a left-justified or right-justified 12-bit value format for the 16-bit input data
registers
Enable or disable output amplifiers
Enable or disable charge pump
Operate in synchronous anti-interference mode with the Analog-to-Digital Converter (ADC)
module.

Figure 269: DAC HAL Module Block Diagram

DAC Hardware support details

The following hardware features are, or are not, supported by SSP for the DAC.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 718 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC Driver > DAC HAL Module Introduction

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU
Group

12-Bit 2 Channels
Output

Module Stop
Function

Event link function
through ELC
HAL driver *

S124 ✓ N/A ✓ ⌧

S128 N/A N/A N/A ⌧

S1JA ✓ N/A ✓ ⌧

S3A1 ✓ N/A ✓ ⌧

S3A3 ✓ N/A ✓ ⌧

S3A6 ✓ N/A ✓ ⌧

S3A7 ✓ ✓ ✓ ⌧

S5D3 ✓ ✓ ✓ ⌧

S5D5 ✓ ✓ ✓ ⌧

S5D9 ✓ ✓ ✓ ⌧

S7G2 ✓ ✓ ✓ ⌧

Note: The ELC event could be used instead of calling the DAC start() interface. This would
have to be programmed by the user by setting up the link rather than using the ELC API.

4.2.12.2 DAC HAL Module APIs Overview

The DAC HAL module defines APIs to open, close, start, stop and write to the DAC. A complete list of
the available APIs, an example API call and a short description of each can be found in the following
table. A table of status return values follows the API summary table.

DAC HAL Module API Summary

Function Name Example API Call and Description

open g_dac.p_api->open(g_dac.p_ctrl, g_dac.p_cfg)
Initial Configuration.

close g_dac.p_api->close(g_dac.p_ctrl)
Close the D/A Converter.

write g_dac.p_api->write(g_dac.p_ctrl, val)
Write Sample value to the D/A Converter.

start g_dac.p_api->start(g_dac.p_ctrl)
Start the D/A Converter if it has not been started
yet.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 719 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC Driver > DAC HAL Module APIs Overview

stop g_dac.p_api->stop(g_dac.p_ctrl)
Stop the D/A Converter if the converter is
running.

versionGet g_dac.p_api->versionGet(&version)
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION Wrong parameter.

SSP_ERR_IN_USE DAC resource is locked.

SSP_ERR_NOT_OPEN The peripheral is not opened.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.12.3 DAC HAL Module Operational Overview

The DAC HAL module configures the dual-channel 12-bit D/A converter (DAC12) to output one of
4096 voltage levels between positive and negative reference voltages. The module can be used to
configure the 12-bit output to left‑or‑right‑justified format for 16-bit input data registers. The DAC
HAL module can also enable or disable output amplifiers, or operate in synchronous anti-interference
mode with the ADC HAL module.

DAC HAL Module Important Operational Notes and Limitations

DAC HAL Module Operational Notes

The DAC HAL module requires the following initialization steps:

DAC module stop-bit cleared to zero.
DAC channel output-enable set to one.

The DAC module stop-bit is cleared to zero at the time of an open call when the driver's instance
counter is zero. The driver's instance counter is initialized to zero, incremented when a channel open
returns successfully, and decremented when a channel close is called. The DAC module stop-bit is
set to one when the driver's instance counter is decremented to zero on a close call.

The DAC channel output-enable is set to one when a channel write is called the first time after open
was called successfully. The open call writes a zero to the dac_ctrl_t structure element
channel_started. When write is called with channel_started cleared to zero, the DAC output-enable
bit for that channel is set to one. The DAC output-enable for the channel is cleared to zero on close

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 720 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC Driver > DAC HAL Module Operational Overview

and stop calls.

DAC HAL Module Limitations

Pin configuration is not implemented for the DAC HAL module. Currently, DA0 and DA1
outputs are enabled by the reset values in the pin configuration control register's ASEL
field.
Voltage reference selection for the DAC HAL module is not implemented. Currently, no
reference is selected by the reset values in the D/A VREF control register (DAVREFCR) which
is a valid condition.
Configuration of DAC input-event triggering for conversion is not currently implemented.
The default reset value (zero) of the control register DAE bit allows individual triggering for
each channel.
Event signal input for synchronization of the DAC HAL module conversions is not currently
implemented.
The charge pump feature shall be disabled when DAC12 configured as ACMPHS or OPAMP
input.
Refer to the latest SSP Release Notes for operational limitations related to this module.

4.2.12.4 Including the DAC HAL Module in an Application

This section describes how to include the DAC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the DAC Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the DAC Driver is g_dac0. This name
can be changed in the associated Properties window.)

DAC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_dac0 DAC Driver on r_dac Threads New Stack> Driver>
Analog> DAC Driver on
r_dac

When the DAC Driver on r_dac is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 721 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC Driver > Including the DAC HAL Module in an Application

Figure 270: DAC HAL Module Stack

4.2.12.5 Configuring the DAC HAL Module

The DAC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the DAC HAL Module on r_dac

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_dac0 Module name.

Channel 0 Set to 0 for output DA0 or 1 for
output DA1.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 722 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC Driver > Configuring the DAC HAL Module

Synchronize with ADC Enabled, Disabled

Default: Disabled

Set to true for anti-interference
synchronization with the Analog-
to-Digital Converter (ADC)
Module. Set to false false if
power supply interference
between the analog modules is
not a problem, or if
asynchronous conversion by
the DAC Module is desired.

Data Format Right Justified, Left Justified

Default: Right Justified

Set to zero, if 12-bit data values
are loaded in bits 11 through 0,
or right justified. Set to one, if
12-bit data values are loaded in
bits 15 through 4, or left
justified.

Output Amplifier Enable, Disable

Default: Disable

Set to true, if output amplifier
hardware function is desired.
Set to false to bypass output
amplifier hardware function.

Charge Pump Enabled
(Requires MOCO active)

Enable, Disable
Default: Disable

Set to true, if charge pump
hardware function is desired.
Set to false to bypass charge
pump hardware function.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

DAC HAL Module Clock Configuration

The DAC HAL module does not require any specific clock configuration.

DAC HAL Module Pin Configuration

To use the DAC HAL module, the port pins for the channels receiving the analog input must be set as
analog pins in the pin configurator. The following table lists a method to select pins within the SSP
configuration window and the subsequent table illustrates configuration settings for DAC pins:

Pin Selection for the DAC HAL Module on r_dac

Resource ISDE Tab Pin selection Sequence

DAC Pins Select Peripherals> Analog:
DAC12> DAC120.

Pin Configuration Settings for the DAC HAL Module on r_dac

Property Value Description

Module Name DAC120 DAC Peripheral Module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 723 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC Driver > Configuring the DAC HAL Module

Operation Mode Enabled, Disabled

Default: Enabled

DAC Peripheral operation mode.

DA0 None, DA0

Default: None

DAC Output Pin.

DA1 None, DA1

Default: None

DAC Output Pin.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.

4.2.12.6 Using the DAC HAL Module in an Application

The typical steps in using the DAC HAL module in an application are:

1. Initialize the DAC HAL module using the dac_api_t::open API.
2. Write a data value using the dac_api_t::write API.
3. Start writing data using the dac_api_t::start API.
4. Continue writing data values as needed using the dac_api_t::write API.
5. Stop writing data using the dac_api_t::stop API.
6. Close the DAC HAL module using the dac_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 724 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC Driver > Using the DAC HAL Module in an Application

Figure 271: Flow Diagram of a Typical DAC HAL Module Application

4.2.13 DAC8 Driver

4.2.13.1 DAC8 HAL Module Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 725 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC8 Driver > DAC8 HAL Module Introduction

The DAC8 HAL module provides a high-level API for digital-to-analog conversion applications and
supports an 8-bit D/A converter (DAC8) peripheral on Synergy MCUs.

DAC8 HAL Module Features

8-Bit D/A Converter
Left-Justified or Right-Justified Input Data Format
Synchronization with the Analog-to-Digital Converter (ADC) module
Multiple Operation Modes

Normal
Real-Time (Event Link)
Charge Pump Control

Figure 272: DAC8 HAL Module Block Diagram

DAC8 Hardware support details

The following hardware features are, or are not, supported by SSP for the DAC8.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 726 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC8 Driver > DAC8 HAL Module Introduction

N/A Not supported by MCU

MCU
Group

8-Bit 2 Channels
Output

3-Channel
Output

Module-Stop
Function

Event link
function
through

ELC HAL driver
*

S124 N/A N/A N/A N/A N/A

S128 ✓ ✓ ✓ ✓ ✓

S1JA ✓ ✓ N/A ✓ ✓

S3A1 ⌧ ⌧ N/A ⌧ ⌧

S3A3 ✓ ✓ N/A ✓ ✓

S3A6 ⌧ ⌧ N/A ⌧ ⌧

S3A7 N/A N/A N/A N/A N/A

S5D3 N/A N/A N/A N/A N/A

S5D5 N/A N/A N/A N/A N/A

S5D9 N/A N/A N/A N/A N/A

S7G2 N/A N/A N/A N/A N/A

Note: The ELC event could be used instead of calling the DAC start() interface. This would
have to be programmed by the user by setting up the link rather than using the ELC API.

4.2.13.2 DAC8 HAL Module APIs Overview

The DAC8 HAL module defines APIs for opening, closing, starting, stopping and writing to the DAC. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

DAC8 HAL Module API Summary

Function Name Example API Call and Description

open g_dac8.p_api->open(g_dac8.p_ctrl, g_dac8.p_cfg
Initial Configuration.

close g_dac8.p_api->close(g_dac8.p_ctrl)
Close the D/A Converter.

write g_dac8.p_api->write(g_dac8.p_ctrl, val)
Write Sample value to the D/A Converter.

start g_dac8.p_api->start(g_dac8.p_ctrl)
Start the D/A Converter if it has not been started
yet.

stop g_dac8.p_api->stop(g_dac8.p_ctrl)
Stop the D/A Converter if the converter is
running.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 727 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC8 Driver > DAC8 HAL Module APIs Overview

versionGet g_dac8.p_api->versionGet(&version)
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_HW_LOCKED DAC resource is locked.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION Wrong parameter.

SSP_ERR_IP_CHANNEL_NOT_PRESENT Wrong channel selected.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.13.3 DAC8 HAL Module Operational Overview

The DAC8 HAL module configures the 8-bit D/A converter (DAC8) to output one of 256 voltage levels
between positive and negative reference voltages. The driver can be configured to accept the 8-bit
output data in left‑or‑right‑justified format in a 16-bit input data. The driver supports two modes for
the DAC.

Normal mode – The D/A output is updated on writes to the data register.
Real-Time (Event Link) – The D/A output is updated on an Event Link event. While in this
mode the data register can be written at any time. An Event Link event triggers the start of
conversion. Refer to the "ELC Interface" in the SSP User's Manual for more information.

To reduce the noise present in ADC readings the driver can configure synchronous anti-interference
mode with the ADC module. This reduces conversion noise by disabling the DAC charge while the
ADC is sampling. Check the hardware manual to determine if this feature is supported.

For operation at low AVCC voltage the driver can enable or disable the hardware charge pump.

Real-Time Mode

In real-time mode the output voltage is only changed on a signal from the ELC peripheral. Note when
using real time mode the first call to dac_api_t::write() will set the initial output voltage.

As an illustration, the following code shows how to link the DAC8 output on channel 0 to the ELC
software event and trigger the output to change.

/* Open DAC8 driver. */

g_dac8_0.p_api->open(g_dac8_0.p_ctrl, &g_dac8_0.p_cfg);

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 728 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC8 Driver > DAC8 HAL Module Operational Overview

/* Link DAC8 output 0 to software event 0.

 In a real application, this feature would be used to link DAC8 output

 to a hardware event. A software event is used here for simplicity. */

g_elc_on_elc.linkSet(ELC_PERIPHERAL_DA80, ELC_EVENT_ELC_SOFTWARE_EVENT_0);

/* Set initial output voltage, the output is immediately updated

 because this is the first write since open. */

g_dac8_0.p_api->write(g_dac8_0.p_ctrl, initial_dac_value);

while (true) {

/* Set the next output value, the output voltage is not updated until

 an ELC event occurs. */

g_dac8_0.p_api->write(g_dac8_0.p_ctrl, next_dac_value);

/* Generate software ELC event to update DAC output. */

g_elc_on_elc.softwareEventGenerate(ELC_SOFTWARE_EVENT_0);

R_BSP_SoftwareDelay(10, BSP_DELAY_UNITS_MILLISECONDS);

}

DAC8 HAL Module Important Operational Notes and Limitations

DAC8 HAL Module Operational Notes

The DAC8 channel output is enabled during dac_api_t::start() and dac_api_t::write() and
disabled during dac_api_t::stop() and dac_api_t::close().

DAC8 HAL Module Limitations

The DAC8 driver does not configure the ELC peripheral for real-time mode. The user will
need to configure the Event Link Controller in addition to enabling real-time mode in the
DAC8 module.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.13.4 Including the DAC8 HAL Module in an Application

This section describes how to include the DAC8 HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the DAC8 Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the DAC8 Driver is g_dac8_0. This name
can be changed in the associated Properties window.)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 729 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC8 Driver > Including the DAC8 HAL Module in an Application

DAC8 HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_dac8_0 DAC Driver on r_dac8 Threads New Stack> Driver>
Analog> DAC Driver on
r_dac8

When the DAC8 Driver on r_dac8 is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 273: DAC8 HAL Module Stack

4.2.13.5 Configuring the DAC8 HAL Module

The DAC8 HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the DAC8 HAL Module on r_dac8

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 730 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC8 Driver > Configuring the DAC8 HAL Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_dac8_0 Module name.

Channel 0 Channel selection.

Synchronize with ADC Enabled, Disabled

Default: Disabled

Choose whether to sync with
the ADC module.

Data Format Right Justified, Left Justified

Default: Right Justified

Data format selection.

DAC Mode Normal Mode, Real-time (Event
Link) Mode

Default: Normal Mode

DAC mode selection.

Charge Pump Enabled
(Requires MOCO active)

Enabled, Disabled

Default: Enabled

Enable or disable the charge
pump.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

DAC8 HAL Module Clock Configuration

The DAC8 HAL module does not require a specific clock configuration.

DAC8 HAL Module Pin Configuration

To use the DAC8 HAL module, the port pins for the channels receiving the analog input must be set
as analog pins in the pin configurator. The following table illustrates the method for selecting the
pins within the SSP configuration window and the subsequent table illustrates an example selection
for the DAC pins:

Pin Selection for the DAC8 HAL Module on r_dac8

Resource ISDE Tab Pin selection Sequence

DAC8 Pins Select Peripherals>
Analog:DAC8> DAC80.

Note
The selection sequence assumes DAC80 is the desired hardware target for the driver.

Pin Configuration Settings for the DAC8 HAL Module on r_dac8

Property Value Description

Module Name DAC80 DAC Peripheral Module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 731 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC8 Driver > Configuring the DAC8 HAL Module

Operation Mode Enabled, Disabled

Default: Enabled

DAC Peripheral operation mode.

DA0 None, DA0

Default: None

DAC Output Pin.

DA1 None, DA1

Default: None

DAC Output Pin.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.

4.2.13.6 Using the DAC8 HAL Module in an Application

The typical steps in using the DAC8 HAL module in an application are:

1. Initialize the DAC8 HAL module using the dac_api_t::open API.
2. Write a value using the dac_api_t::write API.
3. Start a conversion using the dac_api_t::start API.
4. Continue writing values as needed using the dac_api_t::write API.
5. Stop conversion using the dac_api_t::stop API.
6. Use the dac_api_t::close call to power down the peripheral.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 732 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > DAC8 Driver > Using the DAC8 HAL Module in an Application

Figure 274: Flow Diagram of a Typical DAC8 HAL Module Application

4.2.14 Display Driver

4.2.14.1 GLCDC HAL Module Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 733 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > GLCDC HAL Module Introduction

The Graphics LCD Controller (GLCDC) HAL module provides a high-level API for graphics display
applications and uses the Graphics LCD Driver peripheral on the Synergy MCU. A user-defined
callback can be created to handle frame buffer switching and underflow detection.

GLCDC HAL Module Features

The GLCDC HAL supports the following features:

Supports LCD panels with RGB interface (up to 24 bits) and sync signals (HSYNC, VSYNC,
and Data Enable (optional))
Supports various color formats for input graphics planes (RGB888, ARGB888, RGB565,
ARGB1555, ARGB4444, CLUT8, CLUT4, CLUT1)
Supports the Color Look-Up Table (CLUT) usage for input graphics planes with 512 words
(32 bits/word)
Supports various color formats for output (RGB888, RGB666, RGB565, Serial RGB)
Can input two graphics planes on top of the background plane and blend them on the
screen
Generates a dot clock to the panel. The clock source is selectable from internal or external
(LCD_EXTCLK)
Supports brightness adjustment, contrast adjustment, and gamma correction
Supports GLCDC interrupts to handle frame buffer switching or underflow detection

Figure 275: GLCDC HAL Module Block Diagram

GLCDC Hardware support details

The following hardware features are, or are not, supported by the SSP for the GLCDC:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 734 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > GLCDC HAL Module Introduction

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group Single
Color

Backgroun
d Plane

Graphics 1
Plane

Graphics 2
Plane

Support 16
bit per
pixel

graphics

Support 32
bit per
pixel

graphics

Support
1-bit LUT

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 N/A N/A N/A N/A N/A N/A

S3A3 N/A N/A N/A N/A N/A N/A

S3A6 N/A N/A N/A N/A N/A N/A

S3A7 N/A N/A N/A N/A N/A N/A

S5D3 N/A N/A N/A N/A N/A N/A

S5D5 N/A N/A N/A N/A N/A N/A

S5D9 ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓

MCU Group Support
4-bit LUT

Support
8-bit LUT

Support All
Pixel

formats

Supports
Alpha

Blending

Video
Signal
Timing

Adjustmen
t

Supports
All Output

Data
formats

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 N/A N/A N/A N/A N/A N/A

S3A3 N/A N/A N/A N/A N/A N/A

S3A6 N/A N/A N/A N/A N/A N/A

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 735 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > GLCDC HAL Module Introduction

S3A7 N/A N/A N/A N/A N/A N/A

S5D3 N/A N/A N/A N/A N/A N/A

S5D5 N/A N/A N/A N/A N/A N/A

S5D9 ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓

MCU Group Supports All
Dithering Modes

Support output
of VSYNC,

HSYNC
**and Horizontal
Data Enable**

Supports
Brightness and

Contrast

Supports
Gamma

Correction

S124 N/A N/A N/A N/A

S128 N/A N/A N/A N/A

S1JA N/A N/A N/A N/A

S3A1 N/A N/A N/A N/A

S3A3 N/A N/A N/A N/A

S3A6 N/A N/A N/A N/A

S3A7 N/A N/A N/A N/A

S5D3 N/A N/A N/A N/A

S5D5 N/A N/A N/A N/A

S5D9 ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓

4.2.14.2 GLCDC HAL Module APIs Overview

The GLCDC HAL module defines APIs for opening, closing, starting, stopping and controlling the
display of information on an LCD panel. A complete list of the available APIs, an example API call and
a short description of each can be found in the following table. A table of status return values follows
the API summary table.

GLCDC HAL Module API Summary

Function Name Example API Call and Description

open g_display.p_api->open (g_display.p_ctrl,
g_display.p_cfg);
Open display device.

close g_display.p_api->close (g_display.p_ctrl);
Close display device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 736 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > GLCDC HAL Module APIs Overview

start g_display.p_api->start(g_display.p_ctrl);
Display start.

stop g_display.p_api->stop(g_display.p_ctrl);
Display stop.

layerChange g_display.p_api->layerChange(g_display.p_ctrl,
&layercng)
Change layer parameters at runtime.

correction g_display.p_api->correction(g_display.p_ctrl,
&display_correction)
Color correction.

clut g_display.p_api->clut(g_display.p_ctrl, &clut)
Set CLUT for display device.

statusGet g_display.p_api->statusGet(g_display.p_ctrl,
&status)
Get status for display device.

versionGet g_display.p_api->versionGet(&version)
Retrieve the API version using the version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API call successful.

SSP_ERR_ASSERTION Parameter has invalid value.

SSP_ERR_INVALID_ARGUMENT Invalid parameter in the argument.

SSP_ERR_HW_LOCKED GLCDCC resource is locked.

SSP_ERR_CLOCK_GENERATION Dot clock cannot be generated from clock
source.

SSP_ERR_INVALID_TIMING_SETTING Invalid panel timing parameter.

SSP_ERR_INVALID_LAYER_SETTING Invalid layer setting found.

SSP_ERR_INVALID_LAYER_FORMAT Invalid format is specified.

SSP_ERR_INVALID_GAMMA_SETTING Invalid gamma correction setting found.

SSP_ERR_NOT_OPEN The function call is performed when the driver
state is not equal to DISPLAY_STATE_CLOSED.

SSP_ERR_INVALID_UPDATE_TIMING A function call is performed when the GLCDC is
updating register values internally.

SSP_ERR_INVALID_MODE Function call is performed when the driver state
is not DISPLAY_STATE_OPENED.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 737 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > GLCDC HAL Module APIs Overview

SSP_ERR_INVALID_CLUT_ACCESS Illegal CLUT entry or size is specified.

p_version The version number.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.14.3 GLCDC HAL Module Operational Overview

The GLCDC HAL module controls an LCD panel. The following figure shows an overview of the
graphics data flow using the GLCDC HAL module. The module supports reading graphics frame
image data from memory (up to two frames) and blending those images on top of the monochrome
background screen. The driver supports CLUT memory and specifies the graphic frame format for the
CLUT.

Figure 276: GLCDC HAL Module Data Flow

 The following figure shows a display system with a ping-pong frame buffer. It is recommended to
have more than two frame buffers in a display system to avoid image tearing, which happens in a
single frame buffer display system. In such designs, the GLCDC hardware can read a graphics frame
image from one of the frame buffers while the image drawing engines (for example, DRW and JPEG),
CPU or DMAC/DTC transfer a graphics frame image to another frame buffer simultaneously. The
module supports frame buffer toggling by the display_api_t::layerChange API at run-time.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 738 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > GLCDC HAL Module Operational Overview

Figure 277: GLCDC HAL Module Ping-Pong Buffer System

 Screen Format

The following figure shows the relationship between the LCD screen format and LCD timing
parameters of the GLCDC module. The module has generic timing parameters for the LCD panel
setting that support a variety of LCD panels.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 739 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > GLCDC HAL Module Operational Overview

Figure 278: GLCDC HAL Module Screen Format

 Front Porch Period

The GLCDC module does not have a setting for horizontal/vertical front porch cycles/lines. Those
cycles/lines must be included in the total horizontal cycles/vertical lines setting.

Note
The module requires setting the back porch cycles/lines based on the GLCDC hardware specification. Since typical
LCD panels have a greater number of back porch cycles/lines than described, this is not a true limitation of the
module.

Number of the horizontal back porch cycles >= 3
Number of the vertical back porch lines >= 2

Example Parameter Settings

PE-HMI1 v2.0 board (LXD Research & Display, LLC, M7504A):

The following example adjusts the horizontal total cycles, vertical total lines, and panel clock division
ratio to generate an LCD panel refresh rate of 60 Hz. Regarding symbols for the LCD panel, see the
M7504A data sheet.

LCD Panel Parameter Settings - PE-HMI1 v2.0 Board

DK-S7G2 v3.0 board (LXD Research & Display, LLC, M7190A):

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 740 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > GLCDC HAL Module Operational Overview

The following example adjusts the horizontal total cycles, vertical total lines and panel clock division
ration to generate an LCD panel refresh rate of 60 Hz. Regarding symbols for the LCD panel, see the
M7190A data sheet.

LCD Panel Parameter Settings - DK-S7G2 v3.0 Board

SK-S7G2 v2.0 board (ILI Technology Corp., IL9341C):

The following example sets the horizontal total cycles, and vertical total lines as large as allowed for
the panel for an LCD panel refresh rate of about 76.8 Hz. Regarding symbols for the LCD panel, see
the LIL9314V data sheet.

LCD Panel Parameter Settings - SK-S7G2 v2.0 Board

Note
The input horizontal size and stride are intentionally set to 256 pixels, even though the parameter should be 240
pixels for the panel. This is because a horizontal line has to be 64-byte aligned for GLCDC hardware. Only 240
pixels from the beginning in a line are valid and rest of pixels in the line (16 pixels) are don't care.

CLUT

The GLCDC module supports a Color Look-Up Table that is used if the color format is ARGB1555,
CLUT8, CLUT4, or CLUT1. The CLUT API can update CLUT0/CLUT1 SRAM (implemented inside the
GLCDC hardware) for each of the graphics foreground or background screens.

Note
Make sure to call the CLUT API if you select a color format that uses the CLUT, before using the
display_api_t::start API; otherwise, CLUT0 and CLUT1 become an unknown condition and the graphics do not
display properly.

You can also call the CLUT API at run-time to update CLUT SRAM.

Note
The API copies the source of CLUT data to the CLUT SRAM, which is not currently used (each CLUT SRAM
consists of a ping-pong buffer). After completing the CLUT data update, the API automatically switches the CLUT
SRAM to be read by the GLCDC hardware from the next frame to avoid tearing of the image.

Line Repeating Mode

Line Repeating is an important mode, especially for a system that does not have enough of memory.
In this mode, the GLCDC module reads a raster image, which has fewer pixels than the LCD panel
screen size, and displays the raster repeatedly on the screen. The following figure shows an example
of a screen image constructed by reading a small raster image repeatedly in the background
graphics plane.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 741 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > GLCDC HAL Module Operational Overview

Figure 279: GLCDC HAL Module Line Repeating Mode

Note
To enable this mode, set the GLCDC module property "Input - Graphics screen N input lines repeat" (where N = 1
or 2) to ON with the Synergy configurator. Also, specify the repeat times to read a raster image to: "Input -
Graphics screen N input lines repeat times". Specify the horizontal pixel size of the raster image in "Input -
Graphics screen N input horizontal size" and "Input - Graphics screen N input horizontal stride," and then specify
the vertical pixel size of the raster image in "Input - Graphics screen N input vertical size."

Gamma Correction

Gamma Correction is used to change the color characteristic of LCD panels to a flat characteristic.
The following figure shows the gamma correction curve, which can be configured by the GLCDC
module. The module supports 16 threshold values for the input color level for each (R, G, B) color
and defines the gain level for each of 16 areas divided by thresholds.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 742 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > GLCDC HAL Module Operational Overview

Figure 280: GLCDC HAL Module Gamma Correction Curve

Note
To enable the gamma correction for each channel (R, G, B), set the GLCDC module property "Color correction –
Gamma correction (R, G, B)" to ON using the Synergy configurator. Thresholds (total 16) are set to "Color
correction – Gamma correction threshold (R, G, B) [n]," where n=[0..15]. The gain value for each of areas are set
to "Color correction – Gamma correction gain (R, G, B) \[n]," where n= [0..15].

GLCDC HAL Module Important Operational Notes and Limitations

GLCDC HAL Module Operational Notes

You have the option to configure multiple GLCDC interrupts covered in the following sections:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 743 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > GLCDC HAL Module Operational Overview

Line Detection Interrupt

The line detection interrupt is used to indicate when the GLCDC finishes outputting all lines to the
LCD panel and goes into the blanking period. Use this interrupt to handle frame buffer switching in a
graphics system and uses frame buffers with more than two frames.

Layer1 or Layer2 Line Buffer Underflow Interrupt

You can use the GLCDC layer1 or layer2 buffer underflow interrupt to detect lack of memory
bandwidth in your system. The buffer underflow occurs when the graphics data transfer from
memory (for example, SDRAM or SRAM) to the GLCDC internal line buffer is blocked by the other
data transfer, and not enough against the data transfer from GLCDC line buffer to the LCD panel
interface. You have to design the graphics system to prevent this interrupt from occurring.

GLCDC Callbacks

A user callback function can be registered in open. If a user callback function is provided, the
callback function is called from the interrupt service routine (ISR) each time an interrupt happens.
The argument of the callback function event can take the following enumerated value listed the
table, so that a user can identify which event occurred in the graphics system.
DISPLAY_EVENT_LINE_DETECTION event is used for switching frame buffers to update the screen,
and DISPLAY_EVENT_GRn_UNDERFLOW event is used for error handling if an underflow occurs.

Event and Interrupt Summary

Name of Event Name of Interrupt Condition for the Event

DISPLAY_EVENT_LINE_DETECTI
ON

Line detection When GLCDC is done outputting
the last line in the active video
region

DISPLAY_EVENT_GR1_UNDERFL
OW

Graphics 1 underflow When GLCDC underflows during
reading the data for graphics1
plane

DISPLAY_EVENT_GR2_UNDERFL
OW

Graphics 2 underflow When GLCDC underflows during
reading the data for graphics2
plane

Note
Since the callback is called from an ISR, be careful not to use blocking calls or lengthy processing. Spending an
excessive time in an ISR can affect the responsiveness of the system.

GLCDC HAL Module Limitations

The Display driver on r_glcd does not support RGB-index chroma key.
The Display driver on r_glcd does not support the event link function.

4.2.14.4 Including the GLCDC HAL Module in an Application

This section describes how to include the GLCDC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 744 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Including the GLCDC HAL Module in an Application

configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Display Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the Display Driver is g_display0. This
name can be changed in the associated Properties window.)

GLCDC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_display0 Display Driver on
r_glcdc

Threads New Stack> Driver>
Graphics> Display Driver on
r_glcdc

When the Display Driver on r_glcdc is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 281: GLCDC HAL Module Stack

4.2.14.5 Configuring the GLCDC HAL Module

The GLCDC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 745 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Configuring the GLCDC HAL Module

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the GLCDC HAL Module on r_glcdc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
checking.

Name g_display0 The name to be used for a
GLCDC module control block
instance. This name is also
used as the prefix of the other
variable instances.

Name of display callback
function to be defined by user

NULL Name must be a valid C
symbol.

Input - Panel clock source select Internal clock (GLCDCLK),
External clock (LCD_EXTCLK)
Default: Internal clock
(GLCDCLK)

Choose the panel clock source
depends on your system.

Input - Graphics screen1 Used, Not used
Default: Used

Specify "Used" if the graphics
screen N is used. Then the
frame buffer named
"display_fb_background" for
graphics screen1 and
"display_fb_foreground" for
graphics screen2 is auto-
generated by ISDE. If not using
either of the graphics screens,
specify "Not used". Then the
frame buffer is not created.
Note that there is no memory
read access to the frame buffer
when you specify "Not used",
which reduces the consumption
of bus bandwidth.

Input - Graphics screen1 frame
buffer name

fb_background Custom name for frame buffer.

Input - Number of Graphics
screen1 frame buffer

2 Number of graphics selection.

Input - section where Graphics
screen1 frame buffer allocated

sdram Specify the section name to
allocate the frame buffer. This
is valid if "Input - Graphics
screen1" is set as "Used."

Input - Graphics screen1 input
horizontal size

800 Specify the number of
horizontal pixels. Default value
is the size for an image with
800x480 pixels

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 746 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Configuring the GLCDC HAL Module

Input - Graphics screen1
vertical size

480 Specify the number of vertical
pixels. Default value is the size
for an image with 800x480
pixels.

Input - Graphics screen1 input
horizontal stride (not bytes but
pixels)

800 Specify the memory stride for a
horizontal line. This value must
be specified with the number of
pixels, not actual bytes.
Typically, this parameter is set
to same number as parameter
'input horizontal size'. Default
value is the size for an image
with 800x480 pixels.

Input - Graphics screen1 input
format

32bits ARGB888, 32bits
RGB888, 16bits RGB565, 16bits
ARGB1555, 16bits ARGB4444,
CLUT 8, CLUT 4, CLUT 1
Default: 16bits RGB565

Specify the graphics screen
Input format. If selecting CLUT
formats, you must write CLUT
data using clut before
performing start. Default
setting supports a RGB565
formatted image.

Input - Graphics screen1 input
line descending

Used, Not used
Default: Not used

Specify "On" if image data
descends from the bottom line
to the top line in the frame
buffer. Usually "Off".

Input - Graphics screen1 input
line repeat

On, Off
Default: Off

Specify "On" if expecting to
repeatedly read a raster image
which is smaller than the LCD
panel size. Usually "Off". For
details, see the description of
Line Repeating function.

Input - Graphics screen1 input
line repeat times

0 Specify the number of
repeating times for a raster
image which is read repeatedly
in a frame.

Input - Graphics screen1 layer
coordinate X

0 Specify the horizontal offset in
pixels of the graphics screen
from the background screen.

Input - Graphics screen1 layer
coordinate Y

0 Specify the vertical offset in
pixels of the graphics screen
from the background screen.

Input - Graphics screen1 layer
background color alpha

255 Based on the alpha value,
either the graphics screen2
(foreground graphics screen) is
blended into the graphics
screen1 (background graphics
screen) or the graphics screen1
is blended into the
monochrome background
screen.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 747 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Configuring the GLCDC HAL Module

Input - Graphics screen1 layer
background color Red

255 Specify the background color in
the graphics screen N.

Input - Graphics screen1 layer
background color Green

255 Specify the background color in
the graphics screen N.

Input - Graphics screen1 layer
background color Blue

255 Specify the background color in
the graphics screen N.

Input - Graphics screen1 layer
fading control

None, Fade-in, Fade-out
Default: None

Specify "On" when performing a
fade-in for the graphics screen.
The transparent screen
changes gradually to opaque.
Specify "Off" when performing
the fade-out for the graphics
screen. The opaque screen
changes gradually to
transparent. Note that this
processing is accelerated by
the GLCDC hardware and
cannot stop once started. The
transition status can be
monitored by statusGet.

Input - Graphics screen1 layer
fade speed

0 Specify the number of frames
for the fading transition to
complete.

Input - Graphics screen2 Used, Not used
Default: Not used

Specify "Used" if the graphics
screen N is used. Then the
frame buffer named
"display_fb_background" for
graphics screen1 and
"display_fb_foreground" for
graphics screen2 is auto-
generated by ISDE. If not using
either of the graphics screens,
specify "Not used". Then the
frame buffer is not created.
Note that there is no memory
read access to the frame buffer
when you specify "Not used",
which reduces the consumption
of bus bandwidth.

Input - Graphics screen2 frame
buffer name

fb_foreground Custom name for frame buffer.

Input - Number of Graphics
screen2 frame buffer

2 Number of graphics selection.

Input - section where Graphics
screen2 frame buffer allocated

sdram Specify the section name to
allocate the frame buffer. This
is valid if "Input - Graphics
screen1" is set as "Used."

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 748 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Configuring the GLCDC HAL Module

Input - Graphics screen2 input
horizontal size

800 Specify the number of
horizontal pixels. Default value
is the size for an image with
800x480 pixels

Input - Graphics screen2
vertical size

480 Specify the number of vertical
pixels. Default value is the size
for an image with 800x480
pixels.

Input - Graphics screen2 input
horizontal stride (not bytes but
pixels)

800 Specify the memory stride for a
horizontal line. This value must
be specified with the number of
pixels, not actual bytes.
Typically, this parameter is set
to same number as parameter
'input horizontal size'. Default
value is the size for an image
with 800x480 pixels.

Input - Graphics screen2 input
format

32bits ARGB888, 32bits
RGB888, 16bits RGB565, 16bits
ARGB1555, 16bits ARGB4444,
CLUT 8, CLUT 4, CLUT 1
Default: 16bits RGB565

Specify the graphics screen
Input format. If selecting CLUT
formats, you must write CLUT
data using clut before
performing start. Default
setting supports a RGB565
formatted image.

Input - Graphics screen2 input
line descending

On, Off
Default: Off

Specify "On" if image data
descends from the bottom line
to the top line in the frame
buffer. Usually "Off".

Input - Graphics screen2 input
line repeat

On, Off
Default: Off

Specify "On" if expecting to
repeatedly read a raster image
which is smaller than the LCD
panel size. Usually "Off". For
details, see the description of
Line Repeating function.

Input - Graphics screen2 input
line repeat times

0 Specify the number of
repeating times for a raster
image which is read repeatedly
in a frame.

Input - Graphics screen2 layer
coordinate X

0 Specify the horizontal offset in
pixels of the graphics screen
from the background screen.

Input - Graphics screen2 layer
coordinate Y

0 Specify the vertical offset in
pixels of the graphics screen
from the background screen.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 749 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Configuring the GLCDC HAL Module

Input - Graphics screen2 layer
background color alpha

255 Based on the alpha value,
either the graphics screen2
(foreground graphics screen) is
blended into the graphics
screen1 (background graphics
screen) or the graphics screen1
is blended into the
monochrome background
screen.

Input - Graphics screen2 layer
background color Red

255 Specify the background color in
the graphics screen N.

Input - Graphics screen2 layer
background color Green

255 Specify the background color in
the graphics screen N.

Input - Graphics screen2 layer
background color Blue

255 Specify the background color in
the graphics screen N.

Input - Graphics screen2 layer
fading control

None, Fade-in, Fade-out
Default: None

Specify "On" when performing a
fade-in for the graphics screen.
The transparent screen
changes gradually to opaque.
Specify "Off" when performing
the fade-out for the graphics
screen. The opaque screen
changes gradually to
transparent. Note that this
processing is accelerated by
the GLCDC hardware and
cannot stop once started. The
transition status can be
monitored by statusGet.

Input - Graphics screen2 layer
fade speed

0 Specify the number of frames
for the fading transition to
complete.

Output - Horizontal total cycles 1024 Specify the total cycles in a
horizontal line. Set to the
number of cycles defined in the
data sheet of LCD panel sheet
in your system. Default value
matches the LCD panel on
S7G2 PE-HMI1 board.

Output - Horizontal active video
cycles

800 Specify the number of active
video cycles in a horizontal line.
Set to the number of cycles
defined in the data sheet of
LCD panel sheet in your
system. Default value matches
the LCD panel on S7G2 PE-HMI1
board.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 750 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Configuring the GLCDC HAL Module

Output - Horizontal back porch
cycles

46 Specify the number of back
porch cycles in a horizontal line.
Back porch starts from the
beginning of Hsync cycles,
which means back porch cycles
contain Hsync
cycles. Set to the number of
cycles defined in the data sheet
of LCD panel sheet in your
system. Default value matches
the LCD panel on S7G2 PE-HMI1
board.

Output - Horizontal sync signal
cycles

20 Specify the number of Hsync
signal assertion cycles. Set to
the number of cycles defined in
the data sheet of LCD panel
sheet in your system. Default
value matches LCD panel on
S7G2 PE-HMI1 board.

Output - Horizontal sync signal
polarity

Low active, High active
Default: Low active

Select the polarity of Hsync
signal to match your system.
Default setting matches the
LCD panel on S7G2 PE-HMI1
board.

Output - Vertical total lines 525 Specify number of total lines in
a frame. Set to the number of
lines defined in the data sheet
of LCD panel sheet in your
system. Default value matches
the LCD panel on S7G2 PE-HMI1
board.

Output - Vertical active video
lines

480 Specify the number of active
video lines in a frame. Set to
the number of lines defined in
the data sheet of LCD panel
sheet in your system. Default
value matches the LCD panel
on S7G2 PE-HMI1 board.

Output - Vertical back porch
lines

23 Specify the number of back
porch lines in a frame. Back
porch starts from the beginning
of Vsync lines, which means
back porch lines contain Vsync
lines. Set to the number of lines
defined in the data sheet of
LCD panel sheet in your
system. Default value matches
the LCD panel on S7G2 PE-HMI1
board.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 751 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Configuring the GLCDC HAL Module

Output - Vertical sync signal
lines

10 Specify the Vsync signal
assertion lines in a frame. Set
to the number of lines defined
in the data sheet of LCD panel
sheet in your system. Default
value matches the LCD panel
on S7G2 PE-HMI1 board.

Output - Vertical sync signal
polarity

Low active, High active
Default: Low active

Select the polarity of Vsync
signal to match to your system.
Default setting matches LCD
panel on S7G2 PE-HMI1 board.

Output - Format 24bits RGB888, 18bits RGB666,
16bits RGB565, 8bits serial
Default: 24bits RGB888

Specify the graphics screen
output format to match to your
LCD panel. Default setting
matches the LCD panel on
S7G2 PE-HMI1 board.

Output - Endian Little endian, Big endian
Default: Little endian

Select data endian for output
signal to LCD panel. Default
setting matches the LCD panel
on S7G2 PE-HMI1 board.

Output - Color order RGB, BGR
Default: RGB

Select data order for output
signal to LCD panel. The order
of blue and red can be swapped
if needed. Default setting
matches the LCD panel on
S7G2 PE-HMI1 board.

Output - Data Enable Signal
Polarity

Low active, High active
Default: High active

Select the polarity of Data
Enable signal to match to your
system. Default setting
matches the LCD panel on
S7G2 PE-HMI1 board.

Output - Sync edge Rising Edge, Falling Edge
Default: Rising Edge

Select the polarity of Sync
signals to match to your
system. Default setting
matches the LCD panel on
S7G2 PE-HMI1 board.

Output - Background color
alpha channel

255 Specify the background color of
the background screens.

Output - Background color R
channel

0 Specify the background color of
the background screens.

Output - Background color G
channel

0 Specify the background color of
the background screens.

Output - Background color B
channel

0 Specify the background color of
the background screens.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 752 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Configuring the GLCDC HAL Module

CLUT Used, Not used
Default: Not used

Specify "Used" if selecting CLUT
formats for a graphics screen
input format. Then, a buffer
named "CLUT_buffer" for the
CLUT source data is generated
in the ISDE auto-generated
source file.

CLUT - CLUT buffer size 256 Specify the number of entries
for the CLUT source data buffer.
Each entries consumes 4 bytes
(1 word). Words of CLUT source
data specified by this
parameter are generated in the
ISDE auto-generated source
file.

TCON - Hsync pin select Not used, LCD_TCON0,
LCD_TCON1, LCD_TCON2,
LCD_TCON3
Default: LCD_TCON0

Select the TCON pin used for
the Hsync signal to match to
your system. Default setting is
for LCD panel on S7G2 PE-HMI1
board.

TCON - Vsync pin select Not used, LCD_TCON0,
LCD_TCON1, LCD_TCON2,
LCD_TCON3
Default: LCD_TCON1

Select TCON pin used for Vsync
signal to match to your system.
Default setting is for LCD panel
on S7G2 PE-HMI1 board.

TCON - DataEnable pin select Not used, LCD_TCON0,
LCD_TCON1, LCD_TCON2,
LCD_TCON3
Default: LCD_TCON2

Select TCON pin used for
DataEnable signal to match to
your system. Default setting is
for LCD panel on S7G2 PE-HMI1
board.

TCON - Panel clock division
ratio

1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7,
1/8, 1/9, 1/12, 1/16, 1/24, 1/32
Default: 1/8

Select the clock source divider
value. See the note at bottom
of this table about the source
clock for the pixel clock.

Color correction - Brightness Off, On
Default: Off

Specify "On" when performing
brightness control. If specifying
"Off", the setting below does
not affect the output color.

Color correction - Brightness R
channel

512 Output color level is calculated
as follows: Output color level =
Input color level +/ - 512. Set
the value for each of R, G, B
channels.

Color correction - Brightness G
channel

512 Output color level is calculated
as follows: Output color level =
Input color level +/ - 512. Set
the value for each of R, G, B
channels.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 753 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Configuring the GLCDC HAL Module

Color correction - Brightness B
channel

512 Output color level is calculated
as follows: Output color level =
Input color level +/ - 512. Set
the value for each of R, G, B
channels.

Color correction - Contrast Off, On
Default: Off

Specify "On" when performing
contrast control. If specifying
"Off", the setting below does
not affect the output color.

Color correction - Contrast(gain)
R channel

128 Output color level is calculated
as follows: Output color level =
Input color level x (/128). Set
the value for each of R, G, B
channels.

Color correction - Contrast(gain)
G channel

128 Output color level is calculated
as follows: Output color level =
Input color level x (/128). Set
the value for each of R, G, B
channels.

Color correction - Contrast(gain)
B channel

128 Output color level is calculated
as follows: Output color level =
Input color level x (/128). Set
the value for each of R, G, B
channels.

Color correction - Gamma
correction(Red)

Off, On
Default: Off

Control for each channel R/G/B.
Specify "On" when performing
gamma correction for the red
channel. If specifying "Off", the
settings for gain and threshold
do not affect the output color.

Color correction - Gamma gain
R[0-15]

0 Set the gain value for the red
channel in the area N on the
gamma correction curve. The
gain setting for area N is
applied to the input data with a
color level between ((Gamma
threshold R[N-1])<<2) and
((Gamma threshold R[N])<<2).
The output value is calculated
as follows: Output color level =
Input color level / 1024 (/128).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 754 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Configuring the GLCDC HAL Module

Color correction - Gamma
threshold R[0-15]

0 Set the threshold value for the
red channel in the area N on
the gamma correction curve.
The gain setting for area N is
applied to the input data with a
color level between Gamma
threshold R[N-1] and Gamma
threshold R[N]. The output
value is calculated as follows:
Output color level = Input color
level / 1024 (/128).

Color correction - Gamma
correction(Green)

Off, On
Default: Off

Control for each channel R/G/B.
Specify "On" when performing
gamma correction for the red
channel. If specifying "Off", the
settings for gain and threshold
do not affect the output color.

Color correction - Gamma gain
G[0-15]

0 Set the gain value for the red
channel in the area N on the
gamma correction curve. The
gain setting for area N is
applied to the input data with a
color level between ((Gamma
threshold R[N-1])<<2) and
((Gamma threshold R[N])<<2).
The output value is calculated
as follows: Output color level =
Input color level / 1024 (/128).

Color correction - Gamma
threshold G[0-15]

0 Set the threshold value for the
red channel in the area N on
the gamma correction curve.
The gain setting for area N is
applied to the input data with a
color level between Gamma
threshold R[N-1] and Gamma
threshold R[N]. The output
value is calculated as follows:
Output color level = Input color
level / 1024 (/128).

Color correction - Gamma
correction(Blue)

Off, On
Default: Off

Control for each channel R/G/B.
Specify "On" when performing
gamma correction for the red
channel. If specifying "Off", the
settings for gain and threshold
do not affect the output color.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 755 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Configuring the GLCDC HAL Module

Color correction - Gamma gain
B[0-15]

0 Set the gain value for the red
channel in the area N on the
gamma correction curve. The
gain setting for area N is
applied to the input data with a
color level between ((Gamma
threshold R[N-1])<<2) and
((Gamma threshold R[N])<<2).
The output value is calculated
as follows: Output color level =
Input color level / 1024 (/128).

Color correction - Gamma
threshold B[0-15]

0 Set the threshold value for the
red channel in the area N on
the gamma correction curve.
The gain setting for area N is
applied to the input data with a
color level between Gamma
threshold R[N-1] and Gamma
threshold R[N]. The output
value is calculated as follows:
Output color level = Input color
level / 1024 (/128).

Dithering Off, On
Default: Off

Dithering enable. Specify "On"
when applying the dither effect
to reduce the banding in case
of selecting RGB666 or RGB565
output formats. Dithering can
be applied when converting. If
specified "Off", the settings for
dithering below do not affect
the output. For details on the
dither effect, see Output
Control Block Panel Dither
Correction Register
(OUT_PDTHA) in the hardware
manual.

Dithering - Mode Truncate, Round off, 2x2
Pattern
Default: Truncate

Specify the dither mode. For
detail, see the Output Control
Block Panel Dither Correction
Register (OUT_PDTHA) in the
hardware manual.

Dithering - Pattern A Pattern 00, Pattern 01, Pattern
10, Pattern 11
Default: Pattern 11

Specify the dither pattern for
2X2 pattern mode. For details,
see the Output Control Block
Panel Dither Correction Register
(OUT_PDTHA) in the hardware
manual.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 756 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Configuring the GLCDC HAL Module

Dithering - Pattern B Pattern 00, Pattern 01, Pattern
10, Pattern 11
Default: Pattern 11

Specify the dither pattern for
2X2 pattern mode. For details,
see the Output Control Block
Panel Dither Correction Register
(OUT_PDTHA) in the hardware
manual.

Dithering - Pattern C Pattern 00, Pattern 01, Pattern
10, Pattern 11
Default: Pattern 11

Specify the dither pattern for
2X2 pattern mode. For details,
see the Output Control Block
Panel Dither Correction Register
(OUT_PDTHA) in the hardware
manual.

Dithering - Pattern D Pattern 00, Pattern 01, Pattern
10, Pattern 11
Default: Pattern 11

Specify the dither pattern for
2X2 pattern mode. For details,
see the Output Control Block
Panel Dither Correction Register
(OUT_PDTHA) in the hardware
manual.

Misc - Correction Process Order Brightness and Contrast then
Gamma, Gamma then
Brightness and Contrast
Default: Brightness and
Contrast then Gamma

Specify the color correction
processing order if needed.

Line Detect Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX),
Default: Disabled

The driver needs valid interrupt
priority setting and it will not
work if disabled.

Underflow 1 Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX),
Default: Disabled

The driver needs valid interrupt
priority setting and it will not
work if disabled.

Underflow 2 Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX),
Default: Disabled

The driver needs valid interrupt
priority setting and it will not
work if disabled.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

GLCDC HAL Module Clock Configuration

The GLCDC module can generate the pixel clock from either of the following clock sources (the
source clock selection is available through Synergy Configuration in e2 studio):

Internal clock source (PLLOUT; 240 MHz)
External clock source from the LCD_EXTCLK pin

Note
The internal clock is different in the S7G2 WS1 (Working Sample1) chip and the WS2 (Working Sample2) chip or
later. The WS1 chip uses the PCLKB (max. 60 MHz), but WS2 or later chips use the PLLOUT (max. 240 MHz).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 757 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Configuring the GLCDC HAL Module

GLCDC HAL Module Pin Configuration

The GLCDC module uses pins on the MCU to communicate to external devices. I/O pins must be
selected and configured as required by the external device. The pin selection table lists methods to
select pins within the SSP configuration window and the configuration settings table lists an example
depicting selection of GLCDC pins:

Pin Selection for the GLCDC HAL Module on r_glcdc

Resource ISDE Tab Pin selection Sequence

GLCDC Pins Select Peripherals>
Graphics: GLCDC> GLCDC0

Note
The selection sequence assumes GLCDC0 is the desired hardware target for the driver.

Pin Configuration Settings for GLCDC HAL Module on r_glcd

Property Value Description

Pin Group Selection Mixed, _A Only, _B Only
Default: Mixed

Pin group selection.

Operation Mode Disabled, Custom, RGB888,
RGB666, RGB565
Default: Disabled

Select desired operation mode.

LCD_CLK None, P900, P101
Default: None

LCD_CLK Pin.

LCD_DATA00:15 None, Pn, Pm
Default: None

LCD_DATA Pins.

LCD_TCON0:3 None, Pn, Pm
Default: None

LCD_TCON Pins.

LCD_EXTCLK None, Pn, Pm
Default: None

LCD_EXTCLK Pin.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.
To use the GLCDC module on the S7G2 PE-HMI1 board, be sure to set up PORT10 pin3 (PA03) and pin5 (PA05)
as IOPORT pins with the output level HIGH. Pin PA03 controls the DISP signal (Display on/off) and Pin PA05
controls the backlight of LCD panel. For details, see the schematics of S7G2 PE-HMI1 board.

4.2.14.6 Using the GLCDC HAL Module in an Application

The typical steps in using the GLCDC HAL module in an application are:

1. Initialize the GLCDC HAL module with the display_api_t::open API.
2. Draw a primary image in the frame buffer with application code.
3. Start the image displaying using the display_api_t::start API.
4. Stop the image displaying using the display_api_t::stop API.
5. Copy the source CLUT data to CLUT SRAM using the display_api_t::clut API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 758 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Display Driver > Using the GLCDC HAL Module in an Application

6. Draw a new image in the frame buffer to update the display with application code.

Note
In a typical application a ping-pong frame buffer system is used, so the application will
draw the image to another frame buffer, which is not used for displaying at this point.

7. Request frame buffer toggling to the GLCDC hardware with the display_api_t::layerChange
API.

Note
The GLCDC hardware toggles the frame buffer and displays a new image from the next
frame.

8. Perform color correction using the display_api_t::correction API.
9. Get display status using the display_api_t::statusGet API.

10. Get the driver version using display_api_t::versionGet API. (Optional)
11. Close the GLCDC module by calling the display_api_t::close API.

To synchronize application code to the completion of drawing current frame buffer, use the Line
Detection Interrupt and notify the timing to application code through the GLCDC callback.

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 282: Flow Diagram of a Typical GLCDC HAL Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 759 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Data Operation Circuit Driver

4.2.15 Data Operation Circuit Driver

4.2.15.1 DOC HAL Module Introduction

The Data Operation Circuit (DOC) HAL module provides a high-level API for DOC applications and
uses the DOC peripherals on the Synergy MCU. A user-defined callback can be created to inform the
CPU when an event occurs.

DOC HAL Module Features

The DOC HAL module peripheral is used to compare 16-bit data and can detect the following events:

A mismatch or match between data values
Overflow of an addition operation
Underflow of a subtraction operation

Figure 283: DOC HAL Module Block Diagram

DOC Hardware support details

The following hardware features are, or are not, supported by SSP for DOC.

Legend:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 760 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Data Operation Circuit Driver > DOC HAL Module Introduction

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU
Group

Module-stop Function Event Link Function through
ELC HAL Driver

S124 ✓ ⌧

S128 ✓ ⌧

S1JA ✓ ⌧

S3A1 ✓ ⌧

S3A3 ✓ ⌧

S3A6 ✓ ⌧

S3A7 ✓ ⌧

S5D3 ✓ ⌧

S5D5 ✓ ⌧

S5D9 ✓ ⌧

S7G2 ✓ ⌧

4.2.15.2 DOC HAL Module APIs Overview

The DOC HAL module defines APIs for opening, closing, checking the status of and writing data to the
data operation circuit. The DOC HAL module uses the DOC peripheral on the Synergy MCU. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

DOC HAL Module API Summary

Function Name Example API Call and Description

open g_doc.p_api->open(g_doc.p_ctrl, g_doc.p_cfg)
Initial configuration.

close g_doc.p_api->close(g_doc.p_ctrl)
Allow the driver to be reconfigured. Will reduce
power consumption.

statusGet g_doc.p_api->statusGet(g_doc.p_ctrl,
&my_Status)
Get the DOC status and stores it in the provided
pointer p_status.

statusClear g_doc.p_api->statusClear(g_doc.p_ctrl)
Clear DOPCF status flag.

write g_doc.p_api->write(g_doc.p_ctrl, value)
Write to the DODIR and DODSR registers.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 761 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Data Operation Circuit Driver > DOC HAL Module APIs Overview

inputRegisterWrite g_doc.p_api->inputRegisterWrite(g_doc.p_ctrl,
&doc_values)
Write to the DODIR register.

versionGet g_doc.p_api->versionGet(g_doc.p_ctrl, &version)
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS DOC successfully configured.

SSP_ERR_IN_USE Module already open.

SSP_ERR_ASSERTION One or more pointers point to NULL.

SSP_ERR_INVALID_ARGUMENT ISR is not enabled. Enable the ISR in
bsp_irq_cfg.h.

SSP_ERR_HW_LOCKED DOC resource is locked.

SSP_ERR_NOT_OPEN Driver not open.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.15.3 DOC HAL Module Operational Overview

The DOC HAL module controls the DOC peripheral on a Synergy MCU. It is used to compare 16-bit
data and can detect a mismatch between data values, an overflow of an addition value, or an
underflow of a subtraction operation. If a callback is available and the associated interrupt is
enabled, the callback function will be called in response to a DOC event.

The DOC uses two data registers to perform operations: the DOC Data Input Register (DOCDIR) holds
the data to be operated on and the DOC Data Setting Register (DOCDSR) holds the value that is used
to operate on the input data. In the addition and subtraction modes, this register stores the results of
data operations. (Both these registers are 16-bits wide.)

DOC HAL Module Important Operational Notes and Limitations

DOC HAL Module Operational Notes

The initial setting of comparison data is written to the DOC by calling the doc_api_t::write API. The
doc_api_t::write API writes to the DOC DODSR and DODIR registers. The doc_api_t::write API use a
variable of type doc_data_t, as illustrated below:

 doc_data_t g_doc_values;

 g_doc_values.dodir = 0x1000;

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 762 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Data Operation Circuit Driver > DOC HAL Module Operational Overview

 g_doc_values.dodsr = 0x1000;

 g_doc.p_api->write(g_doc.p_ctrl, &g_doc_values);

If the data to be compared does not change, there is no need to re-write it each time a comparison is
required. The input data value can be written to the DOC by using the doc_api_t::inputRegisterWrite
API. The doc_api_t::inputRegisterWrite API writes only to the DOC data-input register.

DOC HAL Module Limitations

Refer to the latest SSP Release Notes for any additional operational limitations for this module.

4.2.15.4 Including the DOC HAL Module in an Application

This section describes how to include the DOC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the DOC Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the DOC Driver is g_doc0. This name
can be changed in the associated Properties window.)

DOC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_doc0 Data Operation Circuit
Driver on r_doc

Threads New Stack> Driver>
Monitoring> Data Operation
Circuit Driver on r_doc

When the Key Matrix Driver on r_kint is added to the thread stack as shown in the following figure,
the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 763 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Data Operation Circuit Driver > Including the DOC HAL Module in an Application

Figure 284: DOC HAL Module Stack

4.2.15.5 Configuring the DOC HAL Module

The DOC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the DOC HAL Module on r_doc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_doc0 Module name.

Event Comparison mismatch,
Comparison match, Addition
overflow, Subtraction underflow

Default: Comparison mismatch

Specify the event which will
trigger the DOC interrupt.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 764 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Data Operation Circuit Driver > Configuring the DOC HAL Module

Callback NULL A user callback function can be
registered in open. If this
callback function is provided, it
is called from the interrupt
service routine (ISR) when the
configured DOC event occurs.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

DOC Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Use the pull down to set the
DOC interrupt priority.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

DOC HAL Module Clock Configuration

The DOC HAL module does not require a specific clock configuration.

DOC HAL Module Pin Configuration

The DOC HAL module does not require and specific pin configurations.

4.2.15.6 Using the DOC HAL Module in an Application

The typical steps in using the DOC HAL module in an application are:

1. Initialize the DOC using the doc_api_t::open API.
2. Set register values in DODIR and DODSR using the doc_api_t::write API.
3. Steam data to the DOC using the doc_api_t::inputRegisterWrite API.
4. Read the status of the comparison using the doc_api_t::statusGet API or in the callback if

enabled.
5. Clear status flags using the doc_api_t::statusClear API.
6. Close the module using the doc_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 765 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Data Operation Circuit Driver > Using the DOC HAL Module in an Application

Figure 285: Flow Diagram of a Typical DOC HAL Module Application

4.2.16 Transfer Driver on r_dmac

4.2.16.1 DMAC HAL Module Introduction

The DMAC HAL module provides a high-level API for data-transfer applications and uses the DMAC
peripheral on the Synergy MCU. A user-defined callback can be created to inform the CPU when
transfer events occur.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 766 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dmac > DMAC HAL Module Introduction

DMAC HAL Module Features

The DMAC HAL module moves data from a user-specified source to a user-specified destination when
an interrupt or event occurs. The DMAC HAL module supports the following:

DMAC module on a Synergy MCU
Interrupts, if desired
Multiple transfer modes

Single Transfer
Repeat Transfer
Block Transfer
Address increment, decrement, offset addition, or fixed modes

Multiple channels, with the number depending on the MCU used

Figure 286: DMAC HAL Module Block Diagram

DMAC Hardware support details

The following hardware features are, or are not, supported by SSP for DMAC.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 767 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dmac > DMAC HAL Module Introduction

N/A Not supported by MCU

MCU
Group

Normal
Transfer

Mode

Repeat
Transfer

Mode

Block Transfer
Mode

Extended
repeat area

function

Event link
function
through

ELC HAL driver

S124 N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A

S3A1 ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓

4.2.16.2 DMAC HAL Module APIs Overview

The DMAC HAL module defines APIs for opening, closing, starting and stopping timers. Note that the
Data Transfer Controller (DTC) and the DMAC use the same transfer interface; sharing an interface
makes it easier to change between DTC and DMA implementations. The API calls are the same
independent of the lower level implementations. A complete list of the available APIs, an example
API call and a short description of each function can be found in the following table. A table of status
return values follows the API summary table.

DMAC HAL Module API Summary

Function Name Example API Call and Description

open g_transfer0.api->open(g_transfer0.p_ctrl,
g_transfer0.p_cfg)
Open device channel. Initialize driver and
hardware on first call.

close g_transfer0.api->close(g_transfer0.p_ctrl)
Close device channel. Turns off hardware if last
channel open.

reset g_transfer0.api->reset(g_transfer0.p_ctrl,
&source, &destination, number_of_transfers)
Reset channel settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 768 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dmac > DMAC HAL Module APIs Overview

start g_transfer0.api->start(g_transfer0.p_ctrl, mode)
Start data transfer.

stop g_transfer0.api->stop(g_transfer0.p_ctrl)
Stop data transfer.

enable g_transfer0.api->enable(g_transfer0.p_ctrl)
Enable channel.

disable g_transfer0.api->disable(g_transfer0.p_ctrl)
Disable channel.

versionGet g_transfer0.api->versionGet(&version)
Retrieve the API version with the version pointer.

infoGet g_transfer0.api->infoGet(g_transfer0.p_ctrl,
&info)
Get transfer channel info.

blockReset g_transfer0.api->blockReset(g_transfer0.p_ctrl,
&source, &destination, length, size,
number_of_transfers)
Reset Block Transfer parameters.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_ASSERTION Parameter has invalid value.

SSP_ERR_NOT_OPEN The channel is not opened.

SSP_ERR_UNSUPPORTED Operation not configured correctly.

SSP_ERR_IN_USE The channel specified has already been opened.
No configurations were changed. Call the
associated Close function or use associated
Control commands to reconfigure the channel.

SSP_ERR_IRQ_BSP_DISABLED IRQ not enabled in BSP.

SSP_ERR_NOT_ENABLED Operation failed.

SSP_ERR_NOT_OPEN The channel is not opened.

SSP_ERR_INVALID_SIZE Invalid Offset Value.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.16.3 DMAC HAL Module Operational Overview

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 769 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dmac > DMAC HAL Module Operational Overview

The DMAC and the DTC can be used to move data within the Synergy MCU. There are a few
considerations when selecting between these modules and you need to determine which
implementation works best for your application. The DTC module is recommended for most generic
transfer applications and is also available for data transfer operations. The following use cases
describe operations within each transfer module.

Selecting the DTC Transfer Module

The DTC HAL module uses a RAM based vector table, with slots for every interrupt in the system.
When the DTC transfer completes, the activation source interrupt is called. The activation source
interrupt must be enabled to use the DTC. The activation source interrupt is generally muted by the
DTC until the transfer completes, unless TRANSFER_IRQ_EACH is specified in the configuration. For
example, if a normal mode transfer with a length of 16 is triggered by a timer, the timer interrupt
does not fire the first 15 times while the transfer is in effect. After the 16th transfer, the timer
interrupt fires. The DTC also allows chained transfers, meaning that more than one transfer can
occur after a single activation source interrupt. This feature is supported by the driver but must be
configured outside the ISDE.

Selecting the DMAC Transfer Module

The DMAC HAL module moves data from a user-specified source to a user-specified destination when
an interrupt or event occurs. The DMAC HAL module uses DMAC peripheral registers, so the number
of transfers in the system is limited to the number of DMAC channels on the device. The activation
source does not have to be enabled to use the DMAC. When the DMAC transfer completes, a DMAC
interrupt is called. If the activation source interrupt is enabled, it fires at the same time the transfer
is triggered. If the DMAC interrupt is enabled, it fires after all transfers are complete. For example, if
a normal mode transfer, with a length of 16 is triggered by a timer, the timer interrupt fires at the
same time each transfer occurs and the DMAC interrupt fires after the 16th transfer completes. The
DMAC does not support chained transfers.

DMAC HAL Module Important Operational Notes and Limitations

DMAC HAL Module Operational Notes

 Normal Mode

In normal mode, a single transfer triggers each time an activation source event occurs. A single
transfer is 1 byte, 2 bytes or 4 bytes, depending on the setting selected in the size parameter. Each
time a transfer occurs, the transfer length decrements by 1. When the transfer length reaches 0, the
transfer is complete.

Repeat Mode

In repeat mode, a single transfer triggers each time an activation source event occurs. A single
transfer is 1 byte, 2 bytes or 4 bytes, depending on the setting selected in the size parameter. Each
time a transfer occurs, the transfer length decrements by 1. When transfer length reaches 0, the
transfer length reloads with its initial value and the transfer restarts. If the repeat area is set to
source, the source register also reloads with its initial value when the transfer restarts. Alternatively,
if the repeat area is set to destination, the destination register reloads with its initial value when the
transfer restarts.

Block Mode

In block mode, the entire transfer length transfers each time an activation source event occurs. For
example, if a transfer is configured in the block mode with a timer as the activation source, a 2-byte

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 770 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dmac > DMAC HAL Module Operational Overview

size and 12-byte length, 24 bytes transfer each time the activation source event occurs. Each time a
transfer occurs, the transfer length decrements by 1. When the length reaches 0, the transfer length
reloads with its initial value and the transfer restarts. If the repeat area is set to source, the source
register is also reloaded with its initial value when the transfer restarts. Alternatively, if the repeat
area is set to destination, the destination register reloads with its initial value when the transfer
restarts.

Address Mode

After each transfer of size (1 byte, 2 bytes, or 4 bytes), the source pointer and destination pointer
adjust by transfer_info_t::src_addr_mode and transfer_info_t::dest_addr_mode, respectively.

For example, if transfer_info_t::src_addr_mode is set to TRANSFER_ADDR_MODE_INCREMENTED, and
size is set to TRANSFER_SIZE_4_BYTE, the transfer_info_t::p_dest pointer is incremented by 4 (the
transfer size) after each transfer.

For TRANSFER_ADDR_MODE_OFFSET, the pointer is incremented or decremented by the configured
offset value.

The pointer does not change if set to TRANSFER_ADDR_MODE_FIXED.

DMAC HAL Module Limitations

Refer to the latest SSP Release Notes for any additional operational limitations for this module.

4.2.16.4 Including the DMAC HAL Module in an Application

This section describes how to include the DMAC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Transfer Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the Transfer Driver is g_dmac0. This
name can be changed in the associated Properties window.)

DMAC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_ transfer0 Transfer Driver on
r_dmac

Threads New Stack> Driver>
Transfer> Transfer Driver
on r_dmac

When the Transfer Driver on r_dmac is added to the thread stack as shown in the following figure,
the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 771 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dmac > Including the DMAC HAL Module in an Application

displays possible choices.

Figure 287: DMAC HAL Module Stack

4.2.16.5 Configuring the DMAC HAL Module

The DMAC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the DMAC HAL Module on r_dmac

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_transfer0 Module name.

Channel 0 Channel selection.

Mode Normal, Repeat, Block

Default: Normal

Mode selection.

Transfer Size 1 Byte, 2 Bytes, 4 Bytes

Default: 2 Bytes

Transfer size selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 772 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dmac > Configuring the DMAC HAL Module

Destination Address Mode Fixed, Incremented, Destination

Default: Fixed

Destination address mode
selection.

Source Address Mode Fixed, Incremented, Destination

Default: Fixed

Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination, Source

Default: Source

Repeat area selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Offset Addition
(Valid only in Offset Addition
mode)

-16777216 to 16777215
Default: 0

Offset value selection.

Activation Source Software Activation, Peripheral
Events

Default: Software Activation

Activation source selection.

Auto Enable True, False

Default: True

Auto enable selection.

Callback NULL Callback selection.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Interrupt priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

DMAC HAL Module Clock Configuration

The DMAC peripheral module use ICLK as the clock source. The ICLK frequency is set by using the
SSP configurator clock tab, prior to a build, or by using the CGC Interface at run-time.

DMAC HAL Module Pin Configuration

The DMAC HAL Module is not associated with any pins.

4.2.16.6 Using the DMAC HAL Module in an Application

The typical steps in using the DMAC HAL module in an application are:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 773 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dmac > Using the DMAC HAL Module in an Application

1. Initialize the DMAC HAL module using the transfer_api_t::open API.
2. Enable the DMAC HAL module using the transfer_api_t::enable API (if not auto enabled).
3. Manage transfers using other APIs as needed.
4. Close the DMAC HAL module using the transfer_api_t::close API when needed.

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 288: Flow Diagram of a Typical DMAC HAL Module Application

4.2.17 Transfer Driver on r_dtc

4.2.17.1 DTC HAL Module Introduction

The Data Transfer Controller (DTC) HAL module provides a high-level API for data-transfer
applications and uses the DTC peripheral on the Synergy MCU. A user-defined callback can be
created to inform the CPU when transfer events occur.

DTC HAL Module Features

The Data Transfer Controller (DTC) HAL module moves data from a user-specified source to a user-
specified destination when an interrupt or event occurs.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 774 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dtc > DTC HAL Module Introduction

Supports the DTC module on a Synergy MCU
Supports interrupts if desired
Supports multiple transfer modes

Single transfer
Repeat transfer
Block transfer
Address increment or fixed modes
Chain transfers

Supports multiple channels (depending on selected implementation)
Number of channels is limited only by the size of the RAM-based vector table

Figure 289: DTC HAL Module Block Diagram

DTC Hardware support details

The following hardware features are, or are not, supported by SSP for DTC.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 775 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dtc > DTC HAL Module Introduction

MCU
Group

Normal
Transfer

Mode

Repeat
Transfer

Mode

Block
Transfer

Mode

Selectable
Data Transfer
Units (8 bits,
16 bits, 32

bits)

API/Config for
Event

link function
upon

completion of
DTC

transfers

S124 ✓ ✓ ✓ ✓ ⌧

S128 ✓ ✓ ✓ ✓ ⌧

S1JA ✓ ✓ ✓ ✓ ⌧

S3A1 ✓ ✓ ✓ ✓ ⌧

S3A3 ✓ ✓ ✓ ✓ ⌧

S3A6 ✓ ✓ ✓ ✓ ⌧

S3A7 ✓ ✓ ✓ ✓ ⌧

S5D3 ✓ ✓ ✓ ✓ ⌧

S5D5 ✓ ✓ ✓ ✓ ⌧

S5D9 ✓ ✓ ✓ ✓ ⌧

S7G2 ✓ ✓ ✓ ✓ ⌧

4.2.17.2 DTC HAL Module APIs Overview

The DTC HAL module defines APIs for opening, closing, resetting, enabling, disabling, starting and
stopping. Note that the DTC and the DMAC use the same transfer interface to make it easier to
change between DTC and DMA implementations. The API calls are the same independent of the
lower-level implementations. A complete list of the available APIs, an example API call and a short
description of each can be found in the following table. A table of status return values follows the API
summary table.

DTC HAL Module API Summary

Function Name Example API Call and Description

open g_transfer0.api->open(g_transfer0.p_ctrl,
g_transfer0.p_cfg)
Initial configuration. Enables the transfer if
auto_enable is true and p_src, p_dest, and
length are valid. Transfers can also be enabled
using enable or reset.

close g_transfer0.api->close(g_transfer0.p_ctrl)
Close device channel. Turns off hardware if last
channel open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 776 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dtc > DTC HAL Module APIs Overview

reset g_transfer0.api->reset(g_transfer0.p_ctrl,
&source, &destination, number_of_transfers)
Reset source address pointer, destination
address pointer, and/or length, keeping all other
settings the same. Enable the transfer if p_src,
p_dest, and length are valid.

start g_transfer0.api->start(g_transfer0.p_ctrl, mode)
Start transfer in software.

stop g_transfer0.api->stop(g_transfer0.p_ctrl)
Stop transfer in software. The transfer will stop
after completion of the current transfer.

enable g_transfer0.api->enable(g_transfer0.p_ctrl)
Enable transfer. Transfers occur after the
activation source event (or when start is called if
ELC_EVENT_ELC_SOFTWARE_EVENT_0 or
ELC_EVENT_ELC_SOFTWARE_EVENT_0 is chosen
as activation source).

disable g_transfer0.api->disable(g_transfer0.p_ctrl)
Disable transfer. Transfers do not occur after the
transfer_info_t::activation source event (or when
start is called if
ELC_EVENT_ELC_SOFTWARE_EVENT_0or
ELC_EVENT_ELC_SOFTWARE_EVENT_0 is chosen
as transfer_info_t::activation_source).

versionGet g_transfer0.api->versionGet(&version)
Gets version and stores it in provided pointer
version.

infoGet g_transfer0.api->infoGet(g_transfer0.p_ctrl,
&info)
Provides information about this transfer.

blockReset g_transfer0.api->blockReset(g_transfer0.p_ctrl,
&source, &destination, length, size,
number_of_transfers)
Reset source address pointer, destination
address pointer, and/or length, for block transfer
keeping all other settings the same. Enable the
transfer if p_src, p_dest, and length are valid.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_ASSERTION Parameter has invalid value.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 777 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dtc > DTC HAL Module APIs Overview

SSP_ERR_NOT_OPEN The channel is not opened.

SSP_ERR_UNSUPPORTED Operation not configured correctly.

SSP_ERR_IN_USE The channel specified has already been opened.
No configurations were changed. Call the
associated Close function or use associated
Control commands to reconfigure the channel.

SSP_ERR_HW_LOCKED The DTC hardware resource is locked.

SSP_ERR_IRQ_BSP_DISABLED IRQ not enabled in BSP.

SSP_ERR_NOT_ENABLED Operation failed.

SSP_ERR_NOT_OPEN The channel is not opened.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.17.3 DTC HAL Module Operational Overview

The Direct Memory Access Controller (DMAC) and the Data Transfer Controller (DTC) can be used to
move data within the Synergy MCU. There are some considerations when selecting between these
implementations; the following operational overview includes information on each to help you
determine which implementation is best for your application. The DTC module is recommended for
most generic transfer applications, but either module can be used for basic transfer functionality.
The use-cases for each transfer module are:

Selecting the DMAC HAL Module

The DMAC HAL module moves data from a user-specified source to a user-specified destination when
an interrupt or event occurs. The DMAC HAL module uses DMAC peripheral registers, so the number
of transfers in the system is limited to the number of DMAC channels on the device. The activation
source does not have to be enabled to use the DMAC. When the DMAC transfer completes, a DMAC
interrupt is called. If the activation source interrupt is enabled, it fires at the same time the transfer
is triggered. If the DMAC interrupt is enabled, it fires after all transfers are complete. For example, if
a normal-mode transfer with a length of 16 is triggered by a timer, the timer interrupt fires at the
same time each transfer occurs and the DMAC interrupt fires after the 16th transfer completes. The
DMAC HAL module does not support chained transfers.

Selecting the DTC HAL Module

The DTC HAL module uses a RAM-based vector table with slots for every interrupt in the system.
When the DTC transfer completes, the activation source interrupt is called. The activation source
interrupt must be enabled to use the DTC. The activation source interrupt is generally muted by the
DTC until the transfer completes, unless TRANSFER_IRQ_EACH is specified in the configuration. For
example, if a normal-mode transfer with a length of 16 is triggered by a timer, the timer interrupt
does not fire the first 15 times while the transfer is in effect. After the 16th transfer, the timer
interrupt fires. The DTC also allows chained transfers, meaning that more than one transfer can
occur after a single activation-source interrupt. This feature is supported by the driver but must be
configured outside the ISDE.

DTC HAL Module Important Operational Notes and Limitations

DTC HAL Module Operational Notes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 778 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dtc > DTC HAL Module Operational Overview

Normal Mode

In normal mode, a single transfer is triggered each time an activation-source event occurs. A single
transfer is 1 byte, 2 bytes or 4 bytes, depending on the setting selected in the size parameter. Each
time a transfer occurs, the transfer length is decremented by 1. When the transfer length reaches 0,
the transfer is complete.

Repeat Mode

In repeat mode, a single transfer is triggered each time an activation-source event occurs. A single
transfer is 1 byte, 2 bytes or 4 bytes, depending on the setting selected in the size parameter. Each
time a transfer occurs, the transfer length is decremented by 1. When the transfer length reaches 0,
the transfer length is reloaded with its initial value and the transfer restarts. If the repeat area is set
to source, the source register is also reloaded with its initial value when the transfer restarts.
Alternatively, if the repeat area is set to destination, the destination register is reloaded with its
initial value when the transfer restarts.

Block Mode

In the block mode, the entire transfer length is transferred each time an activation-source event
occurs. For example, if a transfer is configured in block mode with the timer as the activation source,
a 2-byte size, and a 12-byte length, 24 bytes are transferred each time the activation source event
occurs. Each time a transfer occurs, the transfer length is decremented by 1. When the transfer
length reaches 0, the transfer length is reloaded with its initial value and the transfer restarts. If the
repeat area is set to source, the source register is also reloaded with its initial value when the
transfer restarts. Alternatively, if the repeat area is set to destination, the destination register is
reloaded with its initial value when the transfer restarts.

Address Mode

After each transfer of size (1 byte, 2 bytes, or 4 bytes), the source pointer and destination pointer
are adjusted based on the configuration settings for Source Address Mode and Destination Address
Mode, respectively. For example, if the Source Address Mode is set to
TRANSFER_ADDR_MODE_INCREMENTED and the size is set to TRANSFER_SIZE_4_BYTES, the
destination pointer is incremented by 4 (the transfer size) after each transfer. The pointer does not
change if the configuration setting is TRANSFER_ADDR_MODE_FIXED.

Chained Transfers

Chained transfers are only supported by the DTC. To use a chained transfer, create an array of
transfer_info_t structures. Configure transfer_chain_mode_t to TRANSFER_CHAIN_MODE_EACH or
TRANSFER_CHAIN_MODE_END for all transfers except the last transfer. The last transfer must be
TRANSFER_CHAIN_MODE_DISABLED.

Set transfer_cfg_t::p_info to the base of the first structure in the array for transfer_info_t structures.

DTC HAL Module Limitations

Refer to the most SSP Release Notes for any additional operational limitations for this
module.

4.2.17.4 Including the DTC HAL Module in an Application

This section describes how to include the DTC HAL Module in an application using the SSP
configurator.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 779 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dtc > Including the DTC HAL Module in an Application

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Transfer Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the Transfer Driver is g_transfer0. This
name can be changed in the associated Properties window.)

DTC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_ transfer0 DTC Driver on r_dtc Threads> HAL/Common New Stack> Driver>
Transfer> Transfer Driver
on r_dtc

When the Transfer Driver on r_dtc is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 290: DTC HAL Module Stack

4.2.17.5 Configuring the DTC HAL Module

The DTC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 780 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dtc > Configuring the DTC HAL Module

tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the DTC HAL Module on r_dtc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer0 Module name.

Mode Normal, Repeat, Block

Default: Normal

Mode selection.

Transfer Size 2 Bytes Transfer size selection.

Destination Address Mode Fixed, Incremented, Destination

Default: Fixed

Destination address mode
selection.

Source Address Mode Fixed, Incremented, Destination

Default: Fixed

Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination, Source

Default: Source

Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1, Software
Activation 2, Peripheral Events

Default: Software Activation 1

Activation source selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 781 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dtc > Configuring the DTC HAL Module

Auto Enable True, False

Default: True

Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

DTC HAL Module Clock Configuration

The DTC peripheral module use ICLK as the clock source. The ICLK frequency is set by using the SSP
configurator Clocks tab prior to a build, or by using the CGC Interface at run-time.

DTC HAL Module Pin Configuration

The DTC is not associated with any pins.

4.2.17.6 Using the DTC HAL Module in an Application

The typical steps in using the DTC HAL module in an application are:

1. Initialize the DTC using the transfer_api_t::open API.
2. Enable the DTC using the transfer_api_t::enable API (if not auto enabled).
3. Manage transfers using other APIs as needed.
4. Close the DTC with the transfer_api_t::close when needed.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 782 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Transfer Driver on r_dtc > Using the DTC HAL Module in an Application

Figure 291: Flow Diagram of a Typical DTC HAL Module Application

4.2.18 ELC Driver

4.2.18.1 ELC HAL Module Introduction

The Event Link Controller (ELC) HAL module provides a high-level API for connecting various MCU
peripherals for autonomous operation and uses the ELC peripheral on the Synergy MCU. There are
no callbacks associated with the ELC HAL module. The project configurator in the e2 studio
Integrated Solution Development Environment (ISDE) includes the ELC HAL module in every project
by default. To configure the ELC HAL module, select it in the HAL/Common module in the Threads
tab and click on it in the HAL/Common Stacks window.

ELC HAL Module Features

The ELC HAL module can perform the following functions:

Creates an event link between two blocks.
Breaks that event link between two blocks.
Generates one of two software events that interrupt the CPU.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 783 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ELC Driver > ELC HAL Module Introduction

Figure 292: ELC HAL Module Block Diagram

ELC Hardware support details

The following hardware features are, or are not, supported by SSP for ELC.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU
Group

Create Break Generate

S124 ✓ ✓ ✓

S128 ✓ ✓ ✓

S1JA ✓ ✓ ✓

S3A1 ✓ ✓ ✓

S3A3 ✓ ✓ ✓

S3A6 ✓ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 784 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ELC Driver > ELC HAL Module Introduction

S3A7 ✓ ✓ ✓

S5D3 ✓ ✓ ✓

S5D5 ✓ ✓ ✓

S5D9 ✓ ✓ ✓

S7G2 ✓ ✓ ✓

4.2.18.2 ELC HAL Module APIs Overview

The ELC HAL module defines APIs for initializing, enabling, disabling and creating or breaking event
links between modules. A complete list of the available APIs, an example API call and a short
description of each can be found in the following table. A table of status return values follows the API
summary table.

ELC HAL Module API Summary

Function Name Example API Call and Description

init g_elc.p_api->init(g_elc.p_cfg)
Initialize all links in the Event Link Controller.

softwareEventGenerate g_elc.p_api->softwareEventGenerate(event_num
)
Generate a software event in the Event Link
Controller.

linkSet g_elc.p_api->linkSet(peripheral, signal)
Create a single event link.

linkBreak g_elc.p_api->linkBreak(peripheral)
Break an event link.

enable g_elc.p_api->enable()
Enable the operation of the Event Link
Controller.

disable g_elc.p_api->disable()
Disable the operation of the Event Link
Controller.

versionGet g_elc.p_api->versionGet(&version)
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function successfully completed.

SSP_ERR_ASSERTION p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 785 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ELC Driver > ELC HAL Module APIs Overview

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.18.3 ELC HAL Module Operational Overview

The ELC HAL module allows the developer to create events that link various peripheral operations by
using events generated by one Synergy MCU peripheral to trigger the start of operation of another
Synergy MCU peripheral. The ELC HAL module APIs make it easy to create a link between two blocks
(for example, from a timer to an ADC to control a periodic scan interval). By connecting various
peripherals in this way, intelligent functions can be constructed that require little, if any, CPU
intervention.

The following figure shows a simplified block diagram of the ELC, showing the input event sources
and the peripherals that can be triggered by these events. The number of input and output triggers
is specific to the S7G2 MCU. Other Synergy devices support a different number of events.

Figure 293: ELC HAL Module Trigger Events

 It is possible to find the mapping of ELC peripherals in the file, bsp_elc.h, in the Synergy-generated
code. The available peripherals and associated events for the S7G2 MCU are shown in the below
figure. Additional information on ELC operation is also available in the associated MCU user's
manual.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 786 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ELC Driver > ELC HAL Module Operational Overview

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 787 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ELC Driver > ELC HAL Module Operational Overview

Figure 294: ELC HAL Peripheral Map

ELC HAL Module Important Operational Notes and Limitations

ELC HAL Module Operational Notes

The ELC HAL module needs no pin, clocking, or interrupt configuration. It is just a 'connect'
mechanism between peripherals. However, if linking I/O Ports via the ELC, the I/O pins need to be
configured as inputs or outputs.

ELC HAL Module Limitations

Refer to the latest SSP Release Notes for any additional operational limitations for this module.

4.2.18.4 Including the ELC HAL Module in an Application

This section describes how to include the ELC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the ELC Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the ELC Driver is g_elc0. This name can
be changed in the associated Properties window.)

ELC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_elc ELC Driver on r_elc Threads New Stack> Driver>
System> ELC Driver on r_elc

When the ELC Driver on r_elc is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 788 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ELC Driver > Including the ELC HAL Module in an Application

Figure 295: ELC HAL Module Stack

4.2.18.5 Configuring the ELC HAL Module

The ELC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the ELC HAL Module on r_elc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_elc Module name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

ELC HAL Module Clock Configuration

The ELC HAL module does not require a specific clock configuration.

ELC HAL Module Pin Configuration

There are no pins associated directly with the ELC HAL Module that require configuration.

4.2.18.6 Using the ELC HAL Module in an Application

The typical steps in using the ELC HAL module in an application are:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 789 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > ELC Driver > Using the ELC HAL Module in an Application

1. Initialize the ELC using the elc_api_t::init and enable APIs (automatically done by ISDE).
2. Link a peripheral with an event using elc_api_t::linkSet API.
3. Enable the linkage with the elc_api_t::enable API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 296: Flow Diagram of a Typical ELC HAL Module Application

4.2.19 External IRQ Driver

4.2.19.1 External IRQ HAL Module Introduction

The External IRQ HAL module provides an API for configuring and using external IRQ pins on Synergy
MCUs. The External IRQ HAL module uses the Interrupt Controller Unit (ICU) of the Synergy MCU.

External IRQ HAL Module Features

Supports the external interrupt pins available on the target Synergy MCU
Supports multiple function options:

Enabling and disabling generation of an interrupt
Enabling and disabling the IRQ noise filter
Setting external pin IRQ trigger (Rising edge, falling edge or low level on the IRQ
pin)

Supports configuring a user callback function, which will be invoked by the HAL module
when an external pin interrupt is generated.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 790 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > External IRQ Driver > External IRQ HAL Module Introduction

Figure 297: External IRQ HAL Module Block Diagram

The following hardware features are, or are not, supported by SSP for ICU.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group Peripheral
function

interrupts

External
pin

interrupts

DTC and
DMAC
control

Interrupt
sources
for NVIC

Non-
maskable
interrupts

(see notes)

Return from
low power-
mode (see

notes)

S124 ✓ ✓ ✓ ✓ ✓ ✓

S128 ✓ ✓ ✓ ✓ ✓ ✓

S1JA ✓ ✓ ✓ ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 791 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > External IRQ Driver > External IRQ HAL Module Introduction

S3A6 ✓ ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓

Notes: ⎯ The ICU module in SSP (r_icu) handles only external pin interrupts and not the other
features above. ⎯ Peripheral function interrupts are controlled by BSPs for each MCU and each
peripheral driver modules in SSP. ⎯ DTC or DMA control is handled by DTC or DMAC module in SSP
(r_dtc or r_dmac). ⎯ Non-maskable interrupts supported in SSP are IWDT Underflow, WDT Underflow
and Voltage Monitor Interrupts. Those NMIs are controlled by IWDT, WDT or LVD modules (r_iwdt,
r_wdt, or r_lvd), respectively. ⎯ LVD module (r_lvd) supports the Wake Up Interrupt Enable setting.
For low power mode details, see the LPM section.

MCU Group RPEST RECCST BUSSST BUSMST SPEST

S124 ⌧ N/A N/A N/A N/A

S128 ⌧ N/A N/A N/A N/A

S1JA ⌧ ⌧ ⌧ ⌧ ⌧

S3A1 ⌧ ⌧ ⌧ ⌧ ⌧

S3A3 ⌧ ⌧ ⌧ ⌧ ⌧

S3A6 ⌧ ⌧ ⌧ ⌧ ⌧

S3A7 ⌧ ⌧ ⌧ ⌧ ⌧

S5D3 ⌧ ⌧ ⌧ ⌧ ⌧

S5D5 ⌧ ⌧ ⌧ ⌧ ⌧

S5D9 ⌧ ⌧ ⌧ ⌧ ⌧

S7G2 ⌧ ⌧ ⌧ ⌧ ⌧

4.2.19.2 External IRQ HAL Module APIs Overview

The External IRQ HAL module defines APIs for opening, closing, and waiting for interrupt events from
external pins. A complete list of the available APIs, an example API call and a short description of
each can be found in the following table. A table of status return values follows the API summary
table.

External IRQ HAL Module API Summary

Function Name Example API Call and Description

open g_external_irq.p_api->open(g_external_irq.p_ctrl,
g_external_irq.p_cfg)
Open instance and initialize.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 792 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > External IRQ Driver > External IRQ HAL Module APIs Overview

enable g_external_irq.p_api->enable(g_external_irq.p_ct
rl)
Enable callback when IRQ occurs.

disable g_external_irq.p_api->disable(g_external_irq.p_c
trl)
Disable callback when IRQ occurs.

triggerSet g_external_irq.p_api->triggerSet(g_external_irq.
p_ctrl, trigger)
Set trigger.

filterEnable g_external_irq.p_api->filterEnable(g_external_irq
.p_ctrl)
Enable noise filter.

filterDisable g_external_irq.p_api->filterDisable(g_external_ir
q.p_ctrl)
Disable noise filter.

close g_external_irq.p_api->close(g_external_irq.p_ctrl
);
Close instance.

versionGet g_external_irq.p_api->wait(&version);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function successful.

SSP_ERR_ASSERTION Assertion error.

SSP_ERR_INVALID_ARGUMENT Callback is not NULL but ISR is not enabled.

SSP_ERR_IN_USE Device in use.

SSP_ERR_NOT_OPEN Device unopened.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.19.3 External IRQ HAL Module Operational Overview

The External IRQ HAL module provides a set of API functions for controlling external interrupts.
Interrupts can be triggered on rising edge, falling edge, both edges or low level of the input signal on
the external IRQ pin. A digital-filtering function can be enabled to eliminate some noise on the input
signal. A user-callback function is supported and is triggered each time an IRQ event occurs.

To trigger a transfer of data using the DMAC or DTC peripheral when the configured external IRQ

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 793 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > External IRQ Driver > External IRQ HAL Module Operational Overview

event occurs, configure the DMAC or DTC transfer with the activation source set to
ELC_EVENT_PORTn_IRQ (where n is the IRQ channel number.)

Other peripherals can be triggered to start from an external interrupt using the Event Link Controller
(ELC.) Refer to the SSP User Manual User Guide for the ELC HAL module for more information.

External IRQ HAL Module Important Operational Notes and Limitations

External IRQ HAL Module Operational Notes

Refer to the datasheet for the target Synergy device to find the port pins which support the
external interrupt functions and to obtain the external IRQ number for a given port pin.
The external IRQ number corresponds to the channel setting in the ISDE Properties window
for the External IRQ HAL module.
The PORTn (where n is the IRQ number) interrupt must be enabled in the BSP to notify the
module that the anticipated hardware event has occurred.
A user-callback function can be registered in the external_irq_api_t::open API. If this
callback function is provided, it will be called from the interrupt service routine (ISR) each
time the IRQn triggers.

Note
Since the callback is called from an ISR, care should be taken not to use blocking calls or
lengthy processing. Spending excessive time in an ISR can adversely affect the
responsiveness of the system.

External IRQ HAL Module Limitations

Refer to the latest SSP Release Notes for any additional operational limitations for this
module.

4.2.19.4 Including the External IRQ HAL Module in an Application

This section describes how to include the External IRQ HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the External IRQ Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the External IRQ Driver is g_icu0. This
name can be changed in the associated Properties window.)

External IRQ HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

r_icu0 External IRQ Driver on
r_icu

Threads New Stack> Driver> Input>
External IRQ Driver on r_icu

When the External IRQ Driver on r_icu is added to the thread stack as shown in the following figure,
the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 794 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > External IRQ Driver > Including the External IRQ HAL Module in an Application

only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 298: External IRQ HAL Module Stack

4.2.19.5 Configuring the External IRQ HAL Module

The External IRQ HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the External IRQ HAL Module on r_icu

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter checking setting
enables or disables the addition
of parameter checking code.

Name g_external_irq0 Module name.

Channel 0 Specifies the hardware IRQ
channel used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 795 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > External IRQ Driver > Configuring the External IRQ HAL Module

Trigger Falling, Rising, Both Edges, Low
Level

Default: Rising

Selection for trigger event
mode

Digital Filtering Enabled, Disabled

Default: Disabled

Digital filter enable/disable.

Digital Filtering Sample Clock
(Only valid when Digital
Filtering is Enabled)

PCLK/1, PLCK/8, PLCK/32,
PCLK/64

Default: PCKL/64

Sets noise filter sampling
period.

Interrupt enabled after
initialization

True, False

Default: True

Determines if the interrupt is
enabled immediately after
initialization.

Callback NULL A user callback function can be
registered in
external_irq_api_t::open. If this
callback function is provided, it
is called from the interrupt
service routine (ISR) each time
the IRQn triggers.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Pin Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Interrupt priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

External IRQ HAL Module Clock Configuration

The IRQ peripheral module does not require any specific clock settings.

External IRQ HAL Module Pin Configuration

The External IRQ peripheral module uses pins on the MCU to communicate to external devices. I/O
pins must be selected and configured as required by the external device. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the IRQ pins.

Pin Selection for the External IRQ HAL Module on r_icu

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 796 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > External IRQ Driver > Configuring the External IRQ HAL Module

Resource ISDE Tab Pin selection Sequence

IRQ Pins Select Peripherals> Input:
IRQ> IRQ0

Note
The selection sequence assumes IRQ0 is the desired hardware target for the driver.

Pin Configuration Settings for the External IRQ HAL Module on r_icu

Property Value Description

Operation Mode Disabled, Enabled

Default: Disabled

Select Enabled to enable
interrupts.

NMI None, P200

Default: None

Non-maskable interrupt Pin.

IRQ00:14 None, Pnn, Pmm

Default: None

Interrupt request Pin.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.

4.2.19.6 Using the External IRQ HAL Module in an Application

The typical steps in using the External IRQ HAL module in an application are:

1. Initialize the External IRQ HAL module using the external_irq_api_t::open API.
2. Enable the IRQ (if needed) with the external_irq_api_t::enable API.
3. Enable the noise filter (if needed) with the external_irq_api_t::filterEnable API.
4. Change the trigger condition (only if the module is closed previously to avoid any false

events) with the external_irq_api_t::triggerSet API.
5. Disable the noise filter (if enabled) with external_irq_api_t::filterDisable API.
6. Close the module (if needed) with the external_irq_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 797 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > External IRQ Driver > Using the External IRQ HAL Module in an Application

Figure 299: Flow Diagram of a Typical External IRQ HAL Module Application

4.2.20 Flash Driver

4.2.20.1 Flash HAL Module Introduction

There are two separate Flash modules: the r_flash_lp and the r_flash_hp. These modules implement a
high-level API for flash memory programming applications. The High-Performance Flash module
(Flash_HP) is used for programming the S7 and S5 family of MCUs. The Low-Power Flash module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 798 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Flash Driver > Flash HAL Module Introduction

(Flash_LP) is used for programming the S3 and S1 family of MCUs. The two are not interchangeable,
although the APIs and other features of the modules are very similar.

Flash HAL Module Features

The Flash HAL modules APIs allow an application to read, write and erase both the data and ROM
flash areas that reside within the MCU. The amount of flash memory available varies across MCU
parts, but the API functions apply to all devices. Key features of the Flash HAL modules include:

Support for both blocking and non-blocking erasing, reading, writing and blank-checking of
data flash.
Support for blocking erasing, reading, writing and blank checking of code flash.
Support for callback functions for completion of non-blocking data-flash operations.
Support for access window (write protection) for ROM Flash, allowing only specified areas of
code flash to be erased or written.
Support for boot block-swapping which allows safe rewriting of the startup program without
first erasing it.

Figure 300: Flash HAL Module Block Diagram

Flash HAL HP Hardware support details

The following hardware features are, or are not, supported by SSP for the Flash_HP.

Legend:

Symbol Meaning

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 799 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Flash Driver > Flash HAL Module Introduction

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU
Group

Programming by
dedicated flash

memory
programmer through a
serial interface (serial

programming)

Programming of flash
memory by user
program (self-
programming)

Background
operations

(BGOs)

S124 N/A N/A N/A

S128 N/A N/A N/A

S1JA N/A N/A N/A

S3A1 N/A N/A N/A

S3A3 N/A N/A N/A

S3A6 N/A N/A N/A

S3A7 N/A N/A N/A

S5D3 ✓ ✓ ✓

S5D5 ✓ ✓ ✓

S5D9 ✓ ✓ ✓

S7G2 ✓ ✓ ✓

Flash HAL LP Hardware support details

The following hardware features are, or are not, supported by SSP for the Flash_LP.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU
Group

Programming by
dedicated flash

memory
programmer through a
serial interface (serial

programming)

Programming of flash
memory by user
program (self-
programming)

Background
operations

(BGOs)

S124 ✓ ✓ ✓

S128 ✓ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 800 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Flash Driver > Flash HAL Module Introduction

S1JA ✓ ✓ ✓

S3A1 ✓ ✓ ✓

S3A3 ✓ ✓ ✓

S3A6 ✓ ✓ ✓

S3A7 ✓ ✓ ✓

S5D3 N/A N/A N/A

S5D5 N/A N/A N/A

S5D9 N/A N/A N/A

S7G2 N/A N/A N/A

4.2.20.2 Flash HAL Module APIs Overview

The Flash HAL module defines APIs for several operations including opening, reading, erasing and
closing the flash memory. A complete list of the available APIs, an example API call and a short
description of each can be found in the following table. A table of status return values follows the API
summary table.

Flash HAL Module API Summary

Function Name Example API Call and Description

open g_flash0.p_api->open(g_flash0.p_ctrl,
g_flash0.p_cfg);
Open FLASH device.

write g_flash0.p_api->write(g_flash0.p_ctrl,(uint32_t)
write_buffer, FLASH_CF_32KB_BLOCK55,
CODE_BLOCK_SIZE_32KB);
Write FLASH device.

read g_flash0.p_api->read(g_flash0.p_ctrl,
read_buffer, DATA_FLASH_ADDR, num_bytes);
Read FLASH device.

erase g_flash0.p_api->erase(g_flash0.p_ctrl,
FLASH_CF_32KB_BLOCK55,num_sectors);
Erase FLASH device.

blankCheck g_flash0.p_api->blankCheck(g_flash0.p_ctrl,
FLASH_CF_32KB_BLOCK55,
FLASH_DATA_BLOCK_SIZE, &blankCheck);
Blank check FLASH device.

close g_flash0.p_api->close(g_flash0.p_ctrl);
Close FLASH device.

statusGet g_flash0.p_api->statusGet(g_flash0.p_ctrl);
Get Status for FLASH device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 801 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Flash Driver > Flash HAL Module APIs Overview

accessWindowSet g_flash0.p_api->accessWindowSet(g_flash0.p_ctr
l, FLASH_CF_32KB_BLOCK1,
FLASH_CF_32KB_BLOCK3);
Set Access Window for FLASH device.

accessWindowClear g_flash0.p_api->accessWindowClear(g_flash0.p_
ctrl);
Clear any existing Code Flashcode-flash access
window for FLASH device.

idCodeSet g_flash0.p_api->idCodeSet(g_flash0.p_ctrl,
id_bytes, mode)
Write the ID code provided to the id code
registers.

reset g_flash0.p_api->reset(g_flash0.p_ctrl);
Reset function for FLASH device.

updateFlashClockFreq g_flash0.p_api-> updateFlashClockFreq
(g_flash0.p_ctrl);
Update Flash clock frequency (FCLK) and
recalculate timeout values.

startupAreaSelect g_flash0.p_api->startupAreaSelect(g_flash0.p_ct
rl, FLASH_STARTUP_AREA_BLOCK1);
Select which block - Default (Block 0) or
Alternate (Block 1) is used as the start-up area
block. Refer to the following table for all the
possible values for parameter2.

versionGet g_flash0.p_api->versionGet(&version);
Retrieve the API version using the version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

startupAreaSelect parameter2 options

Swap Type Is_temporary Operation

FLASH_STARTUP_AREA_BLOCK0 False On next reset, Startup area will
be Block 0.

FLASH_STARTUP_AREA_BLOCK0 False On next reset, Startup area will
be Block 0.

FLASH_STARTUP_AREA_BLOCK1 False On next reset, Startup area will
be Block 1.

FLASH_STARTUP_AREA_BLOCK1 True Startup area is immediately,
but temporarily switched to
Block 1.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 802 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Flash Driver > Flash HAL Module APIs Overview

FLASH_STARTUP_AREA_BTFLG True Startup area is immediately,
but temporarily switched to the
Block determined by the
Configuration BTFLG.

Status Return Values

Name Description

SSP_SUCCESS Function successful.

SSP_ERR_IN_USE Device in use error.

SSP_FLASH_ERR_FAILURE Flash failure error.

SSP_ERR_FCLK FCLK must be a minimum of 4 MHz for Flash
operations.

SSP_ERR_TIMEOUT Timeout error.

SSP_ERR_INVALID_SIZE Invalid size error.

SSP_ERR_INVALID_ADDRESS Invalid address error.

SSP_ERR_ASSERTION Assertion error.

SSP_ERR_INVALID_BLOCKS Invalid number of blocks specified.

SSP_ERR_INVALID_ARGUMENT Invalid argument error.

SSP_ERR_HW_LOCKED Peripheral already in use.

SSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result of
attempting to Erase an area that is protected by
an Access Window.

SSP_ERR_NOT_OPEN Flash has not yet been opened.

SSP_ERR_IRQ_BSP_DISABLED Caller is requesting BGO (background mode
operation) but the Flash interrupt is not enabled.

SSP_ERR_WRITE_FAILED Write operation failed. This may be returned if
the requested Flash area is not blank.

SSP_ERR_PE_FAILURE Failed to enter P/E mode

false Supplied address is valid flash address on this
MCU.

true Supplied address is valid and p_block info
contains the details on this address's block.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.20.3 Flash HAL Module Operational Overview

The Flash API makes the process of programming and erasing on-chip flash areas easy. Both code
(user ROM) and data-flash areas are supported. The API, in its simplest form, can be used to perform

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 803 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Flash Driver > Flash HAL Module Operational Overview

blocking erase and program operations. The term "blocking" means that when a program or erase
function is called, the function does not return until the operation has finished. This API supports
blocking for both code and data-flash, with non-blocking operation (also known as BGO or
Background Operation) available for data-flash operations only. When a code-flash operation is on-
going, you cannot access that code-flash area. If you attempt to access the code-flash area while a
code-flash operation is in progress, the flash-control unit will transition into an error state.

It is important to keep in mind that even though a code-flash operation is blocking, there are several
situations where the code-flash could still end up being accessed while the operation is blocking and
these must be prevented. This includes:

Vector table access if the Vector table is located in ROM.
ROM access by an interrupt vectoring to a ROM address, even if the vector table itself is not
in ROM.

A multithreaded application where multiple threads are allowed to continue to run while a code-flash
operation is blocking.

Flash HAL Module Important Operational Notes and Limitations

Flash HAL Module Operational Notes

Data-Flash BGO Precautions

When using the data-flash BGO, the user ROM, RAM and external memory can still be accessed. You
must ensure that the data-flash is not accessed during a data-flash operation. This includes
interrupts that may access the data-flash.

Code-Flash Precautions

BGO mode is not supported for code-flash, so a code-flash operation will not return before the
operation has completed. By default, the vector table resides in the user ROM (code-flash.) If an
interrupt occurs during the ROM operation, then ROM will be accessed to fetch the interrupt's
starting address and an error will occur.

The simplest work-around is to disable interrupts during code-flash operations. Another option is to
copy the vector table to RAM, update the VTOR (Vector Table Offset Register) accordingly and
ensure that any interrupt service routines execute out of RAM. Similarly, you must insure that if in a
multithreaded environment, threads running from ROM cannot become active while a code-flash
operation is in progress.

Blank Checking

The flash_api_t::blankCheck API function checks whether code or data-flash contents are blank. Note
that it is not possible to write to flash (code or data) without first erasing it. The
flash_api_t::blankCheck function determines whether a specified area is blank and therefore writable.
In almost all cases, it is not sufficient to compare flash contents to 0xFF to determine whether the
area is blank. The one exception is Flash HP code-flash. A 0xFF in Flash_HP code-flash does indicate
blank. Renesas strongly recommends using the flash_api_t::blankCheck API function in all cases.

Flash Status

The flash_api_t::statusGet API function allows the application to query the 'Ready' status of the flash.
This is useful in data-flash BGO operations when you choose not to use a callback function, so there
is no asynchronous notification of a completed data-flash operation. In this case, the data-flash is

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 804 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Flash Driver > Flash HAL Module Operational Overview

configured to operate in BGO mode, so once the operation is started (an erase, for example), the call
returns immediately with the operation executing in the background. By calling the
flash_api_t::statusGet API function, you can determine when the operation has safely completed or
generated an error, and it is now safe to proceed with another flash operation.

Swap Blocks

The flash_api_t::startupAreaSelect API function allows the user to select which block - default (Block
0) or alternate (Block 1) - is used as the startup-area block. The provided parameters determine
which block will become the active startup block and whether that action will be immediate (but
temporary) or permanent subsequent to the next reset.

Doing a temporary switch might appear to have limited usefulness; however, if there is an access
window in place such that Block 0 is write-protected, then you could do a temporary switch, update
the block, and switch them back without having to touch the access window.

Flash Clock (FCLK)

The FCLK is the clock used by the Flash peripheral in performing all Flash operations. It must be >=
4 MHz for successful flash operations. As part of the flash_api_t::open function the Flash clock is
checked and if < 4 MHz flash_api_t::open will return SSP_ERR_FCLK. Once the Flash API has been
opened, if the FCLK frequency is changed, the flash_api_t::updateFlashClockFreq API function must
be called to inform the API of the change. Failure to do so could result in flash operation failures and
possibly damage the part.

Interrupts

Enable the flash ready interrupt only if you plan to use the data-flash BGO. In this mode, the
application can initiate a data-flash operation and then be asynchronously notified of its completion,
or an error, using a user supplied-callback function. The callback function is passed a structure
containing event information that indicates the source of the callback event (that
is, flash_api_t::FLASH_EVENT_ERASE_COMPLETE)

When the FLASH FRDYI interrupt is enabled, the corresponding ISR will be defined in the flash driver.
The ISR will call a user-callback function if one was registered with the flash_api_t::open API.

Note
The Flash HP supports an additional flash-error interrupt and if the BGO mode is enabled for the FLASH HP then
both the Flash Ready Interrupt and Flash Error Interrupts must be enabled (assigned a priority).

Access Window

An access window defines a contiguous area in Code Flash for which programming/erase is enabled.
This area is on block boundaries with a starting and ending address being provided to
flash_api_t::accessWindowSet. The block containing the start address is the first block. The block
containing the end address is the last block. The access window then becomes the first block – last
block inclusive. Anything outside this range is write protected. Invalid address information provided
to flash_api_t::accessWindowSet will return SSP_ERR_INVALID_ADDRESS. An access window may be
removed by calling the flash_api_t::accessWindowClear API function

ID code set

Allows user to program the ID bytes rather than having the pre-programmed ID bytes with S-record.

Flash HAL Module Limitations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 805 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Flash Driver > Flash HAL Module Operational Overview

The High-Performance Flash module (Flash_HP) is the API used for programming the S7 and
S5 family of MCUs.
The Low-Power Flash module (Flash_LP) is the API used for programming the S3 and S1
family of MCUs.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.20.4 Including the Flash HAL Module in an Application

This section describes how to include the Flash HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Flash Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the Flash Driver is g_flash0. This name
can be changed in the associated Properties window.)

Flash HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_flash0 Flash Driver on
r_rflash_hp

Threads New Stack> Driver>
Storage> Flash Driver on
r_flash_hp

g_flash0 Flash Driver on
r_rflash_lp

Threads New Stack> Driver>
Storage> Flash Driver on
r_flash_lp

When the Flash Driver on r_flash_hp or r_flash_lp is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 301: Flash HAL Module Stack

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 806 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Flash Driver > Configuring the Flash HAL Module

4.2.20.5 Configuring the Flash HAL Module

The Flash HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Flash HAL Module on r_flash_hp

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Controls whether to include
code for API parameter
checking.

Code Flash Programming
Enable

Enable, Disabled
Default: Disabled

Controls whether or not Code
Flash programming is enabled.
Disabling reduces the amount
of ROM used by the API.

Name g_flash0 Module name.

Data Flash Background
Operation

Enabled, Disabled
Default: Enabled

Enabling allows Flash API calls
that reference Data Flash to
return immediately, with the
operation continuing in the
background.

Callback NULL Callback function called when a
Data Flash BGO operation
completes or errors. A user
callback function can be
registered in open.
Warning: Since the callback is
called from an ISR, do not use
blocking calls or lengthy
processing. Spending excessive
time in an ISR can affect the
responsiveness of the system.

Flash Ready Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled
Default: Disabled

Flash ready interrupt priority
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 807 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Flash Driver > Configuring the Flash HAL Module

Flash Error Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled
Default: Disabled

Flash error interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Flash HAL Module on r_flash_lp

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Controls whether to include
code for API parameter
checking.

Code Flash Programming
Enable

Enable, Disabled
Default: Disabled

Controls whether or not Code
Flash programming is enabled.
Disabling reduces the amount
of ROM used by the API.

Name g_flash0 Module name.

Data Flash Background
Operation

Enabled, Disabled
Default: Enabled

Enabling allows Flash API calls
that reference Data Flash to
return immediately, with the
operation continuing in the
background.

Callback NULL Callback function called when a
Data Flash BGO operation
completes or errors. A user
callback function can be
registered in open.
Warning: Since the callback is
called from an ISR, do not use
blocking calls or lengthy
processing. Spending excessive
time in an ISR can affect the
responsiveness of the system.

Flash Ready Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX), Disabled
Default: Disabled

Flash ready interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults can be desirable. For example, it might be useful to
disable code-flash programming to reduce the code size of the driver.

Flash HAL Module Clock Configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 808 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Flash Driver > Configuring the Flash HAL Module

Enable the flash-ready interrupt only if you plan to use the data-flash BGO (background mode
operation.) In this mode, the application can initiate a data-flash operation and then be
asynchronously notified of its completion (or an error) using a user-supplied callback function. The
callback function is passed a structure containing event information that indicates the source of the
callback event (for example, FLASH_EVENT_ERASE_COMPLETE.)

To enable interrupts, set the priority of the FCU > FRDYI interrupt on the ICU tab of the Project
Configurator in e2 studio. This sets BSP_IRQ_CFG_FCU_FRDYI in
synergy_cfg/ssp_cfg/bsp/bsp_irq_cfg.h to the priority level selected.

When the FLASH FRDYI interrupt is enabled in the BSP, the corresponding ISR will be defined in the
Flash driver. The ISR will call a user-callback function if one was registered in open.

Note
The Flash HP supports an additional flash-error interrupt, and if BGO mode is enabled, then both FRDYI and
FIFERR interrupts must be given a priority.

Flash HAL Module Pin Configuration

The flash circuit uses FCLK as its clock. FCLK must be <= 4 MHz. If this clock rate changes after the
flash_api_t::open API is called, then you must call flash_api_t::updateFlashClockFreq API to inform the
flash API of the change.

4.2.20.6 Using the Flash HAL Module in an Application

The typical steps in using the Flash HAL module in an application are:

1. Initialize the Flash HAL using the flash_api_t::open API.
2. Disable Interrupts.
3. Blank check a code flash area with flash_api_t::blankCheck API.
4. Erase one or more code-flash blocks with flash_api_t::erase API.
5. Write to code-flash with the flash_api_t::write API.
6. Enable Interrupts.
7. Blank check a data flash area with flash_api_t::blankCheck API.
8. Erase one or more data-flash blocks using the flash_api_t::erase API.
9. Write to data-flash using the flash_api_t::write API.

10. Enable Data Flash BGO mode and assign a callback function.
11. Erase one or more data-flash blocks using the flash_api_t::erase API.
12. Verify that the Erase has completed successfully by checking the event info passed to the

callback.
13. Close using the flash_api_t::close API if finished with all Flash operations.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 809 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Flash Driver > Using the Flash HAL Module in an Application

Figure 302: Flow Diagram of a Typical Flash HAL Module Application

4.2.21 FMI Driver

4.2.21.1 FMI HAL Module Introduction

The FMI HAL module provides a high-level API for applications that read records from the Factory
MCU Information Flash Table and uses the Flash Interface on the Synergy MCU.

FMI HAL Module Features

The FMI HAL module reads the FMIFRT (Factory MCU Information Flash Root Table) on a Synergy
microcontroller, looking up the address of the start of the table in flash. The module sets the caller's

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 810 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > FMI Driver > FMI HAL Module Introduction

pointer to the Product Information record from the table. This information may be used to determine
the capabilities of features specific to this MCU package. Information available from the FMI HAL
module includes:

Product information (that is, product name, package, pin count and temperature range)
Product features (version major, version minor and variant data)
Event information such as interrupts and events

Figure 303: FMI HAL Module Block Diagram

4.2.21.2 FMI HAL Module APIs Overview

The FMI HAL module defines an API for accessing the FMIFRT. A complete list of the available APIs, an
example API call and a short description of each can be found in the following table. A table of status
return values follows the API summary table.

FMI HAL Module API Summary

Function Name Example API Call and Description

init g_fmi.p_api->init();
Initialize the FMI base pointer.

productInfoGet g_fmi.p_api->productInfoGet(&g_pp_product_inf
o);
Get product information record address into
g_pp_product_info pointer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 811 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > FMI Driver > FMI HAL Module APIs Overview

uniqueIdGet g_fmi.p_api->uniqueIdGet(&g_p_unique_id);
Copy the unique ID into the g_p_unique_id
pointer.

productFeatureGet g_fmi.p_api->productFeatureGet(&g_ssp_feature
, &g_feature_info);
Get feature information and store it in
g_feature_info pointer.

eventInfoGet g_fmi.p_api->eventInfoGet(&g_ssp_feature,SSP_
SIGNAL_GPT_COUNTER_OVERFLOW,
&g_event_info);
Get event information and store it in
g_event_info pointer.

versionGet g_fmi.p_api->versionGet(&g_p_version);
Get the driver version based on compile time
macros.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_FMI_DATA The FMI data table provided is not valid

SSP_ERR_IP_CHANNEL_NOT_PRESENT Requested channel does not exist on this MCU

SSP_ERR_IP_UNIT_NOT_PRESENT Requested unit does not exist on this MCU

SSP_ERR_INTERNAL Requested feature is in a format not supported
at this time

SSP_ERR_IRQ_BSP_DISABLED Event information could not be found

SSP_ERR_ASSERTION Caller's pointer is null

SSP_ERR_INVALID_FACTORY_FLASH Factory flash is not valid

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.21.3 FMI HAL Module Operational Overview

The FMI HAL module retrieves the product information record address and populates the
fmi_product_info_t structure using the fmi_api_t::productInfoGet API.

The FMI HAL module copies unique ID and populates the fmi_unique_id_t structure using the
fmi_api_t::uniqueIdGet API.

The FMI HAL module gets feature information and populates the fmi_feature_info_t structure using

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 812 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > FMI Driver > FMI HAL Module Operational Overview

the fmi_api_t::productFeatureGet API.

The FMI HAL module fetches event information and populates the fmi_event_info_t structure using
the fmi_api_t::eventInfoGet API.

The FMI HAL module gets code version and API version in ssp_version_t structure using the
fmi_api_t::versionGet API.

For details, refer the FMI HAL module source code and SSP user manual.

FMI HAL Module Important Operational Notes and Limitations

FMI HAL Module Operational Notes

The fmi_product_info_t::unique_id is deprecated. It does not contain a unique ID if the
factory MCU information is linked in by the application code. Use fmi_api_t::uniqueIdGet for
the unique ID.

FMI HAL Module Limitations

For limitations of FMI HAL Interface and its implementation, see the latest SSP release
notes.
The FMI Driver has been tested on the S7G2 (WS2) Synergy microcontroller family using the
FMIFRT peripheral register. It is the only Synergy MCU that is currently programmed with
data in the Factory MCU Information Table.

4.2.21.4 Including the FMI HAL Module in an Application

This section describes how to include the FMI HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the FMI Driver to an application, simply add it to a thread using the stacks selection sequence
given in the following table. (The default name for the FMI Driver is g_fmi0. This name can be
changed in the associated Properties window.)

FMI HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_fmi FMI Driver on r_fmi Threads> HAL/Common New Stack> Driver>
System> FMI Driver on r_fmi

When the FMI Driver on r_fmi is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 813 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > FMI Driver > Including the FMI HAL Module in an Application

displays possible choices.

Figure 304: FMI HAL Module Stack

4.2.21.5 Configuring the FMI HAL Module

The FMI HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the FMI HAL Module on r_fmi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Controls whether to include
code for API parameter
checking.

SSP MCU Information Symbol
Name

g_fmi_data This symbol maps to the base
address where the factory flash
table information will be found.
It should not be modified.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 814 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > FMI Driver > Configuring the FMI HAL Module

Part Number Mask 0xFE00 Each bit represents one
character in the Synergy part
number, where the MSB is the
first character in the part
number ('R'). Set bits to ensure
the part number in the MCU
factory flash matches the part
number in the SSP MCU
Information. The default mask
checks everything except
operating temperature,
software ID, and quality ID.

Name g_fmi Module instance name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Family. Other MCUs may have
different default values and available configuration settings.

FMI HAL Module Clock Configuration

No specific clock configurations are required for the FMI HAL Module.

FMI HAL Module Pin Configuration

No specific pin configurations are required for the FMI HAL Module.

4.2.21.6 Using the FMI HAL Module in an Application

The typical steps in using the FMI HAL Module in an application are:

1. Initialize the FMI using the fmi_api_t::init API, it is automatically initialized after Reset.
2. Use the fmi_api_t::productInfoGet API to get product information.
3. Use the fmi_api_t::uniqueIdGet API to get unique ID.
4. Use the fmi_api_t::productFeatureGet API to get feature information.
5. Use the fmi_api_t::eventInfoGet API to get event information.
6. Use the fmi_api_t::versionGet API to get driver version information.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 815 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > FMI Driver > Using the FMI HAL Module in an Application

Figure 305: Flow Diagram of a Typical FMI HAL Module Application

4.2.22 Timer Driver on r_gpt

4.2.22.1 GPT HAL Module Introduction

The General PWM Timer (GPT) HAL module provides a high-level API for timer applications and uses
the GPT peripheral on the Synergy MCU. A user-defined callback can be created to respond to a
timer event.

GPT HAL Module Features

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 816 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_gpt > GPT HAL Module Introduction

The GPT HAL module configures a timer to a user-specified period. When the period elapses, any of
the following events can occur:

CPU interrupt that calls a user callback function, if provided
Toggle a port pin
Data transfer using DMAC/DTC if configured with Transfer Interface
Starting of another peripheral if configured with events and peripheral definitions

General PWM Timer (GPT)

PCLKD as core clock
Two I/O pins per channel

Figure 306: GPT HAL Module Block Diagram

GPT Hardware support details

The following hardware features are, or are not, supported by SSP for GPT.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 817 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_gpt > GPT HAL Module Introduction

N/A Not supported by MCU

MCU
Group

Saw
Waves

Triangle
Waves

PWM
waveform

for
controlling
brushless

DC
motors

Compare
match
output

for Low,
High,

and Toggle

Input
capture
function

Automatic
addition of
dead time

S124 ✓ ⌧ ⌧ ✓ ⌧ ⌧

S128 ✓ ⌧ ⌧ ✓ ⌧ ⌧

S1JA ✓ ⌧ ⌧ ✓ ⌧ ⌧

S3A1 ✓ ⌧ ⌧ ✓ ⌧ ⌧

S3A3 ✓ ⌧ ⌧ ✓ ⌧ ⌧

S3A6 ✓ ⌧ ⌧ ✓ ⌧ ⌧

S3A7 ✓ ⌧ ⌧ ✓ ⌧ ⌧

S5D3 ✓ ⌧ ⌧ ✓ ⌧ ⌧

S5D5 ✓ ⌧ ⌧ ✓ ⌧ ⌧

S5D9 ✓ ⌧ ⌧ ✓ ⌧ ⌧

S7G2 ✓ ⌧ ⌧ ✓ ⌧ ⌧

MCU
Group

PWM Mode Phase Count
Function

One-Shot
Operation

Event link
function

through ELC
HAL driver

Noise filtering
function

S124 ✓ ⌧ ✓ ⌧ ⌧

S128 ✓ ⌧ ✓ ⌧ ⌧

S1JA ✓ ⌧ ✓ ⌧ ⌧

S3A1 ✓ ⌧ ✓ ⌧ ⌧

S3A3 ✓ ⌧ ✓ ⌧ ⌧

S3A6 ✓ ⌧ ✓ ⌧ ⌧

S3A7 ✓ ⌧ ✓ ⌧ ⌧

S5D3 ✓ ⌧ ✓ ⌧ ⌧

S5D5 ✓ ⌧ ✓ ⌧ ⌧

S5D9 ✓ ⌧ ✓ ⌧ ⌧

S7G2 ✓ ⌧ ✓ ⌧ ⌧

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 818 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_gpt > GPT HAL Module APIs Overview

4.2.22.2 GPT HAL Module APIs Overview

The GPT HAL module defines APIs to open, start, stop, read status, trim and close the module. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

GPT HAL Module API Summary

Function Name Example API Call and Description

open g_timer0.p_api->open(g_timer0.p_ctrl,
g_timer0.p_cfg)
Initial configuration.

stop g_timer0.p_api->stop(g_timer0.p_ctrl)
Stop the counter.

start g_timer0.p_api->start(g_timer0.p_ctrl)
Start the counter.

reset g_timer0.p_api->reset(g_timer0.p_ctrl)
Reset the counter initial value.

counterGet g_timer0.p_api->counterGet(&value)
Get current counter value and store it in the
provided pointer, value.

periodSet g_timer0.p_api->periodSet(g_timer0.p_ctrl,
period, unit)
Set the time until the timer expires.

dutyCycleSet g_timer0.p_api->dutyCycleSet(g_timer0.p_ctrl,
period, unit, pin)
Sets the time until the duty cycle expires.

infoGet g_timer0.p_api->infoGet(&info)
Get the time until the timer expires in clock
counts and store it in provided pointer, info.

close g_timer0.p_api->close(g_timer0.p_ctrl)
Allows driver to be reconfigured and may reduce
power consumption.

versionGet g_timer0.p_api->versionGet(g_timer0.p_ctrl,
&version)
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Operation is successful.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 819 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_gpt > GPT HAL Module APIs Overview

SSP_ERR_ASSERTION Parameter is NULL or configuration setting is not
allowed.

SSP_ERR_IN_USE The channel specified has already been opened.

SSP_ERROR_NOT_OPEN The channel is not open.

SSP_ERR_INVALID_ARGUMENT Invalid argument provided.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.22.3 GPT HAL Module Operational Overview

The GPT HAL module configures a timer to a user-specified period. When the period elapses, the CPU
can be interrupted, a port pin can be toggled, a transfer of data using the DMAC or DTC can be
initiated, or another peripheral can be triggered to begin operation.

The following figure shows a flowchart for toggling a port pin or generating a CPU interrupt after a
specified period:

Figure 307: GPT HAL Module Timer-Periodic or One-Shot Mode

 Two different timer modules, the GPT and the AGT, are supported in the SSP. The following sections

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 820 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_gpt > GPT HAL Module Operational Overview

provide information on both modules so that the developer can compare and contrast the
capabilities of each module for a particular application. For additional information on the AGT, refer
to the AGT User's Guide.

The GPT module is recommended for most generic timer applications, but either module can be used
for a basic timer functionality. The following use cases describe why one timer module would be
preferred over the other.

Selecting the GPT Timer Module

The GPT module uses a high-resolution 32-bit counter that can only be clocked by PCLKD. There are
more GPT channels than AGT channels on Synergy devices, so using GPT is less likely to cause a
resource conflict.

Selecting the AGT Timer Module

The AGT module uses a 16-bit counter that can be clocked by PCLKB, LOCO, or Fsub. If clocked by
LOCO or Fsub, the AGT interrupt can be used to wake the MCU from sleep modes. There are two
channels, and channel 1 can be clocked by channel 0 underflow, effectively creating a 32-bit
cascaded timer.

GPT HAL Module Important Operational Notes and Limitations

GPT HAL Module Operational Notes

The maximum time period depends on the timer type and the input clock frequency.

On a GPT with 32-bit resolution with PCLKD running at 120 MHz, the maximum period is
approximately 36650 seconds, which is just over 10 hours (GPT Count Clock is
PCLKD/1024).
On a GPT with 16-bit resolution with PCLKD running at 32 MHz, the maximum period is
approximately 2.09 seconds (GPT Count Clock is PCLKD/1024).

The GPT counter overflow interrupt must be enabled in the following situations:

1. To get a software interrupt when the timer period has elapsed.
2. To use one-shot mode

When counter overflow interrupt is enabled, the corresponding ISR is linked in the vector table. The
ISR calls a user callback function if one was registered in open.

Note: Interrupts may be skipped when used with the DTC peripheral with irq set to
TRANSFER_IRQ_END.

GPT Output Timer Signal

If the timer output is configured (GTIOCA/B Output Enabled set to True), the output pin will start at
the GTIOCA/B Stop Level and toggle every time the period elapses, beginning with the first time the
period elapses after the timer is started.

In one-shot mode, the output is also configured to toggle when the timer starts counting. This
generates a pulse - the timer toggles from the stop level when counting begins and toggles back to
the stop level when counting ends.

Timer Period Calculation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 821 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_gpt > GPT HAL Module Operational Overview

The timer period is defined as the time until the timer expires. When output compare is used, the
output pin will toggle once per period, so the traditional period (from rising edge to rising edge) is
twice the period specified in the software.

Runtime period calculation based on the current clock settings is available from open and periodSet.

If the specified Period Unit is different than the Raw Counts, the period is calculated using
the current timer clock frequency. The current timer clock frequency is determined using
the cgc_api_t::systemClockFreqGet API. This frequency will be used in the appropriate
formula from the following table as clk_freq_hz.

Timer Period Calculation

Timer Units Formula

TIMER_UNIT_PERIOD_NSEC Counts = (period * clk_freq_hz) / 1000000000

TIMER_UNIT_PERIOD_USEC Counts = (period * clk_freq_hz) / 1000000

TIMER_UNIT_PERIOD_MSEC Counts = (period * clk_freq_hz) / 1000

TIMER_UNIT_PERIOD_SEC Counts = (period * clk_freq_hz)

TIMER_UNIT_FREQUENCY_HZ Counts = (clk_freq_hz) / period

TIMER_UNIT_FREQUENCY_KHZ Counts = (clk_freq_hz) / 1000 * period

If the requested period is larger than the counter size (32-bit or 16-bit), the driver selects the
smallest divisor that allows the result to fit in the counter size. If the counter value is larger than the
counter size with the largest divisor (1024), an error code (SSP_ERR_INVALID_ARGUMENT) is
returned.

Triggering DMAC/DTC with GPT

To trigger a transfer of data using the DMAC or DTC peripheral when the timer period elapses,
configure the DMAC/DTC transfer with activation_source set to
ELC_EVENT_GPTn_COUNTER_OVERFLOW (where n is the GPT channel number). See the DMAC or DTC
guides for further information.

Note
If you use the timer in one-shot mode with the DTC, the entire transfer will complete before the interrupt stops the
timer if irq is set to TRANSFER_IRQ_END. To generate only one transfer after the timer period elapses, set irq to
TRANSFER_IRQ_EACH, or use the DMAC for the transfer.

Triggering ELC Events with GPT

The GPT timer can trigger the start of other peripherals. The ELC guide provides a list of all available
peripherals.

Free Running Counter Mode

To use the GPT as a free running counter, set the Period to 0xFFFFFFFF for a 32-bit timer or 0xFFFF
for a 16-bit timer and the Period Unit to Raw Counts in the Properties window of the Synergy
Configuration tool. Stop and start the timer using the timer_api_t::stop API and the timer_api_t::start
API. Check the counter value using the timer_api_t::counterGet API. Reset the timer using the
timer_api_t::reset API. If the counter overflows, handle the counter overflow in the callback.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 822 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_gpt > GPT HAL Module Operational Overview

GPT PWM Mode

To use the GPT in PWM mode, set the Period and Duty cycle and select the duty cycle range.

The driver provides two options to select the duty cycle range:

1. Shortest duty cycle off: In this case, the lowest duty cycle obtained will be limited to 2 raw
counts. But the configuration will be limited to 1 raw counts(because the hardware will add
1 extra clock cycle in ON time, hence if configured Dutycycle is 1 raw count, the user will be
getting 2 raw counts in ON time).

2. Shortest duty cycle on: In this case, the lowest duty cycle of 1 raw count can be achieved
and lowest duty cycle to configure will be limited to 1 raw counts and the longest will be
(Period – 2). In this case, the 1 extra clock cycle will be added by hardware in OFF time.

GPT HAL Module Limitations

For GPT Power Down, the GPT module does not set the Module Stop bit (MSTP) for GPT in
the timer_api_t::close API. This is intentional because the GPT module stop bits control the
power to multiple GPT channels, and the GPT module cannot know if other GPT modules are
used in the application.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.22.4 Including the GPT HAL Module in an Application

This section describes how to include the GPT HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Timer Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the Timer Driver is g_timer0. This name
can be changed in the associated Properties window.)

GPT HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_timer0 Timer Driver on r_gpt Threads> HAL/Common New Stack> Driver>
Timers> Timer Driver on
r_gpt

When the Timer Driver on r_gpt is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 823 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_gpt > Including the GPT HAL Module in an Application

Figure 308: GPT HAL Module Stack

4.2.22.5 Configuring the GPT HAL Module

The GPT HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the GPT HAL Module on r_gpt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_timer0 Module name.

Channel 0 Channel selection.

Mode Periodic, One Shot, PWM

Default: Periodic

Warning: One Shot functionality
is not available in the GPT
hardware, so it is implemented
in software by stopping the
timer in the ISR called when the
period expires. For this reason,
ISR's must be enabled for one-
shot mode even if the callback
is unused.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 824 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_gpt > Configuring the GPT HAL Module

Period Value 10 See Timer Period Calculation.

Period Unit Raw Counts, Nanoseconds,
Microseconds, Milliseconds,
Seconds, Hertz, Kilohertz

Default: Milliseconds

See Timer Period Calculation.

Duty Cycle Value 50 Duty cycle value selection.

Duty Cycle Unit Unit Raw Counts, Unit Percent,
Unit Percent x 1000

Default: Unit Raw Counts

Duty cycle unit selection.

Auto Start True, False

Default: True

Set to true to start the timer
after configuring or false to
leave the timer stopped until
timer_api_t::start is called.

GTIOCA Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for GPT. Set to false for no
output of the timer signal.

GTIOCA Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

Controls output pin level when
the timer is stopped.

GTIOCB Output Enabled True, False

Default: False

Set to true to output the timer
signal on a port pin configured
for GPT. Set to false for no
output of the timer signal.

GTIOCB Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

Controls output pin level when
the timer is stopped.

Callback NULL A user callback function can be
registered in timer_api_t::open.
If this callback function is
provided, it will be called from
the interrupt service routine
(ISR) each time the timer period
elapses.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 825 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_gpt > Configuring the GPT HAL Module

Overflow Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Overflow interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

GPT HAL Module Clock Configuration

The GPT timer is clocked based on the PCLKD frequency. You can set the PCLKD frequency using the
clock configurator in the ISDE Configuring Clocks tab, or the CGC Interface at run-time.

GPT HAL Module Pin Configuration

The GPT peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following table lists the method
used to select pins within the SSP configuration window and the subsequent table lists an example
selection for the associated pins:

Pin Selection for the GPT HAL Module on r_gpt

Resource ISDE Tab Pin selection Sequence

GPT Pins Select Peripherals> Timer:
GPT> GPT0

Note
The selection sequence assumes GPT0 is the desired hardware target for the driver.

Pin Configuration Settings for GPT HAL Driver

Property Value Description

Pin Group Selection Mixed, _A Only, _B Only

Default: Mixed

Select pin group mapping.

Operation Mode Disabled, GTIOCA or GTIOCB,
GTIOCA and GTIOCB

Default: Disabled

Select timer operation mode.

GTIOCA: None, P300, P512

Default: P512

GTIOCA Pin.

GTIOCB: None, P108, P511

Default: P511

GTIOCB Pin.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 826 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Timer Driver on r_gpt > Configuring the GPT HAL Module

MCUs and Synergy Kits may have different available pin configuration settings.

4.2.22.6 Using the GPT HAL Module in an Application

The typical steps in using the GPT HAL module in an application are:

1. Initialize the GPT HAL module using the timer_api_t::open API.
2. Start the GPT HAL module by calling the timer_api_t::start API if the Auto Start property is

False.
3. Respond to the timer callback as needed (application code).

Note
 The GPT period and duty cycle parameters can be reconfigured based on the application needs using the
timer_api_t::periodSet() and the timer_api_t::dutyCycleSet.

In PWM mode, there will be one extra PCLK added by the hardware in ON time if Duty cycle range is
selected to GPT_SHORTEST_LEVEL_OFF and in OFF time if the Duty cycle range is selected to
GPT_SHORTEST_LEVEL_ON.

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 309: Flow Diagram of a Typical GPT HAL Module Application

4.2.23 I2C SCI Driver

4.2.23.1 I2C SCI HAL Module Introduction

The I2C SCI Master HAL module provides a high-level API for I2C industry standard serial device
communication applications and uses the SCI peripheral on the Synergy MCU device. Callbacks are

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 827 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C SCI Driver > I2C SCI HAL Module Introduction

provided for transmit complete and receive complete.

I2C SCI HAL Module Features

Support for I2C SCI operations
Supports following operations with a slave I2C SCI device

Read
Write
Reset

Callback support
Transfer aborted
Transmit complete (number of bytes transmitted provided)
Receive complete (number of bytes received provided)

Figure 310: I2C SCI HAL Module Block Diagram

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 828 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C SCI Driver > I2C SCI HAL Module Introduction

I2C SCI Hardware Support Details

The following hardware features are, or are not, supported by SSP for the I2C over SPI.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU
Group

Master
Mode

Slave
mode

Support all
Interrupt
Sources

Programm
able

digital
noise
filter

Bit rate
modulatio

n

SDA
delay

Timeout
on bus
lockout

S124 ✓ N/A ERI not
supported

⌧ ✓ ✓ N/A

S128 ✓ N/A ERI not
supported

⌧ ✓ ✓ N/A

S1JA ✓ N/A ERI not
supported

⌧ ✓ ✓ N/A

S3A1 ✓ N/A ERI not
supported

⌧ ✓ ✓ N/A

S3A3 ✓ N/A ERI not
supported

⌧ ✓ ✓ N/A

S3A6 ✓ N/A ERI not
supported

⌧ ✓ ✓ N/A

S3A7 ✓ N/A ERI not
supported

⌧ ✓ ✓ N/A

S5D3 ✓ N/A ERI not
supported

⌧ ✓ ✓ N/A

S5D5 ✓ N/A ERI not
supported

⌧ ✓ ✓ N/A

S5D9 ✓ N/A ERI not
supported

⌧ ✓ ✓ N/A

S7G2 ✓ N/A ERI not
supported

⌧ ✓ ✓ N/A

4.2.23.2 I2C SCI HAL Module APIs Overview

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 829 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C SCI Driver > I2C SCI HAL Module APIs Overview

The I2C SCI HAL module defines APIs for reading and writing using a master I2C device. A complete
list of the available API functions, an example API function call and a short description of each can be
found in the following table. A table of status return values follows the API summary table.

I2C SCI HAL Module API Summary

Function Name Example API Call and Description

open g_i2c.p_api->open(g_i2c.p_ctrl, g_i2c.p_cfg);
Open the instance and initialize the hardware.

close g_i2c.p_api->close(g_i2c.p_ctrl);
Closes the driver and releases the I2C device.

read g_i2c.p_api->read(g_i2c.p_ctrl, &destination,
bytes, restart);
Performs a read operation on an I2C device.

write g_i2c.p_api->write(g_i2c.p_ctrl, &destination,
bytes, restart);
Performs a write operation on an I2C device.

reset g_i2c.p_api->reset(g_i2c.p_ctrl);
Reset the peripheral.

slaveAddressSet g_i2c.p_api->slaveAddressSet(g_i2c.p_ctrl,
slave, addr_mode);
Sets address of the slave device without
reconfiguring the bus.

versionGet g_i2c.p_api->versionGet(&version);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_IN_USE Attempted to open an already open device
instance.

SSP_ERR_ABORTED Device was closed while a transfer was in
progress.

SSP_ERR_INVALID_RATE The requested rate cannot be set.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

SSP_ERR_NOT_OPEN Device was not even opened.

SSP_ERR_IRQ_BSP_DISABLED Event information could not be found.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 830 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C SCI Driver > I2C SCI HAL Module APIs Overview

Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.23.3 I2C SCI HAL Module Operational Overview

The I2C SCI Master HAL module supports transactions with an I2C slave device. Callbacks are
provided to interrupt the CPU when a transmission has been completed or aborted, or receive
completed. The I2C SCI HAL module invokes the callback with the argument i2c_callback_args_t,
indicating the number of received or transmitted bytes in buffer, pointer to user provided context,
and the event i2c_event_t.

I2C SCI HAL Module Important Operational Notes and Limitations

I2C SCI HAL Module Operational Notes

Interrupts

The I2C interrupts (SCI Error (EEI), Receive Buffer Full (RXI), Transmit Buffer Empty (TXI),
and Transmit End (TEI)) for the selected channel must be enabled in the board support
package (BSP), without consideration of whether the user wants to use callbacks.
Setting the interrupts to different priority levels could result in improper operation.

IIC Rate Calculation

The I2C SCI HAL module calculates the internal baud-rate setting based on the configured
transfer rate and passes this to open. The closest possible baud rate that can be achieved
(less than or equal to the requested rate) at the current PCLKB settings is calculated and
used.
If a valid clock rate could not be calculated, an error is returned.

Triggering DMAC/DTC with the IIC

DTC transfer support is added by default in the configurator, this can be removed for CPU
transfer cases. The DTC is configured in the module. No user configuration is required for
this.
DMA transfer is not supported.

Triggering ELC Events with the IIC

The I2C SCI HAL module can trigger the start of other peripherals. See the ELC User Guide
for further information.

Multiple Devices on the Same Bus

When communicating with multiple slave devices on the same bus, if these slave devices have the
same configuration settings the i2c_api_master_t::slaveAddressSet API function can be used to
switch between slave devices without reconfiguring (no need to close and open). The control
instance and bus configuration remains the same, but the slave address and addressing mode
changes. A single instance of the I2C SCI HAL module is sufficient for this case.

When communicating with multiple slave devices on the same bus, if each slave device requires
different configuration settings multiple instances of r_sci_i2c will be used- each configured as
required for each slave device. Each instance of r_sci_i2c will be opened and closed when it is used
to communicate with the target slave device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 831 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C SCI Driver > I2C SCI HAL Module Operational Overview

A mix of the above two approaches can be used with a mix of slave devices. For example, if two
slave devices share the same configuration settings, they can share the same instance of r_sci_i2c
and the i2c_api_master_t::slaveAddressSet API function can be used to switch between them. If on
the same bus, three other slave devices share the same configuration settings, but these settings
are different from the first two, they will need a separate r_sci_i2c instance. Switching between each
of these three slave devices can again use the i2c_api_master_t::slaveAddressSet API function. When
switching between slave devices served by different instances of r_sci_i2c, the open and close
technique must be used. In general, the configuration settings of the most recently slave device
accessed are 'remembered' and can be re-used if appropriate. If a slave requires a different
configuration than the most recently accessed slave, the r_sci_i2c module must be closed and then
opened using the required configuration settings.

Applications using multiple devices connected on the same channel need to define the following
macro in the pre‑processor settings of the project (or the project may not build correctly):

SSP_SUPPRESS_ISR_<device_name>

Where <device_name> is the name of the additional device connected to the same channel.

I2C SCI HAL Module Limitations

The I2C SCI HAL module in IRQ mode may not work with certain slave devices; you need to
enable DTC transfer mode to work with such devices.
To support high bit rate data transfers when operating in the IRQ mode it is highly
recommended that the DTC transfer mode be enabled. This reduces the CPU overhead in
responding to interrupts directly and thus removes a potential barrier in successfully
implementing high bit-rate transfers.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.23.4 Including the I2C SCI HAL Module in an Application

This section describes how to include the I2C SCI HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the I2C Master Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the I2C Master Driver is g_i2c0. This
name can be changed in the associated Properties window.)

I2C SCI HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_i2c0 I2C Master Driver on
r_sci_i2c

Threads New Stack> Driver>
Communications> I2C
Master Driver on r_sci_i2c

When the I2C Master Driver module on r_sci_i2c is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 832 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C SCI Driver > Including the I2C SCI HAL Module in an Application

a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 311: I2C SCI HAL Module Stack

4.2.23.5 Configuring the I2C SCI HAL Module

The I2C SCI HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the I2C SCI HAL Module on r_sci_i2c

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 833 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C SCI Driver > Configuring the I2C SCI HAL Module

Name g_i2c0 Module name.

Channel 0 to 9 Specify the SCI channel to be
used with this configuration. SCI
has channels as follows: Series
S7 : 0 1 2 3 4 5 6 7 8 9; Series
S3 : 0 1 2 3 4 - - - - 9; Series S1
: 0 1 - - - - - - - 9 .

Rate Standard, Fast-mode

Default: Standard

Select the I2C data rate.

Slave Address 0x00 Specify the slave address.

Address Mode 7-Bit, 10-Bit

Default: 7-Bit

Only 7-bit addresses are
currently supported.

SDA Output Delay (nano
seconds)

300 SDA output delay in
nanoseconds.

Bit Rate Modulation Enable Enable, Disable

Default: Enable

Enables bitrate modulation
function.

Callback NULL A user callback function can be
registered in
i2c_api_master_t::open. If this
callback function is provided, it
will be called from the interrupt
service routine (ISR) for each of
the conditions defined in
i2c_event_t.

Warning: Since the callback is
called from an ISR, do not use
blocking calls or lengthy
processing. Spending excessive
time in an ISR can affect the
responsiveness of the system.

Receive Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Select the receive interrupt
priority.

Transmit Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Select the transmit interrupt
priority.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 834 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C SCI Driver > Configuring the I2C SCI HAL Module

Transmit End Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Select the transmit end
interrupt priority.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the I2C SCI HAL Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module:

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 TXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Software Start Enabled, Disabled

Default: Disabled

Include code for software start
in the build.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Section to place the DTC vector
table.

Name g_transfer0 Module name.

Mode Block Specify the hardware channel.

Transfer Size 1 Byte Select the transfer mode.

Destination Address Mode Fixed Select the transfer size.

Source Address Mode Incremented Select the address mode for the
destination.

Repeat Area (Unused in Normal
Mode

Source Select the address mode for the
source.

Interrupt Frequency After all transfers have
completed

Select the repeat area. Either
the source or destination
address resets to its initial
value after completing Number
of Transfers in Repeat or Block
mode.

Destination Pointer NULL Specify the transfer destination
pointer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 835 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C SCI Driver > Configuring the I2C SCI HAL Module

Source Pointer NULL Specify the transfer source
pointer.

Number of Transfers 0 Specify the number of
transfers.

Number of Blocks (Valid only in
Block Mode)

0 Specify the number of blocks to
transfer in Repeat or Block
mode.

Activation Source (Must enable
IRQ)

Event SCI0 TXI Select the DTC transfer start
event.

Auto Enable False Auto enable the transfer in
open().

Callback (Only valid with
Software start)

NULL A user callback that is called at
the end of the transfer.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the transfer end
interrupt priority.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Software Start Enabled, Disabled

Default: Disabled

Include code for software start
in the build.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Section to place the DTC vector
table.

Name g_transfer1 Module name.

Mode Normal Specify the hardware channel.

Transfer Size 1 Byte Select the transfer mode.

Destination Address Mode Incremented Select the transfer size.

Source Address Mode Fixed Select the address mode for the
destination.

Repeat Area (Unused in Normal
Mode

Destination Select the address mode for the
source.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 836 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C SCI Driver > Configuring the I2C SCI HAL Module

Interrupt Frequency After all transfers have
completed

Select the repeat area. Either
the source or destination
address resets to its initial
value after completing Number
of Transfers in Repeat or Block
mode.

Destination Pointer NULL Specify the transfer destination
pointer.

Source Pointer NULL Specify the transfer source
pointer.

Number of Transfers 0 Specify the number of
transfers.

Number of Blocks (Valid only in
Block Mode)

0 Specify the number of blocks to
transfer in Repeat or Block
mode.

Activation Source (Must enable
IRQ)

Event SCI0 RXI Select the DTC transfer start
event.

Auto Enable False Auto enable the transfer in
open().

Callback (Only valid with
Software start)

NULL A user callback that is called at
the end of the transfer.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the transfer end
interrupt priority.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

I2C SCI HAL Module Clock Configuration

The SCI peripheral module uses the PCLKB as its clock source. The actual I2C transfer rate is
calculated and set internally by the driver (depending on the selected transfer rate). If the PCLKB is
configured in such a manner that the selected internal rate cannot be achieved, an error is returned
when initializing the driver.

I2C SCI HAL Module Pin Configuration

The SCI peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following table illustrates the
method for selecting the pins within the SSP configuration window and the subsequent table
illustrates an example selection for the pins:

Note
The operation mode selection determines what peripheral signals are available and what MCU pins are required.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 837 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C SCI Driver > Configuring the I2C SCI HAL Module

Pin Selection Sequence for I2C SCI HAL Module on r_sci_i2c

Resource ISDE Tab Pin selection Sequence

SCI Pins Select Peripherals>
Connectivity: SCI> SCI0

Note
The selection sequence assumes SCI0 is the desired hardware target for the driver.

Pin Configuration Settings for the I2C SCI HAL Module on r_sci_i2c

Pin Configuration Property Value Description

Pin Group Selection _A only, _B only, Mixed

Default: _A only

Pin group selection.

Operation Mode Enabled, Disabled

Default: Disabled

Enable or disable peripheral
module.

SDA None, P401, P407

Default: None

SDA Pin.

SCL None, P400, P204

Default: None

SCL Pin.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

4.2.23.6 Using the I2C SCI HAL Module in an Application

The steps in using the I2C SCI HAL module in a typical application are:

1. Initialize and open the I2C SCI HAL module using the i2c_api_master_t::open API.
2. Transfer data to the slave using the i2c_api_master_t::write API.
3. Receive data from the slave using the i2c_api_master_t::read API.
4. Operate on the received data as needed by the application.
5. Reset the module with the i2c_api_master_t::reset API (Optional).
6. Perform transactions with slave device in the application code.
7. Change the slave address using the i2c_api_master_t::slaveAddressSet API (Optional).
8. Perform transactions with slave device in the application code (Optional).
9. Close the channel using the i2c_api_master_t::close API (Optional).

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 838 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C SCI Driver > Using the I2C SCI HAL Module in an Application

Figure 312: Flow Diagram of a Typical I2C SCI HAL Module Application

4.2.24 I2C Master Driver

4.2.24.1 I2C Master HAL Module Introduction

The I2C Master on RIIC HAL module provides a high-level API for industry standard I2C serial
communications applications and uses the IIC peripheral on a Synergy MCU. Callbacks are provided
for transmit complete and receive complete events notification.

I2C Master HAL Module Features

Support for I2C RIIC operations
Standard (up to 100 kHz)
I2C fast-mode (up to 400 kHz)
I2C fast-mode plus (up to 1 MHz on channel 0 (SCL0-A, SDA0-A) of S7G2 and S5D9
MCU families)

Initialization of the RIIC module
Read from a slave device
Write to a slave device
Reset the MCUs I2C peripheral
Set the address of the slave device
Callback support

Transfer aborted (along with exact IIC hardware-generated error event)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 839 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Master Driver > I2C Master HAL Module Introduction

Transmit complete (number of bytes transmitted provided)
Receive complete (number of bytes received provided)

Figure 313: I2C Master HAL Module Block Diagram

RIIC Master Hardware support details

The following hardware features are, or are not, supported by SSP for the RIIC Master Driver:

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 840 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Master Driver > I2C Master HAL Module Introduction

MCU Group I2C Format SMBus
Format

Master Mode Slave Mode Fast Mode
Plus

Selectable
duty cycle

S124 ✓ ⌧ ✓ ✓ N/A ⌧

S128 ✓ ⌧ ✓ ✓ N/A ⌧

S1JA ✓ ⌧ ✓ ✓ N/A ⌧

S3A1 ✓ ⌧ ✓ ✓ N/A ⌧

S3A3 ✓ ⌧ ✓ ✓ N/A ⌧

S3A6 ✓ ⌧ ✓ ✓ N/A ⌧

S3A7 ✓ ⌧ ✓ ✓ N/A ⌧

S5D3 ✓ ⌧ ✓ ✓ ✓ ⌧

S5D5 ✓ ⌧ ✓ ✓ ✓ ⌧

S5D9 ✓ ⌧ ✓ ✓ ✓ ⌧

S7G2 ✓ ⌧ ✓ ✓ ✓ ⌧

MCU Group Configurable
to up to
three

different
slave

addresses

7- and 10-
bit address

formats

General call
address,
Device ID

address and
SMBus host

address
detectable

Automatic
loading of

the
acknowledg

e
bit

SDA
output
delay

function

Selectable
Wait

functions
(8/9 or 9/1)

S124 ⌧ 7 and 10-bit ⌧ ✓ ✓ ⌧

S128 ⌧ 7 and 10-bit ⌧ ✓ ✓ ⌧

S1JA ⌧ 7 and 10-bit ⌧ ✓ ✓ ⌧

S3A1 ⌧ 7 and 10-bit ⌧ ✓ ✓ ⌧

S3A3 ⌧ 7 and 10-bit ⌧ ✓ ✓ ⌧

S3A6 ⌧ 7 and 10-bit ⌧ ✓ ✓ ⌧

S3A7 ⌧ 7 and 10-bit ⌧ ✓ ✓ ⌧

S5D3 ⌧ 7 and 10-bit ⌧ ✓ ✓ ⌧

S5D5 ⌧ 7 and 10-bit ⌧ ✓ ✓ ⌧

S5D9 ⌧ 7 and 10-bit ⌧ ✓ ✓ ⌧

S7G2 ⌧ 7 and 10-bit ⌧ ✓ ✓ ⌧

MCU Group Full Arbitration
Support

Internal Detect
Time-Out

Programmable
Digital Noise

Filters

Support all
Interrupt
Sources

S124 Master, NACK
arbitrations

✓ ⌧ ✓

S128 Master, NACK
arbitrations

✓ ⌧ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 841 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Master Driver > I2C Master HAL Module Introduction

S1JA Master, NACK
arbitrations

✓ ⌧ ✓

S3A1 Master, NACK
arbitrations

✓ ⌧ ✓

S3A3 Master, NACK
arbitrations

✓ ⌧ ✓

S3A6 Master, NACK
arbitrations

✓ ⌧ ✓

S3A7 Master, NACK
arbitrations

✓ ⌧ ✓

S5D3 Master, NACK
arbitrations

✓ ⌧ ✓

S5D5 Master, NACK
arbitrations

✓ ⌧ ✓

S5D9 Master, NACK
arbitrations

✓ ⌧ ✓

S7G2 Master, NACK
arbitrations

✓ ⌧ ✓

4.2.24.2 I2C Master HAL Module APIs Overview

The I2C Master on RIIC (I2C RIIC) HAL module defines API functions including reading and writing
using a master I2C device. A complete list of the available API functions, an example API function
call and a short description of each can be found in the following table. A table of status return
values follows the API summary table.

I2C Master HAL Module API Summary

Function Name Example API Call and Description

open g_i2c.p_api->open(g_i2c.p_ctrl, g_i2c.p_cfg);
Open the instance and initialize the hardware.

close g_i2c.p_api->close(g_i2c.p_ctrl);
Closes the driver and releases the I2C device.

read g_i2c.p_api->read(g_i2c.p_ctrl, &destination,
bytes, restart);
Performs a read operation on an I2C device.

write g_i2c.p_api->write(g_i2c.p_ctrl, &destination,
bytes, restart);
Performs a write operation on an I2C device.

reset g_i2c.p_api->reset(g_i2c.p_ctrl);
Reset the peripheral.

versionGet g_i2c.p_api->versionGet(&version);
Retrieve the API version with the version pointer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 842 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Master Driver > I2C Master HAL Module APIs Overview

slaveAddressSet g_i2c.p_api->slaveAddressSet(g_i2c.p_ctrl,
slave_addr, addr_mode);
Reconfigures the slave address.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_POINTER Pointer is NULL.

SSP_ERR_IN_USE I2C bus busy state detected during I2C
transaction operation or attempted to open an
already open device instance only during open
API call.

SSP_ERR_ABORTED Device was closed while a transfer was in
progress.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_INVALID_RATE The requested rate cannot be set.

SSP_ERR_HW_LOCKED Driver busy doing riic operation.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.24.3 I2C Master HAL Module Operational Overview

The I2C master on RIIC HAL module supports transactions with an I2C Slave device. Callbacks are
provided to interrupt the CPU when a transmission or receive has been completed. The RIIC HAL
module invokes the callback with the argument i2c_callback_args_t, indicating the number of
received or transmitted bytes in buffer, pointer to user provided context, and the event i2c_event_t.

I2C Master HAL Module Important Operational Notes and Limitations

I2C Master HAL Module Operational Notes

Interrupts

The RIIC error (EEI), receive buffer full (RXI), transmit buffer empty (TXI) and transmit end
(TEI) interrupts for the selected channel used must be enabled in the properties of the
selected device irrespective of whether the user wants to use callbacks.
Set equal priority levels for all the interrupts mentioned above. Setting the interrupts to
different priority levels could result in improper operation.

IIC Rate Calculation

The I2C Master module calculates the internal baud-rate setting based on the configured

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 843 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Master Driver > I2C Master HAL Module Operational Overview

transfer rate and passed to open. The closest possible baud-rate that can be achieved (less
than or equal to the requested rate) at the current PCLKB settings is calculated and used.
If a valid clock rate could not be calculated, an error is returned.

Triggering DMAC/DTC with the IIC

DTC transfer support added by default in the configurator. This can be removed for CPU
transfer cases. The DTC is configured in the module. No user configuration is required for
this.
DMA transfer is not supported.

Triggering ELC Events with the IIC

The I2C Master module can trigger the start of other peripherals. See events and peripheral
definitions in the ELC User Guide for further information.

Multiple Devices on the Bus

If multiple devices are connected on the same bus, only one device can be opened at a
time.
If multiple slave devices are on the same bus, and they have different configurations, the
application program should use multiple I2C master modules- one for each configuration.
If the application wants to switch the device without opening and closing the bus, use the
i2c_api_master_t::slaveAddressSet API where g_i2c.p_ctrl is the same control instance that
was used in the last opened device. The module will use the same bus configuration to
communicate with the new device when the application program subsequently calls the
i2c_api_master_t::read or i2c_api_master_t::write API functions.

Usage of Restart Condition

Passing the value 'true' to the restart parameter of the write/read API will generate restart
condition after specified number (length) of bytes.The master will continue to hold the bus
busy (low) without timeout so that current master can trigger the next write/read API.

Multi-Master Support

If multiple masters are connected on the same bus, the I2C Master is capable of detecting bus busy
state before initiating the communication.

SDA Delay Support

The SDA Delay function delays SDA output from the detection of a falling edge of SCL signal to
ensure that

the SDA signal is output within the interval during which the SCL is low.

I2C Master HAL Module Limitations

Any of the supported IIC channel can be configured for either Master or Slave mode
operation but not for both.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.24.4 Including the I2C Master HAL Module in an Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 844 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Master Driver > Including the I2C Master HAL Module in an Application

This section describes how to include the I2C Master HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the I2C Master Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the I2C Master Driver is g_i2c0. This
name can be changed in the associated Properties window.)

I2C Master HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_i2c0 I2C Master Driver on
r_riic

Threads New Stack> Driver>
Communications> I2C
Master Driver on r_riic

When the I2C Master HAL module on r_riic is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 314: I2C Master HAL Module Stack

4.2.24.5 Configuring the I2C Master HAL Module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 845 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Master Driver > Configuring the I2C Master HAL Module

The I2C Master HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the I2C Master HAL Module on r_riic

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable parameter
error checking.

Name g_i2c0 Module name.

Channel 0 Specify the IIC channel to be
used with this configuration.

Rate Standard, Fast-mode, Fast-
mode Plus
Default: Standard

Standard, Fast, and Fast-plus.
(See IIC Rate Calculation.)

Slave Address 0x00 Set the address of the slave
device the I2C master will be
communicating with.

Address Mode 7-Bit, 10-Bit
Default: 7-Bit

Only 7-bit addresses are
currently supported.

SDA Output
Delay(nanoseconds)

Default: 300 SDA output delay in
nanoseconds.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 846 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Master Driver > Configuring the I2C Master HAL Module

Callback NULL A user callback function can be
registered in
i2c_api_master_t::open. If this
callback function is provided, it
will be called from the interrupt
service routine (ISR) for each of
the conditions defined in
i2c_event_t*.
*Exact hardware generated
error event is also provided
when i2c_event_t is
I2C_EVENT_ABORTED.

Warning: Since the callback is
called from an ISR, do not use
blocking calls or lengthy
processing. Spending excessive
time in an ISR can affect the
responsiveness of the system.

Receive Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)
Default: Priority 2

Receive interrupt priority
selection.

Transmit Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)
Default: Priority 2

Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)
Default: Priority 2

Transmit end interrupt priority
selection.

Error Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)
Default: Priority 2

Error interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the I2C Master HAL Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module:

Configuration Settings for the Transfer Driver on r_dtc Event IIC0 TXI

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 847 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Master Driver > Configuring the I2C Master HAL Module

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled
Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event IIC0 TXI Activation source selection.

Auto Enable FALSE Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)
Default: Disabled

ELC software event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event IIC0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Selects if code for parameter
checking is to be included in
the build.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 848 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Master Driver > Configuring the I2C Master HAL Module

Software Start Enabled, Disabled
Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer1 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event IIC0 RXI Activation source selection.

Auto Enable FALSE Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)
Default: Disabled

ELC software event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

I2C Master HAL Module Clock Configuration

The IIC peripheral module uses the PCLKB as its clock source. The actual I2C transfer rate will be
calculated and set internally by the driver depending on the selected transfer rate. If the PCLKB is
configured in such a manner that the selected internal rate cannot be achieved, an error will be
returned when initializing the driver.

I2C Master HAL Module Pin Configuration

The IIC peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following table illustrates the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 849 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Master Driver > Configuring the I2C Master HAL Module

method for selecting the pins within the SSP configuration window and the subsequent table
illustrates an example selection for the pins:

Note
The operation mode selection determines what peripheral signals are available and what MCU pins are required.

Pin Selection Sequence for I2C Master HAL Module on r_riic

Resource ISDE Tab Pin selection Sequence

IIC Pins Select Peripherals>
Connectivity: IIC> IIC0

Note
The selection sequence assumes IIC0 is the desired hardware target for the driver.

Pin Configuration Settings for the I2C Master HAL Module on r_sci_uart

Pin Configuration Property Value Description

Pin Group Selection _A only, _B only, Mixed
Default: _A only

Pin group selection.

Operation Mode Enabled, Disabled
Default: Disabled

Enable or disable peripheral
module.

SDA None, P401, P407
Default: None

SDA Pin.

SCL None, P400, P204
Default: None

SCL Pin.

SCK None, P412, P102
Default: P412

SCK Pin.

CTS_RTS_SS None, P413, P103
Default: None

CTS Pin.

SDA Disabled SDA Pin (when Simple I2C is
used).

SCL Disabled SCL Pin (when Simple I2C is
used).

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

4.2.24.6 Using the I2C Master HAL Module in an Application

The steps in using the I2C Master HAL module in a typical application are:

1. Initialize and open the I2C RIIC HAL Module using the i2c_api_master_t::open API.
2. Transfer data to the slave using the i2c_api_master_t::write API.
3. Receive data from the slave using the i2c_api_master_t::read API.
4. Reset the module using the i2c_api_master_t::reset API. (Optional)
5. Change the slave address using i2c_api_master_t::slaveAddressSet API. (Optional)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 850 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Master Driver > Using the I2C Master HAL Module in an Application

6. Transfer data to the slave using the i2c_api_master_t::write API. (Optional)
7. Receive data from the slave using the i2c_api_master_t::read API. (Optional)
8. Close the module using the i2c_api_master_t::close API. (Optional)

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 315: Flow Diagram of a Typical I2C Master HAL Module Application

4.2.25 I2C Slave Driver

4.2.25.1 I2C Slave HAL Module Introduction

The I2C Slave HAL Module provides a high-level API for I2C slave applications and uses the RIIC
peripheral on the Synergy MCU. Callbacks are provided to signal read/write request received from
master and transfer completion events.

I2C Slave HAL Module Features

Support for I2C Slave operations
Support transactions with a I2C master device

Read
Write

Callback support
Transmit Request (notifies when a write operation is expected from slave)
Receive Request (notifies when a read operation is expected from slave)
Transmit more request (notifies when master requests more data than configured
in slave write operation. Also provides number of bytes transmitted)
Receive more request (notifies when master tries to write more data than
configured in slave read operation. Also provides number of bytes received)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 851 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Slave Driver > I2C Slave HAL Module Introduction

Transmit complete (provides number of bytes transmitted)
Receive complete (provides number of bytes received)

Figure 316: I2C Slave HAL Module Block Diagram

RIIC Slave Hardware support details

RIIC Slave driver supported features:

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group I2C Format SMBus
Format

Master Mode Slave Mode Fast Mode
Plus

Selectable
duty cycle

S124 ✓ ⌧ ⌧ ✓ N/A ⌧

S128 ✓ ⌧ ⌧ ✓ N/A ⌧

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 852 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Slave Driver > I2C Slave HAL Module Introduction

S1JA ✓ ⌧ ⌧ ✓ N/A ⌧

S3A1 ✓ ⌧ ⌧ ✓ N/A ⌧

S3A3 ✓ ⌧ ⌧ ✓ N/A ⌧

S3A6 ✓ ⌧ ⌧ ✓ N/A ⌧

S3A7 ✓ ⌧ ⌧ ✓ N/A ⌧

S5D3 ✓ ⌧ ⌧ ✓ ✓ ⌧

S5D5 ✓ ⌧ ⌧ ✓ ✓ ⌧

S5D9 ✓ ⌧ ⌧ ✓ ✓ ⌧

S7G2 ✓ ⌧ ⌧ ✓ ✓ ⌧

MCU Group Configurable
to up to
three

different
slave

addresses

7- and 10-
bit address

formats

General call
address,
Device ID

address and
SMBus host

address
detectable

Automatic
loading of

the
acknowledg

e
bit

SDA
output
delay

function

Selectable
Wait

functions
(8/9 or 9/1)

S124 One slave
address

7 and 10-bit ⌧ ✓ ⌧ ⌧

S128 One slave
address

7 and 10-bit ⌧ ✓ ⌧ ⌧

S1JA One slave
address

7 and 10-bit ⌧ ✓ ⌧ ⌧

S3A1 One slave
address

7 and 10-bit ⌧ ✓ ⌧ ⌧

S3A3 One slave
address

7 and 10-bit ⌧ ✓ ⌧ ⌧

S3A6 One slave
address

7 and 10-bit ⌧ ✓ ⌧ ⌧

S3A7 One slave
address

7 and 10-bit ⌧ ✓ ⌧ ⌧

S5D3 One slave
address

7 and 10-bit ⌧ ✓ ⌧ ⌧

S5D5 One slave
address

7 and 10-bit ⌧ ✓ ⌧ ⌧

S5D9 One slave
address

7 and 10-bit ⌧ ✓ ⌧ ⌧

S7G2 One slave
address

7 and 10-bit ⌧ ✓ ⌧ ⌧

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 853 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Slave Driver > I2C Slave HAL Module Introduction

MCU Group Full Arbitration
Support

Internal Detect
Time-Out

Programmable
Digital Noise

Filters

Support all
Interrupt
Sources

Event link
function
through
ELC HAL
driver

S124 Slave, NACK
arbitration

✓ ⌧ ✓ ⌧

S128 Slave, NACK
arbitration

✓ ⌧ ✓ ⌧

S1JA Slave, NACK
arbitration

✓ ⌧ ✓ ⌧

S3A1 Slave, NACK
arbitration

✓ ⌧ ✓ ⌧

S3A3 Slave and
NACK
arbitration

✓ ⌧ ✓ ⌧

S3A6 Slave and
NACK
arbitration

✓ ⌧ ✓ ⌧

S3A7 Slave, NACK
arbitration

✓ ⌧ ✓ ⌧

S5D3 Slave, NACK
arbitration

✓ ⌧ ✓ ⌧

S5D5 Slave, NACK
arbitration

✓ ⌧ ✓ ⌧

S5D9 Slave, NACK
arbitration

✓ ⌧ ✓ ⌧

S7G2 Slave and
NACK
arbitration

✓ ⌧ ✓ ⌧

4.2.25.2 I2C Slave HAL Module APIs Overview

The I2C RIIC Slave HAL Module defines APIs for reading and writing to a master I2C device. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

I2C Slave HAL Module API Summary

Function Name Example API Call and Description

open g_i2c.p_api->open(g_i2c.p_ctrl, g_i2c.p_cfg);
Open the instance and initialize the hardware.

close g_i2c.p_api->close(g_i2c.p_ctrl);
Closes the driver and releases the I2C device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 854 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Slave Driver > I2C Slave HAL Module APIs Overview

masterWriteSlaveRead g_i2c.p_api->masterWriteSlaveRead(g_i2c.p_ctrl,
&destination, bytes);
Performs a read operation on an I2C device.

masterReadSlaveWrite g_i2c.p_api->masterReadSlaveWrite(g_i2c.p_ctrl,
&source, bytes);
Performs a write operation on an I2C device.

versionGet g_i2c.p_api->versionGet(&version);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_POINTER Pointer is NULL.

SSP_ERR_IN_USE Attempted to open an already open device
instance.

SSP_ERR_ABORTED Device was closed while a transfer was in
progress.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.25.3 I2C Slave HAL Module Operational Overview

The I2C RIIC Slave HAL Module supports transfers to an I2C Master device. Callbacks are provided to
enable the application identify the occurrence of any of the following events.

Read/write request with the slave address match is detected from master.
Master requests more data than slave configured in read/write API.
An ongoing transfer has been aborted.
An ongoing transfer has completed.

I2C Slave HAL Module Important Operational Notes and Limitations

I2C Slave HAL Module Operational Notes

The RIIC Error (EEI), Receive Buffer Full (RXI), Transmit Buffer Empty (TXI) and Transmit End
(TEI) interrupts for the selected channel used must be enabled in the BSP irrespective of
whether the user wants to use callbacks.
Set equal priority levels for all the interrupts mentioned above. Setting the interrupts to
different priority levels could result in improper operation.
If using RIIC and RIIC_Slave modules on the same board, it is suggested to set equal
interrupt priority for TXI, TEI and EI and set RXI interrupt priority higher than these.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 855 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Slave Driver > I2C Slave HAL Module Operational Overview

I2C Slave HAL Module Limitations

This is the initial version of I2C RIIC Slave Driver with only basic functionality implemented. The
following limitations are known:

1. For the driver provide to the application any information regarding the type of request
received, the application has to implement/register for the appropriate callback. This limits
in usage of the events provided by the driver in application. These events help in real-time
master request processing.

2. When the driver is used in blocking mode, slave API has to be invoked with same number of
bytes as configured in the master.

3. Any of the supported IIC channels can be configured for either Master or Slave mode
operation but not for both.

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.25.4 Including the I2C Slave HAL Module in an Application

This section describes how to include the I2C Slave HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the I2C Slave Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the I2C Slave Driver is g_i2c0. This
name can be changed in the associated Properties window.)

I2C Slave HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_i2c0 I2C Slave Driver on
r_riic_slave

Threads New Stack> Driver>
Communications> I2C Slave
Driver on r_riic_slave

When the I2C Slave Driver on r_riic_slave is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Grayband
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 856 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Slave Driver > Including the I2C Slave HAL Module in an Application

Figure 317: I2C Slave HAL Module Stack

4.2.25.5 Configuring the I2C Slave HAL Module

The I2C Slave HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the I2C Slave HAL Module on r_riic_slave

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable parameter
error checking.

Name g_i2c0 Module name.

Channel 0 Specify the IIC channel to be
used with this configuration.

Rate Standard, Fast-mode, Fast-
mode plus
Default: Standard

Transfer rate to which the IIC
peripheral should be configured
to operate.

Slave Address 0x00 Set the address of the device as
the I2C slave address. Both
7-bit and 10-bit addresses are
supported.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 857 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Slave Driver > Configuring the I2C Slave HAL Module

Address Mode 7-Bit, 10 Bit
Default: 7-Bit

Address mode selection.

Callback NULL A user callback function can be
registered in
i2c_api_master_t::open. If this
callback function is provided, it
will be called from the interrupt
service routine (ISR) for each of
the conditions defined in
i2c_event_t.
Warning: Since the callback is
called from an ISR, do not use
blocking calls or lengthy
processing. Spending excessive
time in an ISR can affect the
responsiveness of the system.

Receive Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Priority 12

Receive interrupt priority
selection.

Transmit Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Priority 12

Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Priority 12

Transmit End interrupt priority
selection.

Error Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Priority 12

Error interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

I2C Slave HAL Module Clock Configuration

The RIIC peripheral module uses PCLKB as its clock source.

I2C Slave HAL Module Pin Configuration

The RIIC peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following table illustrates the
method for selecting the pins within the SSP configuration window and the subsequent table
illustrates an example selection for the pins:

Note
For some peripherals, the operation mode selection determines what peripheral signals are available and what
MCU pins are required.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 858 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Slave Driver > Configuring the I2C Slave HAL Module

Pin Selection for the I2C Slave HAL Module on r_riic_slave

Resource ISDE Tab Pin selection Sequence

I2C Pins Select Peripherals>
Connectivity: IIC> IIC0.

Note
The selection sequence assumes that IIC0 is the desired hardware target for the driver.

Pin Configuration Settings for the I2C Slave HAL Module on r_riic_slave

Pin Configuration Property Value Description

Pin Group Selection _A only, _B only, Mixed
Default: _A only

Select Simple I2C as the
Operation Mode for I2C on SCI.

Operation Mode Enabled, Disabled
Default: Disabled

Enable or disable peripheral
module.

SDA None, P401, P407
Default: None

SDA Pin.

SCL None, P400, P204
Default: None

SCL Pin.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and SK-S7G2 Kit. Other Synergy kits
and MCUs may have different available pin configuration settings.

4.2.25.6 Using the I2C Slave HAL Module in an Application

The sequence for using the I2C Slave HAL module (blocking mode) in an application is:

1. Initialize and open the I2C Slave HAL Module using the i2c_api_slave_t::open API.

2. Transfer data to the master using the i2c_api_slave_t::masterReadSlaveWrite API.

3. Receive data from the master using the i2c_api_slave_t::masterWriteSlaveRead API.

4. Close the channel using the i2c_api_slave_t::close API.

These steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 859 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Slave Driver > Using the I2C Slave HAL Module in an Application

Figure 318: Flow Diagram of a Typical I2C Slave HAL Module Application without callback

 The sequence for using the I2C Slave HAL module (non-blocking mode) in an application is:

1. Initialize and open the I2C Slave HAL Module using the i2c_api_slave_t::open API.
2. If callback event i2c_event_t generated indicates transmit request. Transfer data to the

master using the i2c_api_slave_t::masterReadSlaveWrite API in callback.
3. If callback event i2c_event_t generated indicates transmit-more request (master tries to

read more data than configured in slave write). Transfer data to the master using the
i2c_api_slave_t::masterReadSlaveWrite API in callback with new transmit data buffer.

4. If callback event i2c_event_t generated indicates receive request. Receive data from the
master using the i2c_api_slave_t::masterWriteSlaveRead API in callback.

5. If callback event i2c_event_t generated indicates a receive-more request (master tries to
write more data than configured in slave read). Receive data from the master using the
i2c_api_slave_t::masterWriteSlaveRead API in callback with new receive data buffer.

6. Close the channel using the i2c_api_slave_t::close API.

These steps above with registered callback are illustrated in a typical operational flow diagram in the
following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 860 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2C Slave Driver > Using the I2C Slave HAL Module in an Application

Figure 319: Flow Diagram of a Typical I2C Slave HAL Module Application with callback

4.2.26 I2S Driver

4.2.26.1 I2S HAL Module Introduction

The I2S HAL module provides a high-level API for the standard I2S audio serial communication
protocol used to send or receive uncompressed audio data in master/slave mode.

I2S HAL Module Features

The I2S HAL module used with the SSI peripheral in I2S master/slave mode supports the following
features (in addition to the standard I2S protocol):

Full-duplex I2S communication (SSI channel 0 only)
Interrupt driven data transmission and reception
Integration with the DTC transfer module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 861 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > I2S HAL Module Introduction

A user-defined callback created to respond to the need for additional data

Figure 320: I2S HAL Module Block Diagram

I2S Hardware Support Details

The following hardware features are, or are not, supported by SSP for I2S:

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group Supports 2
Channels

SSI
Format
Support

MSB first
Format
Support

Serial bit
clock

configurable
{16, 32, 48,

and
64 sampling

rates}

Master clock
input from

the
master clock

pin
for audio

(AUDIO_CLK)

Master clock
input from

the
master clock

pin
for GPT
output

(GTIOC1A)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 862 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > I2S HAL Module Introduction

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 ⌧ ⌧ ⌧ ✓ ✓ ⌧

S3A3 ⌧ ⌧ ⌧ ✓ ✓ ⌧

S3A6 ⌧ ⌧ ⌧ ✓ ✓ ⌧

S3A7 ✓ ⌧ ⌧ ✓ ✓ ⌧

S5D3 ✓ ⌧ ⌧ ✓ ✓ ⌧

S5D5 ⌧ ⌧ ⌧ ✓ ✓ ⌧

S5D9 ✓ ⌧ ⌧ ✓ ✓ ⌧

S7G2 ✓ ⌧ ⌧ ✓ ✓ ⌧

MCU Group Ability to
select Stop
Word SSIWS

Accepts
Interrupts from
Communicatio

n
Errors

Accepts
Interrupts from
Receive Data

Full

Accepts
Interrupts from
Transmit Data

Empty

Internal
Connection to

GPT output
GTIOC1A

S124 N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A

S3A1 ⌧ ✓ ✓ ✓ ✓

S3A3 ⌧ ✓ ✓ ✓ ✓

S3A6 ⌧ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓

S5D3 ⌧ ✓ ✓ ✓ ✓

S5D5 ⌧ ✓ ✓ ✓ ✓

S5D9 ⌧ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓

4.2.26.2 I2S HAL Module APIs Overview

The I2S HAL module defines APIs for operations such as opening, muting, writing and reading. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

I2S HAL Module API Summary

Function Name Example API Call and Description

open g_i2s0.p_api->open(g_i2s0.p_ctrl, g_i2s0.p_cfg);
Initial configuration.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 863 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > I2S HAL Module APIs Overview

stop g_i2s0.p_api->stop(g_i2s0.p_ctrl,
direction_to_stop);
Stop communication. Transmission is stopped
when callback is called with I2S_EVENT_IDLE.
Reception is stopped when callback is called
with I2S_EVENT_RX_EMPTY.

mute g_i2s0.p_api->mute(g_i2s0.p_ctrl, mute_enable);
Enable or disable mute.

write g_i2s0.p_api->write(g_i2s0.p_ctrl, &data, bytes);
Write I2S data. All transmit data is queued when
callback is called with I2S_EVENT_TX_EMPTY.
Transmission is complete when callback is called
with I2S_EVENT_IDLE.

read g_i2s0.p_api->read(g_i2s0.p_ctrl, &data, bytes);
Read I2S data. Reception is complete when
callback is called with I2S_EVENT_RX_EMPTY.

writeRead g_i2s0.p_api->writeRead(g_i2s0.p_ctrl, &source,
&destination, bytes);
Simultaneously write and read I2S data.
Transmission and reception are complete when
callback is called with I2S_EVENT_IDLE.

infoGet g_i2s0.p_api->infoGet(g_i2s0.p_ctrl, &info);
Get instance specific information and store it in
provided pointer info.

close g_i2s0.p_api->close(g_i2s0.p_ctrl);
Allows driver to be reconfigured and may reduce
power consumption.

versionGet g_i2s0.p_api->versionGet(&version);
Get version and store it in provided pointer
version.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function successful.

SSP_ERR_OUT_OF_MEMORY The number of streams open at once is limited
to SF_AUDIO_PLAYBACK_CFG_MAX_STREAMS. If
this number is exceeded, an out of memory
error occurs.

SSP_ERR_TIMEOUT Timeout occurred before playback finished.

SSP_ERR_ASSERTION A critical assertion has failed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 864 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > I2S HAL Module APIs Overview

SSP_ERR_IN_USE Channel is running/busy.

SSP_NOT_OPEN Requested channel is not configured or API not
open.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.26.3 I2S HAL Module Operational Overview

The I2S HAL module supports audio communications using the I2S protocol. The driver supports the
SSI Peripheral on a Synergy MCU in I2S master/slave mode. It can send and receive uncompressed
audio data. It provides full-duplex I2S communication (SSI channel 0 only), interrupt-driven data
transmission, reception, and integration with the DTC transfer module.

I2S HAL Module Important Operational Notes and Limitations

I2S HAL Module Operational Notes

To enable audio data reception on channel 0, enable the SSI0 RXI interrupt. To enable audio data
transmission on channel 0, enable the SSI0 TXI interrupt. To enable both transmission and reception
on channel 0, enable both the SSI0 TXI and SSI0 RXI interrupts. To enable transmission or reception
on channel 1, enable the SSIn TXI RXI interrupt. In all cases, enable the SSIn INT interrupt.

When the interrupts are enabled in the BSP, the corresponding ISRs will be defined in the I2S driver.
The ISR will call the user-callback function registered in open.

I2S HAL Module Limitations

Refer to the latest SSP Release Notes for any additional operational limitations for this module.

4.2.26.4 Including the I2S HAL Module in an Application

This section describes how to include the I2S HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the I2S Driver to an application, simply add it to a thread using the stacks selection sequence
given in the following table. (The default name for the I2S Driver is g_i2s0. This name can be
changed in the associated Properties window.)

I2S HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_i2s0 I2S Driver on r_ssi Threads> HAL/Common
Stacks

New Stack> Driver>
Connectivity> I2S Driver on
r_ssi

When the I2S Driver on r_ssi is added to the thread stack as shown in the following figure, the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 865 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > Including the I2S HAL Module in an Application

configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 321: I2S HAL Module Stack

4.2.26.5 Configuring the I2S HAL Module

The I2S HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the I2S HAL Module on r_ssi

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 866 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > Configuring the I2S HAL Module

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enables or disables the
parameter checking.

Name g_i2s0 Module name.

Channel 0 Physical hardware channel.

Audio Clock Frequency (Hertz) 2822400 Input audio clock frequency,
used to generate the I2S clock.
Must be a multiple between 1
and 128 of: (sampling_freq_hz *
word_length_in_bits)

Sampling Frequency (Hertz) 44100 Sampling frequency of audio
data.

Operating Mode Master Mode, Slave Mode
Default: Master Mode

Operating mode of
communication (Master/Slave).

Data Bits 8 bits, 16, 18, 20, 22, 24
Default: 16 bits

Bit depth of audio data, which is
the size in bits of one sample of
audio data.

Word Length 8 bits, 16, 24, 32
Default: 16 bits

Word length of audio data,
must be at least the same size
as the bit depth (Data Bits
field).

WS Continue Mode Enabled, Disabled
Default: Disabled

Enable WS continue mode to
continue to output the word
select line when the peripheral
is idle. Disable to stop
outputting the word select line
when the peripheral is idle.

Name of I2S callback function
to be defined by user

NULL A user callback function must
be registered in open. The
callback will be called from the
interrupt service routine (ISR)
when the transmission FIFO
reaches the high watermark
point after all data for
transmission is transmitted or
when reception is complete
(the requested number of bytes
have been received).
Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 867 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > Configuring the I2S HAL Module

Transmit Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled
Default: Disabled

Transmit interrupt priority
selection

Receive Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled
Default: Disabled

Receive interrupt priority
selection

Idle/Error Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled
Default: Priority 12

Idle/error interrupt priority
selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower level modules can be desirable. For
example, it might be useful to select the DAC or I2S Channel based on the target hardware
implementation. The configurable properties for the lower level stack modules are given in the below
sections for completeness and as a reference.

Note
Most of the property settings for lower-level modules are fairly intuitive and usually can be determined by
inspection of the associated properties window from the SSP configurator.

Configuration Settings for the I2S HAL Module Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower-level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module.

Configurable Settings for the Transfer Driver on r_dtc Software Activation

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer0 Driver name.

Mode Normal Mode selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 868 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > Configuring the I2S HAL Module

Transfer Size 4 Bytes Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1, Software
Activation 2, Peripheral Events

Default: Software Activation 1

Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

ELC software event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Software Activation 1

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer1 Driver name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 869 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > Configuring the I2S HAL Module

Mode Normal Mode selection.

Transfer Size 4 Bytes Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1, Software
Activation 2, Peripheral Events

Default: Software Activation 1

Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

ELC software event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configurable Settings for the Timer Driver on r_agt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Name g_timer0 Module name.

Channel 0 Channel selection.

Mode Periodic Mode selection.

Period Value 2822400 *2 Period value selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 870 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > Configuring the I2S HAL Module

Period Unit Hertz Period unit selection.

Auto Start FALSE Auto start selection.

Count Source PCLKB, PCLKB/8, PCLKB/2,
LOCO, AGT0 Underflow, AGT0
fSub

Default: PCLKB

Count source selection.

AGTO Output Enabled True, False

Default: False

AGTO output selection.

AGTIO Output Enabled True, False

Default: False

AGTIO output selection.

Output Inverted True, False

Default: False

Output inverted selection.

Enable comparator A output pin True, False

Default: False

Enable comparator A output pin
selection.

Enable comparator B output pin True, False

Default: False

Enable comparator B output pin
selection.

Callback NULL Callback selection.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Interrupt priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configurable Settings for the Timer Driver on r_gpt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Name g_timer0 Module name.

Channel 0 Channel selection.

Mode Periodic Mode selection.

Period Value 2822400 *2 Period value selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 871 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > Configuring the I2S HAL Module

Period Unit Hertz Period unit selection.

Duty Cycle Value 50 Duty cycle value selection.

Duty Cycle Unit Unit Raw Counts, Unit Percent,
Unit Percent x 1000

Default: Unit Raw Counts

Duty cycle unit selection.

Auto Start FALSE Auto start selection.

GTIOCA Output Enabled True, False

Default: False

GTIOCA output enabled
selection.

GTIOCA Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

GTIOCA stop level selection.

GTIOCB Output Enabled True, False

Default: False

GTIOCB output enabled
selection.

GTIOCB Stop Level Pin Level Low, Pin Level High,
Pin Level Retained

Default: Pin Level Low

GTIOCB stop level selection.

Callback NULL Callback selection.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Interrupt priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

I2S HAL Module Clock Configuration

The SSI module uses the peripheral clock (PCLKB) available from the Clock configuration window. It
also uses an external clock input to the AUDIO_CLK pin.

I2S HAL Module Pin Configuration

The SSI peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device.

Configure the SSI RX and/or TX pins for the selected SSI channel (Pins tab > Peripherals > SSI >
SSIn > SSITXD0/SSIRXD0). For channel 0, enable one or both of these pins. For channel 1, enable
the SSIDATA1 pin.

Configure the word select and clock pins (Pins tab > Peripherals > SSI > SSIn > SSITWSn and
SSISCKn). Both of these pins are required in most cases. Consult the datasheet of the I2S device

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 872 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > Configuring the I2S HAL Module

used for the required pins.

Configure the audio clock pin (Pins tab > Peripherals > SSI > SSI0_SSI1_AUDIO_CLK) for SSI.
Connect an external audio clock to this clock input pin. If a GPT timer is used to generate the audio
clock, configure the GPT timer output pin (Pins tab > Peripherals > GPT1 > GPTn > GTIOCx) and
connect the GPT output pin used to the audio clock input pin.

The following table illustrates the method for selecting the pins within the SSP configuration window
and the subsequent table illustrates an example selection for the associated pins:

Pin Selection for the I2S HAL Module on r_ssi

Resource ISDE Tab Pin selection Sequence

ACMPLP Pins Select Peripherals>
Analog:ACMP.

Note
The selection sequence assumes SSI0 is the desired hardware target for the driver.

Pin Configurable Settings for the I2S Driver on SSI

Pin Configuration Property Settings Description

Pin Group Selection _A only, Mixed Pin group for I2S port.

Operation Mode Custom, Disabled Operation selection.

SSISCK None, P400

Default: None

AUDIO_CLK pin(P400), used in
this application

Note
The example values are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

Pin Configuration Settings for I2S Driver on SSI0

Pin Configuration Property Settings Description

Pin Group Selection _A only, _B only, Mixed Pin group for I2S port.

Operation Mode Enabled, Custom, Disabled Operation selection.

SSISCK None, P112

Default: None

SSISCK pin (P112), used in this
application.

SSIWS None, P113

Default: None

SSIWS pin (P113), used in this
application.

SSITXD None, P115

Default: None

SSITXD pin (P115), used in this
application.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 873 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > Configuring the I2S HAL Module

SSIRXD None, P114

Default: None

SSIRXD pin (P114), used in this
application.

Note
The example values are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

Pin Configuration Settings for I2S Driver on SSI1

Pin Configuration Property Settings Description

Pin Group Selection _A only, _B only, Mixed Pin group for I2S port.

Operation Mode Enabled, Custom, Disabled Operation selection.

SSISCK None, P204

Default: None

SSI Serial Clock, not used in this
application.

SSIWS None, P205

Default: None

SSI Stereo pin selection, not
used in this application.

SSIDATA None, P206

Default: None

SSI Data pin selection, not used
in this application.

Note
The example values are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

4.2.26.6 Using the I2S HAL Module in an Application

The typical steps in using the I2S HAL module in an application are:

1. Open the I2S HAL module using the i2s_api_t::open API.
2. Use the i2s_api_t::write API to write audio data to the I2S bus.
3. Wait for a callback with I2S_EVENT_TX_EMPTY and free the source buffer.
4. Use the i2s_api_t::read API to read data from the I2S bus.
5. Wait for a callback with I2S_EVENT_RX_FULL before accessing the destination buffer or

reading the next buffer.
6. Use other APIs as needed by the application.
7. Close the module with the i2s_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 874 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I2S Driver > Using the I2S HAL Module in an Application

Figure 322: Flow Diagram of a Typical I2S HAL Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 875 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > GPT Input Capture on r_gpt Driver

4.2.27 GPT Input Capture on r_gpt Driver

4.2.27.1 GPT Input Capture HAL Module Introduction

The Input Capture HAL module provides an API for measuring input pulse-width and pulse-period
measurement. The Input Capture HAL module also configures the input capture parameters to use
with the GPT peripheral on the Synergy MCU. A user-defined callback can be created to acquire the
value each time a new measurement is complete.

GPT Input Capture HAL Module Features

The Input Capture HAL module configures the GPT for an input capture function.

The Input Capture HAL allows the user to perform the following tasks:
Initialize the module
Enable input capture measurement
Disable input capture measurement
Get the status (running or not) of the measurement counter
Get the last captured timer/overflows counter value
Close the input capture operation

The Input Capture HAL module supports:
Pulse-width measurement and pulse-period measurement
Rising-edge or falling-edge measurement start
One-shot or periodic mode
Hardware-enable signals to enable captures (low enable/high enable)
Callback function with the following events:

Counter overflow
Input capture occur

Callback structure (input_capture_callback_args_t) that provides data on the
interrupting event, including which interrupt occurs and the associated counter
values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 876 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > GPT Input Capture on r_gpt Driver > GPT Input Capture HAL Module Introduction

Figure 323: Input Capture HAL Module Block Diagram

GPT Input Capture Hardware support details

The following hardware features are, or are not, supported by SSP for GPT_INPUT_CAPTURE.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group Saw
Waves

Triangle
Waves *

PWM
waveform

for
controlling
brushless

DC
motors

Compare
match
output

for Low,
High,

and Toggle

Input
capture
function

Automatic
addition of
dead time

S124 ⌧ ⌧ ⌧ ⌧ ✓ ⌧

S128 ⌧ ⌧ ⌧ ⌧ ✓ ⌧

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 877 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > GPT Input Capture on r_gpt Driver > GPT Input Capture HAL Module Introduction

S1JA ⌧ ⌧ ⌧ ⌧ ✓ ⌧

S3A1 ⌧ ⌧ ⌧ ⌧ ✓ ⌧

S3A3 ⌧ ⌧ ⌧ ⌧ ✓ ⌧

S3A6 ⌧ ⌧ ⌧ ⌧ ✓ ⌧

S3A7 ⌧ ⌧ ⌧ ⌧ ✓ ⌧

S5D3 ⌧ ⌧ ⌧ ⌧ ✓ ⌧

S5D5 ⌧ ⌧ ⌧ ⌧ ✓ ⌧

S5D9 ⌧ ⌧ ⌧ ⌧ ✓ ⌧

S7G2 ⌧ ⌧ ⌧ ⌧ ✓ ⌧

MCU Group PWM Mode Phase Count
Function

Event link function
through ELC HAL

driver

Noise filtering
function

S124 ⌧ ⌧ ⌧ ✓

S128 ⌧ ⌧ ⌧ ✓

S1JA ⌧ ⌧ ⌧ ✓

S3A1 ⌧ ⌧ ⌧ ✓

S3A3 ⌧ ⌧ ⌧ ✓

S3A6 ⌧ ⌧ ⌧ ✓

S3A7 ⌧ ⌧ ⌧ ✓

S5D3 ⌧ ⌧ ⌧ ✓

S5D5 ⌧ ⌧ ⌧ ✓

S5D9 ⌧ ⌧ ⌧ ✓

S7G2 ⌧ ⌧ ⌧ ✓

4.2.27.2 GPT Input Capture HAL Module APIs Overview

The Input Capture HAL module interface defines APIs for opening, closing, enabling, disabling,
accessing status information and last-capture value accessing using the General PWM Timer (GPT)
with Input Capture. A complete list of the available APIs, an example API call and a short description
of each can be found in the following table. A table of status return values follows the HAL Module
API Summary.

Input Capture HAL Module API Summary

Function Name Example API Call and Description

open g_input_capture.p_api->open(g_input_capture.p_
ctrl, g_input_capture.p_cfg);
Opens the Input Capture HAL and initializes
configuration.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 878 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > GPT Input Capture on r_gpt Driver > GPT Input Capture HAL Module APIs Overview

close g_input_capture.p_api->close(g_input_capture.p
_ctrl);
Closes the input capture operation. Allow drive
to be reconfigured, and may reduce power
consumption.

enable g_input_capture.p_api->enable(g_input_capture.
p_ctrl);
Enables input capture measurement.

disable g_input_capture.p_api->
disable(g_input_capture.p_ctrl);
Disables input capture measurement.

infoGet g_input_capture.p_api->infoGet(g_input_capture.
p_ctrl, &input_capture_info);
Gets the status (running or not) of the
measurement counter.

lastCaptureGet g_input_capture.p_api->
lastCaptureGet(g_input_capture.p_ctrl,
&input_capture_counter);
Gets the last captured timer/overflows counter
value.

versionGet g_input_capture.p_api->
versionGet(&input_capture_version);
Retrieve the API version with the
input_capture_version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_ASSERTION One of the parameters is NULL. Or the channel
requested in the p_cfg parameter may not be
available on the device selected in r_bsp_cfg.h
or p_cfg->mode is invalid.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value or ISR is not
enabled.

SSP_ERR_IN_USE Attempted to open an already open device
instance.

SSP_ERR_NOT_OPEN The channel is not opened.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 879 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > GPT Input Capture on r_gpt Driver > GPT Input Capture HAL Module Operational Overview

4.2.27.3 GPT Input Capture HAL Module Operational Overview

The Input Capture HAL module controls the GPT HAL module units on a Synergy microcontroller (as
configured by the user). It directly accesses the GPT hardware without using any RTOS elements and
provides convenient APIs to simplify development.

When a normal measurement is complete and a callback is available (with interrupts enabled,) the
Input Capture HAL module invokes the callback with the argument input_capture_callback_args_t.

The argument input_capture_callback_args_t indicates the channel, the event input_capture_event_t,
the value of the timer captured when the interrupt occurred, and the number of counter overflows
that occurred during this measurement.

If the interrupts are not enabled, the values read by the APIs would be the last captured
timer/overflows counter value.

GPT Input Capture HAL Module Important Operational Notes and Limitations

GPT Input Capture HAL Module Operational Notes

GPT Input Capture Measurement Mode

The input capture interface provides support for one-shot measurement and periodic measurement.
The GPT hardware does not natively support one-shot functionality. Code is automatically included in
the interrupt service routine (ISR) to stop and clear the timer. For this reason, ISRs must be enabled
for one-shot mode, even when the callback is unused.

GPT Input Capture Signal

The input capture measurement starts when the input capture signal edge (rising or falling) is
detected on the input capture signal pin (GTIOCA/GTIOCB) and the enable condition is met. The
enable condition is defined by the enable level and can be disabled (none), or a specified low or high
level on the input capture enable pin (GTIOCA/GTIOCB). The input capture enable pin is the pin not
used as the input capture signal pin.

Converting Measurement Counts to Time

When a measurement completes, the raw-count data and the number of overflows is returned to the
user in the callback function.

If desired, the raw measurement data can be converted to logical time units in the callback or user
application. To convert the raw data, the current PCLKD clock frequency and its pre-scaler value,
number of overflows, maximum counter value, and measurement counts should be considered. The
measurement counts and the number of overflows are provided in the callback arguments
input_capture_callback_args_t.

The recommended method to obtain the current PCLKD frequency is to use the
cgc_api_t::systemClockFreqGet API. The input clock frequency is the PCLKD frequency divided by the
pre-scalar value and is represented as clk_freq_hz in the following Input Capture Time Calculation
table.

The maximum counter value on the S7G2 (all channels), S3A7 (all channels), and S124 (channel 0) is
0xFFFFFFFF. The maximum counter value for S124 (channels 1 - 6) is 0xFFFF. This maximum counter
value plus one (since counter starts from zero) is represented as max_counts in the following table:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 880 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > GPT Input Capture on r_gpt Driver > GPT Input Capture HAL Module Operational Overview

Input Capture Time Calculation

Desired Time Units Formula

Nanoseconds (ns) time_ns = ((overflows * max_counts) + counter)
* 1000000000 / clk_freq_hz

Microseconds (us) time_ns = ((overflows * max_counts) + counter)
* 1000000 / clk_freq_hz

Milliseconds (ms) time_ns = ((overflows * max_counts) + counter)
* 1000 / clk_freq_hz

Seconds (s) time_ns = ((overflows * max_counts) + counter)
/ clk_freq_hz

GPT Input Capture HAL Module Limitations

Currently, the Input Capture HAL module supports only pulse-width measurement and pulse-
period measurement.
Refer to the latest SSP Release Notes for any additional operational limitations for this
module.

4.2.27.4 Including the GPT Input Capture HAL Module in an Application

This section describes how to include the Input Capture HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Input Capture Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the Input Capture Driver is
g_input_capture0. This name can be changed in the associated Properties window.)

Input Capture HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_input_captureInput Capture
Driver on r_gpt_input_capture

Threads>
HAL/Common Stacks

New Stack> Driver> Timers
> Input Capture Driver on
r_gpt_input_capture

When the Input Capture Driver on r_gpt_input_capture is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 881 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > GPT Input Capture on r_gpt Driver > Including the GPT Input Capture HAL Module in an Application

Figure 324: Input Capture HAL Module Stack

4.2.27.5 Configuring the GPT Input Capture HAL Module

The Input Capture HAL Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Input Capture HAL Module on r_gpt_input_capture

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_input_capture Module name.

Channel 0 Physical hardware channel.

Mode Pulse Width, Period

Default: Pulse Width

Measures inputs from the
Signal edge until the opposite
edge.

Signal Edge Rising, Falling

Default: Rising

Start measurement on rising or
falling edge. Measurement
stops on the opposite edge.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 882 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > GPT Input Capture on r_gpt Driver > Configuring the GPT Input Capture HAL Module

Repetition Periodic, One Shot

Default: Periodic

Capture a single measurement,
then disable captures (one
shot) until enable is called, or
capture measurements
continuously (periodic).

Auto Start True, False

Default: True

Set to true to enable
measurements after configuring
or false to leave the
measurements disabled until
enable is called.

Callback NULL A user callback function must
be registered in open. The
callback will be called from the
interrupt service routine (ISR)
each time the timer period
elapses.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Input Capture Signal Pin GTIOCA, GTIOCB

Default: GTIOCA

Select the input pin used to
trigger the start of a
measurement.

GTIOCx Signal Filter PCLK/1, PCLK/4, PCLK/16,
PCLK/64

Default: PCLK/1

The noise filter samples the
external signal at intervals of
the PCLK divided by one of the
values. When 3 consecutive
samples are at the same level
(high or low), that level is
passed on as the observed
state of the signal.

Clock Divider PCLK/1, PCLK/4, PCLK/16,
PCLK/64, PCKL/256, PCLK/1024

Default: PCLK/1

Clock divider used to scale the
measurement counter.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 883 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > GPT Input Capture on r_gpt Driver > Configuring the GPT Input Capture HAL Module

Input Capture Enable Level None, Low, High

Default: None

Each GPT channel has 2 I/O pins
(GTIOCA and GTIOCB). One
must be selected as the Input
Capture Signal Pin. The other
GPT I/O pin can be used as a
hardware enable signal to
enable captures. Select None
and captures are always
enabled, select low and
captures are enabled only while
the enable input pin is low,
select high and captures are
enabled only while the enable
input pin is high.

Input Capture Enable Filter Enable, Disable

Default: Disable (No filtering)

Enable/Disable the input noise
filter for input on GTIOCx pin

Capture Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Capture interrupt priority
selection.

Overflow Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Overflow interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

GPT Input Capture HAL Module Clock Configuration

The GPT HAL module uses the PCLKD as its clock source. The PCLKD frequency is set using the SSP
configurator clocks tab prior to a build, or using the CGC Interface at run-time.

GPT Input Capture HAL Module Pin Configuration

To access a particular channel and pin, the GTIOCx pins must be set in the Pins tab of the ISDE. The
following table provides the method for selecting the pins within the SSP configuration window and
the subsequent table provides an example selection for GTIOCx pins.

Pin Selection for the Input Capture HAL Module on r_gpt_input_capture

Resource ISDE Tab Pin selection Sequence

GPT Input Capture Pins Select Peripherals> Timer:
GPT> GPT0

Note
The selection sequence assumes GPT0 is the desired hardware target for the driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 884 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > GPT Input Capture on r_gpt Driver > Configuring the GPT Input Capture HAL Module

Pin Configuration Settings for the Input Capture HAL Module on r_kint

Property Value Description

Pin Group Selection Mixed, _A Only, _B Only

Default: Mixed

Pin grouping selection.

Operation Mode Disabled, GTIOCA or GTIOCB,
GTIOCA and GTIOCB

Default: Disable

Select GTIOCA or GTIOCB as the
Operation Mode for Input
Capture on GPT.

GTIOCA None, P300, P512

Default: None

GTIOCA Pin.

GTIOCB None, P108, P511

Default: None

GTIOCB Pin.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.

4.2.27.6 Using the GPT Input Capture HAL Module in an Application

The typical steps in using the Input Capture HAL module in an application are:

1. Initialize the module using the input_capture_api_t::open API.
2. The desired value can be found either in the main loop routine using the

input_capture_api_t::lastCaptureGet API or in the callback function.
3. The capture and overflow interrupt can be disabled and the timer stopped using

theinput_capture_api_t::disable API.
4. The capture and overflow interrupt can be enabled and the timer started using the

input_capture_api_t::enable API.
5. The status of the captured counter (running or stopped) can be queried using

input_capture_api_t::infoGet API.
6. The module can be closed using the input_capture_api_t::close API once done.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 885 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > GPT Input Capture on r_gpt Driver > Using the GPT Input Capture HAL Module in an Application

Figure 325: Flow Diagram of a Typical Input Capture HAL Module Application

4.2.28 I/O Port Driver

4.2.28.1 I/O PORT HAL Module Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 886 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I/O Port Driver > I/O PORT HAL Module Introduction

The I/O Port HAL module implements a high-level API for controlling I/O pins, configuring the board's
pins and manipulating I/O pins. The operating state of an I/O pin can be set via the Synergy
configurator. When the Synergy project is built, a pin configuration file is created. When the
application runs, the BSP will configure the MCU IO port accordingly, using the same API functions
described in this document.

I/O PORT HAL Module Features

The I/O PORT HAL module can perform the following functions:

Create an event link between two blocks.
Break that event link between two blocks.
Generate one of two software events that interrupt the CPU.

Figure 326: I/O PORT HAL Module Block Diagram

I/O Port Hardware support details

The following hardware features are, or are not, supported by SSP for GPIO.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 887 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I/O Port Driver > I/O PORT HAL Module Introduction

N/A Not supported by MCU

MCU
Group

Port
Direction
Setting

Input Data
Read

function

Output
Port

Write
function

Pin Mode
Control

Ethernet
Mode

Configurati
on

ELC_PORT
n Event

Input Read
function*

ELC_PORT
n Event
Output

Setting *

S124 ✓ ✓ ✓ ✓ N/A ✓ ✓

S128 ✓ ✓ ✓ ✓ N/A ✓ ✓

S1JA ✓ ✓ ✓ ✓ N/A ✓ ✓

S3A1 ✓ ✓ ✓ ✓ N/A ✓ ✓

S3A3 ✓ ✓ ✓ ✓ N/A ✓ ✓

S3A6 ✓ ✓ ✓ ✓ N/A ✓ ✓

S3A7 ✓ ✓ ✓ ✓ N/A ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note: Event Linking would have to be set up by the user, rather than using the ELC API.

4.2.28.2 I/O PORT HAL Module APIs Overview

The I/O Port HAL module defines APIs for reading and writing from particular pins and ports. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

I/O PORT HAL Module API Summary

Function Name Example API Call and Description

init g_ioport.p_api->init(g_ioport.p_cfg);
Initialize configuration of multiple pins.

pinCfg g_ioport.p_api->pinCfg(IOPORT_PORT_00_PIN_00
, IOPORT_CFG_IRQ_ENABLE |
IOPORT_CFG_PORT_DIRECTION_INPUT);
Configure settings for an individual pin.

pinDirectionSet g_ioport.p_api->pinDirectionSet(IOPORT_PORT_0
0_PIN_00, IOPORT_DIRECTION_INPUT);
Set the pin direction of a pin.

pinEventInputRead g_ioport.p_api->pinEventInputRead(IOPORT_POR
T_00_PIN_00, &pin_level);
Read the event (ELC) input data of the specified
pin and return the level.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 888 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I/O Port Driver > I/O PORT HAL Module APIs Overview

pinEventOutputWrite g_ioport.p_api->pinEventOutputWrite(IOPORT_P
ORT_00_PIN_00, IOPORT_PIN_LEVEL_HIGH);
Write pin event (ELC) data.

pinEthernetModeCfg g_ioport.p_api->pinEthernetModeCfg(IOPORT_ET
HERNET_CHANNEL_0,
IOPORT_ETHERNET_MODE_MII);
Configure the PHY mode of the Ethernet
channels.

pinRead g_ioport.p_api->pinRead(IOPORT_PORT_00_PIN_
00, &pin_level);
Read level of a pin.

pinWrite g_ioport.p_api->pinWrite(IOPORT_PORT_00_PIN_
00, IOPORT_PIN_LEVEL_HIGH);
Write specified level to a pin.

portDirectionSet g_ioport.p_api->portDirectionSet(IOPORT_PORT_
00, direction_values, mask);
Set the direction of one or more pins on a port.

portEventInputRead g_ioport.p_api->portEventInputRead(IOPORT_PO
RT_00, &pin_levels);
Read captured event (ELC) data for a port.

portEventOutputWrite g_ioport.p_api->portEventOutputWrite(IOPORT_P
ORT_00, pin_levels, mask);
Write event (ELC) output data for a port.

portRead g_ioport.p_api->portRead(IOPORT_PORT_00,
&pin_levels);
Read states of pins on the specified port.

portWrite g_ioport.p_api->portWrite(IOPORT_PORT_00,
pin_levels, mask);
Write to multiple pins on a port.

versionGet g_ioport.p_api->versionGet(&version);
Retrieve version information using the version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT The port/pin/mask/direction/level (and so forth)
not valid.

SSP_ERR_ASSERTION Unexpected null pointer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 889 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I/O Port Driver > I/O PORT HAL Module APIs Overview

SSP_ERR_UNSUPPORTED Feature not supported – for instance Ethernet
configuration not supported on the device.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.28.3 I/O PORT HAL Module Operational Overview

The I/O Port HAL module provides the ability to access the I/O ports of a device at both bit and port
level; both port and pin direction can be changed. In addition, a number of configuration APIs are
provided to change the functionality of individual pins.

The I/O Port HAL module provides the following operations for configuring pins:

Initializes the driver – performed by calling ioport_api_t::init API:
Performs parameter checking and processes error conditions.
Handles VBATT domain pin configuration.
Writes PFS registers for pins.

Configures pin – performed by calling ioport_api_t::pinCfg API:
Performs parameter checking and processes error conditions (checks pin number
pin, VBATT support).
Writes PFS register for the pin.

Reads pin level – performed by calling ioport_api_t::pinRead API:
Performs parameter checking and processes error conditions (checks pin number
pin).
Reads PFS register for the pin.

Reads all pin levels on a port – performed by calling ioport_api_t::portRead API:
Performs parameter checking and processes error conditions (checks port number
port).
Reads current value of PCNTR register value for the specified port.

Writes pin level – performed by calling ioport_api_t::pinWrite API:
Performs parameter checking and processes error conditions (check pin number
pin and written level level).
Write to PFS register for the pin.

Write multiple pin levels on a port – performed by calling ioport_api_t::portWrite API:
Performs parameter checking and processes error conditions (checks port number
port and pin mask mask).
Reads current configuration from the PCNTR register for the specified port.
Writes the pin levels to the PCNTR register for the specified port accordingly to the
mask, preserving pin levels out of the scope.

Sets the direction of multiple pins on a port – performed by calling
ioport_api_t::portDirectionSet API:

Performs parameter checking and processes error conditions (checks port number
port and pin mask mask).
Reads current configuration from the PCNTR register for the specified port.
Writes the pin levels to the PCNTR register for the specified port accordingly to the
mask, preserving pin directions out of the scope.

Writes pin direction – performed by calling ioport_api_t::pinDirectionSet API:
Performs parameter checking and processes error conditions (checks pin number
pin and written direction direction).
Writes to the PFS register for the pin.

Reads event (ELC) port input – performed by calling ioport_api_t::portEventInputRead API:
Performs parameter checking and processes error conditions (checks port number

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 890 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I/O Port Driver > I/O PORT HAL Module Operational Overview

port).
Reads current value of the PCNTR register value for the specified port.

Reads event (ELC) pin input – performed by calling ioport_api_t::pinEventInputRead API:
Performs parameter checking and processes error conditions (checks pin number
pin).
Reads current value of the PCNTR register value for the specified pin's port.
Gets the pin level by applying a pin mask to the PCNTR register value.

Writes event (ELC) port output – performed by calling the
ioport_api_t::portEventOutputWrite API:

Performs parameter checking and processes error conditions (checks port number
port and pin mask mask_value).
Reads current configuration from the PCNTR register for the specified port.
Writes the pin levels to the PCNTR register for the specified port accordingly to the
mask preserving pin levels out of the event scope.

Writes event (ELC) pin output – performed by calling ioport_api_t::pinEventOutputWrite API:
Performs parameter checking and processes error conditions (checks pin number
pin and written level ioport_api_t::pinRead).
Writes the pin level to the PCNTR register for the specified pin's port accordingly to
the mask that is preserving pin levels out of the event scope.

Configures Ethernet channel PHY mode – performed by calling
ioport_api_t::pinEthernetModeCfg API:

Performs parameter checking and processes error conditions (checks Ethernet
channel channel and mode mode).
Updates the Ethernet Control Register (PFENET).

I/O PORT HAL Module Important Operational Notes and Limitations

I/O PORT HAL Module Operational Notes

A bit mask of 16 bits needs to be applied in order to read and write to a specific pin on a
port; ports are numbered from 0 (LSB) to 15 (MSB).
Configuring the Ethernet port (selection of the RMII or MII output format) using the
ioport_api_t::pinEthernetModeCfg API function on MCUs without an Ethernet Port will return
an Unsupported Error message. To avoid this, the developer should verify the target MCU
has an Ethernet port available. This information is easily found in the target MCU hardware
user's manual. Simply verify that an Ethernet peripheral is available on the target MCU
before beginning development.

I/O PORT HAL Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.28.4 Including the I/O PORT HAL Module in an Application

This section describes how to include the I/O PORT HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the I/O Port Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the I/O Port Driver is g_ioport0. This

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 891 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I/O Port Driver > Including the I/O PORT HAL Module in an Application

name can be changed in the associated Properties window.)

I/O PORT HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_ioport I/O Port driver on
r_ioport

Threads Highlight HAL/Common and
select New> Driver>
System> I/O Port Driver on
r_ioport

When the I/O Port Driver on r_ioport is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 327: I/O PORT HAL Module Stack

4.2.28.5 Configuring the I/O PORT HAL Module

The I/O PORT HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the I/O PORT HAL Module on r_ioport

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 892 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I/O Port Driver > Configuring the I/O PORT HAL Module

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_ioport Module name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

I/O PORT HAL Module Clock Configuration

The I/O PORT HAL module does not require a specific clock configuration.

I/O PORT HAL Module Pin Configuration

There are no pins associated directly with the I/O PORT HAL Module that require configuration.

4.2.28.6 Using the I/O PORT HAL Module in an Application

The typical steps in using the I/O PORT HAL module in an application are:

1. Initialize the driver using the ioport_api_t::init API.
2. Configure the pins using the ioport_api_t::pinCfg API.
3. Read from specified pins and ports using the ioport_api_t::pinRead and

ioport_api_t::portRead APIs.
4. Write to specified pins and ports using the ioport_api_t::pinWrite and ioport_api_t::portWrite

APIs.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 893 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > I/O Port Driver > Using the I/O PORT HAL Module in an Application

Figure 328: Flow Diagram of a Typical I/O PORT HAL Module Application

4.2.29 Watchdog Driver on r_iwdt

4.2.29.1 Independent Watchdog Timer HAL Module Introduction

The Independent Watchdog Timer (IWDT) HAL module provides a high-level API for watchdog timer
applications and uses the IWDT peripheral on the Synergy MCU. A user-defined callback can be
created to respond to event notifications.

Independent Watchdog Timer HAL Module Features

The IWDT HAL module supports the following key features:

When the WDT underflows or is refreshed outside of the permitted refresh window, one of
the following events can occur:

Resetting of the device
Generation of an NMI

Supports the internal Watchdog timer peripheral (IWDT), which has its own clock source
which improves safety.
Supports automatic hardware configuration after reset.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 894 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver on r_iwdt > Independent Watchdog Timer HAL Module Introduction

Figure 329: Independent Watchdog Timer HAL Module Block Diagram

Independent Watchdog Timer Hardware Support Details

The following hardware features are, or are not, supported by SSP for IWDT:

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group Count down Autostart mode Reset output Interrupt request
output

S124 ✓ ✓ ✓ ✓

S128 ✓ ✓ ✓ ✓

S1JA ✓ ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 895 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver on r_iwdt > Independent Watchdog Timer HAL Module Introduction

S3A7 ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓

MCU Group Sleep mode
count stop

control
output

Event link
function
through
ELC HAL
driver

Window
function

Conditions
for stopping
the Counter

–
reset/underfl

ow-
refresh error

Refresh
error and

under flow
error detect

Reading
the counter

value

S124 ⌧ ⌧ ✓ ✓ ✓ ✓

S128 ⌧ ⌧ ✓ ✓ ✓ ✓

S1JA ⌧ ⌧ ✓ ✓ ✓ ✓

S3A1 ⌧ ⌧ ✓ ✓ ✓ ✓

S3A3 ⌧ ⌧ ✓ ✓ ✓ ✓

S3A6 ⌧ ⌧ ✓ ✓ ✓ ✓

S3A7 ⌧ ⌧ ✓ ✓ ✓ ✓

S5D3 ⌧ ⌧ ✓ ✓ ✓ ✓

S5D5 ⌧ ⌧ ✓ ✓ ✓ ✓

S5D9 ⌧ ⌧ ✓ ✓ ✓ ✓

S7G2 ⌧ ⌧ ✓ ✓ ✓ ✓

MCU Group Selecting the clock frequency
division ratio after a reset

Selecting the timeout period of
the

independent watchdog timer

S124 ⌧ ✓ Set by the OFS registers in
the BSP

S128 ⌧ ✓ Set by the OFS registers in
the BSP

S1JA ⌧ ✓ Set by the OFS registers in
the BSP

S3A1 ⌧ ✓ Set by the OFS registers in
the BSP

S3A3 ⌧ ✓ Set by the OFS registers in
the BSP

S3A6 ⌧ ✓ Set by the OFS registers in
the BSP

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 896 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver on r_iwdt > Independent Watchdog Timer HAL Module Introduction

S3A7 ⌧ ✓ Set by the OFS registers in
the BSP

S5D3 ⌧ ✓ Set by the OFS registers in
the BSP

S5D5 ⌧ ✓ Set by the OFS registers in
the BSP

S5D9 ⌧ ✓ Set by the OFS registers in
the BSP

S7G2 ⌧ ✓ Set by the OFS registers in
the BSP

4.2.29.2 Independent Watchdog Timer HAL Module APIs Overview

The IWDT HAL module defines APIs for open, refresh, read and get status. A complete list of the
available APIs, an example API call and a short description of each can be found in the following
table. A table of status return values follows the API summary table.

Independent Watchdog Timer HAL Module API Summary

Function Name Example API Call and Description

cfgGet g_wdt0.p_api->cfgGet(g_wdt0.p_ctrl,
g_wdt0.p_cfg);
Initialize the iWDT in register start mode. In auto-
start mode with NMI output it registers the NMI
callback.

open g_wdt0.p_api->open(g_wdt0.p_ctrl,
g_wdt0.p_cfg);
Initialize the iWDT in register start mode. In auto-
start mode with NMI output it registers the NMI
callback.

refresh g_wdt0.p_api->refresh(g_wdt0.p_ctrl);
Refresh the watchdog timer.

statusGet g_wdt0.p_api->statusGet(g_wdt0.p_ctrl,
&status);
Read the status of the iWDT.

statusClear g_wdt0.p_api->statusClear(g_wdt0.p_ctrl,
clear);
Clear the status flags of the iWDT.

counterGet g_wdt0.p_api->counterGet(g_wdt0.p_ctrl,
&counter);
Read the current iWDT counter value.

tiimeoutGet g_wdt0.p_api->timeoutGet(g_wdt0.p_ctrl,
&timeout);
Read the watchdog timeout values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 897 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver on r_iwdt > Independent Watchdog Timer HAL Module APIs Overview

versionGet g_wdt0.p_api->versionGet(&version);
Retrieve the API version using the version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function successfully executed.

SSP_ERR_ASSERTION Null Pointer(s).

SSP_ERR_INVALID_ARGUMENT One or more configuration options is invalid.

SSP_ERR_INVALID_MODE An attempt to open the WDT in register-start
mode when the OFS0 register is configured for
auto-start mode. Or to open the WDT in auto-
start mode when the OSF0 is configured for
register start mode.

SSP_ERR_ABORTED Invalid clock divider for this watchdog.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.29.3 Independent Watchdog Timer HAL Module Operational Overview

The IWDT HAL module configures the IWDT Interface. When the IWDT underflows or is refreshed
outside of the permitted refresh window, one of the following events can occur:

Resetting of the device
Generation of an NMI

The following figure shows an example of the operation of the IWDT. When refreshed in the valid
refresh period of the counter the timer count value is reset. If the count is allowed to underflow or
refresh occurs outside of the valid refresh period, the IWDT resets the device or generates an NMI.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 898 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver on r_iwdt > Independent Watchdog Timer HAL Module Operational Overview

Figure 330: Independent Watchdog Timer HAL Module Operational Diagram

 All series of Synergy microcontrollers have an option-setting Memory which can be used to set the
operating state of peripherals after a reset. The OFS can be used to set the state of the IWDT, WDT,
LVD and CGC HOCO.

The following table details which parameters of the IWDT can be configured by the OFS registers.

Note
The IWDT can only be configured via the OFS registers. The IWDT does not support Register Start mode.

Control Description

IWDT Start Mode Select Automatically starts the IWDT after a Reset, if
enabled.

IWDT Timeout Period Specifies the IWDT timeout (number of clock
cycles)
128 cycles
512 cycles
1024 cycles
2048 cycles

IWDT-Dedicated Clock Frequency Division Ratio 1
1/16
1/32
1/64
1/128
1/256

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 899 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver on r_iwdt > Independent Watchdog Timer HAL Module Operational Overview

IWDT Window End Position 25
%50
%75
%100% (no window end position set)

IWDT Window Start Position 25
%50
%75
%100% (no window start position set)

IWDT Reset Interrupt Request The IWDT can either generate an Interrupt
Signal or a Reset signal.

IWDT Stop Control The IWDT can continue to count or Stop counting
in Low Power Mode.

Note
For further information on the contents of the OFS0 register, see the Synergy MCU hardware manual.

The OFS register values are set via the properties dialog of the BSP tab of Synergy Configuration
editor as shown in the following figures:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 900 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver on r_iwdt > Independent Watchdog Timer HAL Module Operational Overview

Figure 331: Independent Watchdog Timer HAL Module Configuration Screens

Independent Watchdog Timer HAL Module Important Operational Notes and Limitations

Independent Watchdog Timer HAL Module Operational Notes

IWDT HAL Module Period Calculation

The IWDT operates from IWDTCLK. Assuming largest parameters for the WDT and an IWDTCLK
frequency of 15 kHz, the time from the last refresh to device reset or NMI generation will be just
under 35 seconds as detailed below.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 901 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver on r_iwdt > Independent Watchdog Timer HAL Module Operational Overview

IWDTLCK = 15 kHz

Clock division ratio = IWTCLK/256

Timeout period = 2048 cycles

IWDT clock frequency = 15 kHz / 256 = 58.59 Hz

Cycle time = 1 / 58.59 Hz = 17.07 ms

Timeout = 17.07 ms x 2048 cycles = 34.95 seconds

Triggering DMAC/DTC with the IWDT HAL Module

To trigger a transfer of data using the DMAC or DTC peripheral when the watchdog counter
underflows or when a refresh is attempted outside of the valid refresh period, configure the
DMAC/DTC transfer with activation_source set to ELC_EVENT_IWDT_UNDERFLOW. See the
appropriate module guide for additional information.

Triggering ELC Events with the IWDT HAL Module

The IWDT can trigger the start of other peripherals as available with the Event Link Controller (ELC).
See the ELC HAL module guide for additional information.

Independent Watchdog Timer HAL Module Limitations

When using a J-Link debugger, the IWDT counter does not count and therefore will not reset
the device or generate an NMI.
When there is no active task ready to run, ThreadX puts the MCU into sleep mode. If the
IWDT is configured to stop the counter in low-power mode, then your application must
restart the timer when used with the ThreadX RTOS.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.29.4 Including the Independent Watchdog Timer HAL Module in an Application

This section describes how to include the Independent Watchdog Timer HAL Module in an application
using the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Independent Watchdog Timer Driver to an application, simply add it to a thread using the
stacks selection sequence given in the following table. (The default name for the Independent
Watchdog Timer Driver is g_iwdt0. This name can be changed in the associated Properties window.)

Independent Watchdog Timer HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_wdt0 IWDT HAL on r_iwdt Threads New Stack> Driver>
Monitoring> IWDT HAL on
r_iwdt

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 902 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver on r_iwdt > Including the Independent Watchdog Timer HAL Module in an Application

When the Independent Watchdog Timer Driver on r_iwdt is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 332: Independent Watchdog Timer HAL Module Stack

4.2.29.5 Configuring the Independent Watchdog Timer HAL Module

The Independent Watchdog Timer HAL Module must be configured by the user for the desired
operation. The available configuration settings and defaults for all the user-accessible properties are
given in the properties tab within the SSP configurator and are shown in the following tables for easy
reference. Only properties that can be changed without causing conflicts are available for
modification. Other properties are locked and not available for changes and are identified with a lock
icon for the locked property in the Properties window in the ISDE. This approach simplifies the
configuration process and makes it much less error-prone than previous manual approaches to
configuration. The available configuration settings and defaults for all the user-accessible properties
are given in the Properties tab within the SSP Configurator and are shown in the following tables for
easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Independent Watchdog Timer HAL Module on r_iwdt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_wdt0 Module name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 903 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver on r_iwdt > Configuring the Independent Watchdog Timer HAL Module

NMI Callback NULL Callback. A user callback
function can be registered in
external_irq_api_t::open. If this
callback function is provided, it
will be called from the interrupt
service routine (ISR) each time
the IRQn triggers.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configure Option Function Select Register 0 (OFS0) for the IWDT HAL Module

All series of Synergy microcontrollers have an Option-Setting Memory which can be used to set the
operating state of peripherals after a reset. The OFS can be used to set the state of the IWDT, WDT,
LVD and CGC HOCO.

Configure the Interrupts for the IWDT HAL Module

Use the ISDE to configure the IWDT interrupts in the same way as configuring the other options for
the IWDT module. If the IWDT is configured to generate an NMI interrupt on underflow or invalid
refresh the interrupt must be enabled in the BSP.

Note
To enable interrupts, set the priority of the IWDT > IWDT NMIUNDF N. This sets
BSP_IRQ_CFG_IWDT_UNDERFLOW in ssp_cfg/bsp/bsp_irq_cfg.h to the priority level selected.

When the IWDT NMIUNDF N interrupt is enabled in the BSP, the corresponding ISR will be defined.
The ISR will call a user callback function if one was registered in the wdt_api_t::open API.

Independent Watchdog Timer HAL Module Clock Configuration

The IWDT has its own dedicated clock operating at a set frequency which cannot be modified.

Independent Watchdog Timer HAL Module Pin Configuration

The IWDT does not require pins for its operation.

4.2.29.6 Using the Independent Watchdog Timer HAL Module in an Application

The typical steps in using the Independent Watchdog Timer HAL module in an application are:

1. Register the IWDT NMI callback using the wdt_api_t::open API.
2. Read the configuration of the IWDT HAL module using the wdt_api_t::cfgGet API.
3. Refresh the independent watchdog timer using the wdt_api_t::refresh API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 904 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver on r_iwdt > Using the Independent Watchdog Timer HAL Module in an Application

4. Read the IWDT status flags using the wdt_api_t::statusGet API.
5. Clear the IWDT Status and error flags using the wdt_api_t::statusClear API.
6. Read the current count value of the IWDT using the wdt_api_t::counterGet API.
7. Read the timeout values of the IWDT HAL module using the wdt_api_t::timeoutGet API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 905 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver on r_iwdt > Using the Independent Watchdog Timer HAL Module in an Application

Figure 333: Flow Diagram of a Typical Independent Watchdog Timer HAL Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 906 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Decode Driver

4.2.30 JPEG Decode Driver

4.2.30.1 JPEG Decode HAL Module Introduction

The JPEG Decode HAL module provides high-level APIs for JPEG Decode image processing. The JPEG
Decode HAL module uses the Synergy MCU JPEG Codec peripheral. A user callback function is
available to inform the application program of key processing events.

JPEG Decode HAL Module Features

Supports JPEG decompression.
Supports polling mode that allows an application to wait for JPEG Decoder to complete.
Supports interrupt mode with user-supplied callback functions.
Configures parameters such as horizontal and vertical subsample values, horizontal stride,
decoded pixel format, input and output data format, and color space.
Obtains the size of the image prior to decoding it.
Supports putting coded data in an input buffer and an output buffer to store the decoded
image frame.
Supports streaming coded data into JPEG Decoder module. This feature allows an
application to read coded JPEG image from a file or from network without buffering the
entire image.
Configures the number of image lines to decode. This feature enables the application to
process the decoded image on the fly without buffering the entire frame.
Supports the input decoded format YCbCr444, YCbCr422, YCbCr420, YCbCr411.
Supports the output format ARGB8888, RGB565.
Returns error when the JPEG image's size, height and width do not meet the requirements.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 907 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Decode Driver > JPEG Decode HAL Module Introduction

Figure 334: JPEG Decode HAL Module Block Diagram

JPEG Decode Hardware support details

The following hardware features are, or are not, supported by SSP for JPEG.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 908 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Decode Driver > JPEG Decode HAL Module Introduction

MCU Group 8 lines by 8
pixels in

YCbCr444

8 lines by 16
pixels

in YCbCr422

8 lines by
32 pixels

in
YCbCr411

16 lines by
16 pixels in
YCbCr420

Output
decoded
format

ARGB8888

Output
decoded
format

RGB565

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 N/A N/A N/A N/A N/A N/A

S3A3 N/A N/A N/A N/A N/A N/A

S3A6 N/A N/A N/A N/A N/A N/A

S3A7 N/A N/A N/A N/A N/A N/A

S5D3 N/A N/A N/A N/A N/A N/A

S5D5 N/A N/A N/A N/A N/A N/A

S5D9 ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓

4.2.30.2 JPEG Decode HAL Module APIs Overview

The JPEG Decode HAL Module implements APIs to open, set processing parameters, start processing,
get processing status and close the module. A complete list of the available APIs, an example API call
and a short description of each can be found in the following table. A table of status return values
follows the API summary table.

JPEG Decode HAL Module API Summary

Function Name Example API Call and Description

open g_jpeg_decode0.p_api->open(g_jpeg_decode0.p_
ctrl, g_jpeg_decode0.p_cfg);
Initial configuration.

outputBufferSet g_jpeg_decode0.p_api->outputBufferSet(g_jpeg_
decode0.p_ctrl, p_buffer, buffer_size);
Assign output buffer to JPEG codec for storing
output data.

horizontalStrideSet g_jpeg_decode0.p_api->horizontalStrideSet(g_jp
eg_decode0.p_ctrl, stride);
Configure the horizontal stride value.

imageSubsampleSet g_jpeg_decode0.p_api->imageSubsampleSet(g_j
peg_decode0.p_ctrl, horizontal, vertical);
Configure the horizontal and vertical subsample
settings.

inputBufferSet g_jpeg_decode0.p_api->inputBufferSet(g_jpeg_d
ecode0.p_ctrl, p_buffer, size);
Assign input data buffer to JPEG codec.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 909 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Decode Driver > JPEG Decode HAL Module APIs Overview

linesDecodedGet g_jpeg_decode0.p_api->linesDecodedGet
g_jpeg_decode0.p_ctrl, p_lines);
Return the number of lines decoded into the
output buffer.

imageSizeGet g_jpeg_decode0.p_api->imageSizeGet(g_jpeg_de
code0.p_ctrl, p_horizontal, p_vertical);
Retrieve image size during decoding operation.

statusGet g_jpeg_decode0.p_api->statusGet(g_jpeg_decod
e0.p_ctrl, p_status);
Retrieve current status of the JPEG codec
module.

close g_jpeg_decode0.p_api->close(g_jpeg_decode0.p
_ctrl);
Cancel an outstanding operation.

versionGet g_jpeg_decode0.p_api->versionGet(&version);
Get version and store it in provided pointer
p_version.

pixelFormatGet g_jpeg_decode0.p_api->pixelFormatGet(g_jpeg_
decode0.p_ctrl, p_color_space);
Get the input pixel format.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_INVALID_ALIGNMENT Horizantal stride is not 8-byte aligned.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION An input pointer is NULL.

SSP_ERR_IN_USE Peripheral is in use or hardware lock is taken.

SSP_ERR_HW_LOCKED JPEG Codec resource is locked.

SSP_ERR_INVALID_CALL An invalid call has been made, Codec output
buffer address is attempted to change during
codec operation. Or set output buffer first.

SSP_ERR_JPEG_IMAGE_SIZE_ERROR Image size is not supported by JPEG codec.

SSP_ERR_JPEG_BUFFERSIZE_NOT_ENOUGH Invalid buffer size.

SSP_ERR_INVALID_MODE JPEG Codec module is not decoding.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 910 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Decode Driver > JPEG Decode HAL Module APIs Overview

SSP_ERR_IMAGE_SIZE_UNKNOWN The image size is unknown. More input data may
be needed.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.30.3 JPEG Decode HAL Module Operational Overview

The JPEG Decoder HAL module can be used in the Input Buffer Streaming mode or JPEG Output
Buffer Streaming mode.

Input Buffer Streaming Mode Operational Description

In this scenario the JPEG image data resides on a file, or is received from network. The HAL-layer
driver is able to handle this scenario without requiring the input data to be stored in memory first.

Output Buffer Streaming Mode Operational Description

In this scenario the application needs to write the decoded image data to a file or to a network. The
HAL-layer driver does not require the application to allocate memory for the entire frame. Instead
the application may choose to decode one or more lines at a time. With this feature the amount of
memory needed for the output data is greatly reduced.

MJPEG Decode Operational Description

In this scenario the application needs to display a continuous stream of JPEG images on the native
display. The JPEG images can reside on a file or can be received from the network. The HAL driver
handles this scenario by using the Input Buffer Streaming Mode feature of the JPEG Decode module.

The basic flow to achieve this would be:

1. Open the JPEG Decode driver.
2. Set the image parameters: horizontal stride, image sub-samples.
3. Set the input buffer which holds the jpeg image frame.
4. Set the output buffer to hold the raw image.
5. Display the decoded image.
6. Close the jpeg driver.
7. Repeat the process from step 1 as needed.

JPEG Decode HAL Module Important Operational Notes and Limitations

JPEG Decode HAL Module Operational Notes

JPEG Decode Callbacks A user callback function can be registered in the open API. If a user
callback function is provided, the callback function will be called from the interrupt service routine
(ISR) each time an interrupt happens. The argument of the callback function status can take the
enumerated values listed below so that user can identify which event occurred in the decoding
procedure.

Event Name Event Condition

JPEG_DECODE_STATUS_ERROR JPEG Decode module encountered an error.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 911 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Decode Driver > JPEG Decode HAL Module Operational Overview

JPEG_DECODE_STATUS_IMAGE_SIZE_READY JPEG Decode obtained the image size of data to
be decoded, and paused.

JPEG_DECODE_STATUS_INPUT_PAUSE JPEG Decode paused waiting for more input
data.

JPEG_DECODE_STATUS_OUTPUT_PAUSE JPEG Decode paused after decoded the number
of lines specified by user.

JPEG_DECODE_STATUS_DONE JPEG Decode operation has successfully
completed.

Note
Since a user callback function is called from an ISR, be careful not to use blocking calls or lengthy processing.
Spending excessive time in an ISR can affect the responsiveness of the system.

JPEG Decode HAL Module Limitations

The JPEG Decode HAL module only support JPEG decoding processing. For encoding, use the
JPEG Encode Driver.
If both drivers are in use, the JPEG Encode driver needs to be closed in order to use the JPEG
Decode Driver (or vice versa, as both drivers share the same IP).
Ensure timeout detection logic is implemented (as in sf_jpeg_decode_api_t::wait API of
SF_JPEG_DECODE). If timeout error occurs while decoding the image, close the driver, re-
open it and then perform the decoding operation.
Refer to the most recent SSP Release notes for the most up to date limitations for this
module.

4.2.30.4 Including the JPEG Decode HAL Module in an Application

This section describes how to include the JPEG Decode HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the JPEG Decode Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the JPEG Decode Driver is
g_jpeg_decode0. This name can be changed in the associated Properties window.)

JPEG Decode HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_jpeg_decode0 JPEG Decode
Driver on r_jpeg_decode

Threads New Stack> Driver>
Graphics> JPEG Decode
Driver

When the JPEG Decode Driver on r_jpeg_decode is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 912 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Decode Driver > Including the JPEG Decode HAL Module in an Application

band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 335: JPEG Decode HAL Module Stack

4.2.30.5 Configuring the JPEG Decode HAL Module

The JPEG Decode HAL Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the JPEG Decode HAL Module on r_jpeg_decode

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 913 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Decode Driver > Configuring the JPEG Decode HAL Module

Name g_jpeg_decode0 The name to be used for a JPEG
Decode module instance.

Byte Order for Input Data
Format

Normal byte order
(1)(2)(3)(4)(5)(6)(7)(8),
Byte Swap
(2)(1)(4)(3)(6)(5)(8)(7),
Word Swap
(3)(4)(1)(2)(7)(8)(5)(6),
Word-Byte Swap
(4)(3)(2)(1)(8)(7)(6)(5),
Longword Swap
(5)(6)(7)(8)(1)(2)(3)(4),
Longword-Byte Swap
(6)(5)(8)(7)(2)(1)(4)(3),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2),
Longword-Word-Byte Swap
(8)(7)(6)(5)(4)(3)(2)(1)
Default: Normal Byte order

Specify the byte order for input
data. The order is swapped as
specified in every 8-byte.

Byte Order for Output Data
Format

Normal byte order
(1)(2)(3)(4)(5)(6)(7)(8),
Byte Swap
(2)(1)(4)(3)(6)(5)(8)(7),
Word Swap
(3)(4)(1)(2)(7)(8)(5)(6),
Word-Byte Swap
(4)(3)(2)(1)(8)(7)(6)(5),
Longword Swap
(5)(6)(7)(8)(1)(2)(3)(4),
Longword-Byte Swap
(6)(5)(8)(7)(2)(1)(4)(3),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2),
Longword-Word-Byte Swap
(8)(7)(6)(5)(4)(3)(2)(1)
Default: Normal Byte order

Specify the byte order for
output data. The order is
swapped as specified in every
8-byte.

Output Data Color Format Pixel Data RGB565 format, Pixel
Data ARGBB888 format
Default: Pixel Data RGB565
format

Specify the output data format.

Alpha value to be applied to
decoded pixel data (only valid
for ARGB8888 format)

255 Specify the alpha value for the
output data format (only valid
for ARGB8888 format).

Name of user callback function NULL Specify the name of user
callback function.

Decompression Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Priority 12

Decompression interrupt
priority selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 914 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Decode Driver > Configuring the JPEG Decode HAL Module

Data Transfer Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Priority 12

Data transfer interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the JPEG Common Module

ISDE Property Value Description

Name g_jpeg_common0 Module name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

JPEG Decode HAL Module Clock Configuration

The JPEG Decode HAL Module uses the PCLKA as its clock source.

To change the clock frequency at run-time, use the CGC Interface.

JPEG Decode HAL Module Pin Configuration

The JPEG Decode HAL Module has no configurable input or output pins.

4.2.30.6 Using the JPEG Decode HAL Module in an Application

The typical steps in using the JPEG Decode HAL module in an application are:

1. Initialize the JPEG Decode using the jpeg_decode_api_t::open API.
2. Set the horizontal stride using the jpeg_decode_api_t::horizontalStrideSet API.
3. Set vertical and horizontal image sub-sample using the

jpeg_decode_api_t::imageSubsampleSet API.
4. Set the input buffer address (which contains the JPEG image) using the

jpeg_decode_api_t::inputBufferSet API.
5. Set the output buffer (should be large enough to hold the raw image data) using the

jpeg_decode_api_t::outputBufferSet API.
6. The jpeg_decode_api_t::statusGet API can be used to get the JPEG operation. It returns an

enumerated value (described above) to notify the user.
a. The status JPEG_DECODE_STATUS_DONE returned from the

jpeg_decode_api_t::statusGet API shows that the Decode operation is complete.
b. The status JPEG_DECODE_STATUS_INPUT_PAUSE or

JPEG_DECODE_STATUS_OUTPUT_PAUSE returned from the
jpeg_decode_api_t::statusGet API shows that the decode operation is not
complete.

c. Implement a timeout detect function as part of this step. Refer to the wait function
used for the JPEG Decode Framework if an illustration is required.

7. Operate on the received raw image data as needed by the application.
8. Close the module using the jpeg_decode_api_t::close API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 915 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Decode Driver > Using the JPEG Decode HAL Module in an Application

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 336: Flow Diagram of a Typical JPEG Decode HAL Module Application

4.2.31 JPEG Encode Driver

4.2.31.1 JPEG Encode HAL Module Introduction

The JPEG Encode HAL module provides a high-level API for industry standard JPEG image encode
processing (compression) and uses the Synergy MCU JPEG Codec peripheral. A user callback function
is available to inform the application program of key processing events.

JPEG Encode HAL Module Features

Supports JPEG Compression.
Supports polling mode that allows an application to wait for JPEG Encoder to complete.
Supports interrupt mode with user-supplied callback functions.
Configures parameters such as horizontal and vertical resolution, horizontal stride, and
Quality factor.
Supports putting raw image data in an input buffer and an output buffer to store the
encoded/compressed jpeg image.
Supports streaming raw image data into JPEG Encoder module. This feature allows an
application to read coded raw image from a capture device or camera or from network
without buffering the entire image.
Only supports the YCbCr422 color space to input.
Supports DRI Maker for RTP streaming application.
Supports quality factor configuration: The quality factor value determines the quality of
output image.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 916 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Encode Driver > JPEG Encode HAL Module Introduction

Figure 337: JPEG Encode HAL Module Block Diagram

JPEG Encode Hardware support details

The following hardware features are, or are not, supported by SSP for JPEG.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group Input data
format 8
lines by 8
pixels in

YCbCr444

Input data
format 8

lines by 16
pixels

in YCbCr422

Input data
format 8

lines by 32
pixels in

YCbCr411

Input data
format 16
lines by 16

pixels in
YCbCr420

Output format
JPEG

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 917 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Encode Driver > JPEG Encode HAL Module Introduction

S124 N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A

S3A1 N/A N/A N/A N/A N/A

S3A3 N/A N/A N/A N/A N/A

S3A6 N/A N/A N/A N/A N/A

S3A7 N/A N/A N/A N/A N/A

S5D3 N/A N/A N/A N/A N/A

S5D5 N/A N/A N/A N/A N/A

S5D9 N/A ✓ N/A N/A ✓

S7G2 N/A ✓ N/A N/A ✓

4.2.31.2 JPEG Encode HAL Module APIs Overview

The JPEG Encode HAL Module defines APIs to open, set up processing parameters for, process, get
status from and close the module. A complete list of the available APIs, an example API call and a
short description of each can be found in the following table. A table of status return values follows
the HAL Module API Summary.

JPEG Encode HAL Module API Summary

Function Name Example API Call and Description

open g_jpeg_encode0.p_api->open(g_jpeg_encode0.p_
ctrl, g_jpeg_encode0.p_cfg);
Initial configuration.

imageParameterSet g_jpeg_encode0.p_api->imageParameterSet(g_j
peg_encode0.p_ctrl, p_image_parameters);
Set image parameters to JPEG Codec.

outputBufferSet g_jpeg_encode0.p_api->outputBufferSet(g_jpeg_
encode0.p_ctrl, p_buffer);
Assign output buffer to JPEG Codec for storing
output data.

inputBufferSet g_jpeg_encode0.p_api->inputBufferSet(g_jpeg_e
ncode0.p_ctrl, p_buffer, buffer_size);
Assign input data buffer to JPEG Codec.

statusGet g_jpeg_encode0.p_api->statusGet(g_jpeg_encod
e0.p_ctrl, p_status);
Retrieve current status of the JPEG Codec
module.

close g_jpeg_encode0.p_api->close(g_jpeg_encode0.p
_ctrl);
Cancel an outstanding operation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 918 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Encode Driver > JPEG Encode HAL Module APIs Overview

versionGet g_jpeg_encode0.p_api->versionGet(&version);
Get version and store it in the provided pointer
version.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_INVALID_ALIGNMENT Horizontal stride is not 8-byte aligned.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION An input pointer is NULL.

SSP_ERR_IN_USE Peripheral is in use or hardware lock is taken.

SSP_ERR_HW_LOCKED JPEG Codec resource is locked.

SSP_ERR_INVALID_CALL An invalid call has been made, Codec output
buffer address is attempted to change during
codec operation. Or set output buffer first.

SSP_ERR_JPEG_IMAGE_SIZE_ERROR Image size is not supported by JPEG codec.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.31.3 JPEG Encode HAL Module Operational Overview

The JPEG Encoder HAL module can be used in the input buffer streaming mode or normal mode.

Input Buffer Streaming Mode Operational Description

In this mode the raw image data arrives from the network, file or capturing device in separate data
'chunks'. The HAL-layer driver handles this mode without requiring the input data to be stored in
memory first.

Normal Operational Description

In this mode raw image data arrives from the network, file or capturing device as a complete frame.
The HAL-layer driver handles this mode and can compress the entire raw image frame.

JPEG Encode HAL Module Important Operational Notes and Limitations

JPEG Encode HAL Module Operational Notes

Motion JPEG

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 919 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Encode Driver > JPEG Encode HAL Module Operational Overview

There is no defined standard for Motion JPEG (MJPEG), but the basic concept is to continuously
project JPEG images to the rendering device. The basic application steps to implement an MJPEG
function using the JPEG Encoder HAL module are as follows:

1. Open the JPEG Encoder driver with the desired quality factor value (default = 50).
2. Setup the image resolution (optional if already configured in Thread stack window).
3. Initialize the capturing device for capturing a YCbCr422 image.
4. Set the output buffer to hold the jpeg image using the jpeg_encode_api_t::outputBufferSet

API function.
5. Capture the image.
6. Set the input buffer which holds the RAW YCbCr 422 image captured from the capturing

device using jpeg_encode_api_t::inputBufferSet API function.
7. Check the status of the encode operation and if DONE send the image to the rendering

device.
8. Continue the process from step 5 as needed.

JPEG Encode Callbacks

A user callback function can be registered in the open API. If a user callback function is provided, the
callback function will be called from the interrupt service routine (ISR) each time an interrupt
happens. The argument of the callback function status can take the enumerated values listed below
so that user can identify which event occurred in the encoding procedure.

Event Name Event Condition

JPEG_ENCODE_STATUS_INPUT_PAUSE JPEG Encode paused waiting for more input data.

JPEG_ENCODE_STATUS_DONE JPEG Encode operation has successfully
completed.

Note
Since a user callback function is called from an ISR, be careful not to use blocking calls or lengthy processing.
Spending excessive time in an ISR can affect the responsiveness of the system.

JPEG Encode HAL Module Limitations

The JPEG Encode HAL module only support JPEG Encode processing. For decoding please
use the JPEG Decode HAL module.
In an Application where both the encode and decode modules are used, JPEG Decode
module needs to be closed for the application to use JPEG Encode driver (or vice versa) as
both modules share the same MCU peripheral.
The JPEG Encode HAL module only supports the "Normal byte order" in the thread stack
window. Other option may result in an invalid image.

4.2.31.4 Including the JPEG Encode HAL Module in an Application

This section describes how to include the JPEG Encode HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the JPEG Encode Driver to an application, simply add it to a thread using the stacks selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 920 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Encode Driver > Including the JPEG Encode HAL Module in an Application

sequence given in the following table. (The default name for the JPEG Encode Driver is
g_jpeg_encode0. This name can be changed in the associated Properties window.)

JPEG Encode HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_jpeg_encode0 JPEG Encode
Driver on r_jpeg_encode

Threads New Stack> Driver>
Graphics> JPEG Encode
Driver

When the JPEG Encode Driver on r_jpeg_encode is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 338: JPEG Encode HAL Module Stack

4.2.31.5 Configuring the JPEG Encode HAL Module

The JPEG Encode HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 921 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Encode Driver > Configuring the JPEG Encode HAL Module

makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the JPEG Encode HAL Module on r_jpeg_encode

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_jpeg_encode0 Module name.

RAW Image Vertical Resolution 800 RAW image vertical resolution
selection.

RAW Image Horizontal
Resolution

480 RAW image horizontal
resolution selection.

Byte Order for Input Data
Format

Normal byte order
(1)(2)(3)(4)(5)(6)(7)(8),
Byte Swap
(2)(1)(4)(3)(6)(5)(8)(7),
Word Swap
(3)(4)(1)(2)(7)(8)(5)(6),
Word-Byte Swap
(4)(3)(2)(1)(8)(7)(6)(5),
Longword Swap
(5)(6)(7)(8)(1)(2)(3)(4),
Longword-Byte Swap
(6)(5)(8)(7)(2)(1)(4)(3),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2),
Longword-Word-Byte Swap
(8)(7)(6)(5)(4)(3)(2)(1)
Default: Normal Byte order

Byte order for input data format
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 922 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Encode Driver > Configuring the JPEG Encode HAL Module

Byte Order for Output Data
Format

Normal byte order
(1)(2)(3)(4)(5)(6)(7)(8),
Byte Swap
(2)(1)(4)(3)(6)(5)(8)(7),
Word Swap
(3)(4)(1)(2)(7)(8)(5)(6),
Word-Byte Swap
(4)(3)(2)(1)(8)(7)(6)(5),
Longword Swap
(5)(6)(7)(8)(1)(2)(3)(4),
Longword-Byte Swap
(6)(5)(8)(7)(2)(1)(4)(3),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2),
Longword-Word-Byte Swap
(8)(7)(6)(5)(4)(3)(2)(1)
Default: Normal Byte order

Byte order for output data
format selection.

Define Restart Marker 512 Define restart marker selection.

Quality Factor 50 Quality factor selection.

Name of user callback function NULL Name of user callback function
selection.

Decompression Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Disabled

Decompression interrupt
priority selection.

Data Transfer Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Disabled

Data transfer interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the JPEG Common Module

ISDE Property Value Description

Name g_jpeg_common0 Module name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

JPEG Encode HAL Module Clock Configuration

The JPEG Encode HAL Module uses the PCLKA as its clock source.

To change the clock frequency at run-time, use the CGC Interface.

JPEG Encode HAL Module Pin Configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 923 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Encode Driver > Configuring the JPEG Encode HAL Module

The JPEG Encode HAL module has no configurable input or output pins on the device.

4.2.31.6 Using the JPEG Encode HAL Module in an Application

The typical steps in using the JPEG Encode HAL module in an application are:

1. Initialize the JPEG Encode using jpeg_encode_api_t::open API.
a. Configures the quality factor, horizontal stride, horizontal and vertical resolution.

2. Set the output buffer address (should be large enough to hold compressed jpeg image)
using the jpeg_encode_api_t::outputBufferSet API.

3. Set the input buffer to start the encoding operation (address of raw image data and size)
using thejpeg_encode_api_t::inputBufferSet API.

4. The jpeg_encode_api_t::statusGet API can be used to get the JPEG operation,
thejpeg_encode_api_t::statusGet API return an enumerated value (described above) to
notify user.

a. Status JPEG_ENCODE_STATUS_DONE from the jpeg_encode_api_t::statusGet API
shows that the encode operation is complete.

b. Status JPEG_ENCODE_STATUS_INPUT_PAUSE from the
jpeg_encode_api_t::statusGet API shows that driver is waiting for more input – Go
to step 3 and set the input buffer with remaining data.

5. Operate on the received JPEG image data as needed by the application.
6. Close the module using the jpeg_encode_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 924 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > JPEG Encode Driver > Using the JPEG Encode HAL Module in an Application

Figure 339: Flow Diagram of a Typical JPEG Encode HAL Module Application

4.2.32 Key Matrix Driver

4.2.32.1 Key Matrix HAL Module Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 925 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Key Matrix Driver > Key Matrix HAL Module Introduction

The Key Matrix HAL module provides a high-level API for key input applications and uses the key-
interrupt function peripheral on the Synergy MCU. A user-defined callback can be created to inform
the CPU of a key press event.

Key Matrix HAL Module Features

This Key Matrix HAL module configures and controls the Key Interrupt (KINT) peripheral. It
implements the following key functions:

Supports both rising and falling edges on KINT channels
Supports interrupt-based event notification
Supports a bit-masking function to capture multiple events efficiently
Supports a matrix keypad with edges on any two channels

Figure 340: Key Matrix HAL Module Block Diagram

KINT Hardware support details

The following hardware features are, or are not, supported by SSP for KINT.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 926 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Key Matrix Driver > Key Matrix HAL Module Introduction

N/A Not supported by MCU

MCU Group Vary Input from KR00 to KR07

S124 ✓

S128 ✓

S1JA ✓

S3A1 ✓

S3A3 ✓

S3A6 ✓

S3A7 ✓

S5D3 ✓

S5D5 ✓

S5D9 ✓

S7G2 ✓

4.2.32.2 Key Matrix HAL Module APIs Overview

The Key Matrix HAL module defines APIs for opening, closing, enabling and disabling key-interrupt
functions. A complete list of the available APIs, an example API call and a short description of each
can be found in the following table. A table of status return values follows the API summary table.

Key Matrix HAL Module API Summary

Function Name Example API Call and Description

open g_keymatrix_on_kint.p_api->open(g_kint.p_ctrl,
g_kint.p_cfg_cfg)
Initial configuration.

enable g_keymatrix_on_kint.p_api->enable(g_kint.p_ctrl
)
Enable Key interrupt.

disable g_keymatrix_on_kint.p_api->disable(g_kint.p_ctrl
)
Disable Key interrupt.

triggerSet g_keymatrix_on_kint.p_api->triggerSet()
Set trigger for Key interrupt.

close g_keymatrix_on_kint.p_api->close(&g_
keymatrix)
Allow driver to be reconfigured. May reduce
power consumption.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 927 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Key Matrix Driver > Key Matrix HAL Module APIs Overview

versionGet g_keymatrix_on_kint.p_api->versionGet(&versio
n)
Get version and store it in provided pointer
version.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function successfully completed.

SSP_ERR_ASSERTION Parameter has invalid value.

SSP_ERR_INVALID_ARGUMENT Argument is invalid.

SSP_ERR_HW_LOCKED The API has already been opened. It must be
closed before it can be opened again.

SSP_ERR_NOT_OPEN The peripheral is not opened.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.32.3 Key Matrix HAL Module Operational Overview

The Key Matrix HAL module configures the Key Interrupt (KINT) peripheral to detect rising or falling
edges on any of the KINT channels. When such an event is detected on any of the configured pins,
the module generates an interrupt; the interrupt then calls the user callback (p_callback) with the
callback argument keymatrix_callback_args_t that specifies the channel(s) on which the edge was
detected using a bitmask.

Even though detection of an edge on any one channel generates the interrupt, the callback returns a
bitmask keymatrix_channels_t of all the pins that were triggered at that time (if any other pins also
detected an edge). Thus, an interrupt is not necessarily generated for edge detection on each pin if
an edge was also detected on another pin before the callback was called. If a new edge is detected
after the callback was called, then the interrupt is triggered again, resulting in a new callback. The
bit mask in the user callback should be checked to identify the interrupt source channels.

This module can be used to implement a matrix keypad with edges on any two channels indicating
the actual key that was pressed; alternatively, the module can be used as a single input to detect an
edge on an input pin.

Key Matrix HAL Module Important Operational Notes and Limitations

Key Matrix HAL Module Operational Notes

To trigger a transfer of data using the DMAC or DTC peripheral when a trigger edge is
detected, configure the DMAC/DTC transfer with activation_source set to
ELC_EVENT_KEY_INT.
The KINT module can trigger the start of other peripherals available to the ELC. For details,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 928 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Key Matrix Driver > Key Matrix HAL Module Operational Overview

see the ELC User's Guide in the SSP User's Manual.
You must enable the KINT (INTKR) interrupt in the BSP for this module to operate,
regardless of whether a callback is used in the keymatrix_api_t::open call.

Key Matrix HAL Module Limitations

This module does not support polling-mode operation.
Refer to the latest SSP Release Notes for any additional operational limitations for this
module.

4.2.32.4 Including the Key Matrix HAL Module in an Application

This section describes how to include the Key Matrix HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Key Matrix Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the Key Matrix Driver is g_kint0. This
name can be changed in the associated Properties window.)

Key Matrix HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_kint0 Key Matrix Driver on
r_kint

Threads New Stack> Driver> Input>
Key Matrix Driver on r_kint

When the Key Matrix Driver on r_kint is added to the thread stack as shown in the following figure,
the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 929 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Key Matrix Driver > Including the Key Matrix HAL Module in an Application

Figure 341: Key Matrix HAL Module Stack

4.2.32.5 Configuring the Key Matrix HAL Module

The Key Matrix HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

One of the properties most often identified as requiring a change is the interrupt priority; this
configuration setting is available with the Properties window of the associated module. Simply select
the indicated module and then view the properties window; the interrupt settings are often toward
the bottom of the properties list, so scroll down until they become available.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Key Matrix HAL Module on r_kint

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
error checking.

Name g_kint0 Module name.

Channel 0-7 Unused, Used
Default: Unused

This is a bit-mask with each bit
specifying if that channel is to
be enabled or not. Select the
channels to be used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 930 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Key Matrix Driver > Configuring the Key Matrix HAL Module

Trigger Type Rising Edge, Falling Edge
Default: Rising Edge

Specify if the enabled channels
detect a rising edge or a falling
edge.

Note: Either all channels
detecting a rising edge or all
channels detecting a falling
edge.

Interrupt enabled after
initialization

True, False
Default: False

Specify if the module interrupts
must be enabled as part of the
open call.

Callback NULL A user callback function can be
registered in
keymatrix_api_t::open. If this
callback function is provided, it
will be called from the interrupt
service routine (ISR) each time
a configured edge is detected
on any of the channels.

Note: Without callback, the
application cannot determine
whether an event has occurred.

Warning: Since the callback is
called from an ISR, do not use
blocking calls or lengthy
processing. Spending excessive
time in an ISR can affect the
responsiveness of the system.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Priority 12

Interrupt priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Key Matrix HAL Module Clock Configuration

The Key Matrix HAL module does not require a specific clock configuration.

Key Matrix HAL Module Pin Configuration

The KINT peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following table illustrates the
method for selecting the pins within the SSP configuration window and the subsequent table
illustrates an example selection for the KINT pins:

Pin Selection for the Key Matrix HAL Module on r_kint

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 931 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Key Matrix Driver > Configuring the Key Matrix HAL Module

Resource ISDE Tab Pin selection Sequence

KINT Pins Select Peripherals>
Input:KINT> KINT0.

Note
The selection sequence assumes KINT0 is the desired hardware target for the driver.

Pin Configuration Settings for the Key Matrix HAL Module on r_kint

Property Value Description

Operation Mode Disabled, Custom
Default: Disabled

Select Custom as the Operation
Mode.

KRM0:7 None, Pnn
Default: None

Key Interrupt Pin selection.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.

4.2.32.6 Using the Key Matrix HAL Module in an Application

The typical steps in using the Key Matrix HAL module in an application are:

1. Initialize the Key Matrix HAL module using the keymatrix_api_t::open API.
2. If the autostart configuration setting is true, the module starts operation immediately.

a. If the autostart is not set, use keymatrix_api_t::enable API to enable operation.
3. Respond to key inputs.
4. Disable operation using the keymatrix_api_t::disable API.
5. To modify trigger edge after initialization, use the keymatrix_api_t::triggerSet API.
6. Close the module by using the keymatrix_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 932 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Key Matrix Driver > Using the Key Matrix HAL Module in an Application

Figure 342: Flow Diagram of a Typical Key Matrix HAL Module Application

4.2.33 Low Power Modes Driver on r_lpmv2

4.2.33.1 LPM V2 HAL Module Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 933 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > LPM V2 HAL Module Introduction

The Low Power Modes V2 HAL module provides a high-level API for low-power mode applications and
uses the low-power mode hardware peripheral on the Synergy MCU.

LPM V2 HAL Module Features

Supports configuration of MCU operating power-control modes and MCU low-power modes
Supports the following low power modes:

Deep Software Standby mode
Software Standby mode
Sleep mode
Snooze mode

Supports reducing power consumption when in deep stand-by mode through internal
power‑supply control and by resetting the states of I/O ports.
Supports disabling and enabling of the MCU's other hardware peripherals.

Note
 Not all low-power V2 modes are available on all MCU Groups.

Figure 343: LPM V2 HAL Module Block Diagram

LPMV2 Hardware support details

The following hardware features are, or are not, supported by SSP for LPM V2:

Legend:

Symbol Meaning

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 934 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > LPM V2 HAL Module Introduction

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group Sleep
Low

Power
Mode

Software
Standby

Low Power
Mode

Deep
Standby

Low Power
Mode

Snooze
enabled

in Software
Standby Low
Power Mode

Snooze
Linking
using
ELC

DTC state in
Snooze
Mode

S124 ✓ ✓ N/A ✓ ⌧ ✓

S128 ✓ ✓ N/A ✓ ⌧ ✓

S1JA ✓ ✓ N/A ✓ ⌧ ✓

S3A1 ✓ ✓ N/A ✓ ⌧ ✓

S3A3 ✓ ✓ N/A ✓ ⌧ ✓

S3A6 ✓ ✓ N/A ✓ ⌧ ✓

S3A7 ✓ ✓ N/A ✓ ⌧ ✓

S5D3 ✓ ✓ ✓ ✓ ⌧ ✓

S5D5 ✓ ✓ ✓ ✓ ⌧ ✓

S5D9 ✓ ✓ ✓ ✓ ⌧ ✓

S7G2 ✓ ✓ ✓ ✓ ⌧ ✓

MCU Group State of address
bus

and bus signals in
Standby or Deep
Standby Mode

Enter
Snooze

mode via
RXD0 (SCI0)

IO Port state
control after

waking up from
Deep Standby

Mode

Internal Power
Supply

control in Deep
Standby

Mode (power
supply to

LOCO, Standby
SRAM,

AGTn, and
USBHS/FS)

S124 ⌧ ✓ N/A ⌧

S128 ⌧ ✓ N/A ⌧

S1JA ⌧ ✓ N/A ⌧

S3A1 ✓ ✓ N/A ⌧

S3A3 ✓ ✓ N/A ⌧

S3A6 ✓ ✓ N/A ⌧

S3A7 ✓ ✓ N/A ⌧

S5D3 ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 935 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > LPM V2 HAL Module Introduction

S7G2 ✓ ✓ ✓ ✓

4.2.33.2 LPM V2 HAL Module APIs Overview

The Low Power Modes V2 HAL module defines APIs for configuring operations and enabling and
disabling low-power operations. A complete list of the available APIs, an example API call and a short
description of each can be found in the following table. A table of status return values follows the API
summary table.

Note
The Low Power Modes V2 HAL module will no longer handle operating power-control modes of the MCU; these
are now handled by the CGC HAL module.

The following API examples illustrate sleep-mode use; "deep_standby" and "standby" can be
substituted for "sleep" in the API examples to create examples for those modes.

LPM V2 HAL Module API Summary

Function Name Example API Call and Description

init g_lpmv2_sleep0.p_api->init(g_lpmv2_sleep0.p_cf
g);
Open the LPM driver module Initialized the LPM
block according to the passed in config
structure.

lowPowerCfg g_lpmv2_sleep0.p_api->lowPowerCfg(power_mo
de, output_port_enable, power_supply,
io_port_state);
Configure a low power mode.

lowPowerModeEnter g_lpmv2_sleep0.p_api->lowPowerModeEnter(voi
d);
Enter low power mode (sleep/standby/deep
standby) using WFI macro. Function will return
after waking from low power mode.

versionGet g_lpmv2_sleep0.p_api->versionGet(&version);
Get the driver version and place it at the pointer
version.

clearIOKeep g_lpmv2_sleep0.p_api->clearIOKeep(void);
Clear the IOKEEP bit after deep software stand
by mode exit

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 936 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > LPM V2 HAL Module APIs Overview

SSP_ERR_INVALID_POINTER Pointer is NULL.

SSP_ERR_INVALID_MODE Invalid settings for specified mode.

SSP_ERR_INVALID_HW_CONDITION OPCMTSF and SOPCMTSF flags are not cleared
within internally set timeout.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.33.3 LPM V2 HAL Module Operational Overview

LPM V2 Initialization

The LPM V2 API function lpmv2_api_t::init should be called before calling any other LPM V2 function.
The init function handles initialization of internal variables and locks.

Sleep Low-Power Mode

By default, at power on, sleep mode is enabled as the low-power mode. Sleep mode is the most
convenient low-power mode available, as it does not require any special configuration (other than
configuring and enabling a suitable interrupt or event to wake the MCU from sleep) to return to
normal program-execution mode. Any interrupt wakes the MCU device from sleep low-power mode.
The states of the SRAM, the processor registers, and the hardware peripherals are all maintained in
sleep mode, and the time needed to enter and wake from sleep is minimal. Any interrupt causes the
MCU device to wake from sleep mode, including the Systick interrupt used by the ThreadX® thread
scheduler. The LPM API function lpmv2_api_t::init should be called before any other function. The
LPM API function, lpmv2_api_t::lowPowerCfg, can be used to configure the MCU to use sleep as its
low‑power mode. The LPM API function lpmv2_api_t::lowPowerModeEnter should be used to directly
enter sleep mode.

The following code illustrates configuring sleep as a low-power mode and entering the low-power
sleep mode. In this illustration, the LPM V2 sleep module uses the name g_lpmv2_sleep0:

/* HAL-only entry function */

#include "hal_data.h"

void hal_entry(void)

{

 ssp_err_t error = SSP_SUCCESS;

 /* Initialize the LPM V2 Driver */

 error = g_lpmv2_sleep0.p_api->init();

 /* Handle error if any */

 /* Configure LPM peripheral for sleep mode */

 error = g_lpmv2_sleep0.p_api->lowPowerCfg(g_lpmv2_sleep0.p_cfg);

 /* Handle error if any */

 /* Entry sleep mode */

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 937 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > LPM V2 HAL Module Operational Overview

 error = g_lpmv2_sleep0.p_api->lowPowerModeEnter();

 /* Handle error if any */

}

Software Standby Mode for LPM V2

In software-standby mode, the CPU, as well as most of the on-chip peripheral functions and all of the
internal oscillators, are stopped. Retained are the contents of the CPU internal registers and SRAM
data, the states of on-chip peripheral functions, and I/O Ports. Software-standby mode allows
significant reduction in power consumption, because most of the oscillators are stopped in this
mode. Like Sleep mode, Standby mode requires an interrupt or event be configured and enabled to
wake from Standby mode.

The possible triggers for waking from standby mode are enumerated in the Properties window for
convenience; multiple triggers can be enabled.

The following code illustrates configuring standby as the low-power mode and entering the low-
power standby mode. In this illustration, the LPM V2 standby module with nameg_lpmv2_standby0 is
used. A version of this illustration using the Standby module with snooze enabled would be identical:

/* HAL-only entry function */

#include "hal_data.h"

void hal_entry(void)

{

 ssp_err_t error = SSP_SUCCESS;

 /* Initialize the LPM V2 Driver */

 error = g_lpmv2_standby0.p_api->init();

 /* Handle error if any */

 /* Configure LPM peripheral for standby mode */

 error = g_lpmv2_standby0.p_api->lowPowerCfg(g_lpmv2_standby0.p_cfg);

 /* Handle error if any */

 /* Entry standby mode */

 error = g_lpmv2_standby0.p_api->lowPowerModeEnter();

 /* Handle error if any */

}

Snooze Mode with Software Standby Mode for LPM V2

Snooze mode is available through the standby mode LPM V2 instance. Choose "Standby with Snooze
Enabled" for "Choose the low power mode" in the Properties window. Snooze mode can be used with

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 938 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > LPM V2 HAL Module Operational Overview

some MCU peripherals to execute basic tasks, while keeping the MCU in a low-power state. The
snooze settings are below the standby settings in the Properties window. The ADC, DTC, and other
peripherals can be enabled in snooze mode. All the settings for snooze are available through
configuration properties for the standby instance Snooze is considered an advanced feature.

There are three ways to exit from Snooze mode:

1. Select Snooze Exit Sources from the configurator (Transit from Snooze to Software
Standby mode).

2. Select Standby/Snooze Exit Sources from the configurator (Transit from Snooze to
Normal mode).

3. Select Additional snooze exit sources from the configurator (Transit from Snooze to
Normal mode).

The Snooze Mode Settings are only used if the low-power mode choice is Standby with Snooze
Enabled,"as shown in the following screen capture:

Figure 344: LPM V2 HAL Module Standby Mode With Snooze Setting Enabled

 Snooze is a feature of Standby mode that allows some peripherals to run even though the MCU core
is not executing instructions. The low-power mode peripheral options related to Snooze mode are
shown in the following image. Only one snooze-entry source can be enabled; multiple snooze-exit
sources can be enabled. The DTC peripheral can be enabled in snooze mode as well.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 939 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > LPM V2 HAL Module Operational Overview

Figure 345: LPM V2 HAL Module Snooze Mode Settings

 Deep Software Standby Mode for LPM V2

Deep Software Standby Mode is only available on some MCU devices. The MCU device always wakes
from Deep Software Standby Mode by going through reset, either by the negation of the reset pin or
by one of a set of wake up events displayed in the configuration Properties window for the LPM deep
standby instance.

The possible triggers for waking from deep standby mode are enumerated in the Properties window
for convenience. Multiple triggers can be enabled. Some triggers have an associated edge type,
falling or rising. These options are enumerated also as shown above and below.

The following illustration is for configuring deep standby as the low power mode and entering low
power Deep Standby mode. In this illustration, the LPM V2 Deep Standby module with
nameg_lpmv2_deep_standby0 is used:

/* HAL-only entry function */

#include "hal_data.h"

void hal_entry(void)

{

 ssp_err_t error = SSP_SUCCESS;

 /* Initialize the LPM V2 Driver */

 error = g_lpmv2_deep_standby0.p_api->init();

 /* Handle error if any */

 /* Configure LPM peripheral for deep sleep mode */

 error = g_lpmv2_deep_standby0.p_api->lowPowerCfg(g_lpmv2_deep_standby0.p_cfg);

 /* Handle error if any */

 /* Entry deep sleep mode */

 error = g_lpmv2_deep_standby0.p_api->lowPowerModeEnter();

 /* Handle error if any */

LPM V2 HAL Module Important Operational Notes and Limitations

LPM V2 HAL Module Operational Notes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 940 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > LPM V2 HAL Module Operational Overview

Using this driver to configure the LPM peripheral to wake the MCU from standby mode through
interrupts requires the interrupt to be configured and enable by the peripheral driver or framework
that uses that interrupt. For example, to wake from standby through AGT1 underflow, that interrupt
must be enabled through the configuration of the AGT timer module.

If the main oscillator or PLL with main-oscillator source is used for the system clock, the wake time
from standby mode can be affected by the Main Oscillator Wait Time Setting in the MOSCWTCR
register. This register setting is available to be changed through the Main Oscillator Wait Time
setting in the CGC HAL module properties. See the Wakeup Timing and Duration table in Electrical
Characteristics for more information.

When a project uses ThreadX and the low-power mode standby, deep standby, or standby with
snooze enabled, the call to the lpmv2_api_t::lowPowerCfg API function should occur immediately
before the call to the lpmv2_api_t::lowPowerModeEnter API function. This is necessary since ThreadX
also uses low-power modes in its idle loop and tx_thread_sleep function; ThreadX expects the MCU
device to be configured for the low-power mode sleep.

When a project uses ThreadX and the low-power mode standby or standby with snooze enabled, the
low-power mode should be reverted to sleep after the MCU device wakes from standby after
returning from the lpmv2_api_t::lowPowerModeEnter function. This is necessary since ThreadX also
uses low-power modes in its idle loop and tx_thread_sleep function; ThreadX expects the MCU device
to be configured for the low-power mode sleep. The API function lpmv2_api_t::lowPowerCfg needs to
be called again before lpmv2_api_t::lowPowerModeEnter to re-configure the low-power mode to
sleep, if tx_thread_sleep() is used in the project, or if there may not always be a thread ready to run.

If the deep software standby mode is used, the configurator provides a property to select whether to
reset the IO Ports or maintain the status of IO Ports while coming out of deep software standby. If the
property is configured to maintain the status of IO port the status of IO Ports will be maintained,
however the application code will have to clear the IOKEEP bit in the DSPBYCR register through an
API call to clearIOKeep(), after coming out of the deep software standby mode, to allow the operation
on IO Ports thereafter.

Detailed information about the expected power consumption of the MCU device in operating states
and in Low Power Modes V2 can be found in the Operating and Standby Current section within the
Electrical Characteristics section of the MCU Synergy Hardware User's Manual.

LPM V2 HAL Module Limitations

Flash stop (code flash disable) is not supported. See the section "Flash Operation Control
Register (FLSTOP)" of the S1/S3 Synergy MCU Series Hardware User's Manual.
Reduced SRAM retention area in software standby mode is not supported. See the section
"Power Save Memory Control Register (PSMCR)" of the S3 MCU Series Synergy Hardware
User's Manual.
The MCU may not enter or stay in Software Standby and Deep Software Standby modes
with the debugger attached. Instead, the MCU may be woken from Software Standby and
Deep Software Standby modes by the debugger. To properly test and verify Software
Standby and Deep Software Standby modes, the debugger must not be attached.
If the main oscillator or PLL with main oscillator source is used for the system clock, the
wake time from standby mode can be affected by the Main Oscillator Wait Time Setting in
the MOSCWTCR register. This register setting is available to be changed through the Main
Oscillator Wait Time setting in the CGC HAL module properties. See the "Wakeup Timing
and Duration" table in Electrical Characteristics for more information.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 941 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > Including the LPM V2 HAL Module in an Application

4.2.33.4 Including the LPM V2 HAL Module in an Application

This section describes how to include the LPM V2 HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the LPM V2 Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the LPM V2 Driver is g_lpm2_<mode>0.
This name can be changed in the associated Properties window.)

LPM V2 HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_lpmv2_deep_standby0 S7G2
Low Power Mode Sleep on
r_lpmv2

Threads New Stack> Driver> Power>
Low Power Mode Deep
Standby on r_lpmv2

g_lpmv2_sleep0 S7G2 Low
Power Mode Sleep on r_lpmv2

Threads New Stack> Driver> Power>
Low Power Mode Sleep on
r_lpmv2

g_lpmv2_standby0 S7G2 Low
Power Mode Sleep on r_lpmv2

Threads New Stack> Driver> Power>
Low Power Mode Standby
on r_lpmv2

When the LPM V2 Driver on r_lpm2 is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 346: LPM V2 HAL Module Stack

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 942 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > Configuring the LPM V2 HAL Module

4.2.33.5 Configuring the LPM V2 HAL Module

The LPM V2 HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the LPM Deep Standby Module on r_lpm2

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_lpmv2_deep_standby Module name.

Output port state in standby
and deep standby, applies to
address output, data output,
and other bus control output
pins

High impedance state, No
change

Default: No change

Output port state selection.

Maintain or reset the IO port
states on exit from deep
standby mode

Maintain the IO port states,
Reset the IO port states

Default: Maintain the IO port
states

Maintain/reset I/O port states
selection.

Internal power supply control in
deep standby mode

Maintain the internal power
supply, Cut the power supply to
standby RAM, low-speed on-
chip oscillator, AGTn, and
USPFS/HS resume detecting
unit, Cut the power supply to
LVDn, standby RAM, low-speed
on-chip oscillator, AGTn, and
USBFS/HS resume detecting
unit

Default: Maintain the internal
power supply

Internal power supply control
selection.

IRQ0-15 Enabled, Disabled

Default: Disabled

IRQ0-15 selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 943 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > Configuring the LPM V2 HAL Module

IRQ0-15 Edge Disabled, Rising Edge, Falling
Edge

Default: Disabled

IRQ0-15 Edge selection.

LVD1 Enabled, Disabled

Default: Disabled

LVD1 selection.

LVD1 Edge Disabled, Rising Edge, Falling
Edge

Default: Disabled

LVD1 Edge selection.

LVD2 Enabled, Disabled

Default: Disabled

LVD2 selection.

LVD2 Edge Disabled, Rising Edge, Falling
Edge

Default: Disabled

LVD2 Edge selection.

RTC Interval Enabled, Disabled

Default: Disabled

RTC Interval selection.

RTC Alarm Enabled, Disabled

Default: Disabled

RTC Alarm selection.

NMI Enabled, Disabled

Default: Disabled

NMI selection.

NMI Edge Disabled, Rising Edge, Falling
Edge

Default: Disabled

NMI Edge selection.

USBFS Enabled, Disabled

Default: Disabled

USBFS selection.

UBSHS Enabled, Disabled

Default: Disabled

UBSHS selection.

AGT11 Enabled, Disabled

Default: Disabled

AGT11 selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the LPM Sleep Module on r_lpm2

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 944 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > Configuring the LPM V2 HAL Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
(Default: BSP)

Enables or disables the
parameter checking.

Name g_lpmv2_sleep0 Module name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the LPM Standby Module on r_lpm2

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_lpmv2_standby0 Module name.

Choose the low power mode Standby, Standby with snooze
Enabled

Default: Standby

Low power mode selection.

Output port state in standby
and deep standby, applies to
address output, data output,
and other bus control output
pins

High impedance state, No
change

Default: No change

Output port state selection.

Select Standby/Snooze Exit
Sources

Select fields below: Transit from Standby to Normal
or Snooze to Normal mode.

IRQ1-15 Enabled, Disabled

Default: Disabled

IRQ1-15 selection.

IWDT Enabled, Disabled

Default: Disabled

IWDT selection.

Key Interrupt Enabled, Disabled

Default: Disabled

Key Interrupt selection.

LVD1 Interrupt Enabled, Disabled

Default: Disabled

LVD1 Interrupt selection.

LVD2 Interrupt Enabled, Disabled

Default: Disabled

LVD2 Interrupt selection.

Analog Comparator High-speed
0 Interrupt

Enabled, Disabled

Default: Disabled

Analog Comparator High-speed
0 Interrupt selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 945 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > Configuring the LPM V2 HAL Module

RTC Alarm Enabled, Disabled

Default: Disabled

RTC Alarm selection.

RTC Period Enabled, Disabled

Default: Disabled

RTC Period selection.

USB High-speed Enabled, Disabled

Default: Disabled

USB High-speed selection.

USB Full-speed Enabled, Disabled

Default: Disabled

USB Full-speed selection.

AGT1 underflow Enabled, Disabled

Default: Disabled

AGT1 underflow selection.

AGT1 Compare Match A Enabled, Disabled

Default: Disabled

AGT1 Compare Match A
selection.

AGT1 Compare Match B Enabled, Disabled

Default: Disabled

AGT1 Compare Match B
selection.

12C 0 Enabled, Disabled

Default: Disabled

12C 0 selection.

Snooze Entry Source RXD0 falling edge, IRQ0-IRQ15,
KINT, ACMPHS0, RTC Alarm,
RTC Period, AGT1 Underflow,
AGT1 Compare Match A, AGT1
Compare Match B

Default: RXD0 falling edge

Snooze Entry Source selection.

AGT1 Underflow Enabled, Disabled

Default: Disabled

AGT1 Underflow selection.

DTC Transfer Completion Enabled, Disabled

Default: Disabled

DTC Transfer Completion
selection.

DTC Transfer Completion
Negated Signal

Enabled, Disabled

Default: Disabled

DTC Transfer Completion
Negated Signal selection.

ADC0 Compare Match Enabled, Disabled

Default: Disabled

ADC0 Compare Match selection.

ADC0 Compare Mismatch Enabled, Disabled

Default: Disabled

ADC0 Compare Mismatch
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 946 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > Configuring the LPM V2 HAL Module

ADC1 Compare Match Enabled, Disabled

Default: Disabled

ADC1 Compare Match selection.

ADC1 Compare Mismatch Enabled, Disabled

Default: Disabled

ADC1 Compare Mismatch
selection.

SCI0 Address Match Enabled, Disabled

Default: Disabled

SCI0 Address Match selection.

DTC state in Snooze Mode Enabled, Disabled

Default: Disabled

DTC state in Snooze Mode
selection.

Additional snooze exit sources SCI0_RXI_OR_ERI

Default: SCI0_RXI_OR_ERI

Transit from Snooze to Normal
mode.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults can be desirable. For example, it might be useful to
select different states for entering or exiting low-power states.

LPM V2 HAL Module Clock Configuration

The LPM V2 peripheral module does not have any selectable clock sources.

LPM V2 HAL Module Pin Configuration

The LPM V2 peripheral module does not need pin assignments. Pin function selections are done in
the properties configuration window.

4.2.33.6 Using the LPM V2 HAL Module in an Application

The typical steps in using the LPM V2 HAL module in an application are:

1. Initialize the Low Power Modes V2 HAL module using the lpmv2_api_t::init API.
2. Configure a low-power mode with the lpmv2_api_t::lowPowerCfg API.
3. Enter a low-power mode with the lpmv2_api_t::lowPowerModeEnter API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 947 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Power Modes Driver on r_lpmv2 > Using the LPM V2 HAL Module in an Application

Figure 347: Flow Diagram of a Typical LPM V2 HAL Module Application

4.2.34 Low Voltage Detection Driver

4.2.34.1 LVD HAL Module Introduction

The Low Voltage Detection (LVD) HAL module provides a high-level API for voltage-detection
applications and uses the LVD peripheral on the Synergy MCU. A user-defined callback can be
created to notify the CPU when a voltage-detection event is triggered. The VCC is the source for all
voltage-detection functions.

LVD HAL Module Features

The LVD HAL module supports the following functions:

VCC as the voltage-detection input
One build-time configurable low-voltage detector (via OFS1 register)
Two run-time configurable low-voltage detectors
Two result flags; one for a threshold check and one for the current state
Support for both interrupt or polling-event checking

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 948 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Voltage Detection Driver > LVD HAL Module Introduction

Figure 348: LVD HAL Module Block Diagram

LVD Hardware support details

The following hardware features are, or are not, supported by SSP for LVD:

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group VCC Rising
voltage

generates
an

interrupt or
non

maskable
interrupt

VCC Falling
voltage

generates
an

interrupt or
non-

maskable
interrupt

VCC Rising
and falling

voltage
generates

an
interrupt or

non-
maskable
interrupt

Callback
notification

for
maskable
and non

maskable
interrupt

Reset on
falling

voltage

Monitoring
LVD 1 and
2 status
flags by
polling

S124 ✓ ✓ ✓ ✓ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 949 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Voltage Detection Driver > LVD HAL Module Introduction

S128 ✓ ✓ ✓ ✓ ✓ ✓

S1JA ✓ ✓ ✓ ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓

MCU Group Digital Filtering with adjustable
filter
time

Event link function through ELC
HAL driver

S124 N/A ⌧

S128 N/A ⌧

S1JA N/A ⌧

S3A1 N/A ⌧

S3A3 N/A ⌧

S3A6 N/A ⌧

S3A7 N/A ⌧

S5D3 ✓ ⌧

S5D5 ✓ ⌧

S5D9 ✓ ⌧

S7G2 ✓ ⌧

4.2.34.2 LVD HAL Module APIs Overview

The LVD HAL module defines APIs for opening, closing, statusGet and statusClear. The following table
includes a complete list of the available APIs, an example API call and a short description of each API.
A table of status return values follows the API summary table.

LVD HAL Module API Summary

Function Name Example API Call and Description

open g_lvd.p_api->open(g_lvd.p_ctrl, g_lvd.p_cfg;
Initializes a low voltage detection driver
according to the passed in configuration
structure. Enables an LVD peripheral based on
configuration structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 950 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Voltage Detection Driver > LVD HAL Module APIs Overview

StatusGet g_lvd.p_api->statusGet(g_lvd.p_ctrl,
&monitor_status);
Get the current state of the monitor, (threshold
crossing detected, voltage currently within
range) Can be used to poll the state of the LVD
monitor at any time. Must be used if the
peripheral was initialized with the
lvd_response_tset to LVD_RESPONSE_NONE.

StatusClear g_lvd.p_api->statusClear(g_lvd.p_ctrl);
Clears the latched status of the monitor. Must be
used if the peripheral was initialized with
lvd_response_t set to LVD_RESPONSE_NONE.

close g_lvd.p_api->close(g_lvd.p_ctrl, g_lvd.p_cfg);
Disables the LVD peripheral. Closes the driver
instance.

versionGet g_lvd.p_api->versionGet(&version);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_IN_USE Driver already open or unable to acquire
hardware lock.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION Invalid configuration value.

SSP_ERR_INVALID_MODE If the attempted mode is invalid for this
configuration.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.34.3 LVD HAL Module Operational Overview

The LVD HAL module supports the configuration and operation of the LVD monitors in the Synergy
MCUs. The LVD HAL module provides configuration structures that provide all the information
needed to fully configure a single LVD monitor. One instance of the LVD HAL module is needed per
instance of an LVD monitor, with the exception of the LVD0 monitor. The LVD0 monitor is not
configurable at runtime and must be configured at compile time via the OFS1 register.

The LVD1 and LVD2 monitors are both configurable at runtime and are configured by this module.
The lvd_api_t::open function allows the user to configure and enable an LVD monitor with a single
function call; the lvd_api_t::close function disables the LVD monitor. The lvd_api_t::statusGet function

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 951 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Voltage Detection Driver > LVD HAL Module Operational Overview

returns the current status of the LVD monitor. The lvd_api_t::statusGet function should be used if the
module is in polling mode, that is, without the LVD monitor interrupt enabled.

The monitor status consists of two flags. The first flag is a latched flag called
lvd_status_t::crossing_detected, which indicates if the voltage being monitored has crossed the
voltage threshold. In polling mode, this flag must be cleared via a call to lvd_api_t::statusClear. The
flag does not need to be cleared explicitly if the LVD interrupt is in use, it will be cleared in the LVD
interrupt by the driver code after the user-callback function is called. The second flag,
lvd_status_t::current_state, is the instantaneous status of the monitored voltage with respect to the
voltage threshold; this flag is not latched and will change as the monitored voltage changes.

The LVD HAL module can be configured to enable one or several of the LVD peripheral interrupts. If
an interrupt is to be used, the user should provide a callback function for that monitor. Separate
callback routines should be provided for each LVD monitor.

The LVD HAL module requires functionality provided by the BSP; this driver makes use of hardware
locks provided by the BSP for register locks as well as enabling and clearing interrupts.

LVD HAL Module Important Operational Notes and Limitations

LVD HAL Module Operational Notes

Once the appropriate values are chosen for these settings, you should add the code to call
the LVD HAL module lvd_api_t::open API function to your project. This function should be
called once early in the application.
The module can be closed and reopened whenever the configuration of an LVD monitor
needs to be changed. Calling the LVD lvd_api_t::open API function configures and enables
the LVD hardware peripheral for the specified LVD monitor.
The close function disables the LVD monitor and closes the driver.
Using this module to configure the LVD peripheral to generate an interrupt requires the
corresponding interrupt to be enabled in the module properties tab.
A callback function is not required when using the LVD interrupts, but is recommended.
A unique callback function for each LVD interrupt is not required, but is recommended.
Clock system initialization, configuration, and runtime modification are handled outside this
module. This driver only makes changes to the digital filter sample clock based on the
user's choice of sample clock divisor. The digital filter sample clock is derived from the
LOCO system clock.
Not all voltage thresholds are available on all MCUs.
Digital filtering of the VCC input to the LVD monitor is not available on all MCUs.
The LVD driver requires functionality provided by the BSP; it makes use of hardware locks
provided by the BSP for register locks as well as enabling and clearing interrupts.

LVD HAL Module Limitations

The process of configuring and enabling a Low Voltage Detection monitor has very specific
timing constraints and register write ordering. Because of these constraints, the entire
process of configuring and enabling a voltage monitor is most effectively performed by a
single function. The open API function performs configuration and enables the monitor in
order to properly enforce the timing and register write ordering constraints.
All series of Synergy microcontrollers have an Option-Setting Memory which can be used to
set the operating state of peripherals after a reset. The OFS can be used to set the state of
the IWDT, WDT, LVD, and CGC HOCO.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 952 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Voltage Detection Driver > Including the LVD HAL Module in an Application

4.2.34.4 Including the LVD HAL Module in an Application

This section describes how to include the LVD HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the LVD Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the LVD Driver is g_lvd0. This name can
be changed in the associated Properties window.)

LVD HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_lvd Low Voltage Detection
Driver on r_lvd

Threads New Stack> Driver> Power>
Low Voltage Detection
Driver on r_lvd

When the LVD Driver on r_lvd is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone.

Figure 349: LVD HAL Module Stack

4.2.34.5 Configuring the LVD HAL Module

The LVD HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

One of the properties most often identified as requiring a change is the interrupt priority; this
configuration setting is available with the Properties window of the associated module. Simply select
the indicated module and then view the properties window; the interrupt settings are often toward

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 953 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Voltage Detection Driver > Configuring the LVD HAL Module

the bottom of the properties list, so scroll down until they become available. Also note that the
interrupt priorities listed in the Properties window in the ISDE will include an indication as to the
validity of the setting based on the MCU targeted (CM4 or CM0+). This level of detail is not included
in the following configuration properties tables, but is easily visible with the ISDE when configuring
interrupt priority levels.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the LVD HAL Module on r_lvd

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_lvd Module name.

Monitor number 1 Monitor number selection.

Digital filter, enable by
selecting a valid sample clock
rate (S7G2 only).

Digital filter is disabled, Digital
filer is enabled (sampling clock
is LOCO/2), Digital filer is
enabled (sampling clock is
LOCO/4), Digital filer is enabled
(sampling clock is LOCO/8),
Digital filer is enabled
(sampling clock is LOCO/16)

Default: Digital filter is disabled

Digital filter selection.

Voltage Threshold Default: 2.85V (Vdet1_13)(S7G2
only).

Voltage threshold selection.

Detection Response, either
reset, interrupt, non-maskable
interrupt, or no response
(polling mode).

Maskable interrupt triggered
when voltage crosses the
detection threshold, Non-
maskable interrupt triggered
when voltage crosses the
detection threshold, Reset MCU
when voltage falls below the
detection threshold, No
response driver will be in polled
mode (using statusGet and
statusClear functions).

Default: Maskable interrupt
triggered when voltage crosses
the detection threshold

Detection response selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 954 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Voltage Detection Driver > Configuring the LVD HAL Module

Voltage slope, rising or falling
or both

Threshold crossing detected
with decreasing voltage,
Threshold crossing with
increasing voltage, Threshold
crossing detected with
increasing or decreasing
voltage

Default: Threshold crossing
detected with decreasing
voltage

Indicates the direction of
voltage change detection in
relation to the threshold.

Negation of the monitor signal
can be either be delayed from
the reset event or from voltage
returning to normal range

Negation of reset signal is
based on delay from reset,
Negation of reset signal is
based on delay from voltage
returning to normal range

Default: Negation of reset
signal is based on delay from
reset

Negation of the monitor signal
selection.

Monitor Interrupt Callback NULL Monitor interrupt callback
selection.

LVD Monitor Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

LVD monitor interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

LVD HAL Module Clock Configuration

Clock system clock initialization, configuration, and runtime modification are handled outside this
module. This module only makes changes to the digital filter sample clock based on the user's choice
of sample clock divisor. The digital filter sample clock is derived from the LOCO system clock.

LVD HAL Module Pin Configuration

The LVD HAL module measures the voltage on the VCC pin only and does not need to be configured.

4.2.34.6 Using the LVD HAL Module in an Application

The typical steps in using the LVD HAL module in an application are:

1. Initialize the LVD HAL module using the lvd_api_t::open API.
2. If using software polling, monitor the LVD status flags with the lvd_api_t::statusGet API and

process accordingly. If using the interrupt mode, process accordingly within the callback
function which will return both the monitor number as well as the status.

3. Process as needed.
4. Close the LVD Instance with the lvd_api_t::close API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 955 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Low Voltage Detection Driver > Using the LVD HAL Module in an Application

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 350: Flow Diagram of a Typical LVD HAL Module Application

4.2.35 OPAMP Driver

4.2.35.1 OPAMP HAL Module Introduction

The OPAMP HAL module provides a high level API for signal amplification applications and supports
the OPAMP peripheral available on Synergy MCUs.

OPAMP HAL Module Features

Low power or high-speed mode
Start by software or AGT compare match
Stop by software or ADC conversion end (stop by ADC conversion end only supported on op-
amp channels configured to start by AGT compare match)
Trimming available on some MCUs (see hardware manual)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 956 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > OPAMP Driver > OPAMP HAL Module Introduction

Figure 351: OPAMP HAL Module Block Diagram

OPAMP Hardware Support Details

The following hardware features are, or are not, supported by SSP for OPAMP:

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group Low
power mode

High
speed mode

Start by SW AGT compar
e match

Stop by SW ADC convers
ion end

S124 N/A N/A N/A N/A N/A N/A

S128 ✓ ✓ ✓ ✓ ✓ ✓

S1JA ✓ ✓ ✓ ✓ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 957 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > OPAMP Driver > OPAMP HAL Module Introduction

S3A1 ✓ ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓ ✓

S5D3 N/A N/A N/A N/A N/A N/A

S5D5 N/A N/A N/A N/A N/A N/A

S5D9 N/A N/A N/A N/A N/A N/A

S7G2 N/A N/A N/A N/A N/A N/A

4.2.35.2 OPAMP HAL Module APIs Overview

The OPAMP HAL module defines API functions to open, start, stop, read status, trim and close the
module. A complete list of the available APIs, an example API call and a short description of each can
be found in the following table. A table of status return values follows the API summary table.

OPAMP HAL Module API Summary

Function Name Example API Call and Description

open g_opamp0.p_api->open(g_opamp0.p_ctrl,
g_opamp0.p_cfg);
Applies power to the OPAMP and initializes the
hardware based on the user configuration.

start g_opamp0.p_api->start(g_opamp0.p_ctrl,
channel_mask);
If the OPAMP is configured for hardware triggers,
enables hardware triggers. Otherwise, starts the
op-amp.

stop g_opamp0.p_api->stop(g_opamp0.p_ctrl,
channel_mask);
Stops the op-amp. If the OPAMP is configured for
hardware triggers, disables hardware triggers.

trim g_opamp0.p_api->trim(g_opamp0.p_ctrl, cmd,
p_args);
On MCUs that support trimming, the op-amp
trim register is set to the factory default after
open(). This function allows the application to
trim the operational amplifier to a user setting,
which overwrites the factory default factory trim
values. See Operational Notes for important
details.

infoGet g_opamp0.p_api->infoGet(g_opamp0.p_ctrl,
p_info);
Provides the minimum stabilization wait time in
microseconds.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 958 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > OPAMP Driver > OPAMP HAL Module APIs Overview

statusGet g_opamp0.p_api->statusGet(g_opamp0.p_ctrl,
p_status);
Provides the operating status for each op-amp in
a bitmask. This bit is set when operation begins,
before the stabilization wait time has elapsed.

close g_opamp0.p_api-> close(g_opamp0.p_ctrl);
Stops the op-amps.

versionGet g_opamp0.p_api->versionGet(&version);
Retrieve the module version using the version
pointer

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION An input pointer is NULL.

SSP_ERR_IN_USE Peripheral is in use or hardware lock is taken.

SSP_ERR_INVALID_POINTER The parameter p_data is NULL.

SSP_ERR_INVALID_STATE The command is not valid for the current state of
the trim function.

SSP_ERR_INVALID_MODE Trim is not allowed in low power mode.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.35.3 OPAMP HAL Module Operational Overview

The OPAMP HAL module controls the OPAMP peripheral on a Synergy microcontroller. It directly
controls the OPAMP hardware without using any RTOS elements and provides convenient APIs to
simplify development.

OPAMP HAL Module Important Operational Notes and Limitations

OPAMP HAL Module Operational Notes

Trimming the OPAMP

On MCUs that support trimming, the op-amp trim register is set to the factory default after the
opamp_api_t::open API is called).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 959 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > OPAMP Driver > OPAMP HAL Module Operational Overview

This function allows the application to trim the operational amplifier to a user setting, which
overwrites the factory default factory trim values.

Not supported on all MCUs. See hardware manual for details. Not supported if configured for low
power mode (OPAMP_MODE_LOW_POWER).

This function is not reentrant. Only one side of one op-amp can be trimmed at a time. Complete the
procedure for one side of one channel before calling the opamp_api_t::trim API with the command
OPAMP_TRIM_CMD_START again.

The trim procedure works as follows:

Call the opamp_api_t::trim API for the Pch (+) side input with command
OPAMP_TRIM_CMD_START.
Connect a fixed voltage to the Pch (+) input.
Connect the Nch (-) input to the op-amp output to create a voltage follower.
Ensure the op-amp is operating and stabilized.
Call the opamp_api_t::trim API for the Pch (+) side input with command
OPAMP_TRIM_CMD_START.
Measure the fixed voltage connected to the Pch (+) input using the SAR ADC and save the
value (referred to as A later in this procedure).
Iterate over the following loop 5 times:

Call the opamp_api_t::trim API for the Pch (+) side input with command
OPAMP_TRIM_CMD_NEXT_STEP.
Measure the op-amp output using the SAR ADC (referred to as B in the next step).
If A <= B, call the opamp_api_t::trim API for the Pch (+) side input with command
OPAMP_TRIM_CMD_CLEAR_BIT.

Call the opamp_api_t::trim API for the Nch (-) side input with command
OPAMP_TRIM_CMD_START.
Measure the fixed voltage connected to the Pch (+) input using the SAR ADC and save the
value (referred to as A later in this procedure).
Iterate over the following loop 5 times:

Call the opamp_api_t::trim API for the Nch (-) side input with command
OPAMP_TRIM_CMD_NEXT_STEP.
Measure the op-amp output using the SAR ADC (referred to as B in the next step).
If A <= B, call the opamp_api_t::trim API for the Nch (-) side input with command
OPAMP_TRIM_CMD_CLEAR_BIT.

The following status return values are associated with the opamp_api_t::trim API:

SSP_SUCCESS Conversion result in p_data

SSP_ERR_UNSUPPORTED Trimming is not supported on this MCU.

SSP_ERR_INVALID_STATE The command is not valid in the current state of
the trim state machine.

SSP_ERR_INVALID_ARGUMENT The requested channel is not operating or the
trim procedure is not in progress for this
channel/input combination.

SSP_ERR_INVALID_MODE Trim is not allowed in low power mode.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open. Trimming is
not supported on all MCUs.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 960 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > OPAMP Driver > OPAMP HAL Module Operational Overview

OPAMP HAL Module Limitations

This module only works for selected Synergy MCUs. Refer to the release notes for your current SSP
release to see which MCUs are supported by this module. Additionally, the MCU Hardware Manual
shows which peripherals are available.

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4.2.35.4 Including the OPAMP HAL Module in an Application

This section describes how to include the OPAMP HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the OPAMP Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the OPAMP Driver is g_opamp0. This
name can be changed in the associated Properties window.)

OPAMP HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_opamp0 OPAMP Driver on
r_opamp

Threads New Stack> Driver>
Analog> OPAMP Driver on
r_opamp

When the OPAMP Driver on r_opamp is added to the thread stack as shown in the following figure,
the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 352: OPAMP HAL Module Stack

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 961 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > OPAMP Driver > Configuring the OPAMP HAL Module

4.2.35.5 Configuring the OPAMP HAL Module

The OPAMP HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the OPAMP HAL Module on r_opamp

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
error checking.

Name g_opamp Module name.

AGT Start Trigger Configuration
(N/A unless AGT Start Trigger is
Selected for the Channel)

AGT1 Compare Match Starts
OPAMPs 0 and 2 if configured
for AGT Start/AGT0 Compare
Match Starts OMPAMPs 1 and 3
if configured for AGT Start,
AGT1 Compare Match Starts
OPAMPs 0 and 1 if configured
for AGT Start/AGT0 Compare
Match Starts OPAMPs 2 and 3 if
configured for AGT Start, AGT1
Compare Match Starts all
OPAMPs configured for AGT
Start
Default: AGT1 Compare Match
Starts all OPAMPs configured for
AGT Start

Configure which AGT channel
event triggers op-amp channel.
The AGT compare match event
only starts the op-amp channel
if the AGT Start trigger is
selected in the Trigger
configuration for the channel.

Power Mode Low Power, Middle Speed, High
Speed
Default: High Speed

Configure the op-amp based on
power or speed requirements.
This setting affects the
minimum required stabilization
time. Middle speed is not
available for all MCUs.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 962 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > OPAMP Driver > Configuring the OPAMP HAL Module

Trigger Channel 0 Software Start Software Stop,
AGT Start Software Stop, AGT
Start ADC Stop
Default: Software Start
Software Stop

Select the event triggers to
start or stop op-amp channel 0.
If the event trigger is selected
for start, the opamp_api_t::start
API enables the event trigger
for this channel. If the event
trigger is selected for stop, the
opamp_api_t::stop API disables
the event trigger for this
channel.

Trigger Channel 1 Software Start Software Stop,
AGT Start Software Stop, AGT
Start ADC Stop
Default: Software Start
Software Stop

Select the event triggers to
start or stop op-amp channel 1.
If the event trigger is selected
for start, the opamp_api_t::start
API enables the event trigger
for this channel. If the event
trigger is selected for stop, the
opamp_api_t::stop API disables
the event trigger for this
channel.

Trigger Channel 2 Software Start Software Stop,
AGT Start Software Stop, AGT
Start ADC Stop
Default: Software Start
Software Stop

Select the event triggers to
start or stop op-amp channel 2.
If the event trigger is selected
for start, the opamp_api_t::start
API enables the event trigger
for this channel. If the event
trigger is selected for stop, the
opamp_api_t::stop API disables
the event trigger for this
channel.

Trigger Channel 3 Software Start Software Stop,
AGT Start Software Stop, AGT
Start ADC Stop
Default: Software Start
Software Stop

Select the event triggers to
start or stop op-amp channel 3.
If the event trigger is selected
for start, the opamp_api_t::start
API enables the event trigger
for this channel. If the event
trigger is selected for stop, the
opamp_api_t::stop API disables
the event trigger for this
channel.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

OPAMP HAL Module Clock Configuration

The OPAMP HAL module does not require a specific clock configuration.

OPAMP HAL Module Pin Configuration

To use the OPAMP HAL module, the port pins for the channels receiving the analog input must be set

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 963 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > OPAMP Driver > Configuring the OPAMP HAL Module

as input pins in the pin configurator in the ISDE. The following table illustrates the method for
selecting the pins within the ISDE configuration window:

Pin Selection for the OPAMP HAL Module on r_opamp

Resource ISDE Tab Pin selection Sequence

OPAMP Pins Select Peripherals> Analog:
OPAMP 0/1/2

4.2.35.6 Using the OPAMP HAL Module in an Application

The typical steps in using the OPAMP HAL module in an application are:

1. Initialize the OPAMP module using the opamp_api_t::open API.
Note

Before starting any op-amp, consult the hardware manual to determine if the MCU used has internal
connections switches in the OPAMP peripheral. If the OPAMP peripheral does have internal
connection switches, configure the internal connections by setting the AMPnMS, AMPnPS, and
AMP0OS registers directly.

2. Start the OPAMP channel(s) using the desired trigger with the opamp_api_t::start API.
Note

If the AGT compare match start is used, this call enables the OPAMP to be triggered by the AGT
compare match. If a software trigger is used, then this call starts the OPAMP channel(s).

3. Wait for the OPAMP to stabilize. The stabilization time can be found in the hardware
manual or by using the opamp_api_t::infoGet API.

4. Stop the OPAMP channel(s) by calling the opamp_api_t::stop API. (Optional)
Note

This stops the OPAMP regardless of if ADC conversion end triggers are enabled to stop the OPAMP.
5. Close the module and power down the peripheral using the opamp_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 964 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > OPAMP Driver > Using the OPAMP HAL Module in an Application

Figure 353: Flow Diagram of a Typical OPAMP HAL Module Application

4.2.36 PDC Driver

4.2.36.1 PDC HAL Module Introduction

The Parallel Data Capture Unit (PDC) HAL module provides a high-level API to capture images from a
camera application and uses the PDC peripheral on the Synergy MCU. A user-defined callback can be
created to inform the CPU when a capture has been completed.

PDC HAL Module Features

Supports capture from a connected and configured camera.
Supports a callback that informs the CPU when a capture is complete.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 965 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PDC Driver > PDC HAL Module Introduction

Provides a pointer to the capture buffer.
Provides an indication of the event triggering the callback.

Figure 354: PDC HAL Module Block Diagram

PDC Hardware Support dDetails

The following hardware features are, or are not, supported by SSP for PDC:

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 966 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PDC Driver > PDC HAL Module Introduction

MCU Group Supports up
to 4095

lines vertical

Supports 4
to 4095
bytes

horizontal

Accepts
interrupts

from
Receive

Data Ready

Accepts
interrupts

from Frame
End

Accepts
interrupts

from
Overrun

Accepts
interrupts

from
Underrun

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 N/A N/A N/A N/A N/A N/A

S3A3 N/A N/A N/A N/A N/A N/A

S3A6 N/A N/A N/A N/A N/A N/A

S3A7 N/A N/A N/A N/A N/A N/A

S5D3 N/A N/A N/A N/A N/A N/A

S5D5 ✓ ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓

MCU Group Accepts
interrupts

from Error in
wrong

number of
lines

Accepts
interrupts

from Error in
wrong

number of
bytes per

line

Frame end
and receive
data ready
interrupts
can start

DTC

Frame end
and receive
data ready
interrupts
can start

DMAC

Frequency
division
ratio:

Selectable
from 2, 4, 6,

8, 10, 12,
14, and 16

Supports
PDC Reset
Function

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 N/A N/A N/A N/A N/A N/A

S3A3 N/A N/A N/A N/A N/A N/A

S3A6 N/A N/A N/A N/A N/A N/A

S3A7 N/A N/A N/A N/A N/A N/A

S5D3 N/A N/A N/A N/A N/A N/A

S5D5 ✓ ✓ ⌧ ⌧ ⌧ ⌧

S5D9 ✓ ✓ ⌧ ⌧ ⌧ ⌧

S7G2 ✓ ✓ ⌧ ⌧ ⌧ ⌧

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 967 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PDC Driver > PDC HAL Module Introduction

MCU Group Supports Selectable
active polarity for
VSYNC and HSYNC

signals

Supports Monitoring of
VSYNC and HSYNC

signals

Endian order selectable

S124 N/A N/A N/A

S128 N/A N/A N/A

S1JA N/A N/A N/A

S3A1 N/A N/A N/A

S3A3 N/A N/A N/A

S3A6 N/A N/A N/A

S3A7 N/A N/A N/A

S5D3 N/A N/A N/A

S5D5 ✓ ✓ ✓

S5D9 ✓ ✓ ✓

S7G2 ✓ ✓ ✓

4.2.36.2 PDC HAL Module APIs Overview

The PDC HAL module defines APIs for opening, closing and starting data capture. A complete list of
the available APIs, an example API call and a short description of each can be found in the following
table. A table of status return values follows the API summary table.

PDC HAL Module API Summary

Function Name Example API Call and Description

open g_pdc.p_api->open(g_pdc.p_ctrl, g_pdc.p_cfg)
Initial configuration.

close g_pdc.p_api->close(g_pdc.p_ctrl))
Closes the driver and allows reconfiguration.
May reduce power consumption.

captureStart g_pdc.p_api->captureStart(g_pdc.p_ctrl, NULL)
Start a capture.

stateGet g_pdc.p_api->stateGet(g_pdc.p_ctrl,
&state_data)
Get the state of VSYNC and HSYNC pins.

versionGet g_pdc.p_api->versionGet(&version)
Return the API version using the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 968 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PDC Driver > PDC HAL Module APIs Overview

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_ASSERTION The parameter p_ctrl or p_sample is NULL.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ALREADY_OPEN Unit is already open.

SSP_ERR_HW_LOCKED Unable to reserve BSP hardware lock.

SSP_ERR_TIMEOUT Reset Operation timed out.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.36.3 PDC HAL Module Operational Overview

The capture operation requires a configured external camera connected to the Synergy
microcontroller. Before performing a capture, the camera must be configured and it must generate a
PIXCLK-clock input into the microcontroller. In some instances, a camera requires a running-clock
input before it can be configured.

Use the call pdc_api_t::open API (which configures and starts the PCKO-clock output from the PDC
into the camera) before initializing the camera. Once the camera is configured, the
pdc_api_t::captureStart can be called to capture an image. Configuration of a camera module may
require the use of an I2C or SPI interface.

PDC HAL Module Important Operational Notes and Limitations

PDC HAL Module Operational Notes

In most instances, the data rate from a camera or the PDC peripheral is too fast to be serviced by the
CPU in an interrupt service routine (ISR). Therefore, this module requires an implementation of the
transfer driver on the DMAC to perform a high‑speed transfer from the PDC peripheral and memory.

Both the PDC frame-end and PDC error interrupts must be used to generate interrupts in the
following situations:

An interrupt when an image is captured (frame end)
An interrupt when an error occurs

Data Buffer Setting

If p_buffer is set to anything other than NULL, one or more data buffers are created to store image
data. The size of each buffer is calculated using the following formula:

Buffer size (bytes) = x_capture_pixels x y_capture_pixels x bytes_per_pixel

For large resolution cameras, the captured image could result in a large amount of data. It may be
necessary to locate the buffer(s) in external memory (such as, SDRAM). Consideration should be

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 969 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PDC Driver > PDC HAL Module Operational Overview

given to bus bandwidth when using external memory.

For example, when using a high frame-rate camera to do an image capture via the PDC into SDRAM,
and using SDRAM to hold the display buffer for an LCD display with a high refresh rate, may cause a
data bottleneck from the PDC to memory that results in an overrun-error condition.

Note
 If p_buffer is set to NULL, no memory is allocated to store the captured image data. The application must ensure
that there is suitable memory of sufficient size available to the PDC. The PDC could capture directly into the
display buffer of a connected LCD panel.

PDC HAL Module Limitations

Refer to the latest SSP Release Notes for any additional operational limitations for this module.

4.2.36.4 Including the PDC HAL Module in an Application

This section describes how to include the PDC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the PDC Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the PDC Driver is g_pdc0. This name
can be changed in the associated Properties window.)

PDC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_pdc0 PDCDriver on r_pdc Threads New Stack> Driver>
Graphics> PDC Driver on
r_pdc

When the PDC Driver on r_pdc is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 970 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PDC Driver > Including the PDC HAL Module in an Application

Figure 355: PDC HAL Module Stack

4.2.36.5 Configuring the PDC HAL Module

The PDC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the PDC HAL Module on r_pdc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable the parameter
error checking.

Name g_pdc0 The name of the PDC module
instance. Specify arbitrary C
symbol.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 971 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PDC Driver > Configuring the PDC HAL Module

Name of the data buffer to
store image data

g_user_buffer Specify the name of the data
buffer to create or set to NULL if
it is to be created by the user
external to the PDC driver.

Section where data buffer is
allocated

sdram Specify the RAM section for the
image data buffer. Typically bss
(internal RAM) or sdram.

Number of bytes per pixel 2 Specify the number of bytes per
pixel of the captured image
data.

Number of image data buffers 1 Specify the number of buffers
to create.

Clock Divider CLK/2, CLK/4, CLK/6, CLK/8,
CLK10, CLK12, CLK14, CLK16
Default: CLK/2

Specify the clock divider of the
clock input to the PDC
peripheral.

Endian of image data Little, Big
Default: Little

Specify the endian of the
captured image data.

HYSNC signal polarity High, Low
Default: High

Specify the active polarity of
the HSYNC signal.

VSYNC signal polarity High, Low
Default: High

Specify the active polarity of
the VSYNC signal.

Number of pixels to capture
horizontally

640 Number of horizontal pixels to
capture.

Number of pixels to capture
vertically

480 Number of vertical lines to
capture.

Horizontal pixel to start capture
from

0 Horizontal pixel to start
capturing image data from.
Allows an image smaller than
the native resolution of a
camera to be captured.

Line to start capture from 0 Vertical line to start capturing
image data from. Allows an
image smaller than the native
resolution of a camera to be
captured.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 972 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PDC Driver > Configuring the PDC HAL Module

Callback g_pdc_user_callback A user callback function can be
registered in open. If this
callback function is provided, it
is called from the interrupt
service routine (ISR) each time
a frame is captured and ready
to be processed.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Frame End Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Disabled

The driver needs a valid
interrupt priority setting. It will
not function if disabled.

PDC Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Disabled

The driver needs a valid
interrupt priority setting. It will
not function if disabled.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the PDC HAL Module Lower-Lever Module

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the Red text in the Thread Stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following table identifies all the settings within the properties section
for the module:

Configuration Settings for the Transfer Driver on r_dmac Event PDC RECEIVE DATA READY

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Parameter selection.

Name g_transfer0 Driver name.

Mode Block Mode selection.

Transfer Size 4 Bytes Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 973 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PDC Driver > Configuring the PDC HAL Module

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 8 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

1 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event PDC RECEIVE DATA
READY

Activation source selection.

Auto Enable FALSE Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Interrupt priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

PDC HAL Module Clock Configuration

The PDC uses the PCLKB as its clock source. The only restriction when configuring this clock is that
the PIXCLCK should be less than 0.6 x PCLKB so the PCLKB frequency should be set accordingly.

PDC HAL Module Pin Configuration

The PDC peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following table depicts the
method to select pins within the SSP configuration window and the subsequent table gives an
example selection for PDC pins:

Pin Selection for the PDC HAL Module on r_pdc

Resource ISDE Tab Pin selection Sequence

PDC Pins Select Peripherals>
Graphics: PDC> PDC0

Note
The selection sequence assumes KINT0 is the desired hardware target for the driver.

Pin Configuration Settings for the PDC HAL Module on r_pdc

Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 974 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PDC Driver > Configuring the PDC HAL Module

Pin Group Selection Mixed, _A Only
Default: Mixed

Pin group selection.

Operation Mode Disabled, Custom, Enabled
Default: Disabled

Select Enabled as the Operation
Mode for PDC.

HSYNC None, P704
Default: None

HSYNC Pin.

PCKO None, P511
Default: P511

PCKO Pin.

PIXCLK None, P705
Default: None

PIXCLK Pin.

VSYNC None, P512
Default: P512

VSNC Pin.

PIXD0:7 None, Pnnn
Default: None

PIX Data0:7 Pins.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.

4.2.36.6 Using the PDC HAL Module in an Application

The typical steps in using the PDC HAL module in an application are:

1. Initialize the PDC HAL module using the pdc_api_t::open API.
2. Configure the camera as needed.
3. Start image capture using the pdc_api_t::captureStart API.
4. Callback is called when image is captured.
5. Read state of HSYNC and VSTNC using pdc_api_t::stateGet API.
6. Process data as needed.
7. Close using the pdc_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 975 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PDC Driver > Using the PDC HAL Module in an Application

Figure 356: Flow Diagram of a Typical PDC HAL Module Application

4.2.37 PTP Driver on r_ptp

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 976 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTP Driver on r_ptp > Precision Time Protocol HAL Module Introduction

4.2.37.1 Precision Time Protocol HAL Module Introduction

The PTP HAL Module provides high-level APIs for the time synchronization using the PTP function of
the EPTPC peripheral module (EPTPC) on the synergy MCU. A user callback can be created to indicate
the occurrence of pulse output timer event or the state change of Synchronous Frame Processing
units(SYNFP0 and SYNFP1), Statistical Time Correction Algorithm(STCA), or Packet Relation Controller
unit(PRC-TC).

Precision Time Protocol HAL Module Features

The PTP HAL module configures the PTP for time synchronization functionality.

The PTP HAL allows the user to perform the following operations:

Set and get local clock counter value.
Set and get master port ID.
Set and get PTP message reception configuration.
Update PTP message information.
Get offset from master and mean path delay values.
Collecting gradient differences and extracting the worst ten values by hardware and
software.
Set start time, period, and pulse width of pulse output timer.
Indicate and auto-clear pulse output event signals to the ELC.
Enable and disable INFABT status notification.

Figure 357: PTP HAL Module Block Diagram

Precision Time Protocol Hardware Support Details

The following hardware features are, or are not, supported by SSP for PTP.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 977 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTP Driver on r_ptp > Precision Time Protocol HAL Module Introduction

MCU Group Ordinary
clock

Boundary
clock

Transparent
clock

E2E delay
mechanism

P2P delay
mechanism

Pulse output
timer

operation

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 N/A N/A N/A N/A N/A N/A

S3A3 N/A N/A N/A N/A N/A N/A

S3A6 N/A N/A N/A N/A N/A N/A

S3A7 N/A N/A N/A N/A N/A N/A

S5D3 N/A N/A N/A N/A N/A N/A

S5D5 N/A N/A N/A N/A N/A N/A

S5D9 ✓ N/A N/A ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓

4.2.37.2 Precision Time Protocol HAL Module APIs Overview

The PTP HAL module interface defines APIs for key features such as initializing, starting, stopping,
getting and setting of synchronous information, setting start time for pulse output timer, setting ELC
event indication, and updating PTP message flags. A complete list of the available APIs, an example
API call and a short description of each can be found in the following table. A table of status return
values follows the API summary table.

PTP HAL Module API Summary

PTP API functions

Function Name Example API Call and Description

open g_ptp.p_api->open(g_ptp.p_ctrl, g_ptp.p_cfg);
Open the PTP driver module.

close g_ptp.p_api->close(g_ptp.p_ctrl);
Close the PTP driver module.

configure g_ptp.p_api->configure(g_ptp.p_ctrl, ip_address,
physical_address_msw, physical_address_lsw);
Configures the PTP driver module.

setExtPromiscuous g_ptp.p_api->setExtPromiscuous(g_ptp.p_ctrl,
1, false);
Sets or clears the extended promiscuous mode

setLocalClock g_ptp.p_api->setLocalClock(g_ptp.p_ctrl,
&lc_clk);
Sets local clock counter

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 978 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTP Driver on r_ptp > Precision Time Protocol HAL Module APIs Overview

getLocalClock g_ptp.p_api->getLocalClock(g_ptp.p_ctrl, &lc_clk,
20);
Gets local clock counter.

getMasterPortID g_ptp.p_api->getMasterPortID(g_ptp.p_ctrl, 1,
curClkId, &curPortId);
Gets master port ID.

setMasterPortID g_ptp.p_api->setMasterPortID(g_ptp.p_ctrl, 1,
curClkId, &curPortId);
Sets master port ID.

getSyncInfo g_ptp.p_api->getSyncInfo(g_ptp.p_ctrl, 1,
&master_offset, &path_delay);
Get current offsetFromMaster and
meanPathDelay.

start g_ptp.p_api->start(g_ptp.p_ctrl, 100);
Starts the time synchronization.

stop g_ptp.p_api->stop(g_ptp.p_ctrl, 100);
Stops the time synchronization.

checkWorst10Values g_ptp.p_api->checkWorst10Values(g_ptp.p_ctrl,
40000);
Checks worst 10 values acquired by hardware
and set as gradient limits.

setWorst10Values g_ptp.p_api->setWorst10Values(g_ptp.p_ctrl,
32);
Sets the time interval for collecting worst 10
values.

getWorst10Values g_ptp.p_api->getWorst10Values(g_ptp.p_ctrl,
p_lim, m_lim, 40000);
Gets the worst 10 values acquired by software.

setGradientLimit g_ptp.p_api->setGradientLimit(g_ptp.p_ctrl,
p_lim, m_lim);
Sets the gradient limits for positive and negative
worst 10 values.

updateClockID g_ptp.p_api->updateClockID(g_ptp.p_ctrl, 1,
clock_id);
Updates clock identity field.

updateDomainNumber g_ptp.p_api->updateDomainNumber(g_ptp.p_ctrl
, 1, domain_num);
Updates domain number field in the message
header.

updateAnnounceFlags g_ptp.p_api->updateAnnounceFlags(g_ptp.p_ctrl,
1, &p_flag);
Updates announce message's flag field.

updateAnnounceMsgs g_ptp.p_api->updateAnnounceMsgs(g_ptp.p_ctrl,
1, &p_message);
Updates announce message's message field.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 979 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTP Driver on r_ptp > Precision Time Protocol HAL Module APIs Overview

updateSyncAnnounceMsgInterval g_ptp.p_api->updateSyncAnnounceMsgInterval(
g_ptp.p_ctrl, 1, &p_sync_interval,
&p_ance_interval);
Updates transmission interval and
logMessageInterval of Sync and Announce
messages.

updateDelayMsgInterval g_ptp.p_api->updateDelayMsgInterval(g_ptp.p_c
trl, 1, &p_interval, &p_timeout);
Updates transmission interval,
logMessageInterval and timeout values of Delay
message.

getMessageReceptionConfig g_ptp.p_api->getMessageReceptionConfig(g_ptp
.p_ctrl, 1, &p_ptp_message_reception);
Gets PTP message reception synchronous
configuration.

setMessageReceptionConfig g_ptp.p_api->setMessageReceptionConfig(g_ptp.
p_ctrl, PTP_TEST_CHANNEL,
&p_ptp_message_reception);
Sets PTP message reception synchronous
configuration.

disableTimer g_ptp.p_api->disableTimer(g_ptp.p_ctrl,
PTP_STCA_TIMER_CHANNEL_0));Disables the
specified timer event interrupt.

indicateEvent g_ptp.p_api->indicateEvent(g_ptp.p_ctrl, cyc_ch,
PTP_STCA_TIMER_PULSE_EDGE_RISING, true);
Sets or clears ELC interrupt indication.

autoClearEvent g_ptp.p_api->autoClearEvent(g_ptp.p_ctrl,
cyc_ch, PTP_STCA_TIMER_PULSE_EDGE_RISING,
true);
Sets or clears ELC interrupt auto clear mode.

setTimer g_ptp.p_api->setTimer(g_ptp.p_ctrl, 0U,
start_time, 200000, 100000);Sets start time,
pulse period and pulse width for the pulse
output timer.

setMINTevent g_ptp.p_api->setMINTevent(g_ptp.p_ctrl,
PTP_EVENT_STCA, 0x03, false);Sets EPTPC MINT
interrupt event.

enableINFABTnotification g_ptp.p_api->enableINFABTnotification(g_ptp.p_
ctrl, 1);
Enables EPTPC INFABT notification of the
specified PTP channel.

disableINFABTnotification g_ptp.p_api->disableINFABTnotification(g_ptp.p_
ctrl, 1);
Disables EPTPC INFABT notification of the
specified PTP channel.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 980 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTP Driver on r_ptp > Precision Time Protocol HAL Module APIs Overview

checkINFABTstatus g_ptp.p_api->checkINFABTstatus(g_ptp.p_ctrl,
&status);
Checks the status of INFABT flag of the specified
PTP channel.

clearINFABTstatus g_ptp.p_api->clearINFABTstatus(g_ptp.p_ctrl, 1);
Clears INFABT interrupt occurrence flag of the
specified PTP channel.

versionGet g_ptp.p_api->versionGet(&ptp_version);
Get the driver version based on compile time
macros.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.
While calling configure API, make sure that IP address and MAC address are assigned to respective index when
using ordinary clock 0 and ordinary clock 1.
 checkWorst10Values API should be called only when STCA synchronous mode is set to Mode 2 - Gradient
collection by hardware in the configurator.
getWorst10Values and setGradientLimit APIs should be called only when STCA synchronous mode is set to Mode
2 - Gradient collection by software in the configurator.
linkProcess API should be called after configure API and ensure that there is no delay between the API calls.
While calling setTimer API, user needs to pass half the required pulse output period and pulse high width.

PTP HAL Module Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_CHANNEL Attempt to use invalid PTP channel

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION An input pointer is NULL.

SSP_ERR_IRQ_BSP_DISABLED A required interrupt does not exist in the vector
table.

SSP_ERR_TIMEOUT Timeout error.

SSP_ERR_INVALID_MODE Attempt to use unsupported or incorrect mode.

SSP_ERR_IN_USE Unit is already opened.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.37.3 Precision Time Protocol HAL Module Operational Overview

The PTP driver on r_ptp HAL module controls the on-chip Precision Time Protocol (PTP) module for
the Ethernet Controller (EPTPC) on a Synergy microcontroller, as configured by the user. It directly
controls the EPTPC hardware without using any RTOS elements. It provides convenient API functions
to simplify development.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 981 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTP Driver on r_ptp > Precision Time Protocol HAL Module Operational Overview

Precision Time Protocol HAL Module Important Operational Notes and Limitations

Precision Time Protocol HAL Module Operational Notes

PTP HAL module can be used for the synchronization of clocks.

Clock state

Master: EPTPC peripheral sends announce and sync message to slave devices which
contain local clock time in UNIX Timestamp format
Slave: EPTPC peripheral receives and corrects the local time in accordance to master clock
time.

Clock mode

Ordinary clock: PTP messages are transmitted and received through one Ethernet port in
operation as an ordinary clock. An ordinary clock operates as either master or slave.
Boundary clock: PTP messages are transmitted and received through both ports in
operation as a boundary clock. One port operates as a slave in synchronization with the
master and the other operates as the master that delivers time information synchronized
with the master clock. Both ports can also operate as masters.
Transparent clock: A transparent clock does not act as a master or slave, instead relays
PTP messages from the master to the slave.

Delay correction mechanism

E2E delay correction mechanism: It involves message exchange between master and
slave. The slave sends a delay request to the master, which in turn responds with a delay
response back to the requested slave.
P2P delay correction mechanism: This mechanism uses a port-based peer
delay message mechanism. Each port on a PTP device sends peer delay request messages
to the port it is directly connected to. The connected port then responds with a peer
delay response message.

Statistical time correction algorithm (STCA): When configured as a slave, the synchronized
state can be identified by the offset from master value staying below a threshold specified in
advance or calculated statistically from collected positive and negative gradient values by hardware
or software (worst-10 acquisition).

STCA clock can be used as the clock source for generating pulse signals from pulse output timer m
(m = 0 to 5). PCLKA is used as a source clock at a frequency of 20 MHz.

The generated pulse signals can be linked through event link (ELC) to get triggered when a rising or
falling edge is detected.

Interrupts and callback: The user callback must be registered to handle pulse output timer event
or state change of SYNFP0, SYNFP1, STCA or PRC-TC. If the user callback is registered then the PTP
driver will invoke the callback (ptp_cfg_t::p_callback) with argument ptp_callback_args_t, indicating
the event ptp_event_t.

PTPEDMAC supports the following interrupts:

1. Rising edge detected on the periodic pulse signal from pulse output timer
2. Change in state of SYNFP0
3. Change in state of SYNFP1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 982 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTP Driver on r_ptp > Precision Time Protocol HAL Module Operational Overview

4. Change in state of STCA
5. Change in state of PRC-TC

Initialization: Ethernet initialization should be done and Ethernet link should be up before calling
PTP APIs.

Precision Time Protocol HAL Module Limitations

PTP HAL module limitations:

1. PTP HAL module does not support the setting of inter-port transfer mode for standard
ethernet frames.

2. PTP HAL module does not support the setting of multicast frame filter for standard ethernet
frames.

EPTPC hardware limitations:

1. PTP message frames are not supported over IPv6 format.

4.2.37.4 Including the Precision Time Protocol HAL Module in an Application

This section describes how to include the PTP HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

PTP HAL driver is used as a lower level module for Ethernet and is not available to add as a separate
stack. It is available as optional driver under sf_el_nx. PTPEDMAC is added as a lower level module
for PTP automatically. An example is illustrated in the following figure where a module must be
selected to Add PTP Driver. The following figure shows the selection of the PTP driver to complete the
stack for the module.

Figure 358: PTP HAL Module Stack 1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 983 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTP Driver on r_ptp > Including the Precision Time Protocol HAL Module in an Application

 When the PTP Driver on r_ptp is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 359: PTP HAL Module Stack 2

4.2.37.5 Configuring the Precision Time Protocol HAL Module

The PTP HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the PTP HAL Module on r_ptp

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 984 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTP Driver on r_ptp > Configuring the Precision Time Protocol HAL Module

Name g_ptp Module name.

Clock mode Ordinary clock 0, Ordinary clock
1, Boundary clock, Transparent
clock
Default: Ordinary clock 0

PTP clock mode selection.

STCA synchronous mode Mode 1- No gradient collection,
Mode 2- Gradient collection by
hardware,
Mode 2- Gradient collection by
software
Default: Mode 2- Gradient
collection by hardware

STCA synchronous mode
selection.

MINT callback Default: NULL PTP MINT interrupt callback
selection.

MINT interrupt priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Priority 12

Select the MINT interrupt
priority.

Clock state Slave, Master
Default: Slave

PTP clock state selection.

Delay correction mechanism E2E (End to end), P2P (Peer to
peer)
Default: End to end delay
correction mechanism

Delay correction mechanism
selection.

Frame format Ethernet II, Ethernet 802.3,
Ethernet II over UDP4, Ethernet
802.3 over UDP4
Default: Ethernet II

PTP message frame format
selection.

Note
While using ordinary clock mode, make sure the Ethernet channel selected for sf_el_nx and r_ptp are the same.

Other MCUs may have different default values and available configuration settings.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group.

Precision Time Protocol HAL Module Clock Configuration

No specific clock configurations are required for the PTP HAL Module.

Precision Time Protocol HAL Module Pin Configuration

No specific pin configurations are required for the PTP HAL Module.

4.2.37.6 Using the Precision Time Protocol HAL Module in an Application

Note
User shall proceed with time synchronization operations only after Ethernet is initialized, link is up and PTP is
configured with IP and MAC address.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 985 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTP Driver on r_ptp > Using the Precision Time Protocol HAL Module in an Application

The typical steps in using the PTP HAL module in an application are:

PTP master application:

1. Initialize the PTP HAL module using ptp_api_t::open, ptp_api_t::configure, ptpedmac_api_t::open
APIs.

2. Set PTP host interface for PTP message transfer using the ptpedmac_api_t::linkProcess API.

3. Set the local clock value using the ptp_api_t::setLocalClock API.

4. Start time synchronization using the ptp_api_t::start API.

5. Stop synchronization using the ptp_api_t::stop API.

6. Use the ptp_api_t::close call to close the peripheral.

Figure 360: Flow Diagram of a PTP HAL Module Application as master

 PTP slave application:

1. Initialize the PTP HAL module using ptp_api_t::open, ptp_api_t::configure,
ptpedmac_api_t::open APIs.

2. Set the interval for getting worst 10 values using the ptp_api_t::setWorst10Values API.
3. Set PTP host interface for PTP message transfer using the ptpedmac_api_t::linkProcess API.
4. Wait till PINT interrupt occurs. Receive PTP message using ptpedmac_api_t::read API

through ptpedmac_cfg_t::p_callback.
5. Start time synchronization using the ptp_api_t::start API.
6. Get worst 10 value acquired by software or hardware using ptp_api_t::getWorst10Values

or ptp_api_t::checkWorst10Values and set as gradient limit.
7. Get local clock counter value using the ptp_api_t::getLocalClock API.
8. Get master offset and path delay using ptp_api_t::getSyncInfo API.
9. Stop time synchronization using the ptp_api_t::stop API.

10. Use the ptp_api_t::close call to close the peripheral.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 986 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTP Driver on r_ptp > Using the Precision Time Protocol HAL Module in an Application

Figure 361: Flow Diagram of a PTP HAL Module Application as slave

 Application for setting pulse output timer:

1. Configure PTP clock state as master and register a callback function for MINT ISR.
2. Initialize the PTP HAL module using ptp_api_t::open, ptp_api_t::configure APIs.
3. Configure PTP module to indicate and auto-clear event using ptp_api_t::indicateEvent,

ptp_api_t::autoClearEvent APIs.
4. Set the start time, period, and pulse width for pulse output timer using ptp_api_t::setTimer

API
5. Set the local clock value using the ptp_api_t::setLocalClock API.
6. Start time synchronization using the ptp_api_t::start API.
7. Wait till the MINT timer event occurs. Start counting by pulse output timer through

ptp_cfg_t::p_callback.
8. Stop synchronization using the ptp_api_t::stop API.
9. Use the ptp_api_t::close call to close the peripheral.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 987 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTP Driver on r_ptp > Using the Precision Time Protocol HAL Module in an Application

Figure 362: Flow Diagram of a PTP HAL Module Application for setting pulse output timer

Note
As per hardware user manual, time synchronization will not start immediately after starting the PTP module by
calling start API. It might take about 3 seconds to get synchronized.

4.2.38 PTPEDMAC Driver on r_ptpedmac

4.2.38.1 PTPEDMAC HAL Module Introduction

The PTPEDMAC HAL Module provides high-level APIs for message transmission using a DMA
controller for EPTPC peripheral in synergy MCU. A user callback can be created to indicate the
occurrence of frame receive complete event, frame transmit complete event, or error event.

PTPEDMAC HAL Module Features

The PTPEDMAC HAL module configures PTPEDMAC for data transmission and reception of PTP
messages.

The PTPEDMAC HAL allows the user to perform the following operations:

Link the PTP host interface to transmit and receive PTP messages.
Check the communication status.
Read PTP messages.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 988 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTPEDMAC Driver on r_ptpedmac > PTPEDMAC HAL Module Introduction

Figure 363: PTPEDMAC HAL Module Block Diagram

PTPEDMAC Hardware Support Details

The following hardware features are, or are not, supported by SSP for PTPEDMAC.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group Linking PTP host Interface Read PTP message

S124 N/A N/A

S128 N/A N/A

S1JA N/A N/A

S3A1 N/A N/A

S3A3 N/A N/A

S3A6 N/A N/A

S3A7 N/A N/A

S5D3 N/A N/A

S5D5 N/A N/A

S5D9 ✓ ✓

S7G2 ✓ ✓

4.2.38.2 PTPEDMAC HAL Module APIs Overview

The PTPEDMAC module interface defines APIs for key features such as opening, closing, reading,
linking host interface. A complete list of the available APIs, an example API call and a short
description of each can be found in the following table. A table of status return values follows the API
summary table.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 989 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTPEDMAC Driver on r_ptpedmac > PTPEDMAC HAL Module APIs Overview

PTPEDMAC HAL Module API Summary

PTPEDMAC API functions

Function Name Example API Call and Description

open g_ptpedmac.p_api->open(g_ptpedmac.p_ctrl,
g_ptpedmac.p_cfg);
Open the PTPEDMAC driver module for reception
of PTP messages.

close g_ptpedmac.p_api->close(g_ptpedmac.p_ctrl);
Close the PTPEMAC module.

linkProcess g_ptpedmac.p_api->linkProcess(g_ptpedmac.p_c
trl);
Sets host interface to transfer PTP messages

linkCheck g_ptpedmac.p_api->linkCheck(g_ptpedmac.p_ctr
l);
Checks host interface communication status

read g_ptpedmac.p_api->read(g_ptpedmac.p_ctrl,
&read_ch, P_BUF, &num_recvd);
Receives PTP message.

versionGet g_ptpedmac.p_api ->versionGet
(&ptpedmac_version);
Get the driver version based on compile time
macros.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.
PTPEDMAC open API should be called after PTP open API call is successful.

PTPEDMAC HAL Module Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION An input pointer is NULL.

SSP_ERR_IRQ_BSP_DISABLED A required interrupt does not exist in the vector
table.

SSP_ERR_NOT_ENABLED PTP host interface is not enabled.

SSP_ERR_TIMEOUT Timeout error.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 990 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTPEDMAC Driver on r_ptpedmac > PTPEDMAC HAL Module Operational Overview

4.2.38.3 PTPEDMAC HAL Module Operational Overview

The PTPEDMAC HAL module provides DMA controller for message transmission and reception for the
on-chip Ethernet PTP Controller (EPTPC) on a Synergy microcontroller, as configured by the user. It
provides convenient API functions to simplify development.

PTPEDMAC HAL Module Important Operational Notes and Limitations

PTPEDMAC HAL Module Operational Notes

The PTPEDMAC controls data transmission and reception based on EPTPC configuration.

The PTPEDMAC transfers data according to the information written in the descriptor. A descriptor
includes the buffer size, address, and transmit or receive status.

The user callback must be registered to indicate PTPEDMAC communication status. If the user
callback is registered then the PTPEDMAC driver will invoke the callback
(ptpedmac_cfg_t::p_callback) with argument ptpedmac_callback_args_t, indicating the event
ptpedmac_event_t.

PTPEDMAC supports the following interrupts:

1. Frame receive complete event - this event occurs when PTP message frame is received
successfully

1. Frame transmit complete event - this event occurs when the PTP message frame is
transmitted successfully

2. Error event - this event occurs when an error occurs during the transfer of PTP message

PTPEDMAC HAL Module Limitations

PTPEDMAC write functionality is not supported as EPTPC hardware automatically handles analysis
and transmission of PTP messages for time synchronization.

4.2.38.4 Including the PTPEDMAC HAL Module in an Application

This section describes how to include the PTPEDMAC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

PTPEDMAC HAL driver is used as a lower-level module for PTP driver and is not available to add as a
separate stack. PTPEDMAC is added as a lower-level module for PTP driver automatically.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 991 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTPEDMAC Driver on r_ptpedmac > Including the PTPEDMAC HAL Module in an Application

Figure 364: PTPEDMAC HAL Module Stack

 When the PTPEDMAC Driver on r_ptpedmac is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

4.2.38.5 Configuring the PTPEDMAC HAL Module

The PTPEDMAC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the PTPEDMAC HAL Module on r_ptpedmac

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Number of RX descriptors Range: 1 to 8
Default: 1

Number of receive buffer
descriptors selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 992 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTPEDMAC Driver on r_ptpedmac > Configuring the PTPEDMAC HAL Module

PTPEDMAC buffer size Range: 64 to 1536
Default: 1536

Buffer size.

Name g_ptpedmac0 Module name.

Callback Default: NULL PINT interrupt callback
selection.

PINT interrupt priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)
Default: Priority 12

Select the PINT interrupt
priority.

Other MCUs may have different default values and available configuration settings.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group.

PTPEDMAC HAL Module Clock Configuration

No specific clock configurations are required for the PTPEDMAC HAL Module.

PTPEDMAC HAL Module Pin Configuration

No specific pin configurations are required for the PTPEDMAC HAL Module.

4.2.38.6 Using the PTPEDMAC HAL Module in an Application

Note
PTPEDMAC APIs are to be used along with PTP APIs for message transmission and reception.
User shall call ptpedmac_api_t::open API only after ptp_api_t::open API call is successful.

The typical steps in using the PTPEDMAC HAL module in an application are:

1. Initialize the PTP HAL module using ptp_api_t::open API.
2. Initialize the PTPEDMAC module using ptpedmac_api_t::open API.
3. Configure the PTP module with IP and MAC address using ptp_api_t::configure API.
4. Link PTPEDMAC to receive and transfer PTP message transfer using the

ptpedmac_api_t::linkProcess API.
5. Start time synchronization using the ptp_api_t::start API.
6. Receive PTP message using ptpedmac_api_t::read API through ptpedmac_cfg_t::p_callback.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 993 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > PTPEDMAC Driver on r_ptpedmac > Using the PTPEDMAC HAL Module in an Application

Figure 365: Flow Diagram of a PTPEDMAC HAL Module Application

4.2.39 QSPI Driver

4.2.39.1 QSPI HAL Module Introduction

The Quad SPI (QSPI) HAL module provides a high-level API for erasing and programming the contents
of a QSPI flash device connected to the microcontroller. Unlike many other modules, there is no
callback function for the QSPI.

QSPI HAL Module Features

The QSPI HAL Module is used to initialize the QSPI peripheral that allows erasing and programming
the contents of a QSPI flash device connected to the microcontroller over the Quad SPI interface. Key
features include:

Accessing Quad SPI flash devices using Direct Communication Mode
Reading data from a QSPI flash device
Programming the page of a QSPI flash device
Erasing sectors of a QSPI flash device
Selecting a bank to control access to a QSPI flash device
Accessing Quad SPI flash devices using 3-byte/4-byte Addressing Mode

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 994 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > QSPI Driver > QSPI HAL Module Introduction

Figure 366: QSPI HAL Module Block Diagram

QSPI Hardware Support Details

The following hardware features are, or are not, supported by SSP for the QSPI.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group Extended
SPI

Dual SPI Quad SPI SPI Mode 0
& 3

Selectable
Address (8,
16, 24, 32
bits) via
SFMSAC
register

Timing
adjustment

function

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 995 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > QSPI Driver > QSPI HAL Module Introduction

S3A1 ✓ ⌧ ⌧ Mode 0 3-byte and
4-byte
addresses

⌧

S3A3 ✓ ⌧ ⌧ Mode 0 3-byte and
4-byte
addresses

⌧

S3A6 ✓ ⌧ ⌧ Mode 0 3-byte and
4-byte
addresses

⌧

S3A7 ✓ ⌧ ⌧ Mode 0 3-byte and
4-byte
addresses

⌧

S5D3 ✓ ⌧ ⌧ Mode 0 3-byte and
4-byte
addresses

⌧

S5D5 ✓ ⌧ ⌧ Mode 0 3-byte and
4-byte
addresses

⌧

S5D9 ✓ ⌧ ⌧ Mode 0 3-byte and
4-byte
addresses

⌧

S7G2 ✓ ⌧ ⌧ Mode 0 3-byte and
4-byte
addresses

⌧

MCU Group Flash read
function:

Read

Flash read
function:
Fast Read

Flash read
function:

Fast
Read/Dual

Output

Flash read
function:

Fast
Read/Dual

I/O

Flash read
function:

Fast
Read/Quad

Output

Flash read
function:

Fast
Read/Quad

I/O

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 ⌧ ⌧ ⌧ ⌧ ⌧ ✓

S3A3 ⌧ ⌧ ⌧ ⌧ ⌧ ✓

S3A6 ⌧ ⌧ ⌧ ⌧ ⌧ ✓

S3A7 ⌧ ⌧ ⌧ ⌧ ⌧ ✓

S5D3 ⌧ ⌧ ⌧ ⌧ ⌧ ✓

S5D5 ⌧ ⌧ ⌧ ⌧ ⌧ ✓

S5D9 ⌧ ⌧ ⌧ ⌧ ⌧ ✓

S7G2 ⌧ ⌧ ⌧ ⌧ ⌧ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 996 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > QSPI Driver > QSPI HAL Module Introduction

MCU Group Substitutabl
e Instruction

Code

Adjustment
of Dummy

cycles

Prefetch
Function

SPI bus
cycle

extension
Function

Direct comm
unication
function

XIP

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 ⌧ ⌧ ⌧ ⌧ ✓ ✓

S3A3 ⌧ ⌧ ⌧ ⌧ ✓ ✓

S3A6 ⌧ ⌧ ⌧ ⌧ ✓ ✓

S3A7 ⌧ ⌧ ⌧ ⌧ ✓ ✓

S5D3 ⌧ ⌧ ⌧ ⌧ ✓ ✓

S5D5 ⌧ ⌧ ⌧ ⌧ ✓ ✓

S5D9 ⌧ ⌧ ⌧ ⌧ ✓ ✓

S7G2 ⌧ ⌧ ⌧ ⌧ ✓ ✓

4.2.39.2 QSPI HAL Module APIs Overview

The QSPI interface defines API functions for opening, closing, reading, writing, erasing, and device
bank selection using the QSPI HAL module. A complete list of the available APIs, an example API call
and a short description of each can be found in the following table. A table of status return values
follows the API summary table.

QSPI HAL Module API Summary

Function Name Example API Call and Description

open g_qspi0.p_api->open(g_qspi0.p_ctrl,
g_qspi0.p_cfg);
Open the QSPI HAL module.

close g_qspi0.p_api->close(g_qspi0.p_ctrl);
Close the QSPI HAL module.

read g_qspi0.p_api->read(g_qspi0.p_ctrl, (uint8_t *)
QSPI_DEVICE_ADDRESS, readBuffer,
BUFFER_LENGTH);
Read data from the flash.

pageProgram g_qspi0.p_api->pageProgram(g_qspi0.p_ctrl,
(uint8_t *) QSPI_DEVICE_ADDRESS, writeBuffer,
BUFFER_LENGTH);
Program a page of data to the flash.

sectorErase g_qspi0.p_api->sectorErase(g_qspi0.p_ctrl,
(uint8_t *) QSPI_DEVICE_ADDRESS);
Erase a sector on the flash.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 997 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > QSPI Driver > QSPI HAL Module APIs Overview

erase g_qspi0.p_api->erase(g_qspi0.p_ctrl, (uint8_t *)
QSPI_DEVICE_ADDRESS, BYTE_COUNT);
Erase a block of memory depending on the input
argument "byte_count"

statusGet g_qspi0.p_api->statusGet(g_qspi0.p_ctrl,
&in_progress);
Get the write or erase status of the flash.

bankSelect g_qspi0.p_api->bankSelect(0);
Select the bank to access.

infoGet g_qspi0.p_api->infoGet(g_qspi0.p_ctrl,
&qspi_info);
Provides information about the underlying QSPI
flash, as specified in bsp_qspi.c

versionGet g_qspi0.p_api->versionGet(& ssp_version);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT Invalid parameter is passed.

SSP_ERR_ASSERTION p_cfg was NULL.

SSP_ERR_NOT_OPEN Driver is not opened.

SSP_ERR_UNSUPPORTED Driver not able to query the following
information from the flash manufacturer id,
memory capacity and memory type.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.39.3 QSPI HAL Module Operational Overview

The QSPI HAL module is used to initialize the QSPI peripheral so that the Synergy device can
communicate (read, write and erase data) with a QSPI serial flash device.

The driver supports three operation modes: page program (write), read and erase.

The Page program operation programs a single page of data to the flash device. Page size
is specific to flash memory and may vary with the vendor to vendor. The typical page size
of flash are 128, 256 or 512 bytes. Use qspi_api_t::infoGet API to get the supported page
size by the underlying flash device.
The Read operation will read the data from the flash and store it to the user provided

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 998 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > QSPI Driver > QSPI HAL Module Operational Overview

buffer.
The Erase operation will erase the block of data from the flash. Use qspi_api_t::infoGet API
to get the supported erase size by the underlying flash device.

Note

1. After any Erase/Write operation and before starting the next operation, it is advisable to use
the qspi_api_t::statusGet API to poll the status of operation. Not doing so may corrupt user
data.

2. For above mentioned operations, the value of function parameter p_device_address should
be in the range 0x60000000 – 0x63FFFFFF. Accessing the addresses beyond this range will
cause data wrap around. To access the addresses beyond this range, select the valid and
appropriate bank using qspi_api_t::bankSelect.

QSPI HAL Module Important Operational Notes and Limitations

QSPI HAL Module Operational Notes

In the case of using a board supported by the SSP and a BSP based project (for example the SK-S7G2
and DK-S7G2) and the board having a QSPI memory device pre-installed, the BSP initializes and
places the QSPI peripheral in ROM access mode with XIP (execute in place) enabled. This process
enables the memory to be read like standard memory, meaning the QSPI HAL Module is only needed
when erasing and programming the QSPI flash device.

Page programming by default uses only one line (D0). To use multiple lines during page program,
define the command QSPI_PAGE_PROGRAM_DATA_LINES as one of the following macros in
bsp_qspi.h:

QSPI_COMMAND_PAGE_PROGRAM_QUAD
QSPI_COMMAND_4BYTE_PAGE_PROGRAM_QUAD
QSPI_COMMAND_PAGE_PROGRAM_DUAL
QSPI_COMMAND_4BYTE_PAGE_PROGRAM_DUAL

 Also, define QSPI_PAGE_PROGRAM_ADDRESS_ONE_LINE to 1 if the address should be sent on D0
only during dual input page program and quad input page program commands. An example of this
can be found in bsp_qspi.h for S7G2-DK starting in SSP version 1.5.0.

The accompanying code to this module guide demonstrates both modes of operation: access via the
QSPI HAL Module and ROM access mode with XIP enabled.

The typical QSPI application programs or erases data on the QSPI flash device. When this driver is
not open, the QSPI flash device contents get mapped to 0x60000000 and can be read as if ordinary
memory.

This driver has been tested on the Micron N25Q256A QSPI flash device.

To configure a QSPI flash memory with 4-byte addressing mode on customized boards, follow the
steps below:

1. Make sure QSPI chip supports 4-byte addressing mode by referring the user manual of the
flash device.

2. Configure the following in bsp_qspi.c and bsp_qspi.h, referring to the user manual of the
flash device.

bsp_qspi.c file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 999 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > QSPI Driver > QSPI HAL Module Operational Overview

Macros:
Dummy cycles required
Delay timings
Page size

Global variables:
Erase size
Erase commands (sector, block, and chip)

bsp_qspi.h file:
Manufacturer ID
Memory Type
Memory Capacity

Enum definitions:
qspi_command (if required)

3. In configuration window select addressing mode as 4-byte.

To use a QSPI flash memory on customized boards, follow the steps below:

1. Configure the following in bsp_qspi.c and bsp_qspi.h, referring to the user manual of the
flash device.

bsp_qspi.c file:
Macros:

Dummy cycles required
Delay timings
Page size

Global variables:
Erase size
Erase commands (sector, block, and chip)

bsp_qspi.h file:
Manufacturer ID
Memory Type
Memory Capacity

Enum definitions:
qspi_command (if required)

2. Calculation of memory capacity in bsp qspi.c file by user (if required).
Memory capacity varies for different QSPI flash chips and it should be handled
accordingly in bsp_qspi_config_get() function
Example: For MT23QL512QSPI FLASH memory capacity calculation should be:

 uint8_t actual_ memory_capacity = n25_device_characteristics.memory_capacity;

 if(actual_ memory_capacity > 0x1F)

 {

 actual_ memory_capacity = 0x19 + (actual_ memory_capacity - 0x1F);

 *p_memory_capacity = actual_ memory_capacity;

 }

 else

 {

 *p_memory_capacity = n25_device_characteristics.memory_capacity;

 }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,000 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > QSPI Driver > QSPI HAL Module Operational Overview

QSPI HAL Module Limitations

Refer to the latest SSP Release Notes for any additional operational limitations for this module.

4-Byte supported MCU/board list:

Sl No. Board QSPI
Flash
Part
No.

QSPI
Memo
ry Size

3-byte
hardw
are su
pport

3-byte
softwa
re sup
port

4-byte
hardw
are su
pport

4-byte
softwa
re sup
port

4-byte
bsp ch
anges

XIP
Mode
suppo

rt

Remar
ks

1 s7g2_d
k (v4.0,
v4.1)

MX25L
12835F
(Macro
nix)

16MB YES YES NO NO YES YES 4-byte
addres
sing
not sup
ported
by
device

2 s7g2_d
k
(v3.95
&
below)

N25Q2
56A13
E40
(Micron
)

32MB YES YES YES NO YES YES 4-byte
comma
nd is
only for
part nu
mbers
N25Q2
56A83
ESF40x
, N25Q
256A8
3E1240
x, and
N25Q2
56A83
ESFA0F

3 s7g2_s
k

W25Q6
4FV (W
inbond)

8MB YES YES NO NO YES YES 4-byte
addres
sing
not sup
ported
by
device

4 s5d3_t
bb

MX25L
12835F
(Macro
nix)

16MB YES YES NO NO YES YES 4-byte
addres
sing
not sup
ported
by
device

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,001 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > QSPI Driver > QSPI HAL Module Operational Overview

5 s5d5_t
bb

N25Q2
56A13
E40
(Micron
)

32MB YES YES YES NO YES YES 4-byte
comma
nd is
only for
part nu
mbers
N25Q2
56A83
ESF40x
, N25Q
256A8
3E1240
x, and
N25Q2
56A83
ESFA0F

6 s5d9_p
k

W25Q6
4FV (W
inbond)

8MB YES YES NO NO YES YES 4-byte
addres
sing
not sup
ported
by
device

7 s3a7_d
k

N25Q2
56A83
E40
(Micron
)

32MB YES YES YES YES YES YES

8 s3a3_a
dk

N25Q2
56A83
E40
(Micron
)

32MB YES YES YES YES YES YES

9 s3a1_a
dk

N25Q2
56A83
E40
(Micron
)

32MB YES YES YES YES YES YES

Note
S1 MCU Series does not support QSPI.

4.2.39.4 Including the QSPI HAL Module in an Application

This section describes how to include the QSPI HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,002 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > QSPI Driver > Including the QSPI HAL Module in an Application

To add the QSPI Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the QSPI Driver is g_qspi0. This name
can be changed in the associated Properties window.)

QSPI HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_qspi0 QSPI Driver on r_qspi Threads New> Driver> Storage>
QSPI Driver on r_qspi

When the QSPI Driver on r_qspi is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 367: QSPI HAL Module Stack

4.2.39.5 Configuring the QSPI HAL Module

The QSPI HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,003 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > QSPI Driver > Configuring the QSPI HAL Module

Configuration Settings for the QSPI HAL Module on r_qspi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

If selected code for parameter
checking is included in the
build.

Name g_qspi0 Module name.

Addressing Mode 3-Byte, 4-Byte
Default: 3-Byte

Addressing modes of flash
memory
For memory > 16 MB, 4-Byte
addressing mode should be
selected

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

QSPI HAL Module Pin Configuration

The QSPI peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following table indicates the
method for selecting pins within the SSP configuration window and the subsequent table lists an
example selection sequence for the QSPI pins.

Pin Selection Sequence for the QSPI HAL Module on r_qspi

Resource ISDE Tab Pin selection Sequence

QSPI Pins Select Peripherals>
Storage:QSPI> QSPI0

Note
The selection sequence assumes the QSPI0 is the desired hardware target for the driver.

Pin Configuration Settings for the QSPI HAL Module

Property Value Description

Pin Group Selection - Mixed
- _A only

Pin group selection.

Operation Mode - Disabled
- Custom
- Single or Dual
- Quad

Operation mode.

QSPCLK None, P500 QSPI clock output pin.

QSSL None, P501 QSPI slave select pin.

QIO0 None, P502 Data 0 input/output.

QIO1 None, P503 Data 1 input/output.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,004 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > QSPI Driver > Configuring the QSPI HAL Module

QIO2 None, P504 Data 2 input/output.

QIO3 None, P505 Data 3 input/output.

Note
The example settings come from a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other
Synergy Kits and other Synergy MCUs may have different available pin configuration settings.

4.2.39.6 Using the QSPI HAL Module in an Application

The typical steps in using the QSPI HAL module in an application are:

1. Initialize the QSPI HAL module using the qspi_api_t::open API call.
2. Read a block of data using the qspi_api_t::read API call.
3. Erase a sector of data using the qspi_api_t::sectorErase API call.
4. Erase n bytes of data using the qspi_api_t::erase API call.

a. qspi_api_t::infoGet can be used to get the supported erase sizes by the underlying
flash.

b. qspi_api_t::statusGet API can be used to poll the status of ease operation
applicable for sectorErase API also.

5. Program a page of data using the qspi_api_t::pageProgram API call.
a. Use qspi_api_t::infoGet API to get the page size supported by the underlying flash.
b. qspi_api_t::statusGet API can be used to poll the status of write operation.

6. Close the QSPI HAL module using the qspi_api_t::close API call.

Note
It is advisable to use the qspi_api_t::erase API instead of the qspi_api_t::sectorErase API as a Sector is not a
standard size for flash device and it varies with different vendors.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,005 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > QSPI Driver > Using the QSPI HAL Module in an Application

Figure 368: Flow Diagram of a Typical QSPI HAL Module Application

4.2.40 RTC Driver

4.2.40.1 RTC HAL Module Introduction

The Real-Time Clock (RTC) HAL module implements a high-level API for real-time timing applications
and uses the real-time clock module on a Synergy MCU. The RTC HAL module configures the RTC
module and controls clock, calendar and alarm functions. A callback can be used to respond to any
of the three supported interrupt types: alarm, periodic, or carry.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,006 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > RTC Driver > RTC HAL Module Introduction

RTC HAL Module Features

RTC peripheral configuration.
RTC time and date get and set.
RTC time and date alarm get and set.
RTC time counter start and stop.
RTC alarm, periodic, and carry event notification.
RTC event type enable and disable.
RTC event rate configuration.
RTC clock source set and get.
RTC sub-clock error adjustment.
RTC status get.

Figure 369: RTC HAL Module Block Diagram

RTC Hardware Support Details

The following hardware features are, or are not, supported by SSP for the RTC.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,007 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > RTC Driver > RTC HAL Module Introduction

N/A Not supported by MCU

MCU Group Calendar
Mode

Binary Mode Sub-clock
(XCIN)
Count
Source

LOCO Count
Source

12 hours/24
hours

Alarm
interrupt

(RTC_ALM)

S124 ✓ ⌧ ✓ ✓ 24 Hours ✓

S128 ✓ ⌧ ✓ ✓ 24 Hours ✓

S1JA ✓ ⌧ ✓ ✓ 24 Hours ✓

S3A1 ✓ ⌧ ✓ ✓ 24 Hours ✓

S3A3 ✓ ⌧ ✓ ✓ 24 Hours ✓

S3A6 ✓ ⌧ ✓ ✓ 24 Hours ✓

S3A7 ✓ ⌧ ✓ ✓ 24 Hours ✓

S5D3 ✓ ⌧ ✓ ✓ 24 Hours ✓

S5D5 ✓ ⌧ ✓ ✓ 24 Hours ✓

S5D9 ✓ ⌧ ✓ ✓ 24 Hours ✓

S7G2 ✓ ⌧ ✓ ✓ 24 Hours ✓

MCU Group Periodic
interrupt

(RTC_PRD)

Carry
interrupt

(RTC_CUP)

Time
capture
function

Event link
function

through ELC
HAL driver

Start/stop
function

Clock error
correction
function

S124 ✓ ✓ ⌧ ⌧ ✓ ✓

S128 ✓ ✓ ⌧ ⌧ ✓ ✓

S1JA ✓ ✓ ⌧ ⌧ ✓ ✓

S3A1 ✓ ✓ ⌧ ⌧ ✓ ✓

S3A3 ✓ ✓ ⌧ ⌧ ✓ ✓

S3A6 ✓ ✓ ⌧ ⌧ ✓ ✓

S3A7 ✓ ✓ ⌧ ⌧ ✓ ✓

S5D3 ✓ ✓ ⌧ ⌧ ✓ ✓

S5D5 ✓ ✓ ⌧ ⌧ ✓ ✓

S5D9 ✓ ✓ ⌧ ⌧ ✓ ✓

S7G2 ✓ ✓ ⌧ ⌧ ✓ ✓

4.2.40.2 RTC HAL Module APIs Overview

The RTC HAL module defines APIs for opening, closing, setting alarms and starting and stopping RTC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,008 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > RTC Driver > RTC HAL Module APIs Overview

operations. A complete list of the available APIs, an example API call and a short description of each
can be found in the following table. A table of status return values follows the API summary table.

RTC HAL Module API Summary

Function Name Example API Call and Description

open g_rtc0.p_api->open(g_rtc0.p_ctrl, g_rtc0.p_cfg);
Open the RTC HAL.

close g_rtc0.p_api->close(g_rtc0.p_ctrl);
Close the RTC HAL.

configure g_rtc0.p_api->configure(g_rtc0.p_ctrl, p_extend);

calendarTimeSet g_rtc0.p_api->calendarTimeSet(g_rtc0.p_ctrl,
&start_time_struct_in, true);
Set the calendar time.

calendarTimeGet g_rtc0.p_api->calendarTimeGet(g_rtc0.p_ctrl,
¤t_time_struct_out);
Get the calendar time.

calendarAlarmSet g_rtc0.p_api->calendarAlarmSet(g_rtc0.p_ctrl,
&in_alarm_time_struct_in, true);
Set the calendar alarm time.

calendarAlarmGet g_rtc0.p_api->calendarAlarmGet(g_rtc0.p_ctrl,
&get_alarm_time_struct_out);
Get the calendar alarm time.

calendarCounterStart g_rtc0.p_api->calendarCounterStart(g_rtc0.p_ctrl
);
Start the calendar counter.

calendarCounterStop g_rtc0.p_api->calendarCounterStop(g_rtc0.p_ctrl
);
Stop the calendar counter.

irqEnable g_rtc0.p_api->irqEnable(g_rtc0.p_ctrl,
CALLBACK);
Enable the alarm irq.

irqDisable g_rtc0.p_api->irqDisable(g_rtc0.p_ctrl,
CALLBACK);
Disable the alarm irq.

periodicIrqRateSet g_rtc0.p_api->periodicIrqRateSet(g_rtc0.p_ctrl,
Rate);
Set the periodic irq rate.

infoGet g_rtc0.p_api->infoGet(g_rtc0.p_ctrl, clk_src);
Return the currently configure clock source for
the RTC.

errorAdjustmentModeSet

errorAdjustmentSet

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,009 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > RTC Driver > RTC HAL Module APIs Overview

versionGet g_rtc0.p_api->versionGet(&version);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function executed successfully.

SSP_ERR_ASSERTION API dependent error.

SSP_ERR_INVALID MODE Invalid mode.

SSP_ERR_INVALID_PTR Invalid parameter.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.40.3 RTC HAL Module Operational Overview

The RTC HAL module controls the operation of the real-time clock module on a Synergy MCU. The
typical RTC application configures the real-time clock controller periodically based on a system
configuration driven by the user. Common operations include setting the time, setting an alarm,
configuring a periodic interrupt, and starting or stopping operation. An RTC application usually
consists of calls to the RTC HAL module and an optional callback from ISR handler.

The RTC HAL module can use two main clock sources
A Low Speed On-Chip Oscillator (LOCO) with lower power, but with less accuracy
A sub-clock oscillator with higher power, increased accuracy, and more cost
(external crystal required)

The RTC HAL module supports three different interrupt types
An alarm interrupt generated on a match of any combination of year, month, day,
day of the week, hour, minute or second
A periodic interrupt generated every 2, 1, ½, ¼, 1/8, 1/16, 1/32, 1/64 ,1/128 or
1/256 second(s)
A carry interrupt when either a carry to the second counter occurs or when a carry
to the R64CNT counter occurs during a read access to the 64 Hz counter

A user-defined callback function can be registered (in the rtc_api_t::open API call) and will be called
from the interrupt service routine (ISR) for any supported interrupt type. When called, it is passed a
pointer to a structure (rtc_callback_args_t) that holds a user-defined context pointer and an
indication of which type of interrupt was fired.

Note
The carry interrupt priority must be set to avoid an incorrect time returned from the rtc_api_t::calendarTimeGet
API during roll-over.

RTC HAL Module Important Operational Notes and Limitations

RTC HAL Module Operational Notes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,010 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > RTC Driver > RTC HAL Module Operational Overview

The RTC HAL module must be opened before any of the other RTC module APIs can be called. A
configuration structure is passed to the open call which specifies the clock source, the name of the
user callback from ISR handler, and a user-specified context for the callback. Configuration
structures can be either manually defined or generated by the ISDE based on user input during the
configuration process.

Functions in the driver can be accessed by either making direct calls to the HAL layer or by using the
RTC interface structure. The name of this interface structure is based on the name setting entered in
the module's configuration. For example, if the name is g_rtc, then the interface structure is called
g_rtc_api.

RTC HAL Module Limitations

The rtc_api_t::calendarTimeGet API must not be called with interrupts disabled globally, as
this API internally uses carry interrupt for its processing. The API may return incorrect time
if this is done.
This module has no support for the following functions:

Binary-count mode
Binary alarm set and get
Binary time get and set.
LOCO clock-error correction
1-Hz/64-Hz clock output

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.40.4 Including the RTC HAL Module in an Application

This section describes how to include the RTC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the RTC Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the RTC Driver is g_rtc0. This name can
be changed in the associated Properties window.)

RTC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_rtc0 RTC HAL on r_rtc Threads New Stack> Driver>
Timers> RTC HAL on r_rtc

When the RTC Driver on r_rtc is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,011 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > RTC Driver > Including the RTC HAL Module in an Application

displays possible choices.

Figure 370: RTC HAL Module Stack

4.2.40.5 Configuring the RTC HAL Module

The RTC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the RTC HAL Module on r_rtc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable parameter
error checking.

Name g_rtc0 The name to be used for the
RTC module control block
instance. This name is also
used as the prefix of the other
variable instances. See the
example code below.

Clock Source LOCO, Sub-clock
Default: LOCO

Clock source for the RTC block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,012 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > RTC Driver > Configuring the RTC HAL Module

Configure RTC hardware in
open() call

Yes, No
Default: Yes

If enabled, the RTC registers
and clock source will be
initialized in the open() call. If
disabled, the user call must call
the configure() api to initialize
the hardware.

Error Adjustment Value 0 Warning: Deprecated
configuration field. Must be 0.

Error Adjustment Type None Warning: Deprecated
configuration field. Must be 0.

Callback NULL The name of the ISR that is
called when one of the three
interrupts fire. The argument
passed into this ISR has an
indication of which interrupt
caused it to be called. See the
example code below.

Alarm Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled
Default: Disabled

Alarm interrupt priority
selection.

Period Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled
Default: Disabled

Period interrupt priority
selection.

Carry Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)
Default: Priority 12

Carry interrupt priority
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

RTC HAL Module Clock Configuration

The RTC HAL module can use the following clock sources:

LOCO (Low Speed On-Chip Oscillator)
Lower-power consumption
Less accurate

Sub-clock oscillator
Higher-power consumption
More accurate
More cost (requires a crystal)

The LOCO is the default selection during configuration.

RTC HAL Module Pin Configuration

The RTC does not currently support outputs, so no output pin selections are available.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,013 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > RTC Driver > Using the RTC HAL Module in an Application

4.2.40.6 Using the RTC HAL Module in an Application

General Usage

The typical RTC application configures the real-time clock controller periodically based on a system
configuration driven by the user. Examples include setting the time, setting an alarm, configuring a
periodic interrupt, etc. An RTC application consists of calls to the RTC module and an optional
callback.

The RTC module must be opened before any of the other APIs can be called. A configuration
structure is passed to the open call which specifies the clock source, the name of the callbacks, and
user-specified context for the handler. Configuration structures can be either manually defined or
generated by the ISDE based on user input during the configuration process. Functions in the module
can be accessed by using the RTC interface structure. The name of this interface structure is based
on the name setting entered in the module's configuration.

Avoid Drift Issue After Reset

To avoid drift in RTC time across MCU reset, the application needs to follow the following steps:

Make these changes to module configuration settings:

1. Disable the "Configure Subclock Drive On Reset" option in the CGC stack element of the
ISDE configurator.

2. Disable the "Configure RTC hardware in open() call" option in the RTC stack element of the
ISDE configurator.

Make these calls in the application code:

1. Call the rtc_api_t::open API as usual.
2. Call the RTC rtc_api_t::configure API only on a cold start. This will initialize the RTC only in a

cold start condition.

These two steps can be performed by using the following initialization sequence in the application:

 g_rtc.p_api->open(g_rtc.p_ctrl,g_rtc.p_cfg);

 g_rtc.p_api->infoGet(g_rtc.p_ctrl,&info1);

 /* initialize RTC if its status is stopped state i.e. on cold start */

 if(RTC_STATUS_STOPPED == info1.status)

 {

/* if the RTC clock source is sub-clock, stop it so that the sub-clock drive capacity

is set correctly in the configure API */

 g_cgc.p_api->clockStop(CGC_CLOCK_SUBCLOCK);

 g_rtc.p_api->configure(g_rtc.p_ctrl, NULL);

 g_rtc.p_api->calendarTimeSet(g_rtc.p_ctrl,&rt_time,true);

 }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,014 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > RTC Driver > Using the RTC HAL Module in an Application

An alternative way to determine cold start condition (instead of status) is to obtain the information
from the reset status registers (RSTSRx).

Date and Time Validation

The "Parameter Checking" setting needs to be enabled in the ISDE configurator if date and time
validation is required for the rtc_api_t::calendarTimeSet and rtc_api_t::calendarAlarmSet APIs. If
"Parameter Checking" is enabled, the 'day of the week' field is automatically calculated and updated
by the driver for the provided date. When using rtc_api_t::calendarAlarmSet API, only the fields which
have their corresponding match flag set are written to the registers, other register fields are reset to
default value.

Sub-Clock Error Adjustment

The rtc_api_t::errorAdjustmentModeSet and rtc_api_t::errorAdjustmentSet APIs can be used to
correct the error in the RTC sub-clock source. These APIs can only be used after the RTC is
configured and time is set.

The error adjustment is reset every time the RTC is reconfigured or time is set.

There are two common application uses for the RTC HAL module. The first simply uses the RTC to
supply the current time as required by the application. A second use of the RTC HAL modules uses
the periodic interrupt capability to initiate a process at a regular period. Examples of both uses are
provided below.

Note
The configuration property 'Configure RTC hardware in open() call' in the RTC stack of the ISDE configurator
controls the behavior of the rtc_api_t::open API. If enabled, the RTC peripheral is configured in the
rtc_api_t::open API. If disabled, it is the responsibility of the application to make sure that RTC is configured
before usage by using the rtc_api_t::configure API.

The typical steps in using the RTC HAL module in a timing application are:

1. Initialize the RTC using the rtc_api_t::open API
2. Set the time using the rtc_api_t::calendarTimeSet API
3. Set the alarm using the rtc_api_t::calendarAlarmSet API (If required)
4. Start the calendar counter using the rtc_api_t::calendarCounterStart API
5. Get the current time using the rtc_api_t::calendarTimeGet API (as required)

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,015 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > RTC Driver > Using the RTC HAL Module in an Application

Figure 371: Flow Diagram of a Typical RTC HAL Module Timing Use Application

 The typical steps in using the RTC periodic IRQ in an application are:

1. Initialize the RTC using the rtc_api_t::open API.
2. Set periodic IRQ rate using the rtc_api_t::periodicIrqRateSet API.
3. Start calendar counter using the rtc_api_t::calendarCounterStart API.
4. Enable interrupt using the rtc_api_t::irqEnable API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,016 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > RTC Driver > Using the RTC HAL Module in an Application

Figure 372: Flow Diagram of a Typical RTC HAL Module Application

4.2.41 SCE Crypto Driver

4.2.41.1 SCE HAL Module Introduction

The Secure Cryptographic Engine (SCE) HAL module provides high-level API functions for random
number generation, digest computation (hash), data encryption and decryption, digital signing and
verification, key generation (using RSA, AES and ECC algorithms), ECC scalar multiplication and key
installation (for RSA, AES and ECC keys). The SCE is a dedicated hardware block and the functionality
provided by the SCE varies across the supported MCUs.

SCE HAL Module Features

The SCE HAL module configures the cryptographic module, which allows user to build cryptographic
protocols for security with the following cryptographic primitives:

Random-number generation
Data encryption and decryption using AES or Triple DES (3DES) or ARC4 algorithms
Signature generation and verification using the ECC, RSA or DSA algorithms
Scalar multiplication support for ECDH key agreement operations.
Message-digest computation using HASH algorithms MD5, SHA1, SHA224, or SHA256

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,017 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module Introduction

Key generation - AES wrapped keys, RSA plain text and wrapped keys, ECC plain text and
wrapped keys
Installing the encrypted user key on to the Synergy platform.

The terms "key wrapping" and "key installation" in the context of SSP are defined as follows:

Key Wrapping: The APIs to generate symmetric keys or asymmetric key pairs on the Synergy
platform where the private/secret key is a wrapped key (encrypted key).

Key Installation: User generated private /secret keys on a PC (system outside of the Synergy
platform) will be installed (no storage) on the Synergy platform and the wrapped private /secret key
returned to the user.

Wrapped keys provide the following advantages:

The wrapped key can only be used on the Synergy platform (MCU) on which it was
generated.
It cannot be moved to another Synergy platform (MCU).
The original key cannot be recovered from the wrapped key.

Figure 373: SCE HAL Module Block Diagram

 *KI is an abbreviation for Key Installation

SCE Hardware Support Details

Note: The prior figure shows all nine available crypto modules. The SCE COMMON module is repeated
for each one since it is included when the module is added to a thread stack. Common modules can
be referenced by multiple other module instances across multiple Synergy stacks.

Support of MCU Groups: SCE Driver

Function S7G2, S5D9,
S5D5, S5D3

S3A1, S3A3,
S3A7, S3A6

S1JA, S124,
S128

Notes

TRNG Generate and
read random
number

Generate and
read random
number

Generate and
read random
number

Generate and
read random
number

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,018 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module Introduction

AES Encryption,
decryption, key
generation -
wrapped keys

Encryption,
decryption, key
generation -
wrapped keys

Encryption,
decryption

Symmetric key
encryption based
on AES standard

AES Key Size 128-bit, 192-bit,
256-bit

128-bit, 256-bit 128-bit, 256-bit

AES Key Type Plain text/raw key,
wrapped key

Plain text/raw key,
wrapped key

Plain text/raw key

AES Chaining
Modes

ECB, CBC, CTR,
GCM, XTS††

ECB, CBC, CTR,
GCM, XTS

ECB, CBC, CTR

ARC4 Encryption,
decryption

NA NA

TDES Encryption,
decryption

NA NA

TDES Key Size 192-bit NA NA

TDES Chaining
Modes

ECB, CBC, CTR NA NA

RSA Signature
Generation,
Signature
Verification, Public-
key Encryption,
Private-key
Decryption, Key
Generation - plain
text and wrapped
keys

NA NA Supports CRT
keys and standard
keys for private
key operations for
both plain-text
and wrapped key
types

Function S7G2, S5D9,
S5D5, S5D3

S3A1, S3A3,
S3A7, S3A6

S1JA, S124,
S128

Notes

RSA Key Size 1024-bit, 2048-bit NA NA

RSA Key Type Plain text/raw
standard format
and CRT keys,
wrapped standard
format and
wrapped CRT keys

NA NA

Key Installation AES, ECC, RSA
keys

AES keys NA

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,019 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module Introduction

ECC Key Generation –
plain text and
wrapped keys,
Scalar
Multiplication,
ECDSA – Signature
Generation,
ECDSA – Signature
Verification

NA NA

ECC Key Size (in
bits)

192, 224, 256,
and 384

NA NA

ECC Key Type Plain text/ raw
keys and wrapped
keys

NA NA

DSA Signature
Generation,
Signature
Verification

NA NA

DSA Key Size (1024, 160)-bit,
(2048, 224)-bit,
(2048, 256)-bit

NA NA

HASH MD5, SHA1,
SHA224, SHA256

NA NA Message digest
algorithms

 †† XTS is supported for 128-bit and 256-bit keys only.

4.2.41.2 SCE HAL Module APIs Overview

The SCE interface provides a common API for SCE HAL modules. The SCE interface supports multiple
operations depending on the chosen module (AES, ARC4, RSA, DSA, HASH, TDES or TRNG).

The AES interface defines APIs for opening, closing, generating wrapped keys, encrypting and
decrypting data using the AES algorithm. It uses a 128-bit, 192-bit or 256-bit key and ECB, CBC, CTR,
GCM or XTS chaining-mode options. A complete list of the available APIs, an example API call, and a
short description of each can be found in the following table. For return status values, refer to the
SCE API reference section of the SSP User's Manual.

SCE Common Instance API Summary

Function Name Example API Call and Description

open g_sce.p_api->open(g_sce.p_ctrl, g_sce.p_cfg);
SCE Common module open function. Must be
called before performing any other crypto
operations.

close g_sce.p_api->close(g_sce.p_ctrl);
Close the SCE Common module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,020 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module APIs Overview

interfaceGet g_sce.p_api->interfaceGet(g_sce_aes.p_ctrl,
p_interface_info, p_interface);
Get the interface structure for the interface info
provided.

statusGet g_sce.p_api->statusGet (g_sce.p_ctrl, p_status);
Get status of SCE initialization.

versionGet g_sce.p_api->versionGet(&version);
Gets the module code and API version and
stores it in provided version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

AES HAL Module API Summary

Function Name Example API Call and Description

open g_sce_aes.p_api->open(g_sce_aes.p_ctrl,
g_sce_aes.p_cfg);
AES module open function. Must be called before
performing any encrypt/decrypt operations.

createKey g_sce_aes.p_api->createKey(g_sce_aes.p_ctrl,
num_words, p_key);
Generate an AES key for encrypt/decrypt
operations.

encrypt g_sce_aes.p_api->encrypt(g_sce_aes.p_ctrl,
p_key, p_vi, num_words, p_source, p_dest);
AES encryption using the chaining mode and
padding mode specified in the open() function
call.

addAdditionalAuthenticationData g_sce_aes.p_api->addAdditionalAuthenticationD
ata (g_sce_aes.p_ctrl, p_key, p_vi, num_words,
p_source);
Add additional authentication data (called before
starting an encryption or decryption operation).

encryptFinal g_sce_aes.p_api->encryptFinal(g_sce_aes.p_ctrl,
p_key, p_iv, input_num_words, p_source,
output_num_words, p_dest);
AES final encryption using the chaining mode
and padding mode specified in the open()
function call.

decrypt g_sce_aes.p_api->decrypt(g_sce_aes.p_ctrl,
p_key, p_iv, num_words, p_source, p_dest);
AES decryption.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,021 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module APIs Overview

setGcmTag g_sce_aes.p_api->
setGcmTag(g_sce_aes.p_ctrl,num_words,
p_source);
Set authentication tag data.

getGcmTag g_sce_aes.p_api->
getGcmTag(g_sce_aes.p_ctrl,num_words,
p_dest);
Get authentication tag data.

zeroPaddingEncrypt g_sce_aes.p_api->
zeroPaddingEncrypt(g_sce_aes.p_ctrl, p_key,
p_iv, num_bytes, p_source, p_dest)
AES zero padding encryption using the chaining
mode and padding mode specified.
Implementation for GCM mode only
API usage -
1. To provide any Add Authentication Data
(AAD): set p_dest = NULL
2. Encryption: set p_source to input data and
p_dest will return encrypted data
3. Get/Compute Tag: set p_source = NULL

zeroPaddingDecrypt g_sce_aes.p_api->
zeroPaddingDecrypt(g_sce_aes.p_ctrl, p_key,
p_iv, num_words, p_source, p_dest);
AES zero padding decryption< using the
chaining mode and padding mode specified.
Implementation for GCM mode only
API usage -
1. Set expected tag value using the setGcmTag()
function
2. To provide any Add Authentication Data
(AAD), invoke this API using p_dest = NULL
3. Decryption: set p_source to input encrypted
data, decrypted data will be returned in p_dest
4. To verify the tag, invoke this API using
p_source = NULL and p_dest = NULL, the return
value indicates authentication tag verification
status.

versionGet g_sce_aes.p_api->versionGet(&version);
Gets the module code and API version and
stores it in provided version pointer.

close g_sce_aes.p_api->close(g_sce_aes.p_ctrl);
Close the AES module.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

The ARC4 interface defines APIs for opening, closing, setting a key and processing data. A complete
list of the available APIs, an example API call and a short description of each can be found in the
following table:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,022 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module APIs Overview

ARC4 HAL Module API Summary

Function Name Example API Call and Description

open g_sce_arc4.p_api->open(g_sce_arc4.p_ctrl,
g_sce_trng.p_cfg);
Open the ARC4 module.

keySet g_sce_arc4.p_api->keySet(g_sce_arc4.p_ctrl,
&rngbuf, nbytes);
Set the key to be used by the ARC4 module.

arc4Process g_sce_arc4.p_api->
arc4Process(g_sce_arc4.p_ctrl, nbytes, &source,
&destination);
Encrypt or decrypt data using the ARC4 module.

close g_sce_arc4.p_api->close(g_sce_arc4.p_ctrl);
Close the ARC4 module.

versionGet g_sce_arc4.p_api->versionGet (&version);
Retrieve the version using the provided version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

The DSA interface defines APIs for opening, closing, digital-signing and verification. Available options
include a 1024-bit public key and a 160-bit private key, a 2048-bit public key and a 224-bit private
key or a 2048-bit public key and a 256-bit private key. A complete list of the available APIs, an
example API call and a short description of each can be found in the following table:

DSA HAL Module API Summary

Function Name Example API Call and Description

open g_sce_dsa.p_api->open(g_sce_dsa.p_ctrl,
g_sce_dsa.p_cfg);
DSA module open function. Must be called
before performing any sign/verify operations.

verify g_sce_dsa.p_api->verify(p_key, p_domain,
num_words, p_signature, p_paddedHash);
DSA signature verification using given DSA
public key. This function is deprecated. The
function hashVerify should be used instead.

hashVerify g_sce_dsa.p_api->hashVerify(g_sce_dsa.p_ctrl,
p_key, p_domain, num_words, p_signature,
p_paddedHash);
DSA signature verification using given DSA
public key.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,023 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module APIs Overview

sign g_sce_dsa.p_api->sign(p_key, p_domain,
num_words, p_padded_hash, p_dest);
DSA Signature generation using DSA private
key. This function is deprecated. The function
hashSign should be used instead.

hashSign g_sce_dsa.p_api->hashSign(g_sce_rsa.p_ctrl,
p_key, p_domain, num_words, p_padded_hash,
p_dest);
DSA Signature generation using DSA private
key.

close g_sce_dsa.p_api->close(g_sce_dsa.p_ctrl);
Close the DSA module.

versionGet g_sce_dsa.p_api->versionGet(p_version);
Gets version and stores it in provided pointer
p_version.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

ECC HAL Module API Summary

Function Name Example API Call and Description

open g_sce_ecc.p_api->open(g_sce_ecc.p_ctrl,
g_sce_ecc.p_cfg);
Open the ECC driver. This API must be called
before performing any ECC operations.

close g_sce_ecc.p_api->close(g_sce_ecc.p_ctrl);
Close the ECC module.

scalarMultiplication g_sce_ecc.p_api->
scalarMultiplication(g_sce_ecc.p_ctrl, p_domain,
p_k, p_p, p_r);
This API calculates R=kP.

keyCreate g_sce_ecc.p_api->keyCreate(g_sce_ecc.p_trl,
p_domain, p_generator_point, p_key_private,
p_key_public);
This API generates key pair for ECC.

sign g_sce_ecc.p_api->sign(g_sce_ecc.p_ctrl,
p_domain, p_generator_point, p_key_private,
msg_digest, signature_r, signature_s);
This API generates signature of ECDSA.

verify g_sce_ecc.p_api->verify(g_sce_ecc.p_ctrl,
p_domian, p_generator_point, p_key_public,
msg_digest, signature_r, signature_s);
This is a procedure for signature verification of
ECDSA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,024 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module APIs Overview

versionGet g_sce_ecc.p_api->versionGet(&version);
Gets version and stores it in provided version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

The HASH interface defines APIs for calculating hash values for a given data-set. Available options
include SHA1 and SHA256 algorithms. A complete list of the available APIs, an example API call and a
short description of each can be found in the following table:

HASH HAL Module API Summary

Function Name Example API Call and Description

open g_sce_hash.p_api->open(g_sce_hash.p_ctrl,
g_sce_hash.p_cfg);
HASH module open function. Must be called
before performing any sign/verify operations.

updateHash g_sce_hash.p_api->updateHash(p_source,
num_words, p_dest);
Update hash for the num_words words from
source buffer p_source. This function is
deprecated. The function hashUpdate should be
used instead.

hashUpdate g_sce_hash.p_api->hashUpdate(g_sce_hash.p_ct
rl, p_source, num_words, p_dest);
Update hash for the num_words words from
source buffer p_source.

close g_sce_hash.p_api->close(g_sce_hash.p_ctrl);
HASH module close function.

versionGet g_sce_hash.p_api->versionGet(p_version);
Gets version and stores it in provided pointer
p_version.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Key Installation HAL Module API Summary

Function Name Example API Call and Description

open g_sce_key_installation.p_api->
open(g_sce_key_installation.p_ctrl, p_cfg);
Open the Crypto Key Installation framework for
subsequent call/Key installation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,025 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module APIs Overview

close g_sce_key_installation.p_api->close(g_sce_key_i
nstallation.p_ctrl);
Close the Crypto Key Installation framework.

keyInstall g_sce_key_installation.p_api->
keyInstall (g_sce_key_installation.p_ctrl,
p_user_key_input, p_user_key_rsa_modulus,
p_install_key_input, p_key_data_out);
Install a key version 2. This function takes the
RSA modulus of the user's RSA private key as
one of the input parameters to return the RSA
wrapped key in a format that is compatible with
other Crypto APIs. For all other key types the
functionality remains the same as the earlier
keyInstall API.

versionGet g_sce_key_installation.p_api->
versionGet(&version);
Get version of the Crypto Key Installation
framework and stores it in the provided version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

The RSA interface defines APIs for opening, closing, encrypting and decrypting data using an RSA
algorithm as well as digitally signing and verifying the algorithm. The RSA interface employs a
1024-bit or 2048-bit key. A complete list of the available APIs, an example API call and a short
description of each can be found in the following table:

RSA HAL Module API Summary

Function Name Example API Call and Description

open g_sce_rsa.p_api->open(g_sce_rsa.p_ctrl,
g_sce_rsa.p_cfg);
RSA module open function. Must be called
before performing any encrypt/decrypt or
sign/verify operations.

encrypt g_sce_rsa.p_api->encrypt(g_sce_rsa.p_ctrl,
p_key, p_domain, num_words, p_source, p_dest);
Encrypt source data from p_source using an RSA
public key from p_key and write the results to
destination buffer p_dest.

decrypt g_sce_rsa.p_api->decrypt (g_sce_rsa.p_ctrl,
p_key, p_domain, num_words, p_source, p_dest);
Decrypt source data from p_source using an RSA
private key from p_key and write the results to
destination buffer p_dest.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,026 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module APIs Overview

decryptCrt g_sce_rsa.p_api->decryptCrt(g_sce_rsa.p_ctrl,
p_key, p_domain, num_words, p_source, p_dest);
Decrypt source data from p_source using an RSA
private key from p_key and write the results to
destination buffer p_dest. RSA private key data
is specified in CRT format.

verify g_sce_rsa.p_api->verify(g_sce_rsa.p_ctrl, p_key,
p_domain, num_words, p_signature,
p_padded_hash);
Verify signature given in buffer p_signature
using the RSA public key p_key for the given
padded message hash from buffer
p_padded_hash.

sign g_sce_rsa.p_api->sign(g_sce_rsa.p_ctrl, p_key,
p_domain, num_words, p_padded_hash, p_dest);
Generate signature for the given padded hash
buffer p_padded_hash using the RSA private key
p_key. Write the results to the buffer p_dest.

signCrt g_sce_rsa.p_api->signCrt(g_sce_rsa.p_ctrl,
p_key, p_domain, num_words, p_padded_hash,
p_dest);
Generate signature for the given padded hash
buffer p_padded_hash using the RSA private key
p_key. RSA private key p_key is assumed to be
in CRT format. Write the results to the buffer
p_dest.

close g_sce_rsa.p_api->close(g_sce_rsa.p_ctrl);
Close the RSA module.

keyCreate g_sce_rsa.p_api->keyCreate(g_sce_rsa.p_ctrl,
p_private_key, p_public_key);
Generates an RSA key pair.

versionGet g_sce_rsa.p_api->versionGet(p_version);
Gets version and stores it in provided pointer
p_version.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

The TDES interface defines APIs for encrypting and decrypting data according to the TDES standard.
A complete list of the available APIs, an example API call and a short description of each can be
found in the following table:

TDES HAL Module API Summary

Function Name Example API Call and Description

open g_sce_tdes.p_api->open(g_sce_tdes.p_ctrl,
g_sce_tdes.p_cfg);
Open the TDES module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,027 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module APIs Overview

encrypt encrypt g_sce_tdes.p_api->
encrypt(g_sce_tdes.p_ctrl, &key, &iv, nwords,
&source, &destination);
Encrypt the data.

decrypt g_sce_tdes.p_api->
decrypt(g_sce_tdes.p_ctrl, &key, &iv, nwords,
&source, &destination);
Decrypt the data.

close g_sce_tdes.p_api->close(g_sce_tdes.p_ctrl);
Close the TDES module.

versionGet g_sce_tdes.p_api->versionGet(p_version);
Gets version and stores it in provided pointer
p_version.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

The TRNG interface defines APIs for computing the random-number generator. A complete list of the
available APIs, an example API call and a short description of each can be found in the following
table.

TRNG HAL Module API Summary

Function Name Example API Call and Description

open g_sce_trng.p_api->open(g_sce_trng.p_ctrl,
g_sce_trng.p_cfg);
Open the TRNG driver for reading random data
from the hardware TRNG module.

read g_sce_trng.p_api->read(g_sce_trng.p_ctrl,
p_rngbuf, nbytes);
Generate nbytes of random number bytes and
store them in p_rngbuf buffer.

close g_sce_trng.p_api->close(g_sce_trng.p_ctrl);
Close the TRNG interface driver.

versionGet g_sce_trng.p_api->versionGet(&version);
Gets version and stores it in provided version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

4.2.41.3 SCE HAL Module Operational Overview

Different cryptographic functions are available for different target MCUs; the following table shows
the functionality that is available for each individual MCU-series:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,028 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module Operational Overview

Function S7G2, S5D9,
S5D5, S5D3

S3A1, S3A3,
S3A7, S3A6

S124, S128,
S1JA

Notes

TRNG Generate and
read random
number

Generate and
read random
number

Generate and
read random
number

Generate and
read random
number.

AES Encryption,
decryption,
Key Generation -
wrapped keys

Encryption,
decryption,
Key Generation -
wrapped keys

Encryption,
decryption

Symmetric Key
Encryption based
on AES standard.

AES Key Size 128-bit, 192-bit,
256-bit

128-bit, 256-bit 128-bit, 256-bit

AES Key Type Plain text/raw key,
Wrapped key

Plain text/raw key,
Wrapped key

Plain text/raw key

AES Chaining
Modes

ECB, CBC, CTR,
GCM, XTS
Note: XTS is
supported for
128-bit and
256-bit keys only

ECB, CBC, CTR,
GCM, XTS

ECB, CBC, CTR

ARC4 Encryption,
decryption

NA NA

TDES Encryption,
decryption

NA NA

TDES Key Size 192-bit NA NA

TDES Chaining
Modes

ECB, CBC, CTR NA NA

RSA Signature
Generation,
Signature
Verification, Public-
key Encryption,
Private-key
Decryption,
Key Generation -
plain text and
wrapped keys

NA NA Supports CRT
keys and standard
keys for private
key operations for
both plain-text
and wrapped key
types.

RSA Key Size 1024-bit, 2048-bit NA NA

RSA Key Type Plain text/raw
standard format
and CRT keys,
wrapped standard
format and
wrapped CRT keys

NA NA

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,029 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module Operational Overview

DSA Signature
Generation,
Signature
Verification

NA NA

DSA Key Size (1024, 160)-bit,
(2048, 224)-bit,
(2048, 256)-bit

NA NA

HASH MD5, SHA1,
SHA224, SHA256

NA NA Message digest
algorithms.

ECC Key Generation –
plain text and
wrapped keys,
Scalar
Multiplication,
ECDSA- Signature
Generation,
ECDSA -Signature
Verification,

NA NA

ECC Key Size 192-bit, 224-bit,
256-bit and
384-bit

NA NA

ECC Key Type Plain Text/Raw
Key,
Wrapped Key

Key Installation AES, ECC, RSA
keys

AES keys NA

Configuration Settings for the R_SCE Module

The endianness of the SCE is set to big endian by default. It can be set to little endian mode.

Please refer to the operational notes on endianness configuration parameter usage.

Configuration Settings for the TRNG Module

Random number-generation can be configured for the maximum number of attempts it makes to the
underlying hardware to generate a unique 16-byte random number that differs from the previously-
generated random number. On reaching the maximum number of attempts, the read API will return
an error code to the caller, otherwise a success code is returned and the generated random number
will be transferred to the caller-supplied data buffer.

Configuration Settings for the AES Module

The AES module can be configured for a user-specified key-length, key type (plain text or wrapped
key) and chaining modes.

Configuration Settings for the RSA Module

The RSA module can be configured for a user-specified key length and key type: plain text or
wrapped keys.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,030 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module Operational Overview

Configuration Settings for the DSA Module

The DSA module can be configured for a user-specified key length.

Configuration Settings for the HASH Module

The HASH module can be configured for a user specified HASH algorithm (depending on the target
MCU.)

Configuration Settings for the TDES Module

The TDES module can be configured for a user-specified chaining mode.

Configuration Settings for the Key Installation Module

The Key Installation module can be configured to install the user's encrypted key.

Configuration Settings for the ECC Module

The ECC module can be configured for a user-specified key length and key type.

SCE HAL Module Important Operational Notes and Limitations

SCE HAL Module Operational Notes

Synergy S7 and S5 devices have the SCE7 and therefore support AES, TRNG, RSA, HASH,
DSA, ECC and Key Installation.
Synergy S3 devices have the SCE5 and therefore support AES, TRNG, & GHASH. GHASH is
supported as part of the AES GCM mode. Key Installation is supported as part of AES GCM,
ECB, CTR, XTS, CBC chaining modes. Synergy S3 devices do not support MD5,
SHA1/SHA256 HASH functionality.
Synergy S1 devices only support AES and TRNG.
If an unsupported module is added to the project, then a compiler warning will be
generated indicating this fact.
All modules support the versionGet API which can be called even before a module is
opened.
R_SCE module crypto_api_t::interfaceGet API is provided for use by the Framework layer SF
CRYPTO modules.

The InterfaceGet API is used to request a crypto HAL interface. The example below shows usage of
this API:

crypto_instance_t * p_crypto; /* R_SCE instance */

void * p_interface = NULL; /* Declare a pointer to hold the output interface

structure object */

crypto_interface_get_param_t param;

param.hash_type = CRYPTO_TYPE_HASH_256; /* Requesting SHA 256 interface*/

/* It is mandatory for the address of the p_interface pointer be passed to the API */

p_crypto->p_api->interfaceGet(¶m, &p_interface);

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,031 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module Operational Overview

All crypto APIs may return SSP_ERR_ASSERTION on null pointer input or invalid input
parameters. All APIs return error codes documented in sf_crypto_err_t or ssp_err_t which
are within the width of the type uint32_t.
Crypto hardware engine does not support reentrancy. When the crypto hardware engine is
busy performing a task, any new request will receive a status error code
SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT.

Endianness configuration parameter usage:

The default mode is big endian where the input and output parameters (example: keys,
payload and IV) are required to be in uint32_t data type.
The little endian mode allows the user to have uint8_t/byte array for input and output
parameters (example: keys, payload and IV) and they should be cast to (uint32_t *).
The endianness configuration is set at the initialization of the SCE module and remains in
effect until the module is closed. Hence all data should be formatted accordingly.

Example:

Select the Big endian mode when the data is in uint32_t and big endian format:

uint32_t test_data[5] = {0x84983E44, 0x1C3BD26E, 0xBAAE4AA1, 0xF95129E5, 0xE54670F1};

Select the Little endian mode when the same data is in byte array format

uint8_t test_data_byte_array[20] =

{0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E, 0xBA, 0xAE, 0x4A, 0xA1, 0xF9, 0x51,

0x29, 0xE5, 0xE5, 0x46, 0x70, 0xF1};

AES Keys:

AES wrapped key sizes are as follows:

/* Return Wrapped AES secret key size in bytes for a 128-bit AES Key */

#define AES128_WRAPPPED_SECRET_KEY_SIZE_BYTES (36U)

/* Return Wrapped AES secret key size in bytes for a 192-bit AES Key */

#define AES192_WRAPPPED_SECRET_KEY_SIZE_BYTES (52U)

/* Return Wrapped AES secret key size in bytes for a 256-bit AES Key */

#define AES256_WRAPPPED_SECRET_KEY_SIZE_BYTES (52U)

/* Return Wrapped AES-XTS secret key size in bytes for a 128-bit AES XTS Mode Key */

#define AES_XTS_128_WRAPPPED_SECRET_KEY_SIZE_BYTES (52U)

/* Return AES-XTS secret key size in bytes for a 256-bit AES XTS Mode Key */

#define AES_XTS_256_WRAPPPED_SECRET_KEY_SIZE_BYTES (84U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,032 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module Operational Overview

The format of RSA keys generated by the rsa_api_t::keyCreate API is as follows:

Note: The endianness is the same as that set during SCE initialization.

RSA Key Format:

RSA Public Key Format:

WORD 0 : Public key exponent

WORD 1: Start of RSA modulus

 (128 bytes for RSA 1024-bit and 256 bytes for RSA 2048-bit keys)

RSA Private Key in Plain Text Standard Format:

WORD 0: Private key exponent (128 bytes for RSA 1024-bit and 256 bytes for RSA 2048-bit keys)

Followed by RSA modulus. (128 bytes for RSA 1024-bit and 256 bytes for RSA 2048-bit keys)

RSA Private Key in Plain Text CRT Format:

The components are ordered in the following order with exponent2 at byte 0:

exponent2 // the second factor's CRT exponent, a positive integer

prime2 // the second factor, a positive integer

exponent1 // the first factor's CRT exponent, a positive integer

prime1 // the first factor, a positive integer

coefficient // the (first) CRT coefficient, a positive integer

The format of RSA wrapped keys generated by the rsa_api_t::keyCreate API is as follows:

RSA Public key is always in plain text.

Byte 0 to Byte 3: Public key exponent

Byte 4 : Start of RSA modulus

 (128 bytes for RSA 1024-bit and 256 bytes for RSA 2048-bit keys)

RSA Private key in standard format

Byte 0: Private key exponent is wrapped.(Length is 148 bytes for RSA 1024-bit and 276 bytes for RSA
2048-bit keys)

Followed by RSA modulus in plain text. (Length is 128 bytes for RSA 1024-bit and 256 bytes
for RSA 2048-bit keys)

SCE HAL Module Limitations

The AES encrypt() and decrypt() functions do not support data padding. These functions

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,033 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > SCE HAL Module Operational Overview

operate on data lengths that are multiples of 16 bytes. (Data padding needs to be handled
by the user application.) AES GCM mode may require support for authentication data that
may not be a multiple of 16 bytes. To support this, zeroPaddingEncrypt() and
zeroPaddingDecrypt() function APIs are provided only for the AES GCM mode.

For AES GCM, when using uint32_t arrays in big endian mode, if the number of
bytes of data is not a multiple of 4 (WORD length) it should be zero-padded.

AES encryption/ decryption API with XTS chaining mode supports data input lengths which
are multiples of AES block size. Arbitrary input data lengths will work only when the input
data is zero-padded in the user application. (Data padding needs to be handled by the
user).
The TDES encrypt() and decrypt() functions do not support data padding. These functions
operate on data lengths that are multiples of 8 bytes. (Data padding needs to be handled
by the user application.)
Disable the unused interfaces in the r_sce module configuration in ISDE properties which
will reduce the code memory. This will help in reducing code/text memory size in low
memory devices like S5D3 MCUs.

HASH Module - MD5

MD5 requires byte swapping of the final message digest output. Intermediate updates
(partial updates) are not required to be byte swapped.
MD5 also requires the length field within the formatted final block to be in big endian
format before calling the hash_api_t::hashUpdate API.

Refer to the most recent SSP release notes for the most up-to-date limitations on this module.

4.2.41.4 Including the SCE HAL Module in an Application

This section describes how to include the SCE HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Crypto Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table.

SCE HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sce_aes_0 AES Driver on
r_sce_aes

Threads New Stack> Driver>
Crypto> AES Driver on
r_sce_aes

g_sce_arc4_0 ARC4 Driver on
r_sce_arc4

Threads New Stack> Driver>
Crypto> ARC4 Driver on
r_sce_arc4

g_sce_dsa_0 DSA Driver on
r_sce_dsa

Threads New Stack> Driver>
Crypto> DSA Driver on
r_sce_dsa

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,034 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > Including the SCE HAL Module in an Application

g_sce_ecc_0 ECC Driver on
r_sce_ecc

Threads New Stack> Driver>
Crypto> ECC Driver on
r_sce_ecc

g_sce_hash_0 HASH Driver on
r_sce_hash

Threads New Stack> Driver>
Crypto> HASH Driver on
r_sce_hash

g_sce_key_initialization_0 Key
Initialization Driver on
r_sce_key_initialization

Threads New Stack> Driver>
Crypto> Key Initialization
Driver on
r_sce_key_initialization

g_sce_rsa_0 RSA Driver on
r_sce_rsa

Threads New Stack> Driver>
Crypto> RSA Driver on
r_sce_rsa

g_sce_tdes TDES Driver on
r_sce_tdes

Threads New Stack> Driver>
Crypto> TDES Driver on
r_sce_tdes

g_sce_trng TRNG Driver on
r_sce_trng

Threads New Stack> Driver>
Crypto> TRNG Driver on
r_sce_trng

When a Crypto HAL module is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 374: SCE HAL Module Stack

4.2.41.5 Configuring the SCE HAL Module

The SCE HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,035 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > Configuring the SCE HAL Module

tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the AES HAL Module on r_sce_aes

ISDE Property Value Description

Name g_sce_aes_0 Module name.

Key Length 128, 192, 256
Default: 128

Key length used for
encryption/decryption
operations by this instance of
the driver.

Chaining Mode ECB, CBC, CTR, GCM, XTS
Default: CBC

Block cipher chaining mode
used for encryption/decryption
operations by this instance of
the driver.

Key Format Plain Text Key, Wrapped Key
(Not available for S1 MCU
series)
Default: Plain Text Key

Key format selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the ARC4 HAL Module on r_sce_arc4

ISDE Property Value Description

Name (for S7G2, S5D9, S5D5
devices only)

g_sce_arc40 Module name.

Key Length in number of bytes 0 Key length selection.

Key Name, this symbol must be
defined as uint8_t array type
data in user code

g_arc4_0_key Key name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the DSA HAL Module on r_sce_dsa

ISDE Property Value Description

Name g_sce_dsa_0 Module name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,036 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > Configuring the SCE HAL Module

Key Length (1024, 160), (2048, 224),
(2048, 256)
Default: (2048, 256)

Key length used for
signing/verification operations
by this instance of the driver.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the ECC HAL Module on r_sce_ecc

ISDE Property Value Description

Name (for S7G2, S5D9, S5D5
devices only)

g_sce_ecc0 Module name.

Key Length 192, 224, 256, 384
Default: 256

Key length used for
encryption/decryption
operations by this instance of
the driver.

Key Format Plain Text Key, Wrapped Key
Default: Plain Text Key

Key format selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the HASH Driver on r_sce_hash

ISDE Property Value Description

Name (for S7G2, S5D9, S5D5
devices only)

g_sce_hash_0 Module name.

Algorithm SHA1, MD5, SHA224 SHA256
Default: SHA256

Algorithm used for computing
the message digest/hash on the
message data.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the RSA HAL Module on r_sce_rsa

ISDE Property Value Description

Name g_sce_rsa_0 Module name.

Key Length 1024, 2048
Default: 2048

Key length used for signing/veri
fication/encryption/decryption
operations by this instance of
the driver.

Key Format Plain Text Key, Wrapped Key
Default: Plain Text Key

Key format selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,037 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > Configuring the SCE HAL Module

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the TDES HAL Module on r_sce_tdes

ISDE Property Value Description

Name g_sce_tdes_0 Module name.

Chaining Mode EBC, CBC, CTR
Default: CBC

Chaining mode selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the TRNG HAL Module on r_sce_trng

ISDE Property Value Description

Name g_sce_trng Module name.

Max. Attempts 2 Sets the maximum number of
attempts when a newly
generated random number
differs from the previously
generated random number.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Key Installation on r_sce_key_installation

ISDE Property Value Description

Name (Not Supported for S1
Series MCUs)

g_sce_key_installation_0 Module name.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

4.2.41.6 Using the SCE HAL Module in an Application

The SCE Driver on r_sce HAL module makes several APIs available for various cryptographic
functions. The steps to use each function are illustrated as follows, but a flow diagram is not
provided due to the large number of steps.

The steps in using the SCE Driver on r_sce HAL module in a typical application are:

1. To use the SCE module:
Initialize the SCE and the SCE HAL module (R_SCE) using the crypto_api_t::open
API through the SCE common driver. This initializes the module as defined in the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,038 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > Using the SCE HAL Module in an Application

associated configuration parameters.

Note
Configure the endianness (little-endian or big-endian) for the input /output data
for all the HAL APIs. The big-endian mode is configured by default. See the
above operational notes for details on endianness configuration.

All interfaces supported on the selected MCU are available at run-time by
calling the crypto_api_t::interfaceGet API. This is available for use by the
Crypto framework.
If the crypto_api_t::interfaceGet API function is used by the HAL module,
disable the unused interfaces. This will exclude them from the build to
save code/text space.
If the application is using the Crypto frameworks, disable only the
interfaces which will not be used at run-time. Make sure to keep all the
used interfaces enabled.
If the crypto_api_t::interfaceGet API is not used directly by the HAL
application project and if none of the Crypto Framework modules are
being used, disable all the interfaces. This will reduce the code/text space
significantly.
Note that disabling the interfaces will only exclude them from being
requested through the crypto_api_t::interfaceGet API function. These
interfaces can still be used by the HAL project by including the
appropriate module in ISDE.
Call the crypto_api_t::open API function before using the
crypto_api_t::interfaceGet API.

Note
The open function cannot be called again until the module is closed.

2. To use the AES functions:
Initialize the selected AES module with the aes_api_t::open API. This initializes the
module as defined in the associated configuration parameters.

Note
AES available key sizes are 128-bit, 192-bit or 256-bit. Chaining modes
supported are ECB, CBC, CTR, GCM and XTS.

Encrypt data with the aes_api_t::encrypt API.
Decrypt data with the aes_api_t::decrypt API.
Generate keys using the aes_api_t::createKey API.

Note
The aes_api_t::createKey API in AES module creates AES wrapped keys. AES
plain text keys can be generated with the services of the TRNG module.

Close the interface instance using the aes_api_t::close API.

Note
Subtle difference exist in GCM operations as follows.

IV provided for AES GCM operations must be a 96-bit IV formatted to 128-bits.

Example:

96-bit IV formatted to 128-bits: e0e00f19fed7ba0136a797f300000001
96-bit IV: e0e00f19fed7ba0136a797f3

AES GCM operations:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,039 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > Using the SCE HAL Module in an Application

The IV will be updated after each operation and that value should be used for each subsequent
operation.

AES GCM encryption:

1. AAD (Additional Authenticated Data) is optional. If it is to be used, it has to be provided
prior to encrypting/decrypting any data by setting p_dest = NULL

2. Encryption: set p_source to input data and p_dest will return encrypted data
3. Get/Compute Tag: set p_source = NULL.

AES GCM decryption:

1. Set expected tag value using the setGcmTag() function
2. Provide any Add Authentication Data (AAD), invoke this API using p_dest = NULL
3. Decryption: set p_source to input encrypted data, decrypted data will be returned in

p_dest
4. To verify the tag, invoke this API using p_source = NULL and p_dest = NULL, the return

value indicates authentication tag verification status.The decrypted data is to be used only
if the tag is verified successfully. zeroPaddingEncrypt/zeroPaddingDecrypt APIs can be used
for GCM operations when the data is not a multiple of the block size.

5. To use the TDES functions:
Initialize the selected TDES module with the tdes_api_t::open API. This initializes
the module as defined in the associated configuration parameters.

Note
The TDES chaining mode can be specified as ECB, CBC or CTR.

Encrypt data using the tdes_api_t::encrypt API.
Decrypt data using the tdes_api_t::decrypt API
Close the interface instance with tdes_api_t::close API.

6. To use the ARC4 functions:
Initialize the selected ARC4 module with the arc4_api_t::open API. This initializes
the module as defined in the associated configuration parameters.

Note
The ARC4 key can be specified by length (anywhere from 64-bits, 2048-bits) and
location.

Set the key with the arc4_api_t::keySet API.
Encrypt or decrypt data using the arc4_api_t::arc4Process API.
Close the module using the arc4_api_t::close API.

7. To use the RSA functions:
Initialize the selected module with the rsa_api_t::open API. This initializes the
module as defined in the associated configuration parameters.

Note
For rsa_api_t::encrypt API, rsa_api_t::decrypt API, rsa_api_t::decryptCrt API,
rsa_api_t::sign and rsa_api_t::signCrt API, the size of the data buffer is
indicated in num_words. It must be 32 words /128 bytes/1024-bits for 1024-bit
keys and 64 words /256 bytes/2048-bits for the 2048-bit keys.

Note
Supported key-formats are Standard Key and CRT Key.

Note
Supported key-types are plain-text and wrapped private keys.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,040 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > Using the SCE HAL Module in an Application

Note
Supported key-lengths are 1024-bits and 2048-bits.

Encrypt data with the RSA public Key using the rsa_api_t::encrypt API .
Decrypt data with the RSA private Key using the rsa_api_t::decrypt API.
Decrypt data with the RSA private Key, in the CRT format, using the
rsa_api_t::decryptCrt API.
Generate the signature for a given padded hash using the RSA private Key, in the
standard format, using the rsa_api_t::sign API.
Generate the signature for a given padded hash using the RSA private Key, in the
CRT format, using the rsa_api_t::signCrt API.
Verify the signature for a given padded hash using the RSA public Key, in the
standard format, using the rsa_api_t::verify API.
Generate keys using the rsa_api_t::keyCreate API.

Note
 The rsa_api_t::keyCreate API in the RSA module creates RSA plain-text keys or
wrapped keys based on the input parameters to the API.

Close the interface instance with the rsa_api_t::close API.
8. To use the DSA functions:

Initialize the selected DSA module with the dsa_api_t::open API. This initializes the
module as defined in the associated configuration parameters.

Note
Supported key-lengths are (1024,160)-bits, (2048,224)-bits and (2048,256)-bits

Generate the signature with the DSA private key using the dsa_api_t::hashSign
API.
Verify the signature with the DSA public key using the dsa_api_t::hashVerify API.
Close the module using the dsa_api_t::close API.

9. To use the HASH algorithms:
Initialize the selected HASH module with the hash_api_t::open API. This initializes
the module as defined in the associated configuration parameters.

Note
MD5, SHA1 and SHA256 hash methods are supported.

Compute the message digest using the hash_api_t::hashUpdate API.
Close the module with hash_api_t::close API.

10. To use the True Random Number Generator functions:
Initialize the TRNG module using the trng_api_t::open API.
Generate a random number using the trng_api_t::read API.
Close the interface instance using the trng_api_t::close API.

11. To use the Key Installation API:
Initialize the Key Installation module using the
sf_crypto_key_installation_api_t::open API. This initializes the module as defined in
the associated configuration parameters.

Note
Specify Output key structure with pointer to buffer and buffer length.

Note
Specify Key installation key structures for the user's encrypted key and Renesas
provided key index (key size, key format, pointer to buffer and buffer length).

Install the key using the sf_crypto_key_installation_api_t::keyInstall API.
Close the module using the sf_crypto_key_installation_api_t::close API.

12. To use the ECC functions:
Initialize the selected ECC module using the ecc_api_t::open API. This initializes the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,041 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCE Crypto Driver > Using the SCE HAL Module in an Application

module as defined in the associated configuration parameters.

Note
To generate the domain parameters for NIST curves, use OpenSSL command to
generate curves as shown below.

ECC P-384: openssl ecparam -name secp384r1 -param_enc explicit
-text | more
ECC P-256: openssl ecparam -name secp256r1 -param_enc explicit
-text | more
ECC P-224: openssl ecparam -name secp224r1 -param_enc explicit
-text | more
ECC P-192: openssl ecparam -name secp192r1 -param_enc explicit
-text | more

Note
Supported key sizes are 192 bits, 224 bits, 256 bits, and 384 bits.

Note
For the ecc_api_t::scalarMultiplication API, the ecc_api_t::keyCreate, the
ecc_api_t::sign and the ecc_api_t::verify API:

The size of the data buffer is indicated in the data_length field of
r_crypto_data_handle_t. The actual buffer must be pointed to by
p_data field of the r_crypto_data_handle_t.

Perform ECC Scalar Multiplication using the ecc_api_t::scalarMultiplication API.
Generate the signature for a given padded hash using the ECC private Key, in the
standard format, using the ecc_api_t::sign API.
Verify the signature for a given padded hash using the ECC public Key, in the
standard format, using the ecc_api_t::verify API.
Generate the ECC keys using the ecc_api_t::keyCreate API.
Close the module with the ecc_api_t::close API.

13. Close the SCE and the SCE HAL moduleusing the crypto_api_t::close API.

4.2.42 SDADC Driver

4.2.42.1 SDADC HAL Module Introduction

The SDADC HAL module provides a high level API for analog-to-digital conversions and supports the
SDADC24 24-bit analog-to-digital converter peripheral available on the Synergy microcontroller
hardware. A user-defined callback can be created to process the data each time a new sample is
available.

SDADC HAL Module Features

24-bit sigma delta A/D Converter
Single scan or continuous scan operation mode
Single-ended or differential input
Gain of up to 32 on differential inputs
Oversampling ratio configurable on differential inputs

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,042 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SDADC Driver > SDADC HAL Module Introduction

Figure 375: SDADC HAL Module Block Diagram

SDADC Hardware Support Details

The following hardware features are, or are not, supported by SSP for SDADC:

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group Support for all
Analog Channels

24-Bit Single-scan Mode Continuous-scan
mode

S124 N/A N/A N/A N/A

S128 N/A N/A N/A N/A

S1JA ✓ ✓ ✓ ✓

S3A1 N/A N/A N/A N/A

S3A3 N/A N/A N/A N/A

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,043 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SDADC Driver > SDADC HAL Module Introduction

S3A6 N/A N/A N/A N/A

S3A7 N/A N/A N/A N/A

S5D3 N/A N/A N/A N/A

S5D5 N/A N/A N/A N/A

S5D9 N/A N/A N/A N/A

S7G2 N/A N/A N/A N/A

MCU Group Single-ended
input

Differential input Programmable
Gain Amplifier

Configurable
oversampling

ratio

S124 N/A N/A N/A N/A

S128 N/A N/A N/A N/A

S1JA ✓ ✓ ✓ ✓

S3A1 N/A N/A N/A N/A

S3A3 N/A N/A N/A N/A

S3A6 N/A N/A N/A N/A

S3A7 N/A N/A N/A N/A

S5D3 N/A N/A N/A N/A

S5D5 N/A N/A N/A N/A

S5D9 N/A N/A N/A N/A

S7G2 N/A N/A N/A N/A

4.2.42.2 SDADC HAL Module APIs Overview

The SDADC HAL module defines API functions to open, configure scans, start scans, stop scans, read
the conversion results the ADC scans and close the ADC unit. A complete list of the available APIs, an
example API call and a short description of each can be found in the following table. A table of status
return values follows the API summary table.

SDADC HAL Module API Summary

Function Name Example API Call and Description

open g_adc.p_api->open(g_adc.p_ctrl, g_adc.p_cfg);
Initialize ADC unit; apply power, set the
operational mode, trigger sources, interrupt
priority, and configurations common to all
channels and sensors.

scanCfg g_adc.p_api->scanCfg(g_adc.p_ctrl,
g_adc.p_channel_cfg);
Configure the scan including the channels,
groups and scan triggers to be used for the unit
that was initialized in the open call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,044 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SDADC Driver > SDADC HAL Module APIs Overview

scanStart g_adc.p_api->scanStart(g_adc.p_ctrl);
Start the scan (in case of a software trigger), or
enable the hardware trigger.

scanStop g_adc.p_api->scanStop(g_adc.p_ctrl);
Stop the ADC scan (in case of a software
trigger), or disable the hardware trigger.

scanStatusGet g_adc.p_api->scanStatusGet(g_adc.p_ctrl);
Check scan status.

read g_adc.p_api->read(g_adc.p_ctrl,
ADC_REG_CHANNEL_13, &adc_data);
Read ADC conversion result.

read32 g_adc.p_api->read32(g_adc.p_ctrl,
ADC_REG_CHANNEL_13, &adc_data);
Read ADC conversion result into a 32-bit word.

sampleStateCountSet g_adc.p_api->
sampleStateCountSet(g_adc.p_ctrl,&adc_sample
);
Set the sample state count for the specified
channel.

calibrate g_adc.p_api-> calibrate(g_adc.p_ctrl, reg_id,
offset);
Calibrate ADC or associated PGA (programmable
gain amplifier). The driver may require
implementation specific arguments to the
p_extend input.

offsetSet g_adc.p_api-> offsetSet(g_adc.p_ctrl, p_extend);
Set offset for input PGA configured for
differential input.

close g_adc.p_api->close(g_adc.p_ctrl);
Close the specified ADC unit by ending any scan
in progress, disabling interrupts, and removing
power to the specified A/D unit.

infoGet g_adc.p_api->infoGet(g_adc.p_ctrl, &adc_info);
Return the ADC data register address of the first
(lowest number) channel and the total number
of bytes to be read for the DTC/DMAC to read
the conversion results of all configured channels.

versionGet g_adc.p_api->versionGet(&version);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,045 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SDADC Driver > SDADC HAL Module APIs Overview

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_ASSERTION The parameter p_ctrl or p_sample is NULL.

SSP_ERR_IN_USE Peripheral is still running in another mode;
perform R_ADC_Close first.

SSP_ERR_INVALID_POINTER The parameter p_data is NULL.

SSP_ERR_CALIBRATION_FAILED Calibration failed.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.42.3 SDADC HAL Module Operational Overview

The SDADC HAL module controls the SDADC peripheral on a Synergy microcontroller. It directly
controls the SDADC hardware without using any RTOS elements and provides convenient APIs to
simplify development.

In this document, the term 'scan' refers to the AUTOSCAN feature of the SDADC, which works as
follows:

1. Conversions are performed on enabled channels in ascending order of channel number. All
conversions required for a single channel are completed before the sequencer moves to the
next channel.

2. Conversions are performed at the rate (in Hz) of the SDADC oversampling clock frequency /
oversampling ratio (configured per channel). The SSP uses the normal mode SDADC
oversampling clock frequency.

3. If averaging is enabled for the channel, the number of conversions to average are
performed before each conversion end interrupt occurs.

4. If the number of conversions for the channel is more than 1, performs the number of
conversions requested. If averaging is enabled for the channel, each averaged result
counts as a single conversion.

5. Continues to the next enabled channel only after completing all conversions requested.
6. After all enabled channels are scanned, a scan end interrupt occurs.

The driver supports single-scan and continuous scan operation modes.

Single-scan mode performs one scan per trigger (hardware trigger or software start using
adc_api_t::scanStart).
In continuous scan mode, the scan is restarted after each scan completes. A single trigger
is required to start continuous operation of the SDADC.

Interrupts and Callbacks

When a conversion is complete and a callback is provided by the user, the SDADC HAL module calls
the callback (adc_cfg_t::p_callback) with the argument adc_callback_args_t, indicating the unit and
the event adc_cb_event_t.

The SDADC driver supports the following callback events:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,046 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SDADC Driver > SDADC HAL Module Operational Overview

ADC_EVENT_CONVERSION_COMPLETE to notify the application that new conversion data is
available.
ADC_EVENT_SCAN_COMPLETE to notify the application when a scan is complete.
ADC_EVENT_CALIBRATION_COMPLETE to notify the application that the calibration process
is complete.

SDADC HAL Module Important Operational Notes and Limitations

SDADC HAL Module Operational Notes

Triggering a Data Transfer with the SDADC

To trigger a transfer of data when the SDADC scan completes, configure the data transfer with
transfer_cfg_t::activation_source set to ELC_EVENT_SDADCn_SCAN_END. The ELC events are listed
under elc_event_t. To retrieve the SDADC specific information to use with the Transfer Interface API,
use the adc_api_t::infoGet function call.

Triggering ELC Events with the SDADC

The SDADC unit can trigger the start of other peripherals listed in elc_peripheral_t. Refer to the "ELC
Interface" in the SSP User's Manual for more information.

SDADC HAL Module Limitations

This module only works for selected Synergy MCUs. Consult the release notes for your current SSP
release to see which MCUs are supported by this module. Additionally, the MCU Hardware Manual
shows which peripherals are available.

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4.2.42.4 Including the SDADC HAL Module in an Application

This section describes how to include the SDADC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the SDADC Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the SDADC Driver is g_sdadc0. This
name can be changed in the associated Properties window.)

SDADC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sdadc0 SDADC Driver on
r_adc

Threads New Stack> Driver>
Analog> SDADC Driver on
r_sdadc

When the SDADC Driver on r_sdadc is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,047 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SDADC Driver > Including the SDADC HAL Module in an Application

individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 376: SDADC HAL Module Stack

4.2.42.5 Configuring the SDADC HAL Module

The SDADC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the SDADC HAL Module on r_sdadc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable parameter
error checking.

Name g_adc0 Module name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,048 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SDADC Driver > Configuring the SDADC HAL Module

Mode Single Scan, Continuous Scan
Default: Continuous Scan

In single scan mode, all
channels are converted once
per start trigger, and
conversion stops after all
enabled channels are scanned.
In continuous scan mode,
conversion starts after a start
trigger, then continues until
stopped in software.

Resolution 16 Bit, 24 Bit
Default: 24 Bit

Select 24-bit or 16-bit
resolution.

Alignment Right, Left
Default: Right

Select left or right alignment.

Trigger ELC Hardware Event, Software
Default: Software

Select conversion start trigger.
Conversion can be started in
software, or conversion can be
started when a hardware event
occurs if the hardware event is
linked to the SDADC peripheral
using the ELC API.

Vref Source Internal, External
Default: Internal

Vref can be sourced internally
and output on the SBIAS pin, or
Vref can be input from VREFI.

Vref Voltage 0.8V, 1.0V, 1.2V, 1.4V, 1.6V,
1.8V, 2.0V, 2.2V, 2.4V
Default: 1.0V

Select Vref voltage. If Vref is
input externally, the voltage on
VREFI must match the voltage
selected within 3%.

Internal Calibration During
Open()

Enabled, Disabled
Default: Enabled

Calibration is required for all
channels configured for
differential input. Internal
calibration is performed
automatically during open for
these channels unless it is
disabled here.

Callback NULL Enter the name of the callback
function to be called when
conversion completes or a scan
ends.

Conversion End Interrupt
Priority

Priority 0 (highest), Priority 1,
Priority 2, Priority 3 (lowest -
not valid if using ThreadX)
Default: Priority 2

Select the interrupt priority for
the conversion end interrupt.
[Required]

Scan End Interrupt Priority Priority 0 (highest), Priority 1,
Priority 2, Priority 3 (lowest -
not valid if using ThreadX),
Disabled
Default: Disabled

Select the interrupt priority for
the scan end interrupt.
[Required]

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,049 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SDADC Driver > Configuring the SDADC HAL Module

Calibration End Interrupt
Priority

Priority 0 (highest), Priority 1,
Priority 2, Priority 3 (lowest -
not valid if using ThreadX),
Disabled
Default: Disabled

Select the interrupt priority for
the calibration end interrupt.
[Required]

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

SDADC HAL Module Clock Configuration

The SDADC HAL module uses the SDADCCLK as its clock source and it must be set to 4 MHz.

SDADC HAL Module Pin Configuration

To use the SDADC HAL module, the port pins for the channels receiving the analog input must be set
as input pins in the pin configurator in the ISDE. The following table illustrates the method for
selecting the pins within the ISDE configuration window:

Pin Selection for the SDADC HAL Module on r_sdadc

Resource ISDE Tab Pin selection Sequence

SDADC Pins Select Peripherals>
Analog:SDADC> SDADCn,
where n is the channel number.

4.2.42.6 Using the SDADC HAL Module in an Application

The typical steps in using the SDADC HAL module in an application are:

1. Initialize the SDADC using adc_api_t::open. Calibration is performed on all channels
configured for differential input during this function unless calibration during open is
disabled in the configuration.

2. If calibration during open is disabled in the configuration, calibrate each channel configured
for differential input using adc_api_t::calibrate. Wait for a calibration complete interrupt
after calibrating each channel. See R_SDADC_Calibrate for details regarding the calibration
procedure.

3. Configure active channels using adc_api_t::scanCfg. (Optional)
4. Start a conversion using the desired trigger with adc_api_t::scanStart.

a. If a hardware trigger is used, this call enables the ADC unit to be triggered by the
hardware trigger. If a software trigger is used, then this call starts the ADC scan.

5. The callback will be called after each conversion, and when the entire scan is complete.
6. Read the results of the conversion using adc_api_t::read.
7. Stop the ADC scan by calling adc_api_t::scanStop. (Optional)

a. This prevents the ADC from being triggered by an external trigger or a hardware
trigger; it also forces a stop of a software-triggered scan if one is ongoing.

8. Operate on the received data as needed by the application.
9. Close the module and power down the peripheral using the adc_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,050 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SDADC Driver > Using the SDADC HAL Module in an Application

Figure 377: Flow Diagram of a Typical SDADC HAL Module Application

4.2.43 SD/MMC Driver and SDIO Driver

4.2.43.1 SDMMC HAL Module Introduction

The SDMMC (SD/MMC and SDIO) HAL module is used to read/write and control SDMMC media devices
and SDIO cards. The SDMMC module can be used as a standalone SD card, eMMC or media driver, or
it can be used with FileX and other compatible file systems. The SDMMC HAL module uses the
SDMMC peripheral on the Synergy MCU.

SDMMC HAL Module Features

Supports the following memory devices: SDSC (SD Standard Capacity), SDHC (SD High
Capacity), SDXC (SD Extended Capacity) and eMMC (embedded Multi Media Card)

Supports reading, writing and erasing SD and eMMC memory devices
Supports 1, 4 or 8-bit data busses (8-bit bus is supported for eMMC only)
Supports detection of hardware write protection (SD cards only)
Automatically selects between backwards compatible mode and high speed SRD
mode (eMMC)

Supports SDIO
Supports SDIO single register access (CMD52)
Supports SDIO multiple register access (CMD53)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,051 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > SDMMC HAL Module Introduction

Supports SDIO interrupts
Automatically configures the clock to the maximum clock rate supported by both
host (MCU) and device

Figure 378: SDMMC HAL Module Block Diagram

SDMMC Hardware Support Details

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group SD 1 bit SD 4 bit SDHC SDXC MMC 1 bit MMC 4 bit

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,052 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > SDMMC HAL Module Introduction

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 ✓ ✓ ✓ ✓ ⌧ ⌧

S3A3 ✓ ✓ ✓ ✓ ⌧ ⌧

S3A6 N/A N/A N/A N/A N/A N/A

S3A7 ✓ ✓ ✓ ✓ ⌧ ⌧

S5D3 ✓ ✓ ✓ ✓ ⌧ ⌧

S5D5 ✓ ✓ ✓ ✓ ⌧ ⌧

S5D9 ✓ ✓ ✓ ✓ ⌧ ⌧

S7G2 ✓ ✓ ✓ ✓ ⌧ ✓

MCU Group MMC 8 bit MMC
Backward

Compatibilit
y Mode

Card Detect:
Insertion

Card Detect:
Removal

Write
Protect

MMC High
Speed SDR

Mode

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 ⌧ ⌧ ⌧ ⌧ ✓ ⌧

S3A3 ⌧ ⌧ ⌧ ⌧ ✓ ⌧

S3A6 N/A N/A N/A N/A N/A N/A

S3A7 ⌧ ⌧ ⌧ ⌧ ✓ ⌧

S5D3 ⌧ ⌧ See note See note ✓ ⌧

S5D5 ⌧ ⌧ See note See note ✓ ⌧

S5D9 ⌧ ⌧ See note See note ✓ ⌧

S7G2 ✓ ⌧ See note See note ✓ ✓

 Note: Available on some of the MCUs (for the group indicated in the table) based on the pin map.

MCU Group DMA Read DMA Write Single Block
Read

Single Block
Write

IO RW Direct IO RW
Extended

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 ✓ ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓ ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,053 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > SDMMC HAL Module Introduction

S3A6 N/A N/A N/A N/A N/A N/A

S3A7 ✓ ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓

4.2.43.2 SDMMC HAL Module APIs Overview

The SDMMC HAL module defines API functions including opening, reading, writing and closing. A
complete list of the available API functions, an example API function call and a short description of
each can be found in the following table. A table of status return values follows the API summary
table.

SDMMC HAL Module API Summary

Function Name Example API Call and Description

open g_sdmmc.p_api->open(g_sdmmc.p_ctrl,
g_sdmmc.p_cfg);
Open device channel for read/write and control.
Initialize driver and hardware on first call.

read g_sdmmc.p_api->read(g_sdmmc.p_ctrl,
&destination, start, count);
Read data from SD/MMC channel.

write g_sdmmc.p_api->write(g_sdmmc.p_ctrl,
&source, start, count);
Write data to SDMMC channel.

control g_sdmmc.p_api->control(g_sdmmc.p_ctrl,
command, &data);
Send control commands to the SD/MMC port and
receive the status of the SD/MMC port.

close g_sdmmc.p_api->close(g_sdmmc.p_ctrl);
Close open SDMMC channel. Turns off hardware
if last channel open.

versionGet g_sdmmc.p_api->versionGet(&version);
Get version of Block Media SD/MMC driver.

readIo g_sdmmc.p_api->readIo(g_sdmmc.p_ctrl, &data,
function, address);
Read I/O data from an SDMMC channel.

writeIo g_sdmmc.p_api->writeIo(g_sdmmc.p_ctrl, &data,
function, address, read_after_write);
Write I/O data to SDMMC channel.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,054 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > SDMMC HAL Module APIs Overview

readIoExt g_sdmmc.p_api->readIoExt(g_sdmmc.p_ctrl,
&destination, function, address, count,
transfer_mode, address_mode);
Read I/O data, extended, from an SDMMC
channel.

writeIoExt g_sdmmc.p_api->writeIoExt(g_sdmmc.p_ctrl,
&source, function, address, count,
transfer_mode, address_mode);
Write I/O data, extended, to SDMMC channel.

IoIntEnable g_sdmmc.p_api->IoIntEnable(g_sdmmc.p_ctrl,
enable);
Enables SDIO interrupt for SDMMC channel.

infoGet g_sdmmc.p_api->infoGet(g_sdmmc.p_ctrl,
&info);
Get SDMMC channel info.

erase g_sdmmc.p_api->erase(g_sdmmc.p_ctrl, start,
count);
Erase SDMMC sectors.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

SSP_ERR_IN_USE The channel specified has already been opened.
No configurations were changed. Call the
associated Close function or use associated
Control commands to reconfigure the channel.

SSP_ERR_ASSERTION The pointer is NULL.

SSP_ERR_WRITE_PROTECTED SD or MMC card is Write Protected.

SF_INFO_NOT_AVAILABLE Information not available possibly because card
has been removed or is defective.

SSP_ERR_NOT_OPEN The channel is not opened.

SSP_ERR_HW_LOCKED The hardware lock has already been acquired.

SSP_ERR_TRANSFER_BUSY The transfer is in progress.

SSP_ERR_CARD_NOT_READY The card is not ready yet.

SSP_ERR_NOT_ENABLED SDIO interrupt enable failed.

SSP_ERR_READ_FAILED Read operation failed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,055 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > SDMMC HAL Module APIs Overview

SSP_ERR_WRITE_FAILED Write operation failed.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.43.3 SDMMC HAL Module Operational Overview

The following descriptions cover the operational functions and requirements when using the SDMMC
HAL module:

Interrupt Configurations:

Using SD/MMC with DTC:

Access Interrupt
DTC Interrupt

Using SD/MMC with DMAC:

Access Interrupt
DMAC Interrupt (in DMAC instance)

Using SDIO with DTC:

Access Interrupt
SDIO Interrupt
DTC Interrupt

Using SDIO with DMAC:

Access Interrupt
SDIO Interrupt
DMAC Interrupt (in DMAC instance)

The Card interrupt is optional and only available on MCU packages that have the SDHIn CD pin (n =
channel number) available on the Pins tab of the Synergy Configuration tool.

Block Size Configuration

Block size configuration is provided for use with SDIO cards only. For SDIO cards, block size may be
configured to 1-512 bytes. Block size must remain at the default 512 bytes for SD cards and e/MMC
memory devices.

Card Detection Configuration

See Card Detection Limitations before using card detection in the SDMMC HAL driver. If card
detection is not available or not desired for the application, Card Detection must be set to Not Used
in the Properties for the r_sdmmc instance in the Synergy Configuration tool. To enable card
detection, set Card Detection to CD Pin and Media Type to Card in the Properties for the r_sdmmc
instance in the Synergy Configuration tool.

Access Interrupt Priority

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,056 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > SDMMC HAL Module Operational Overview

When data transfers are not 4-byte aligned or not a multiple of 4 bytes, a software copy of the block
size (up to 512 bytes) is done in the access interrupt. This blocks other interrupts that are a lower or
equal priority to the access interrupt until the software copy is complete.

General Timing Notes

Several functions in this driver block. sdmmc_api_t::open() and sdmmc_api_t::erase() block until the
entire operation is complete. sdmmc_api_t::read(), sdmmc_api_t::write(), sdmmc_api_t::readIo(),
sdmmc_api_t::writeIo(), sdmmc_api_t::readIoExt(), and sdmmc_api_t::writeIoExt() block for a single
command response cycle. In a multithreaded system, care should be taken to use this driver in a
lower priority thread if other threads require a response time faster than the time this driver could
block for during one of these function calls.

Timing Notes for Open

The sdmmc_api_t::open() API completes the entire device identification and configuration process.
This involves several command-response cycles at a bus width of 1-bit and a bus speed of 400 kHz
or less.

Timing Notes for Read, Write, ReadIoExtand WriteIoExt

The read and write media (sdmmc_api_t::read() and sdmmc_api_t::write()) and extended read and
write SDIO APIs (sdmmc_api_t::readIoExt() and sdmmc_api_t::writeIoExt()) block until the response is
received from the device. The data transfer operation is non-blocking and requires interrupts and a
transfer instance, either DMAC or DTC. These APIs return SSP_SUCCESS to indicate that the initial
operations have started successfully. The application must wait for a callback with the event
SDMMC_EVENT_TRANSFER_COMPLETE or SDMMC_EVENT_TRANSFER_ERROR to indicate completion
of the read or write.

Timing Notes for ReadIo and WriteIo

The SDIO sdmmc_api_t::readIo() and sdmmc_api_t::writeIo() APIs block until the response is received
from the device. The read or write operation is complete when these APIs return.

Timing Notes for Erase

The sdmmc_api_t::erase() API blocks until the erase operation is complete. This may be several
seconds or more depending on how many sectors are being erased.

SDIO Interrupts

Many SDIO cards use level interrupts, meaning the interrupt is not de-asserted until the interrupt is
cleared on the device. In order to ensure SDIO interrupts are cleared appropriately, one of the
following methods are recommended:

Ensure the SDIO interrupt is cleared on the device before exiting the callback function with
the event SDMMC_EVENT_SDIO. If this method is chosen and any SDIO API must be used in
the interrupt, the access interrupt must be a higher priority than the SDIO interrupt.
Disable the SDIO interrupt in the callback function with the event SDMMC_EVENT_SDIO
using sdmmc_api_t::IoIntEnable(). Clear the SDIO interrupt elsewhere in the application,
then re-enable SDIO interrupts if desired using sdmmc_api_t::IoIntEnable().

SDMMC HAL Module Important Operational Notes and Limitations

SDMMC HAL Module Operational Notes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,057 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > SDMMC HAL Module Operational Overview

SD HALA Compliance

When developing host devices that are compliant with the SD Specifications, the host must comply
with the SD Host/Ancillary Product License Agreement (SD HALA).

SDMMC HAL Module Limitations

Data Alignment and Size

Data transfers should be 4-byte aligned and a multiple of 4 bytes in size whenever possible. This
recommendation applies to the read(), write(), readIoExt(), and writeIoExt() APIs. When data
transfers are 4-byte aligned and a multiple of 4-bytes, the r_sdmmc driver is zero copy and takes full
advantage of hardware acceleration by the DMAC or DTC. When data transfers are not 4-byte
aligned or not a multiple of 4 bytes an extra CPU interrupt is required for each block transferred (see
Access Interrupt Priority).

Card Detection Limitations

Card detection support in the r_sdmmc driver is limited. Card detection is only available after
sdmmc_api_t::open() is complete, and open() cannot be completed unless a card is inserted. Card
detection in the r_sdmmc driver is therefore only useful to detect card removal and reinsertion.
After reinsertion is detected, the driver must be closed and reopened, and card detection will not be
available until the reopen is complete. Card detection is available only on MCU packages that have
the SDHIn CD pin (n = channel number) available on the Pins tab of the Synergy Configuration Tool.
If the MCU does not have the SDHIn CD pin, or card detection is not desired for the application, card
detection must be disabled in the Properties for the r_sdmmc instance in the Synergy Configuration
Tool. An alternative to using the card detection feature of the r_sdmmc driver is to use an External
IRQ instance and handle card detection at the application layer. If card detection is handled at the
application layer, the sdmmc_api_t::open() should be called after card insertion is detected, and the
sdmmc_api_t::close() should be called after card removal is detected.

Refer to the most recent SSP Release notes for the most up to date limitations for this module.

4.2.43.4 Including the SDMMC HAL Module in an Application

This section describes how to include the SDMMC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the SD/MMC Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the SD/MMC Driver is g_sdmmc0. This
name can be changed in the associated Properties window.)

SDMMC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sdmmc0 SD/MMC driver on
r_sdmmc

Threads New Stack> Driver>
Storage> SD/MMC Driver on
r_sdmmc

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,058 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > Including the SDMMC HAL Module in an Application

When the SDMMC HAL module on r_sdmmc is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 379: SDMMC HAL Module Stack

4.2.43.5 Configuring the SDMMC HAL Module

The SDMMC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

ConfigurationSettings for the SDMMC HAL Module on r_sdmmc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Enable or disable parameter
error checking.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,059 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > Configuring the SDMMC HAL Module

Name g_sdmmc0 The name to be used for
SDMMC module control block
instance. This name is also
used as the prefix of the other
variable instances.

Channel 0 Select the channel.

Media Type Embedded, Card
Default: Embedded

Media is a card or an embedded
device. This allows to firmware
to know whether to look for
card insertion/removal and
write protect pins.

Bus Width 1 Bit, 4 Bits, 8 bits
Default: 4 Bits

Data bus with as defined by
hardware interface. (8 Bits for
eMMC only).

Block Size 512 Select the media block size.

Card Detection Not Used, CD Pin
Default: CD Pin

Select the card detection
method.

Write Protection WP Pin, Not Used
Default: WP Pin

Select whether or not to use the
write protect pin. Select Not
Used if the MCU or device does
not have a write protect pin.

Callback NULL (Required if not using FileX) Set
to name of user callback
function. Provides event that
caused interrupt: SDMMC_EVEN
T_CARD_REMOVED, SDMMC_EV
ENT_CARD_INSERTED,
SDMMC_EVENT_ACCESS,
SDMMC_EVENT_SDIO, SDMMC_
EVENT_TRANSFER_COMPLETE,
SDMMC_EVENT_TRANSFER_ERR
OR.

Access Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)
Default: Priority 12

Access interrupt priority
selection.

Card Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled
Default: Disabled

Card interrupt priority selection.

DTC Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled
Default: Disabled

DTC interrupt priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,060 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > Configuring the SDMMC HAL Module

Configuration Settings for the SDMMC HAL Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module:

Configuration Settings for the Transfer Driver on r_dmac Software Activation

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_transfer0 Module name.

Channel 0 Channel selection.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled
Default: Disabled

Interrupt priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Software Activation 1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,061 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > Configuring the SDMMC HAL Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled
Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Software Activation 1 Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled
Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

SDMMC HAL Module Clock Configuration

The SDMMC MCU peripheral (SDHI) uses the PCLKA for its clock source. There is no need to configure
the clock specifically for the SDMMC peripheral unless you need to optimize the data rate. The
SDMMC driver selects the appropriate built-in divider based on the PCLKA frequency and the
maximum clock rate allowed by the SD, SDIO or eMMC device obtained at media device initialization.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,062 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > Configuring the SDMMC HAL Module

SDMMC HAL Module Pin Configuration

Use the ISDE pin configurator to configure the I/O pins for SDMMC peripheral (SDHI). The drive
capacity for each pin should be set to "Medium" or "High" for most boards and high-speed memory
and SDIO devices. The following table illustrates the method for selecting the pins within the SSP
configuration window and the subsequent table illustrates an example selection for the pins:

Note
The operation mode selection determines what peripheral signals are available and what MCU pins are required.

Pin Selection Sequence for SDMMC HAL Module on r_riic

Resource ISDE Tab Pin selection Sequence

SDHI Pins Select Peripherals>
Storage:SHDI> SDHI0

Note
The selection sequence assumes SCI1 is the desired hardware target for the driver.

Pin Configuration Settings for the SDHI Peripheral

Pin Configuration Property Value Description

Operation Mode Disabled,
Custom,
SD_MMC 1 bit
SD_MMC 4 bit
MMC 8 bit
Default: Custom

Select mode as per application.

CLK None, P413
Default: P413

Clock pin.

CMD None, P412
Default: P412

Command pin.

DAT0-7 None, PXXX
Default: PXXX

Data pin.

CD None, P903
Default: P903

Card detection pin.

WP None, P414
Default: P414

Card write protection pin.

SDA Disabled SDA Pin (when Simple I2C is
used).

SCL Disabled SCL Pin (when Simple I2C is
used).

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

4.2.43.6 Using the SDMMC HALModule in an Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,063 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > Using the SDMMC HALModule in an Application

The steps for using the SDMMC HAL module in a typical application are:

1. Open the driver using the sdmmc_api_t::open() API.
2. Read data from the card using the sdmmc_api_t::read() API or write data to the card using

sdmmc_api_t::write() API.
3. Wait for a callback with the event SDMMC_EVENT_TRANSFER_COMPLETE (meaning the

operation completed successfully) or SDMMC_EVENT_TRANSFER_ERROR (meaning the
operation did not complete successfully) after each time the sdmmc_api_t::read() API or the
sdmmc_api_t::write() API is called.

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 380: Flow Diagram of a Typical SDMMC HAL Module Application

 The steps for using the SDMMC HAL module with an SDIO card in a typical application are:

1. Open the driver using the sdmmc_api_t::open() API.
2. Set or read back single registers using the sdmmc_api_t::readIo() API or the

sdmmc_api_t::writeIo() API. The operation is complete immediately after these calls and
there is no need to wait for a callback.

3. Set or read back multiple registers using the sdmmc_api_t::readIoExt() API or the
sdmmc_api_t::writeIoExt() API. The block size can be changed using the
sdmmc_api_t::control() API between calls if necessary.

4. Wait for a callback with the event SDMMC_EVENT_TRANSFER_COMPLETE (meaning the
operation completed successfully) or SDMMC_EVENT_TRANSFER_ERROR (meaning the
operation did not complete successfully) after each time the sdmmc_api_t::readIoExt() API

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,064 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SD/MMC Driver and SDIO Driver > Using the SDMMC HALModule in an Application

or the sdmmc_api_t::writeIoExt() API is called.
5. If the card requests an interrupt, the callback is called with the event SDMMC_EVENT_SDIO.

Handle the SDIO interrupt as described in the documentation for the card (see the SDIO
Interrupts section of this documentation). SDIO interrupts from the card can be enabled or
disabled at any time using the sdmmc_api_t::IoIntEnable() API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 381: Flow Diagram of a Typical SDMMC HAL Module Application

4.2.44 Segment LCD Driver

4.2.44.1 SLCDC HAL Module Introduction

The Segment LCD HAL module provides a high-level API for Segment LCD applications and displays

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,065 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Segment LCD Driver > SLCDC HAL Module Introduction

and modifies data on a Segment LCD. The Segment LCD HAL module uses the Segment LCD
Controller module on a Synergy MCU.

SLCDC HAL Module Features

Internal voltage-boosting for the LCD driver voltage generator: select the capacitor split
method or the external resistance division.
Display bias: select the 1/2 bias method, 1/3 bias method, or 1/4 bias method.
Time slice of the display: select static, 2-time slice, 3-time slice, 4-time slice, or 8-time slice.
Display waveform: select waveform A or waveform B.
Display data area: select A-pattern, B-pattern, or blinking. You can switch the display data
area.
Use the RTC periodic interrupt (PRD) to generate a blinking display with A-pattern and B-
pattern.
Adjust the reference voltage which is generated when operating the voltage boost circuit in
16 steps (contrast adjustment.)

Figure 382: SLCDC HAL Module Block Diagram

SLCDC Hardware Support Details

The following hardware features are, or are not, supported by SSP for the SLCD.

Legend:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,066 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Segment LCD Driver > SLCDC HAL Module Introduction

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group Liquid
crystal

waveform
(waveform A

or B)
selectable

Voltage
Generator -

Internal
voltage
boosting

method, and
external

resistance
division
method

Voltage
Generator -
Capacitor

split method

LCD blinking
and display
functions

Source
Clock

support:
Main Clock
Oscillator

Source
Clock

support: Sub
Clock

Oscillator

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 ✓ ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓ ✓

S5D3 N/A N/A N/A N/A N/A N/A

S5D5 N/A N/A N/A N/A N/A N/A

S5D9 N/A N/A N/A N/A N/A N/A

S7G2 N/A N/A N/A N/A N/A N/A

MCU Group Source
Clock

support: Low
speed Clock

Oscillator

Source
Clock

support:
High speed

Clock
Oscillator

Time slice
modes –
Static, 4

Time slice
modes – 1,
2, 3, and 8

Bias method
2, 3, 4

Contrast
adjustment

S124 N/A N/A N/A N/A N/A N/A

S128 N/A N/A N/A N/A N/A N/A

S1JA N/A N/A N/A N/A N/A N/A

S3A1 ✓ ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓ ✓

S5D3 N/A N/A N/A N/A N/A N/A

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,067 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Segment LCD Driver > SLCDC HAL Module Introduction

S5D5 N/A N/A N/A N/A N/A N/A

S5D9 N/A N/A N/A N/A N/A N/A

S7G2 N/A N/A N/A N/A N/A N/A

4.2.44.2 SLCDC HAL Module APIs Overview

The Segment LCD Controller HAL module defines APIs for functions such as opening, writing,
starting, modifying and closing. A complete list of the available APIs, an example API call and a short
description of each can be found in the following table. A table of status return values follows the API
summary table.

SLCDC HAL Module API Summary

Function Name Example API Call and Description

open g_slcdc.p_api->open(g_slcdc.p_ctrl,
g_slcdc.p_cfg);
Open SLCD device.

write g_slcdc.p_api->write(g_slcdc.p_ctrl,
start_segment, &data, segment_count);
Write data to SLCD segments. Specifies the
initial display data. The data parameter is a
pointer to an array of bytes consisting at least
segment_count items, in which each byte is
associated with one segment data register.
When the number of time slices is static, 2, 3 or
4, the lower 4 bits of the data become an A-
pattern area and the upper 4 bits become a B-
pattern area. See slcdc_api_t::setdisplayArea for
setting a display area.

modify g_slcdc.p_api->modify(g_slcdc.p_ctrl, segment,
data_mask, data);
Rewrite data in the SLCD segment. Rewrites the
LCD display data in 1-bit units. If a bit is not
specified for rewriting, the value stored in the bit
is held as it is. Specifies the data to rewrite.

start g_slcdc.p_api->start(g_slcdc.p_ctrl);
Enable display on the SLCD. Displays the
specified data on the LCD. Before that data
should be written to the segments.

stop g_slcdc.p_api->stop(g_slcdc.p_ctrl);
Disable display on the SLCD. Stops displaying
data on the SLCD.

contrastIncrease g_slcdc.p_api->contrastIncrease(g_slcdc.p_ctrl);
Increase the display contrast. Increase by 1 unit.
This function can be selected when the internal
voltage boosting method is used for the drive
voltage generator.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,068 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Segment LCD Driver > SLCDC HAL Module APIs Overview

contrastDecrease g_slcdc.p_api->contrastDecrease(g_slcdc.p_ctrl);
Decrease the display contrast. Decrease by 1
unit. This function can be selected when the
internal voltage boosting method is used for the
drive voltage generator.

setdisplayArea g_slcdc.p_api->setdisplayArea(g_slcdc.p_ctrl,
display_area);
Set LCD display area. This function sets a
specified display area, A-pattern or B-pattern.
This function can be used to set blink on where
A-pattern and B-pattern area data will be
alternately displayed. When using blinking, the
RTC is required to operate before this function is
executed. To configure the RTC, follow the steps
below.
1. Open RTC
2. Set Periodic interrupt request, ½ second
3. Start RTC counter
4. Enable IRQ, RTC_EVENT_PERIODIC_IRQ
Refer to the User's Manual: Microcontrollers for
the detailed procedure.

close g_slcdc.p_api->close(g_slcdc.p_ctrl);
Close display device.

versionGet g_slcdc.p_api->versionGet(&version);
Retrieve the API version using the version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function successful.

SSP_ERR_ASSERTION Assertion error.

SSP_ERR_INVALID_ARGUMENT Invalid Argument.

SSP_ERR_HW_LOCKED SLCDC resource is locked.

SSP_ERR_NOT_OPEN Device is not opened or initialized.

SSP_ERR_UNSUPPORTED Unsupported operation.

SSP_ERR_NOT_ENABLED RTC not enabled for blink operation.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,069 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Segment LCD Driver > SLCDC HAL Module Operational Overview

4.2.44.3 SLCDC HAL Module Operational Overview

This module uses the Segment LCD controller (SLCDC) to display data on a Segment LCD. The driver
initializes the LCD for displaying data and configures the drive-voltage generator, display waveform,
number of time slices and bias methods to drive the LCD. This module provides functions to display
data to a specified set of segments, to modify existing segment data, to enable and disable display,
to set the display area and to adjust the contrast. The contents displayed on the LCD can be
changed by changing the contents of the LCD display data registers.

SLCDC HAL Module Important Operational Notes and Limitations

SLCDC HAL Module Operational Notes

This driver is a HAL driver and has no dependencies with the ThreadX RTOS. You can add
the Segment LCD HAL module to a thread in the ThreadX RTOS if it is desirable.
To write to a sequence of segments, give the start segment number and number of
segments to be written in the slcdc_api_t::write API.

SLCDC HAL Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.44.4 Including the SLCDC HAL Module in an Application

This section describes how to include the SLCDC HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Segment LCD Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the Segment LCD Driver is g_timer0.
This name can be changed in the associated Properties window.)

SLCDC HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_slcdc0 Segment LCD Driver
on r_slcdc

Threads New Stack> Driver>
Graphics> Segment LCD
Driver on r_slcdc

When the Segment LCD Driver on r_slcdc is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,070 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Segment LCD Driver > Including the SLCDC HAL Module in an Application

Figure 383: SLCDC HAL Module Stack

4.2.44.5 Configuring the SLCDC HAL Module

The SLCDC HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the SLCDC HAL Module on r_slcdc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Select if extra code will be
added to check parameter
values.

Name g_slcdc0 Module name.

Slcdc Clock Clock Loco, Clock Sosc, Clock
Mosc, Clock Hoco

Default: Clock Hoco

SLCD clock source
(LCDSCKSEL).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,071 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Segment LCD Driver > Configuring the SLCDC HAL Module

Slcdc Clock Divisor Clk Divisor Loco 4, Clk Divisor
Loco 8, Clk Divisor Loco 16, Clk
Divisor Loco 32, Clk Divisor
Loco 64, Clk Divisor Loco 128,
Clk Divior Loco 256, Clk Divisor
Loco 512, Clk Divisor Loco
1024, Clk Divisor Hoco 256, Clk
Divisor Hoco 512, Clk Divisor
Hoco 1024, Clk Divisor Hoco
2048, Clk Divisor Hoco 4096,
Clk Divisor Hoco 8192, Clk
Divisor Hoco 16384, Clk Divisor
Hoco 32768, Clk Divisor Hoco
65536, Clk Divisor Hoco
131072, Clk Divisor Hoco
262144, Clk Divisor Hoco
524288

Default: Clk Divisor Hoco 16384

LCD clock setting (LCDC0),
clock divisor.

Bias Method Bias 2, Bias 3, Bias 4

Default: Bias 2

LCD display bias method select
(LBAS bit).

Time Slice Static, Slice 2, Slice 3, Slice 4,
Slice 8

Default: Static

Time slice of LCD display select
(LDTY bit).

Wave Form Wave A, Wave B

Default: Wave A

LCD display waveform select
(LWAVE bit).

Slcdc Drive Voltage Generator External resistance division,
Internal voltage boosting,
Capacitor split

Default: External resistance
division

LCD Drive Voltage Generator
Select (MDSTET bit).

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

SLCDC HAL Module Clock Configuration

Configure the SLCDC Hal module clock in the properties window of the g_slcdc driver. The operating
clock of the SLCDC HAL Module is specified by the SLCDC Clock and SLCDC Clock Divisor settings in
the Properties window. The Segment LCD HAL module-source clock can be configured as the Main
(MOSC), HOCO (High-speed Clock Oscillator), LOCO (Low-speed Clock Oscillator) or Sub-clock (SOSC)
using the ISDE configurator. For HOCO and LOCO settings, several clock divisors are available.

SLCDC HAL Module Pin Configuration

The SLCDC peripheral module uses pins on the MCU to communicate to external devices. I/O pins
must be selected and configured as required by the external device. The following table illustrates

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,072 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Segment LCD Driver > Configuring the SLCDC HAL Module

the method for selecting the pins within the SSP configuration window and the subsequent table
illustrates an example selection for the pins.

Note
For some peripherals, the operation mode selection determines what peripheral signals are available and what
MCU pins are required.

Pin Selection for the SLCDC HAL Module on r_slcdc

Resource ISDE Tab Pin Selection Sequence

SLCDC Pins Select Peripherals>
Graphics: SLCDC> SLCDC0

Note
The selection sequence assumes SLCDC0 is the desired hardware target for the driver.

Pin Configuration Settings for SLCDC HAL Module

Pin Configuration Property Value Description

Operation Mode Disabled, Custom, Static, 2x
Slice, 3x Slice, 4x Slice, 8x Slice

Default: Custom

Select operation mode enable
or disable.

CAPH None, P111

Default: None

Capacitor connection pin.

CAPL None, P112

Default: P112

Capacitor connection pin.

COM0:3 None, Pn

Default: P104:107

Common pins.

COM4:7 None, Pn

Default: None

Common pins.

VL1:4 None, Pn

Default: P100:103

Power supply pins.

SEG00:02,
SEG06:07,
SEG16:17,
SEG21:25,
SEG46:51

None, Pn

Default: None

Segment pins.

SEG03 None, P303

Default: P303

Segment pin.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,073 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Segment LCD Driver > Configuring the SLCDC HAL Module

SEG04:05 None, Pn

Default: P314:315

Segment pins.

SEG08 None, P902

Default: P902

Segment pin.

SEG09:15 None, Pn

Default: P312:306

Segment pins.

SEG18:19 None, Pn

Default: P808:809

Segment pins.

SEG20 None, P313

Default: P313

Segment pin.

SEG26:27 None, Pn

Default: P806:807

Segment pins.

SEG28:34 None, Pn

Default: P608:614

Segment pins.

SEG35:41 None, Pn

Default: P606:600

Segment pins.

SEG42:43 None, Pn

Default: P805:804

Segment pins.

SEG44:45 None, Pn

Default: P800:801

Segment pins.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and Synergy Kits may have different available pin configuration settings.

4.2.44.6 Using the SLCDC HAL Module in an Application

The typical steps in using the SLCDC HAL module in an application are:

1. Initialize the SLCD HAL module using the slcdc_api_t::open API.
2. Write a sequence of segments using the slcdc_api_t::write API.
3. Modify the content of the segment data using the slcdc_api_t::modify API if needed.
4. Change the display area or blinking display using the slcdc_api_t::setdisplayArea API.
5. Enable the display by using the slcdc_api_t::start API.
6. Adjust contrast using the slcdc_api_t::contrastIncrease or slcdc_api_t::contrastDecrease

APIs.
7. Disable the display by using the slcdc_api_t::stop API.
8. Close the driver using the slcdc_api_t::close API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,074 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Segment LCD Driver > Using the SLCDC HAL Module in an Application

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 384: Flow Diagram of a Typical SLCDC HAL Module Application

4.2.45 SCI SPI Driver

4.2.45.1 SCI SPI HAL Module Introduction

The SCI SPI HAL module provides a high-level API for master/slave-based industry standard SPI serial
communications and configures and uses the SCI (Serial Communications Interface) peripheral on a
Synergy MCU. A user-defined callback can be created to signal when the SPI has transmitted data,
aborted a data transfer or detected an error condition.

The SCI SPI HAL module is enabled with a data transfer function support by incorporating the Data
Transfer Controller module of the MCU. This performs SPI transfers through the DTC without
intervention of the CPU.

SCI SPI HAL Module Features

The SCI SPI HAL module supports the configuration and control of the SPI functions on the Synergy
MCU. Key features include the following:

Driver initialization
Serial communication through SPI operation using 8-bit data transfers
Configurable among four clock phase and clock polarity settings
Support for callbacks. The callback functions are called with the following events:

Transfer aborted
Transfer complete
Over run error

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,075 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCI SPI Driver > SCI SPI HAL Module Introduction

SPI communication in master and slave mode.

Figure 385: SCI SPI HAL Module Block Diagram

SCI SPI Hardware Support Details

The following hardware features are, or are not, supported by SSP for the SCI_SPI:

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,076 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCI SPI Driver > SCI SPI HAL Module Introduction

N/A Not supported by MCU

MCU Group Master
Out/Slave In

(MOSI)

Master
In/Slave Out

(MISO)

SSL Slave
Select

SPI
Operation

(4-wire
method)

Clock
Synchronous

Operation
(3-wire

method)

Full Duplex
or Transmit

Only
selectable

S124 ✓ ✓ GPIO N/A ✓ ✓

S128 ✓ ✓ GPIO N/A ✓ ✓

S1JA ✓ ✓ GPIO N/A ✓ ✓

S3A1 ✓ ✓ GPIO N/A ✓ ✓

S3A3 ✓ ✓ GPIO N/A ✓ ✓

S3A6 ✓ ✓ GPIO N/A ✓ ✓

S3A7 ✓ ✓ GPIO N/A ✓ ✓

S5D3 ✓ ✓ GPIO N/A ✓ ✓

S5D5 ✓ ✓ GPIO N/A ✓ ✓

S5D9 ✓ ✓ GPIO N/A ✓ ✓

S7G2 ✓ ✓ GPIO N/A ✓ ✓

MCU Group Overrun
error

detection

Data format
transfer bit

length

Master or
Slave

Clock source
Internal/exte

rnal

Configurable
phase and

polarity

Interrupt
sources
support

S124 ✓ 8-bit ✓ Internal ✓ ✓

S128 ✓ 8-bit ✓ Internal ✓ ✓

S1JA ✓ 8-bit ✓ Internal ✓ ✓

S3A1 ✓ 8-bit ✓ Internal ✓ ✓

S3A3 ✓ 8-bit ✓ Internal ✓ ✓

S3A6 ✓ 8-bit ✓ Internal ✓ ✓

S3A7 ✓ 8-bit ✓ Internal ✓ ✓

S5D3 ✓ 8-bit ✓ Internal ✓ ✓

S5D5 ✓ 8-bit ✓ Internal ✓ ✓

S5D9 ✓ 8-bit ✓ Internal ✓ ✓

S7G2 ✓ 8-bit ✓ Internal ✓ ✓

4.2.45.2 SCI SPI HAL Module APIs Overview

The SPI defines APIs for opening and closing the SCI peripheral and transmitting and receiving data.
A complete list of the available APIs, an example API call and a short description of each can be
found in the following table. A table of status return values follows the API summary table.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,077 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCI SPI Driver > SCI SPI HAL Module APIs Overview

SCI SPI HAL Module API Summary

Function Name Example API Call and Description

.open g_spi.p_api ->open(g_spi.p_cntl, g_spi.p_cfg);
Open a designated SPI device.

.read g_spi.p_api->read(g_spi.p_ctrl, dst16, length,
SPI_BIT_WIDTH_16_BITS);
Receive data from SPI device.

.write g_spi.p_api->write (g_spi.p_ctrl, source, length,
SPI_BIT_WIDTH_8_BITS);
Transmit data to SPI device

.writeRead g_spi.p_api ->writeRead (g_spi.p_cntl, &source,
&destination, length, SPI_BIT_WIDTH_8_BITS,
TX_WAIT_FOREVER);
Simultaneously transmits data to an SPI device,
while receiving data from an SPI device (full
duplex). The writeRead API fetches the mutex
object, handles SPI data transmission at SPI HAL
layer, and receives data from the SPI HAL layer.
The API uses the event flag wait to synchronize
to complete the data transfer.

.close g_spi.p_api->close(g_spi,p_ctrl)
Disable the SPI device designated by the control
handle and close the RTOS services used by the
bus if no devices are connected to the bus. This
function removes power to the SPI channel
designated by the handle and disables the
associated interrupts.

.versionGet g_spi.p_api ->versionGet (&version);
Get the version information of the underlying
driver.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful.

SSP_ERR_IN_USE Attempted to open an already open device
instance OR Another transfer was in progress.

SSP_ERR_INVALID_POINTER p_version is NULL.

SSP_INVALID_ARGUMENT Channel number invalid.

SSP_ERR_HW_LOCKED The lock could not be acquired. The channel is
busy.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,078 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCI SPI Driver > SCI SPI HAL Module APIs Overview

SSP_ERR_CH_NOT_OPEN The channel has not been opened. Open channel
first.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.45.3 SCI SPI HAL Module Operational Overview

The SCI SPI HAL module provides the ability to configure and use the SPI capabilities of the Synergy
MCU. The SCI SPI HAL module enables communication with a peripheral device using the SPI
communications protocol. After opening the SCI SPI HAL module instance, the SCI SPI module handle
is used to perform various transfer operations. The device control handle will be used within the API
calls to indicate the specific SCI SPI device to communicate with.

The SCI SPI HAL module allows the user to:

Initialize the module.
Serial Communication through SPI operation. Read from and write to (and simultaneous
read/write – full duplex) a SPI device – performed by calling the spi_api_t::read,
spi_api_t::write and spi_api_t::writeRead APIs.

The Driver also provides support for callbacks. The callback functions are called with the following
events:

Transfer aborted
Transfer complete
Overrun error

The SCI SPI module supports only 8-bit data transfer operations. The SCI SPI module uses GPIO pins
configured as chip selects.

Clock Settings

The SCI SPI uses PCLKA as its clock source. You can set the PCLKA frequency using the clock
configurator in e2 studio or the CGC Interface at run-time.

I/O Port Settings

To use with the SPI, the I/O port pin(s) used as output pins must be configured as SCI SPI peripheral
pins in the pin configurator. For external chip select, configure Chip select pin as GPIO output.

SCI SPI Interrupts

To enable the interrupts of the SCI SPI, highlight the driver module and set the priority of the SCI RXI,
TXI, TEI and ERI interrupts on the Threads tab of the Project Configurator in e2 studio: Configuring
Interrupts.

This sets the corresponding interrupts in ssp_cfg/bsp/bsp_irq_cfg.h to the priority level selected.

Note
Setting the interrupts to different priority levels could result in improper operation.

SCI SPI HAL Module Important Operational Notes and Limitations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,079 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCI SPI Driver > SCI SPI HAL Module Operational Overview

SCI SPI HAL Module Operational Notes

Chip select outputs are supported using GPIOs
The SCI SPI HAL module uses only 8-bit data transfers.
Setting the interrupts to different priority levels could result in improper operation.
The SCI SPI HAL module is enabled with a data transfer support by incorporating the Data
Transfer Controller module of the MCU. This performs an SPI transfer through the DTC
without intervention of the CPU. The DTC transfer is enabled by default; the user has to
remove it from the configurator for an IRQ mode transfer.

SCI SPI HAL Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.45.4 Including the SCI SPI HAL Module in an Application

This section describes how to include the SPI HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the SPI Driver to an application, simply add it to a thread using the stacks selection sequence
given in the following table. (The default name for the SPI Driver is g_spi0. This name can be
changed in the associated Properties window.)

SCI SPI HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_spi0 SPI Driver on r_sci_spi Threads New Stack> Driver>
Connectivity> SPI Driver on
r_sci_spi

When the SPI Driver on r_sci_spi is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,080 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCI SPI Driver > Including the SCI SPI HAL Module in an Application

Figure 386: SPI HAL Module Stack

4.2.45.5 Configuring the SCI SPI HAL Module

The SPI HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the SCI SPI HAL Module on r_sci_spi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_spi0 Module name.

Channel 0 SCI or SPI Channel number to
which the device has been
connected.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,081 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCI SPI Driver > Configuring the SCI SPI HAL Module

Operating Mode Master, Slave
Default : Master

Configure as a Master or Slave
device.

Clock Phase Data sampling on odd edge,
data variation on even
edge/Data sampling on even
edge, data variation on odd
edge

Default: Data sampling on odd
edge, data variation on even
edge

Data sampling on odd or even
clock edge.

Clock Polarity Low when idle, High when idle

Default: Low when idle

Clock level when idle.

Mode Fault Error Enable, Disable

Default: Disable

Indicates Mode fault error
(master/slave conflict) flag.

Bit Order MSB First, LSB First

Default: MSB First

Select transmit order MSB/LSB
first.

Bitrate 100000 Transmission or reception rate.
Bits per second.

Bit Rate Modulation Enable Enable, Disable

Default: Enable

Bitrate Modulation Function
enable or disable.

Callback NULL Optional Call back function
pointer.

Receive Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Priority 2

Receive interrupt priority
selection.

Transmit Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Priority 2

Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Priority 2

Transmit end interrupt priority
selection.

Error Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Priority 2

Error interrupt priority
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,082 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCI SPI Driver > Configuring the SCI SPI HAL Module

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the SCI SPI HAL Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module:

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 TXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency seleciton.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SCI0 TXI Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,083 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCI SPI Driver > Configuring the SCI SPI HAL Module

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer1 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SCI0 RXI Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,084 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCI SPI Driver > Configuring the SCI SPI HAL Module

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Disabled

ELC software event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

SCI SPI HAL Module Clock Configuration

The SCI peripheral is clocked via the Peripheral Clock A (PCLKA.) The clock frequencies are
configurable in the ISDE by using the Clocks tab in the configurator. Invalid selections are indicated
in red when selected. Ensure that desired SPI bitrate can be achieved with the stated value of PCLKA.
The ISDE will not be indicated if the specified bitrate is not achievable. At run time, the SPI HAL
module will attempt to configure the SCI peripherals to the correct bitrate and will return an error if
the desired bitrate cannot be set. The bitrate is calculated via the equations in the following table. If
the result of the equation (N) is in the range of 0 to 255, then the bit rate can be achieved.

Baud Rate Calculation Equations

SPI HAL Bitrate calculation Description

SPI on SCI N = Peripheral register value.
 This must be in the range
of 0 to 255
PLCKA = value of PLCKA in MHz
n = 0, 1, 2 or 3
M = Bit Rate Modulation Index
 128 < M < 256
*If the Bit Rate Modulation is
disabled, then M=256*
B = Desired Bit Rate

SCI SPI HAL Module Pin Configuration

The SCI peripheral use pins on the MCU to communicate to external devices. I/O pins must be
selected and configured as required by the external device. The following table illustrates the
method for selecting the pins within the SSP configuration window and the subsequent table
illustrates an example selection for the SPI pins:

Note
The operation mode selection determines what peripheral signals are available and what MCU pins are required.

Pin Selection Sequence for SCI SPI HAL Module on r_sci_spi

Resource ISDE Tab Pin Selection Sequence

SPI on SCI Pins Select Peripherals>
Connectivity:SCI> SCIx,
where x is the required SCI
peripheral channel.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,085 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCI SPI Driver > Configuring the SCI SPI HAL Module

Note
The selection sequence assumes SCI0 is the desired hardware target for the driver.

Pin Configuration Settings for the SCI SPI HAL Module on r_sci_spi

Pin Configuration Property Value Description

Pin Group Selection Mixed, _A only, _B only Synergy devices support
peripheral functionality via
multiple pins location, identified
by _A, _B.
Selecting Mixed allows the user
to select any combination of
locations (_A and _B).
Selecting _A allows the user to
select only _A locations.
Selecting _B allows the user to
select only _B locations.

Operation Mode Disabled
Custom
Asynchronous UART
Simple SPI
Simple I2C
Synchronous UART
Smart Card

Set the operating mode to:
Simple SPI.

TXD_MOSI None, P411, P101 Specify the port pin to be used
as MOSI.

RXD_MISO None, P410, P100 Specify the port pin to be used
as MISO.

SCK None, P412, P102 Specify the port pin to be used
as CLK.

CTS_RTS_SS None, P413, P103 Specify the port pin to be used
as SS.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings*.*

4.2.45.6 Using the SCI SPI HAL Module in an Application

The steps in using the SCI SPI HAL module in a typical application are:

Note
The spi_api_t::open API function must be called first. The rest of the calls may be used in any order depending on
the application requirements:

1. Initialize an SPI instance using the spi_api_t::open API function. (g_spi.p_api->open
(g_spi.p_ctrl, g_spi.p_cfg) where p_ctrl and p_cfg are the instances of control and
configuration structures autogenerated after the configuration step).

2. Initiate a write to a slave device using the spi_api_t::write API function. (g_spi.p_api->write
(g_spi.p_ctrl, source, length, SPI_BIT_WIDTH_8_BITS); where g_spi.p_ctrl is the same control
instance that was used in the spi_api_t::open call).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,086 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SCI SPI Driver > Using the SCI SPI HAL Module in an Application

3. Initiate a read from a slave device using the spi_api_t::read API function.
(g_spi.p_api->read(g_spi.p_ctrl, dst, length, SPI_BIT_WIDTH_8_BITS); where g_spi.p_ctrl is
the same control instance that was used in the spi_api_t::open call).

4. Initiate a data transfer in both directions with a slave device using the spi_api_t::writeRead
API function. (g_spi.p_api->writeRead(g_spi.p_ctrl, source, s_length, destination, d_length,
SPI_BIT_WIDTH_8_BITS); where g_spi.p_ctrl is the same control instance that was used in
the spi_api_t::open call).

5. Use the spi_api_t::close API function to close the instance. (g_spi.p_api->close(g_spi,p_ctrl)
where g_spi.p_ctrl is the same control structure that was used in the spi_api_t::open call).

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 387: Flow Diagram of a Typical SPI HAL Module Application

4.2.46 SPI Driver

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,087 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > RSPI HAL Module Introduction

4.2.46.1 RSPI HAL Module Introduction

The RSPI HAL module provides a high-level API for serial communication using the SPI protocol. The
module supports the SPI (formerly known as RSPI) peripheral available on the Synergy
microcontroller hardware. The RSPI HAL module supports standard SPI master and Slave mode
communications functions. Callbacks are provided for transfer events. The RSPI HAL module is
enabled with data transfer support by incorporating the data transfer controller module of the MCU;
this performs SPI transfers through the DTC without requiring interrupt processing for each frame.

RSPI HAL Module Features

Initialization of the driver
SPI transfer functions:

 Allows serial communication through the SPI operation using the four-wire method
Capable of serial communication in master and slave modes
Switching the polarity of the serial transfer clock
Switching the phase of the serial transfer clock

Data Format
MSB-first/LSB-first selectable
Transfer bit length is selectable as 8, 16 and 32 bits
16-bit and 32-bit byte swapping for both received and transmitted data register

Error Detection
Mode fault detection
Overrun error detection
Parity error detection

SSL control functions
External hardware slave select can be used in master mode

Interrupts
RSPI receive interrupt (receive buffer full)
RSPI transmit interrupt (transmit buffer empty)
RSPI error interrupt (mode fault, overrun and parity error)

Delays
Add SPI clock delay
Add slave select negation delay
Add next-access delay

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,088 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > RSPI HAL Module Introduction

Figure 388: RSPI HAL Module Block Diagram

RSPI Hardware Support Details

The following hardware features are, or are not, supported by SSP for the RSPI.

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,089 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > RSPI HAL Module Introduction

MCU Group SPI
Operation

mode

Clock Syn
mode

Full-duplex
or transmit-
only can be

selected

Switching of
the polarity
and phase

Master and
Slave mode

MSB
first/LSB first

selectable

S124 ✓ ✓ ✓ ✓ ✓ ✓

S128 ✓ ✓ ✓ ✓ ✓ ✓

S1JA ✓ ✓ ✓ ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓

MCU Group Transfer
length -
8/16/32

Up to four
frames can

be
transferred

in one round

Bit rate
configuratio

n

Double
buffer

configuratio
n

Error
detection

SSL control
function

S124 ✓ ⌧ ✓ ⌧ ✓ ✓

S128 ✓ ⌧ ✓ ⌧ ✓ ✓

S1JA ✓ ⌧ ✓ ⌧ ✓ ✓

S3A1 ✓ ⌧ ✓ ⌧ ✓ ✓

S3A3 ✓ ⌧ ✓ ⌧ ✓ ✓

S3A6 ✓ ⌧ ✓ ⌧ ✓ ✓

S3A7 ✓ ⌧ ✓ ⌧ ✓ ✓

S5D3 ✓ ⌧ ✓ ⌧ ✓ ✓

S5D5 ✓ ⌧ ✓ ⌧ ✓ ✓

S5D9 ✓ ⌧ ✓ ⌧ ✓ ✓

S7G2 ✓ ⌧ ✓ ⌧ ✓ ✓

MCU Group Transfer of
up to eight
commands

All Interrupt
sources

DTC Support Event link
function

through ELC
HAL driver

Function for
switching
between

CMOS
output and
open drain

output

Loopback
mode

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,090 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > RSPI HAL Module Introduction

S124 ⌧ ✓ ✓32-bit
transfer

⌧ ✓ ✓

S128 ⌧ ✓ ✓32-bit
transfer

⌧ ✓ ✓

S1JA ⌧ ✓ ✓32-bit
transfer

⌧ ✓ ✓

S3A1 ⌧ ✓ ✓32-bit
transfer

⌧ ✓ ✓

S3A3 ⌧ ✓ ✓32-bit
transfer

⌧ ✓ ✓

S3A6 ⌧ ✓ ✓32-bit
transfer

⌧ ✓ ✓

S3A7 ⌧ ✓ ✓32-bit
transfer

⌧ ✓ ✓

S5D3 ⌧ ✓ ✓32-bit
transfer

⌧ ✓ ✓

S5D5 ⌧ ✓ ✓32-bit
transfer

⌧ ✓ ✓

S5D9 ⌧ ✓ ✓32-bit
transfer

⌧ ✓ ✓

S7G2 ⌧ ✓ ✓32-bit
transfer

⌧ ✓ ✓

MCU Group Module Stop Function Multi-master mode

S124 ⌧ ⌧

S128 ⌧ ⌧

S1JA ⌧ ⌧

S3A1 ⌧ ⌧

S3A3 ⌧ ⌧

S3A6 ⌧ ⌧

S3A7 ⌧ ⌧

S5D3 ⌧ ⌧

S5D5 ⌧ ⌧

S5D9 ⌧ ⌧

S7G2 ⌧ ⌧

4.2.46.2 RSPI HAL Module APIs Overview

The RSPI HAL module defines API functions for opening, closing, reading, writing and other useful
functions. A complete list of the available APIs, an example API call and a short description of each
can be found in the following table. A table of status return values follows the API summary table.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,091 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > RSPI HAL Module APIs Overview

RSPI HAL Module API Summary

Function Name Example API Call and Description

.open g_spi.p_api ->open(g_spi.p_cntl, g_spi.p_cfg);
Open a designated SPI device.

.read g_spi.p_api->read(g_spi.p_ctrl, dst16, length,
SPI_BIT_WIDTH_16_BITS);
Receive data from SPI device.

.write g_spi.p_api->write (g_spi.p_ctrl, source, length,
SPI_BIT_WIDTH_8_BITS);
Transmit data to SPI device

.writeRead g_spi.p_api ->writeRead (g_spi.p_cntl, &source,
&destination, length, SPI_BIT_WIDTH_8_BITS,
TX_WAIT_FOREVER);
Simultaneously transmits data to an SPI device,
while receiving data from an SPI device (full
duplex). The writeRead API fetches the mutex
object, handles SPI data transmission at SPI HAL
layer, and receives data from the SPI HAL layer.
The API uses the event flag wait to synchronize
to complete the data transfer.

.close g_spi.p_api->close(g_spi,p_ctrl)
Disable the SPI device designated by the control
handle and close the RTOS services used by the
bus if no devices are connected to the bus. This
function removes power to the SPI channel
designated by the handle and disables the
associated interrupts.

.versionGet g_spi.p_api ->versionGet (&version);
Get the version information of the underlying
driver.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function completed successfully

SSP_ERR_INVALID_MODE Invalid mode

SSP_ERR_INVALID_CHANNEL Invalid channel

SSP_ERR_IN_USE In-use error

SSP_ERR_INVALID_ARGUMENT Invalid argument

SSP_ERR_QUEUE_UNAVAILABLE Queue unavailable

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,092 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > RSPI HAL Module APIs Overview

SSP_ERR_INVALID_POINTER Invalid pointer

SSP_ERR_INTERNAL Internal error

SSP_ERR_TRANSFER_ABORTED Transfer aborted

SSP_ERR_MODE_FAULT Mode fault

SSP_ERR_READ_OVF Read overflow

SSP_ERR_PARITY Parity error

SSP_ERR_OVERRUN Overrun error

SSP_ERR_UNDEF Unknown error

SSP_ERR_TIMEOUT Timeout error

SSP_ERR_NOT_OPEN Device not opened

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.46.3 RSPI HAL Module Operational Overview

The RSPI HAL module enables communication with a peripheral device using the SPI communications
protocol. After opening the module instance, the module handle is used to perform various transfer
operations. The device control handle will be used within the API calls to indicate the specific SPI
device with which to communicate.

The Driver allows the application program to:

Initialize the driver.
Implement serial communication through SPI operation.

The module also provides support for callbacks. The callback functions are called with the following
events spi_event_t

Transfer aborted
Transfer complete
Mode fault
Error events

The RSPI HAL module supports 8, 16 and 32-bit data transfers. The module supports GPIO pins
configured as chip selects. In addition, the SPI peripheral supports dedicated chip select signal, SSL.
When the SSL pin is enabled in the SPI peripheral, chip select handling is performed by the
hardware.

Clock settings:

The SPI peripheral uses the PCLKA as its clock source. You can set the PCLKA frequency using the
clock configurator in e2 studio or the CGC Interface at run-time.

Note
For S1 devices the SPI peripheral clock source is PCLKB.

IO Port settings:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,093 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > RSPI HAL Module Operational Overview

To use with the SPI peripheral, the I/O port pin(s) used as output pins must be configured as SPI
peripheral pins in the pin configurator. If you are using an external chip select, configure Chip select
pin as GPIO output.

Extended configuration:

A number of extended hardware specific configurations are present for SPI Driver.

Note
 All extended hardware specific configuration parameters are set in the extended driver configuration structure
spi_on_rspi_cfg_t.

RSPI HAL Module Important Operational Notes and Limitations

RSPI HAL Module Operational Notes

While configuring the RSPI HAL drivers, setting the interrupts to different priority levels could result
in improper operation.

The module is enabled with a data transfer support by incorporating the Data Transfer Controller
module of the MCU. This performs SPI transfers through the DTC without the intervention of the CPU.

In the application, data transfers over the DTC are used in the same way as normal SPI transfers. To
enable DTC transfers, add the DTC module under the RSPI HAL module.

The RSPI HAL module supports 8-, 16-, and 32-bit data transfers in both CPU and DTC-based transfer
modes. 16- and 32-bit transfers will be endian swapped.

The RSPI HAL drivers also provide supports swapping oftransmit/receive data in byte units for both
16-bit and 32-bit data transfer (big endian to little endian).This feature is applicable only for S5
series MCUs.

The RSPI HAL module supports run time configuration of 8-, 16- and 32-bit data transfers for both
CPU and DTC data transfer modes. The DTC transfer size can be any irrespective of user API bit-
width.

Performance Notes

The RSPI HAL module can be configured for several different modes, each with different performance
characteristics. DTC transfers take slightly longer to setup than CPU-based transfers due to resetting
the DTC, but DTC transfers offer greater performance for transfers larger than 1 frame because no
intervention is required from the CPU.

Write operations will configure the module for transmit-only mode, disabling the receive interrupt
and ignoring incoming data. CPU-based write operations at high bitrates can result in the transmit
ISR being constantly called, blocking other code from running. spi_api_t::writeRead and
spi_api_t::read operations will configure the module for full duplex mode.

There is a lower limit of 3 SPI clock cycles between transfers resulting in an effective bitrate slower
than configured. At high bitrates, the time between transfers can be longer, especially for CPU-based
transfers.

The module will wait for the hardware to enter an idle state when in master mode, or all data to be
transmitted or received when in slave mode, before invoking the callback.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,094 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > RSPI HAL Module Operational Overview

RSPI HAL Module Limitations

When the RSPI HAL module is used in slave mode, either the data must be sampled on the
even clock edge (that is, CPHA=1) or the master must de-assert the slave select line
between the frames when data is sampled on the odd clock edge (that is, CPHA=0). This is
a hardware limitation.
The S124, S128, and S3A6 do not support SSL Level Keep.
Once the driver has been opened using the DTC or CPU, all transfers must use the bit width
configured by the user.
16- and 32-bit transfers will be endian swapped.
The R_RSPI bit rate value must be a positive integer less than 30 MHz or PCLK/2, whichever
is smaller.
r_rspi data transfers will be incomplete when DMAC is used simultaneously by another
module. User callback will occur before the data is completely transferred.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.46.4 Including the RSPI HAL Module in an Application

This section describes how to include the SPI HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the SPI Driver to an application, simply add it to a thread using the stacks selection sequence
given in the following table. (The default name for the SPI Driver is g_spi0. This name can be
changed in the associated Properties window.)

RSPI HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_spi0 SPI Driver on r_rspi Threads New Stack> Driver>
Connectivity> SPI Driver on
r_rspi

When the SPI Driver on r_rspi is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,095 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > Including the RSPI HAL Module in an Application

Figure 389: SPI HAL Module Stack

4.2.46.5 Configuring the RSPI HAL Module

The SPI HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the RSPI HAL Module on r_rspi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_spi0 Module name.

Channel 0 SCI or SPI Channel number to
which the device has been
connected.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,096 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > Configuring the RSPI HAL Module

Operating Mode Master, Slave

Default: Master

Configure as a Master or Slave
device.

Clock Phase Data sampling on odd edge,
data variation on even
edge/Data sampling on even
edge, data variation on odd
edge

Default: Data sampling on odd
edge, data variation on even
edge

Data sampling on odd or even
clock edge.
Note: If CPHA is set to 0 in slave
mode, slave select should not
be fixed at active state and
burst transfer should not be
performed.

Clock Polarity Low when idle, High when idle

Default: Low when idle

Clock level when idle.

Mode Fault Error Enable, Disable

Default: Disable

Indicates Mode fault error
(master/slave conflict) flag.

Bit Order MSB First, LSB First

Default: MSB First

Select transmit order MSB/LSB
first

Bitrate 500000 Transmission or reception rate.
Bits per second.

Callback NULL Optional Callback function
pointer.

SPI Mode SPI Operation, Clock
synchronous operation

Default: SPI Operation

Select spi or clock syn mode
operation.

SPI Communication Mode Full Duplex, Transmit Only

Default: Full Duplex

Select full-duplex or transmit-
only communication.

Slave Select Polarity(SSL) Active Low, Active High

Default: Active Low

Select SSL signal polarity.

Select Loopback1 Normal, Inverted

Default: Normal

Select loopback1.

Select Loopback2 Normal, Inverted

Default: Normal

Select loopback2.

Enable MOSI Idle State Enable, Disable

Default: Disable

Select MOSI idle fixed value and
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,097 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > Configuring the RSPI HAL Module

MOSI Ildle State MOSI Low, MOSI High

Default: MOSI Low

Select mosi idle fixed value and
selection.

Enable Parity Enable, Disable

Default: Disable

Enable/disable parity.

Parity Mode Parity Odd, Parity Even

Default: Parity Odd

Select parity.

Select SSL Level After Transfer SSL Level Keep, SSL Level Do
Not Keep

Default: SSL Level Do Not Keep

Select SSL level after transfer
completion; 0-negate; 1-keep.
Note: If CPHA = 0 in slave
mode, slave select level after
transfer should not be set to
SSL level Keep.

Clock Delay Enable Clock Delay Enable, Clock Delay
Disable

Default: Clock Delay Disable

Clock delay enable selection.

Clock Delay Count Clock Delay 1 thru 8 RSPCK

Default: Clock Delay 1 RSPCK

Clock delay count selection.

SSL Negation Delay Enable Negation Delay Enable,
Negation Delay Disable

Default: Negation Delay Disable

SSL negation delay enable
selection.

Negation Delay Count Negation Delay 1 thru 8 RSPCK

Default: Negation Delay 1
RSPCK

Negation delay count selection.

Next Access Delay Enable Next Access Delay Enable, Next
Access Delay Disable

Default: Next Access Delay
Disable

Next access delay enable
selection.

Next Access Delay Count Next Access Delay 1 thru 8
RSPCK

Default: Next Access Delay 1
RSPCK

Next access delay count
selection.

Receive Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Priority 2

Receive interrupt priority
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,098 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > Configuring the RSPI HAL Module

Transmit Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Priority 2

Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Priority 2

Transmit end interrupt priority
selection.

Error Interrupt Priority Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Priority 2

Error interrupt priority
selection.

Byte Swap(Only for S5 series
MCUs)Disable

Enable, Disable

Default: Disable

Enable byte swapping
(applicable only for S5 series
MCUs).

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.
 RSPI driven slave select currently supports SSL0 only.

Configuration Settings for the SPI HAL Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module:

Configuration Settings for the Transfer Driver on r_dtc Event SPI0 TXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte, 2 Bytes, 4 Bytes

Default: 2 Bytes

Transfer size selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,099 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > Configuring the RSPI HAL Module

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SPI0 TXI Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SPI0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer1 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte, 2 Bytes, 4 Bytes

Default: 2 Bytes

Transfer size selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,100 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > Configuring the RSPI HAL Module

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SPI0 RXI Activation source selection.

Auto Enable FALSE Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority 1:2,
Priority 3 (lowest - not valid if
using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

RSPI HAL Module Clock Configuration

The SPI peripheral is clocked via Peripheral Clock A (PCLKA). The clock frequencies are configurable
in the ISDE by using the Clocks Tab in the configurator. Invalid selections are indicated in red when
selected. Ensure that desired SPI bitrate can be achieved with the stated value of PCLKA. The ISDE
will not be indicated if the specified bitrate is not achievable. At run time, the SPI driver will attempt
to configure the SPI peripheral to the correct bitrate and will return an error if the desired bitrate
cannot be set. The bitrate is calculated via the equations in the table below. If the result of the
equation (n) is in the range of 0 to 255, then the bit rate can be achieved.

Baud Rate Calculation Equations

SPI HAL Bitrate calculation Description

SPI on SPI n = Peripheral register value.
 This has to be in the range
of 0 to 255
PLCKA = value of PLCKA in MHz
N = 0, 1, 2 or 3
B = Desired Bit Rate

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,101 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > Configuring the RSPI HAL Module

RSPI HAL Module Pin Configuration

The SPI peripheral module uses pins on the MCU to communicate to external devices. I/O pins must
be selected and configured as required by the external device. The following table illustrates the
method for selecting the pins within the SSP configuration window and the subsequent table
illustrates an example listing a selection for SPI pins:

Note
The operation mode selection determines what peripheral signals are available and what MCU pins are required.

Pin Selection Sequence for SPI HAL Module on r_riic

Resource ISDE Tab Pin selection Sequence

RSPI Pins Select Peripherals> RSPI>
SPI0_Pin_Option_A/B.

Note
The selection sequence assumes SPI0 is the desired hardware target for the driver.

Pin Configuration Settings for the SPI HAL Module on r_sci_uart

Pin Configuration Property Value Description

Operation Mode Disabled, Custom, Enabled

Default: Disabled

Select Enabled for SPI
Operation.

MISO None, P100, P410

Default: None

MISO Pin selection.

MOSI None, P101, P411

Default: None

MOSI Pin selection.

RSPCLK None, P102, P412

Default: None

RSPCLK Pin selection.

SSL0:3 None, P103:106, P413:415

Default: None

SSL0:3 Pin selections.

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

4.2.46.6 Using the SPI HAL Module in an Application

The steps in using the SPI HAL module in a typical application are:

Note
The spi_api_t::open API must be called first, but the rest of the calls may be used in any order depending on the
application requirements.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,102 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > SPI Driver > Using the SPI HAL Module in an Application

1. Initialize the module using the spi_api_t::open API.
2. Write to a slave device by using the spi_api_t::write API.
3. Read from a slave device using the spi_api_t::read API.
4. Close the module by calling the spi_api_t::close API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 390: Flow Diagram of a Typical SPI HAL Module Application

4.2.47 UART Driver

4.2.47.1 UART HAL Module Introduction

The UART HAL Module provides a high-level API for industry standard UART serial communications
applications and uses the SCI peripherals on the Synergy MCU. A user-defined callback can be
created to manage hardware-handshake and data operation, if needed.

UART HAL Module Features

The UART HAL module supports the standard UART protocol. The UART HAL module used in concert
with the SCI peripheral in UART mode (UART on SCI) supports the following features (in addition to

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,103 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > UART HAL Module Introduction

the standard UART protocol):

Full-duplex UART communication
Simultaneous communication with multiple channels
Interrupt-driven data transmission and reception
Invoking the user-callback function with an event code in the argument
Baud-rate change at run-time
Hardware resource locking during UART transaction
CTS/RTS hardware flow control (with an associated IOPORT pin and supported by user-
defined callback function)
Integration with the DTC transfer module
Abort in-progress read/write operations

Figure 391: UART HAL Module Block Diagram

UART Hardware Support Details

The following hardware features are, or are not, supported by SSP for the UART (SCI).

Legend:

Symbol Meaning

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,104 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > UART HAL Module Introduction

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

MCU Group Serial communication
mode: Asynchronous

Serial communication
mode: Clock
synchronous

Serial communication
mode: Smart card

S124 ✓ ✓ ⌧

S128 ✓ ✓ ⌧

S1JA ✓ ✓ ⌧

S3A1 ✓ ✓ ⌧

S3A3 ✓ ✓ ⌧

S3A6 ✓ ✓ ⌧

S3A7 ✓ ✓ ⌧

S5D3 ✓ ✓ ⌧

S5D5 ✓ ✓ ⌧

S5D9 ✓ ✓ ⌧

S7G2 ✓ ✓ ⌧

MCU Group Bit
selectable
transfer
speed

Data Length
7, 8, or 9

bits

Support all
Interrupt
Sources

Transmissio
n stop bit 1

or 2 bits

Parity:
Even parity,
odd parity,

or
no parity

Receive
error

detection

S124 ✓ ✓ ✓ ✓ ✓ ✓

S128 ✓ ✓ ✓ ✓ ✓ ✓

S1JA ✓ ✓ ✓ ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓

MCU Group Hardware
flow control

Transmissio
n and

reception

Address
match

Address
un-match

Start-bit
detection

Break
detection

S124 ✓ Register ⌧ ⌧ ✓ ⌧

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,105 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > UART HAL Module Introduction

S128 ✓ Register ⌧ ⌧ ✓ ⌧

S1JA ✓ Register ⌧ ⌧ ✓ ⌧

S3A1 ✓ FIFO ⌧ ⌧ ✓ ⌧

S3A3 ✓ FIFO ⌧ ⌧ ✓ ⌧

S3A6 ✓ FIFO ⌧ ⌧ ✓ ⌧

S3A7 ✓ FIFO ⌧ ⌧ ✓ ⌧

S5D3 ✓ FIFO ⌧ ⌧ ✓ ⌧

S5D5 ✓ FIFO ⌧ ⌧ ✓ ⌧

S5D9 ✓ FIFO ⌧ ⌧ ✓ ⌧

S7G2 ✓ FIFO ⌧ ⌧ ✓ ⌧

MCU Group Clock source
Internal/
external

Double
speed mode

Multi-
processor co
mmunicatio

ns

Noise
cancellation

Bit rate
modulation

function

iRDA
support

S124 ✓ ⌧ ⌧ ✓ ✓ ⌧

S128 ✓ ⌧ ⌧ ✓ ✓ ⌧

S1JA ✓ ⌧ ⌧ ✓ ✓ ⌧

S3A1 ✓ ⌧ ⌧ ✓ ✓ ⌧

S3A3 ✓ ⌧ ⌧ ✓ ✓ ⌧

S3A6 ✓ ⌧ ⌧ ✓ ✓ ⌧

S3A7 ✓ ⌧ ⌧ ✓ ✓ ⌧

S5D3 ✓ ⌧ ⌧ ✓ ✓ ⌧

S5D5 ✓ ⌧ ⌧ ✓ ✓ ⌧

S5D9 ✓ ⌧ ⌧ ✓ ✓ ⌧

S7G2 ✓ ⌧ ⌧ ✓ ✓ ⌧

4.2.47.2 UART HAL Module APIs Overview

The UART HAL module interface defines APIs for key features such as opening, closing, reading,
writing and setting the baud rate. A complete list of the available APIs, an example API call and a
short description of each can be found in the following table. A table of status return values follows
the API summary table.

UART HAL Module API Summary

Function Name Example API Call and Description

open g_uart0.p_api->open(g_uart0.p_ctrl,
g_uart0.p_cfg);
Open UART device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,106 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > UART HAL Module APIs Overview

read g_uart0.p_api->read(g_uart0.p_ctrl, uart0_buf,
uart0_rcv_num);
Read from UART device. The received bytes are
stored directly in the read input buffer,
uart0_buf. When a transfer is complete/expected
bytes are received, the callback is called with
event UART_EVENT_RX_COMPLETE.
When the uart_api_t::read API is not called then
the bytes will be received in the callback
function with event UART_EVENT_RX_CHAR for
each byte.

write g_uart0.p_api->write(g_uart0.p_ctrl, uart0_buf,
uart0_send_num)
Write to UART device. The write buffer is used
until write is complete. Do not overwrite write
buffer contents until the write is finished. When
the write is complete (all bytes are fully
transmitted on the wire), the callback called with
event UART_EVENT_TX_COMPLETE.

baudSet g_uart0.p_api->baudSet(g_uart0.p_ctrl,
(uint32_t)9600);
Change baud rate.

infoGet g_uart0.p_api->infoGet(g_uart0.p_ctrl,
&uart_info);
Get the driver specific information.

close g_uart0.p_api->close(g_uart0.p_ctrl);
Close UART device.

versionGet g_uart0.p_api->versionGet(version);
Retrieve the API version with the version pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Channel operates successfully.

SSP_ERR_IN_USE Control block has already been opened or
channel is being used by another instance.

SSP_ERR_ASSERTION Pointer to UART control block is NULL or
configuration structure is NULL.

SSP_ERR_HW_LOCKED Channel is locked.

SSP_ERR_INVALID_MODE Channel is used for non-UART mode or illegal
mode is set.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,107 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > UART HAL Module APIs Overview

SSP_ERR_INVALID_ARGUMENT Invalid parameter setting found in the
configuration structure. Or source/destination
address or data size is invalid against data
length.

SSP_ERR_NOT_OPEN The control block has not been opened.

SSP_ERR_UNSUPPORTED SCI_UART_CFG_RX_ENABLE is set to 0.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.47.3 UART HAL Module Operational Overview

The UART HAL Module manages data flow using the standard UART protocol. The high-level APIs are
used to read, write and set the baud rate for the UART interface. In addition, interrupts are typically
used to simplify the management of low-level activities.

Note
Interrupts need to be enabled for the following functions to operate successfully.

UART on SCI RXI Interrupt

The RXI interrupt is used to control the flow of data received from the UART port. When the amount
of received data reaches the expected read length, the ISR invokes a user-defined callback
(sci_uart_instance_ctrl_t::p_callback) with the argument uart_callback_args_t to indicate that the
received data is complete. When the External RTS Operation option is enabled, the ISR invokes the
UART callback function for the RTS external pin control twice: once at the top of ISR and once at the
bottom. You can use the callback function to emulate the RTS function (see the UART on SCI
hardware flow-control section); this interrupt is activated as long as reception is enabled in the
SCI_UART_CFG_RX_ENABLE configuration parameter.

UART on SCI TXI Interrupt

The TXI interrupt handles consecutive transmissions of data to the UART port as requested by the
uart_api_t::write API. When no data is left in the transmit circular buffer, the ISR deactivates the TXI
interrupt and activates the TEI interrupt to handle the last sequence in the data transmission. This
interrupt is activated in the uart_api_t::write API as long as the transmission is enabled by the
SCI_UART_CFG_TX_ENABLE configuration parameter.

UART on SCI TEI Interrupt

The TEI interrupt is used to handle a last data transmission to the UART port requested by
uart_api_t::write API; this interrupt is activated by TXI ISR and deactivates itself. The ISR invokes a
user-defined callback (sci_uart_instance_ctrl_t::p_callback) with the argument uart_callback_args_t to
indicate that the end of data istransmit.

UART on SCI ERI Interrupt

The ERI interrupt is used to handle errors that occur in the UART reception. This interrupt is activated
in the uart_api_t::open API as long as the reception is enabled by the SCI_UART_CFG_RX_ENABLE
configuration parameter. The ISR invokes a user-defined callback
(sci_uart_instance_ctrl_t::p_callback) with the argument uart_callback_args_t to indicate uart_event_t
cause of an error.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,108 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > UART HAL Module Operational Overview

UART HAL Module Important Operational Notes and Limitations

UART HAL Module Operational Notes

UART on SCI Hardware Flow Control

The SCI hardware module supports hardware flow-control for only one of the RTS or CTS signals at a
time. CTS and RTS are multiplexed on the CTSn/RTSn pin so that one of the hardware flow-control
signals can be used exclusively depending on the use-case. The UART HAL module expands this
specification and allows control of both the CTS and the RTS signal by enabling an additional pin for
the RTS signal. To enable this mode, set the UART on SCI configurations as follows:

Set SCI_UART_CFG_EXTERNAL_RTS_OPERATION to Enable.
Set uart_cfg_t::ctsrts_en to CTS (true).
Specify a user-callback function name to "Name of UART callback function for the RTS
external pin control" in uart_on_sci_cfg_t::p_extpin_ctrl.

The UART on SCI HAL module invokes the user-callback function from the RXI ISR at the top and at
the end of processing.

The callback function argument "level" refers to the signal level on the RTS pin for the selected SCI
channel.

Note
The HAL module does not handle the GPIO pin-initialization or control it; instead, the user needs to initialize the
GPIO pin before starting the UART reception.

The following figure shows the timing diagram of CTS/RTS hardware flow-control with an external
GPIO pin used as the RTS signal:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,109 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > UART HAL Module Operational Overview

Figure 392: UART HAL Module CTS/RTS Hardware Control with an External GPIO

Note
The UART on SCI module on the SK-S7G2 board uses PORT8 pin0 (pin P800) and J8 to activate the RS232C port
on the RS-232C transceiver. Connect pin 1 and pin 2 of J8. Configure pins P800 as IOPORT pins and set its level
for the desired operation.

Notes on RS485 Implementations

For RS485 communication mode, ON pin and RXEN pin should be controlled from the
application
In the case of RS485 Full Duplex communication, configuration of ON pin is not required and
in the case of RS485 half-duplex communication, ON should be configured as level Low

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,110 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > UART HAL Module Operational Overview

RXEN pin is usually DIP switch (HALF or HD/FD) in Synergy MCUs and is made LOW (ON) for
RS485 half-duplex and made HIGH (OFF) for RS485 Full Duplex communication

UART HAL Module Limitations

The module supports interrupt-based operation but does not support a polled UART mode.
The module does not support non-buffered UART mode.
The module does not support Event Link functionality.
Transfer size must be less than or equal to 64K bytes if DTC interface is used for transfer.
uart_api_t::infoGet API can be used to get the max transfer size allowed.
Reception is still enabled after uart_api_t::communicationAbort API is called. Any characters
received after abort and before the next call to read, will arrive via the callback function
with event UART_EVENT_RX_CHAR.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.47.4 Including the UART HAL Module in an Application

This section describes how to include the UART HAL Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the UART Driver to an application, simply add it to a thread using the stacks selection
sequence given in the following table. (The default name for the UART Driver is g_uart0. This name
can be changed in the associated Properties window.)

UART HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_uart0 UART on r_sci_uart Threads Threads> Driver>
Connectivity> UART Driver
on r_sci_uart

When the UART HAL module on r_sci_uartis added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,111 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > Including the UART HAL Module in an Application

Figure 393: UART HAL Module Stack

4.2.47.5 Configuring the UART HAL Module

The UART HAL Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

ConfigurationSettings for the UART HAL Module on r_sci_uart

ISDE Property Value Description

External RTS Operation Enable, Disable

Default: Disable

Enable an IOPORT pin to be
used as RTS signal. For RTS
functionality set this
configuration parameter to
"Enable" and specify the
configuration "Name of UART
callback function for the RTS
external pin control".

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,112 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > Configuring the UART HAL Module

Reception Enable, Disable

Default: Enable

Enable or disable UART
reception for all UART channels
on SCI. Setting this
configuration parameter to
"Disable" reduces code size
because the portion of code for
UART reception is not compiled.
You cannot set this parameter
for individual UART channels.

Transmission Enable, Disable

Default: Enable

Enable or disable UART
transmission for all UART
channels on SCI. Setting
"Disable" to this configuration
allows to get smaller code size
due to the portion of code for
UART transmission is compiled
out, however, you can only set
"Disable" to this configuration if
any other SCI channels which
work as UART ports do not
perform the transmission.

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_uart0 The name to be used for UART
on SCI module control block
instance. This name is also
used as the prefix of the other
variable instances.

Channel 0 SCI channel number.

Baud Rate 9600 Baud rate selection.

Data Bits 7 bits, 8, bits, 9 bits

Default: 8 bits

UART data bits.

Parity None, Odd, Even

Default: None

UART parity bits.

Stop Bits 1 bit, 2 bits

Default: 1 bit

UART stop bits.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,113 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > Configuring the UART HAL Module

CTS/RTS Selection CTS (Note that RTS is available
when enabling External RTS
Operation mode which uses 1
GPIO pin), RTS (CTS is disabled)

Default: RTS (CTS is disabled)

Select CTS or RTS for the
CTSn/RTSn pin of SCI channel n.
The SCI hardware supports
either the CTS or the RTS
control signal on this pin but
not both. For an application
that uses both CTS and RTS,
select "CTS" for this
configuration parameter and
enable the configuration
"External RTS Operation"
specifying the configuration
"Name of UART callback
function for the RTS external
pin control".

Name of UART callback function
to be defined by user

user_uart_callback Name must be a valid C
symbol.

Name of UART callback function
for the RTS external pin control
to be defined by user

NULL Name must be a valid C
symbol.

Clock Source Internal Clock, External Clock
8x baudrate, External Clock 16x
baudrate

Default: Internal Clock

Selection of the clock source to
be used in the baud-rate clock
generator block.

Baudrate Clock Output from
SCK pin

Enable, Disable

Default: Disable

Optional setting to output the
baud-rate clock on the SCKn pin
for the selected channel n.

Start bit detection Falling Edge, Low Level

Default: Falling Edge

Start bit detection mode in the
reception, usually set "Falling
Edge" to this configuration.

Noise Cancel Enable, Disable

Default: Disable

Enable the digital noise
cancellation on RXDn pin. The
digital noise filter block in SCI
consists of two-stage flip-flop
circuits. For detail, refer to the
Noise cancellation section in
the Renesas Synergy hardware
manual.

Bit Rate Modulation Enable Enable, Disable

Default: Enable

Bit rate modulation enable
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,114 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > Configuring the UART HAL Module

Receive FIFO Trigger Level One, Max

Default: Max

Receive FIFO trigger level
selection:
One: an interrupt occurs for
every byte received.
Max: an interrupt will be
triggered if either of the below
conditions are met:
a) The FIFO is filled to the Max
level (15).
b) 15bit times have occurred
with no data received.

Receive Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Receive interrupt priority
selection.

Transmit Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Transmit interrupt priority
selection.

Transmit End Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Transmit end interrupt priority
selection.

Error Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Error interrupt priority
selection.

Baud rate Percent Error Value must be greater than 0.0
and less than 15.0
Default; 2.0

Maximum baudrate percent
error allowed in order for the
module to function.

UART Communication Mode RS232, RS485
Default: RS232

UART communication mode
selection, usually it is RS232
mode.

UART RS485 Communication
Mode

Half Duplex, Full Duplex
Default: Half duplex

UART RS485 communication
mode selection as half duplex
or full duplex.

RS485 DE Port 00 to 11
Default: 09

Select the port number of
Driver Enable Pin.

RS485 DE Pin 00 to 15
Default: 14

Select the pin number of Driver
Enable Pin.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,115 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > Configuring the UART HAL Module

Configuration Settings for the UART HAL Module Lower Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module:

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 TXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 1 Bytes Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SCI0 TXI Activation source selection.

Auto Enable True, False

Default: True

Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,116 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > Configuring the UART HAL Module

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Software Start Enabled, Disabled

Default: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table selection.

Name g_transfer1 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SPI0 RXI Activation source selection.

Auto Enable False Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,117 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > Configuring the UART HAL Module

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

When using the UART with CTS and RTS function simultaneously, the transfer driver cannot be used;
please delete all transfer drivers on the low level. After being deleted, the optional transfer driver will
display in pink, meaning the driver is recommended but optional.

UART HAL Module Clock Configuration

The SCI UART peripheral uses PCLKA as its clock source (PCLKB for S124) or an external clock from
the SCKn pin for the selected channel n.

UART HAL Module Pin Configuration

The SCI UART peripheral uses pins on the MCU to communicate to external devices. I/O pins must be
selected and configured as required by the external device. The following table illustrates the
method for selecting the pins within the SSP configuration window and the subsequent table
illustrates an example selection for the UART pins.

Note
The operation mode selection determines what peripheral signals are available and what MCU pins are required.

Pin Selection Sequence for UART HAL Module on SCI

Resource ISDE Tab Pin selection Sequence

SCI Pins Select Peripherals>
Connectivity: SCI > SCI0

Pin Configuration Settings for the UART HAL Module on r_sci_uart

Pin Configuration Property Value Description

Pin Group Selection Mixed, _A Only, _B Only
(Default: Mixed)

Pin grouping selection.

Operation Mode Disabled, Custom,
Asynchronous UART, Simple
SPI, Simple I2C, Synchronous
UART, SmartCard
(Default: Simple SPI)

Select Operation Mode for UART
on SCI.

TXD_MOSI None, P411, P101
(Default: P411)

TXD Pin.

RXD_MISO None, P410, P100
(Default: P410)

RXD Pin.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,118 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > Configuring the UART HAL Module

SCK None, P412, P102
(Default: P412)

SCK Pin.

CTS_RTS_SS None, P413, P103
(Default: None)

CTS Pin.

SDA Disabled SDA Pin (when Simple I2C is
used).

SCL Disabled SCL Pin (when Simple I2C is
used).

Note
The example settings are for a project using the Synergy S7G2 MCU Group and the SK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

4.2.47.6 Using the UART HAL Module in an Application

The steps in using the UART HAL module in a typical application are:

1. Initialize the UART HAL Module using the uart_api_t::open API.
2. Set Baud Rate with the uart_api_t::baudSet API (if needed.)
3. Read and Write data as needed using the uart_api_t::read and uart_api_t::write APIs and

callbacks.
4. Read or Write operations can be aborted using uart_api_t::communicationAbort API if

required.
5. Close the UART HAL module using the uart_api_t::close API as needed.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,119 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > UART Driver > Using the UART HAL Module in an Application

Figure 394: Flow Diagram of a Typical UART HAL Module Application

4.2.48 Watchdog Driver

4.2.48.1 Watchdog Timer HAL Module Introduction

The WDT (Watchdog Timer) HAL module provides a high-level API for critical timing applications and
uses the WDT peripheral on the Synergy MCU. A user-defined callback can be created to respond to
event notifications.

Watchdog Timer HAL Module Features

The WDT HAL module has the following key features:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,120 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver > Watchdog Timer HAL Module Introduction

When the WDT underflows or is refreshed outside of the permitted refresh window, one of
the following events can occur:

Resetting of the device
Generation of an NMI

Supports the Watchdog Timer (WDT) peripheral, which uses an external clock.
The WDT can be configured in register start mode through the WDT registers.
Supports automatic hardware configuration after reset.
The WDT can be started from the application.

Figure 395: Watchdog Timer HAL Module Block Diagram

Watchdog Timer Hardware Support Details

The following hardware features are, or are not, supported by SSP for WDT:

Legend:

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,121 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver > Watchdog Timer HAL Module Introduction

MCU Group Clock Divide
by 4, 64,
128, 512,
2,048, or

8,192

Count down Register
start mode

Auto start
mode

Reset output Interrupt
request
output

S124 ✓ ✓ ✓ ✓ ✓ ✓

S128 ✓ ✓ ✓ ✓ ✓ ✓

S1JA ✓ ✓ ✓ ✓ ✓ ✓

S3A1 ✓ ✓ ✓ ✓ ✓ ✓

S3A3 ✓ ✓ ✓ ✓ ✓ ✓

S3A6 ✓ ✓ ✓ ✓ ✓ ✓

S3A7 ✓ ✓ ✓ ✓ ✓ ✓

S5D3 ✓ ✓ ✓ ✓ ✓ ✓

S5D5 ✓ ✓ ✓ ✓ ✓ ✓

S5D9 ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓

MCU Group Sleep mode
count stop

control
output

Event link
function

through ELC
HAL driver

Window
function

Conditions
for stopping
the Counter

–
reset/under

flow
refresh error

Refresh
error and

under flow
error detect

Reading the
counter
value

S124 ⌧ ⌧ ✓ ✓ ✓ ✓

S128 ⌧ ⌧ ✓ ✓ ✓ ✓

S1JA ⌧ ⌧ ✓ ✓ ✓ ✓

S3A1 ⌧ ⌧ ✓ ✓ ✓ ✓

S3A3 ⌧ ⌧ ✓ ✓ ✓ ✓

S3A6 ⌧ ⌧ ✓ ✓ ✓ ✓

S3A7 ⌧ ⌧ ✓ ✓ ✓ ✓

S5D3 ⌧ ⌧ ✓ ✓ ✓ ✓

S5D5 ⌧ ⌧ ✓ ✓ ✓ ✓

S5D9 ⌧ ⌧ ✓ ✓ ✓ ✓

S7G2 ⌧ ⌧ ✓ ✓ ✓ ✓

4.2.48.2 Watchdog Timer HAL Module APIs Overview

The WDT HAL module defines APIs for opening, refreshing, reading and getting status. A complete
list of the available APIs, an example API call and a short description of each can be found in the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,122 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver > Watchdog Timer HAL Module APIs Overview

following table. A table of status return values follows the API summary table.

Watchdog Timer HAL Module API Summary

Function Name Example API Call and Description

cfgGet g_wdt0.p_api->cfgGet(g_wdt0.p_ctrl,
g_wdt0.p_cfg);
Initialize the WDT in register start mode. In auto-
start mode with NMI output it registers the NMI
callback.

open g_wdt0.p_api->open(g_wdt0.p_ctrl,
g_wdt0.p_cfg);
Initialize the WDT in register start mode. In auto-
start mode with NMI output it registers the NMI
callback.

refresh g_wdt0.p_api->refresh(g_wdt0.p_ctrl);
Refresh the watchdog timer.

statusGet g_wdt0.p_api->statusGet(g_wdt0.p_ctrl,
&status);
Read the status of the WDT.

statusClear g_wdt0.p_api->statusClear(g_wdt0.p_ctrl,
clear);
Clear the status flags of the WDT.

counterGet g_wdt0.p_api->counterGet(g_wdt0.p_ctrl,
&counter);
Read the current WDT counter value.

timeoutGet g_wdt0.p_api->timeoutGet(g_wdt0.p_ctrl,
&timeout);
Read the watchdog timeout values.

versionGet g_wdt0.p_api->versionGet(&version);
Retrieve the API version using the version
pointer.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS Function successfully executed.

SSP_ERR_ASSERTION Null Pointer(s).

SSP_ERR_INVALID_ARGUMENT One or more configuration options is invalid.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,123 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver > Watchdog Timer HAL Module APIs Overview

SSP_ERR_INVALID_MODE An attempt to open the WDT in register-start
mode when the OFS0 register is configured for
auto-start mode. Or to open the WDT in auto-
start mode when the OSF0 is configured for
register start mode.

SSP_ERR_ABORTED Invalid clock divider for this watchdog

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.2.48.3 Watchdog Timer HAL Module Operational Overview

Synergy MCUs have two watchdog peripherals- the watchdog timer (WDT) and the independent
watchdog timer (IWDT). When selecting between them, consider these factors:

The WDT can be started from the application.
The WDT can be configured in register start mode through the WDT registers. The WDT can
also be configured by hardware automatically after reset using parameters stored in Option
Function Select Register 0 (OFS0).
The IWDT has its own clock source which improves safety.
The IWDT is configured by hardware automatically after reset using parameters stored in
the Option Function Select Register 0 (OFS0).

Watchdog Timer HAL Module Important Operational Notes and Limitations

Watchdog Timer HAL Module Operational Notes

The WDT HAL module configures the WDT Interface. When the WDT underflows or is refreshed
outside of the permitted refresh window, one of the following events can occur:

Resetting of the device
Generation of an NMI

The following figure shows an example of the operation of the WDT. When refreshed in the valid
refresh period of the counter the timer count value is reset. If the count is allowed to underflow or
refresh occurs outside of the valid refresh period, the WDT resets the device or generates an NMI.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,124 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver > Watchdog Timer HAL Module Operational Overview

Figure 396: Watchdog Timer HAL Module Operational Diagram

 The WDT can be configured in register start mode through the WDT registers. The WDT can also be
configured by hardware automatically after reset using parameters stored in Option Function Select
Register 0 (OFS0) as displayed in the following table.

All series of Synergy microcontrollers have an option-setting Memory which can be used to set the
operating state of peripherals after a reset. The OFS can be used to set the state of the IWDT, WDT,
LVD and CGC HOCO.

The following table details which parameters of the IWDT can be configured by the OFS registers.

Note
The IWDT can only be configured via the OFS registers. The IWDT does not support Register Start mode.

Control Description

IWDT Start Mode Select Automatically starts the IWDT after a Reset, if
enabled.

IWDT Timeout Period Specifies the IWDT timeout (number of clock
cycles)
128 cycles
512 cycles
1024 cycles
2048 cycles

IWDT-Dedicated Clock Frequency Division Ratio 1
1/16
1/32
1/64
1/128
1/256

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,125 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver > Watchdog Timer HAL Module Operational Overview

IWDT Window End Position 25%
50%
75%
100% (no window end position set)

IWDT Window Start Position 25%
50%
75%
100% (no window start position set)

IWDT Reset Interrupt Request The IWDT can either generate an Interrupt
Signal or a Reset signal.

IWDT Stop Control The IWDT can continue to count or Stop counting
in Low Power Mode.

Note
For further information on the contents of the OFS0 register, see the Synergy MCU hardware manual.

The OFS register values are set via the properties dialog of the BSP tab of Synergy Configuration
editor as shown in the figures below.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,126 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver > Watchdog Timer HAL Module Operational Overview

Figure 397: Watchdog Timer HAL Module Configuration Screens

 WDT HAL Module Period Calculation

The WDT operates from PCLKB. Assuming largest parameters for the WDT and a PCLKB of 60 MHz,
the time from the last refresh to device reset or NMI generation will be just over 2.2 seconds as
detailed below.

PLCKB = 60 MHz

Clock division ratio = PCLKB/8192

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,127 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver > Watchdog Timer HAL Module Operational Overview

Timeout period = 16384 cycles

WDT clock frequency = 60 MHz / 8192 = 7.324 kHz

Cycle time = 1 / 7.324 kHz = 136.53 us

Timeout = 136.53 us x 16384 cycles = 2.23 seconds

Triggering DMAC/DTC with the WDT HAL Module

To trigger a transfer of data using the DMAC or DTC peripheral when the WDT counter underflows or
when a refresh is attempted outside of the valid refresh period, configure the WDT to generate an
NMI and configure the DMAC/DTC transfer with activation_source set to
ELC_EVENT_WDT_UNDERFLOW. See the associated User Guide (DMAC, DTC) for further information.

Triggering Event Link Controller Events with the WDT HAL Module

The WDT can trigger the start of another peripheral using the Event Link Controller (ELC). Refer to
the ELC User Guide for a complete list of available peripherals.

Watchdog Timer HAL Module Limitations

When using a J-Link debugger the WDT counter does not count and therefore will not reset
the device or generate an NMI.
When there is no active task ready to run, ThreadX puts the MCU into sleep mode. If the
WDT is configured to stop the counter in low power mode, then your application must
restart the timer when used with the ThreadX RTOS.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.2.48.4 Including the Watchdog Timer HAL Module in an Application

This section describes how to include the Watchdog Timer HAL Module in an application using the
SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Watchdog Timer Driver to an application, simply add it to a thread using the stacks
selection sequence given in the following table. (The default name for the Watchdog Timer Driver is
g_wdt0. This name can be changed in the associated Properties window.)

Watchdog Timer HAL Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_wdt0 Watchdog Driver on
r_wdt

Threads New Stack>Driver>
Monitoring> Watchdog
Driver on r_wdt

When the Watchdog Timer Driver on r_wdt is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,128 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver > Including the Watchdog Timer HAL Module in an Application

are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 398: Watchdog Timer HAL Module Stack

4.2.48.5 Configuring the Watchdog Timer HAL Module

The Watchdog Timer HAL Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Watchdog Timer HAL Module on r_wdt

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enables or disables the
parameter checking.

Name g_wdt0 Module name.

Start Mode Register, Auto

Default: Register

Configures the start mode as
register start or auto-start.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,129 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver > Configuring the Watchdog Timer HAL Module

Start Watchdog After
Configuration

True, False

Default: True

Controls whether WDT is
started during initialization.

Timeout 1024 cycles, 4096 cycles, 8192
cycles, 16384 cycles

Default: 16384 cycles

WDT timeout period.

Clock Division Ratio PCLK/4, PCLK/64, PCLK/128,
PCLK/512, PCLK/2048,
PCLK/8192

Default: PCLK/8192

WDT clock divider.

Window Start Position 100% (Window Position Not
Specified), 75%, 50%, 25%

Default: 100% (Window Position
Not Specified)

Permitted refresh period start
postion.

Window End Position 0% (Window Position Not
Specified), 25%, 50%, 75%

Default: 0% (Window Position
Not Specified)

Permitted refresh period end
postion.

Reset Control Reset Outpout, NMI Generated

Default: Reset Output

Select whether WDT should
reset the MCU or generate an
NMI.

Stop Control WDT Count Enabled in Low
Power Mode, WDT Count
Disabled in Low Power Mode

Default: WDT Count Disabled in
Low Power Mode

Select whether the WDT should
stop counting in low power
modes.

NMI Callback NULL Callback. A user callback
function can be registered in
open. If this callback function is
provided, it will be called from
the interrupt service routine
(ISR) each time the IRQn
triggers.

Warning: Since the callback is
called from an ISR, care should
be taken not to use blocking
calls or lengthy processing.
Spending excessive time in an
ISR can affect the
responsiveness of the system.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,130 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver > Configuring the Watchdog Timer HAL Module

Configure Option Function Select Register 0 (OFS0) for the WDT HAL Module

All series of Synergy microcontrollers have an Option-Setting Memory which can be used to set the
operating state of peripherals after a reset. The OFS can be used to set the state of the IWDT, WDT,
LVD and CGC HOCO. See the description in the operational overview section earlier in this document.

Configuring the Interrupts for the WDT HAL Module

Configure the WDT interrupts in the same way as configuring the other options for the WDT module.
If the WDT is configured to generate an NMI interrupt on underflow or invalid refresh, the interrupt
must be enabled in the BSP.

To enable interrupts, set the priority of the CWDT> CWDT NMIUNDF N n. This sets
BSP_IRQ_CFG_WDT_UNDERFLOW in ssp_cfg/bsp/bsp_irq_cfg.h to the priority level selected.

When the CWDT NMIUNDF N interrupt is enabled in the BSP, the corresponding ISR will be defined.
The ISR will call a user callback function if one was registered in the wdt_api_t::open API.

Watchdog Timer HAL Module Clock Configuration

The WDT clock is based on the PCLKB frequency. You can set the PCLKB frequency using the clock
configurator in the ISDE or using the CGC Interface at run-time. The maximum timeout period with
PCLKB running at 60 MHz is approximately 2.2 seconds.

Watchdog Timer HAL Module Pin Configuration

The WDT does not require pins for its operation.

4.2.48.6 Using the Watchdog Timer HAL Module in an Application

The typical steps in using the Watchdog Timer HAL module in an application are:

1. Initialize the WDT HAL module in either register start mode or auto-start mode using the
wdt_api_t::open API.

2. Read the configuration of the WDT HAL module in either register start mode or auto start
mode with the wdt_api_t::cfgGet API.

3. Refresh the watchdog timer using the wdt_api_t::refresh API.
4. Read the WDT status flags using the wdt_api_t::statusGet API.
5. Clear the status flags and error flags of the WDT HAL module using the

wdt_api_t::statusClear API.
6. Read the current WDT counter value using the wdt_api_t::counterGet API.
7. Read the watchdog timeout values using the wdt_api_t::timeoutGet API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,131 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > HAL Layer > Watchdog Driver > Using the Watchdog Timer HAL Module in an Application

Figure 399: Flow Diagram of a Typical Watchdog Timer HAL Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,132 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules

4.3 Azure RTOS Modules

The following documents for Renesas SSP Azure RTOS modules cover a wide range of topics and are
organized to make it easy to find the specific information needed to accelerate your development
process. Follow the below pointers to more quickly find the information you are looking for:

Azure RTOS components are organized by key application functions: ThreadX RTOS support,
FileX file system support, GUIX graphics user interface support, USBX Universal Serial Bus
interface support, NetX and NetX Duo networking protocol support. The below articles are
organized using these same key applications areas.
Some Azure RTOS components have an Overview document that describes many of the key
elements and concepts. The Overview document can also include common information that
would be redundant to include in all the separate Module Overviews.
Some Azure RTOS components have a Source module document that describes the
configurable options available within the source module. These documents, and the
associated Azure RTOS User’s Manuals, (available in the X-Ware Component Documents
package at the bottom of this web page: https://www.renesas.com/synergy/ssp) should be
understood before attempting to modify any source configuration settings).
Some Azure RTOS components have a Port Framework document that describes the details
of the interface between SSP and an Azure RTOS Component. For example, the NetX Port
Ethernet module (sf_el_nx) interfaces the NetX and Net Duo software with the Synergy
hardware.
Some Azure RTOS components have a variety of protocols or similar lower level functions.
These are typically included in SSP as separate modules and each has a Module Overview
document that explains their operation. For example, there are separate Module Overviews
for DHCP, FTP and Telnet.
Some Azure RTOS networking components have a Module Overview that covers more than
one protocol. Often this is because the NetX and NetX Duo implementations are very similar
and any differences can be easily identified in the combined document- thus eliminating
unneeded duplication. (NetX Duo supports both IPv4 and IPv6- while NetX supports only
IPv4. Operational differences can be easily explained where needed.) For example, the
NetX/NetX Duo HTTP Server, NetX/NetX Duo HTTP Client Module Overviews cover both the
NetX and NetX Duo implementations of these standard functions.

ThreadX

ThreadX Overview

FileX

FileX on Block Media

FileX Source

GUIX

GUIX Port

GUIX Source

LevelX

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,133 / 5,198

https://www.renesas.com/synergy/ssp

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules

LevelX Port Framework on sf_el_lx_nor

NetX/NetX Duo

NetX Port Ether

NetX Port Using PPP

NetX/NetX Duo Source

Azure RTOS NetX Overview

Azure RTOS NetX Duo Overview

NetX/NetX Duo Auto IP

NetX/NetX Duo BSD Support

NetX/NetX Duo DHCP Client

NetX/NetX Duo DHCP Server

NetX Duo DHCPv6 Client

NetX Duo DHCPv6 Server

NetX/NetX Duo DNS Client

NetX/NetX Duo FTP Client

NetX/NetX Duo FTP Server

NetX/NetX Duo HTTP Client

NetX/NetX Duo HTTP Server

NetX Duo HTTP Client (HTTPS/HTTPS 1.1)

NetX/NetX Duo HTTP/HTTPS Web Server Framework

NetX/NetX Duo SMTP Client

NetX/NetX Duo SNMP Agent

NetX/NetX Duo SNTP Client

NetX/NetX Duo POP3 Client

NetX/NetX Duo Telnet Client

NetX/NetX Duo Telnet Server

NetX/NetX Duo TFTP Client

NetX/NetX Duo TFTP Server

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,134 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules

NetX Duo MQTT Client

NetX Duo NAT

NetX Duo TLS Session

NetX Duo DTLS Session

NetX Duo mDNS/DNS-SD

USBX

Azure RTOS USBX Overview

USBX Source

USBX Port

USBX Device Class CDC-ACM

USBX Device Class HID

USBX Device Class Mass Storage

USBX Host Class CDC-ACM

USBX Host Class HID

USBX Host Class HUB

USBX Host Class Printer USBX Host Class Mass Storage

USBX Host Class Video

4.3.1 ThreadX Overview

4.3.1.1 Azure RTOS ThreadX Module Introduction

The Azure RTOSThreadX kernel (tx) is integrated into the SSP. The Azure RTOS ThreadX kernel is the
foundation of multi-threaded SSP applications. It provides thread creation and synchronization
services, including message queues, counting semaphores, mutexes, event flags, memory block
pools, memory byte pools, and application timers.

Azure RTOS ThreadX Module Features

Implements the ThreadX RTOS in the Synergy Platform
Automatically added when a thread is created
Source code can be added using the ThreadX source module
Provides threaded services for:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,135 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > ThreadX Overview > Azure RTOS ThreadX Module Introduction

Synchronization
Messaging queues
Counting semaphores
Mutexes
Event flags
Memory block and byte pools

Application timers

4.3.1.2 Azure RTOS ThreadX Module Operational Overview

The Azure RTOS ThreadX on tx module implements the ThreadX RTOS kernel within the Synergy
Software Package. It provides all the scheduling, inter-process communications, memory
management, interrupt management and a variety of other RTOS related functions. Typically,
application code simply makes use of the functions provided by the kernel. The following operational
notes outline some of the areas where the application may benefit from a more detailed interaction
with ThreadX and ThreadX source.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,136 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > ThreadX Overview > Azure RTOS ThreadX Module Operational Overview

Azure RTOS ThreadX Module Important Operational Notes and Limitations

Azure RTOS ThreadX Module Operational Notes

Preemption Threshold

The preemption threshold feature is disabled in the provided ThreadX library to reduce code size. If
preemption support is needed, then ThreadX source should be included in the project and
Preemption Threshold should be set to Enabled in the ThreadX source properties. The
preemption threshold for a thread is initially set by the configurator to the thread priority. It can be
changed by the tx_thread_preemption_change function.

IAR Library Support (IAR Only)

Thread-safe support for the IAR tools is easily enabled by making the following setting in the
Properties of the ThreadX Source Module. In the table, ISDE Property refers to the Properties tab
name in the e2 studio ISDE.

ThreadX Source IAR Library Support Configuration

ISDE Property Setting Description

IAR Library Support Enabled, Disabled
(Default: Disabled)

If enabled, defines TX_ENABLE_I
AR_LIBRARY_SUPPORT to
provide thread safe access to
IAR standard library functions
such as malloc() and printf().

Also, add the following line to the linker control file (if not already in place):

@ code

initialize by copy with packing = none { section __DLIB_PERTHREAD };

// Required in a multi-threaded application.

@endcode

Note
Make sure the ThreadX Source module is added to the Threads tab (HAL/Common) before modifying
TX_ENABLE_IAR_LIBRARY_SUPPORT.
The TX_ENABLE_IAR_LIBRARY_SUPPORT macro enables thread creation and destruction extensions which are
required for thread safe access to the IAR runtime library. The TLS (Thread Local Storage) memory is allocated
from the heap for each instance. Currently, SSP does not implement the synchronization mechanisms that are
required to use the library functions in a thread safe manner. Using the library with just the features provided is
safe only if the library functions are accessed in a non-reentrant manner, that is, only a single thread makes calls to
this library. To get full multithreaded support, refer to the IAR Dlib Thread Support document from IAR for more
information on how to implement the synchronization mechanisms. The implementation will need to be done in the
tx_src_user.h file which is an SSP generated file.

ThreadX Source Advanced Configurations

If the ThreadX Source module is added to the project, the Properties window provides advanced
configurations for the ThreadX source library. Highlight a configuration option to view a description
of the option in the bottom left corner of the e2 studio GUI. If the configuration option entry field is

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,137 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > ThreadX Overview > Azure RTOS ThreadX Module Operational Overview

empty, the default value will be used. Refer to the Configuration Options chapter of the ThreadX
User Guide for more information.

At the end of the advanced properties, there are TX_<COMPONENT>_EXTENSION macros, where
<COMPONENT> identifies the type of extension. These extension macros are for advanced use cases
only. In most projects, they are not modified. Some cases, such as BSD support for NetX, require use
of extension macros and explicitly describe how they should be used.

Azure RTOS ThreadX Module Limitations

Hardware stack monitoring is not supported for the ARM CM23 and CM0+ MCUs. If the
ThreadX Source is used with these MCUs, use the SSP configurator to set the Enable
Hardware Thread Stack Monitoring property to Disabled.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.1.3 Using the Azure RTOS ThreadX Module in an Application

During the configuration of the project, ThreadX is added automatically when a new Thread is
created.

ThreadX objects, including mutexes, semaphores, event flags and queues can be added to Threads
in the <Thread Name> Objects section, where <Thread Name> represents the name of an
application thread. For example, to add a new queue to a thread, highlight the thread and select
New Object > Queue.

To access the queue from a different thread, include the header file of the thread where the queue is
defined. For example, if an application has a thread named main_thread with a queue named
message_queue, a file named main_thread.h will be generated with an extern for message_queue. If
the application also has a thread named background_thread, and the background_thread requires
access to the message_queue, main_thread.h should be included in background_thread_entry.c to
ensure background_thread_entry.c has access to the definition of message_queue.

Threadx Source configurator property Memory section for Trace Buffer relocates the trace buffer
to the memory section indicated by the property. This requires enabling the property Event Trace.
By default the trace buffer will be placed in the .bss section of memory

To relocate the trace buffer:

1. Enable the Event Trace property
2. Input the memory section where you want to put trace buffer

Note
It is the developer's responsibility not to relocate the trace buffer to the restricted memory sections. Developers are
responsible for inputting the appropriate memory section if they want to relocate the trace buffer.

If the selected device is from a family of MCUs that have less memory, please resize the trace buffer
from default size = 65536 to a lesser size so as to avoid RAM overflows by using configurator
property Trace Buffer Size before enabling the Event Trace.

To restart a user defined thread created by Synergy

Applications trying to restart a thread after tx_thread_terminate/tx_thread_reset/tx_thread_resume
call have to use tx_semaphore_put (&g_ssp_common_initialized_semaphore) before restarting.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,138 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > ThreadX Overview > Using the Azure RTOS ThreadX Module in an Application

4.3.2 FileX on Block Media

4.3.2.1 FileX On Block Media Framework Module Introduction

The FileX Port on Media Framework module supports the Azure RTOS FileX system, a complete FAT
and exFAT format media and a file management system for deeply embedded applications. FileX is
highly optimized for both size and performance.

FileX On Block Media Framework Module Features

Single Partition (Uses total available memory size):

Supports FAT32, FAT16, FAT12 and exFAT filesystems
Supports single FAT and exFAT partition operations in all SSP block media, that
is, sf_block_media_lx_nor, sf_block_media_sdmmc, sf_block_media_qspi and
sf_block_media_ram.
Multiple FileX objects (that is, media, directories, and files, only limited by available
memory)
Dynamic FileX object creation/deletion
Flexible memory usage
Size scales automatically
Small footprint
Complete integration with ThreadX

Multi Partition:

Supports FAT32, FAT16 and exFAT filesystem.
Supports the creation of any number of partition on single physical media, and supports all
other fileX operations on them, for underlying block media sf_block_media_lx_nor and
sf_block_media_sdmmc.
MBR/EBR support with visibility of partitions under Windows OS environment.
Each partition can be operated-on independently of other partitions.
Provides following operations on synergy platform for FAT and exFAT filesystem:

1. Format/re-format
2. open
3. close
4. write
5. read

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,139 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX on Block Media > FileX On Block Media Framework Module Introduction

Figure 400: FileX On Block Media Framework Module Block Diagram

4.3.2.2 FileX On Block Media Framework Module APIs Overview

The FileX On Block Media Framework provides access to all the FileX APIs used to create the file
system, access files and directories and manage the file system. The full set of FileX API functions,
their parameters, operation and example use can be found in the FileX User's Manual. Some
examples are shown below to provide some background for better understanding the rest of the
descriptions of the FileX on Block media framework module.

FileX On Block Media Framework Module API Summary (Selected Examples Only)

Function Name Example API Call and Description

fx_directory_attributes_read fx_directory_attributes_read(&my_media,
"mydir", &attributes);
Reads the directory's attributes from the
specified media.

fx_file_open fx_file_open(&my_media, &my_file, "myfile.txt",
FX_OPEN_FOR_READ);
Open "myfile.txt" file for read.

fx_file_create fx_file_create(&my_media, "myfile.txt");
Create file with name "myfile.txt"

fx_media_read fx_media_read(&my_media, 22, my_buffer);
Read the logic sector (in this example from
sector 22) from media specified by &my_media,
and places it into the buffer my_buffer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,140 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX on Block Media > FileX On Block Media Framework Module APIs Overview

Note
For more complete descriptions refer to the FileX User's Manual available as described in the Reference Section
later in this document.

4.3.2.3 FileX On Block Media Framework Module Operational Overview

FileX is a complete File Allocation Table (FAT) and exFAT format media and file
management system for deeply embedded applications.
FileX supports an unlimited number of media devices at the same time, like sdmmc, FLASH
managers, RAM disks & Multiple other physical devices
FileX is highly optimized for both size and performance.
FileX provides support to following media & file operations for single and multiple partitions
on the synergy platform: Format/re-format, open, close, write, read
The user will able to view the SSP created FAT and exFAT partitions and files in windows OS
environment.
In fileX, when the exFAT support is enabled, the FAT functionalities would still be available

For single partition:

FileX supports contiguous file allocation and FAT12, FAT16 FAT32 & exFAT formats.
All underlying ssp block media ie sf_block_media_lx_nor, sf_block_media_sdmmc
sf_block_media_qspi & sf_block_media_ram are supported

For multiple partitions:

FileX supports the creation of any number of partition on given single physical media
FileX supports only FAT16, FAT32 and exFAT formats.
The following underlying block medias are supported: sf_block_media_lx_nor &
sf_block_media_sdmmc.

FileX On Block Media Framework Module Important Operational Notes and Limitations

FileX On Block Media Framework Module Operational Notes

For Single Partition (Uses total available memory size):

The media must be formatted to either a FAT12, FAT16, FAT32 or exFAT file system before it can be
opened, And media Format can be done prior to inserting the media (ie in a windows OS
environment) or at project run time (using the "Format media" option in fileX properties in
configurator).

For multi-partition:

The following media partition format are supported: FAT16, FAT32 or exFAT file system, and
the multiple partition must be created in synergy platform first before it can be used in
windows environment.
MBR sector i.e. sector 0 of the media must be erased (to erase all the existing partitions in
the media), before creating new partitions in the media.
At least one sector must be left before each EBR partition offset to accommodate the EBR
sector, and at least one sector must be left before the first partition to accommodate the
MBR sector.
The auto-initialization for all the partitions must be disabled, and the partitions must be
formatted and opened in the main entry function in application.

FileX On Block Media Framework Module Limitations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,141 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX on Block Media > FileX On Block Media Framework Module Operational Overview

For Single partition:

The exFAT file system is not supported on the sf_block_media_qspi framework (note: the
user can use the sf_block_media_lx_nor instead to use the same qspi flash memory)
For certain "total sectors" values in fileX properties, the media format in SSP application
returns success, but the formatted media fails to open in the SSP application and in the
windows OS environment (the user workaround for this is to increase the "Sector per
cluster" value in filex properties).
For exFAT single partition, If the block media is partially exfat formatted (ie fileX
configurator option "total_sectors"<the total sectors in block media), the sd card media
opens fine in the board, file operation in the board also works fine, but the media open fails
in a PC windows environment (the user workaround for this is to filex format the media in
the multiple of 1gb or the complete block media)

For Multiple partition:

Partitions that are created, formatted, deleted or re-sized in any OS (for example the sd
card partitions created/formatted in windows environment), when this media partitions is
used with synergy platform, the SSP application will give undesired results
Interface to below block media drivers is not supported:

sf_block_media_qspi (Users can alternately use sf_block_media_lx_nor)
sf_block_media_ram

Auto initialization option in fileX properties is not supported, and must be disabled.
USBX mass storage is not supported.
The "Bytes per sector" in fileX properties is only supported for default value ie 512 bytes

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4.3.2.4 Including the FileX On Block Media Framework Module in an Application

This section describes how to include the FileX on Block Media Framework module in an application
using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

Following steps should be followed by the user for Single Partition (Used total available
memory size): partitions:

To add the FileX on Block Media Framework module to an application, simply add it to a thread using
the stacks selection sequence given in the following table.

FileX On Block Media Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_fx_media0FileXonBlock Media Threads New Stack> X-Ware > FileX
on Block Media

When the FileX on Block Media Framework module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with a
Gray band are individual modules that stand alone. Modules with a Blue band are shared or

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,142 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX on Block Media > Including the FileX On Block Media Framework Module in an Application

common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules. (This is indicated in the block with the
inclusion of this text.) If the addition of lower-level modules is required, the module description
include Add in the text. Clicking on any Pink banded modules brings up the New icon and displays
possible choices.

Figure 401: FileX on Block Media Stacks

 The Add Block Media Driver block must be filled in prior to generating the Synergy project code.
There are multiple selections possible depending on the physical media targeted. Currently available
media include RAM, LX NOR, QSPI, and SDMMC. Options may be different depending on what your
target board and associated board support package (BSP) supports.

To enable the exFAT file system support in SSP, the user has to add the fileX source files to the
project, and enable the “FileX Source" -> “exFAT support" option in the
fileX source configurator properties, and re-build the FileX project.

The following steps should be followed by the user for multiple partitions on the
same/different media type:

1. Select FileX from X-Ware
2. Select FileX on Block Media
3. Select Block media framework - sf_block_media_lx_nor or sf_block_media_sdmmc. For

example, FileX instance g_fx_media0 is created and it selects lx_nor media type.
4. Select the second Filex media instance. For example,g_fx_media1 created. For

example, g_fx_media0 and g_fx_media1 represent the two partitions.

5. From the second instance and onward, selecting SF_EL_FX module instance gives two
options New and Use.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,143 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX on Block Media > Including the FileX On Block Media Framework Module in an Application

6. Use: If the user selects Use, the partition will be made on the media previously selected by
FileX media instance (g_sf_el_fx0 selected lx_nor). For example, g_fx_media0 and
g_fx_media1 represent partitions on the same media type lx_nor.

7. New: If the user selects New, a new instance of SF_EL_FX is created. The user will have the
choice to select the different media type. If the new instance of SF_EL_FX is chosen, a
different media has to be selected for making the partition. For example: Select a third FileX
media instance. Here g_fx_media2 is created. Here g_fx_media0 and g_fx_media1 have
partitions on same media type with same instance of SF_EL_FX (g_sf_el_fx0). For
g_fx_media2, a different instance of SF_EL_FX is selected (g_sf_el_fx1). g_fx_media2 selects
a new instance of SF_EL_FX module (g_sf_el_fx1) which selects SDMMC block media
framework. Here, g_fx_media0 and g_fx_media1 have partitions on media type qspi
memory. g_fx_media2represents the partition on SDMMC framework.)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,144 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX on Block Media > Including the FileX On Block Media Framework Module in an Application

8. For g_fx_media3, the user has the choice to select Use (for SF_EL_FX module) or New for a
different media type.

4.3.2.5 Configuring the FileX On Block Media Framework Module

 The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the FileX On Block Media Framework Module

ISDE Property Value Description

Name g_fx_media0 Module name.

Format media during
initialization

Enable, Disable
Default: Disabled

Select to automatically format
the media during initialization.

File System is on block media True, False
Default: True

This setting will use code that
reads sector size and count
from the media device before
formatting, if true. If set to
false, the format function will
use the sector size and count
from configuration below.

Formatting Options

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,145 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX on Block Media > Configuring the FileX On Block Media Framework Module

 Volume Name Volume 1 This is the volume name to use
when formatting the media
device. It should be no longer
than 11 characters.

 Number of FATs 1 Number of File Allocation
Tables.

 Directory Entries Default: 256 Number of directory entries in
the root directory.

 Hidden Sectors 0 Number of hidden sectors.

 Total Sectors 3751936 Total number of sectors in the
media.

Note
When "File System is on Block
media" property is set to false,
enter appropriate total sector.

 Bytes per Sector 512 Sector size to format, when
using the format function. "File
System is on SDMMC" must be
disabled for this value to be
used.

Note
When selected QSPI as media,
Bytes per sector must be at
least 4096.

 Sectors per Cluster 1 Sectors per cluster. This value
is not used if "File System is on
SDMMC" disabled.

 Volume Serial Number 12345 Serial number to be used for
this volume. Only used if
Format media during
initialization is enabled. Used in
exFAT media format only.

 Boundary unit 128 Physical data area alignment
size, in number of sectors. Only
used if Format media during
initialization is enabled. Used in
exFAT media format only.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,146 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX on Block Media > Configuring the FileX On Block Media Framework Module

Working media memory size 512 This is the number of bytes
FileX uses to read and write to
the media. It should be at least
the size of one sector.

Note
'Working media memory size'
must be equal to or greater
than 'Block size of media in
bytes'. When selected QSPI as
media, then working media
memory size must be at least
4096 or greater.

Name of generated initialization
function

fx_media_init0 Name of the initialization
function that is generated by
SSP.

Auto Initialization Enable, Disable
Default: Enable

Select to enable or disable auto
initialization.

Note
 For multi partition Auto initialization and media format during initialization should be disabled.
For multi partition, "Bytes per sector" in filex properties is only supported for default value ie 512 bytes
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

For Multi partitions:

sf_el_fx user configuration settings are require for multi-partition operation.

ISDE Property Value Description

Name g_sf_el_fx0 Module name.

Partition info callback A callback can be NULL or the
name of the user-defined
function.

If partitions exist and the
system got reset, user callback
specifies the partition
offset/base address. This
callback is called while opening
the partition.

Total partitions >1 The number of partitions users
wanted to make on the media.

1. Partition info callback: Partition will be open as per user requirement by setting partition
info callback to user define function or by setting it to NULL value it will open partitions in
linear manner.

2. Total partitions: Total partition specifies the desired number of partitions. Values 0 and 1
represent a single partition. Any value more than 1 indicates the required partition.

Configuration Settings for the FileX On Block Media Framework Lower-Level Modules

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,147 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX on Block Media > Configuring the FileX On Block Media Framework Module

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the Block Media Framework on sf_block_media_sdmmc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

Name g_sf_block_media_sdmmc0 Module name.

Block size of media in bytes 512 Specify the size of a block in
bytes.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the SDMMC HAL Module on r_sdmmc

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable parameter
error checking.

Name g_sdmmc0 The name to be used for
SDMMC module control block
instance. This name is also
used as the prefix of the other
variable instances.

Channel 0 Select the channel.

Media Type Embedded, Card

Default: Embedded

Media is a card or an embedded
device. This allows to firmware
to know whether to look for
card insertion/removal and
write protect pins.

Bus Width 1 Bit, 4 Bits, 8 Bits

Default: 4 Bits

Data bus with as defined by
hardware interface. (8 Bits for
eMMC only)

Block Size 512 Block size selection.

Card Detection Not Used, CD Pin

Default: CD Pin

Card detection selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,148 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX on Block Media > Configuring the FileX On Block Media Framework Module

Callback NULL (Not required if using Filex) Set
to name of user callback
function. Provides event that
caused interrupt: SDMMC_EVEN
T_CARD_REMOVED, SDMMC_EV
ENT_CARD_INSERTED,
SDMMC_EVENT_ACCESS,
SDMMC_EVENT_SDIO, SDMMC_
EVENT_TRANSFER_COMPLETE,
SDMMC_EVENT_TRANSFER_ERR
OR

Access Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Access interrupt priority
selection.

Card Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Card interrupt priority selection.

DTC Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

DTC interrupt priority selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

FileX Port Block Media Framework Module Clock Configuration

The SDHI uses the PCLKA for its clock source. There is no need to configure the clock specifically for
the SDMMC peripheral unless you need to optimize the data rate. The SDMMC driver selects the
appropriate built-in divider based on the PCLKA frequency and the maximum clock rate allowed by
the SD, SDIO or eMMC device obtained at media device initialization.

FileX Port Block Media Framework Module Pin Configuration

Use the e2 studio pin configurator to configure the I/O pins for the target media peripheral. The
following description applies to the SDHI peripheral used for SDMMC media. Other media will require
similar pin settings, and these are easily determined using their associated pin selection sequence in
the Synergy Configurator. Consult the appropriate HAL driver section in the SSP User's Manual for
additional details.

For SDMMC media, the drive capacity for each pin should be set to "Medium" or "High" for most
boards and high-speed memory and SDIO devices. The following table illustrates the method for
selecting the pins within the SSP configuration window and the subsequent table provides an
example selection for the module pins.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,149 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX on Block Media > Configuring the FileX On Block Media Framework Module

Note
The operation mode selection determines what peripheral signals are available and what MCU pins are required.

Pin Selection Sequence for the SDHI Peripheral

Resource ISDE Tab Pin selection Sequence

SDHI Pins Select Peripherals>
Storage:SHDI> SDHI0

Note
The selection sequence assumes that the SDHI0 is the desired hardware target for the driver.

Pin Configuration Settings for the SDHI Peripheral

Pin Configuration Property Settings Description

Operation Mode Disabled,
Custom,
SD_MMC 1 bit
SD_MMC 4 bit
MMC 8 bit

Default: Custom

Select mode as per application.

CLK None, P413

Default: P413

Clock pin.

CMD None, P412

Default: P412

Command pin.

DAT0-7 None, PXXX

Default: PXXX

Data pin.

CD None, P903

Default: P903

Card detection pin.

WP None, P414

Default: P414

Card write protection pin.

Note
The example values are for a project using the Synergy S7G2 MCU Group and the DK-S7G2 Kit. Other Synergy
Kits and other Synergy MCUs may have different available pin configuration settings.

4.3.2.6 Using the FileX on Block Media Framework Module in an Application

The steps in using the FileX on Block Media Framework module in a typical application are:

1. Initialize the media using the FileX API fx_system_initialize (FileX on Block Media calls it
automatically if Auto Initialization property is set to Enabled in FileX Common on fx)

2. Optionally, format/create a FAT media using the FileX API “fx_media_format", (or)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,150 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX on Block Media > Using the FileX on Block Media Framework Module in an Application

format/create a exFAT media using the FileX API “fx_media_exFAT_format" (FileX on Block
Media automatically formats the media using the auto-generated initialization function if its
Format media during initialization property is set to Enabled).

3. Open the media using the FileX API fx_media_open (FileX on Block Media opens the media
automatically if its Auto Initialization property is set to Enabled)

4. Create and delete files and directories as required using one of the FileX APIs (for example,
fx_file_create, fx_file_delete, fx_directory_create, fx_directory_delete)

5. Read from and write to files on the media as required using one of the FileX API (for
example, fx_file_read or fx_file_write)

6. Read from and write to the media directly as required using one of the FileX API (for
example, fx_media_read or fx_media_write)

7. Close the physical media using the FileX API fx_media_close

Note
After a successful fx_media_open call, all FileX file and directory related APIs can be used. Refer to the FileX
User Guide for documentation on all available functions.

These common steps are illustrated in a typical operational flow in the following figure:

Figure 402: Flow Diagram of a Typical FileX On Block Media Framework Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,151 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX Source

4.3.3 FileX Source

4.3.3.1 FileX Source Component Module Introduction

The purpose of this document is to provide an easy reference for the FileX source component in
e2 studio. The properties are explained in greater detail than the footer comment supplied with each
property. Context specific usage is included to help understand when to change the default values.
This document should make it easier to use the FileX source component without having to cross
reference with the Azure RTOS FileX User Guide, and help the developer become familiarized, more
quickly, with FileX features.

4.3.3.2 When to Include the FileX Source Component

Adding the FileX source component enables the developer in the Synergy configurator environment
to customize the FileX library, change values from default settings, and enable or disable certain
features. Otherwise, they must use the prebuilt FileX library. In most projects beyond the simplest,
the developer will typically want to customize their FileX environment. Note that the ThreadX source
component is automatically added whenever FileX is added as a higher-level source component.

Without adding the FileX source component, the e2 studio configurator will use a prebuilt library with
the FileX default settings.

4.3.3.3 Adding the FileX Source Component

In the e2 studio configurator, add the ThreadX source component by selecting any thread from the
Threads list and pressing the New Stack button and navigating the menu to X-Ware > FileX>
FileX Source. Often the FileX source is available as an option when a high-level framework is
created. For example, the FileX source module is available as an option for the FileX on USB Mass
Storage framework module as seen in the below thread stack diagram.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,152 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX Source > Adding the FileX Source Component

Figure 403: FileX Source Module Stack

4.3.3.4 Changing the FileX Source Component Properties

After changing FileX property settings, the developer must click on the Generate Project Content
button to update the project configurator in e2 studio and then the FileX library must be rebuilt (for
example, rebuild the project). Simply changing a property (or applying a #define in the
preprocessor list) without rebuilding the project will not affect any change since e2 studio will use the
previously built library.

The default settings are often the choice needed for the most common use cases.

4.3.3.5 FileX Source

The properties of the FileX Source component are given in the order they appear in the properties
window of the Synergy configurator.

Error Checking – default value enabled – Generally enabled during development and debugging
phase, and disabled when a release version is being built. When enabled, FileX include error
checking services that will check input and other parameters before calling the actual API. Some of
the things it checks for are:

NULL pointer input
Invalid non-pointer parameters, such as an invalid file or directory names.
Required configurable option must be enabled. For example, performance information must
be enabled to call the get services.
The data structure IDs must match what is expected. For example,

file_ptr -> fx_file_id != FX_FILE_ID // check the file instance structure
Size of the data structure, the FileX file for example, matches the size of the data structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,153 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX Source > FileX Source

in the FileX library.

These last two checks guard against an application using a different version of the FileX library than
the application is using.

Disabling the FileX error checking API results in improved performance (as much as 30%) and
smaller code size.

Max Long Name Len – Maximum Long Name Length – default value not displayed, 33
characters is used – Defines the maximum size of long file names supported by FileX. The default
value is 33. The minimum value is 13 and the maximum value is 256.

Max Last Name Len – Maximum Last Name Length – default value not displayed, 256
characters is used – Defines the maximum size of last opened file names supported by FileX. The
default value is 256. The minimum value is 13 and the maximum value is 256. Must be as large as or
larger than Max Long Name Len.

Max Sector Cache – Maximum Sector Cache Size - default value not displayed, 256 is used
– Defines the maximum number of logical sectors that can be cached by FileX. The cache memory
supplied to FileX at fx_media_open determines how many sectors can actually be cached. Minimum
value is 2, all other values must be a power of 2.

Fat Map Size – FAT Map Size - default value not displayed, 128 is used – Defines the size in
bytes of the bit map used to update the secondary FAT sectors. Larger the value result in fewer
unnecessary secondary FAT sector writes. Minimum value is 1, no maximum value.

Max Fat Cache – Maximum FAT Cache - default value not displayed, 16 is used – Defines the
number of entries in the internal FAT cache. The minimum value is 8, all values must be a power of
2.

Update Rate (seconds) - default value not displayed, 10 seconds used - Specifies rate at
which the system time in FileX is adjusted. The default value 10 means that the FileX system time is
updated every 10 seconds.

__Max exFAT Cache Size - default value not displayed, 512 is used. -__ Defines bitmat cache size for
exFAT. Size should be minimum one sector size and maximum 4096. For applications using
multiple media devices with varying sector size, the value should be set to the size of largest sector
size.

No Timer – default value disabled – When enabled, FileX is built without update to the time
parameters. Eliminates the ThreadX timer setup to update the FileX system time and date. Doing so
causes default time and date to be placed on all file operations.

Single Thread – default value disabled – When enabled, FileX is running in a single-threaded
environment and does not need thread protection. Eliminates ThreadX protection logic from the FileX
source. It should be used if FileX is being used only from one thread or if FileX is being used without
ThreadX.

Don't Update Open Files – default value disabled – When enabled, FileX does not update
already opened files.

Media Search Cache – default value enabled – When enabled, a cache is used for optimization
when searching for open media. Disabling this option will remove this optimization, reducing code
size and memory footprint at the expense of performance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,154 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX Source > FileX Source

Direct Data Read Cache Fill – default value enabled – When enabled, data sector reads are
cached for faster access. Disabling this feature will reduce code size and memory footprint at the
expense of performance.

Media Statistics – default value enabled – Determine if media statistics are kept and gathered.
When disabled, no media statistics are available. This improves performance slightly and reduces
code size; each instance of the FX_MEDIA_STRUCT structure is considerably smaller.

Single Open Legacy – default value disabled – When enabled, legacy single open logic for the
same file is used. This may be necessary to make the fx_file_open behave in the same way as older
versions of FileX, when migrating old FileX application code.

Rename Path Inherit – default value disabled – When enabled, renaming inherits path
information. In other words, prepend the path in the new file name, then override the old file name
with the new one on the renamed file.

No Local Path – default value disabled – When enabled, the local path logic is disabled. When
disabled, a local path is kept for each thread; all operations performed with a relative path, will be
relative to this local path.

Fault Tolerant Data – default value disabled – When enabled, data sector write requests are
flushed immediately to the driver. This will increase the likelihood that data is not lost in case of
power loss or a reset, but it will impact performance.

Fault Tolerant – default value disabled – When enabled, system sector write requests (including
FAT and directory entry requests) are flushed immediately to the driver. This will increase the
likelihood that data is not lost in case of power loss or a reset, but it will impact performance.

64-bit LBA – default value enabled – When enabled, 64-bits sector addresses are used in the I/O
driver. This allows bigger media and bigger files.

Fault Tolerant Service – default value disabled – Enables or disables the FileX fault tolerant
service. The FileX Fault Tolerant Module is designed to prevent file system corruption caused by
interruptions during the file or directory update. For example, when appending data to a file, FileX
needs to update the content of the file, the directory entry, and possibly the FAT entries. If this
sequence of update is interrupted (such as by a power glitch, or if the media is ejected in the middle
of the update), the file system is in an inconsistent state, which may affect the integrity of the entire
file system, leading towards corruption of other files.

Fault Tolerant Boot Index – default is 16 – Defines byte offset in the boot sector where the
cluster for the fault tolerant log is. By default, this value is 116. This field takes 4 bytes. Bytes 116
through 119 are chosen because they are marked as reserved by FAT 12/16/32/exFAT specification.

Fault Tolerant Minimal Cluster Size – default is 3072 – Defines the requirement for minimal
size of a cluster in bytes. It must be a multiple of the sector size. The default value is 3072, which
works with the worst case for long file renaming.

exFAT Support – default value disabled – When enabled, the logic for handling the exFAT file
system is enabled in FileX source code

Standalone enable – default value is disabled – When enabled, Filex will be used in standalone
mode (without ThreadX).

Disable cache – default value is disabled – When enabled, cache is disabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,155 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX Source > FileX Source

Disable file close – default value is disabled – When enabled, file close is disabled.

Disable fast open – default value is disabled – When enabled, fast open is disabled.

Disable force memory operation – default value is disabled – When enabled, force memory
operations are disabled.

Disable build option – default value is disabled – When enabled, build option is disabled.

Disable one line function – default value is disabled – When enabled, one line function is
disabled.

Disable fat entry refresh – default value is disabled – When enabled, FAT entry refresh is
disabled.

Disable consecutive detect – default value is disabled – When enabled, consecutive detect is
disabled.

4.3.3.6 FileX Fault Tolerant Module

When an application writes data into a file, FileX updates both data clusters and system information.
These updates must be completed as an atomic operation to keep information in the file system
coherent. For example, when appending data to a file, FileX needs to find an available cluster in the
media, update the FAT chain, update the length filed in the directory entry, and possibly update the
starting cluster number in the directory entry. Either a power failure or media ejection can interrupt
the sequence of updates, which will leave the file system in an inconsistent state. If the inconsistent
state is not corrected, the data being updated can be lost, and because of damage to the system
information, subsequent file system operation may damage other files or directories on the media.

The FileX Fault Tolerant Module works by journaling steps required to update a file before these
steps are applied to the file system. If the file update is successful, these log entries are removed.
However, if the file update is interrupted, the log entries are stored on the media. Next time the
media is mounted, FileX will detect these log entries from the previous (unfinished) write operation.
In such cases, FileX can recover from a failure by either rolling back the changes already made to
the file system, or by reapplying the required changes to complete the previous operation. In this
way, the FileX Fault Tolerant Module maintains file system integrity if the media loses power during
an update operation.

Note
The FileX Fault Tolerant Module is not designed to prevent file system corruption caused by physical media
corruption with valid data in it.

After the FileX Fault Tolerant module protects a media, the media must not be mounted by anything
other than FileX with Fault Tolerant enabled. Doing so can cause the log entries in the file system to
be inconsistent with system information on the media. If the FileX Fault Tolerant module attempts to
process log entries after the media is updated by another file system, the recovery procedure may
fail, leaving the entire file system in an unpredictable state.

The FileX Fault Tolerant feature is available to all FAT file systems supported by FileX, including
FAT12, FAT16, FAT32, and exFAT. To enable the fault tolerant feature, FileX must be built with the
option "Fault tolerant service" enabled. At run time, the application starts the fault tolerant service
by calling fx_fault_tolerant_enable() immediately after the call to fx_media_open. After fault tolerant
is enabled, all file write operations to the designated media are protected. By default, the fault
tolerant module is not enabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,156 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > FileX Source > FileX Fault Tolerant Module

The application needs to make sure the file system is not being accessed prior to
fx_fault_tolerant_enable() being called. If application writes data to the file system prior to fault
tolerant enable, the write operation could corrupt the media if prior write operations were not
completed, and the file system.

The FileX fault tolerant log takes up one logical cluster in flash. The index to the starting cluster
number of that cluster is recorded in the boot sector was not restored using fault tolerant log entries.
For further details on the log format refer to the FileX user guide.

4.3.3.7 About exFAT Support

To enable the exFAT file system support in SSP, the user has to add the fileX source files to the
project, and enable the “FileX Source" -> “exFAT support" option in
the fileX source configurator properties, and re-build the FileX project.

4.3.4 GUIX Port

4.3.4.1 GUIX Synergy Port Framework Introduction

The SF_EL_GX (GUIX Port) module is the Azure RTOS GUIX adaptation layer for Synergy MCU groups,
which have graphics engines GLCDC, DRW (2DG engine) or a JPEG decode engine. The API supports
graphics hardware engine setup for GUIX and supports graphics rendering and displaying
accelerated by hardware engines. The module defines full-set of GUIX low-level display driver
functions which draw graphics accelerated by the DRW (2DG engine) or the JPEG or displays graphics
with the GLCDC (See the GUIX User Guide Chapter 5: GUIX Display Drivers). The module encourages
the hardware acceleration for graphics rendering, but also allows software processing without
hardware support.

Supported and Unsupported Features

The following GUIX features are supported in SSP:

RGB565 Pixel Format
CLUT8 Pixel Format
ARGB888 Pixel Format
ARGB8888 Pixel Format
Rotation Of Screen: Supported in SSP v2.0.0
Dynamic Loading of Binary Resources
Hardware and Software JPEG Support

The following features are not supported:

ARGB4444 Format
Multiple Canvases: GUIX allows use of multiple canvases but SSP supports only a
single canvas

GUIX Synergy Port Framework Module Features

Adapts GUIX on top of the SSP

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,157 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > GUIX Synergy Port Framework Introduction

Attaches the SSP Display Interface driver to GUIX Display Driver Interface
Allows GUIX to draw widgets accelerated by the Synergy D2W (2DG) engine
Allows GUIX to draw widgets accelerated by the Synergy JPEG engine
Supports double-buffer toggling control for screen transitions without tearing
Supports screen rotation (90/180/270 degree)
Supports various output color formats

32bpp (ARGB8888, RGB-888)
16bpp (RGB565)
8bpp (8bit Palette (CLUT))

Supports user callback functions

Figure 404: GUIX Synergy Port Framework Module Block Diagram

4.3.4.2 GUIX Synergy Port Framework Module APIs Overview

The GUIX Synergy Port Framework defines APIs for opening, closing, setup and initialization. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

GUIX Synergy Port Framework Module API Summary

Function Name Example API Call and Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,158 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > GUIX Synergy Port Framework Module APIs Overview

open g_sf_el_gx.p_api->open(g_sf_el_gx.p_ctrl,
g_sf_el_gx.p_cfg);
Opens the SF_EL_GX Module. The API can only
be called from a thread. The API passes the
configuration pointer to define low-level graphics
device drivers and frame buffers and register
the user callback function. This function does not
actually initialize low-level drivers. Instead, the
API setup initializes the low-level drivers.

close g_sf_el_gx.p_api->close(g_sf_el_gx.p_ctrl);
Closes the SF_EL_GX Module. This API closes the
low-level drivers. Normally, the API is not called
since GUIX will not be closed once initialized.

versionGet g_sf_el_gx.p_api->versionGet(&version);
Returns the version of the Module in the version
pointer.

setup gx_studio_display_configure (MAIN_DISPLAY,
g_sf_el_gx.p_api->setup, LANGUAGE_ENGLISH,
MAIN_DISPLAY_THEME_1, &p_window_root);
This is the interface to initialize low-level
graphics device drivers and must be passed to
GUIX through GUIX (Studio) service call
gx_studio_display_configure() as the function
pointer. GUIX then calls the API back and, at that
moment, the API configures the SSP device
drivers based on the configuration passed by
open. The reason for this procedure to initialize
low-level drivers is that the API has the GUIX-
compliant argument (GX_DISPLAY *) type and
does not allow applying the detailed
configuration of the SSP graphics device drivers
generated from e2 studio.

canvasInit g_sf_el_gx.p_api->canvasInit(g_sf_el_gx.p_ctrl,
p_window_root);
This is the GUIX helper API to determine the
memory address of GUIX canvas. The API has an
argument with (GX_WINDOW_ROOT *) type and
the API provides GUIX the start address of
canvas memory, which is needed for the low-
level graphics device drivers to draw/display
images.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API call successful.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,159 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > GUIX Synergy Port Framework Module APIs Overview

SSP_ERR_ASSERTION NULL pointer error happens.

SSP_ERR_IN_USE SF_EL_GX is in-use.

SSP_ERR_INTERNAL Error happen in Kernel service calls.

SSP_ERR_NOT_OPEN SF_EL_GX is not opened.

SSP_ERR_TIMEOUT A task times out (or exceeds retry limit) before
completion in display driver.

SSP_ERR_D2D_ERROR_DEINT Error occurred in D/AVE 2D driver.

GX_SUCCESS Device driver setup is successfully done.

GX_FAILURE Device driver setup failed.

SSP_ERR_INVALID_CALL Function call was made when the driver is not in
SF_EL_GX_CONFIGURED state.

SSP_ERR_D2D_RENDERING The D/AVE 2D returns error at opening a display
list buffer.

SSP_ERR_INVALID_ARGUEMENT Invalid non-pointer (for example, parameter)
input.

SSP_ERR_UNSUPPORTED Specified color format is not supported.

SSP_ERR_D2D_ERROR_INIT The D/AVE 2D returns error at the initialization.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status-return values.

4.3.4.3 GUIX Synergy Port Framework Module Operational Overview

The following block diagram shows how the sf_el_gx module interfaces with the other Synergy
components at the operational level. It also shows the layers at which the callback and low-level
modules communicate with the rest of the system. Refer to this diagram while reading the
operational overview and operational notes descriptions provided below.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,160 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > GUIX Synergy Port Framework Module Operational Overview

Figure 405: GUIX Synergy Port Framework Module Flow Chart

 Module Initialization

The SF_EL_GX supports the Synergy graphics hardware setup, which is required to run the GUIX
system. The module has a dependency with Azure RTOS GUIXTM and GUIX StudioTM generated code.
The GUIX system initialization needs to follow the sequence below as a general guidance.

1. open SF_EL_GX module to initialize SF_EL_UX control block and pass module configurations.
2. Initialize GUIX Display object by GUIX Studio generated API gx_studio_display_configure.

Through this API, SF_EL_GX setup API is input to GUIX and Synergy graphics hardware setup
will complete. Also, the root window initialized by GUIX is output to a user application.

3. Initialize the primary memory address of a GUIX Canvas Buffer by canvasInit API.
4. Create the root window by GUIX Studio generated the gx_studio_named_widget_create API.
5. Show the root window with the GUIX gx_window_show API.
6. Start the GUIX system withe GUIX gx_system_start API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,161 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > GUIX Synergy Port Framework Module Operational Overview

Ping-Pong Frame Buffer Management

The SF_EL_GX module manages the buffer toggling operation in the graphics system with a ping-
pong frame buffer. The figure below shows a ping-pong buffer graphics system managed by the
SF_EL_GX module. The module uses GUIX and the low-level display driver functions to draw an image
(2D Drawing engine(DRW) or JPEG) and display the image (DISPLAY module, for example: GLCDC). A
design with a single frame buffer is also possible in the SF_EL_GX configuration. However, it is
encouraged to use two frame buffers to avoid the tearing issue that could occur in a single frame
buffer system.

Figure 406: GUIX Synergy Port Framework Ping Pong Frame Buffer System

GUIX Synergy Port Framework Module Important Operational Notes and Limitations

GUIX Synergy Port Framework Module Operational Notes

Synergy 2D Drawing Engine Support

The module can draw graphics image accelerated by 2D Drawing engine (DRW) to get better
graphics performance. Users can enable 2D Drawing engine with following configurations. The
configuration is available through Synergy Configurator.

Define GX_USE_SYNEGY_DRW (1) in gx_user.h
Set DRW (SF_TES_2D_DRW) interrupt priority

Make sure to select Renesas Synergy in Target CPU setting in the Configure Project window
and check Enable Graphics Accelerator in the Synergy Advanced Settings window on the
Azure RTOS GUIX Studio (v5.2.8 or later). For the Pixelmap Output Format in the Edit Pixel map
window (Right-click on pixelmap->edit settings to open the window), select Compress Output.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,162 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > GUIX Synergy Port Framework Module Operational Overview

Do not select Raw Format. This configuration allows the GUIX Studio to generate Targa RLE
formatted encoded image resource data. The 2D Drawing engine hardware can read this format and
decode and draw the image on the frame buffer.

Synergy JPEG Support

The module can draw graphics image accelerated by JPEG engine to get better graphics performance
if a JPEG encoded image is used as a GUIX image resource. Users can enable JPEG engine with
following configurations. The configuration is available through Synergy Configurator.

Define GX_USE_SYNEGY_JPEG (1) in gx_user.h
Set JPEG (R_JPEG_DECODE) interrupt priority

Make sure to select Renesas Synergy in Target CPU setting in the Configure Project window
and select Hardware JPEG Decoder in the Decoder Types JPEG: drop-down menu on the Azure
RTOS GUIX Studio (v5.2.8 or later). For the Pixelmap Output Format in the Exit Pixel map window
(Right-click on pixelmap->edit settings to open the window), select "Raw Format". This
configuration allows the GUIX Studio to generate raw JPEG encoded image resource data. JPEG
hardware can read this format and decode and draw the image on the frame buffer.

GUIX 5.4.0 API Compatibility Support

The Certain GUI APIs were modified post GUIX 5.4.0 to add support for disabled test colors and to
improve the accuracy of certain math functions by using fixed point match parameters. To support
existing applications which use the legacy APIs, configure following property in Synergy Configurator.
The Legacy APIs can be used by enabling the property.

Enable GUI Legacy API Support

The new version of these APIs should be preferred while creating a new application. In order to use
new version of these APIs, the GUIX Source should be included in the project and the above property
should be disabled.

GUIX Canvas Buffer

With SSP v2.0.0 or later,, the canvas buffer is required only for 180 (or Flip) degree screen rotation.
For 180 screen rotation operation, the GUIX first draws the image on a Canvas buffer and then image
is flipped and stored in the frame buffer. The size of GUIX Canvas Buffer must be exactly same as a
frame buffer for the DISPLAY module. Note that, the use of a GUIX Canvas impacts to the graphics
performance because of additional graphics image processing being required. Therefore, GUIX
Canvas buffer should be only used if the 180 degree screen rotation is required. Otherwise set NULL
to sf_el_gx_cfg_t::p_canvas to let GUIX draw an image directly to frame buffers.

Screen Rotation

The module supports the screen rotation. Supported rotation angle is either of 90, 180, 270 degree
in clockwise way and must be set in the GUIX Studio. With SSP v2.0.0 or later, the canvas buffer is
not required for the 90 and 270 degree screen rotation and must not be set. However, to enable the
180 degree screen rotation feature, a GUIX Canvas Buffer is still required and should be set in
sf_el_gx configuration property. In this case, GUIX draws screen update on a canvas first and then
GUIX Port processes the screen copy to a frame buffer with rotating the image by 180
degree. Dynamic screen rotation is not supported. If Synergy 2D Drawing Engine Support is enabled
(GX_USE_SYNEGY_DRW = 1), the 180 screen rotation is processed by 2D Drawing engine with
texture mapping. If not enabled (GX_USE_SYNEGY_DRW = 0), it is processed by software copy.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,163 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > GUIX Synergy Port Framework Module Operational Overview

Note that starting with the SSP 2.0.0 the configuration option sf_el_gx_cfg_t::rotation_angle is not
available. The rotation angle must be set in GUIX Studio project. Make sure to select rotation
angle**(either **None, CW, CCW or FLIP) in Rotation setting in the Configure Project window
on the Azure RTOS GUIX Studio (v6.1.6.2 or later). The earlier 90 degree Counter Clock wise rotation
angle option in sf_el_gx_cfg_t::rotation_angle is now replaced with CCW option in GUIX Studio.
Similarly, earlier 180 and 270 degree rotation options are replaced with FLIP and CW options in GUIX
Studio. The (sf_el_gx_cfg_t::p_canvas = non-NULL value) is allowed for rotation angle other than 180
degree, but should not be done. This configuration just consumes extra bus bandwidth for screen
image copy from a GUIX Canvas buffer to frame buffers. Therefore, set NULL to
sf_el_gx_cfg_t::p_canvas to not use a GUIX Canvas buffer.

Size of JPEG Work Buffer

The JPEG work buffer trades off the JPEG decode speed against the buffer size. When a widget on the
screen is formatted in JPEG, the JPEG work buffer is used as a temporary storage memory to create
the decoded image. If the buffer size is not large enough for decoding an entire image, JPEG
decoding is performed in the output buffer streaming mode. BitBLT operation by 2D Drawing engine
decodes a piece of JPEG raster image in the buffer, then transfers it to the frame buffer. The
minimum size of JPEG work buffer is {(The number of pixels in the horizontal line) x (bpp (bytes per
pixel) of the display format) x 8 (lines)}. For instance, if the decoded image is 800 pixels in a
horizontal line and RGB565 format, the number is 800 x 2 x 8= 12 800 (byte). If the buffer size was
smaller than this number, JPEG decoding will not be processed. To get better throughput, parameter
"Size of the JPEG Work Buffer" should be set as much as larger because it improves the JPEG decode
throughput. The JPEG output buffer streaming mode repeats partial JPEG decode operations and the
repletion comes to be overhead.

D/AVE 2D Buffer Cache

The D/AVE 2D buffer cache can be enabled or disabled through following configuration in Synergy
Configurator. Disable it when images with high resolution and 32 bit ARGB8888 color format are
used.

D/AVE 2D Frame Buffer Cache (Valid if D/AVE 2D Drawing Engine is enabled)

Screen Tearing in Single Buffer Designs

Screen tearing is a visual artifact in video display where a display device shows information from
multiple frames in a single screen draw. In general, a system with a single frame buffer can cause
the screen tearing issue on a LCD panel. The module allows users to have single frame buffer (set
NULL to sf_el_gx_cfg_t::p_framebuffer_b) but does not care for the screen tearing. It is recommended
to have a ping-pong frame buffer system to consist of two frame buffers.

GUIX Synergy Port Framework Module Limitations

SF_EL_GX is only applicable for the Synergy MCU with GLCDC (mandatory), 2D Drawing engine or
JPEG engine (optional)

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4.3.4.4 Including the GUIX Synergy Port Framework Module in an Application

This section describes how to include the GUIX Synergy Port Framework module in an application
using the SSP configurator.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,164 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Including the GUIX Synergy Port Framework Module in an Application

It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the GUIX Synergy Port Framework module to an application, simply add it to a thread using
the stacks selection sequence given in the following table.

GUIX Synergy Port Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_el_gx0 GUIX Port on
sf_el_gx

Threads New Stack> Framework>
Graphics> GUIX Port on
sf_el_gx

When the GUIX Synergy Port Framework module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 407: GUIX Synergy Port Framework Module Stack

4.3.4.5 Configuring the GUIX Synergy Port Framework Module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,165 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

The GUIX Synergy Port Framework module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the GUIX Synergy Port Framework on sf_el_gx

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

Name g_sf_el_gx0 Name of SF_EL_GX instance
which will be generated by
ISDE. Specify the instance
name of this module. Name
must be a valid C symbol.

Display Driver Configuration
Instance

Inherit Graphics Screen 1,
Inherit Graphics Screen 2

Default: Inherit Graphics Screen
1

Display drive configuration
instance selection.

Name of User Callback function NULL Name of User Callback function
invoked by the Module when
events happen. It must be a
valid C symbol and NULL is
allowed.

GUIX Canvas Buffer (required
only if rotation angle is FLIP or
180 degree)

Used, Not used
Default: Not used

A canvas buffer must be used
for FLIP or 180 degree screen
rotation. The size of canvas
buffer must be exactly the
same as a frame buffer for the
display module.

Size of JPEG Work Buffer (valid
if JPEG hardware acceleration
enabled)

768000 The JPEG work buffer size in
bytes. Value must be a valid
integer value and zero is
allowed to be set if JPEG
acceleration is not used. Larger
buffer size shortens the
drawing time. See Size of JPEG
Work Buffer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,166 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Memory section for GUIX
Canvas Buffer

sdram Name of memory section where
you want to allocate the GUIX
Canvas Buffer. Enter a valid
section name defined in the
linker script file. Name must be
a valid C symbol.

Memory section for JPEG Work
Buffer

sdram Name of memory section where
you want to allocate the JPEG
Work Buffer. Enter a valid
section name defined in the
linker script file. Name must be
a valid C symbol.

D/AVE 2 2D Frame Buffer Cache
(Valid if D/AVE 2D Drawing
Engine is enabled)

Enable, Disable
Default: Enable

If Synergy 2D Drawing Engine
(DRW) Support is enabled, the
rotation is processed by
Synergy DRW with texture
mapping. If not enabled, the
rotation is processed by
software copy.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the GUIX Synergy Port Framework Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the GLCD HAL Module on r_glcd

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

Name g_display0 The name to be used for a
GLCDC module control block
instance. This name is also
used as the prefix of the other
variable instances.

Name of display callback
function to be defined by user

NULL Name must be a valid C
symbol.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,167 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Input - Panel clock source select Internal clock(GLCDCLK),
External clock(LCD_EXTCLK)

Default: Internal clock
(GLCDCLK)

Choose the panel clock source
depends on your system.

Input - Graphics screen1 Used, Not used

Default: Used

Specify "Used" if the graphics
screen N is used. Then the
frame buffer named
"display_fb_background" for
graphics screen1 and
"display_fb_foreground" for
graphics screen2 is auto-
generated by ISDE. If not using
either of the graphics screens,
specify "Not used". Then the
frame buffer is not created.
Note that there is no memory
read access to the frame buffer
when you specify "Not used",
which reduces the consumption
of bus bandwidth.

Input - Graphics screen1 frame
buffer name

fb_background Custom name for frame buffer.

Input - Number of Graphics
screen1 frame buffer

2 Number of graphics selection.

Input - section where Graphics
screen1 frame buffer allocated

sdram Specify the section name to
allocate the frame buffer. This
is valid if "Input - Graphics
screen1" is set as "Used."

Input - Graphics screen1 input
horizontal size

800 Specify the number of
horizontal pixels. Default value
is the size for an image with
800x480 pixels

Input - Graphics screen1
vertical size

480 Specify the number of vertical
pixels. Default value is the size
for an image with 800x480
pixels.

Input - Graphics screen1 input
horizontal stride (not bytes but
pixels)

800 Specify the memory stride for a
horizontal line. This value must
be specified with the number of
pixels, not actual bytes.
Typically, this parameter is set
to same number as parameter
'input horizontal size'. Default
value is the size for an image
with 800x480 pixels.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,168 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Input - Graphics screen1 input
format

32bits ARGB888, 32bits
RGB888, 16bits RGB565, 16bits
ARGB1555, 16bits ARGB4444,
CLUT 8, CLUT 4, CLUT 1

Default: 16bits RGB565

Specify the graphics screen
Input format. If selecting CLUT
formats, you must write CLUT
data using clut before
performing start. Default
setting supports a RGB565
formatted image.

Input - Graphics screen1 input
line descending

Used, Not used

Default: Not used

Specify "On" if image data
descends from the bottom line
to the top line in the frame
buffer. Usually "Off".

Input - Graphics screen1 input
line repeat

On, Off

Default: Off

Specify "On" if expecting to
repeatedly read a raster image
which is smaller than the LCD
panel size. Usually "Off". For
details, see the description of
Line Repeating function.

Input - Graphics screen1 input
line repeat times

0 Specify the number of
repeating times for a raster
image which is read repeatedly
in a frame.

Input - Graphics screen1 layer
coordinate X

0 Specify the horizontal offset in
pixels of the graphics screen
from the background screen.

Input - Graphics screen1 layer
coordinate Y

0 Specify the vertical offset in
pixels of the graphics screen
from the background screen.

Input - Graphics screen1 layer
background color alpha

255 Based on the alpha value,
either the graphics screen2
(foreground graphics screen) is
blended into the graphics
screen1 (background graphics
screen) or the graphics screen1
is blended into the
monochrome background
screen.

Input - Graphics screen1 layer
background color Red

255 Specify the background color in
the graphics screen N.

Input - Graphics screen1 layer
background color Green

255 Specify the background color in
the graphics screen N.

Input - Graphics screen1 layer
background color Blue

255 Specify the background color in
the graphics screen N.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,169 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Input - Graphics screen1 layer
fading control

None, Fade-in, Fade-out

Default: None

Specify "On" when performing a
fade-in for the graphics screen.
The transparent screen
changes gradually to opaque.
Specify "Off" when performing
the fade-out for the graphics
screen. The opaque screen
changes gradually to
transparent. Note that this
processing is accelerated by
the GLCDC hardware and
cannot stop once started. The
transition status can be
monitored by statusGet.

Input - Graphics screen1 layer
fade speed

0 Specify the number of frames
for the fading transition to
complete.

Input - Graphics screen2 Used, Not used

Default: Not used

Specify "Used" if the graphics
screen N is used. Then the
frame buffer named
"display_fb_background" for
graphics screen1 and
"display_fb_foreground" for
graphics screen2 is auto-
generated by ISDE. If not using
either of the graphics screens,
specify "Not used". Then the
frame buffer is not created.
Note that there is no memory
read access to the frame buffer
when you specify "Not used",
which reduces the consumption
of bus bandwidth.

Input - Graphics screen2 frame
buffer name

fb_foreground Custom name for frame buffer.

Input - Number of Graphics
screen2 frame buffer

2 Number of graphics selection.

Input - section where Graphics
screen2 frame buffer allocated

sdram Specify the section name to
allocate the frame buffer. This
is valid if "Input - Graphics
screen1" is set as "Used."

Input - Graphics screen2 input
horizontal size

800 Specify the number of
horizontal pixels. Default value
is the size for an image with
800x480 pixels

Input - Graphics screen2
vertical size

480 Specify the number of vertical
pixels. Default value is the size
for an image with 800x480
pixels.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,170 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Input - Graphics screen2 input
horizontal stride (not bytes but
pixels)

800 Specify the memory stride for a
horizontal line. This value must
be specified with the number of
pixels, not actual bytes.
Typically this parameter is set
to same number as parameter
'input horizontal size'. Default
value is the size for an image
with 800x480 pixels.

Input - Graphics screen2 input
format

32bits ARGB888, 32bits
RGB888, 16bits RGB565, 16bits
ARGB1555, 16bits ARGB4444,
CLUT 8, CLUT 4, CLUT 1

Default: 16bits RGB565

Specify the graphics screen
Input format. If selecting CLUT
formats, you must write CLUT
data using clut before
performing start. Default
setting supports a RGB565
formatted image.

Input - Graphics screen2 input
line descending

On, Off

Default: Off

Specify "On" if image data
descends from the bottom line
to the top line in the frame
buffer. Usually "Off".

Input - Graphics screen2 input
line repeat

On, Off

Default: Off

Specify "On" if expecting to
repeatedly read a raster image
which is smaller than the LCD
panel size. Usually "Off". For
details, see the description of
Line Repeating function.

Input - Graphics screen2 input
line repeat times

0 Specify the number of
repeating times for a raster
image which is read repeatedly
in a frame.

Input - Graphics screen2 layer
coordinate X

0 Specify the horizontal offset in
pixels of the graphics screen
from the background screen.

Input - Graphics screen2 layer
coordinate Y

0 Specify the vertical offset in
pixels of the graphics screen
from the background screen.

Input - Graphics screen2 layer
background color alpha

255 Based on the alpha value,
either the graphics screen2
(foreground graphics screen) is
blended into the graphics
screen1 (background graphics
screen) or the graphics screen1
is blended into the
monochrome background
screen.

Input - Graphics screen2 layer
background color Red

255 Specify the background color in
the graphics screen N.

Input - Graphics screen2 layer
background color Green

255 Specify the background color in
the graphics screen N.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,171 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Input - Graphics screen2 layer
background color Blue

255 Specify the background color in
the graphics screen N.

Input - Graphics screen2 layer
fading control

None, Fade-in, Fade-out

Default: None

Specify "On" when performing a
fade-in for the graphics screen.
The transparent screen
changes gradually to opaque.
Specify "Off" when performing
the fade-out for the graphics
screen. The opaque screen
changes gradually to
transparent. Note that this
processing is accelerated by
the GLCDC hardware and
cannot stop once started. The
transition status can be
monitored by statusGet.

Input - Graphics screen2 layer
fade speed

0 Specify the number of frames
for the fading transition to
complete.

Output - Horizontal total cycles 1024 Specify the total cycles in a
horizontal line. Set to the
number of cycles defined in the
data sheet of LCD panel sheet
in your system. Default value
matches the LCD panel on
S7G2 PE-HMI1 board.

Output - Horizontal active video
cycles

800 Specify the number of active
video cycles in a horizontal line.
Set to the number of cycles
defined in the data sheet of
LCD panel sheet in your
system. Default value matches
the LCD panel on S7G2 PE-HMI1
board.

Output - Horizontal back porch
cycles

46 Specify the number of back
porch cycles in a horizontal line.
Back porch starts from the
beginning of Hsync cycles,
which means back porch cycles
contain Hsync
cycles. Set to the number of
cycles defined in the data sheet
of LCD panel sheet in your
system. Default value matches
the LCD panel on S7G2 PE-HMI1
board.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,172 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Output - Horizontal sync signal
cycles

20 Specify the number of Hsync
signal assertion cycles. Set to
the number of cycles defined in
the data sheet of LCD panel
sheet in your system. Default
value matches LCD panel on
S7G2 PE-HMI1 board.

Output - Horizontal sync signal
polarity

Low active, High active

Default: Low active

Select the polarity of Hsync
signal to match your system.
Default setting matches the
LCD panel on S7G2 PE-HMI1
board.

Output - Vertical total lines 525 Specify number of total lines in
a frame. Set to the number of
lines defined in the data sheet
of LCD panel sheet in your
system. Default value matches
the LCD panel on S7G2 PE-HMI1
board.

Output - Vertical active video
lines

480 Specify the number of active
video lines in a frame. Set to
the number of lines defined in
the data sheet of LCD panel
sheet in your system. Default
value matches the LCD panel
on S7G2 PE-HMI1 board.

Output - Vertical back porch
lines

23 Specify the number of back
porch lines in a frame. Back
porch starts from the beginning
of Vsync lines, which means
back porch lines contain Vsync
lines. Set to the number of lines
defined in the data sheet of
LCD panel sheet in your
system. Default value matches
the LCD panel on S7G2 PE-HMI1
board.

Output - Vertical sync signal
lines

10 Specify the Vsync signal
assertion lines in a frame. Set
to the number of lines defined
in the data sheet of LCD panel
sheet in your system. Default
value matches the LCD panel
on S7G2 PE-HMI1 board.

Output - Vertical sync signal
polarity

Low active, High active

Default: Low active

Select the polarity of Vsync
signal to match to your system.
Default setting matches LCD
panel on S7G2 PE-HMI1 board.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,173 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Output - Format 24bits RGB888, 18bits RGB666,
16bits RGB565, 8bits serial

Default: 24bits RGB888

Specify the graphics screen
output format to match to your
LCD panel. Default setting
matches the LCD panel on
S7G2 PE-HMI1 board.

Output - Endian Little endian, Big endian

Default: Little endian

Select data endian for output
signal to LCD panel. Default
setting matches the LCD panel
on S7G2 PE-HMI1 board.

Output - Color order RGB, BGR

Default: RGB

Select data order for output
signal to LCD panel. The order
of blue and red can be swapped
if needed. Default setting
matches the LCD panel on
S7G2 PE-HMI1 board.

Output - Data Enable Signal
Polarity

Low active, High active

Default: High active

Select the polarity of Data
Enable signal to match to your
system. Default setting
matches the LCD panel on
S7G2 PE-HMI1 board.

Output - Sync edge Rising Edge, Falling Edge

Default: Rising Edge

Select the polarity of Sync
signals to match to your
system. Default setting
matches the LCD panel on
S7G2 PE-HMI1 board.

Output - Background color
alpha channel

255 Specify the background color of
the background screens.

Output - Background color R
channel

0 Specify the background color of
the background screens.

Output - Background color G
channel

0 Specify the background color of
the background screens.

Output - Background color B
channel

0 Specify the background color of
the background screens.

CLUT Used, Not used

Default: Not used

Specify "Used" if selecting CLUT
formats for a graphics screen
input format. Then, a buffer
named "CLUT_buffer" for the
CLUT source data is generated
in the ISDE auto-generated
source file.

CLUT - CLUT buffer size 256 Specify the number of entries
for the CLUT source data buffer.
Each entries consumes 4 bytes
(1 word). Words of CLUT source
data specified by this
parameter are generated in the
ISDE auto-generated source
file.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,174 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

TCON - Hsync pin select Not used, LCD_TCON0,
LCD_TCON1, LCD_TCON2,
LCD_TCON3

Default: LCD_TCON0

Select the TCON pin used for
the Hsync signal to match to
your system. Default setting is
for LCD panel on S7G2 PE-HMI1
board.

TCON - Vsync pin select Not used, LCD_TCON0,
LCD_TCON1, LCD_TCON2,
LCD_TCON3

Default: LCD_TCON1

Select TCON pin used for Vsync
signal to match to your system.
Default setting is for LCD panel
on S7G2 PE-HMI1 board.

TCON - DataEnable pin select Not used, LCD_TCON0,
LCD_TCON1, LCD_TCON2,
LCD_TCON3

Default: LCD_TCON2

Select TCON pin used for
DataEnable signal to match to
your system. Default setting is
for LCD panel on S7G2 PE-HMI1
board.

TCON - Panel clock division
ratio

1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7,
1/8, 1/9, 1/12, 1/16, 1/24, 1/32

Default: 1/8

Select the clock source divider
value. See the note at bottom
of this table about the source
clock for the pixel clock.

Color correction - Brightness Off, On

Default: Off

Specify "On" when performing
brightness control. If specifying
"Off", the setting below does
not affect the output color.

Color correction - Brightness R
channel

512 Output color level is calculated
as follows: Output color level =
Input color level +/ - 512. Set
the value for each of R, G, B
channels.

Color correction - Brightness G
channel

512 Output color level is calculated
as follows: Output color level =
Input color level +/ - 512. Set
the value for each of R, G, B
channels.

Color correction - Brightness B
channel

512 Output color level is calculated
as follows: Output color level =
Input color level +/ - 512. Set
the value for each of R, G, B
channels.

Color correction - Contrast Off, On

Default: Off

Specify "On" when performing
contrast control. If specifying
"Off", the setting below does
not affect the output color.

Color correction - Contrast(gain)
R channel

128 Output color level is calculated
as follows: Output color level =
Input color level x (/128). Set
the value for each of R, G, B
channels.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,175 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Color correction - Contrast(gain)
G channel

128 Output color level is calculated
as follows: Output color level =
Input color level x (/128). Set
the value for each of R, G, B
channels.

Color correction - Contrast(gain)
B channel

128 Output color level is calculated
as follows: Output color level =
Input color level x (/128). Set
the value for each of R, G, B
channels.

Color correction - Gamma
correction(Red)

Off, On

Default: Off

Control for each channel R/G/B.
Specify "On" when performing
gamma correction for the red
channel. If specifying "Off", the
settings for gain and threshold
do not affect the output color.

Color correction - Gamma gain
R[0-15]

0 Set the gain value for the red
channel in the area N on the
gamma correction curve. The
gain setting for area N is
applied to the input data with a
color level between ((Gamma
threshold R[N-1])<<2) and
((Gamma threshold R[N])<<2).
The output value is calculated
as follows: Output color level =
Input color level / 1024 (/128).

Color correction - Gamma
threshold R[0-15]

0 Set the threshold value for the
red channel in the area N on
the gamma correction curve.
The gain setting for area N is
applied to the input data with a
color level between Gamma
threshold R[N-1] and Gamma
threshold R[N]. The output
value is calculated as follows:
Output color level = Input color
level / 1024 (/128).

Color correction - Gamma
correction(Green)

Off, On

Default: Off

Control for each channel R/G/B.
Specify "On" when performing
gamma correction for the red
channel. If specifying "Off", the
settings for gain and threshold
do not affect the output color.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,176 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Color correction - Gamma gain
G[0-15]

0 Set the gain value for the red
channel in the area N on the
gamma correction curve. The
gain setting for area N is
applied to the input data with a
color level between ((Gamma
threshold R[N-1])<<2) and
((Gamma threshold R[N])<<2).
The output value is calculated
as follows: Output color level =
Input color level / 1024 (/128).

Color correction - Gamma
threshold G[0-15]

0 Set the threshold value for the
red channel in the area N on
the gamma correction curve.
The gain setting for area N is
applied to the input data with a
color level between Gamma
threshold R[N-1] and Gamma
threshold R[N]. The output
value is calculated as follows:
Output color level = Input color
level / 1024 (/128).

Color correction - Gamma
correction(Blue)

Off, On

Default: Off

Control for each channel R/G/B.
Specify "On" when performing
gamma correction for the red
channel. If specifying "Off", the
settings for gain and threshold
do not affect the output color.

Color correction - Gamma gain
B[0-15]

0 Set the gain value for the red
channel in the area N on the
gamma correction curve. The
gain setting for area N is
applied to the input data with a
color level between ((Gamma
threshold R[N-1])<<2) and
((Gamma threshold R[N])<<2).
The output value is calculated
as follows: Output color level =
Input color level / 1024 (/128).

Color correction - Gamma
threshold B[0-15]

0 Set the threshold value for the
red channel in the area N on
the gamma correction curve.
The gain setting for area N is
applied to the input data with a
color level between Gamma
threshold R[N-1] and Gamma
threshold R[N]. The output
value is calculated as follows:
Output color level = Input color
level / 1024 (/128).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,177 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Dithering Off, On

Default: Off

Dithering enable. Specify "On"
when applying the dither effect
to reduce the banding in case
of selecting RGB666 or RGB565
output formats. Dithering can
be applied when converting. If
specified "Off", the settings for
dithering below do not affect
the output. For details on the
dither effect, see Output
Control Block Panel Dither
Correction Register
(OUT_PDTHA) in the hardware
manual.

Dithering - Mode Truncate, Round off, 2x2
Pattern

Default: Truncate

Specify the dither mode. For
detail, see the Output Control
Block Panel Dither Correction
Register (OUT_PDTHA) in the
hardware manual.

Dithering - Pattern A Pattern 00, Pattern 01, Pattern
10, Pattern 11

Default: Pattern 11

Specify the dither pattern for
2X2 pattern mode. For details,
see the Output Control Block
Panel Dither Correction Register
(OUT_PDTHA) in the hardware
manual.

Dithering - Pattern B Pattern 00, Pattern 01, Pattern
10, Pattern 11

Default: Pattern 11

Specify the dither pattern for
2X2 pattern mode. For details,
see the Output Control Block
Panel Dither Correction Register
(OUT_PDTHA) in the hardware
manual.

Dithering - Pattern C Pattern 00, Pattern 01, Pattern
10, Pattern 11

Default: Pattern 11

Specify the dither pattern for
2X2 pattern mode. For details,
see the Output Control Block
Panel Dither Correction Register
(OUT_PDTHA) in the hardware
manual.

Dithering - Pattern D Pattern 00, Pattern 01, Pattern
10, Pattern 11

Default: Pattern 11

Specify the dither pattern for
2X2 pattern mode. For details,
see the Output Control Block
Panel Dither Correction Register
(OUT_PDTHA) in the hardware
manual.

Misc - Correction Process Order Brightness and Contrast then
Gamma, Gamma then
Brightness and Contrast

Default: Brightness and
Contrast then Gamma

Specify the color correction
processing order if needed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,178 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Line Detect Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

The driver needs valid interrupt
priority setting and it will not
work if disabled.

Underflow 1 Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

The driver needs valid interrupt
priority setting and it will not
work if disabled.

Underflow 2 Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX), Disabled

Default: Disabled

The driver needs valid interrupt
priority setting and it will not
work if disabled.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the JPEG Decode Framework on sf_jpeg_decode

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

Name g_sf_jpeg_decode0 The name to be used for a JPEG
Decode Framework module
instance.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the JPEG Decode Driver on r_jpeg_decode

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_jpeg_decode0 The name to be used for a JPEG
Decode module instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,179 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Byte Order for Input Data
Format

Normal byte order
(1)(2)(3)(4)(5)(6)(7)(8),
Byte Swap
(2)(1)(4)(3)(6)(5)(8)(7), Word
Swap (3)(4)(1)(2)(7)(8)(5)(6),
Word-Byte Swap
(4)(3)(2)(1)(8)(7)(6)(5),
Longword Swap
(5)(6)(7)(8)(1)(2)(3)(4),
Longword-Byte Swap
(6)(5)(8)(7)(2)(1)(4)(3),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2)

Default: Normal Byte order

Specify the byte order for input
data. The order is swapped as
specified in every 8-byte.

Byte Order for Output Data
Format

Normal byte order
(1)(2)(3)(4)(5)(6)(7)(8),
Byte Swap
(2)(1)(4)(3)(6)(5)(8)(7), Word
Swap (3)(4)(1)(2)(7)(8)(5)(6),
Word-Byte Swap
(4)(3)(2)(1)(8)(7)(6)(5),
Longword Swap
(5)(6)(7)(8)(1)(2)(3)(4),
Longword-Byte Swap
(6)(5)(8)(7)(2)(1)(4)(3),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2),
Longword-Word Swap
(7)(8)(5)(6)(3)(4)(1)(2)

Default: Normal Byte order

Specify the byte order for
output data. The order is
swapped as specified in every
8-byte.

Output Data Color Format Pixel Data RGB565 format, Pixel
Data ARGBB888 format

Default: Pixel Data RGB565
format

Specify the output data format.

Alpha value to be applied to
decoded pixel data (only valid
for ARGB8888 format)

255 Specify the alpha value for the
output data format (only valid
for ARGB8888 format).

Name of user callback function NULL Specify the name of user
callback function.

Decompression Interrupt
Priority

Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Decompression interrupt
priority selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,180 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

Data Transfer Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

Data transfer interrupt priority
selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

JPEG Common Instance

ISDE Property Value Description

Name g_sf_jpeg_common Module name.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the D/AVE 2D Driver on dave2d

ISDE Property Value Description

No configurable parameters.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the D/AVE 2D Port sf_tes_2d_drw

ISDE Property Value Description

Work memory size for display
lists in bytes

32768 Work memory size for display
lists selection

DRW Interrupt Priority Priority 0 (highest), Priority 1:14
Priority 15 (lowest - not valid if
using ThreadX)

Default: Priority 12

DRW INT selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

GUIX Synergy Port Framework Module Clock Configuration

The GUIX Synergy Port Module is a logical module and therefore does not require any hardware
setting except setting the ARM Cortex-M core SysTick timer.

GUIX Synergy Port Framework Module Pin Configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,181 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Configuring the GUIX Synergy Port Framework Module

The GUIX Synergy Port Module is a logical module and therefore does not require pin settings.

4.3.4.6 Using the GUIX Synergy Port Framework Module in an Application

These important settings are made in the Synergy Configurator and are used to initialize the module:

Setup GLCDC configurations including the module clock setting and GLCDC interrupt
priority. Typically, the configuration can be auto-generated through Synergy Configurator.
Setup 2D Drawing engine or JPEG engine configurations including the module clock setting
and hardware interrupt priorities. Typically, the configuration can be auto-generated
through Synergy Configurator.

The steps in using the GUIX Port on sf_el_gx module in a typical application are:

Step 1. Initialize the SF_EL_GX control block and pass module configuration settings by calling the
sf_el_gx_api_t::open API.

Step 2. Complete initialization by calling the GUIX Studio generated gx_studio_display_configure API
and pass the SF_EL_GX setup function as shown in the illustration below. This function call completes
the initialization of Synergy graphics hardware accelerators. Obtain the address of the root window
initialized by GUIX through the call.

 gx_studio_display_configure (MAIN_DISPLAY,

 g_sf_el_gx0.p_api->setup,

 LANGUAGE_ENGLISH,

 MAIN_DISPLAY_THEME,

 &p_window_root);

Step 3. Initialize the primary memory address GUIX Canvas buffer by calling the
sf_el_gx_api_t::canvasInit API.

Step 4. Create the root window by calling the GUIX Studio generated
gx_studio_named_widget_create API.

Step 5. Show the root screen by calling the GUIX gx_widget_show API.

Step 6. Start the GUIX system by calling the GUIX gx_system_start API.

Once GUIX system is started, the SF_EL_GX module is driven under GUIX control. The application
need not execute any operations after this.

These common steps are illustrated in a typical operational flow in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,182 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Port > Using the GUIX Synergy Port Framework Module in an Application

Figure 408: Flow Diagram of a Typical GUIX Synergy Port Framework Module Application

4.3.5 GUIX Source

4.3.5.1 GUIX GX_SRC Framework Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,183 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Introduction

The Azure RTOS GUIX Source component (GX_SRC) is the list of properties available in GUIX to
modify the RTOS components of GUIX (for example, the system timer). See the GUIX User Guide
Chapter 3: GUIX System Components for a list of GUIX components. The GUIX service calls have
mutual exclusion for protection built in so that the application can use GUIX services while the GUIX
'engine' is managing the graphics. GUIX uses ThreadX threads, timers and message queues to
manage display events and render screens.

GUIX GX_SRC Framework Module Features

The GUIX GX_SRC Framework module includes the following options:

Disables multithread support
Disables UTF8 Support
Sets the system timer to match the hardware

Figure 409: GUIX GX_SRC Framework Module Block Diagram

4.3.5.2 GUIX GX_SRC Framework Components Overview

The number of API functions available in GUIX in the current release is over 300 and the reader is
referred to the GUIX User Guide for detailed API listings and descriptions. A list of GUIX components
is discussed as follows:

GUIX Components

GUIX SYSTEM – Timers, threads and any internal objects the GUIX engine requires to run

GX_CANVAS* – Set by gx_canvas_create. In the simple GUIX design case, this function is called by
the specification file from GUIX Studio so it is handled automatically.

GUIX CONTEXT – All the components that make up what GUIX is drawing into, that is, screen, canvas,
brush and so on.

GX_DISPLAY* – All the components, including drawing functions that GUIX needs to draw on a
canvas. GUIX display drivers are responsible for all interaction with the underlying physical screen.
The display drivers have three basic functions: initialization, drawing and frame buffer display.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,184 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Components Overview

Initialization is responsible for preparing the physical display hardware, informing GUIX of the
properties of the physical display hardware, and for informing GUIX which specific drawing functions
should be used. The main display driver initialization is called from the GUIX gx_display_create API.
This function is called from gx_studio_display_configure in applications that use the resource and
specification.

In GUIX Studio, the specification files will set up the display driver automatically. If 16bpp is chosen
in the Configure Displays dialog box in GUIX Studio, _gx_display_driver_565rgb_setup is used. If
32bpp is chosen you get _gx_display_driver_32argb_setup, and so on.

GUIX in Synergy supports the following formats:

32bpp (ARGB8888, RGB-888)
16bpp (RGB565)
8bpp (8bit Palette (CLUT))

The display driver function is set up in the GUIX Studio specification files if the target CPU is set to
Synergy in GUIX Studio (see the IOTSG-782 module guide document for more details on setting up
GUIX Studio for Synergy):

 UINT _gx_synergy_display_driver_setup(GX_DISPLAY *display)

 {

 _gx_display_driver_565rgb_setup(display, GX_NULL, _gx_dave2d_buffer_toggle);

In the user application, the gx_studio_display_configure API configures the main display including
specifying the display driver. Synergy has already tied the display driver to the SF_EL_GX instance.
The SF_EL_GX driver setup function pointer supplies the display driver:

gx_studio_display_configure (MAIN_DISPLAY,

 g_sf_el_gx0.p_api->setup,...

GX_WIDGET* – any visible thing you place on a screen; may or may not generate events

GUIX UTILITY – essentially a tool box for utility functions

Defined as a struct data type in GUIX

4.3.5.3 GUIX GX_SRC Framework Module Operational Overview

Setting up GUIX in the Configurator

The GUIX Source component is optional. If not using the GUIX source, the prebuilt GUIX library with
default settings is used. If the GUIX source component is added or any of its properties modified, the
developer must click on Generate Project Content in the configurator pane and rebuild the project, or
the prebuilt GuiX (gx.a) library is used with none of its properties modified.

GUIX at Startup

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,185 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

The following steps need to be performed before rendering any GUIX images:

Call the gx_system_initialize API to initialize the GUIX system.
Initialize the GUIX driver (g_sf_el_gx.p_api->open).
Create and configure the display instance (gx_studio_display_configure called with
g_sf_el_gx.p_api->setup as the driver input).
Create and initialize the canvas for the display (g_sf_el_gx.p_api->canvasInit API).
Prepare the display of the main screen (gx_studio_display_configure API) if using GUIX
Studio specification and resource files.
[Optionally] create any other windows or widgets if not created (gx_widget_create).
Show the root window (gx_window_show API).
Start the GUIX engine (gx_system_start API).

In the gx_system_initialize API, GUIX creates its own thread, event queue and timer necessary for
performing all drawing, timer and GUIX related tasks. It also creates a mutex for multithreaded
environments. Application threads have access to the same resources as GUIX; for example, if GUIX
is doing a refresh operation, the mutex protections prevents other threads that try to access visible
widgets during the refresh of a screen.

The open, setup and canvasInit API are accessible by function pointer fields of the sf_el_gx instance.
One need only supply any other details except for the language and display screen name in the
gx_studio_display_configure call.

GX_SRC Properties

GUIX Configurable Options for GX_SRC

ISDE property Default value Description

GUIX Stack Size 4096 bytes GUIX internal thread stack size
in bytes.

System Timer 20 ms Used to calculate
GX_SYSTEM_TIMER_TICKS. See
explanation that follows.
Equivalent option in Azure
RTOS is GX_SYSTEM_TIMER_MS.

Disable Multithread Support No (Disabled) If not defined, ThreadX can
support multiple threads by
defining and using locking and
unlocking functions to define
critical sections. Equivalent
option in Azure RTOS is GUIX_DI
SABLE_MULTITHREAD_SUPPORT
.

Disable UTF8 Support No (Disabled) If defined, this disables UTF8
format string encoding in GUIX
and allows only 8-bit ASCII
character plus Latin-1 code
page character encoding.
Equivalent option in Azure
RTOS is GX_UTF8_SUPPORT.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,186 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

GUIX Event Queue Size 48 Size of GUIX Event Queue Size.
Must be greater than zero or
empty.

GUIX Thread Priority 16 Priority of GUIX Internal Thread.
The value must be between 0
to 31.

GUIX Thread Time Slice 10 Time Slice value of GUIX
Internal Thread. The value must
be between
0(TX_NO_TIME_SLICE) to
0xFFFFFFFF.

Use User Data Field in
GX_WIDGET Structure

No(default) GUIX allows users to use
gx_widget_user_data member
in GX_WIDGET Structure if you
say yes.

Disable arc drawing support No (Disabled) If defined, removes support for
the arc-drawing functions circle,
arc, pie, and ellipse.

Disable software decoder
support

No (Disabled) If defined, reduce the GUIX
library footprint when runtime
decode of jpg or png files is not
required.

Disable binary resource support No (Disabled) If defined, reduce your GUIX
library footprint when only C
source code format resource
files are used.

Repeat button initial tics 10 This value defines how long the
button waits before beginning
to send repeated
GX_EVENT_CLICKED events.

Maximum number of unique
dirty list entries

64 This value defines the
maximum number of unique
dirty list entries that can be
maintained by one canvas.

Maximum nesting of context 8 This value defines the
maximum nesting of the
drawing context stack.

Maximum input capture nesting 4 This value defines size of the
stack used to maintain the list
of widgets that have captures
the user input.

Cursor blink interval 20 This value defines the rate at
which the input cursor blinks for
text input widgets.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,187 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

Multi line index cache size 32 This value defines the size of
the list-start index cache
maintained by the multi-line
text view and multi-line text
input widgets.

Multi line text button maximum
lines

4 This value determines the
number of text pointers needed
by the worst case multi-line
text button.

Maximum number of polygon
edges

10 This value determines the most
complex polygon that can be
drawn by GUIX.

Numeric scroll wheel string
buffer size

16 This value determines the
maximum length of the string
required to display the assigned
integer values.

Circular gauge animation delay 5 This value defines the number
of GUIX timer ticks (50 ms)
between updates of a circular
gauge configured to animate
the needle movement between
last and current angular
position.

Numeric prompt buffer size 16 This value defines the size of
buffer allocated to convert an
integer value assigned to the
prompt to an ascii string.

Animation pool size 6 This value defines the size of
animation pool from which
animation information
structures can be dynamically
allocated and returned.

Mouse support Disabled Enables the mouse support.
This definition should only be
enabled when a mouse (not a
touch screen) must be
supported.

Hardware mouse support Disabled When enabled, the GUIX display
driver utilizes hardware mouse
cursor drawing support.

Font kerning support Disabled Enables font kerning support.

Maximum string length 102400 This value defines the
maximum length of a string,
which is used to test invalid
strings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,188 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

Disable brush alpha support No (Disabled) Allows brush alpha support to
be disabled. This helps
eliminate runtime overhead and
library footprint increase
for drawing non-arc graphics,
pixelmaps, and fonts with an
alpha value defined by the
drawing context brush
while running at 16 bpp and
higher color depths.

Maximum string length 102400 This value defines the
maximum length of a string,
which is used to test invalid
strings.

GUIX Options Available in the Azure RTOS User Guide (Non-configurable in ISDE)

MACRO Default value Description

GX_SYSTEM_TIMER_TICKS 2 ticks (20 ms) GUIX timer frequency (interval
on which the timer thread entry
function checks for tasks (for
example, periodic tasks,
timeouts) that need to be
executed.

GX_TICKS_SECOND 2 ticks This is only used if porting GUIX
to another RTOS other than
ThreadX.

GX_MAX_VIEWS 32 Number of simultaneous views.

GX_MAX_ACTIVE_TIMERS 32 Number of timers available in
GUIX to be assigned to one or
more widgets.

GX_DISABLE_THREADX_BINDIN
G

Not enabled If not defined, GUIX expects a
ThreadX RTOS; GUIX can work
with other RTOSs, but this is not
supported in Synergy.

GX_DISABLE_THREADX_TIMER_
SOURCE

Not enabled If defined, disables ThreadX
timer source to use a different
timer source.

Disabling Multithread Support

The gx_system_initialize API creates the GUIX drawing and event processing thread. That thread is
started when the gx_system_start API is called. GUIX application threads may wish to invoke the
GUIX API while the GUIX system thread is running. An application thread could, for example, create
a pop-up error window and display it by attaching it to the root window. The problem is that two or
more threads accessing internal GUIX resources simultaneously will cause undefined results.
Therefore, in a multithreaded environment, GUIX must protect critical code sections where it updates
linked lists and other internal objects. To do so, GUIX uses mutexes to guard critical code sections. If
Multithread Support property is not disabled, GUIX macros enable protection of the critical sections.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,189 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

It is generally recommended that if a system is not severely constrained by resources (memory),
that this option be left disabled.

If the application does not call any GUIX API, then the only thread affecting GUIX is the system
thread; disabling multithreaded support will reduce the overhead of protecting critical code sections
and improve performance.

GUIX System Timer

The GUIX System timer is the interval on which the GUIX timer executes and is used by GUIX for
periodic processing needs inside GUIX. The system timer It should be a multiple of the ThreadX
timer, which is typically defined to be 10 ms (100 ticks/sec). Example:

GUIX System Timer is to 10

ThreadX timer is 100

 GUIX timer tick = ((10 ms * 100 ticks per second) / 1000 ms per second) == 1 tick

This sets the GUIX timer tick to one tick. If the GUIX System timer is not a multiple of the ThreadX
timer, it will be rounded down. In the example above, if it were set to 17, the GUIX timer tick would
still be "1". To make the GUIX timer tick every other ThreadX timer tick, set the System timer
property in GX_SRC to 20;

 GUIX timer tick = ((20 * 100) / 1000) == 2.

UTF8 Support

By default, UTF8 is enabled. If UTF8 is disabled, GUIX is limited to ASCII type (one byte per glyph).
There is always runtime overhead associated with UTF8 support even if the application is only using
ASCII. This is because GUIX has to call a function to compute the next character value in the string
when using UTF8 because it cannot assume it is a one-byte character.

In lieu of disabling UTF8, the application can avoid using character values higher than 255. When
UTF8 is disabled, this tells GUIX that each character is simply one byte and it does not need to call
the next-character-compute function.

Display Memory Architecture

There are several display memory architectures supported by GUIX. The display memory
architecture is really defined by the display driver, which is a very small hardware porting layer, and
does not affect the core GUIX library code. The most common model is to provide two canvas
memory areas: one the "working" buffer and one the "visible" buffer. GUIX executes drawing
updates to the working canvas, then toggles the working and visible canvas buffers when a drawing
sequence is completed.

Four basic memory models are described as follows:

Models 1 and 2 contain only GRAM and Frame Buffer respectively in the following diagram, and
would be recommended for only very small displays as it is slow. In Model 1, the display provides its
own memory large enough to hold the pixel data. This external memory is usually called "GRAM" or
Graphics Ram, and some non-random access such as SPI access is provided to the core CPU. In this
model, the display driver executes all drawing operations by writing pixel data over the SPI interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,190 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

Figure 410: Model 1

Figure 411: Model 2

Figure 412: Model 3 (Local Frame Buffer + External GRAM)

 Model 3 is a combination of the first two models. In this model, sufficient local memory exists to hold
one frame buffer. In addition, the display device provides an external GRAM and automatically
refreshes itself using the data provided in the GRAM. This architecture benefits from improved
update efficiency because the user can transfer the modified portion of the local frame buffer to the
external GRAM in one block transfer, often utilizing on-board DMA channels. This model also
eliminates the tearing and flicker that can be present in either of the first two models, because only
completed graphics content is copied to the external GRAM.

Model 4 requires that sufficient memory is present to provide two local frame buffers. In this case,
GUIX treats one frame buffer as the active frame buffer, and the other as the working frame buffer.
When a display update or drawing operation is in progress, it takes place in the working buffer. When
the drawing operation completes, the buffers are toggled, and the working buffer becomes the
active buffer and the active buffer becomes the working buffer. Like Model 3, this model also
eliminates screen flicker and tearing that can be observed in a single buffered system.

Model 4 Ping Pong frame buffers:

Figure 413: Model 4 (Ping-Pong Frame Buffers)

 Synergy (SF_EL_GX module) implements Model 4 (although Model 3 is also possible).

Receiving Events from the Hardware

Signals in GUIX

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,191 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

Signals are used to get information such as hardware events up to the GUIX level. Hardware events
are transduced by the hardware and message framework drivers into GX_SIGNALs by the time they
reach the GUIX event queue. The GX_SIGNAL macro is a macro that combines the ID of the widget
(user defined in GUIX Studio) that generated an event with the event type the widget has generated
into a unique gx_event_type identifier code. For more details about GX_EVENT types and signals,
please see the GUIX™ Synergy Port Framework Module Guide.

Drivers for the Hardware Interface

In the Synergy driver hardware, a ThreadX periodic thread task is created that continually checks for
hardware events. When an event is detected, the hardware driver transmits information about this
event to the thread task. The Touch Panel V2 Framework module scans data from a touch controller
and invokes the user-registered touch panel callback when a touch event occurs. If the user callback
is not registered, the sf_touch_panel_v2_api_t::touchDataGet API function can be used to retrieve the
data. In the example of the touchscreen, the touch panel driver would relay X and Y coordinates, and
event type.

/* User callback*/

typedef struct st_sf_touchpanel_v2_callback_args

{

 sf_touch_panel_v2_payload_t payload; // Touch data and event provided

to the user during callback

 void const * p_context; // Context provided to user during

callback

} sf_touchpanel_v2_callback_args_t;

/* Touch data payload */

typedef struct st_sf_touch_panel_v2_payload

{

 int16_t x; // X coordinate.

 int16_t y; // Y coordinate.

 sf_touch_panel_v2_event_t event_type; // Touch event type.

} sf_touch_panel_v2_payload_t;

The user callback must be registered to obtain touch data. The Touch Panel V2 Framework module
scans data from a touch controller and invokes the user-registered callback. If the user callback is
not registered, the sf_touch_panel_v2_api_t::touchDataGet API function can be used to retrieve the
data. If the user callback is registered, then the framework will invoke the callback when touch
events occur.

Example: (User-defined touch panel callback function)

void g_sf_touch_panel_cb(sf_touchpanel_callback_args_t * p_args)

{

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,192 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

 bool send_event = true;

 GX_EVENT gxe;

 switch (p_args->payload.event_type)

 {

 case SF_TOUCH_PANEL_V2_EVENT_DOWN:

 gxe.gx_event_type = GX_EVENT_PEN_DOWN;

 break;

 case SF_TOUCH_PANEL_V2_EVENT_UP:

 gxe.gx_event_type = GX_EVENT_PEN_UP;

 break;

 case SF_TOUCH_PANEL_V2_EVENT_HOLD:

 case SF_TOUCH_PANEL_V2_EVENT_MOVE:

 gxe.gx_event_type = GX_EVENT_PEN_DRAG;

 break;

 case SF_TOUCH_PANEL_V2_EVENT_INVALID:

 send_event = false;

 break;

 default:

 break;

 }

 if (send_event)

 {

 /* Send event to GUIX */

 gxe.gx_event_sender = GX_ID_NONE;

 gxe.gx_event_target = 0; /* the event to be routed to the widget

that has input focus */

 gxe.gx_event_display_handle = 0;

 gxe.gx_event_payload.gx_event_pointdata.gx_point_x = p_args->payload.x;

 #if defined(BSP_BOARD_S7G2_SK)

 gxe.gx_event_payload.gx_event_pointdata.gx_point_y = (GX_VALUE)(320 -

p_payload->y);

 #else

 gxe.gx_event_payload.gx_event_pointdata.gx_point_y = p_args->payload.y;

 #endif

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,193 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

 gx_system_event_send(&gxe);

 }

}

The user callback function can update the GX_EVENT data type and fill in the following fields as
needed:

 /* Send event to GUIX */

 gxe.gx_event_sender = GX_ID_NONE;

 gxe.gx_event_target = 0; /* the event to be routed to the widget

that has input focus */

 gxe.gx_event_display_handle = 0;

 gxe.gx_event_payload.gx_event_pointdata.gx_point_x = p_args->payload.x;

 #if defined(BSP_BOARD_S7G2_SK)

 gxe.gx_event_payload.gx_event_pointdata.gx_point_y = (GX_VALUE)(320 -

p_payload->y);

 #else

 gxe.gx_event_payload.gx_event_pointdata.gx_point_y = p_args->payload.y;

 #endif

 gx_system_event_send(&gxe);

SF_TOUCH_PANEL_V2_EVENT_DOWN, SF_TOUCH_PANEL_V2_EVENT_UP, and other touchscreen panel
events are defined in the touchscreen header files. The touchscreen driver also defines its only
payload field, since it needs to communicate some value(s) to the application besides event type.
For a touchscreen event, the touchscreen payload includes an x and y coordinate. The GX_EVENT
contains a union of field for payload. In this case, the GX_EVENT gx_event_payload field uses the
GX_POINT gx_event_pointdata which holds two values for x and y coordinates.

Now, the application can send this event over to the GUIX event queue to let GUIX handle it by
calling gx_system_event_send API.

GUIX periodically checks the event queue, and sees the event just added to the queue. In the case
of the touchscreen panel, it uses the x,y coordinates to find the window widget currently attached to
the root window, and searches all the child widgets contained by that window for the highest one (Z
order) that contains this coordinate. Then GUIX typically defers to the child widget's parent event
handler for passing off further handling of the event.

Screen Management

Root and Child Windows

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,194 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

Each visible canvas has a root window. The root window is the container for all windows and widgets
of the display.

Attaching and Detaching Screens

If the new screen is a child of the parent screen, the application must attach the new screen and
detach the old screen using gx_widget_attach and gx_widget_detach (order is not important). If
moving back to a parent screen, the application does not attach the parent screen but calls
gx_window_show on the parent screen. A simple algorithm for swapping out screens follows:

void ToggleScreen(GX_WIDGET *new_win, GX_WIDGET *old_win)

{

 if (!new_win->gx_widget_parent)

 {

 gx_widget_attach(root, new_win);

 }

 else

 {

 gx_widget_show(new_win);

 }

 gx_widget_hide(old_win);

}

In the following code, GUIX has detected a button widget clicked in window1, for switching from
window1 to window2. It attaches the new window (window2) to the root window, and detaches the
old window (window1):

UINT window1_handler(GX_WINDOW *widget, GX_EVENT *event_ptr)

{

 gx_window_event_process(widget, event_ptr);

 switch (event_ptr->gx_event_type)

 {

 case GX_SIGNAL(ID_WINDOWCHANGER, GX_EVENT_CLICKED):

 if(button_enabled)

 {

 show_window((GX_WINDOW*)&window2, (GX_WIDGET*)widget, true);

 }

 break;

 default:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,195 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

 gx_window_event_process(widget, event_ptr);

 break;

 }

 return result;

}

static UINT show_window(GX_WINDOW * p_new, GX_WIDGET * p_widget, bool detach_old)

{

UINT result = gx_window_event_process(widget, event_ptr);

switch (event_ptr->gx_event_type)

{

 case GX_SIGNAL(ID_WINDOWCHANGER, GX_EVENT_CLICKED):

 if (!p_new->gx_widget_parent)

{

err = gx_widget_attach(p_window_root, p_new);

}

else

{

err = gx_widget_show(p_new);

}

gx_system_focus_claim(p_new);

GX_WIDGET * p_old = p_widget;

if (p_old && detach_old)

{

if (p_old != (GX_WIDGET*)p_new)

{

gx_widget_detach(p_old);

}

}

break;

 default:

gx_window_event_process(widget, event_ptr);

break;

}

return result;

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,196 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

}

Both methods are perfectly acceptable ways to move between screens, with the latter having more
complexity. It does not matter which order is followed in attaching or detaching screens. GUIX just
marks the to-be visible window as dirty and re-draws that window after the application is finished
modifying the tree* of visible widgets. In other words, GUIX does not actually draw the window as
part of the "attach" API call.

Note
GUIX maintains a tree structured lists of visible objects for linking child widgets (many) to their parent widget
(one). When a window is swapped out with another, the tree is modified to include the new (visible) window and
remove the old (soon to be not visible) window.

Attaching and Detaching Widgets

GUIX keeps a linked list of child widgets (a window is a widget type) that belong to or are attached to
a parent. Child windows are attached to the root window. When a widget is attached, it is added to
the end of the list. There is a first and last child marker of this list (not a circular list). Before a child
widget can be attached to a parent widget, it must not be a child of another parent. If so, it is
detached from that parent first.

When it is detached, it is removed from the list. However, it is not deleted, so it is still available to be
reattached without needing to be recreated. In the meantime, it cannot draw, and it has no parent,
but it can still receive events and the control block for that widget is still valid.

Detaching vs Deleting Widgets

When a widget is detached, it is removed from the active list of widgets maintained by GUIX.
However, it is not deleted, so it is still available to be reattached without needing to be recreated. In
the meantime, it cannot draw, and it has no parent, but it can still receive events and the control
block for that widget is still valid.

The gx_widget_delete API first detaches the widget if it still has a parent, then, it clears out the
control block. If the control block was dynamically allocated, the memory for the control block is
freed. If the gx_widget_delete API was applied to a widget, the widget will need to be re-created
before it can be displayed again.

When to Create Widgets

GUIX Studio enables a developer to create screens, name widgets, set event and draw callback
functions much more easily than creating them by source code in GUIX APIs. In GUIX Studio, the
developer can choose which widgets are created at start up time (default setting), or it can enable
runtime creation by checking the Run Time Allocation property of a widget. If this is enabled, the
application must create the widget when it needs it. Otherwise, all the 'static' widgets are created at
start up. This requires that there be enough memory for these 'static' widgets. If there is, there
really is no reason to not create all the widgets at start time. However, in an application with a large
number of screens, or limited memory, it may be necessary to create widgets as needed at runtime.

To designate a widget for dynamic memory allocation, check the box for Runtime Allocate in GUIX
Studio. In the specification files created by GUIX Studio, the 'style flag' of the widget (and any
children of the widget) sets the GX_ STYLE_DYNAMICALLY_ALLOCATED attribute. When the
application creates the widgets, it will allocate memory using the memory allocator specified in

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,197 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

gx_system_memory_allocator_set. Note that this requires that the application set up a memory pool
before starting the GUIX services. The project for this module guide demonstrates this.

Drawing at Run Time

Some screens require drawing at run time inevitably. These would be line draw and text writing API
for updating information on a screen in real time. Dynamic string creation is accomplished using
sprintf and gx_utility_ltoa functions; these are useful for printing run time values in the string. Some
of the APIs used for that screen for drawing are listed below as examples:

UINT _gx_canvas_line_draw(GX_VALUE x_start, GX_VALUE y_start, GX_VALUE x_end,

GX_VALUE y_end);

UINT _gx_canvas_text_draw(GX_VALUE x_start, GX_VALUE y_start, GX_CONST GX_CHAR

*string, INT length);

Normally, drawing to a screen is done by a method called deferred drawing, where GUIX internally
manages when a window or part of a window should be redrawn so as to improve drawing
efficiency.

However, when an application wants immediate drawing to a canvas, it must call the
gx_canvas_drawing_initiate API before drawing anything. When completed, the application calls
gx_canvas_drawing_complete to signal GUIX to let deferred drawing resume.

Run time drawing requiring memory allocation and deallocation is demonstrated in the rotation of
the thermostat in the gux_gx_src_mg_ap.c file in the module guide project.

Note that in SSP 1.3.0/GUIX 5.3.3, to 'rotate' or otherwise redraw an image at run time the pixelmap
data must not be compressed. If you anticipate needing to redraw an image differently, such as
using rotation, make sure to uncheck the Compress Output for the pixelmap resource in GUIX
Studio (v5.3.3.7 and later). To edit a pixelmap resource, open the Pixelmaps bar by clicking on the
(+**) icon -> click on **Custom -> double click on the graphic item -> Uncheck Compress
Output (it is enabled by default).

Memory Allocation in GUIX Applications

Allocating Memory

Dynamic memory allocation is supported (for example, heap memory) in GUIX. The
gx_system_memory_allocator_set API lets the application assign a memory allocation and a memory
free service. This API is called at program startup, after gx_system_initialize, and before any GUIX
services that require dynamic memory allocation.

GUIX services that require a runtime memory allocation and de-allocation service include:

Loading binary resources from external storage into the GUIX runtime environment.
The software runtime jpeg image decoder.
The software runtime png image decoder.
Using text widgets with GX_STYLE_TEXT_COPY.
Runtime pixelmap resize and rotation utility functions.
Runtime screen and widget control block allocation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,198 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

Dynamic memory allocation is required for pixelmap rotation in the project for this module guide.

Dynamic allocation lets an application import resources like fonts, language, and images at runtime
from non-volatile memory like a flash drive or a URL source. Most GUIX applications are small
enough that this is not required. GUIX resources can be loaded and statically linked at compile time
using the pixelmaps created in GUIX studio, which decode the resource from jpeg to pixelmap
format.

Widget Creation: Static vs Runtime

If you have plenty of memory and your control blocks are all statically allocated, for example, the
Runtime Allocated property for the widget in GUIX Studio is not checked, then there is no reason
not to create them during program startup. Creating your GUIX screens is just setting their initial
parameters using the data written to the specifications file. You can always modify any of these
parameters at any time after the screen has been created.

If you want your application to be more RAM efficient, set the Runtime Allocated property for some
or all of your screen widgets in GUIX Studio. In your application, set up a memory pool to use for
dynamically allocating your control blocks. This is done by calling the
gx_system_memory_allocator_set API, which takes as its input a memory allocate function pointer
and a memory release function pointer. These user defined functions will typically use the
ThreadX tx_byte_allocate and tx_byte_release API, respectively, but other memory allocation
services can be used.

Dynamic widget allocation is generally handled in the GUIX Studio specification file. In the
specification file, gx_studio_widget_create will dynamically allocate those widget control blocks
assigned for dynamic allocation. In the following example, the medical screen widget is designated
for dynamic allocation as indicated by the style symbol: GX_STYLE_DYNAMICALLY_ALLOCATED:

GX_CONST GX_STUDIO_WIDGET meds_screen_define =

{

 "meds_screen",

 GX_TYPE_TEMPLATE, /* widget type */

 ID_MEDS_SCREEN, /* widget id */

 GX_STYLE_BORDER_THIN|GX_STYLE_DYNAMICALLY_ALLOCATED, /* style flags */

 GX_STATUS_ACCEPTS_FOCUS, /* status flags */

Then widget create handler in the specification file will check if a widget should be allocated
dynamically:

static GX_WIDGET *gx_studio_nested_widget_create(GX_BYTE *control,

GX_CONST GX_STUDIO_WIDGET *definition, GX_WIDGET *parent)

{

 UINT status = GX_SUCCESS;

 GX_WIDGET *widget = GX_NULL;

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,199 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

 while(definition && status == GX_SUCCESS)

 {

 if (definition->style & GX_STYLE_DYNAMICALLY_ALLOCATED)

 {

 status = gx_widget_allocate(&widget,

definition -> control_block_size);

 ...

Note that the application can call gx_widget_allocate at runtime as well.

When gx_widget_delete is called on this widget, GUIX will call the memory free function specified by
the application to release the control block memory. Applications that have hundreds of screens and
limited RAM would almost always be set up this way.

When a widget is dynamically allocated, the control blocks for any child widget automatically
become dynamically allocated. You cannot and are not required to set this flag for child widgets.
Once you set the flag at any level in e2 studio, all children of the dynamically allocated parent also
become dynamically allocated.

Multiple Canvases and Layers

GUIX in Synergy is limited to one 'simple' canvas. A simple canvas is an off-screen drawing area
used by the application. GUIX does nothing directly with a simple canvas, but the application can use
a simple canvas to render complex drawing to an off-screen buffer, and then use this off-screen
buffer to refresh the visible canvas when needed. Synergy does not currently support multiple
canvases. Most GUIX applications are simple enough that multiple canvases not required. The
benefit of using multiple canvases is being able to assign one or more canvases to fast memory to
meet performance requirements. Multiple canvases can also be used for special effects such as
fading in and fading out.

Support for multiple graphics layers (multiple overlaid frame buffers) is also not supported.

Timers

The gx_system_timer start API is called on a widget after GUIX services are initialized and running.
The input includes a timer ID for this timer (zero is not allowed) defined by the application. To stop
the timer, the gx_system_timer_stop API is called on the same widget. If a non-zero timer ID is
provided, GUIX will search for all timers attached to this widget for one matching that ID. If a zero
timer ID is provided, GUIX will stop and detach all timers for the specified widget.

On starting a timer, an available timer is allocated from GUIX's free list of timers and added to the
list of active timers. When a timer is stopped it is moved back from the active list of timers to the
free list.

When a timer expires, GUIX sends the GX _EVENT_TIMEOUT for that widget (timer owner). The event
handler for that widget should handle the timeout event and perform any necessary tasks. A timer
will be reset up to the number of times specified in the gx_system_timer_start API.

GUIX uses ThreadX timer for certain visual effects as well as time out expiration events. Fading out

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,200 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > GUIX GX_SRC Framework Module Operational Overview

and sprite animation are two examples.

Versions in GUIX and GUIX Studio

GUIX library and Studio versions work as follows. The GUIX library has major.minor.service_pack
version information. So it is always 5.3.3 or 5.4.0, three fields. The Studio version number is
<GUIX_LIB_VERSION>.Studio Revision. Do not forget that Studio requires the GUIX library as part of
the Studio build, this is how we render the GUIX widgets within the Studio target view panel. So the
first Studio release based on 5.3.3 library is 5.3.3.0. The latest Studio release based on 5.3.3 library
is 5.3.3.7. The first Studio release based on upcoming 5.4.0 library will be 5.4.0.0. So Studio release
adds one field to GUIX library release.

Porting GUIX projects from SSP 1.2.0 and 1.2.1 to SSP 1.3.0

To port GUIX projects previously built using SSP 1.2.0 or 1.2.1, follow these steps:
1. Install GUIX Studio 5.3.3.7.
2. Open the gxp project file used for the GUIX project in 1.2.0/1.2.1 in GUIX Studio

5.3.3.7.
3. Update the GUIX Library Version in the Configure Display screen (right click on

the main display window) and choose 5.3.3.
4. Generate the new specification and resource files and copy them to your project

file if they do not already get written to your src folder or subfolder automatically.
5. In the Synergy configurator, choose SSP 1.3.0, and click on Generate Project

Content.
6. Build the project.

If compile errors result referring to dlist_start and dlist_indirect not being defined, delete the
tes and sf_tes_2d_draw folder in the synergy\ssp\src\framework folder. Then regenerate
project files by clicking on Generate Project Content and the Build project icon.
Compile errors result referring to the following undefined GUIX functions may result if the
wrong version of GUIX is set in GUIX Studio:

1. _gx_dave2d_glyph_8bit_draw
2. _gx_dave2d_glyph_4bit_draw
3. _gx_dave2d_glyph_1bit_draw

Check the headers in the specification and resource files to verify which version of GUIX Studio was
used. You can check function headers in any GUIX source file (assuming you have access to it) to
verify the GUIX version is 5.3.3.

GUIX GX_SRC Framework Module Important Operational Notes and Limitations

GUIX GX_SRC Framework Module Operational Notes

GUIX GX_SRC Framework Module Limitations

GUIX in Synergy does not support 4bpp (grayscale) or 1bpp (monochrome)
SF_EL_GX does not support a system with more than two frame buffers.
SF_EL_GX supports only one GUIX canvas system.
SF_EL_GX makes use of only one graphics layer in the DISPAY module.
Refer to the most recent SSP Release notes for additional limitations when using this
module.

4.3.5.4 Including the GUIX GX_SRC Framework Module in an Application

This section describes how to include the GUIX GX_SRC Framework module in an application using
the SSP configurator.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,201 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > Including the GUIX GX_SRC Framework Module in an Application

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the GUIX GX_SRC Framework module to an application, click on the Add GUIX Source block
below the GUIX on gx component in the Thread Stack Panel and choose New.

GUIX GX_SRC Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

GUIX Source Threads New Stack> X-Ware> GUIX>
GUIX Source

When the GUIX GX_SRC Framework module is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 414: GUIX GX_SRC Framework Module Stack

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,202 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > Configuring the GUIX GX_SRC Framework Module

4.3.5.5 Configuring the GUIX GX_SRC Framework Module

The GUIX GX_SRC Framework module must be configured by the user for the desired operation. The
SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the GUIX GX_SRC Framework

ISDE Property Value Description

GUIX Stack Size GUIX internal thread stack size
in bytes. Must be greater than
zero or empty.

GUIX System Timer
(Milliseconds)

GUIX system timer. Must be a
multiple of
TX_TIMER_TICKS_PER_SECOND
or empty.

GUIX Timer Rate GUIX timer rate as a multiple of
the ThreadX tick interrupt rate.
Must be greater than zero or
empty.

Disable Multithread Support Yes, No

Default: No

If your application has only one
thread which utilizes the GUIX
API services, say yes to reduce
system overhead.

Disable UTF8 Support Yes, No

Default: No

GUIX disables UTF8 support if
you say yes.

GUIX Event Queue Size Size of GUIX Event Queue Size.
Must be greater than zero or
empty.

GUIX Thread Priority 16 Priority of GUIX Internal Thread.
The value must be between 0
to 31.

GUIX Thread Time Slice 10 Time Slice value of GUIX
Internal Thread. The value must
be between
0(TX_NO_TIME_SLICE) to
0xFFFFFFFF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,203 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > Configuring the GUIX GX_SRC Framework Module

Use User Data Field in
GX_WIDGET Structure

Yes, No

Default: No

GUIX allows users to use
gx_widget_user_data member
in GX_WIDGET Structure if you
say yes.

Disable arc drawing support Yes, No

Default: No

Reduce the GUIX library code
size and GX_DISPLAY structure
size by removing support for
the arc-drawing functions circle,
arc, pie, and ellipse.

Disable software decoder
support

Yes, No

Default: No

If your application does not
require runtime decode of jpg
or png files, select yes to
reduce the GUIX library
footprint.

Disable binary resource support Yes, No

Default: No

If your application is using only
C source code format resource
files, select yes to reduce your
GUIX library footprint.

Repeat button initial tics This value defines how long the
button waits before beginning
to send repeated
GX_EVENT_CLICKED events.

Maximum number of unique
dirty list entries

This value defines the
maximum number of unique
dirty list entries that can be
maintained by one canvas.

Maximum nesting of context This value defines the
maximum nesting of the
drawing context stack.

Maximum input capture nesting This value defines size of the
stack used to maintain the list
of widgets that have captures
the user input.

Cursor blink interval This value defines the rate at
which the input cursor blinks for
text input widgets.

Multi line index cache size This value defines the size of
the list-start index cache
maintained by the multi-line
text view and multi-line text
input widgets.

Multi line text button maximum
lines

This value determines the
number of text pointers needed
by the worst case multi-line
text button.

Maximum number of polygon
edges

This value determines the most
complex polygon that can be
drawn by GUIX.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,204 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > Configuring the GUIX GX_SRC Framework Module

Numeric scroll wheel string
buffer size

This value determines the
maximum length of the string
required to display the assigned
integer values.

Circular gauge animation delay This value defines the number
of GUIX timer ticks (50 ms)
between updates of a circular
gauge configured to animate
the needle movement between
last and current angular
position.

Numeric prompt buffer size This value defines the size of
buffer allocated to convert an
integer value assigned to the
prompt to an ascii string.

Animation pool size This value defines the size of
animation pool from which
animation information
structures can be dynamically
allocated and returned.

Mouse support Enabled, Disabled

Default: Disabled

Enables the mouse support.
This definition should only be
enabled when a mouse (not a
touch screen) must be
supported.

Hardware mouse support Enabled, Disabled

Default: Disabled

When enabled, the GUIX display
driver utilizes hardware mouse
cursor drawing support.

Font kerning support Enabled, Disabled

Default: Disabled

Enables font kerning support.

Maximum string length This value defines the
maximum length of a string,
which is used to test invalid
strings.

Disable brush alpha support Yes, No

Default: No

When running at 16 bpp and
higher color depths, GUIX
optionally supports drawing non-
arc graphics, pixelmaps, and
fonts with an alpha value
defined by the drawing context
brush. Supporting this drawing
mode introduces a small
runtime overhead and library
footprint increase, which can be
eliminated by defining this flag
if the application do not require
alpha-blending drawing
support.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,205 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > Configuring the GUIX GX_SRC Framework Module

Show linkage warning Enabled, Disabled

Default: Enabled

Select whether or not to show
linkage warning.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

GUIX GX_SRC Framework Module Clock Configuration

The GUIX GX_SRC Module is a logical module and therefore does not require any hardware setting
except setting the ARM Cortex-M core SysTick timer.

GUIX GX_SRC Framework Module Pin Configuration

The GUIX GX_SRC Module is a logical module and therefore does not require pin settings.

4.3.5.6 Using the GUIX GX_SRC Framework Module in an Application

The typical steps in using the GUIX Framework module in an application are (assuming the instance
of the GUIX driver is g_sf_el_gx and the instance of the SPI driver for the LCD is g_rspi_lcdc):

1. Create a memory pool for dynamic allocation in GUIX.
2. Initialize GUIX with the gx_system_initialize function.
3. Set the memory rotate and memory free services for GUIX to use using the

gx_system_memory_allocator_set API
4. Initialize GUIX drivers using the open API (g_sf_el_gx.p_api->open)
5. Create and initialize the main display usingthe gx_studio_display_configure API. This uses

the open function of the SF_EL_GX driver instance as one of the input parameters.
6. Initialize the memory address of the canvas with the canvasInit API for the SF_EL_GX driver
7. Loop through all the widgets defined in the GUIX studio resource files. Create the root

window and each widget using the gx_studio_named_widget_create API.
8. Show the root window using the gx_widget_show API.
9. Start the GUIX system with the gx_system_start API.

10. Open the SPI driver to initialize the LCD using the open API for the SF_EL_GX driver.
11. Set up the LCD display with the ILI9341V_Init function.

The next steps describe the invoking of the touch panel user callback function when a touch event
occurs and use GUIX services to process them and update the image display:

1. Register a touch panel user callback in the application code to receive touch data. (Get the
data using the sf_touch_panel_v2_api_t::touchDataGet API function if the user callback is
not registered.)

2. Operate on the received touch data as needed.
3. Send the event to the GUIX engine to render an updated image using the

gx_system_event_send API.

These common steps are illustrated in a typical operational flow in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,206 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > GUIX Source > Using the GUIX GX_SRC Framework Module in an Application

Figure 415: Flow Diagram of a Typical GUIX GX_SRC Framework Module Application

 The GUIX Studio project includes a callback function for the Event Function of the main window in
this project. When this callback, thermos_screen_event_handler, is invoked by GUIX, it computes how
to adjust the needle on the thermostat in the image and forwards that information back to GUIX for
how to render an updated image based on a user touch event:

1. Determine event type from the event_ptr input from GUIX
2. Get the current needle angle data from GUIX using the gx_circular_gauge_angle_get API.
3. Send the updated information about the event to GUIX using the gx_window_event_process

API.

The GUIX Studio project includes a callback function for the Draw Function of the "plus" and "minus"
buttons in the main screen. When this callback, custom_pixelmap_button_draw, is invoked by GUIX,
it redraws the buttons to add the "+" or "-" depending on which button is pressed. This does not
have a great deal of functionality per se, but demonstrates how the draw function callback works
with GUIX.

4.3.6 LevelX Port Framework on sf_el_lx_nor

4.3.6.1 Port LevelX Framework Module Introduction

The Port LevelX Framework implements the driver APIs (sector read, sector write, block erase and
block erased verify) mandated by Azure RTOS LevelX NOR component. In addition to implementing
the LevelX NOR driver method, it is also responsible for updating the flash geometry to perform
LevelX NOR initialization. It uses the sf_memory_api implementation to perform operations on the
NOR flash.

Unsupported Features

LevelX NAND is not supported in this version of SSP.

Port LevelX Framework Module Features

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,207 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > LevelX Port Framework on sf_el_lx_nor > Port LevelX Framework Module Introduction

Implements LevelX NOR driver APIs to perform operations on NOR flash memory device.
Set up NOR flash geometry.

Figure 416: Port LevelX Framework Module Block Diagram

4.3.6.2 Port LevelX Framework Module APIs Overview

The Port LevelX Framework defines API functions to open, read from, write to and close the module.
A complete list of the available APIs, an example API call and a short description of each can be
found in the following table. A table of status return values follows the API summary table.

Port LevelX Framework Module API Summary

Function Name Example API Call and Description

SF_EL_LX_NOR_Open g_sf_el_lx_nor0.p_api->SF_EL_LX_NOR_Open(g_sf
_el_lx_nor0.p_ctrl, g_sf_el_lx_nor0.p_cfg);
Initializes lower-level driver initialization
function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,208 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > LevelX Port Framework on sf_el_lx_nor > Port LevelX Framework Module APIs Overview

SF_EL_LX_NOR_Read g_sf_el_lx_nor0.p_api->SF_EL_LX_NOR_Read(g_sf
_el_lx_nor0.p_ctrl, p_flash, p_dest, word_count);
This is responsible for reading a specific sector
in a specific block of the NOR flash. All error
checking and correcting logic is the
responsibility of this service.

SF_EL_LX_NOR_Write g_sf_el_lx_nor0.p_api->SF_EL_LX_NOR_Write(g_sf
_el_lx_nor0.p_ctrl, p_flash, p_src, word_count);
This is responsible for writing a specific sector
into a block of the NOR flash. All error checking
is the responsibility of this service.

SF_EL_LX_NOR_BlockErase g_sf_el_lx_nor0.p_api->SF_EL_LX_NOR_BlockEras
e(g_sf_el_lx_nor0.p_ctrl, block, erase_count);
This is responsible for erasing the specified block
of the NOR flash.

SF_EL_LX_NOR_BlockErasedVerify g_sf_el_lx_nor0.p_api->SF_EL_LX_NOR_BlockEras
edVerify(g_sf_el_lx_nor0.p_ctrl, block);
This is responsible for verifying that the
specified block of the NOR flash is erased.

SF_EL_LX_NOR_Close g_sf_el_lx_nor0.p_api->SF_EL_LX_NOR_Close(g_s
f_el_lx_nor0.p_ctrl);
This is responsible for closing the driver
properly.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

SSP_SUCCESS API Call Successful

SSP_ERR_ASSERTION p_ctrl or p_cfg in NULL.

SSP_ERR_ALREADY_OPEN Driver is already in OPEN state.

SSP_ERR_INVALID_ARGUMENT Requested range can't fit in the flash address
range.

SSP_ERR_NOT_OPEN Driver not in OPEN state for writing.

SSP_ERR_NOT_ERASED The block in not erased properly.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.3.6.3 Port LevelX Framework Module Operational Overview

The Port LevelX Framework is simply an abstract interface using function pointers instead of direct

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,209 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > LevelX Port Framework on sf_el_lx_nor > Port LevelX Framework Module Operational Overview

function calls. Functions are called between LevelX or FileX and the SSP memory interface
implementations such as sf_memory_qspi_nor. Memory adaptation drivers, such as
sf_memory_qspi_nor, are accessed through the Port LevelX Framework and provide device specific
code needed to perform data I/O operations.

Port LevelX Framework Module Important Operational Notes and Limitations

Port LevelX Framework Module Operational Notes

None.

Port LevelX Framework Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for this module.

4.3.6.4 Including the Port LevelX Framework Module in an Application

This section describes how to include the Port LevelX Framework Module in an application using the
SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the Port LevelX Framework to an application, simply add it to a thread using the stacks
selection sequence given in the following table. (The default name for the Port LevelX Framework is
g_sf_el_lx_nor0. This name can be changed in the associated Properties window.)

Port LevelX Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_el_lx_nor0 Port LevelX
Framework on sf_el_lx_nor

Threads New Stack> Framework>
LevelX> Port LevelX
Framework on sf_el_lx_nor

When the Port LevelX Framework on sf_el_lx_nor is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,210 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > LevelX Port Framework on sf_el_lx_nor > Including the Port LevelX Framework Module in an Application

Figure 417: Port LevelX Framework Module Stack

4.3.6.5 Configuring the Port LevelX Framework Module

The Port LevelX Framework Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the Port LevelX Framework Module on sf_el_lx_nor

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_sf_el_lx_nor0 Module name.

Event Callback NULL Name of the function to call
when an event occurs.

Memory Partition Size Unit in
(KB/MB)

Kilobyte (KB), Megabyte (MB)

Default: Kilobyte (KB)

The units of memory.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,211 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > LevelX Port Framework on sf_el_lx_nor > Configuring the Port LevelX Framework Module

Memory Partition Size Positive Integer Number

Default: 0

Size of the NOR Flash partition
region.

Memory Partition Start
Address(in hex format)

Positive Integer Number in Hex

Default: 0x00000000

The starting address of the
partition region.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Family. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Port LevelX Framework Lower-Level Modules

Typically, only a small number of settings must be modified from the default for lower level drivers
as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and will be locked to
prevent user modification. The following tables identify all the settings within the properties section
for the module.

Configuration Settings for the Memory Framework on sf_memory_qspi_nor

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_sf_memory_qspi_nor0 Module name.

Write of Erase Timeout (in ticks) 30000 Timeout ticks for waiting on
write or erase to complete.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Family. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the QSPI HAL Module on r_qspi

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled
Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_qspi0 Module name.

Addressing Mode 3-BYTE, 4-BYTE
Default: 3-BYTE

Addressing modes of flash
memory
For memory > 16 MB, 4-Byte
addressing mode should be
selected

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Family. Other MCUs may have

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,212 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > LevelX Port Framework on sf_el_lx_nor > Configuring the Port LevelX Framework Module

different default values and available configuration settings.

Port LevelX Framework Module Clock Configuration

The Port LevelX Framework module uses the QSPI peripheral which uses PCLKA as its clock source.

To change the clock frequency at run-time, use the CGC Interface.

Port LevelX Framework Module Pin Configuration

To use the Port LevelX Framework module, the port pins for the QSPI peripheral must be set as
needed. The following table illustrates the method for selecting the pins within the ISDE
configuration window:

Pin Selection for the Memory Framework Module on sf_memory_qspi_nor

Resource ISDE Tab Pin selection Sequence

QSPI Pins Select Peripherals>
Storage:QSPI QSPI0

4.3.6.6 Using the Port LevelX Framework Module in an Application

The typical steps in using the Port LevelX Framework module in an application are:

1. Initialize the module using the lx_nor_flash_initialize API function (g_common_init calls it
automatically).

2. Open the module for I/O operations using the LevelX NOR API function SF_EL_LX_NOR_Open (if
using with FileX fx_media_open opens the media automatically).

3. Read the media as required using the SF_EL_LX_NOR_Read API function (lx_nor_flash_sector_read
calls this automatically).

4. Write to media as required using the SF_EL_LX_NOR_Write API function (lx_nor_flash_sector_write
calls this automatically).

5. A block can be erased using the SF_EL_LX_NOR_BlockErase API function.

6. A block can be verified whether it is erase or not using the SF_EL_LX_NOR_BlockErasedVerify API
function.

Note
After a successful SF_EL_LX_NOR_Open call, all LevelX NOR APIs can be used, not only read and write.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,213 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > LevelX Port Framework on sf_el_lx_nor > Using the Port LevelX Framework Module in an Application

Figure 418: Flow Diagram of a Typical Port LevelX Framework Module Application

4.3.7 NetX Port Ether

4.3.7.1 NetX Port Ether Module Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,214 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Ether > NetX Port Ether Module Introduction

The Azure RTOS NetX Port Ether module (sf_el_nx) for NetX and NetX Duo is integrated into the SSP.
Its function is to interface the NetX and NetX Duo software with the Synergy hardware. This module
includes the MAC driver, the PHY driver, additional glue logic and utility functions.

Note
Unless otherwise stated, there is no difference in how this module works between NetX or NetX Duo projects.

NetX Port Ether Module Features

High-level interface for NetX and NetX Duo for the Synergy Platform
Channel Selection
PHY Reset support
Static MAC Address configuration
Dynamic MAC Address configuration
Callbacks are provided for unknown packet reception
Selectable Ethernet Interrupt Priority
Link status monitoring support
Configurable Number of Receive/Transmit Buffer Descriptors
Supports the use of an external PHY chip

Figure 419: NetX Port Ether Module Block Diagram

4.3.7.2 NetX Port Ether Module APIs Overview

The NetX Port Ether module has a narrow API, used internally by NetX and by the module itself. It
includes the Ethernet driver entry point (nx_ether_driver_eth0, nx_ether_driver_eth1), the Ethernet
interrupt handler and other functions used internally by the module but externally visible.

4.3.7.3 NetX Port Ether Module Operational Overview

The NetX Port Ether module is a high-performance real-time implementation of the NetX Ethernet
driver for the Renesas Synergy software and Synergy Ethernet IP.

Note
NetX assumes the existence of ThreadX and depends on its thread execution, suspension, periodic timers and
mutual exclusion facilities.

Each IP instance in NetX has a primary interface which is identified by its device driver specified in
the nx_ip_create service. The network driver is responsible for handling various NetX requests,
including packet transmission, packet reception, and requests for status and control.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,215 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Ether > NetX Port Ether Module Operational Overview

For a multi-home system, the IP instance can be configured for multiple interfaces, each with an
associated network driver that performs these tasks for the respective interface. The network driver
must also handle asynchronous events occurring on the media. Asynchronous events from the media
include packet reception, packet transmission completion, and status changes. NetX provides the
network driver with several access functions to handle various events. These functions are designed
to be called from the interrupt service routine portion of the network driver. For IP networks, the
network driver should forward all ARP packets received to the nx_arp_packet_deferred_receive
internal function. All RARP packets should be forwarded to nx_rarp_packet_deferred_receive internal
function. There are two options for IP packets:

If fast dispatch of IP packets is required, incoming IP packets are forwarded to nx_ip_packet_receive
for immediate processing; this greatly improves NetX performance in handling IP packets. Otherwise,
IP packets are forwarded to nx_ip_packet_deferred_receive. This service places the IP packet in the
deferred processing queue where it is then handled by the internal IP thread, which results in the
least amount of ISR processing time.

The network driver can also defer interrupt processing to run out of the context of the IP thread. In
this mode, the ISR shall save the necessary information, call the internal function
nx_ip_driver_deferred_processing, and acknowledge the interrupt controller. This service notifies IP
thread to schedule a callback to the network driver to complete the process of the event that causes
the interrupt.

Key Configuration Property Settings:

Multi-Channel

Multi-Channel determines which interface the ethernet driver is applied to. It may need to be
modified from the default value of zero. See Section 5 "Configuring the NetX Port Ether".

Channel 0/1 Phy Reset Pin

PHY reset is supported through I/O port pins. This property depends on the value of the Channel
property above.

Note
For different Synergy Kits different I/O PINs are being utilized, for this purpose it may need to be modified from
the default value.

Static MAC Address Configuration

These properties set the device MAC address on the respective channel interface at compile time.
To set the MAC address at run time, see the description of the Dynamic MAC Address Configuration
callback property below.

Dynamic MAC Address Configuration

This property defines the user defined callback function which sets MAC address at runtime (network
link initialization). The default value is NULL and the MAC address is assigned using the Channel MAC
Address High/Low Bits settings.

Unknown Ethernet Packet Receive Callback

This property configures callback for letting user process unsupported/custom EtherType packets.

This call-back can be used in conjugation with nx_ether_custom_packet_send Ethernet API to send

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,216 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Ether > NetX Port Ether Module Operational Overview

and receive custom Ethernet packet types.

Name

This property names the instance of the NetX Port Ether driver. For an IP instance configured with
multiple network interfaces, the application must add an instance of the driver and give it a unique
name (or compile errors will result). The default name is g_sf_el_nx.

Ethernet Interrupt Priority

This property sets the driver interrupt priority. The default value is disabled. The dropdown list
indicates valid and invalid priorities depending on the MCU target.

Link Status Monitoring

This property lets user choose link status monitoring method. There two options available: PHY
Polling and PHY Interrupt (Uses LINKSTA Pin).

PHY polling utilizes an internal monitoring thread for auto negotiation to notify user when link is lost
or established.

PHY Interrupt method requires PHY status pin to be connected to LINKSTA pin of Ethernet controller
and utilize Ethernet interrupt to notify user when link is lost or established.

This notification though happens through the callback registered with IP instance.

Number of Receive/Transmit Buffer Descriptors

These properties set the number of buffer descriptors (BDs) for receiving and transmitting packets.
When the Receive BDs are initialized, the driver allocates a packet for each BD. Therefore, the
number of receive BDs should not deplete the IP instance packet pool from which it allocates
packets.

The NetX Port Ether driver supports packet chaining for both receiving and transmitting packets
(where packets are chained in the application layer). If a packet is received on the network that
exceeds the size of the IP default packet pool payload, the driver can allocate additional packets and
process the incoming packet as a packet chain.

Parameter Checking

This is low level error checking for each component of the project hardware layer. By default, it is set
to Default (BSP) which means this property inherits the same property in the BSP.

NetX Port Ether Module Important Operational Notes and Limitations

NetX Port Ether Module Operational Notes

NetX Source Properties

There are two ways to modify NetX source properties- using the source code property directly in the
source element or defining the source code symbol directly. For example, to change the number of
physical network interfaces, one can either set the Maximum Physical Interfaces property in the NetX
Source or NetX Duo Source element, or one can define the source code symbol
NX_MAX_PHYSICAL_INTERFACES directly. In either case, it is still necessary to include the NetX and
NetX Duo Source component, generate the project files and to rebuild the NetX library.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,217 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Ether > NetX Port Ether Module Operational Overview

TCP Options Field Parameters

Maximum Segment Size

The Maximum Segment Size (MSS) is the maximum amount of bytes a TCP host can receive without
being fragmented by the underlying IP layer. During TCP connection establishment phase, both ends
exchanges its own TCP MSS value, so that the sender does not send a TCP data segment that is
larger than the receiver's MSS. NetX TCP module will optionally validate its peer's advertised MSS
value before establishing a connection. By default NetX does not enable such a check.

The nx_tcp_socket_mss_set() API sets a specified socket's Maximum Segment Size (MSS). The MSS
value must be within the network interface IP Maximum Transfer Unit (MTU), allowing room for IP
and TCP headers. This service should be used before a TCP socket starts the connection process. If
the service is used after a TCP connection is established, the new value has no effect on the
connection. To retrieve the MSS value use the nx_tcp_socket_mss_get() API after the TCP connection
is established.

Using the External PHY with the NetX Port Ether Module

The NetX Port Ether Module can be used along with an external PHY chip, other than the on-board
Micrel PHY chip (KSZ8081 and KSZ8091) found on Synergy Platform Kits. The following steps need to
be performed to use a different external PHY chip:

1. Remove or undefine the macro BSP_BOARD_PHY_KSZ8081 or BSP_BOARD_PHY_KSZ8091 in
the board BSP file (Example: For the S7G2_DK board, the BSP file is located
in synergy/board/s7g2_dk/bsp_ethernet_phy.h).

2. Implement a new PHY driver for the specific PHY chip..Implement the functions defined in
the interface file synergy/ssp/inc/framework/instances/sf_el_nx.h

3. Build and run the application

Note
 The above steps also apply to existing projects using an external PHY.

Additional Information

Refer to the NetX User Guide for the Renesas Synergy™ Platform and NetX Duo User Guide for the
Renesas Synergy™ Platform for additionaloperational details.

NetX Port Ether Module Limitations

Refer to the latest SSP Release Notes for any additional operational limitations for this module.

4.3.7.4 Including the NetX Port Ether Module in an Application

This section describes how to include the NetX Port Ether Module in an application using the SSP
configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of
the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

The NetX Port Ether Framework is used as a lower level module and is not available to add as a
separate stack. An example is illustrated in the following figure where a module must be selected to
Add NetX Network Driver. The following figure shows the selection of the NetX Port Ether Framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,218 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Ether > Including the NetX Port Ether Module in an Application

to complete the stack for the module.

Figure 420: NetX Port Ether Module Stack

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,219 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Ether > Including the NetX Port Ether Module in an Application

Figure 421: NetX Port Ether Module Stack

4.3.7.5 Configuring the NetX Port Ether Module

The NetX Port Ether Module must be configured by the user for the desired operation. The available
configuration settings and defaults for all the user-accessible properties are given in the properties
tab within the SSP configurator and are shown in the following tables for easy reference. Only
properties that can be changed without causing conflicts are available for modification. Other
properties are locked and not available for changes and are identified with a lock icon for the locked
property in the Properties window in the ISDE. This approach simplifies the configuration process and
makes it much less error-prone than previous manual approaches to configuration. The available
configuration settings and defaults for all the user-accessible properties are given in the Properties
tab within the SSP Configurator and are shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX Port Ether Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
checking.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,220 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Ether > Configuring the NetX Port Ether Module

Channel 0 Phy Reset Pin IOPORT_PORT_09_PIN_03 Channel 0 Phy reset pin
selection.

Channel 0 MAC Address High
Bits

0x00002E09 Channel 0 MAC address high
bits selection.

Channel 0 MAC Address Low
Bits

0x0A0076C7 Channel 0 MAC address low bits
selection.

Channel 1 Phy Reset Pin IOPORT_PORT_07_PIN_06 Channel 1 Phy reset pin
selection.

Channel 1 MAC Address High
Bits

0x00002E09 Channel 1 MAC address high
bits selection.

Channel 1 MAC Address Low
Bits

0x0A0076C8 Channel 1 MAC address low bits
selection.

Number of Receive Buffer
Descriptors

8 Number of receive buffer
descriptors selection.

Number of Transmit Buffer
Descriptors

32 Number of transmit buffer
descriptors selection.

Ethernet Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 lowest - not
valid if using ThreadX)

Default: Priority 12

Ethernet interrupt priority
selection.

Link status monitoring method PHY Interrupt (Uses LINKSTA
Pin), PHY Polling

Default: PHY Polling

PHY interrupt requires LINKSTA
Pin connection to PHY.

Name g_sf_el_nx Module name.

Channel 0 Channel selection.

MAC address change callback NULL MAC address change callback
selection.

Unknown packet receive
callback

NULL Unknown packet receive
callback selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Family. Other MCUs may have
different default values and available configuration settings.

4.3.7.6 Using the NetX Port Ether Module in an Application

The NetX Port Ether Module should be used in combination with NetX. Examples illustrating the
modules use in an implementation for Auto-IP protocol use follow. Other protocols will follow a similar
use flow. The steps performed by the Synergy Software Package (SSP) automatically in a NetX
application support are:

1. Initialize the system with nx_system_initialize.
2. Create a packet pool with nx_packet_pool_create. This creates the IP default packet pool,

to be used by the IP instance and the ethernet driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,221 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Ether > Using the NetX Port Ether Module in an Application

3. Create an IP Instance with nx_ip_create.
4. Enable ARP with nx_arp_enable.
5. Enable Link status change notify call back with nx_ip_link_status_change_notify_set.
6. Set gateway IP address for created IP instance nx_ip_gateway_address_set.
7. Create an AutoIP instance with nx_auto_ip_create.

The following steps are performed directly by the application to set up and run the Auto IP thread
task.

1. Check if the network link is enabled with the nx_ip_interface_status_check API.
2. Verify the device does not have an IP address by calling the nx_ip_interface_address_get

API.
3. Set the IP addreess notification callback by calling the nx_ip_address_change_notify API.
4. Start the Auto IP instance with the nx_auto_ip_start API.
5. Wait for the IP address change callback to set the flag that the IP instance has an IP

address.
6. Stop the AutoIP task by calling the nx_auto_ip_stop API.
7. Verify the IP instance has a non-zero IP address by calling the nx_ip_interface_address_get

API again.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,222 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Ether > Using the NetX Port Ether Module in an Application

Figure 422: Flow Diagram of a Typical NetX Port Ether Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,223 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP

4.3.8 NetX Port Using PPP

4.3.8.1 NetX Port Using PPP Module Introduction

The Azure RTOS NetX Port PPP module (nx_ppp) for NetX and NetX Duo is integrated into the SSP. Its
function is to interface the NetX and NetX Duo software with the Synergy hardware. Point-to-Point
Protocol (PPP) is a data link layer (layer 2) communication between two directly connected (point to
point) devices. It can provide data transmission, authentication, and encryption functionality.

NetX Port Using PPP Module Features

High-level interface for NetX and NetX Duo for the Renesas SynergyTM Platform
CHAP authentication support
PAP authentication support
IPCP response support
Handler provided for invalid packets

Figure 423: NetX Port Using PPP Module Block Diagram

4.3.8.2 NetX Port Using PPP Module APIs Overview

The NetX Port using PPP Module defines APIs for creating, authentication and assigns addresses. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

NetX/NetX Duo Port using PPP Module API Summary

Function Name Example API Call and Description

nx_ppp_create nx_ppp_create(&ppp_ptr, name, &ip_ptr,
stack_memory_ptr, stack_size, thread_priority,
&pool_ptr, ppp_non_ppp_packet_handler,
ppp_byte_send);
Creates PPP instance for given IP instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,224 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP > NetX Port Using PPP Module APIs Overview

nx_ppp_dns_address_set nx_ppp_dns_address_set(&ppp_ptr,&
dns_address);
Sets the primary DNS address for the PPP
device.

nx_ppp_secondary_dns_address_set nx_ppp_secondary_dns_address_set(&ppp_ptr,
&secondary_dns_address);
Sets secondary DNS address for the PPP device.

nx_ppp_ip_address_assign nx_ppp_ip_address_assign(&ppp_ptr,
local_ip_address, peer_ip_address);
Assigns Local and Peer IP address.

nx_ppp_link_down_notify nx_ppp_link_down_notify(&ppp_ instance,
link_down_callback);
Registers a callback for link down event.

nx_ppp_link_up_notify nx_ppp_link_up_notify(&ppp_instance,
link_up_callback);
Registers a callback for link up event.

nx_ppp_nak_authentication_notify nx_ppp_nak_authentication_notify(&ppp_ptr,
nak_auth_callback);
Registers a callback for authentication NAK
received from peer.

nx_ppp_chap_enable nx_ppp_chap_enable(&ppp_instance,
get_challenge_values, get_responder_values,
get_verification_values);
Enables CHAP authentication for given PPP
instance.

nx_ppp_pap_enable nx_ppp_pap_enable(&ppp_instance,
generate_login, verify_login);
Enables PAP authentication for given PPP
instance.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API
structures, and function variables, review the associated Azure RTOS User's Manual in the References section.

Status Return Values

Name Description

NX_SUCCESS Valid PPP pointer.

NX_PTR_ERROR Invalid pointer input.

NX_CALLER_ERROR Invalid caller of this service.

NX_NOT_IMPLEMENTED PAP logic was disabled via NX_PPP_DISABLE_PAP.
CHAP logic was disabled via
NX_PPP_DISABLE_CHAP.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,225 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP > NetX Port Using PPP Module APIs Overview

These are error codes which are only returned if error checking is enabled. Refer to the NetX User
Guide for the Renesas Synergy™ Platform or NetX Duo User's Guide for the Renesas Synergy™
Platform for more details on error-checking services in NetX and NetX Duo, respectively.

4.3.8.3 NetX Port Using PPP Module Operational Overview

The NetX PPP package requires the application to provide a serial communication driver. The driver
must support 8-bit characters and may also employ software flow control. It is the application’s
responsibility to initialize the driver, which should be done prior to creating the PPP instance. In order
to send PPP packets, a serial driver output byte routine must be provided to PPP (specified in the
nx_ppp_create function). This serial driver byte output routine will be called repetitively in order to
transmit the entire PPP packet. It is the serial driver’s responsibility to buffer the output. On the
receive side, the application’s serial driver must call the PPP nx_ppp_byte_receive function whenever
a new byte arrives. This is typically done from within the context of an Interrupt Service
Routine(ISR). The nx_ppp_byte_receive function places the incoming byte into a circular buffer and
alerts the PPP receive thread of its presence.

NetX Port Using PPP Module Important Operational Notes and Limitations

NetX Port Using PPP Module Operational Notes

If a modem is required for connection to the internet, some special considerations are required in
order to use PPP. Basically, using a modem introduces additional initialization logic and logic for loss
of communication. In addition, most of the additional modem logic is done outside the context of
NetX PPP. The basic flow of using the NetX PPP with a modem is:

1. Initialize the Modem
2. Dial Internet Service Provider (ISP)
3. Wait for Connection
4. Wait for UserID Prompt
5. Start NetX PPP [PPP in operation]
6. Loss of Communication
7. Stop NetX PPP (or restart via nx_ppp_restart)

Additional Information

Refer to the NetX User Guide for the Renesas Synergy™ Platform and NetX Duo User Guide for the
Renesas Synergy™ Platform for additional operational details.

NetX Port Using PPP Module Limitations

No PPP Client XML support as it may not be useful.
Current XML supports only PPP and not PPPoE.
sf_comms_telnet, sf_ux_comms_v2 are not supported.

Refer to the latest SSP Release Notes for any additional operational limitations for this module.

4.3.8.4 Including the NetX Port Using PPP Module in an Application

This section describes how to include either or both NetX/NetX Duo Port using PPP module in an
application using the SSP configurator.

Note
This section assumes you are familiar with creating a project, adding threads, adding a stack to a thread and
configuring a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,226 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP > Including the NetX Port Using PPP Module in an Application

the SSP User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo Port using PPP module to an application, simply add it to a thread using
the stacks selection sequence given in the following table.

The NetX Port using PPP Framework is used as a lower level module and is not available to add as
a separate stack. An example is illustrated in the following figure where a module must be selected
to Add NetX Network Driver. The following figure shows the selection of the NetX Port using PPP
Framework to complete the stack for the module.

NetX/NetX Duo Port Using PPP Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_nx_ppp0 NetX Port on nx_ppp Threads New Stack> X-Ware> NetX>
NetX IP Instance

g_nxd_ppp0 NetX Duo Port on
nxd_ppp

Threads New Stack> X-Ware> NetX
Duo> NetX Duo Instance

Figure 424: NetX Port Using PPP Module Stack

4.3.8.5 Configuring the NetX Port Using PPP Module

The NetX Port using PPP Module must be configured by the user for the desired operation. The
available configuration settings and defaults for all the user-accessible properties are given in the
properties tab within the SSP configurator and are shown in the following tables for easy reference.
Only properties that can be changed without causing conflicts are available for modification.
Other properties are locked and not available for changes and are identified with a lock icon for the
locked property in the Properties window in the ISDE. This approach simplifies the configuration
process and makes it much less error-prone than previous manual approaches to configuration. The
available configuration settings and defaults for all the user-accessible properties are given in the
Properties tab within the SSP Configurator and are shown in the following tables for easy reference.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,227 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP > Configuring the NetX Port Using PPP Module

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table settings. This will help orient you and can be a useful 'hands-on' approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX Port using PPP Module

ISDE Property Value Description

CHAP authentication support Enable, Disable
Default: Enable

CHAP authentication selection.

PAP authentication support Enable, Disable
Default: Enable

PAP authentication selection.

DNS Option in IPCP response
support

Enable, Disable
Default: Enable

IPCP response selection.

Maximum DNS address request
retires from the peer

2 Specifies the maximum number
of DNS address request retries
from the peer.

Data packet allocation timeout
(seconds)

4 Timeout for data packet
allocation.

Retry interval (seconds) 1 Specifies interval in seconds to
wait before processing.

Maximum retries for
reallocating packet

4 Specifies the maximum number
of retries for reallocating
packet.

Maximum retries for protocol
request response

4 Specifies the maximum number
of retries for protocol request
response.

Maximum retries for LCP
configure request

20 Specifies the maximum number
of retries for LCP configure
request.

Maximum retries for PAP
authentication request

20 Specifies the maximum number
of retries for PAP configure
request.

Maximum retries for CHAP
challenge message

20 Specifies the maximum number
of retries for CHAP challenge
message.

Maximum retries for IPCP
configure request

20 Specifies the maximum number
of retries for IPCP configure
request.

Name g_nx_ppp0 Name of PPP instance.

Internal thread priority 2 Internal thread
priority selection.

Internal thread stack size
(bytes)

2048 Thread Stack Size(bytes)
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,228 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP > Configuring the NetX Port Using PPP Module

Read thread priority 10 Thread Priority selection.

Peer IPV4 Address 192.168.0.111 IPv4 Address selection.

Name of invalid packet handler
function

invalid_packet_handler Name of invalid packet handler
function selection.

Name of generated initialization
function

nx_ppp_init0 Name of generated
initialization function selection.

Auto initialization Enable, Disable
Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Port Using PPP Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

0,0,0,0 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection.

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,229 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP > Configuring the NetX Port Using PPP Module

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Link status change callback NULL Link status change callback
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,230 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP > Configuring the NetX Port Using PPP Module

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the UART Communications Framework Module on
sf_uart_comms

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if parameter checking is
included.

Read Input Queue Size (4-Byte
Words)

15 Buffer size for data reception
queue. sf_uart_comms utilizes
the ThreadX Queue for the
queue management.

Name g_sf_comms0 Name of UART communications
framework module.

Name of generated initialization
function

sf_comms_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the UART HAL Module on r_sci_uart

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,231 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP > Configuring the NetX Port Using PPP Module

External RTS Operation Enable, Disable

Default: Disable

Enable an IOPORT pin to be
used as RTS signal. For RTS
functionality set this
configuration parameter to
Enable and specify the
configuration Name of UART
callback function for the
RTS external pin control.

Reception Enable, Disable

Default: Enable

Enable or disable UART
reception for all UART channels
on SCI. Setting this
configuration parameter to
Disable reduces code size
because the portion of code for
UART reception is not compiled.
You cannot set this parameter
for individual UART channels.

Transmission Enable, Disable

Default: Enable

Enable or disable UART
transmission for all UART
channels on SCI. Setting
Disable to this configuration
allows to get smaller code size
due to the portion of code for
UART transmission is compiled
out, however, you can only set
Disable to this configuration if
any other SCI channels which
work as UART ports do not
perform the transmission.

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Enable or disable the parameter
error checking.

Name g_uart0 The name to be used for UART
on SCI module control block
instance. This name is also
used as the prefix of the other
variable instances.

Channel 0 SCI channel number.

Baud Rate 9600 Baud rate selection.

Data Bits 7 bits, 8, bits, 9 bits

Default: 8 bits

UART data bits.

Parity None, Odd, Even

Default: None

UART parity bits.

Stop Bits 1 bit, 2 bits

Default: 1 bit

UART stop bits.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,232 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP > Configuring the NetX Port Using PPP Module

CTS/RTS Selection CTS (Note that RTS is available
when enabling External RTS
Operation mode which uses 1
GPIO pin), RTS (CTS is disabled)

Default: RTS (CTS is disabled)

Select CTS or RTS for the
CTSn/RTSn pin of SCI channel n.
The SCI hardware supports
either the CTS or the RTS
control signal on this pin but
not both. For an application
that uses both CTS and RTS,
select CTS for this
configuration parameter and
enable the configuration
External RTS Operation
specifying the configuration
Name of UART callback
function for the RTS
external pin control.

Name of UART callback function
to be defined by user

NULL Name must be a valid C
symbol.

Name of UART callback function
for the RTS external pin control
to be defined by user

NULL Name must be a valid C
symbol.

Clock Source Internal Clock, External Clock
8x baudrate, External Clock 16x
baudrate

Default: Internal Clock

Selection of the clock source to
be used in the baud-rate clock
generator block.

Baudrate Clock Output from
SCK pin

Enable, Disable

Defaualt: Disable

Optional setting to output the
baud-rate clock on the SCKn pin
for the selected channel n.

Start bit detection Fallling Edge, Low Level

Default: Falling Edge

Start bit detection mode in the
reception; usually set Falling
Edge to this configuration.

Noise Cancel Enable, Disable

Defaualt: Disable

Enable the digital noise
cancellation on RXDn pin. The
digital noise filter block in SCI
consists of two-stage flip-flop
circuits. For detail, refer to the
Noise cancellation section in
the Renesas SynergyTM

hardware manual.

Bit Rate Modulation Enable Enable, Disable

Defaualt: Enable

Bit rate modulation enable
selection.

Receive FIFO Trigger Level One, Max

Default: Max

Receive FIFO trigger level
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,233 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP > Configuring the NetX Port Using PPP Module

Receive Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Receive interrupt priority
selection.

Transmit Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Transmit interrupt priority
selecition.

Transmit End Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Priority 12

Transmit end interrupt priority
selection.

Error Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

Error interrupt priority
selection.

Baud rate Percent Error Value must be greater than 0.0
and less than 15.0

Default; 2.0

Maximum baudrate percent
error allowed in order for the
module to function.

UART Communication Mode RS232, RS485

Default: RS232

UART communication mode
selection, usually it is RS232
mode.

.UART RS485 Communication
Mode

Half Duplex, Full Duplex

Default: Half duplex

UART RS485 communication
mode selection as half duplex
or full duplex.

RS485 DE Port 00 to 11

Default: 09

Select the port number of
Driver Enable pin.

RS485 DE Pin 00 to 15

Default: 14

Select the pin number of Driver
Enable pin.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 TXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,234 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP > Configuring the NetX Port Using PPP Module

Software Start Enabled, Disabled

Defaualt: Disabled

Software start selection.

Linker section to keep DTC
vector table

.ssp_dtc_vector_table Linker section to keep DTC
vector table.

Name g_transfer0 Module name.

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Fixed Destination address mode
selection.

Source Address Mode Incremented Source address mode selection.

Repeat Area (Unused in Normal
Mode

Source Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SCI0 TXI Activation source selection.

Auto Enable FALSE Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dtc Event SCI0 RXI

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Name g_transfer1 Module name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,235 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP > Configuring the NetX Port Using PPP Module

Mode Normal Mode selection.

Transfer Size 1 Byte Transfer size selection.

Destination Address Mode Incremented Destination address mode
selection.

Source Address Mode Fixed Source address mode selection.

Repeat Area (Unused in Normal
Mode

Destination Repeat area selection.

Interrupt Frequency After all transfers have
completed

Interrupt frequency selection.

Destination Pointer NULL Destination pointer selection.

Source Pointer NULL Source pointer selection.

Number of Transfers 0 Number of transfers selection.

Number of Blocks (Valid only in
Block Mode)

0 Number of blocks selection.

Activation Source (Must enable
IRQ)

Event SPI0 RXI Activation source selection.

Auto Enable FALSE Auto enable selection.

Callback (Only valid with
Software start)

NULL Callback selection.

ELC Software Event Interrupt
Priority

Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX)

Default: Disabled

ELC Software Event interrupt
priority selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

4.3.8.6 Using the NetX Port Using PPP Module in an Application

The steps in using the NetX/NetX Duo Port using PPP module in a typical application are:

Auto Generated code to initialize NetX and NetX Duo Port using PPP in the
Application (common_data.c)

Create Packet pool using the nx_packet_pool_create API
Create PPP using nx_ppp_create API
Define IP address using the nx_ppp_ip_address_assign API
Create IP instance using nx_ip_create() API
Enable ARP using the nx_arp_enable API
Enable TCP using the nx_tcp_enable API
Enable UDP using the nx_udp_enable API
Enable ICMP using the nx_icmp_enable API
Enable IGMP using the nx_igmp_enable API

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,236 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Port Using PPP > Using the NetX Port Using PPP Module in an Application

User Application Code (<thread>_entry.c)

Call Link-up callback nx_ppp_link_up_notify() function (optional)
Call Link-down callback nx_ppp_link_down_notify() (optional)
Enable PAP using nx_ppp_pap_enable() API (optional)
Wait for IP status check using nx_ip_status_check().
Check IP and new mask assigned using nx_ip_interface_address_get().
Wait till link is established using nx_ppp_status_get().
Ping the client IP address to check the PPP connection using nx_icmp_ping().

4.3.9 NetX/NetX Duo Source

4.3.9.1 NetX and NetX Duo Source Module Introduction

TheNetX™ and NetX Duo™ source modules allow the developer to modify some of the key properties
that control NetX operations. Adding the NetX or NetX Duo source component enables you in the
Synergy configurator environment to customize the NetX and NetX Duo libraries, change values from
default settings, and enable or disable certain features. Otherwise they must use the prebuilt NetX or
NetX Duo library. In most projects beyond simple socket programs, you will typically want to
customize their NetX or NetX Duo environment. Note that the ThreadX® source component is
automatically added when adding a NetX or NetX Duo source component.

Without adding the NetX or NetX Duo source component, the Synergy ISDE configurator will use a
prebuilt library with NetX and NetX Duo default settings.

4.3.9.2 NetX and NetX Duo Source Module APIs Overview

There are no APIs associated with the NetX or NetX Duo source module. This module is used to
configure various NetX or NetX Duo properties.INote: Lower level drivers may return Common Error
Codes. Refer to the SSP User's Manual, API References for the associated module for a definition of
all relevant status return values.

4.3.9.3 NetX and NetX Duo Source Module Operational Overview

Using the NetX or NetX Duo source module is a bit different than using other SSP modules. The NetX
or NetX Duo source module is used to configure networking operations; it doesn't provide API
functions, callbacks or other typical module functions. There is no typical operational overview of the
NetX or NetX Duo module. Refer to the NetX User's Manual, available from the Synergy Gallery for
the operational details of NetX.

Using TraceX with NetX and NetX Duo

If TraceX is enabled in the ThreadX source component, it is automatically included when adding NetX
or NetX Duo source components. The project containing the ThreadX and NetX, or NetX Duo library
must be rebuilt. Otherwise the TraceX macros that log events will not be executed.

4.3.9.4 Including the NetX and NetX Duo Source Module in an Application

A network project generated in the e2 studio configurator will automatically include an object Add

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,237 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Source > Including the NetX and NetX Duo Source Module in an Application

NetX Source.

Figure 425: NetX and NetX Duo Source Module Stack

 To add the NetX or NetX Duo source component to a project, click on the Add NetX Source (optional)
or Add NetX Duo Source (optional) object) for NetX Duo in the e2 studio configurator and choose
New. If there are multiple Add NetX Source boxes, all of them will be updated automatically. Note
that a ThreadX source component is added automatically.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,238 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Source > Including the NetX and NetX Duo Source Module in an Application

Figure 426: NetX and NetX Duo Source with ThreadX Source Stack

4.3.9.5 Configuring the NetX and NetX Duo Source Module

The list of properties below may not match the order of the NetX or NetX Duo property table. They
are grouped according to general categories; ARP, TCP and IGMP for easier reference.

NetX or NetX Duo Source Module Configurable Properties

This section describes the configurable properties available to the NetX or NetX Duo source module
and in what cases they can be changed from the default values to customize NetX or NetX Duo
operations.

Note
After changing NetX and NetX Duo property settings, the developer must click on the Generate Project Content
button to update the project configurator in the ISDE. Then the NetX or NetX Duo library must rebuild the project.
Changing a property (or applying a #define in the preprocessor list) without rebuilding the project will not affect
any change. The Synergy™ Software Package (SSP) ISDE will use the previously built library.

NetX or NetX Duo Properties Notes

These are some important notes that need to be understood by the developer before diving into the
details of the large number of properties available for the NetX or Net Duo source module.

Default Settings. Most default settings are derived from RFC recommendations for the protocol
relevant to the property.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,239 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Source > Configuring the NetX and NetX Duo Source Module

IP Helper Thread Stack Size (bytes) – default value 1024. This is the stack size of the IP thread
task which processes application NetX API calls, periodic events and deferred ISR events; packets
received. There are some cases where a larger stack size will be required. Optimal stack size is
usually determined empirically for an individual application.

IP fragmentation – default value enabled. To enable/disable fragmentation use the NetX/NetX
Duo Source Fragmentation Option property. This property in the IP instance component is being
deprecated.

__IP Helper Thread Priority – default value 3.__ This is the priority at which the IP thread task
operates. Under some circumstances it might work best to increase this to 1 (highest valid priority).
For example, if there are multiple network application thread tasks (DNS, HTTP, DHCP) in a project,
then an IP helper thread at a higher priority (higher than network application threads) can service all
network operations with higher priority, effectively improving responsiveness of the application
thread tasks.

IP Layer Properties

Error Checking – default value enabled. It is generally enabled during development and
debugging phase, and disabled when building a release version. When enabled, the NetX and NetX
Duo include error checking services that will checks input and other parameters before calling the
actual API. Some of the things it checks for are:

NULL pointer input
Invalid non-pointer parameters, such as an invalid IP address type or IP address equal to
zero.
Required configurable option must be enabled e.g. TCP must be enabled to use the
nx_tcp_socket_receive API.
The NetX or NetX Duo data structure IDs must match what is expected:

ip_ptr -> nx_ip_id == NX_IP_ID /* check the IP instance structure */

Size of the data structure; the IP instance, matches the size of the data structure in the
NetX library.

These last two checks guard against an application using a different version of the NetX or NetX Duo
library than the application is using.

Static Routing – default value disabled allows certain destinations to be routed through a
specific router. Normally a packet being transmitted is routed through the IP instance
gateway/router as the next hop. When static routing is enabled, NetX checks the static routing table
to determine if a packet's next hop address should go through a specific router rather than the IP
instance gateway. The static routing table is limited to NX_IP_ROUTING_TABLE_SIZE entries, and
there are various API such as nx_ip_static_route_add for managing the routing table. This is not
commonly used but there are certain situations where it is necessary.

Physical Header and Physical Trailer – default value 16 and 4 bytes respectively: the type
of network medium determines the physical (sometimes referred to as frame) header. An Ethernet
network has a header of size 16 bytes. Wi-Fi has a larger header. The physical trailer is currently not
being used for Ethernet but may need to be configured, depending on the physical network being
used by the application. If the physical header is not set correctly, packets will not be assembled and
most NetX packet send and receive services will not function correctly.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,240 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Source > Configuring the NetX and NetX Duo Source Module

Maximum Listen Requests – default value 10 – This value is used by the TCP server applications
to define the TCP listen queue size. When a TCP server socket binds a port (using the
nx_tcp_server_socket_listen API), it requests a listen request on the IP instance. When it unlistens on
that port, (using the nx_tcp_server_socket_unlisten API) the listen request is released, and the port is
available to listen by another socket. This default value is not usually changed.

Driver Deferred Processing – default value Enabled – this feature enables the IP thread task to
defer handling of the packet receive interrupts to the context of the IP thread task. Otherwise a
packet receive event is handled in the context of the interrupt. This might lead to faster response to
a specific packet but makes the overall system performance slower.

Loopback Interface – default value Enabled – if enabled, the NetX creates a loopback interface
for sending and receiving packets to itself. Note that this is not counted as a physical interface. An
application needs to be concerned about the number of network interfaces if they are using multiple
physical interfaces. The loopback interface is not counted as a physical network interface (see
below).

Maximum Physical Interfaces – default value 1 – The default is one network interface, generally
referred to as the primary interface. The IP instance keeps a table of interfaces, and the primary
interface is at index 0. For secondary interface(s), the Maximum Physical Interface value should be
incremented by one for each secondary interface. Typical scenarios for multiple interface use is a
router, with a local or private network on one interface and a global or public interface on the other.
Another scenario is a device with two different network interfaces; ethernet and Wi-Fi.

To attach secondary interfaces to the IP instance, use the nx_ip_interface_attach API. When an
interface is not referenced in an API, the action is on the primary interface. For example,
nx_ip_status_check operates on the primary interface, while nx_ip_interface_status_checkperforms
the operation on a specific interface.

Note: Some developers have used multiple IP instances to handle multiple physical networks. It is
strongly not recommended to create multiple IP instances!

NAT (available in NetX Duo only) – default value disabled – NAT is a protocol that allows NetX
Duo to map packets between the local/private and public/global networks, acting as a kind of router.
To do this, the NetX Duo must be enabled to forward packets from a local host onto the global
network with the host's global IP address and a port that the NetX Duo host determines. When NAT
is enabled on the IP instance, NetX Duo can now forward packets in the manner. Note that NAT also
requires that Maximum Physical Interfaces must be set to 2. SWIOT-5387 has an example
project for setting up NAT.

Note
NAT is only available in NetX Duo.

Fragmentation option – default value enabled – Fragmentation occurs when the packet data
exceeds the device MTU (maximum transfer unit) which is most typically 1518 bytes including frame
header for Ethernet networks. An application should avoid fragmentation at the IP layer if possible,
although there is not much one can do on the receiving side.

Another aspect of fragmentation to consider is the potential to deplete the packet pool used to
receive packet fragments. When NetX is receiving many packet fragments, the packet pool used to
receive these packets can easily be depleted, since packets cannot be returned to the packet pool
until the entire packet is assembled by the IP layer and forwarded to the application. This can be
remedied by increasing the number of packets in the packet pool at start up time (cannot be done at
run time), if the board has sufficient memory to do so.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,241 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Source > Configuring the NetX and NetX Duo Source Module

Note
This should not be confused with segmentation which is performed at the TCP layer. See TCP MSS Minimum for
more details on segmentation.

Packet Header Pad Size – default value 0 (no padding) – Hardware operations on some boards
require memory to be certain cache line is aligned. In those cases, the size of a NetX or NetX Duo
packet instance must be aligned based on hardware requirements. For example, if the hardware
requires the starting address of the data buffer to be 32-byte aligned and the size of the NX_PACKET
header size is 56-bytes, defining the Packet Header ad size to be 8, can bring the starting address of
the packet buffer to be 32-byte aligned.

Checksums – default value enabled – In NetX and NetX Duo, checksums for incoming (RX) and
outgoing (TX) packets can be separately enabled or disabled. Checksums should not be disabled
unless the RFC for that particular network protocol; UDP, TCP, or ICMP, indicate a zero checksum is
allowable. Checksums generally need to be enabled. Disabling checksums might increase
throughput but might also cause packets to be dropped by the other side of a connection.

Extended Notify Support – default value Disabled – When enabled, NetX will notify the
application of various events related to TCP socket connections, above and beyond what NetX
normally does (e.g. the callbacks specified in the nx_tcp_socket_receive_notify and
nx_udp_socket_receive_notify APIs).

Extended Notify Support is required by NetX and NetX Duo BSD sockets.

The APIs enabled for this feature are listed below. They allow NetX to notify the application when
NetX receives a TCP connection request, a TCP connection is completed, a TCP disconnect on a
socket is completed, and to set the TCP socket state in the timed wait state. This is necessary for a
TCP to operate in a non-blocking context.

nx_tcp_socket_syn_received_notify

nx_tcp_establish_notify

nx_tcp_disconnect_complete_notify

nx_tcp_timed_wait_callback

Source Address Check – default value Disabled – This checks all incoming packets for an invalid
IP address. Specifically, it checks if 1) the IP address bits masked with the network mask does not
equal the 1s complement of the network mask; 0xFF, 2) the IP address is not zero and the unmasked
address bits do not equal zero, and 3) the address is not type D address (0xE0000000). This extra
bit of processing at the IP level in NetX incurs a small performance penalty.

ICMP Address Check – default value Disabled – When enabled, the source address of ICMP
packet is checked.

Maximum String Length – default value 1024 – This option specifies the maximum string length.

IGPMP/MultiCast Properties

Maximum multicast groups – default value 7 – Defines the size of the multicast table in effect
set the limit on the number of multicast groups that can be joined. Not generally modified.

IGMPV – default value Enabled – IGMPv2 is enabled by default. IGMPv2, unlike IGMPv1, allows
group-specific join queries, leave messages and a method for determining which router will forward

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,242 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Source > Configuring the NetX and NetX Duo Source Module

queries (instead of all IGMP routers on the network).

ARP Properties

ARP cache storage units – default in Bytes – Defines the ARP storage type in bytes. User can
also select the option in Entries to define the number of ARP entries in table which will be aligned to
the size of ARP.

ARP Cache size (in storage units) – default value 520 – Defines the size of the ARP cache in
bytes. If user selects the storage units in Entries, then the value should be an integer. If user selects
the storage units in Bytes, then the value should be a multiple of size of ARP (52 Bytes). This table
holds all the ARP entries. If a table is full, no more ARP entries can be added till existing entries 'age'
(see explanation of ARP Expiration Rate in this section) and are removed. There are some
configurable options listed with the NetX/Duo Source element that can affect the number of ARP
entries added to the table, such as ARP Auto ARP Entry and ARP Expiration Rate defined in this
section.

The ARP cache size may need to be increased if the node is expected to communicate with large
amount of the nodes on its local network.

ARP Auto ARP Entry – default value Enabled – This allows NetX to add an ARP entry when an
ARP packet is received for which the table has no matching IP address. This will happen regardless
of whether the response was directed to/from the NetX device. The idea behind auto ARP entry is to
increase the efficiency of NetX by reducing the need to send ARP queries if the data is already in its
ARP table. The downside is the ARP table can fill up and no more new ARP queries can be added. To
prevent this, disable this feature. When disabled, NetX will only save ARP entries if the request was
generated by NetX or directed to the NetX device.

This option is not required for most applications.

Alternatively, one can leave the Auto ARP Entry enabled, and set the expiration rate to non-zero to
guarantee the entries will expire (and therefore be deleted) if not used. See ARP Expiration Rate
for more details on the table entry expiration in this section.

ARP Expiration Rate – default value 0 seconds – By default ARP entries in NetX are static. They
have no expiration rate and thus do not age. Otherwise, as an ARP entry ages, its timeout value
decreases. When the timeout value reaches zero, the ARP entry is removed. If a new query
pertaining to that ARP entry is received, the timeout value is reset. The timeout is also reset if the
entry is accessed by the IP layer to transmit a packet. To determine if entries are being
aged/deleted, an application can call the nx_arp_info_get API for statistics on aged entries as well as
other useful statistics on ARP table management.

ARP Update Rate – default value 10 seconds – This is the interval between retransmission of
ARP queries. When the number of retries reaches the ARP Maximum Retries, NetX abandons the
attempt to find a physical mapping of IP address to a MAC address. There is no side effect to
reducing this value to a smaller value.

ARP Maximum Queue Depth – default value 4 – This is the maximum number of IPv4 packets
from the application trying to transmit packets for which NetX has no MAC address mapping. These
packets are enqueued while NetX tries to find the MAC address mapping. When the queue is full, the
oldest packet is removed. To determine if this is happening, an application can check the
nx_ip_transmit_resource_errors field in the IP instance data structure using the Expressions view in
e2 studio. Currently there is no API for obtaining this statistic.

This value does not need to be changed except under exceptional conditions. It is unusual for the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,243 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Source > Configuring the NetX and NetX Duo Source Module

queue to fill up using this default value. If the destination IP address is alive, an ARP response will be
received by NetX and corresponding packets on the ARP queue will be transmitted. If the destination
IP is dead, it does not make sense to queue any more packets to be sent to that address.

ARP Maximum Retries – default value 18 – This is the number of times NetX retransmits an ARP
query for an IP address mapping before it gives up. There is no side effect to reducing this value to a
smaller value.

ARP Defend by Reply – default value Disabled – This is intended for use with hosts who need to
keep their current IP address.

Normally when a host gets an ARP packet with a matching source IP address but different MAC
address, NetX may broadcast an ARP request to announce that it owns the IP address. It can only
do so if it has not received a conflicting ARP packet within the interval of time specified by the ARP
Defend Interval property (defined in this section). If it does send a defend reply, it resets the
timeout to wait before responding to the next ARP conflict, if one occurs. If this is not the first
conflicting ARP packet the host has seen, and the time recorded for the previous conflicting ARP
packet is within the ARP Defend Interval, then the host MUST immediately cease using this
address. This is necessary to ensure that two hosts do not get stuck in an endless loop with both
hosts trying to defend the same address.

For more details on ARP conflicts, see RFC 5227 IPv4 Address Conflicts Section 2.4 (b).

When ARP Defend by Reply is defined, an ARP reply is broadcast in addition to the one sent once
the ARP Defend Interval expires. There is no requirement for a wait interval to expire for this ARP
defend packet. This property is used because Windows XP ignores ARP request packets sent out
when the ARP Defend Interval timeout expires.

ARP Defend Interval – default value 10 seconds – this is the interval during a NetX host that
may not send an ARP defend packet if it receives a conflict ARP packet. 10 seconds is the default
value recommended in the RFC 5227 for handling IPv4 address conflicts. After NetX sends the ARP
defend packet, it resets the timeout back to this value.

ARP Mac Change Notification – default value Disabled – If NetX receives an ARP packet whose
MAC address matches an entry in the ARP cache table, and this feature is enabled, NetX will call the
ARP collision handler for the application to examine the packet and decide what to do with it.
Without this feature, NetX will update the entry in its ARP table to the new MAC address. This
behavior, that is a normal ARP protocol, can be taken advantage of in what is called the man in the
middle attack, ARP cache poisoning or spoofing. This enables an attacker to redirect packets from
one host to another by altering the MAC address information in the ARP table. NetX has internal
handlers for these situations so applications need not handle them.

TCP Properties

Regarding the following group of rate setting properties, NetX timing is based on the
NX_IP_PERIODIC_RATE setting. NX_IP_PERIODIC_RATE is derived directly from
TX_TIMER_TICKS_PER_SECOND. The latter defaults to 100 but can be user defined, optionally in
tx_port.h. If it is, NX_IP_PERIODIC_RATE is set to that value. If it is not, then NetX defaults it to 100
ticks (10 msec/tick).

TCP Fast Timer Rate – default value 10 – This determines the interval on how the fast timer
periodic executes in NetX. If set to 10, and NX_IP_PERIODIC_RATE is set to 100, the fast periodic
timer executes every 100 msec.

This timer is used to decrement the delayed ACK timeout (see TCP ACK Timer Rate) and the socket

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,244 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Source > Configuring the NetX and NetX Duo Source Module

timeout (see TCP Transmit Timer Rate) for when to retransmit the ACK and data packets
respectively. Increasing the TCP Faster Timer Rate shortens intervals between how the fast timer
executes. In fact, it can potentially degrade performance for the extra overhead of processing the
fast periodic timer more often.

TCP Retransmit Timer Rate – default value 1 (1 second) – This value is used to set the TCP
socket timeout value. When a TCP socket sends or receives a SYN packet, or sends a data packet, it
waits for an acknowledgment (ACK). If the socket timeout expires before receiving an ACK, the
timeout is reset (and the packet retransmitted) up to a maximum of the TCP Maximum Retries.
After that, NetX closes the connection.

It is generally not recommended to reduce this value. It will not make the TCP transactions happen
quicker.

TCP ACK Timer Rate – default value 5 – This determines the interval between what NetX
retransmits an ACK for missing data (or ACK probe). The NetX fast periodic timer decrements this
timeout on each iteration of the faster timer periodic. If it expires, NetX sends another ACK packet. If
a data packet is received, NetX resets the timeout. When data is sent from the NetX, it will also reset
the timeout. If it expires, NetX increments the number of retries and resends an ACK. When the
maximum number retries is reached (see TCP Maximum Retries defined in this section), NetX
closes the connection.

A setting of 5, with NX_IP_PERIODIC_RATE set to 100, yields a delayed timeout of 200 msec. The
greater the NX_TCP_ACK_TIMER_RATE the smaller the ACK timeout. Increasing the value does not
increase performance or response time to the NetX ACK. It only sends them after a shorter interval.

TCP Maximum Retries – default value 10 – When a socket timeout expires without receiving a
response from the TCP peer, the socket timeout is reset up until the number of retries equals the
TCP Maximum Retries.

TCP Retry Shift – default value 0 – This is the bit shift applied to the retransmission interval. The
default value of zero keeps the interval constant between socket retries (to get a response from the
TCP peer). If it is set to 1, it doubles the interval; bit-shifts the timeout value by 1. This value is not
often modified.

TCP Maximum TX Queue – default value 20 – This is the maximum number of packets that NetX
will enqueue on a TCP socket for transmission and retransmission. A packet is enqueued when the
socket is waiting to receive an ACK for the data, or it is waiting for the receive window of the other
side to increase so it can send the data. For applications using smaller packet pools; limited memory
resources, this value can be reduced to prevent packet pool depletion where a significant number of
packets are sitting on the transmit queue, unavailable for other packet transmissions.

When the TCP socket has reached the maximum number of packets it can enqueue, the tcp socket
will send call returns an NX_TCP_QUEUE_DEPTH error. If it cannot send a packet because the TCP
receive window is too small it returns an NX_WINDOW_OVERFLOW error.

TCP Keepalive – default value disabled – The Keepalive feature starts a timer on the TCP socket
in the established state; connected to a peer. When the timer expires, NetX sends a Keepalive ACK
to the peer. Receiving a SYN or ACK packet, an ACK packet in response to NetX device's Keep Alive
Ack, or any TCP packet with a valid sequence number resets the timer and the retry count.

When NetX initiates a Keepalive ACK exchange, it sends a Keepalive ACK packet with the ACK
packet's sequence number decreased by one. This is how a TCP peer can distinguish a keepalive ACK
from an ACK that indicates 1 byte of data has been sent.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,245 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Source > Configuring the NetX and NetX Duo Source Module

When Keepalive is enabled on a socket, NetX also periodically checks if the other side has sent a
Keepalive ACK.

If the Keepalive timer expires without a response from the peer, the number of Keepalive retries is
incremented. If the retries reaches the TCP Keepalive Retries maximum, NetX deems the connection
broken and terminates it. Without Keepalive, a TCP connection can persist indefinitely if neither side
is transmitting a packet. In that situation, there is no way to know if the socket connection should be
closed or remain open.

TCP Keepalive Retries – default value 10 - After 10 tries to get a response to a keepalive ACK,
NetX resets closes the connection.

TCP Keepalive Initial – default value 7200 seconds (2 hours) – this is the interval before the
first Keepalive is sent when a connection is completed, or a response is received from a previously
sent Keepalive packet.

TCP Keepalive Retry – default value 75 seconds – NetX waits for the time specified by this
option before resending another Keepalive packet, unless it has received a response to a previously
sent Keepalive packet from the TCP peer.

TCP Window Scaling – default value Disabled – This feature allows a TCP receive window to
exceed 65k up to a theoretical maximum of 1,073,725,440 bytes. When a NetX TCP Client socket
initiates a connection, NetX computes a scaling factor based on the window size (set when the TCP
socket is created). The window scaling values are exchanged during the TCP connection
establishment phase. Note that the lack of window scaling option in peer's SYN packet is an
indication that the peer does not support window scaling. In this situation, window scaling is not used
for this connection.

TCP Maximum Out of Order Packets – default value disabled – If enabled, this option sets the
maximum number of out of order packets that can be stored on the TCP socket receive queue.
Subsequent out of order packets received are dropped if the socket receive queue has the maximum
out of order packets. Eventually the NetX host should send an ACK indicating the missing data to the
sender and get the dropped packet retransmitted. At this point, NetX can quickly process all the rest
of the data on the receive queue and release the packets.

This feature is useful in the following scenario:

If a packet is lost or dropped, and the sender keeps sending packets, the TCP socket must enqueue
all the packets back to the missing packet on its receive queue. It cannot release any because it is
waiting for the missing data to be retransmitted. If the depth of the receive queue is not limited, this
can starve the packet pool, rendering the NetX host effectively unresponsive. This can happen in a
bursty data transmission, where many packets are sent by the TCP peer. A dropped packet may
subsequently lead to many packets enqueued on the TCP receive queue.

TCP MSS Minimum – default value 128 – MSS, or maximum segment size is the largest amount
of TCP data that will not require fragmentation. The minimum MSS is the lowest MSS that a NetX
TCP socket will accept from a TCP peer. If the MSS parsed from the TCP header option data is below
this value, the connection is dropped.

The intended usage of this is when an application wants to reject connections with small MSS values.

TCP ACK every N Packets – default is disabled – To enable this feature, enter a positive
number. NetX sends an ACK out for every other data packet with new data, not retransmitted data.
This is usually the optimal setting to minimize network traffic, packet processing and keep the TCP
peer advertise window up to date. Note that if TCP Immediate ACK is enabled, this value is

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,246 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Source > Configuring the NetX and NetX Duo Source Module

overridden; set to 1 automatically. Increasing the value increases the possibility the other side must
wait on the nth ACK to know that the advertise window has increased enough to send more data.
This may result in slower network throughput. The optimal setting is generally based on testing.

This ratio of ACKs per N packets is associated with the delayed ACK logic in TCP. For applications
like Telnet, a higher N can greatly optimize the work on the Telnet Server receiving many 1 byte
packets.

TCP Immediate ACK – default value disabled – If enabled, NetX sends an ACK for every packet
of new data received. This is useful where a delayed ACK is not desirable.

Reset Disconnect – default value Enabled – When enabled, this allows an application to call a
disconnect on a TCP socket with a zero wait option without sending a RST packet. It simply sends a
FIN packet to indicate it is initiating a disconnection and closes the socket. It does not wait for an
ACK or FIN ACK from the TCP peer. This is useful for hosts that do not want to wait to close a socket,
such as servers wishing to free up sockets for the next Client request, and can do so without
indicating something is wrong like a RST packet usually does.

RX Size Checking – default value Enabled – If enabled, NetX checks that a received packet has
at least enough room for the IP or transport layer header; TCP, UDP, IGMP and ICMP depending on
where the packet is being processed. In the IP layer, for example, NetX checks if the packet has at
least enough room for the IP header. In the TCP layer, NetX checks if the packet has at least enough
room for the TCP header.

As a packet travels up the stack in NetX, the packet prepend pointer and packet length are adjusted
for each network layer. When the packet passes from the IP layer to the TCP layer, it moves the
prepend pointer to the start of the TCP header, and subtracts the size of the packet length by the
size of the IP layer. Similarly, going from the TCP layer to the application layer, the prepend pointer
is moved past the TCP header to the application data or header in the case of something like an
HTTP packet. The packet length is subtracted by the size of the TCP header.

This internal manipulation of the packet eliminates the need for the application adjust pointers and
data size. An application or NetX protocol will typically make a socket call such as the
nx_tcp_socket_receive API. If any packets are waiting on a socket receive queue, the application
receives the packet and knows where the data is located and how much there is. The application can
use the_nx_packet_length_getAPI (preferably) to obtain the packet data size, or access the
nx_packet_length field in the NX_PACKET instance directly.

TCP/IP offload feature – default value disabled – If enabled, TCP/IP offload feature will be
enabled. This feature enables NetX Duo to support a network interface card that offers TCP/IP service
on the hardware. Certain WiFi modules offer TCP/IP processing on the module, and applications on
MCU send and receive packets through APIs to access its TCP/IP stack. With this feature enabled,
developers can run native NetX Duo applications directly.

Configure the "Enable the extra capability of the link driver" property to define
NX_ENABLE_INTERFACE_CAPABILITY to enable the TCP/IP offload feature. This property is
disabled by default.

Disable Assertion – default value disabled – If enabled, Assert is disabled.

Assert Fail – default value disabled – If enabled, the assert fail process is defined.

NetX and NetX Duo Statistics Properties

If enabled, NetX keeps statistics on its internal operations. These statistics are at the component

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,247 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Source > Configuring the NetX and NetX Duo Source Module

level, like IP, TCP, ARP and Packet (pool). For TCP and UDP, there are statistics for all TCP/UDP
transmissions and statistics per socket. Disabling these statistics reduces processing time slightly.

The value of these statistics is to be able to diagnose problems or optimize network performance
without having to stop or interrupt program flow, or write tedious debug code.

Examples:

nx_packet_pool_info_get.c

If an application does not appear to be sending or transmitting packets, check the
nx_packet_pool_empty_requests statistic. This is incremented every time nx_packet_allocatefails
because no packets are in the packet pool. This is helpful if nx_packet_allocate is called from a void
function or by a NetX protocol which may return a different value.

nx_ip_info_get.c

If an application is not receiving data, but packets are visible on a third-party packet trace, check the
nx_ip_total_packets_received statistic to see if the data is forwarded at least as far as the IP level.
Similarly, for not seeing packets from the NetX device on a packet trace is to check the
nx_ip_total_packets_sent statistic.

The following is a partial list APIs for NetX statistics:

IP info – Statistics at the level of the IP layer receiving packets from the driver, and forwarding
packets from the transport layer to the driver:

UINT _nx_ip_info_get(NX_IP *ip_ptr, ULONG *ip_total_packets_sent,

ULONG *ip_total_bytes_sent, ULONG *ip_total_packets_received,

ULONG *ip_total_bytes_received, ULONG *ip_invalid_packets,

ULONG *ip_receive_packets_dropped, ULONG *ip_receive_checksum_errors,

ULONG *ip_send_packets_dropped, ULONG *ip_total_fragments_sent,

ULONG *ip_total_fragments_received)

nx_ip_interface_info_get.c is the same but specific to the specified interface.

ARP Info – Statistics on ARP packets sent and received, and ARP table statistics:

UINT _nx_arp_info_get(NX_IP *ip_ptr, ULONG *arp_requests_sent,

ULONG *arp_requests_received,

 ULONG *arp_responses_sent, ULONG *arp_responses_received,

 ULONG *arp_dynamic_entries, ULONG *arp_static_entries,

 ULONG *arp_aged_entries, ULONG *arp_invalid_messages)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,248 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Source > Configuring the NetX and NetX Duo Source Module

Packet Pool Info – Statistics on available packets, empty packet (pool) requests, and invalid packet
releases; invalid packet pool or packet pointer supplied.

INT _nx_packet_pool_info_get(NX_PACKET_POOL *pool_ptr, ULONG *total_packets,

ULONG *free_packets,

 ULONG *empty_pool_requests, ULONG *empty_pool_suspensions,

 ULONG *invalid_packet_releases)

TCP Info – Statistics on the total number of TCP packets sent/received, number of connections and
disconnections, dropped and retransmitted packets. The socket specific API includes the receive
window size.

UINT _nx_tcp_info_get(NX_IP *ip_ptr, ULONG *tcp_packets_sent, ULONG

*tcp_bytes_sent,

 ULONG *tcp_packets_received, ULONG *tcp_bytes_received,

 ULONG *tcp_invalid_packets,

ULONG *tcp_receive_packets_dropped,

 ULONG *tcp_checksum_errors, ULONG *tcp_connections,

 ULONG *tcp_disconnections, ULONG *tcp_connections_dropped,

 ULONG *tcp_retransmit_packets)

UINT _nx_tcp_socket_info_get(NX_TCP_SOCKET *socket_ptr, ULONG *tcp_packets_sent,

ULONG *tcp_bytes_sent,

 ULONG *tcp_packets_received, ULONG *tcp_bytes_received,

 ULONG *tcp_retransmit_packets, ULONG *tcp_packets_queued,

 ULONG *tcp_checksum_errors, ULONG *tcp_socket_state,

 ULONG *tcp_transmit_queue_depth,

ULONG *tcp_transmit_window,

 ULONG *tcp_receive_window)

UDP Info – Statistics on the total number of UDP packets sent/received, dropped packets,
improperly formed packets to send or receive. The socket specific API does not include the count of
invalid packets received.

UINT _nx_udp_info_get (NX_IP *ip_ptr, ULONG *udp_packets_sent, ULONG

*udp_bytes_sent,

 ULONG *udp_packets_received, ULONG *udp_bytes_received,

 ULONG *udp_invalid_packets,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,249 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Source > Configuring the NetX and NetX Duo Source Module

ULONG *udp_receive_packets_dropped,

 ULONG *udp_checksum_errors)

UINT _nx_udp_socket_info_get (NX_UDP_SOCKET *socket_ptr, ULONG *udp_packets_sent,

ULONG *udp_bytes_sent, ULONG *udp_packets_received,

ULONG *udp_bytes_received, ULONG *udp_packets_queued,

 ULONG *udp_receive_packets_dropped,

ULONG *udp_checksum_errors)

ICMP Info – Satistics on control message transmission, including count of unsupported ICMP
messages, ping requests that timed out, and responses to ping request.

UINT _nx_icmp_info_get(NX_IP *ip_ptr, ULONG *pings_sent, ULONG *ping_timeouts,

 ULONG *ping_threads_suspended,

ULONG *ping_responses_received,

 ULONG *icmp_checksum_errors,

ULONG *icmp_unhandled_messages)

IGMP Info – Statics on multicast groups joined, IGMP queries received, and IGMP reports sent.

UINT _nx_igmp_info_get(NX_IP *ip_ptr, ULONG *igmp_reports_sent,

 ULONG *igmp_queries_received,

 ULONG *igmp_checksum_errors, ULONG *current_groups_joined)

4.3.10 Azure RTOS NetX Overview

4.3.10.1 Azure RTOS NetX Interface

Azure RTOS NetX is a high-performance real-time implementation of the TCP/IP standards designed
exclusively for embedded ThreadX-based applications. The Azure RTOS NetX networking stack (nx) is
integrated into the Renesas SSP. The Azure RTOS NetX Interface provides the means for SSP projects
to access the capabilities of NetX.

For more information about NetX (including API references), refer to the NetX User Guide available
as part of the Azure RTOS Components documentation pack here: https://www.renesas.com/en-
us/products/synergy/software/ssp.html

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,250 / 5,198

https://www.renesas.com/en-us/products/synergy/software/ssp.html
https://www.renesas.com/en-us/products/synergy/software/ssp.html

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS NetX Overview > Azure RTOS NetX Interface

Unsupported Features

The following driver requests are not implemented in sf_el_nx:

Get link speed
Get duplex type
Get error count
Get receive packet count
Get transmit packet count
Get allocation errors
User commands

Azure RTOS NetX with TraceX

If TraceX is enabled in the ThreadX source component, it is automatically included when adding the
NetX source components. When enabled, the project containing the ThreadX and NetX library must
be rebuilt or TraceX macros that log events will not be executed.

Azure RTOS NetX Protocol Modules

A wide variety of popular networking protocol functions are supported within the Azure RTOS NetX
Interface for SSP. Each available protocol function has its own module overview section in this
document. These overviews provide sufficient background to determine if the module provides the
functions needed by the application.

Complete Application Projects (APs) are also available showing a working project for a typical NetX
Protocol application targeted for a Renesas Synergy hardware kit. APs are available from the
Renesas Synergy web site here: https://www.renesas.com/us/en/support/document-search?title=&do
c_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_
tier_2=469306&doc_category_tier_3=&doc_category_tier_4=&doc_part_numbers=&sort_order=DES
C&sort_by=field_document_revision_date

Azure RTOS NetX Configuration Notes

When a protocol module is added to a project, a prebuilt library of the application code is added. For
each protocol component, there is an analogous component ending in '_src' that contains protected
source files. The '_src' component can be added in addition to the prebuilt library module. Do not
add the '_src' component without the prebuilt library module.

If the NetX Source module is added to the project, the Properties window provides advanced
configurations for the NetX source library. Highlight a configuration option to view a description of
the option in the bottom left corner of the e2 studio GUI. If the configuration option is empty, the
default value is used. The default values of configuration options are defined in
ssp/inc/framework/el/nx/nx_port.h. Refer to the Configuration Options chapter of the NetX User Guide
for more information.

A detailed NetX and NetX Duo Source Module Overview is available in this document. It covers the
configurable networking operations available within the source module. It is highly recommended
that this is read and understood before attempting to modify any NetX or NetX Duo source
configuration settings.

Azure RTOS NetX Limitations

Azure RTOS NetX cannot be used in the same application as Azure RTOS NetX Duo. Only
one or the other can be used per application.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,251 / 5,198

https://www.renesas.com/us/en/support/document-search?title=&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_category_tier_3=&doc_category_tier_4=&doc_part_numbers=&sort_order=DESC&sort_by=field_document_revision_date
https://www.renesas.com/us/en/support/document-search?title=&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_category_tier_3=&doc_category_tier_4=&doc_part_numbers=&sort_order=DESC&sort_by=field_document_revision_date
https://www.renesas.com/us/en/support/document-search?title=&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_category_tier_3=&doc_category_tier_4=&doc_part_numbers=&sort_order=DESC&sort_by=field_document_revision_date
https://www.renesas.com/us/en/support/document-search?title=&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_category_tier_3=&doc_category_tier_4=&doc_part_numbers=&sort_order=DESC&sort_by=field_document_revision_date

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS NetX Overview > Azure RTOS NetX Interface

When using NetX BSD with the GCC compiler, build with the macro _POSIX_SOURCE defined
to avoid compilation errors.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

Azure RTOS NetX Supported Devices

Refer to the associated SSP Release Notes for a complete list of the supported MCU devices.

4.3.11 Azure RTOS NetX Duo Overview

4.3.11.1 Azure RTOS NetX Duo Interface

Azure RTOS NetX Duo is a high-performance real-time implementation of the TCP/IP standards
designed exclusively for embedded ThreadX-based applications. The Azure RTOS NetX Duo
networking stack (nxd) is integrated into the Renesas SSP. The Azure RTOS NetX Duo Interface
provides the means for SSP projects to access the capabilities of NetX Duo.

For more information about NetX Duo (including API references), refer to the NetX Duo User Guide
available as part of the Azure RTOS Components documentation pack here:
https://www.renesas.com/en-us/products/synergy/software/ssp.html.

Unsupported Features

The following driver requests are not implemented in sf_el_nx (SSP)

Get link speed
Get duplex type
Get error count
Get receive packet count
Get transmit packet count
Get allocation errors
User commands

Azure RTOS NetX Duo with TraceX

If TraceX is enabled in the ThreadX source component, is automatically included when adding NetX
Duo source components, the project containing the ThreadX and NetX Duo library must be rebuilt or
TraceX macros that log events will not be executed.

4.3.11.2 Azure RTOS NetX Duo Protocol Modules

A wide variety of popular networking protocol functions are supported within the Azure RTOS NetX
Duo Interface for SSP. Each available protocol function has its own module overview section in this
document. These overviews provide sufficient background to determine if the module provides the
functions needed by the application.

Complete Application Projects (APs) are also available showing a working project for a typical NetX
Protocol application targeted for a Renesas Synergy hardware kit. APs are available from the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,252 / 5,198

https://www.renesas.com/en-us/products/synergy/software/ssp.html

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS NetX Duo Overview > Azure RTOS NetX Duo Protocol Modules

Renesas Synergy web site here: https://www.renesas.com/us/en/support/document-search?title=&do
c_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_
tier_2=469306&doc_category_tier_3=&doc_category_tier_4=&doc_part_numbers=&sort_order=DES
C&sort_by=field_document_revision_date

4.3.11.3 Azure RTOS NetX Duo Limitations

Azure RTOS NetX Duo cannot be used in the same application as Azure RTOS NetX. Only
one or the other can be used per application.
When using NetX Duo BSD with the GCC compiler, build with the macro _POSIX_SOURCE
defined to avoid compilation errors.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.11.4 Azure RTOS NetX Duo Supported Devices

Refer to the associated SSP Release Notes for a complete list of the supported MCU devices.

4.3.12 NetX/NetX Duo Auto IP

4.3.12.1 NetX/NetX Duo Auto IP Introduction

The Auto IP Protocol is designed to dynamically configure IPv4 addresses on a local network without
requiring a server, unlike the Dynamic Host Configuration Protocol (DHCP). The Auto IP uses address
resolution protocol (ARP) for automatic IP address assignment and allocates addresses in the range
of 169.254.1.0 through 169.254.254.255.

Note
Except for internal processing, the NetX Duo™ Auto IP module is identical in the application, set-up and running of
an Auto IP session as the NetX™ Auto IP module.

NetX/NetX Duo Auto IP Module Features

Compliant with RFC3927 and related RFCs
Uses ARP probes to check for address conflicts
Uses the collision handler notification in NetX to detect an address already in use
Registers a valid Auto IP address with the IP instance
Provides high-level APIs for:

Creating and deleting an Auto IP instance
Starting and stopping the Auto IP thread task
Specifying the network interface on which to run Auto IP

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,253 / 5,198

https://www.renesas.com/us/en/support/document-search?title=&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_category_tier_3=&doc_category_tier_4=&doc_part_numbers=&sort_order=DESC&sort_by=field_document_revision_date
https://www.renesas.com/us/en/support/document-search?title=&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_category_tier_3=&doc_category_tier_4=&doc_part_numbers=&sort_order=DESC&sort_by=field_document_revision_date
https://www.renesas.com/us/en/support/document-search?title=&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_category_tier_3=&doc_category_tier_4=&doc_part_numbers=&sort_order=DESC&sort_by=field_document_revision_date
https://www.renesas.com/us/en/support/document-search?title=&doc_file_all_types%5BSample+Code%5D=Sample+Code&doc_category_tier_1=467666&doc_category_tier_2=469306&doc_category_tier_3=&doc_category_tier_4=&doc_part_numbers=&sort_order=DESC&sort_by=field_document_revision_date

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Auto IP > NetX/NetX Duo Auto IP Introduction

Figure 427: NetX/NetX Duo Auto IP Module Block Diagram

Note
In the figure above, the NetX (or NetX Duo) Network Driver modules has multiple implementation options
available. See the description just after the module stack figure in Including the NetX/NetX Duo Auto IP Module in
an Application for additional details.

4.3.12.2 NetX/NetX Duo Auto IP Module APIs Overview

The NetX Auto IP defines APIs for creating, deleting, getting and setting addresses. A complete list of
the available APIs, an example API call and a short description of each can be found in the following

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,254 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Auto IP > NetX/NetX Duo Auto IP Module APIs Overview

table. A table of status return values follows the API summary table.

NetX/NetX Duo Auto IP Module API Summary

Function Name Example API Call and Description

nx_auto_ip_create nx_auto_ip_create(&g_auto_ip0, "AutoIP 0",
&g_ip0, stack_pointer, stack_size, priority);
Create an Auto IP instance.

nx_auto_ip_delete nx_auto_ip_delete(&g_auto_ip_0);
Delete Auto IP instance.

nx_auto_ip_get_address nx_auto_ip_get_address(&g_auto_ip_0,
&local_address);
Get current Auto IP address.

nx_auto_ip_set_interface nx_auto_ip_set_interface(&g_auto_ip_0,
interface_index);
Set network interface needing an Auto IP
address.

nx_auto_ip_start nx_auto_ip_start(&g_auto_ip_0,
IP_ADDRESS(0,0,0,0));
Start Auto IP processing. If the address input is
NULL. NetX Auto IP randomly assigns an address
in the Auto IP address range.

nx_auto_ip_stop nx_auto_ip_stop(&g_auto_ip_0);
Stop Auto IP processing.

nx_dhcp_server_stop nx_dhcp_server_stop(&dhcp_server);
Stop DHCP server processing.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API
structures, and function variables, review the associated Azure RTOS User's Manual in the References section.

Status Return Values

Name Description

NX_SUCCESS Successful AutoIP function.

NX_AUTO_IP_ERROR Error creating components of Auto IP instance.

NX_PTR_ERROR* Invalid pointer input.

NX_CALLER_ERROR* Invalid caller of this service.

NX_AUTO_IP_NO_LOCAL No Auto IP address registered with the NetX IP
instance.

NX_AUTO_IP_BAD_INTERFACE_INDEX Invalid network interface.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,255 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Auto IP > NetX/NetX Duo Auto IP Module APIs Overview

These are error codes which are only returned if error checking is enabled. Refer to the
NetX User Guide for the Renesas Synergy™ Platform or NetX Duo User's Guide for the
Renesas Synergy™ Platform for more details on error-checking services in NetX and NetX
Duo, respectively.

4.3.12.3 NetX/NetX Duo Auto IP Module Operational Overview

The NetX Auto IP protocol first selects a random address within the Auto IP IPv4 address range of
169.254.1.0 through 169.254.254.255. Alternatively, the application may force a starting IP address
by providing it to the nx_auto_ip_startservice; this is useful in situations where an Auto IP address
has been used previously.

Once an auto IP address is selected, the NetX Auto IP sends out a series of ARP probes for the
selected address. An ARP probe consists of an ARP request message with the sender address set to
0.0.0.0 and the target address set to the desired Auto IP address. A series of these ARP probes are
sent (the actual number is set by the ARP probes to send property of the NetX Auto IP instance); if
another network node responds to this probe or sends an identical probe for the same address, a
new auto IP address is randomly selected within the auto IP IPv4 address range and the probe
processing repeats.

If ARP probes to send and probes are sent without any responses, the NetX Auto IP issues many ARP
announcements (set by the Number of ARP announces property) for the selected address. An ARP
announcement consists of an ARP request message with both the sender and target address in the
ARP message set to the selected auto IP address. If another network node responds to an announced
message or sends an identical announcement for the same address, a new auto IP address is
randomly selected within the auto IP IPv4 address range, and the probe processing starts over. When
the probe and announcement completes without any detected conflicts, the selected auto IP address
is considered valid and the address is registered with the IP instance.

The NetX Auto IP registers the auto IP-generated IP address with the NetX IP instance successful
probe and announcement processing. The Auto IP application can be notified of address changes
using the nx_ip_address_change_notify callback in NetX, or it can use the nx_ip_status_check to
determine when a valid IP address is assigned. Once a valid address is assigned, the application
should stop the auto IP task using the nx_auto_ip_stop service. The address change callback notifies
the application of address changes after the auto IP thread task is suspended. Possible reasons for
an address changing without explicitly being done with an auto IP may be due to auto IP-address
conflicts with other nodes, or a DHCP address resolution to replace the auto IP address.

NetX/NetX Duo Auto IP Module Important Operational Notes and Limitations

NetX/NetX Duo Auto IP Module Operational Notes

The NetX DHCP Client and NetX Auto IP can both be used to ensure a host has a valid IP
address. Typically, the DHCP Client attempts to contact a server. If none of the servers
responds to the DHCP Client, the client is suspended and the auto IP task is started. Auto IP
generally guarantees a local address even if no DHCP Server is available. The DHCP Client
can try later to broadcast requests to a DHCP Server; this process, if successful,
automatically overwrites the auto IP local address.
When the IP address changes, the application is responsible for closing out existing socket
connections.

NetX/NetX Duo Auto IP Module Limitations

If the NetX DHCP is used with the auto IP, the DHCP thread created must have a higher
priority than the auto IP thread.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,256 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Auto IP > NetX/NetX Duo Auto IP Module Operational Overview

The NetX Auto IP does not provide a mechanism to retain previously used IP address.
Refer to the latest SSP Release Notes for any additional operational limitations for this
module.

4.3.12.4 Including the NetX/NetX Duo Auto IP Module in an Application

This section describes how to include either or both NetX/NetX Duo Auto IP module in an application
using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo Auto IP module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo Auto IP Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_auto_ip0 NetX Auto IP Threads New Stack> X-Ware> NetX>
Protocols> NetX Auto IP

g_auto_ip0 NetX Duo Auto IP Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
Auto IP

When the NetX/NetX Duo Auto IP module is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,257 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Auto IP > Including the NetX/NetX Duo Auto IP Module in an Application

Figure 428: NetX/NetX Duo Auto IP Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.12.5 Configuring the NetX/NetX Duo Auto IP Module

The NetX/NetX Duo Auto IP module must be configured by the user for the desired operation. The
SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,258 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Auto IP > Configuring the NetX/NetX Duo Auto IP Module

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo Auto IP Module

ISDE Property Value Description

Wait before sending first probe
(seconds)

1 Wait before sending first probe
selection.

ARP probes to send 3 ARP probes to send selection.

Minimum wait between probes
(seconds)

1 Minimum wait between probes
selection.

Maximum wait between probes
(seconds)

2 Maximum wait between probes
selection.

Maximum conflicts before
increasing processing delay

10 Maximum conflicts before
increasing processing delay
selection.

Wait extend after maximum
conflicts (seconds)

60 Wait extend after maximum
conflicts selection.

Wait before announcement
(seconds)

2 Wait before announcement
selection.

Number of ARP announces 2 Number of ARP announces
selection.

Wait between announces
(seconds)

2 Wait between announces
selection.

Wait between defense
announces (seconds)

10 Wait between defense
announces selection.

Name g_auto_ip0 Module name.

Internal thread stack size
(bytes)

2048 Internal thread stack size
selection.

Internal thread priority 3 Internal thread priority
selection.

Name of generated initialization
function

auto_ip_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for stack modules can be desirable. For example, it
might be useful to select different addresses for the Ethernet port. The configurable properties for

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,259 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Auto IP > Configuring the NetX/NetX Duo Auto IP Module

the lower-level stack modules are given in the following sections for completeness and as a
reference.

Note
 Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo Auto IP Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name.

IPv4 Address (use commas for
separation)

0,0,0,0 IPv4 Address selection.

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection.

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection.

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address
selection.

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection.

IP Helper Thread Priority 3 IP Helper Thread Priority
selection.

ARP Enable ARP selection.

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection.

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection.

TCP Enable, Disable

Default: Enable

TCP selection.

UDP Enable, Disable

Default: Enable

UDP selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,260 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Auto IP > Configuring the NetX/NetX Duo Auto IP Module

ICMP Enable, Disable

Default: Enable

ICMP selection.

IGMP Enable, Disable

Default: Enable

IGMP selection.

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection.

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name.

Packet Size in Bytes 640 Packet size selection.

Number of Packets in Pool 16 Number of packets in pool
selection.

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,261 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Auto IP > Configuring the NetX/NetX Duo Auto IP Module

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo Auto IP Module Clock Configuration

The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the
SSP configurator clock tab prior to a build, or by using the CGC interface at run-time.

NetX/NetX Duo Auto IP Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines the peripheral signals available and the MCU pins required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

ETHERC Pins Select Peripherals>
Connectivity:ETHERC>
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1.

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection.

REF50CK P701 REF50CK pin.

TXD0 P700 TXD0 pin.

TXD1 P406 TXD1 pin.

TXD_EN P405 TXD_EN pin.

RXD0 P702 RXD0 pin.

RXD1 P703 RXD1 pin.

RX_ER P704 RX_ER pin.

CRS_DV P705 CRS_DV pin.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,262 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Auto IP > Configuring the NetX/NetX Duo Auto IP Module

MDC P403 MDC pin.

MDIO P404 MDIO pin.

Note
The example settings are for a project using the S7G2 Synergy MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and other Synergy Kits may have different available pin configuration settings.

4.3.12.6 Using the NetX/NetX Duo Auto IP Module in an Application

In a typical application, it is assumed that an IP instance has been created and an ARP is enabled.
Once this IP instance is accomplished, the typical steps in using the NetX Auto IP in an application
are:

1. Allow time for the IP thread task and the network driver to get initialized (2-3 seconds)
using the tx_thread_sleep API.

2. Set the address change notification with the nx_ip_address_change_notify API [Optional].
3. Start the Auto IP instance with the nx_auto_ip_start API.
4. Check for a valid address for the IP instance using either the nx_ip_status_check or

nx_auto_ip_get_address API. The nx_ip_status_check API defaults to the primary address. If
running Auto IP on a secondary interface, use the nx_ip_interface_status_check. Note that
nx_auto_ip_get_address API works for Auto IP on either primary or secondary addresses.

5. If a valid local IP address is assigned, stop the auto IP thread task using the nx_auto_ip_stop
API.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,263 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Auto IP > Using the NetX/NetX Duo Auto IP Module in an Application

Figure 429: Flow Diagram of a Typical NetX/NetX Duo Auto IP Module Application

4.3.13 NetX/NetX Duo BSD Support

4.3.13.1 NetX/NetX Duo BSD Support Introduction

The BSD Socket API Compliancy Wrapper (NetX™ BSD) supports a subset of the basic BSD Socket
API calls (with some limitations) using NetX™ services.

Note
Except for internal processing, the NetX Duo™ BSD Support module is identical in the application, set-up and
running of an BSD Support session as the NetX™ BSD Support module.

Unsupported Features

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,264 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > NetX/NetX Duo BSD Support Introduction

BSD with DNS support has not been tested in this version of SSP.

NetX/NetX Duo BSD Support Module Features

The NetX BSD Support module is compliant with BSD 4.3.
Provides high-level APIs to:

Create and delete sockets
Set socket options
Request TCP connections and listen for connection requests
Send and receive packets
Raw packet support**
PPP over Ethernet support**

** NetX Duo BSD only

Figure 430: NetX/NetX Duo BSD Support Module Block Diagram

Note
In the figure above, the NetX (or NetX Duo) Network Driver modules has multiple implementation options

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,265 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > NetX/NetX Duo BSD Support Introduction

available. See the description just after the module stack figure in the Including the NetX/NetX Duo BSD Support
Module in an Application section for additional details.

4.3.13.2 NetX/NetX Duo BSD Support Module APIs Overview

The NetX BSD Support module provides the standard BSD API functions for connecting, binding,
listening, sending and receiving. A complete list of the available APIs, an example API call and a
short description of each can be found in the following table. Services that are implemented by NetX
and NetX Duo BSD begin with nx_, and are listed at the end of this table.

NetX/NetX Duo BSD Support Module API Summary

Function Name Example API Call and Description

accept accept(INT sockID, struct sockaddr
*ClientAddress, INT *addressLength);
TCP server socket waits to make a TCP
connection.

bsd_initialize bsd_initialize(NX_IP *default_ip,
NX_PACKET_POOL *default_pool, CHAR
*bsd_thread_stack_area, ULONG
bsd_thread_stack_size, UINT
bsd_thread_priority);
Sets up BSD Support Module to use NetX and
BSD services. (Called by the NetX BSD Support
Module automatically.)

bind bind(INT sockID, struct sockaddr *localAddress,
INT addressLength);
Bind TCP or UDP socket to a local port.

connect connect(INT sockID, struct sockaddr
*remoteAddress, INT addressLength);
Connect to a TCP peer; if the remoteAddress
indicates raw or UDP socket, then if the address
is NULL this dis-associates the peer from this
socket.

fcntl fcntl(INT sock_ID, UINT flag_type, UINT
f_options);
Sets socket options for the specified socket.

freeaddrinfo freeaddrinfo(struct addrinfo *res);
Releases memory allocated by the getaddrinfo
service.

getnameinfo getnameinfo(const struct sockaddr *sa,
socklen_t salen, char *host, size_t hostlen, char
*serv, size_t servlen, int flags);
Converts a socket address to a corresponding
host and service string.

getpeername getpeername(INT sockID, struct sockaddr
*remoteAddress, INT *addressLength);
Return remote peer's IP address and port.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,266 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > NetX/NetX Duo BSD Support Module APIs Overview

getsockname getsockname(INT sockID, struct sockaddr
*localAddress, INT *addressLength);
Return the socket's primary IP address and
source port. In NetX Duo, this would be the
address as index 1 in the IP interface table.

getsockopt getsockopt(INT sockID, INT option_level, INT
option_name, VOID *option_value, INT
*option_length);
Return the status of the specified socket option.

getaddrinfo getaddrinfo(const CHAR *node, const CHAR
*service, const struct addrinfo *hints, struct
addrinfo **res);
Fills in the addrinfo for the indicated node (host)
based on hints in the addrinfo input.

ioctl ioctl(INT sockID, INT command, INT *result);
Carry out the command on the specified socket.
Only two options supported FIONREAD (extract
number of bytes on socket queue) and FIONBIO
(enable/disable non blocking as per the result
flag).

inet_addr inet_addr(const CHAR *buffer);
Convert an IP address from a string buffer to a
number.

inet_ntoa inet_ntoa(struct in_addr address_to_convert);
Convert an IP address to a string.

inet_aton inet_aton(const CHAR * address_buffer_ptr,
struct in_addr *addr);
Converts hexadecimal characters into an ASCII
IP address representation.

inet_pton inet_pton(INT af, const CHAR *src, VOID *dst);
Converts an IP address from string to numeric
format.

inet_ntop inet_ntop(INT af, const VOID *src, CHAR *dst,
socklen_t size);
Converts an IP address from numeric format to
string presentation.

listen listen(INT sockID, INT backlog);
Bind a TCP server socket to a local port on which
to listen for connection requests.

recvfrom recvfrom(INT sockID, CHAR *buffer, INT
buffersize, INT flags,struct sockaddr *fromAddr,
INT *fromAddrLen);
Receive up to the specified number of bytes on
the specified socket (either UDP or TCP).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,267 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > NetX/NetX Duo BSD Support Module APIs Overview

recv recv(INT sockID, VOID *rcvBuffer, INT
bufferLength, INT flags)
Copies up to a specified number of bytes
received on the socket into specified location.
The given socket can be UDP or TCP, but must
be in the connected state.

send send(INT sockID, const CHAR *msg, INT
msgLength, INT flags)
Send the specified buffer out on the socket; the
actual number of bytes sent is returned in
msglength. Does not support raw sockets.

sendto sendto(INT sockID, CHAR *msg, INT msgLength,
INT flags, struct sockaddr *destAddr, INT
destAddrLen);
Send the specified buffer out on the socket; the
actual number of bytes sent is returned in
msglength. The socket must be in a connected
state. Supports raw sockets (NetX Duo BSD
only).

select select(INT nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);
Check all sockets specified in the fd_set inputs
to be checked for read request (incoming
packets), write request (outgoing packets), and
exception request input.

soc_close soc_close(INT sockID);
Close the specified socket.

socket socket(INT protocolFamily, INT type, INT
protocol);
Creates and endpoint for communication and
returns a file descriptor for the socket.

setsockopt setsockopt(INT sockID, INT option_level, INT
option_name, const VOID *option_value, INT
option_length);
Enable the input socket option on the socket.

fcntl fcntl(INT sock_ID, UINT flag_type, UINT
f_options);
Sets flag options for the specified socket.

nx_bsd_raw_packet_info_extract** nx_bsd_raw_packet_info_extract(NX_PACKET
*packet_ptr, NXD_ADDRESS *nxd_address, UINT
*interface_index);
Extracts source IP address and interface index of
the IP address in the IP interface table.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,268 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > NetX/NetX Duo BSD Support Module APIs Overview

nx_bsd_socket_set_inherited_settings nx_bsd_socket_set_inherited_settings(UINT
master_sock_id, UINT secondary_sock_id);
Apply the socket options of the specified master
socket to the specified child secondary socket;
requires
NX_BSD_INHERIT_LISTENER_SOCKET_SETTINGS
be defined. If it is not, this function has no
effect.

nx_bsd_set_service_list nx_bsd_set_service_list(struct
NX_BSD_SERVICE_LIST *serv_list_ptr, ULONG
serv_list_len);
Define the service list used by getaddrinfo with
the specified service list.

Note
When inet_ntop() function is used in the application to convert IP address from ULONG to string, IP address gets
reversed (From SSP 2.0.0 and later). Hence IP address has to be passed in Network byte order. The function
'htonl()' has to be used to convert IP address into network byte order.
For details on operation and definitions for the function data structures, typedefs, defines, API data, API structures
and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo FTP Client. For definitions of of NetX Duo specific data types,
see the*NetX Duo User Guide for the Renesas Synergy™ Platform*.

4.3.13.3 NetX/NetX Duo BSD Support Module Operational Overview

To utilize NetX and BSD services, the NetX BSD Support module automatically creates an IP instance,
and creates memory space for the internal BSD thread stack. The packet pool can be the IP default
packet pool (g_packet_pool0) or by clicking on Add NetX Packet Pool (or Add NetX Duo Packet
Pool)> New, a separate packet pool, g_packet_pool1, will be used for BSD packet transmissions.
For memory space, the defining parameters are the internal_thread_stack_sizeand
internal_thread_priorityproperties of the NetX BSD Support stack element.

Before using NetX BSD services, the application creates one or more sockaddr_in instances local and
peer hosts. A server application will only need to create a sock_addr for itself. (These are limited to
IPv4 addressing.) For IPv6 addresses (which requires NetX Duo BSD), the application creates one or
more sockaddr_in6instances. A socket of type TCP or UDP is created using the socket service; the
protocol must be AF_INET for IPv4 or AF_INET6 for IPv6.

For raw packets (NetX Duo BSD only), the socket must be of type AF_PACKET.

Optionally, the application can set socket options such as non-blocking using the fnctl and ioctl
services.

For TCP and UDP clients, the socket must bind a local-source port using the bind service. A value of
zero for the port in the sockaddr_in the data instance will inform NetX to assign a local port. For the
TCP sockets, the client socket connects to a TCP server using the connect service.

Both the UDP and TCP sockets can then send and receive data. Because the BSD is a streaming
based protocol, data is delivered to and from the application in user-defined buffers. Internally, NetX
sends and transmits data using packets from the packet pools transparently to the application. There
is no requirement to release received packets or allocated packets that NetX was not able to send.

To close a client socket, the application calls soc_close. There is no need to unbind the socket when

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,269 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > NetX/NetX Duo BSD Support Module Operational Overview

closing it using soc_close.

For TCP servers, the application chooses a local port to listen on by the specified master socket using
the listen service. The master socket then checks for connection requests using the select service.
When one is detected, it calls the accept service and assigns a secondary socket to handle the
connection. In this manner, the BSD can maintain multiple connections simultaneously.

To close a server socket, the application calls soc_close. Unlike NetX TCP sockets, there is no need to
call the nx_tcp_server_socket_unlisten or nx_tcp_server_socket_unaccept API on the TCP socket in
NetX BSD.

Eliminating an Internal BSD Thread

By default, BSD utilizes an internal thread to perform some of its processing. In systems with tight
memory constraints, NetX BSD can be built with NX_BSD_TIMEOUT_PROCESS_IN_TIMER defined,
which eliminates the internal BSD thread and alternatively uses an internal timer to perform the
same processing. This eliminates the memory required for the internal BSD thread control block and
stack. The timer processing is significantly increased and the BSD processing may also execute at a
higher priority than needed.

To configure BSD sockets to run in the ThreadX-timer context, define
NX_BSD_TIMEOUT_PROCESS_IN_TIMER in the project. If the BSD layer is configured to execute the
BSD tasks in the timer context, the following properties of the BSD stack element are ignored:

internal_thread_stack_size
internal_thread_priority

NetX BSD with DNS Support

If NX_BSD_ENABLE_DNS is defined, NetX BSD can send DNS queries to obtain hostname or host IP
information. This feature requires a NetX DNS Client instance to be previously created. The BSD link
to this DNS instance is via an extern NX_DNS *_nx_dns_instance_ptr. When the BSD application calls
getnameinfo with an address or getaddrinfo with a hostname, NetX BSD will call various NetX DNS
Client services to obtain the host name or IP address, respectively. Refer to the NetX DNS Client
User Guide for the Renesas Synergy Platform, available as described at the Reference section at the
end of this document, for more details on setting up a DNS Client in an application.

Raw Socket Support (NetX Duo BSD only)

To use raw sockets in the NetX Duo BSD, the NetX Duo library must be compiled with
NX_ENABLE_IP_RAW_PACKET_FILTERdefined in the project. By default, it is not defined. To define it,
right click on the project in the Synergy Configuration pane> Properties> Cross ARM C
Compiler> Preprocessor and add this to the list of defined symbols by clicking on the (+) icon.

The application must then enable raw socket processing for a previously created IP instance by
calling the nx_ip_raw_packet_enable service before using NetX Duo BSD services. To create a raw
socket in NetX Duo BSD, the application uses the socket service and specifies the protocol family,
socket type, and protocol:

sock_1 = socket(INT protocolFamily, INT socket_type, INT protocol)

The NetX BSD supports these values for protocol Family : AF_INET for IPv4 sockets, AF_INET6 for IPv6
sockets, and AF_PACKET for raw sockets. The socket_type must be set to SOCK_RAW. The protocol is
application specific.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,270 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > NetX/NetX Duo BSD Support Module Operational Overview

To send and receive raw packets as well as close a raw socket, the application typically uses the
same BSD services as the UDP like sendto, recvfrom, select, andsoc_close. Raw sockets do not
support either accept or listen BSD services.

By default, received IPv4 raw data includes the IPv4 header. Conversely, received IPv6 raw
data does not include the IPv6 header.
By default, when sending either raw IPv6 or IPv4 packets, the BSD wrapper layer adds the
IPv6 or IPv4 header before sending the data.

The NetX Duo BSD supports additional raw socket options, includingIP_RAW_RX_NO_HEADER,
IP_HDRINCL and IP_RAW_IPV6_HDRINCL. If IP_RAW_RX_NO_HEADER is set, the IPv4 header is
removed so that the received data does not contain the IPv4 header, and the reported message
length does not include the IPv4 header. For IPv6 sockets, by default the raw socket receive does not
include the IPv6 header, equivalent to having the IP_RAW_RX_NO_HEADER option set. The
application may use the setsockopt service to clear the IP_RAW_RX_NO_HEADER option. Once the
IP_RAW_RX_NO_HEADERoption is cleared, the received IPv6 raw data would include the IPv6 header,
and the reported message length includes the IPv6 header. This option has no effect on IPv4 or IPv6
transmitted data.

If IP_HDRINCL is set, the application includes the IPv4 header when sending data. This option has no
effect on IPv6 transmission and is not defined by default. If the IP_RAW_IPV6_HDRINCL is set, the
application includes the IPv6 header when sending data. This option has no effect on IPv4
transmission and is not defined by default.

IP_HDRINCLand IP_RAW_IPV6_HDRINCL have no effect on IPv4 or IPv6 reception.

Note
The BSD 4.3 Socket specification specifies that the kernel must copy the raw packet to each socket receive buffer.
However, in NetX Duo BSD, if multiple sockets are created sharing the same protocol, the behavior is undefined.

Raw Packet Support for PPPoE (NetX Duo BSD only)

To enable the raw packet support for PPPoE, NX_BSD_RAW_PPPOE_SUPPORT must be defined in the
project. To define it, right click on the project in the Synergy Configuration pane> Properties>
Cross ARM C Compiler> Preprocessor and add this to the list of defined symbols by clicking on
the (+) icon. This does not require that the NetX Duo library be rebuilt.

The following command creates a BSD socket to handle PPPoE raw packets:

sockfd = socket(AF_PACKET, SOCK_RAW, protocol);

The current BSD implementation only supports two protocol types in AF_PACKET family:

ETHERTYPE_PPPOE_DISC: PPPoE Discovery packets. In the MAC data frame, the Discovery
packets have the Ethernet frame type 0x8863.
ETHERTYPE_PPPOE_SESS: PPP Session packets. In the MAC data frame, the Session packets
have the Ethernet frame type 0x8864.

The data type sockaddr_ll (the ll stands for link layer) is used to specify parameters when sending or
receiving PPPoE frames.

struct sockaddr_ll is declared as:

struct sockaddr_ll

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,271 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > NetX/NetX Duo BSD Support Module Operational Overview

{

USHORT sll_family; /* Must be AF_PACKET */

USHORT sll_protocol; /* LL frame type */

INTsll_ifindex; /* Interface Index. */

USHORT sll_hatype; /* Header type */

UCHAR sll_pkttype; /* Packet type */

UCHAR sll_halen; /* Length of address */

UCHAR sll_addr[8]; /* Physical layer address */

};

Note that not every field in the structure is used by sendto() or recvfrom(). See the following
description on how to set up the sockaddr_ll for sending and receiving PPPoE packets.

A socket created in the AF_PACKET family can be used to send either PPPoE discovery packets or PPP
session packets, regardless of the protocol specified. When transmitting a PPPoE packet, application
must prepare the buffer that includes properly formatted PPPoE frame, including the MAC headers
(destination MAC address, source MAC address, and frame type.) The size of the buffer includes the
14-byte Ethernet header.

In thesockaddr_ll struct, the sll_ifindex is used to indicate the physical interface to be used for
sending this packet. The rest of the fields in the structure are not used. Values set to the unused
fields are ignored by the BSD internal process.

The following code block illustrates how to transmit a PPPoE packet:

struct sockaddr_ll peer_addr;

/* Transmit the PPPoE frame using the primary network interface. */

peer_addr.sll_ifindex = 0;

n = sendto(sockfd, frame, frame_size, 0, (struct

sockaddr*)&peer_addr, sizeof(peer_addr));

The return value indicates the number of bytes transmitted. Since PPPoE packets are message-
based, on a successful transmission, the number of bytes sent matches the size of the packet,
including the 14-byte Ethernet header.

PPPoE packets can be received using recvfrom(). The receive buffer must be big enough to
accommodate a message of ethernet MTU size. The received PPPoE packet includes a 14-byte
ethernet header. On receiving PPPoE packets, PPPoE discovery packets can only be received by
socket created with protocol ETHERTYPE_PPPOE_DISC. Similarly, PPP session packets can only be
received by socket created with protocol ETHERTYPE_PPPOE_SESS. If multiple sockets are created for
the same protocol type, arriving PPPoE packets are forwarded to the socket created first. If the first
socket created for the protocol is closed, the next socket in the order of creation is used for receiving
these packets.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,272 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > NetX/NetX Duo BSD Support Module Operational Overview

After a PPPoE packet is received, the following fields in the sockaddr_ll structure are valid:

sll_family: Set by the BSD internal to be AF_PACKET
sll_ifindex: Indicates the interface from which the packet is received
sll_protocol: Set to the type of packet received: ETHERTYPE_PPPOE_DISC or
ETHERTYPE_PPPOE_SESS

NetX/NetX Duo BSD Support Module Important Operational Notes and Limitations

NetX/NetX Duo BSD Support Module Operational Notes

NetX BSD Build Requirements

Add the NetX Source element to the configuration and set the Extended Notify Support
property to enabled.
Define the following property in the ThreadX Source element: TX_THREAD_EXTENSION_2 int
bsd_errno; By default, all the EXTENSION macros are undefined;bsd_errno can also be
defined as TX_THREAD_EXTENSION_1 or TX_THREAD_EXTENSION_0.

NetX BSD Socket Options

NetX BSD socket options can be enabled (or disabled) at run time on a per socket basis using the
setsockopt service, which takes as one of its inputs option_level. There are two different settings for
option_level. The first type is SOL_SOCKET for socket level options. The list of supported options are:

SO_BROADCAST

If set, this enables sending and receiving broadcast packets from NetX sockets. This is the
default behavior for NetX Duo. All sockets have this capability.

SO_ERROR

Used to obtain socket status on the previous socket operation of the specified socket, using
the getsockoptservice. All sockets have this capability.

SO_KEEPALIVE

If set, this enables the TCP Keep Alive feature. This requires the NetX Duo library to be built
with NX_TCP_ENABLE_KEEPALIVE defined (setting the TCP Keepalive property to enabled in
the NetX and NetX Duo Common stack element). By default, this feature is disabled.

SO_RCVTIMEO

This sets the wait option in seconds for receiving packets on NetX Duo BSD sockets. The
default value is the NX_WAIT_FOREVER (0xFFFFFFFF) or, if non-blocking is enabled,
NX_NO_WAIT (0x0).

SO_RCVBUF

This sets the window size of the TCP socket. The default value, NX_BSD_TCP_WINDOW, is
set to 64 k for BSD TCP sockets. To set the size over 65535 requires the NetX Duo library to
be built with the NX_TCP_ENABLE_WINDOW_SCALINGbe defined (setting the TCP
Keepaliveproperty to enabled in the NetX and NetX Duo Common stack element).

SO_REUSEADDR

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,273 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > NetX/NetX Duo BSD Support Module Operational Overview

If set, this enables multiple sockets to be mapped to one port. The typical usage is for the
TCP Server socket. This is the default behavior of NetX sockets.

Note
The SO_ERROR option requires that the bsd_errno is defined. To define bsd_errno, add a NetX Source Stack
below the NetX Common on the nx element. Or if using NetX Duo, add a NetX Duo Source element below the NetX
Duo Common on the nxd element. Then add a ThreadX Source Stack element in the NetX Duo Source. Scroll down
the list of Properties and choose one of the TX_THREAD_EXTENSION macros (0?2). Set the value as follows:

int bsd_errno;

This is explained in NetX BSD Build Requirements section above.

The other type is IP_PROTO for options that are implemented at the IP layer and affect all
sockets. The list of run time IP level options is shown below:

IP_MULTICAST_TTL

This sets the time to live for UDP sockets. The default value is NX_IP_TIME_TO_LIVE (0x80)
when the socket is created. This value can be overridden by calling setsockoptwith this
socket option before calling the socket service.

IP_ADD_MEMBERSHIP

If set, this option enables the BSD socket (applies only to UDP sockets) to join the specified
IGMP group.

IP_DROP_MEMBERSHIP

If set, this option enables the BSD socket (applies only to UDP sockets) to leave the
specified IGMP group.

The following options are only supported in NetX Duo BSD:

IP_HDRINCL

If this option is set, the calling application must append the IP header and optionally
application headers to data being transmitted on raw IPv4 sockets created in BSD. To use
this option, raw socket processing must be enabled on the IP task. See the previous section
Raw Socket Support for specific details.

IP_RAW_IPV6_HDRINCL

If this option is set, the calling application must append an IPv6 header and optionally
application headers to data being transmitted on raw IPv6 sockets created by BSD. To use
this option, raw socket processing must be enabled on the IP task. See the previous section
Raw Socket Support for specific details.

IP_RAW_RX_NO_HEADER

If cleared, the IPv6 header is included with the received data for raw IPv6 sockets created in
BSD. IPv6 headers are removed by default in BSD raw IPv6 sockets, and the packet length
does not include the IPv6 header. If set, the IPv4 header is removed from received data on

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,274 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > NetX/NetX Duo BSD Support Module Operational Overview

BSD raw sockets of type IPv4. IPv4 headers are included by default in BSD raw IPv4 sockets
and packet length includes the IPv4 header. This option has no effect on either IPv4 or IPv6
transmission data. See the previous section Raw Socket Support for specific details on
enabling raw packet support.

To retrieve an option setting, call getsockopt for the option name with option_level again set to
SOL_SOCKET for socket level options or IP_PROTOfor IP level options.

More details on run time socket level options are available in the NetX™ BSD 4.3 Socket API Wrapper
for NetX User's Guide for the Renesas Synergy™ Platform and NetX Duo™ BSD 4.3 Socket API
Wrapper for NetX Duo User's Guide for the Renesas Synergy™ Platform documents available as
described previously in the Introduction section.

On some systems, there may be a conflict with definition of types in the native BSD. If this
happens, include _POSIX_SOURCE among the project preprocessor definitions. This is done
by right clicking at the top level of the project, Properties> C/C++ Build> Settings>
Cross ARM C Compiler (if using that project platform)> Preprocessor.

NetX BSD Build Requirements

Add the NetX Source element to the configuration and set the Extended Notify Support
property to enabled.

Define the following property in the ThreadX Source element:

TX_THREAD_EXTENSION_2 int bsd_errno; By default, all the EXTENSION macros are
undefined;bsd_errno can also be defined as TX_THREAD_EXTENSION_1 or
TX_THREAD_EXTENSION_0.

NetX BSD Socket Options

NetX BSD socket options can be enabled (or disabled) at run time on a per socket basis using the
setsockopt service, which takes as one of its inputs option_level. There are two different settings for
option_level. The first type is SOL_SOCKET for socket level options. The list of supported options are:

SO_BROADCAST

If set, this enables sending and receiving broadcast packets from NetX sockets. This is the
default behavior for NetX Duo. All sockets have this capability.

SO_ERROR

Used to obtain socket status on the previous socket operation of the specified socket, using
the getsockoptservice. All sockets have this capability.

SO_KEEPALIVE

If set, this enables the TCP Keep Alive feature. This requires the NetX Duo library to be built
with NX_TCP_ENABLE_KEEPALIVE defined (setting the TCP Keepalive property to enabled in
the NetX and NetX Duo Common stack element). By default, this feature is disabled.

SO_RCVTIMEO

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,275 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > NetX/NetX Duo BSD Support Module Operational Overview

This sets the wait option in seconds for receiving packets on NetX Duo BSD sockets. The
default value is the NX_WAIT_FOREVER (0xFFFFFFFF) or, if non-blocking is enabled,
NX_NO_WAIT (0x0.

SO_RCVBUF

This sets the window size of the TCP socket. The default value, NX_BSD_TCP_WINDOW, is
set to 64 k for BSD TCP sockets. To set the size over 65535 requires the NetX Duo library to
be built with the NX_TCP_ENABLE_WINDOW_SCALINGbe defined (setting the TCP
Keepaliveproperty to enabled in the NetX and NetX Duo Common stack element).

SO_REUSEADDR

If set, this enables multiple sockets to be mapped to one port. The typical usage is for the
TCP Server socket. This is the default behavior of NetX sockets.

Note
The SO_ERROR option requires that the bsd_errno is defined. To define bsd_errno, add a NetX Source Stack
below the NetX Common on the nx element. Or if using NetX Duo, add a NetX Duo Source element below the NetX
Duo Common on the nxd element. Then add a ThreadX Source Stack element in the NetX Duo Source. Scroll down
the list of Properties and choose one of the TX_THREAD_EXTENSION macros (0?2). Set the value as follows:

int bsd_errno;

This is explained in NetX BSD Build Requirements section above.

The other type is IP_PROTO for options that are implemented at the IP layer and affect all
sockets. The list of run time IP level options is shown below:

IP_MULTICAST_TTL

This sets the time to live for UDP sockets. The default value is NX_IP_TIME_TO_LIVE (0x80)
when the socket is created. This value can be overridden by calling setsockoptwith this
socket option before calling the socket service.

IP_ADD_MEMBERSHIP

If set, this option enables the BSD socket (applies only to UDP sockets) to join the specified
IGMP group.

IP_DROP_MEMBERSHIP

If set, this option enables the BSD socket (applies only to UDP sockets) to leave the
specified IGMP group.

The following options are only supported in NetX Duo BSD:

IP_HDRINCL

If this option is set, the calling application must append the IP header and optionally
application headers to data being transmitted on raw IPv4 sockets created in BSD. To use
this option, raw socket processing must be enabled on the IP task. See the previous section
Raw Socket Support for specific details.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,276 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > NetX/NetX Duo BSD Support Module Operational Overview

IP_RAW_IPV6_HDRINCL

If this option is set, the calling application must append an IPv6 header and optionally
application headers to data being transmitted on raw IPv6 sockets created by BSD. To use
this option, raw socket processing must be enabled on the IP task. See the previous section
Raw Socket Support for specific details.

IP_RAW_RX_NO_HEADER

If cleared, the IPv6 header is included with the received data for raw IPv6 sockets created in
BSD. IPv6 headers are removed by default in BSD raw IPv6 sockets, and the packet length
does not include the IPv6 header. If set, the IPv4 header is removed from received data on
BSD raw sockets of type IPv4. IPv4 headers are included by default in BSD raw IPv4 sockets
and packet length includes the IPv4 header. This option has no effect on either IPv4 or IPv6
transmission data. See the previous section Raw Socket Support for specific details on
enabling raw packet support.

To retrieve an option setting, call getsockopt for the option name with option_level again set to
SOL_SOCKET for socket level options or IP_PROTOfor IP level options.

More details on run time socket level options are available in the NetX™ BSD 4.3 Socket API Wrapper
for NetX User's Guide for the Renesas Synergy™ Platform and NetX Duo™ BSD 4.3 Socket API
Wrapper for NetX Duo User's Guide for the Renesas Synergy™ Platform documents available as
described previously in the Introduction section.

On some systems, there may be a conflict with definition of types in the native BSD. If this
happens, include _POSIX_SOURCE among the project preprocessor definitions. This is done
by right clicking at the top level of the project, Properties> C/C++ Build> Settings>
Cross ARM C Compiler (if using that project platform)> Preprocessor.

NetX/NetX Duo BSD Support Module Limitations

Only MSG_DONTWAIT and MSG_PEEK flags are supported for send, recv, sendto and
recvfrom calls.
NetX BSD socket level options are limited to:

SO_BROADCAST
SO_ERROR
SO_KEEPALIVE
SO_RCVTIMEO
SO_RCVBUF
SO_REUSEADDR

NetX BSD IP level options are limited to:
IP_MULTICAST_TTL
IP_RAW_IPV6_HDRINCL (NetX Duo BSD only)
IP_ADD_MEMBERSHIP
IP_DROP_MEMBERSHIP
IP_HDRINCL(NetX Duo BSD only, raw sockets must be enabled)
IP_RAW_RX_NO_HEADER (NetX Duo BSD only, raw sockets must be enabled)

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.13.4 Including the NetX/NetX Duo BSD Support Module in an Application

This section describes how to include either or both the NetX and NetX Duo BSD Support module in

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,277 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > Including the NetX/NetX Duo BSD Support Module in an Application

an application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo BSD Support module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo BSD Support Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

NetX BSD Support Threads New Stack> X-Ware> NetX>
Protocols> NetX BSD
Support

NetX Duo BSD Support Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
BSD Support

When the NetX and/or NetX Duo BSD Support module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,278 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > Including the NetX/NetX Duo BSD Support Module in an Application

Figure 431: NetX/NetX Duo BSD Support Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.13.5 Configuring the NetX/NetX Duo BSD Support Module

The NetX/NetX Duo BSD Support module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,279 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > Configuring the NetX/NetX Duo BSD Support Module

approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo BSD Support Module

ISDE Property Value Description

NetX BSD Warning Enable, Disable

Default: Enable

NetX BSD warning selection.

Internal thread stack
size(bytes)

2048 Internal thread stack size
selection.

Internal thread priority 3 Internal thread priority
selection.

Name of generated initialization
function

nx_bsd_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select different MAC or IP Addresses. The configurable properties for
the lower-level stack modules are provided in the following sections for completeness and as a
reference.

Note
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo BSD Support Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,280 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > Configuring the NetX/NetX Duo BSD Support Module

Name g_ip0 Module name.

IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection.

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection.

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection.

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection.

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address
selection.

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection.

IP Helper Thread Priority 3 IP Helper Thread Priority
selection.

ARP Enable ARP selection.

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection.

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection.

TCP Enable, Disable

Default: Enable

TCP selection.

UDP Enable, Disable

Default: Enable

UDP selection.

ICMP Enable, Disable

Default: Enable

ICMP selection.

IGMP Enable, Disable

Default: Enable

IGMP selection.

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection.

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,281 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > Configuring the NetX/NetX Duo BSD Support Module

Link status change callback NULL Link status change callback
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name.

Packet Size in Bytes 640 Packet size selection.

Number of Packets in Pool 16 Number of packets in pool
selection.

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo BSD Support Module Clock Configuration

The ETHERC peripheral module uses the PCLKA as its clock source. The PCLKA frequency is set using
the SSP configurator Clock tab prior to a build or by using the CGC interface at run-time.

NetX/NetX Duo BSD Support Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,282 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > Configuring the NetX/NetX Duo BSD Support Module

table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

ETHERC Pins Select Peripherals>
Connectivity:ETHERC>
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1.

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection.

REF50CK P701 REF50CK pin.

TXD0 P700 TXD0 pin.

TXD1 P406 TXD1 pin.

TXD_EN P405 TXD_EN pin.

RXD0 P702 RXD0 pin.

RXD1 P703 RXD1 pin.

RX_ER P704 RX_ER pin.

CRS_DV P705 CRS_DV pin.

MDC P403 MDC pin.

MDIO P404 MDIO pin.

Note
The example settings are for a project using the S7G2 Synergy MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and other Synergy Kits may have different available pin configuration settings.

4.3.13.6 Using the NetX/NetX Duo BSD Support Module in an Application

The steps in using the NetX and NetX Duo BSD Support module in a typical application are:

NetX BSD Client:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,283 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > Using the NetX/NetX Duo BSD Support Module in an Application

1. Poll the nx_ip_status_check API for when the IP instance has a valid IP address.
2. Create a socket using the socket API.
3. Create sockaddr_in for client and server defining IP address and port for client and server.
4. Bind to a local source port using the bind API.
5. Connect to the server using the connect API.
6. Obtain connection information using getpeername, getsockname services [Optional].
7. Send a packet to the Server using the send API.
8. Receive a packet using the recv API.
9. Close the socket using the soc_close API.

NetX BSD Server:

1. Poll the nx_ip_status_check API for when the IP instance has a valid IP address.

2. Create a master socket using the socket API.

3. Create sockaddr_in defining IP address and port for server.

4. Bind the socket to a port using the bind API.

5. Assign a local source port to listen for client requests using the listen API.

6. Check for socket requests (read, write, exception) using the select API.

7. Accept client requests and hand off the connection to a secondary socket using the accept API.

8. Receive packets using the recv API.

9. Send packets using the send API.

10. Close the socket using the soc_close API.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,284 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > Using the NetX/NetX Duo BSD Support Module in an Application

Figure 432: Flow Diagram of a Typical NetX BSD Client Module Application

Figure 433: Flow Diagram of a Typical NetX BSD Server Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,285 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > Using the NetX/NetX Duo BSD Support Module in an Application

 NetX Duo BSD Client

1. Poll the nx_ip_status_check API for when the IP instance has a valid IP address.
2. Create a socket using the socket API.
3. Create sockaddr_in (or sockaddr_in6 for IPv6) defining IP (or IPv6) address and port for

client and server.
4. Bind to a local source port using the bind API.
5. Connect to the server using the connect API.
6. Obtain connection information using getpeername, getsockname services [Optional]
7. Send a packet using the send API.
8. Receive packets using the recv and send API.
9. Close the socket using the soc_close API.

NetX Duo BSD Server

1. Poll the nx_ip_status_check API for when the IP instance has a valid IP address.
2. Create a master socket using the socket API.
3. Create sockaddr_in (or sockaddr_in6 for IPv6) defining IP (or IPv6) address and port for

server Set socket options using the ioctl, setsockopt APIs
4. Bind the socket to a port using the bind API.
5. Assign a local source port to listen for client requests using the listen API.
6. Check for socket requests (read, write, exception) using the select API.
7. Accept client requests and hand off the connection to a secondary socket using the accept

API.
8. Receive packets using the recv API.
9. Send packets using the send API.

10. Close the socket using the soc_close API

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,286 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > Using the NetX/NetX Duo BSD Support Module in an Application

Figure 434: Flow Diagram of a Typical NetX Duo BSD Client Module Application

Figure 435: Flow Diagram of a Typical NetX Duo BSD Server Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,287 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo BSD Support > Using the NetX/NetX Duo BSD Support Module in an Application

4.3.14 NetX/NetX Duo DHCP Client

4.3.14.1 NetX/NetX Duo DHCP Client Introduction

The Dynamic Host Configuration Protocol (DHCP) is used to obtain an IP address and network
parameters. The DHCP is designed to extend the basic functionality of the BOOTP (which is limited to
static address configuration) to include a completely dynamic IP address allocation through "leasing"
an IP address to a client for a specified period of time. The DHCP can also be configured to allocate IP
addresses in a static manner (like the BOOTP). An application's IP address is one of the supplied
parameters for the NetX™ component. Supplying the IP address poses no problem if the IP address is
known to the application, either statically or through the user configuration. When the application
does not know or care what its IP address is, the NetX is initialized with a zero IP address; a DHCP
client component added to NetX can then dynamically obtain an IP address.

In IPv6 networks, the DHCP protocol is of no use because it is limited to IPv4. Therefore, the DHCPv6
is the protocol used for dynamic global IPv6 address assignment from a DHCPv6 Server. This guide
covers only the IPv4 version of DHCP, but applies to NetX™ and NetX™ Duo. A note will clearly
identify where there are any differences in use between NetX and NetX Duo. To simplify wording in
this document, NetX DHCPv4 will be used to stand for NetX and NetX Duo DHCP for IPv4.

NetX/NetX Duo DHCP Client Module Features

The NetX/NetX Duo DHCP Client module is compliant with RFC2132, RFC2131 and related
RFCs.
The module provides high-level APIs to:

Create and delete a DHCP client instance
Start, stop, and reinitialize the DHCP client (to restart the DHCP client protocol)
Request a specific IP Address from the server
Specify the network interface to run the DHCP client on
Supply an application-created packet pool to the DHCP client

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,288 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > NetX/NetX Duo DHCP Client Introduction

Figure 436: NetX/NetX Duo DHCP Client Module Block Diagram

Note
In the figure above, the NetX (or NetX Duo) Network Driver modules has multiple implementation options
available. See the description just after the module stack figure in Including the NetX/NetX Duo DHCP Client
Module in an Application for additional details.

4.3.14.2 NetX/NetX Duo DHCP Client Module APIs Overview

The NetX/NetX Duo DHCP Client module defines APIs for creating and starting the DHCP client.
Internally, the DHCP client handles all communication with the DHCP server to obtain an IP address.
A list of the key API functions, an example API function call and a short description of each can be
found in the following table. Additional function calls are described in the NetX DHCP Client User's
Manual as describe in the note below the table. A table of status return values follows the API
summary table.

NetX/NetX Duo DHCP Client Module API Summary

Function Name Example API Call and Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,289 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > NetX/NetX Duo DHCP Client Module APIs Overview

nx_dhcp_create nx_dhcp_create(&my_dhcp, &my_ip, "My
DHCP");
Create a DHCP instance.

nx_dhcp_clear_broadcast_flag nx_dhcp_clear_broadcast_flag(&my_dhcp,
NX_TRUE);
Clear broadcast flag on Client messages.

nx_dhcp_delete nx_dhcp_delete(&my_dhcp);
Delete a DHCP instance.

nx_dhcp_decline nx_dhcp_decline(&my_dhcp);
Send Decline message to server.

nx_dhcp_force_renew nx_dhcp_force_renew(&my_dhcp);
Handle Server force renew message.

nx_dhcp_packet_pool_set nx_packet_pool_create(&dhcp_pool, "DHCP
Client Packet Pool",
NX_DHCP_PACKET_PAYLOAD, pointer, (15 *
NX_DHCP_PACKET_PAYLOAD));
nx_dhcp_create(&dhcp_0, &ip_0, "janetsdhcp1");
nx_dhcp_packet_pool_set(&my_dhcp,
packet_pool_ptr);
Set the DHCP Client packet pool. By default, the
DHCP Client creates its own packet pool.

nx_dhcp_release nx_dhcp_release(&my_dhcp);
Send Release message to server.

nx_dhcp_reinitialize nx_dhcp_reinitialize(&my_dhcp);
Clear DHCP client network parameters and clear
IP address and gateway registered with the IP
instance.

nx_dhcp_request_client_ip nx_dhcp_request_client_ip(&my_dhcp,
IP(192,168,0,6), NX_TRUE);
Request a specific IP address.

nx_dhcp_send_request nx_dhcp_send_request(&my_dhcp,
NX_DHCP_TYPE_INFORMREQUEST);
Send DHCP message to server (only
INFORM_REQUEST is allowed).

nx_dhcp_server_address_get nx_dhcp_server_address_get(&dhcp_0,
&server_address);
Retrieve DHCP Client's DHCP server address*.*

nx_dhcp_set_interface_index nx_dhcp_set_interface_index(&my_dhcp, 1);
Specify the network interface to run DHCP
Client.

nx_dhcp_start nx_dhcp_start(&my_dhcp);
Start DHCP processing.

nx_dhcp_state_change_notify nx_dhcp_state_change_notify(&my_dhcp,
my_state_change);
Notify application of DHCP state change.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,290 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > NetX/NetX Duo DHCP Client Module APIs Overview

nx_dhcp_stop nx_dhcp_stop(&my_dhcp);
Stop DHCP processing.

nx_dhcp_user_option_retrieve nx_dhcp_user_option_retrieve(&my_dhcp,NX_DH
CP_OPTION_DNS_SVR,dns_ip_string, &size);
Retrieve the specified DHCP option*.*

nx_dhcp_user_option_convert nx_dhcp_user_option_convert(dns_ip_string);
Convert four bytes to ULONG.

The following services require that
Persistent client state be enabled

nx_dhcp_suspend nx_dhcp_suspend(&g_dhcp_client0);
Suspend the DHCP Client thread.

nx_dhcp_resume nx_dhcp_resume (&g_dhcp_client0);
Resume the DHCP Client thread.

nx_dhcp_client_update_time_remaining nx_dhcp_client_update_time_remaining(*g_dhcp
_client0, 1000)
This updates the time remaining on the IP lease
by the input time in timer ticks, such as the time
interval while the DHCP Client thread was
suspended.

nx_dhcp_client_create_record nx_dhcp_client_create_record(&g_dhcp_client0)
This fills in a client record structure associated
with the DHCP Client based on Client lease data.

nx_dhcp_client_restore_record nx_dhcp_client_restore_record(&g_dhcp_client,
client_record_ptr, time_elapsed)The Client
record points to data to restore to the DHCP
Client itself, and time elapsed is subtracted from
the DHCP Client time remaining on its lease.

Note
For details on operation and definitions for additional API functions, the function data structures, typedefs, defines,
API data, API structures, and function variables, review the associated Azure RTOS User's Manual available in the
Azure RTOS Component Documents for Renesas Synergy" zip file located at the bottom of the Renesas Synergy SSP
web page here: https://www.renesas.com/en-us/products/synergy/software/ssp.html.

Status Return Values

Name Description

NX_SUCCESS Successful API call.

NX_PTR_ERROR* Invalid pointer input.

NX_THREADS_ONLY_CALLER_CHECKING* Invalid caller of this service.

NX_INVALID_INTERFACE NetX is not enabled on the input interface

NX_NOT_ENABLED Not enabled to set the DHCP Client packet pool.

NX_DHCP_NOT_STARTED DHCP Client not started.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,291 / 5,198

https://www.renesas.com/en-us/products/synergy/software/ssp.html

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > NetX/NetX Duo DHCP Client Module APIs Overview

NX_DHCP_NOT_BOUND The IP address has not been leased so the
current operation is not allowed.

NX_DHCP_INVALID_MESSAGE Illegal message type to send.

NX_DHCP_BAD_INTERFACE_INDEX* An invalid network interface supplied.

NX_DHCP_UNKNOWN_OPTION Unknown DHCP option to extract from DHCP
server response.

NX_DHCP_INVALID_IP_REQUEST* Invalid address for the DHCP Client to request.

NX_DHCP_INVALID_PAYLOAD Packet pool for the DHCP Client has insufficient
payload.

NX_DHCP_ALREADY_STARTED DHCP Client thread task has already started.

NX_DHCP_PARSE_ERROR Unable to parse requested option from Server
response.

NX_DHCP_DEST_TO_SMALL Supplied buffer too small to hold the requested
option data for user requesting option data.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

These are error codes which are only returned if error checking is enabled. Refer to the
NetX User Guide for the Renesas Synergy™ Platform or NetX Duo User's Guide for the
Renesas Synergy™ Platform for more details on error-checking services in NetX and NetX
Duo, respectively.

4.3.14.3 NetX/NetX Duo DHCP Client Module Operational Overview

The DHCP Client module handles all the details in obtaining an IP address, registering it with the IP
instance, and renewing the IP address lease before the lease expires.

A NetX IP instance is created; it has a zero IP address and is enabled for User Datagram Protocol
(UDP) and the Address Resolution Protocol (ARP), respectively. The Reverse ARP (RARP) should not
be enabled; a DHCP Client is then created. Its creation creates an UDP socket for sending and
receiving DHCP messages. By default, the DHCP Client creates its own packet pool based on the
settings Minimum packet payload size and Number of packets in packet pool (see the following
table). The Minimum Client packet payload size must be large enough to include DHCP data, IP, UDP
headers, and the physical frame header.

For Ethernet networks, this minimum payload is 592 bytes, which is the default setting of
Minimum Client packet payload size.
For other network types (such as Wi-Fi), the frame-header size is larger, and minimum size
must be increased correspondingly.

When the packet pool is created, the DHCP Client verifies that the packet payload is not less than
the minimum required payload size.

The DHCP Client can request a specific IP address using the nx_dhcp_request_client_ip service and
supply a non‑zero IP address before starting the DHCP Client. Normally, the request is useful for a
device previously assigned an IP address that wishes to keep the same IP address. Note: the server
is not obligated to accommodate this request.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,292 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > NetX/NetX Duo DHCP Client Module Operational Overview

When the DHCP Client is started, it binds the socket to a DHCP port (by default 68) and begins
sending and receiving packets through that socket. When the client is assigned an IP address, it
automatically registers the IP address with NetX. The server supplies the network mask and network
gateway, and the DHCP Client module updates NetX with that information.

When the server assigns the Client an IP address, it may also supply other network information, such
as the DNS server and the NTP server. The application can obtain those values using the
nx_dhcp_user_option_retrieve service.

The DHCP Client keeps track of the time remaining on the IP lease. It automatically sends Renew
requests to the DHCP Server when time to renew. If the server is no longer on the network, or is
otherwise not responding, the client sends broadcast requests to any DHCP Server on the network.
If the lease expires without a renewal or rebinding, the client is returned to the NX_DHCP_STATE_INIT
state. The device may continue to use the IP address. If a DHCP Server is later available, and the
device is able to request an IP address, it must no longer use the old IP address.

In busy networks, a DHCP Client socket queue can fill up with non-specific DHCP broadcast packets
intended for other DHCP Client hosts. If the DHCP Client socket receive-queue fills up, any packets
intended for the device may get dropped. To avoid this problem, the DHCP Client continually clears
non-specific broadcast packets from the socket.

The DHCP client module can register a callback to add options to the DHCP protocol using the
nx_dhcp_user_option_add_callback_set API function. The DHCP option 60 (Vendor Class Identifier),
and DHCP option 61 (Client Identifier), as well as other options, can be added for DHCP request using
the registered callback. The DHCP module can chain multiple options and the options must fit in the
normal payload. The Synergy configurator provides a default DHCP Option 60 addition callback. To
enable the default callback, the DHCP Option addition and DHCP Option addition function
properties must be set to Enable in the configurator.

NetX/NetX Duo DHCP Client Module Important Operational Notes and Limitations

NetX/NetX Duo DHCP Client Module Operational Notes

Instead of the DHCP Client module creating the packet pool, the developer may prefer to supply a
previously created packet pool. To do so, enable the Use application packet pool option, then use the
nx_dhcp_packet_pool_set service to set the DHCP Client's packet pool.

The DHCP Client verifies that the packet payload is not less than the minimum required packet size.

The IP address offered to the client should be tested for 'uniqueness' on the local network, since the
DHCP protocol does not require the server to check. To configure the DHCP Client to check, enable
the Send ARP probe option.

The DHCP Client sends a series of ARP "probes" with its assigned IP address out on the network. If
any host responds to these ARP requests/probes, the DHCP Client automatically sends a DECLINE
message to the server, and restarts the DHCP protocol to request another IP address. Otherwise, the
DHCP Client proceeds to the bound state. The states of the client in the DHCP protocol are:

NX_DHCP_STATE_NOT_STARTED

NX_DHCP_STATE_INIT

NX_DHCP_STATE_SELECTING NX_DHCP_STATE_REQUESTING

NX_DHCP_STATE_BOUND

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,293 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > NetX/NetX Duo DHCP Client Module Operational Overview

NX_DHCP_STATE_RENEWING

NX_DHCP_STATE_REBINDING

Note
If ARP probe is enabled, the NetX DHCP Client enters a temporary state called
NX_DHCP_STATE_ADDRESS_PROBING before the NX_DHCP_STATE_BOUND state*.*

The application can detect if the DHCP Client has completed (has an IP address) in a couple of ways.
First, it can call the nx_ip_status_check service with the NX_IP_ADDRESS_RESOLVED option.
Alternatively, it can use the _nx_dhcp_state_change_notify service which notifies the application
when the DHCP Client state changes. When the DHCP Client reaches the bound state, (state ==
NX_DHCP_STATE_BOUND) it has a valid IP address.

If there is a need to stop the DHCP Client thread task, call the nx_dhcp_stop service. To restart the
Client, first call the nx_dhcp_reinitialize service to clear the DHCP Client data and also clear network
parameters registered with NetX. Then, the DHCP Client is restarted with the nx_dhcp_start call.

NetX/NetX Duo DHCP Client Module Limitations

The DHCP Client does not support the INFORM_REQUEST message. The application can
send this message out using the nx_dhcp_send_request service, but the data from the
Server is not extracted and saved to the DHCP Client.
The options supported _nx_dhcp_user_option_retrieve are limited to the following:

NX_DHCP_OPTION_SUBNET_MASK
NX_DHCP_OPTION_TIME_OFFSET
NX_DHCP_OPTION_GATEWAYS
NX_DHCP_OPTION_TIMESVR
NX_DHCP_OPTION_DNS_SVR
NX_DHCP_OPTION_NTP_SVR
NX_DHCP_OPTION_DHCP_LEASE
NX_DHCP_OPTION_DHCP_SERVER
NX_DHCP_OPTION_RENEWAL
NX_DHCP_OPTION_REBIND

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.14.4 Including the NetX/NetX Duo DHCP Client Module in an Application

This section describes how to include either or both the NetX and NetX Duo DHCP Client module in
an application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo DHCP Client module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo DHCP Client Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,294 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > Including the NetX/NetX Duo DHCP Client Module in an Application

g_dhcp_client0 NetX DHCP
Client

Threads New Stack> X-Ware> NetX>
Protocols> NetX DHCP
Client

g_dhcp_client0 NetX Duo DHCP
IPv4 Client

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
DHCP IPv4 Client

When the NetX and/or NetX Duo DHCP Client module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 437: NetX/NetX Duo DHCP Client Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,295 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > Including the NetX/NetX Duo DHCP Client Module in an Application

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.14.5 Configuring the NetX/NetX Duo DHCP Client Module

The NetX/NetX Duo DHCP Client module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo DHCP Client Module

ISDE Property Value Description

Internal thread priority 3 Internal thread priority
selection.

Internal thread stack size
(bytes)

NetX Default: 2048

NetX Duo Default: 4096

Internal thread stack size
(bytes) selection.

Timeout between DHCP
messages processed (seconds)

1 Timeout between DHCP
messages processed (seconds)
selection.

Use BOOTP Enable, Disable

Default: Disable

Use BOOTP selection.

Send ARP probe Enable, Disable

Default: Disable

Send ARP probe selection.

ARP probe wait time (seconds) 1 ARP probe wait time selection.

Minimum ARP probe wait time
(seconds)

1 Minimum ARP probe wait time
selection.

Minimum ARP probe wait time
(seconds)

2 Minimum ARP probe wait time
selection.

ARP probe count 2 ARP probe count selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,296 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > Configuring the NetX/NetX Duo DHCP Client Module

Maximum retransmission
timeout (seconds)

64 Maximum retransmission
timeout (seconds) selection.

Minimum renew timeout
(seconds)

60 Minimum renew timeout
(seconds) selection.

Minimum retransmission
timeout (seconds)

4 Minimum retransmission
timeout (seconds) selection.

Client packet payload size
(bytes)

592 Client packet payload size
(bytes) selection.

Number of packets in internal
packet pool

5 Number of packets in internal
packet pool selection.

Persistent client state Enable, Disable

Default: Disable

Persistent client state selection.

Use application packet pool Enable, Disable

Default: Disable

Use application packet pool
selection.

Maximum message size support Enable, Disable

Default: Disable

Maximum message size support
selection.

DHCP options buffer size
(bytes)

312 DHCP options buffer size
(bytes) selection.

Maximum DHCP client state
record on an interface

1 Maximum DHCP client state
record on an interface
selection.

Wait before restarting the
configuration process (seconds)

10 Wait before restarting the
configuration process selection.

Name g_dhcp_client0 Module name.

Name of generated initialization
function

dhcp_client_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

*DHCP Option addition Enable, Disable

Default: Enable

Enable or Disable feature to
add DHCP Option to DHCP
message.

*DHCP Option addition function Enable, Disable

Default: Enable

Enable or Disable Option
Addition function.

*Name of the DHCP option
addition function

dhcp_user_option_add_client0 Name for the option add
function provided by the user.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,297 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > Configuring the NetX/NetX Duo DHCP Client Module

* Settings available in NetX implementation only.

In some cases, settings other than the defaults for stack modules can be desirable. For example, it
might be useful to select different Ethernet interface pins and resets. The configurable properties for
the lower-level stack modules are given in the following sections for completeness and as a
reference.

Note
 Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo DHCP Client Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name.

IPv4 Address (use commas for
separation)

0,0,0,0 IPv4 Address selection.

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection.

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection.

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address
selection.

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection.

IP Helper Thread Priority 3 IP Helper Thread Priority
selection.

ARP Enable ARP selection.

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection.

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection.

TCP Enable, Disable

Default: Enable

TCP selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,298 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > Configuring the NetX/NetX Duo DHCP Client Module

UDP Enable, Disable

Default: Enable

UDP selection.

ICMP Enable, Disable

Default: Enable

ICMP selection.

IGMP Enable, Disable

Default: Enable

IGMP selection.

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection.

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Link status change callback Default: NULL Name of user defined callback
function if needed- otherwise
set as NULL.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo DHCP Common Instance

ISDE Property Value Description

Type of Service for UDP
requests

Normal, Minimum delay,
Maximum data, Maximum
reliability, Minimum cost

Default: Normal

Type of service UDP requests
selection.

Fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Fragmentation option selection.

Time to live 128 Time to live selection.

Packet Queue depth 5 Packet queue depth selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Common Instance

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,299 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > Configuring the NetX/NetX Duo DHCP Client Module

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name.

Packet Size in Bytes 640 Packet size selection.

Number of Packets in Pool 16 Number of packets in pool
selection.

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo DHCP Client Module Clock Configuration

The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the
SSP configurator clock tab prior to a build, or by using the CGC interface at run-time.

NetX/NetX Duo DHCP Client Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines the peripheral signals available and the MCU pins required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,300 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > Configuring the NetX/NetX Duo DHCP Client Module

ETHERC Pins Select Peripherals>
Connectivity:ETHERC>
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1.

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection.

REF50CK P701 REF50CK pin.

TXD0 P700 TXD0 pin.

TXD1 P406 TXD1 pin.

TXD_EN P405 TXD_EN pin.

RXD0 P702 RXD0 pin.

RXD1 P703 RXD1 pin.

RX_ER P704 RX_ER pin.

CRS_DV P705 CRS_DV pin.

MDC P403 MDC pin.

MDIO P404 MDIO pin.

Note
The example settings are for a project using the S7G2 Synergy MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and other Synergy Kits may have different available pin configuration settings.

4.3.14.6 Using the NetX/NetX Duo DHCP Client Module in an Application

The following example assumes a system that is already established with a working and enabled IP,
ARP and UDP, and the link is running. Additionally, set the DHCP features for the DHCP Client
(request specific IP address, clear the broadcast flag, set the interface on which DHCP Client runs, or
set callback to configure the user options) before starting the DHCP Client. [Optional]

The steps in using the NetX/NetX Duo DHCP Client module in a typical application are:

1. Set the DHCP features for the DHCP Client (request specific IP address, clear the broadcast
flag, set the interface on which DHCP Client runs) before starting the DHCP Client.
[Optional]

2. Start the DHCP using the nx_dhcp_start API.
3. Wait for IP Address resolution by calling nx_ip_status_check (a NetX library service call) or

check for the bound state in the DHCP Client state-change callback function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,301 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Client > Using the NetX/NetX Duo DHCP Client Module in an Application

4. A valid IP Address is now on lease and the application can start using NetX services for
sending and receiving packets.

5. The DHCP Client will automatically request IP lease renewal based on the time remaining on
the IP lease (as long as the DHCP Client thread task is still running). [Optional]

6. To stop the DHCP Client thread task, call the nx_dhcp_stop API.
7. To restart the DHCP Client, call the nx_dhcp_reinitialize API and then call the nx_dhcp_start

API. [Optional]
8. Add or modify the existing DHCP Client settings. [Optional]

The following figure illustrates common steps in a typical operational flow diagram:

Figure 438: Flow Diagram of a Typical NetX/NetX Duo DHCP Client Module Application

4.3.15 NetX/NetX Duo DHCP Server

4.3.15.1 NetX/NetX Duo DHCP Server Introduction

The Dynamic Host Configuration Protocol (DHCP) is designed to completely automate DHCP Server
allocation and dynamic IP address allocation through leasing an IP address to a client for a specified
time.

In IPv6 networks, the DHCP protocol is of no use because it is limited to IPv4. Therefore, the DHCPv6
is the protocol used for dynamic global IPv6 address assignment from a DHCPv6 Server. This guide
covers only the IPv4 version of DHCP, but applies to NetX™ and NetX™ Duo. A note will clearly
identify where there are any differences in use between NetX and NetX Duo. To simplify wording in
this document, NetX DHCPv4 will be used to stand for NetX and NetX Duo DHCP for IPv4.

NetX/NetX Duo DHCP Server Module Features

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,302 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Server > NetX/NetX Duo DHCP Server Introduction

The NetX DHCP is compliant with RFC2132, RFC2131 and related RFCs.
Provides high-level APIs for:

Creating and deleting a DHCPv4 Server instance
Setting network parameters for DHCPv4 Server messages to the client
Creating a pool of assignable IP addresses
Starting and stopping the DHCP Server task thread

Figure 439: NetX/NetX Duo DHCP Server Module Block Diagram

Note
In the figure above, the NetX (or NetX Duo) Network Driver modules has multiple implementation options
available. See the description just after the module stack figure in Including the NetX/NetX Duo DHCP Server
Module in an Application for additional details.

4.3.15.2 NetX/NetX Duo DHCP Server Module APIs Overview

The NetX DHCP Server defines APIs for creating, deleting, removing, starting, and stopping the
server, for creating the pool of assignable IP addresses, and for setting up the network information
for the client. A complete list of the available APIs, an example API call and a short description of
each can be found in the following table. A table of status return values follows the API summary

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,303 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Server > NetX/NetX Duo DHCP Server Module APIs Overview

table.

NetX/NetX Duo DHCP Server Module API Summary

Function Name Example API Call and Description

nx_dhcp_server_create nx_dhcp_server_create(&dhcp_server,
&server_ip, pointer,
DEMO_SERVER_STACK_SIZE,
SERVER_IP_ADDRESS_LIST, "DHCP server",
&server_pool);
Create a DHCP Server instance.

nx_dhcp_create_server_ip_address_list nx_dhcp_create_server_ip_list (&dhcp_server,
iface_index,
START_IP_ADDRESS_LIST,
END_IP_ADDRESS_LIST, &addresses_added);
Create pool of available IP addresses to assign to
DHCP Clients on the specified network index.

nx_dhcp_clear_client_record nx_dhcp_clear_client_record (&dhcp_server,
&dhcp_client_ptr);
Remove Client record in the Server database.

nx_dhcp_set_interface_network_parameters nx_dhcp_set_interface_network_parameters(&dh
cp_server, iface_index,
NX_DHCP_SUBNET_MASK,
NX_DHCP_DEFAULT_GATEWAY,
NX_DHCP_DNS_SERVER);
Set DHCP options for adding critical network
parameters on specified interface in messages
to Clients.

nx_dhcp_server_delete nx_dhcp_server_delete(&dhcp_server);
Delete a DHCP Server instance.

nx_dhcp_server_start nx_dhcp_server_start(&dhcp_server);
Start or resume DHCP Server processing.

nx_dhcp_server_stop nx_dhcp_server_stop(&dhcp_server);
Stop DHCP server processing.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API
structures, and function variables, review the associated Azure RTOS User's Manual in the References section.

Status Return Values

Name Description

NX_SUCCESS Successful DHCP call.

NX_PTR_ERROR* Invalid pointer input.

NX_DHCP_PARAMETER_ERROR Invalid non-pointer input.

NX_DHCP_INADEQUATE_PACKET_POOL_PAYLOAD Packet payload too small error.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,304 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Server > NetX/NetX Duo DHCP Server Module APIs Overview

NX_DHCP_NO_SERVER_OPTION_LIST Missing option list; cannot create Server.

NX_DHCP_SERVER_BAD_INTERFACE_INDEX Index does not match addresses.

NX_DHCP_INVALID_IP_ADDRESS Invalid IP address or network interface for
creating Server address list.

NX_DHCP_INVALID_IP_ADDRESS_LIST Illogical start/end IP addresses for Server list.

NX_DHCP_INVALID_NETWORK_PARAMETERS Invalid network parameters for DHCP messages
to Client.

NX_DHCP_SERVER_ALREADY_STARTED The DHCP instance has already been started.

NX_DHCP_SERVER_NOT_STARTED DHCP Server not started.

NX_CALLER_ERROR* Invalid caller of service.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

These are error codes which are only returned if error checking is enabled. Refer to the
NetX User Guide for the Renesas Synergy™ Platform or NetX Duo User's Guide for the
Renesas Synergy™ Platform for more details on error-checking services in NetX and NetX
Duo, respectively.

4.3.15.3 NetX/NetX Duo DHCP Server Module Operational Overview

The DHCP server utilizes the UDP protocol to receive DHCP Client requests and transmit responses. It
handles all details of creating an IP instance, initializing the driver, creating the UDP socket, and
binding to the well-known DHCP port 67 to receive client requests.

The DHCP Server is assigned a packet pool when it is created. It can share the packet pool used by
the IP instance (the IP default packet pool) or the module can create a separate one for the server.
The packet payload must be large enough to include DHCP data, IP and UDP headers, and the
physical frame header. DHCP data size is set by the Size of the BOOT Buffer (bytes) property, which
defaults to 548 bytes.

Before starting the DHCP Server, the application must create a pool of assignable IP addresses; it
does so by calling the nx_dhcp_create_server_ip_address_listservice. This service takes as input a
starting IP address and an ending IP address. The server verifies the addresses are local network
addresses. The DHCP Server services are interface-specific, including creating the IP address list and
setting network parameters. The assumed network interface the DHCP Server is running on is the
primary interface (index is zero). It fills a table of IP addresses sequentially starting at the starting IP
address. The addresses_added pointer input returns the number of addresses added, which is equal
to or less than the size of this table. The IP address table size is defined by the Maximum size of an
IP addresses list property, which defaults to 20. There is one such table for each network interface on
which the DHCP Server is receiving DHCP Client requests.

The DHCP Server keeps a record of each client (or rather the client's DISCOVER request) in its client
record table. The record lives for as long as the client keeps the assigned IP address. If the client fails
to renew, or fails to respond to the DHCP protocol before reaching the bound (IP address assigned)
state, the record is deleted. One table holds all client records from all network interfaces on which
the server receives DHCP requests. The size of the table is set by the Size of client record table
(units) property, which defaults to 50.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,305 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Server > NetX/NetX Duo DHCP Server Module Operational Overview

Once the DHCP Server is running and has created client records and assigned IP addresses, it
periodically checks the time remaining on each of the client IP leases. The length of the IP lease is
set in the Client IP address lease time (seconds) property. The default value of 0xFFFFFFFF is
essentially a permanent lease. To assign leases of finite length, set the lease to a more standard
time. An example lease time might be 10 days (0x0d5930 or 874,800 seconds). The interval on
which the DHCP Server checks the time remaining on assigned IP leases is set to 1000 seconds*.* If
a lease expires, the server simply removes the client record from the client record table, and returns
that IP address back to the pool of assignable IP addresses. No message is sent to the client. The
client should have initiated renew or rebind requests before its lease expired; or possibly the client
has left the network.

The DHCP Server also keeps an inactivity timeout on each client session. When a client sends a
packet, the inactivity timeout for that client is reset. The interval on which the DHCP Server checks
the time remaining is the Fast‑periodic timer interval to check valid sessions (ticks), which defaults
to 10 ticks*.* This session timeout is this value multiplied by the ratio of ticks per second to produce
a session timeout of 10 seconds. If a client record session time out expires, that client's IP address is
returned to the pool of assignable IP addresses and the client record is cleared. No message is sent
to the client.

NetX/NetX Duo DHCP Server Module Important Operational Notes and Limitations

NetX/NetX Duo DHCP Server Module Operational Notes

The options the DHCP Server provides to the client for critical network parameters are
defined in the Server option list property and set to the default value 1 3 6, which are the
option codes for the Subnet Mask, Router/Gateway address, and DNS Server IP address,
respectively. The number of options is set in the Server option list size property, which
defaults to 3.
The DHCP Type (Option 53) and DHCP Server Identifier (Option 54) are the DHCP
parameters the server must supply to the DHCP Client.

NetX/NetX Duo DHCP Server Module Limitations

The choice of options the DHCP Server provides are limited to some or all the following:
Subnet Mask (Option 1), Router/Gateway address (Option 3), and DNS Server IP address
(Option 6). Therefore, setting the Server option list size to greater than three has no effect.
Setting the list of options to an option other than 1,3 or 6 has no effect.
The NetX DHCP Server does not verify that its assignable IP addresses are not in use
elsewhere in the network. It is expected that the client will check the uniqueness of its IP
address it is assigned.
The NetX DHCP Server does not support the FORCE RENEW message.
The Relay agent field of the DHCP header is left null because the NetX DHCP Server does
not support out‑of‑network DHCP requests.
The DHCP Server does not correctly update the time remaining on the assigned IP leased.
The slow periodic timer interval is set to 1000 ticks. Internally, that value is converted to
seconds, so the actual interval on which the server checks the IP lease timeout is about
1000 * 100 assuming there are 100 ticks per second on the NetX device. If the client lease
time is left at the default value of 0xFFFFFFFF, this is a permanent lease until the client
decides to release it and should not be affected by this bug.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.15.4 Including the NetX/NetX Duo DHCP Server Module in an Application

This section describes how to include either or both the NetX and NetX Duo DHCP Server module in

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,306 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Server > Including the NetX/NetX Duo DHCP Server Module in an Application

an application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo DHCP Server module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo DHCP Server Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_dhcp_Server0NetXDHCPServe
r

Threads New Stack> X-Ware> NetX>
Protocols> NetXDHCPServer

g_dhcp_Server0NetX Duo DHCP
IPv4Server

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
DHCP IPv4Server

When the NetX and/or NetX Duo DHCP Server module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,307 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Server > Including the NetX/NetX Duo DHCP Server Module in an Application

Figure 440: NetX/NetX Duo DHCP Server Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.15.5 Configuring the NetX/NetX Duo DHCP Server Module

The NetX/NetX Duo DHCP Server module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,308 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Server > Configuring the NetX/NetX Duo DHCP Server Module

You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo DHCP Server Module

ISDE Property Value Description

Internal thread priority 1 Internal thread priority
selection.

Packet allocate timeout
(seconds)

2 Packet allocate timeout
selection.

Fast periodic timer interval to
check valid sessions (ticks)

10 Fast periodic timer interval to
check valid sessions selection.

DHCP Client Session timeout -
multiple of Fast periodic
interval (seconds)

10 DHCP Client session timeout
selection.

Client IP address default lease
time (seconds)

0xFFFFFFFF Client IP address lease time
selection.

Slow periodic timer inverval to
check IP lease expiration
(seconds)

1000 Slow periodic timer inverval to
check IP lease expiration
selection.

Size of the array to contain
options in client request (units)

12 Size of the array containing
current requested options
selection.

Server option list (optional - use
space for separation

1 3 6 Module server option list
selection.

Server option list size (optional) 3 Server option list size selection.

Size of the server host main
buffer (bytes)

32 Size of the server host main
buffer selection.

Size of the current client
hostname buffer (byte)

32 Size of the current client
hostname buffer selection.

Maximum size of an IP
addresses list (units)

20 Maximum size of an IP
addresses list selection.

Size of the client record table
(units)

50 Size of the client record table
selection.

Size of the BOOT buffer (bytes) 548 Size of the BOOT buffer
selection.

Name g_dhcp_server0 Module name.

Internal thread stack size
(bytes)

NetX Default: 2048

NetX Duo Default: 4096

Internal thread stack size
selection.

Name of generated initialization
function

nx_dhcp_server_init0 Name of generated initialization
function selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,309 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Server > Configuring the NetX/NetX Duo DHCP Server Module

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for stack modules can be desirable. For example, it
might be useful to select different Ethernet interface pins and resets. The configurable properties for
the lower-level stack modules are given in the following sections for completeness and as a
reference.

Note
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo DHCP Server Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name.

IPv4 Address (use commas for
separation)

0,0,0,0 IPv4 Address selection.

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection.

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection.

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address
selection.

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection.

IP Helper Thread Priority 3 IP Helper Thread Priority
selection.

ARP Enable ARP selection.

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection.

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,310 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Server > Configuring the NetX/NetX Duo DHCP Server Module

TCP Enable, Disable

Default: Enable

TCP selection.

UDP Enable, Disable

Default: Enable

UDP selection.

ICMP Enable, Disable

Default: Enable

ICMP selection.

IGMP Enable, Disable

Default: Enable

IGMP selection.

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection.

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo DHCP Common Instance

ISDE Property Value Description

Type of Service for UDP
requests

Normal, Minimum delay,
Maximum data, Maximum
reliability, Minimum cost

Default: Normal

Type of service UDP requests
selection.

Fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Fragmentation option selection.

Time to live 128 Time to live selection.

Packet Queue depth 5 Packet queue depth selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Common Instance

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,311 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Server > Configuring the NetX/NetX Duo DHCP Server Module

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name.

Packet Size in Bytes 640 Packet size selection.

Number of Packets in Pool 16 Number of packets in pool
selection.

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo DHCP Server Module Clock Configuration

The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the
SSP configurator clock tab prior to a build, or by using the CGC interface at run-time.

NetX/NetX Duo DHCP Server Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines the peripheral signals available and the MCU pins required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,312 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Server > Configuring the NetX/NetX Duo DHCP Server Module

ETHERC Pins Select Peripherals>
Connectivity:ETHERC>
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1.

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection.

REF50CK P701 REF50CK pin.

TXD0 P700 TXD0 pin.

TXD1 P406 TXD1 pin.

TXD_EN P405 TXD_EN pin.

RXD0 P702 RXD0 pin.

RXD1 P703 RXD1 pin.

RX_ER P704 RX_ER pin.

CRS_DV P705 CRS_DV pin.

MDC P403 MDC pin.

MDIO P404 MDIO pin.

Note
The example settings are for a project using the S7G2 Synergy MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and other Synergy Kits may have different available pin configuration settings.

4.3.15.6 Using the NetX/NetX Duo DHCP Server Module in an Application

The steps in using the NetX/NetX Duo DHCP Server module in a typical application are:

1. Create a pool of assignable IP addresses using the nx_dhcp_create_server_ip_address_list
API.

2. Set network parameters that will be returned by the server using the
nx_dhcp_set_interface_network_parameters API.

3. Start the DHCPv4 server with the nx_dhcp_server_start API.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,313 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DHCP Server > Using the NetX/NetX Duo DHCP Server Module in an Application

Figure 441: Flow Diagram of a Typical NetX/NetX Duo DHCP Server Module Application

4.3.16 NetX Duo DHCPv6 Client

4.3.16.1 NetX Duo DHCP IPv6 Client Introduction

The Dynamic Host Configuration Protocol (DHCP) is used to obtain an IP address and network
parameters. The DHCP is designed to extend the basic functionality of the BOOTP (which is limited to
static address configuration) to include a completely dynamic IP address allocation through "leasing"
an IP address to a client for a specified period of time. The DHCP can also be configured to allocate IP
addresses in a static manner (like the BOOTP). An application's IP address is one of the supplied
parameters for the NetX™ component. Supplying the IP address poses no problem if the IP address is
known to the application, either statically or through the user configuration. When the application
does not know or care what its IP address is, the NetX is initialized with a zero IP address; a DHCP
client component added to NetX can then dynamically obtain an IP address.

The document covers the NetX Duo DHCPv6 Client API and how it is used to obtain IPv6 addresses. In
IPv6 networks, DHCPv6 (instead of DHCP) is used for dynamic global IPv6 address assignment from a
DHCPv6 server. DHCPv6 offers many of the same features, as well as several enhancements.

NetX Duo DHCP IPv6 Client Module Features

NetX Duo DHCPv6 Client is compliant with RFC 3315, RFC 3646, and related RFCs.
Provides high-level APIs for:

Creating and deleting a DHCPv6 Client instance
Starting and stopping a DHCPv6 Client
Message sending and processing
Retrieving DHCPv6 data from the DHCPv6 Client

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,314 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > NetX Duo DHCP IPv6 Client Introduction

Figure 442: NetX Duo DHCP IPv6 Client Module Block Diagram

Note
In the figure above, the NetX Duo Network Driver module has multiple implementation options available. See the
description just after the module stack figure in Including the NetX Duo DHCP IPv6 Client Module in an
Application for additional details.

4.3.16.2 NetX Duo DHCP IPv6 Client Module APIs Overview

The NetX Duo DHCPv6 Client framework defines APIs for creating, deleting, adding and getting client
information. A complete list of the available APIs, an example API call and a short description of each
can be found in the following table. A table of status return values follows the API summary table.

NetX Duo DHCP IPv6 Client Module API Summary

Function Name Example API Call and Description

nx_dhcpv6_client_create nx_dhcpv6_client_create(&dhcp_0, &ip_0,
"DHCPv6 Client", &pool_0,NULL, NULL, pointer,
2048, dhcpv6_state_change_notify,
dhcpv6_server_error_handler);
Create a DHCPv6 Client instance.

nx_dhcpv6_client_delete nx_dhcpv6_client_delete(&my_dhcp);
Delete a DHCPv6 Client instance.

nx_dhcpv6_client_set_interface nx_dhcpv6_client_set_interface(&dhcp_0, index);
Set the Client network interface for
communications with the DHCPv6 Server.

nx_dhcpv6_create_client_duid nx_dhcpv6_create_client_duid(&dhcp_0,
NX_DHCPV6_DUID_TYPE_LINK_TIME,
NX_DHCPV6_HW_TYPE_IEEE_802, 0)
Create a DHCPv6 Client DUID.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,315 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > NetX Duo DHCP IPv6 Client Module APIs Overview

nx_dhcpv6_create_client_ia nx_dhcpv6_create_client_ia(&dhcp_0,
&ipv6_address,
NX_DHCPV6_PREFERRED_LIFETIME,
NX_DHCPV6_VALID_LIFETIME);
Legacy Add a DHCPv6 Client Identity Address
(IA).

nx_dhcpv6_create_client_iana nx_dhcpv6_create_client_iana(&dhcp_0,
DHCPV6_IA_ID, DHCPV6_T1, DHCPV6_T2);
Create a DHCPv6 Client Identity Association for
Non-Temporary Addresses (IANA).

nx_dhcpv6_add_client_ia nx_dhcpv6_add_client_ia(&dhcp_0,
&ipv6_address,
NX_DHCPV6_PREFERRED_LIFETIME,
NX_DHCPV6_VALID_LIFETIME);
Add a DHCPv6 Client Identity Address (IA).

nx_dhcpv6_get_client_duid_time_id nx_dhcpv6_get_client_duid_time_id(&dhcp_0,
&time_ID);
Get the time ID from DHCPv6 Client DUID.

nx_dhcpv6_get_ip_address nx_dhcpv6_get_IP_address(&dhcp_0,
&ipv6_address);
nxd_ipv6_address_set(&ip_0, 0, &ipv6_address,
64, &address_index);
Get the global IPv6 address assigned to the
DHCPv6 client.

nx_dhcpv6_get_lease_time_data nx_dhcpv6_get_lease_time_data(&dhcp_0, &T1,
&T2, &preferred_lifetime, &valid_lifetime);
Get T1 and T2 in the Identity Association (IANA)
leased to the DHCPv6 Client.

nx_dhcpv6_get_iana_lease_time nx_dhcpv6_get_iana_lease_time(&dhcp_0, &T1,
&T2);
Get T1, T2, valid and preferred lifetimes for the
DHCPv6 Client IPv6 address by address index.

nx_dhcpv6_get_valid_ip_address_count nx_dhcpv6_get_valid_ip_address_count(&dhcp_0,
&address_count);
This service retrieves the count of the Client's
valid IPv6 addresses. A valid IPv6 address is
bound (assigned) to the Client and registered
with the IP instance. Also useful for determining
if the DHPCv6 Client has reached the bound
state.

nx_dhcpv6_get_valid_ip_address_lease_time nx_dhcpv6_get_valid_ip_address_lease_time(&dh
cp_0, &ip_address, &preferred_lifetime,
&valid_lifetime);
Get T1, T2, valid and preferred lifetimes for the
DHCPv6 Client IPv6 address by address index.

nx_dhcpv6_get_DNS_server_address nx_dhcpv6_get_DNS_server_address(&dhcp_0,
index, &server_address);
Get DNS Server address at the specified index
into the DHCPv6 Client DNS server list.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,316 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > NetX Duo DHCP IPv6 Client Module APIs Overview

nx_dhcpv6_get_other_option_data nx_dhcpv6_get_other_option_data(&dhcp_0,
option_code, buffer);
Get the specified option data, such as domain
name or time zone server.

nx_dhcpv6_get_time_accrued nx_dhcpv6_get_time_accrued(&dhcp_0,
&time_accrued);
Get the time accrued the global IPv6 address
lease has been bound to the DHCPv6 Client.

nx_dhcpv6_get_time_server_address nx_dhcpv6_get_time_server_address(&dhcp_0,
index, &server_address);
Get Time Server address at the specified index
into the DHCPv6 Client Time server list.

nx_dhcpv6_reinitialize nx_dhcpv6_reinitialize(&dhcp_0);
Reinitialize the DHCPv6 for restarting the
DHCPv6 Client state machine and rerunning the
DHCPv6 protocol.

nx_dhcpv6_request_confirm nx_dhcpv6_request_confirm(&dhcp_0);
Send a CONFIRM request to the Server.

nx_dhcpv6_request_inform_request nx_dhcpv6_request_inform_request(&dhcp_0);
Send an INFORM REQUEST message to the
Server.

nx_dhcpv6_request_option_DNS_server nx_dhcpv6_request_option_DNS_server(&dhcp_0
, NX_TRUE);
Add the DNS server option to the Client option
request data in request messages to the Server.

nx_dhcpv6_request_option_FQDN nx_dhcpv6_request_option_FQDN(&dhcp_0,
"DHCPv6_Client", NX_DHCPV6_CLIENT_DESIRES_
NO_SERVER_DNS_UPDATE);
Add the FQDN option to the Client option request
data in request messages to the Server.

nx_dhcpv6_request_option_domain_name nx_dhcpv6_request_option_domain_name(&dhcp
_0, NX_TRUE);
Add the domain name option to the Client option
request data in request messages to the Server.

nx_dhcpv6_request_option_time_server nx_dhcpv6_request_option_time_server(&dhcp_0
, NX_TRUE);
Add the time server option to the Client option
request data in request messages to the Server.

nx_dhcpv6_request_option_timezone nx_dhcpv6_request_option_timezone(&dhcp_0,
NX_TRUE);
Add the time zone option to the Client option
request data in request messages to the Server.

nx_dhcpv6_request_release nx_dhcpv6_request_release(&dhcp_0);
Send a RELEASE request to the Server.

nx_dhcpv6_request_solicit nx_dhcpv6_request_solicit(&dhcp_0);
Send a DHCPv6 SOLICIT request to any Server
on the Client network (broadcast).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,317 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > NetX Duo DHCP IPv6 Client Module APIs Overview

nx_dhcpv6_request_solicit_rapid nx_dhcpv6_request_solicit_rapid(&dhcp_0);
Send a DHCPv6 SOLICIT request to any Server
on the Client network (broadcast) with the Rapid
Commit option set.

nx_dhcpv6_resume nx_dhcpv6_resume(&dhcp_0);
Resume DHCPv6 Client processing.

nx_dhcpv6_set_time_accrued nx_dhcpv6_set_time_accrued(&dhcp_0,
time_accrued);
Set the time accrued on the global Client IPv6
address lease in the Client record.

nx_dhcpv6_start nx_dhcpv6_start(&dhcp_0);
Start the DHCPv6 Client thread task. Note this is
not equivalent to starting the DHCPv6 state
machine and does not send a SOLICIT request.

nx_dhcpv6_stop nx_dhcpv6_stop(&dhcp_0);
Stop the DHCPv6 Client thread task.

nx_dhcpv6_suspend nx_dhcpv6_suspend(&dhcp_0);
Suspend the DHCPv6 Client thread task.

The following services are available if
NX_DHCPV6_CLIENT_RESTORE_STATE is
defined for the project:

nx_dhcpv6_client_get_record nx_dhcpv6_client_get_record(dhcpv6_ptr,
 client_record_ptr);
Obtain a record of the client state (to save to
non-volatile memory)

nx_dhcpv6_client_restore_record nx_dhcpv6_client_restore_record(dhcpv6_ptr,
client_record_ptr, time_elapsed);
Apply saved client record to the current Client
instance. Note the DHCPv6 Client thread must
be not be running when this task is called.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API
structures, and function variables, review the associated Azure RTOS User's Manual in the References section.

Status Return Values

Name Description

NX_SUCCESS Successful API call.

NX_PTR_ERROR* Invalid pointer input.

NX_CALLER_ERROR* Must be called from thread.

NX_DHCPV6_PARAM_ERROR Invalid non pointer input.

NX_INVALID_INTERFACE Invalid interface index input.

NX_DHCPV6_UNSUPPORTED_DUID_TYPE DUID type unknown or not supported.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,318 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > NetX Duo DHCP IPv6 Client Module APIs Overview

NX_DHCPV6_UNSUPPORTED_DUID_HW_TYPE DUID hardware type unknown or not supported.

NX_DHCPV6_IA_ADDRESS_ALREADY_EXIST Duplicate IA address.

NX_DHCPV6_REACHED_MAX_IA_ADDRESS IA exceeds the max IAs Client can store.

NX_DHCPV6_INVALID_IA_ADDRESS Invalid (for example, null) IA address in IA.

NX_DHCPV6_IA_ADDRESS_NOT_VALID IPv6 address successfully assigned.

NX_DHCPV6_UNKNOWN_OPTION Unknown/unsupported option code.

NX_DHCPV6_ALREADY_STARTED DHCPv6 Client is already running.

NX_DHCPV6_NOT_STARTED DHCPv6 Client task not started.

NX_DHCPV6_MISSING_REQUIRED_OPTIONS Client missing required options.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

These are error codes which are only returned if error checking is enabled. Refer to the
NetX User Guide for the Renesas Synergy™ Platform or NetX Duo User's Guide for the
Renesas Synergy™ Platform for more details on error-checking services in NetX and NetX
Duo, respectively.

4.3.16.3 NetX Duo DHCP IPv6 Client Module Operational Overview

The DHCPv6 protocol also uses the UDP to dynamically obtain IPv6 addresses. A NetX Duo IP
instance is created automatically, and UDP, IPv6, and ICMPv6 are enabled on the IP instance prior to
creating the DHCPv6 Client. When the DHCPv6 Client is created, a UDP socket is created and bound
to port 546. The IPv6 Global Address property of the IP instance is locked to a zero IPv6 address;
otherwise, the IPv4 address may be any network IP address. If the IP instance IPv6 Link Local
Address property is set to zero, the DHCPv6 Client creates the link local address from the MAC
address. The MAC address is set in the NetX Port ETHER instance. See Channel 1 MAC Address High
Bits and Channel 1 MAC Address Low Bits properties. This is the source address for DHCPv6
messages to the server.

To begin the process of requesting a global IPv6 address assignment, a Client first broadcasts a
SOLICIT message using the nx_dhcpv6_request_solicit service. In IPv6, the broadcast address is the
All_DHCP_Relay_Agents_and_Servers address (FF02::1:2.). A DHCPv6 Server responds with an
ADVERTISE message containing a global IPv6 address (not a link local address) for the Client, the
IPv6 address lease time, and any additional information requested by the client. The DHCPv6
protocol requires the client to wait for a period of time to receive ADVERTISE messages from all
DHCPv6 Servers on the network. The client pre-processes each ADVERTISE message to be a valid
message and scans the option data for various DHCPv6 parameters; it also checks the preference
value in the preference option, if supplied by the server. If more than one ADVERTISE message is
received, the NetX DHCPv6 Client chooses the ADVERTISE message with the highest preference
value received by the end of the wait period. If the Client receives an ADVERTISE message with a
preference value of 255, it accepts that message immediately and discards all subsequent
ADVERTISE messages.

The client extracts data from the ADVERTISE message and broadcasts (so all DHCPv6 Servers are
informed) a REQUEST message specifying which server the client chooses; that server then confirms
the assigned address information and lease times with a REPLY message to complete the protocol.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,319 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > NetX Duo DHCP IPv6 Client Module Operational Overview

The DHCPv6 Client is promoted to the bound state and automatically registers the assigned IPv6
address with the IP instance.

Notification of Successful Address Assignment and Validation

The application can determine when the DHCPv6 Client is bound to an IPv6 address in two ways: the
first is to query the DHCPv6 Client itself for a valid IPv6 address using the nx_dhcpv6_get_IP_address
service for clients for applications using only one global IPv6 address assigned, (the general case) or
nx_dhcpv6_get_valid_ip_address_count service for clients with more than one IPv6 address assigned.
The second way requires the DHCPv6 Client be configured with the state change callback, the Name
of state change notification function property* of the DHCPv6 Client stack element.

If the DHCPv6 Client receives a response from the server, but the server is unable to assign the
address, the server returns an error status. The application is notified of the error status received if
configured with the DHCPv6 Client server-error callback - the Name of server error handler property
of the DHCPv6 Client stack element.

These callbacks must be defined by the application because these callback functions are called from
the DHCPv6 Client thread task; the client application must NOT call any NetX Duo DHCPv6 Client
services that require mutex control of the DHCPv6 Client (such as nx_dhcpv6_start, nx_dhcpv6_stop),
and any of the APIs that send messages directly from the callback (such as
nx_dhcpv6_request_release).

The states of the DHCP IPv6 protocol are:

NX_DHCPV6_STATE_INIT

NX_DHCPV6_STATE_SENDING_SOLICIT

NX_DHCPV6_STATE_SENDING_REQUEST

NX_DHCPV6_STATE_SENDING_RENEW

NX_DHCPV6_STATE_SENDING_REBIND

NX_DHCPV6_STATE_SENDING_DECLINE

NX_DHCPV6_STATE_SENDING_INFORM_REQUEST

NX_DHCPV6_STATE_BOUND_TO_ADDRESS

Duplicate Address Detection of the IPv6 address

If configured for the Duplicate Address Detection (DAD) protocol, enabled by default in NetX Duo
Duplicate Address Detection property, NetX Duo automatically sends "Neighbor Solicit" messages to
verify the assigned address is unique on the network. If the IPv6 address is unique, NetX Duo notifies
the DHCPv6 Client when the assigned address has been promoted from
NX_IPV6_ADDR_STATE_TENTATIVE to NX_IPV6_ADDR_STATE_VALID internally. The application must
allow time for the DAD to finish processing, which takes about 4-5 seconds. If the DAD is not
enabled, the IP instance marks the address VALID immediately.

Once an IPv6 address is valid, the device may use that IPv6 address to send and transmit IPv6
messages.

If the DAD protocol fails, NetX Duo notifies the DHCPv6 Client to send a DECLINE message to the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,320 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > NetX Duo DHCP IPv6 Client Module Operational Overview

server and restart the DHCPv6 Client at the INIT state.

Retransmission of DHCPv6 Client Solicitations

The DHCPv6 Client times out waiting for a server reply before sending another DHCPv6 message and
defaults to 1 second on the first retransmit, per RFC 3315 recommendations. If the DHCPv6 Client
fails to receive a valid server response to the SOLICIT message, each subsequent retransmission
interval doubles up to a maximum of 120 seconds by default.

DHCPv6 Lease Timeouts

The IPv6 lease assigned by the server contains two timeout parameters (T1 and T2) in the DHCPv6
Client Identity Association – Non-Temporary Addresses, (IANA), which is the data type specified by
RFC 3315 to store IPv6 address data in DHCPv6.

When the time elapsed on an assigned IPv6 address reaches T1, the DHCPv6 Client automatically
sends a RENEW message. If the elapsed time reaches T2 without a successful renewal, DHCPv6
Client automatically sends a REBIND message. If it still receives no response, the DHCP Client
unregisters the IPv6 address with the IP instance and restarts the DHCPv6 protocol at the INIT state.
Two other IPv6 lease parameters, preferred and valid lifetime, are assigned automatically to the
Identity Association (IA) contained in the IANA in the DHCPv6 process. When the preferred and valid
lifetimes expire, the assigned IPv6 address is either deprecated or rendered invalid; meaning a valid
T1 must be less than the preferred lifetime and a T2 must be less than the valid lifetime.

NetX Duo DHCP IPv6 Client Module Important Operational Notes and Limitations

NetX Duo DHCP IPv6 Client Module Operational Notes

The NetX Duo Source element has a few key properties for supporting DHCPv6: The NetX
Duo IPv6 Support property, the Checksum computation support on received ICMPV6
packets, and the Checksum computation support on transmitted ICMPv6 packets. The
latter two ensure that incoming and outgoing packets have an ICMPv6 checksum in the
ICMPv6 header; these are automatically enabled for the DHCPv6 Client module. If the NetX
Duo Source element is added to the project, check to make sure these properties are
enabled.
The DHCPv6 Client creation requires a previously created packet pool. The application can
use the IP default packet pool (g_packet_pool0) used by the IP instance or it can create its
own (usually g_packet_pool1.)
Before sending a SOLICIT request, the Client must create a DHCP Unique Identifier (DUID) to
uniquely define the client on the network. The MAC address is usually used but can be
another unique identifier. A typical invocation of this service is:

nx_dhcpv6_create_client_duid(&g_dhcpv6_client0,

NX_DHCPV6_DUID_TYPE_LINK_TIME /* Use MAC address */,

 NX_DHCPV6_HW_TYPE_IEEE_802,

 0 /* Client DUID time, usually set to zero */);

The DHCPv6 Client must also create the IANA for the client; this structure holds IPv6 lease
information such as IPv6 addresses and T1 and T2 times. (The client can use the IANA to
request lease times.) To create an IANA, use thenx_dhcpv6_client_create_iana service:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,321 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > NetX Duo DHCP IPv6 Client Module Operational Overview

status = nx_dhcpv6_create_client_iana(&g_dhcpv6_client0,

DHCPV6_IANA_ID /* ULONG unique ID */,

DHCPV6_T1 /* Request T1 time in seconds or

 set to TX__WAIT_FOREVER */,

DHCPV6_T2 /* Request T2 time;must be longer

 than T1 */);

In the SOLICIT request, the client may request the assignment of a specific IPv6 address
from the server by calling the nx_dhcpv6_add_client_ia service before calling
nx_dhcpv6_request_solicit. This service uses an NXD_ADDRESS address data type for the
IPv6 address. See NetX Duo User Guide for the Renesas Synergy™ Platform for details on
the data type definition in NetX Duo.
To request network information such as a DNS server, NTP server, and other options, the
application can all these APIs before calling nx_dhcpv6_request_solicit:

nx_dhcpv6_request_option_timezone(&g_dhcpv6_client, NX_TRUE);
nx_dhcpv6_request_option_DNS_server(&g_dhcpv6_client, NX_TRUE);
nx_dhcpv6_request_option_time_server(&g_dhcpv6_client, NX_TRUE);
nx_dhcpv6_request_option_domain_name(&g_dhcpv6_client, NX_TRUE);

If the client needs to release an assigned IPv6 address, it informs the DHCPv6 server by
calling the nx_dhcpv6_request_release service. The DHCPv6 Client sends a unicast RELEASE
message to the server and should wait for the server REPLY.
For DHCPv6 Client services that retrieve information about the DHCPv6 Client, an address
index may need to be specified. Most clients have one IPv6 global address assigned, so the
address index is 0.
To obtain specific information about lease times, use the
nx_dhcpv6_get_valid_ip_address_lease_time service. This requires an address index input
(usually 0.)

NetX Duo DHCP IPv6 Client Module Limitations

The NetX Duo DHCPv6 Client does not support the server unicast option for sending unicast
DHCPv6 messages to the DHCPv6 Server even if the server indicates this is permitted.
The NetX Duo DHCPv6 Client only supports DUIDs for LINK (MAC address) and LINK TIME
(MAC address and time input.)
The NetX Duo DHCPv6 Client does not support the reconfigure request in which a server
initiates IPv6 address changes to the clients on the network.
The NetX Duo DHCPv6 Client does not support the enterprise format for the DHCPv6 unique
identifier control block; it only supports Link Layer and Link Layer Plus Time formats.
The NetX Duo DHCPv6 Client does not support Temporary Association (TA) address
requests, but does support Non Temporary (IANA) option requests.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.16.4 Including the NetX Duo DHCP IPv6 Client Module in an Application

This section describes how to include either or both the NetX Duo DHCP IPv6 Client module in an
application using the SSP configurator.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,322 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > Including the NetX Duo DHCP IPv6 Client Module in an Application

It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX Duo DHCP IPv6 Client module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX Duo DHCP IPv6 Client Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_dhcp_client0 NetX Duo DHCP
IPv6 Client

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
DHPC IPv6 Client

When the NetX Duo DHCP IPv6 Client module is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 443: NetX Duo DHCP IPv6 Client Module Stack

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,323 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > Including the NetX Duo DHCP IPv6 Client Module in an Application

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.16.5 Configuring the NetX Duo DHCP IPv6 Client Module

The NetX Duo DHCP IPv6 Client module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX Duo DHCP IPv6 Client Module

ISDE Property Value Description

Internal Thread Priority 3 Internal thread priority
selection.

Time out for obtaining DHCPv6
client mutex (ticks)

TX_WAIT_FOREVER Time out for obtaining DHCPv6
client mutex selection.

Time interval between current
IP address lease time update
(seconds)

1 Time interval between current
IP address lease time update
selection.

Maximum IA addresses allowed
in client record

1 Maximum IA addresses allowed
in client record selection.

Number of DNS servers the
client will store

2 Number of DNS servers the
client will stored selection.

Number of time servers the
client will store

1 Number of time servers the
client will store selection.

Domain name buffer size
(bytes)

32 Domain name buffer size
selection.

Current time zone information
buffer size (bytes)

16 Current time zone information
buffer size selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,324 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > Configuring the NetX Duo DHCP IPv6 Client Module

Maximum DHCPv6 server
messages buffer size (bytes)

100 Maximum DHCPv6 server
messages buffer size selection.

Name g_dhcpv6_client0 Module name.

Internal thread stack size
(bytes)

4096 Internal thread stack size
selection.

Name of state change
notification function

dhcpv6_state_change_notify Name of state change
notification function selection.

Name of server error handler dhcpv6_server_error_handler Name of server error handler
selection.

Name of generated initialization
function

nx_dhcpv6_client_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for stack modules can be desirable. For example, it
might be useful to select different Ethernet interface pins and resets. The configurable properties for
the lower-level stack modules are given in the following sections for completeness and as a
reference.

Note
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the NetX Duo DHCP IPv6 Client Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name.

IPv4 Address (use commas for
separation)

0,0,0,0 IPv4 Address selection.

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection.

IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,325 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > Configuring the NetX Duo DHCP IPv6 Client Module

IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address
selection.

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection.

IP Helper Thread Priority 3 IP Helper Thread Priority
selection.

ARP Enable ARP selection.

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection.

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection.

TCP Enable, Disable

Default: Enable

TCP selection.

UDP Enable, Disable

Default: Enable

UDP selection.

ICMP Enable, Disable

Default: Enable

ICMP selection.

IGMP Enable, Disable

Default: Enable

IGMP selection.

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection.

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo DHCP IPv6 Common Instance

ISDE Property Value Description

Type of Service for UDP
requests

Normal, Minimum delay,
Maximum data, Maximum
reliabililty, Minimum cost

Default: Normal

Type of service UDP requests
selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,326 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > Configuring the NetX Duo DHCP IPv6 Client Module

Time to live 128 Time to live selection

Packet Queue depth 5 Packet queue depth selection

packet alocation timeout
(seconds)

3 Packet allocation timeout
selection

Interval for active session time
update (seconds)

3 Interval for active session time
update selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 640 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX Duo DHCP IPv6 Client Module Clock Configuration

The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the
SSP configurator clock tab prior to a build, or by using the CGC interface at run-time.

NetX Duo DHCP IPv6 Client Module Pin Configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,327 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > Configuring the NetX Duo DHCP IPv6 Client Module

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines the peripheral signals available and the MCU pins required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

ETHERC Pins Select Peripherals>
Connectivity:ETHERC>
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1.

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection.

REF50CK P701 REF50CK pin.

TXD0 P700 TXD0 pin.

TXD1 P406 TXD1 pin.

TXD_EN P405 TXD_EN pin.

RXD0 P702 RXD0 pin.

RXD1 P703 RXD1 pin.

RX_ER P704 RX_ER pin.

CRS_DV P705 CRS_DV pin.

MDC P403 MDC pin.

MDIO P404 MDIO pin.

Note
The example settings are for a project using the S7G2 Synergy MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and other Synergy Kits may have different available pin configuration settings.

4.3.16.6 Using the NetX Duo DHCP IPv6 Client Module in an Application

The following example assumes a system that is already established with a working and enabled IP,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,328 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > Using the NetX Duo DHCP IPv6 Client Module in an Application

ARP and UDP, and the link is running.

The steps in using the NetX Duo DHCP IPv6 Client module in a typical application are:

1. Create a Client DUID for the DHCPv6 Client using the nx_dhcpv6_create_client_duid.
2. Create an IANA for the DHCPv6 Client using the nx_dhcpv6_create_client_iana.
3. Request network options (such as DNS server and time server) using the

nx_dhcpv6_request_option_DNS_server and nx_dhcpv6_request_option_time_server API
[Optional].

4. Start the DHCPv6 Client with the nx_dhcpv6_start API. This sets the DHCPv6 Client state
and binds the client socket, in effect getting the DHCPv6 Client ready to exchange
messages with the server.

5. Send the SOLICIT message to the server using the nx_dhcpv6_request_solicit API. The
DHCPv6 Client internally manages the rest of the DHCPv6 protocol.

6. Check for IPv6 Address resolution using the nx_dhcpv6_get_valid_ip_address_count API to
return with an address_count > 0. The DHCPv6 Client now as a valid IPv6 address.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,329 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Client > Using the NetX Duo DHCP IPv6 Client Module in an Application

Figure 444: Flow Diagram of a Typical NetX Duo DHCP IPv6 Client Module Application

4.3.17 NetX Duo DHCPv6 Server

4.3.17.1 NetX Duo DHCP IPv6 Server Introduction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,330 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > NetX Duo DHCP IPv6 Server Introduction

The Dynamic Host Configuration Protocol (DHCP) is used to obtain an IP address and network
parameters. The DHCP is designed to extend the basic functionality of the BOOTP (which is limited to
static address configuration) to include a completely dynamic IP address allocation through "leasing"
an IP address to a client for a specified period of time. The DHCP can also be configured to allocate IP
addresses in a static manner (like the BOOTP). An application's IP address is one of the supplied
parameters for the NetX™ component. Supplying the IP address poses no problem if the IP address is
known to the application, either statically or through the user configuration. When the application
does not know or care what its IP address is, the NetX is initialized with a zero IP address; a DHCP
client component added to NetX can then dynamically obtain an IP address.

In IPv6 networks, DHCPv6 replaces DHCP (which is limited to IPv4) for dynamic global IPv6 address
assignment from a DHCPv6 Server. The DHCPv6 offers most of the same features, as well as many
enhancements, and explains how the NetX Duo™ DHCPv6 Server API is used for DHCPv6 Client IPv6
address requests.

NetX Duo DHCP IPv6 Server Module Features

The NetX Duo DHCPv6 Server is compliant with RFC 3315, RFC 3646 and related RFCs.
Provides high-level APIs for:

Creating and deleting a DHCPv6 Server instance
Starting and stopping a DHCPv6 Server thread task
Creating a pool of IPv6 addresses for lease
Maintaining a table of DHCPv6 leases assignable to requesting clients

Figure 445: NetX Duo DHCP IPv6 Server Module Block Diagram

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,331 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > NetX Duo DHCP IPv6 Server Introduction

In the figure above, the NetX Duo Network Driver module has multiple implementation options available. See the
description just after the module stack figure in Including the NetX Duo DHCP IPv6 Server Module in an
Application for additional details.

4.3.17.2 NetX Duo DHCP IPv6 Server Module APIs Overview

The NetX Duo DHCPv6 Server module defines APIs for creating, deleting, adding and getting server
information. A complete list of the available APIs, an example API call and a short description of each
can be found in the following table. A table of status return values follows the API summary table.

NetX Duo DHCP IPv6 Server Module API Summary

Function Name Example API Call and Description

nx_dhcpv6_server_create nx_dhcpv6_server_create(&g_dhcpv6_server0,
&server_ip_address, "DHCPv6 Server",
&g_packet_pool0, stack_pointer,
NX_DHCPV6_SERVER_THREAD_STACK_SIZE,
address_declined_handler,
option_request_handler);
Create a DHCPv6 Server instance.

nx_dhcpv6_server_delete nx_dhcpv6_client_delete(&g_dhcpv6_server0);
Delete a DHCPv6 Server instance and release
resources (unbind port, delete socket, timers
and thread).

nx_dhcpv6_create_ip_address_lease nx_dhcpv6_create_ip_address_range(&g_dhcpv6
_server0, &start_ipv6_address,
&end_ipv6_address, &addresses_added);
Create the Server's IPv6 address lease pool.

nx_dhcpv6_reserve_ip_address_range nx_dhcpv6_reserve_ip_address_range(&g_dhcpv
6_server0, &start_ipv6_address,
&end_ipv6_address, &addresses_reserved);
Reserve the specified range of IPv6 addresses
not to be leased out to a requesting Client.

nx_dhcpv6_add_ip_address_lease nx_dhcpv6_add_ip_address_lease(&g_dhcpv6_se
rver0, table_index, &lease_IP_address, T1, T2,
valid_lifetime, preferred_lifetime);
Copy an IPv6 lease record into the specified
index into the Server table. Intended for use in
non-volatile storage of IPv6 lease data.

nx_dhcpv6_add_client_record nx_dhcpv6_add_client_record(&g_dhcpv6_server
0, table_index, message_xid, &client_address,
client_state, IP_lease_time_accrued,
valid_lifetime, duid_type, duid_hardware,
physical_address_msw, physical_address_lsw,
duid_time, duid_vendor_number,
duid_vendor_private, duid_private_length);
Copy a Client record into the specified index into
the Server table. Intended for use in non-volatile
storage of Client IPv6 address data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,332 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > NetX Duo DHCP IPv6 Server Module APIs Overview

nx_dhcpv6_create_dns_address nx_dhcpv6_create_dns_address(&g_dhcpv6_serv
er0, &dns_ipv6_address);
Set the DNS server address to include in network
parameters sent to clients.

nx_dhcpv6_retrieve_client_record nx_dhcpv6_retrieve_client_record(&g_dhcpv6_se
rver0, table_index, message_xid,
&client_address, client_state,
IP_lease_time_accrued, valid_lifetime,
duid_type, duid_hardware,
physical_address_msw, physical_address_lsw,
duid_time, duid_vendor_number,
duid_vendor_private, duid_private_length);
Retrieve items from the Client specified by the
index into the Server table. Intended for use in
non-volatile storage of Client IPv6 address data.

nx_dhcpv6_retrieve_ip_address_lease nx_dhcpv6_retrieve_ip_address_lease(&g_dhcpv
6_server0, table_index, &lease_IP_address, T1,
T2, valid_lifetime, preferred_lifetime);
Retrieve items from the IPv6 lease specified by
the index into the Server table. Intended for use
in non-volatile storage of IPv6 lease data.

nx_dhcpv6_server_interface_set nx_dhcpv6_server_interface_set(&g_dhcpv6_serv
er0, 0, 1);
Set the interface the DHCPv6 Server will run on,
and the global address the DHCPv6 Server will
use in messages to Clients. By default, the
DHCPv6 Server runs on the primary interface
(index 0).

nx_dhcpv6_set_server_duid nx_dhcpv6_set_server_duid(&g_dhcpv6_server0,
NX_DHCPV6_SERVER_DUID_TYPE, NX_DHCPV6_S
ERVER_HW_TYPE,
physical_address_msw,
physical_address_lsw,
duid_time);
Create the Server DUID which is a required part
of the DHCPv6 header and uniquely identifies
the DHCPv6 Server.

nx_dhcpv6_server_start nx_dhcpv6_server_start(&g_dhcpv6_server0);
Start the DHCPv6 thread task.

nx_dhcpv6_server_suspend nx_dhcpv6_server_suspend(&g_dhcpv6_server0)
;
Suspend the DHCPv6 server task.

nx_dhcpv6_server_resume nx_dhcpv6_server_resume(&g_dhcpv6_server0);
Resume the DHCPv6 server task.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API
structures, and function variables, review the associated Azure RTOS User's Manual in the References section.

Status Return Values

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,333 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > NetX Duo DHCP IPv6 Server Module APIs Overview

Name Description

NX_SUCCESS Successful API call.

NX_PTR_ERROR* Invalid pointer input.

NX_CALLER_ERROR* Must be called from thread.

NX_DHCPV6_PARAM_ERROR Invalid non pointer input.

NX_INVALID_INTERFACE Invalid interface index input.

NX_DHCPV6_UNSUPPORTED_DUID_TYPE DUID type unknown or not supported.

NX_DHCPV6_UNSUPPORTED_DUID_HW_TYPE DUID hardware type unknown or not supported.

NX_DHCPV6_IA_ADDRESS_ALREADY_EXIST Duplicate IA address.

NX_DHCPV6_REACHED_MAX_IA_ADDRESS IA exceeds the max IAs Client can store.

NX_DHCPV6_INVALID_IA_ADDRESS Invalid (for example, null) IA address in IA.

NX_DHCPV6_IA_ADDRESS_NOT_VALID IPv6 address successfully assigned.

NX_DHCPV6_UNKNOWN_OPTION Unknown/unsupported option code.

NX_DHCPV6_ALREADY_STARTED DHCPv6 Client is already running.

NX_DHCPV6_NOT_STARTED DHCPv6 Client task not started.

NX_DHCPV6_MISSING_REQUIRED_OPTIONS Client missing required options.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

These are error codes which are only returned if error checking is enabled. Refer to the
NetX User Guide for the Renesas Synergy™ Platform or NetX Duo User's Guide for the
Renesas Synergy™ Platform for more details on error-checking services in NetX and NetX
Duo, respectively.

4.3.17.3 NetX Duo DHCP IPv6 Server Module Operational Overview

The NetX Duo DHCPv6 Server module creates a NetX Duo IP instance for the server and a UDP
socket bound to the well-known DHCPv6 Server port 547 to listen for client requests. Before starting
DHCPv6, the server needs a global IPv6 address by setting the IPv6 Global Address property in the IP
NetX Duo Instance property box. (Note that this is a 128‑bit long address, compared to the 32-bit
long IPv4 address.)

The DHCPv6 Server should wait for the IPv4 address to be validated using the nx_ip_status_check
service, even if the server does not use this IP address for DHCPv6 messages. The driver needs to be
initialized with information from the IP layer and the link needs to be enabled, all of which happens
with IPv4 address-registration.

Before an application can start the DHCPv6 Server, it must create a pool of assignable IPv6
addresses using the nx_dhcpv6_create_ip_address_range service. The application must also create a
server DUID (DHCP Unique Identifier, usually based on the MAC address, and is required in all
DHCPv6 Server messages using the nx_dhcp_set_server_duid service. Optionally, it can set the
network DNS Server to include in the DHCPv6 option data to clients using the
nx_dhcpv6_create_dns_server service; now the server can be started with the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,334 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > NetX Duo DHCP IPv6 Server Module Operational Overview

nx_dhcpv6_server_start service.

Note
All properties referenced in text are found in the NetX Duo DHCP IPv6 Server properties box, unless otherwise
noted.

The server maintains a table of IPv6 addresses, updates their status, and indicates whether any
addresses are leased out. For leased out addresses, the table indicates the client to which the
address is leased. The size of this table is set by the Maximum Size of the Server's IP lease table
property, and should be equal to or greater than the number of IPv6 addresses in the IPv6 address
pool. The server maintains another table for client records; the size of this table is set by the Size of
Server's Client record table property portion of the DHCP Server properties box and should be at
least the size of the IPv6 lease table. If the server receives a Client Release or Decline, the server
updates the IPv6 lease table and client record table, accordingly.

The DHCPv6 Server creates two timers. The first timer keeps track of the time remaining on IPv6
addresses leased to clients. The interval at which the server checks client leases is set by the Client
lease time expiration check interval property, which defaults to 60 seconds. If the server issues
leases with extremely short lease-expirations, that value should be reduced to approximately 10 or
20 percent of the timeout value. If a lease timeout expires, the lease is returned to the pool of IPv6
addresses and the client record is deleted. The second timer is used to monitor client‑session
inactivity; the default timeout for session inactivity timeout is 20 seconds. The interval in which the
server checks its client records for an expired session inactivity timeout is the Interval for active
session time update property in the NetX Duo DHCP IPv6 Common properties box, with the interval
having a 3-second default time.

NetX Duo DHCP IPv6 Server Module Important Operational Notes and Limitations

NetX Duo DHCP IPv6 Server Module Operational Notes

IPv6 and ICMPv6 must be enabled in NetX Duo. Verify that the NetX Duo IPv6 Support
property is enabled in the NetX Duo Source properties box; this setting automatically
enables ICMPv6.

If the underlying hardware supports ICMPv6 checksum computation, the following values can be left
disabled:

By default, the ICMPv6 checksum is disabled. To enable the checksum (assuming the
hardware does not compute ICMPv6 checksums), locate the Checksum computation support
on transmitted ICMPv6 packets property in the NetX Duo Source properties box, and set it
to enabled. The Checksum computation support on received ICMPv6 packets property
should also be enabled.
Duplicate Address Detection (DAD) is recommended to verify the uniqueness of the server's
global IPv6 address. This protocol is similar to sending gratuitous ARP probes in IPv4 to
determine the uniqueness of an IPv4 address, but it is only applicable to IPv6 addresses. To
enable DAD (which is disabled by default), set the Duplicate Address Detection support
property to enabled in the NetX Duo Source properties box. The number of solicitation
packets sent out for DAD is set by the Neighbor Solicitation message count before interface
address marked valid property, which by default is 3 (and sent about a second apart). With
this configuration, the application thread should wait about 4 seconds to let the DAD
protocol complete.
The following DHCPv6 parameters are supplied in DHCPv6 Server responses to the client:

T1 time: when the client should begin renewing its IPv6 address lease, is set by
the Server interval for first client IP address renewal attempt property.
Preferred time: when the client IPv6 address is deprecated, is set by the Time

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,335 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > NetX Duo DHCP IPv6 Server Module Operational Overview

interval after which the client IP is deprecated property. This should be double the
T1 time, as per RFC 3315 recommendations.
T2 time: when the client should begin rebinding an IPv6 address if renewing efforts
failed, is set by the Server interval for the second client IP address renewal
attempt property.
Valid lifetime: when the client IPv6 address is obsolete and should no longer be
used by the client. This is set by the Time interval after which leased IP is invalid
property, and should be double the preferred time, as per RFC 3315
recommendations.
There is no upper limit on the IPv6 lease time (valid lifetime), but the relative
interval of these four time parameters must permit the logical order of renew and,
if necessary, rebind state of the DHCPv6 protocol.

The address-declined handler callback for handling a Client Decline message is not
implemented on the current NetX Duo DHCPv6 Server. This callback is suggested by the
RFC 3315 DHCPv6 specification for the server to notify the application of a declined address
event.

NetX Duo DHCP IPv6 Server Module Limitations

Rapid Commit option: optimizes the DHCPv6 address request process to just the Solicit and
Reply message-exchange
Reconfigure option: allows the server to initiate changes to the client's IP address status
Unicast option: all client messages must be sent to All_DHCP_Relay_Agents_and_Servers
multicast address rather than to the DHCPv6 Server directly.
Identity Association for the Temporary Addresses (IA_TA) option: a temporary IP address
granted to a client
Multiple IA (IPv6 addresses) option: per client request
Relay host between DHCPv6 Client and Server: client and server must be on the same
network
NetX Duo DHCPv6 Server: directly supports only the DNS Server option request
Prefix Delegation option: is not supported.
Option request callback: intended for the application and determines which DHCPv6 options
to support and which information to supply to the DHCPv6 Server in response to the client.
However, the processing of this information into the DHCPv6 Server response is not
implemented. This callback has no effect on DHCPv6 Server messages
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.17.4 Including the NetX Duo DHCP IPv6 Server Module in an Application

This section describes how to include either or both the NetX Duo DHCP IPv6 Server module in an
application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX Duo DHCP IPv6 Server module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX Duo DHCP IPv6 Server Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,336 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > Including the NetX Duo DHCP IPv6 Server Module in an Application

g_dhcp_server0NetX Duo DHCP
IPv6 Server

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
DHPC IPv6 Server

When the NetX Duo DHCP IPv6 Server module is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 446: NetX Duo DHCP IPv6 Server Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,337 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > Including the NetX Duo DHCP IPv6 Server Module in an Application

NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.17.5 Configuring the NetX Duo DHCP IPv6 Server Module

The NetX Duo DHCP IPv6 Server module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX Duo DHCP IPv6 Server Module

ISDE Property Value Description

Internal thread priority 1 Internal thread priority
selection.

Client lease time expiration
check interval (seconds)

60 Client lease time expiration
check interval selection.

DHCPv6 packet receive timeout
(seconds)

1 DHCPv6 packet receive timeout
selection.

Server preference ranking for
clients

0 Server preference ranking for
clients selection.

Maximum options to extract
from a client message

6 Maximum options to extract
from a client message
selection.

Server interval for first client IP
address renewal attempt
(seconds)

2000 Server interval for first client IP
address renewal attempt
selection.

Server interval for second client
IP address renewal attempt
(seconds)

3000 Server interval for second client
IP address renewal attempt
selection.

Time interval after which client
IP is deprecated (seconds)

2*NX_DHCPV6_DEFAULT_T1_TI
ME

Time interval after which client
IP is deprecated selection.

Time interval after which leased
IP in invalid (seconds)

2*NX_DHCPV6_DEFAULT_PREFE
RRED_TIME

Time interval after which leased
IP in invalid selection.

Maximum server status option
message size (bytes)

100 Maximum server status option
message size selection.

Maximum Size of the Server's IP
lease table (count)

100 Maximum Size of the Server's IP
lease table selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,338 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > Configuring the NetX Duo DHCP IPv6 Server Module

Size of the Server's Client
record table (count)

120 Size of the Server's Client
record table selection.

Server socket fragmentation
option

Don't fragment, fragment okay

Default: Don't fragment

Server socket fragmentation
option selection.

Vendor assigned unique ID abcdefghijklmnopqrstuvwxyz Vendor assigned unique ID
selection.

Private vendor ID 0x12345678 Private vendor ID selection.

Size of Vendor ID buffer (bytes) 48 Size of vendor ID buffer
selection.

Client request success
message: granted

IA OPTION GRANTED Client request successmessage:
granted selection.

Client request failure message:
Failure unspecified

IA OPTION NOT GRANTED -
FAILURE UNSPECIFIED

Client request failure message:
Failure unspecified selection.

Client request failure message:
No addresses available

IA OPTION NOT GRANTED - NO
ADDRESSES AVAILABLE

Client request failure message:
No addresses available
selection.

Client request failure message:
Invalid client request

IA OPTION NOT GRANTED -
INVALID CLIENT REQUEST

Client request failure message:
Invalid client request selection.

Client request failure message:
Client not on link

IA OPTION NOT GRANTED -
CLIENT NOT ON LINK

Client request failure message:
Client not on link selection.

Client request failure message:
Client must use multicast

IA OPTION NOT GRANTED -
CLIENT MUST USE MULTICAST

Client request failure message:
Client must use multicast
selection.

Session inactivity timeout
(seconds)

20 Session inactivity timeout
selection.

Name g_dhcpv6_server0 Module name.

Internal thread stack size
(bytes)

4096 Internal thread stack size
selection.

Name of address declined
handler function

dhcpv6_address_declined_handl
er

Name of address declined
handler function selection.

Name of option request handler dhcpv6_option_request_handler Name of option request handler
selection.

Name of generated initialization
function

dhcpv6_server_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for stack modules can be desirable. For example, it

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,339 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > Configuring the NetX Duo DHCP IPv6 Server Module

might be useful to select different Ethernet interface pins and resets. The configurable properties for
the lower-level stack modules are given in the following sections for completeness and as a
reference.

Note
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the NetX Duo DHCP IPv6 Server Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

0,0,0,0 IPv4 Address selection.

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection.

IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection.

IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address
selection.

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection.

IP Helper Thread Priority 3 IP Helper Thread Priority
selection.

ARP Enable ARP selection.

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection.

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection.

TCP Enable, Disable

Default: Enable

TCP selection.

UDP Enable, Disable

Default: Enable

UDP selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,340 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > Configuring the NetX Duo DHCP IPv6 Server Module

ICMP Enable, Disable

Default: Enable

ICMP selection.

IGMP Enable, Disable

Default: Enable

IGMP selection.

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection.

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo DHCP IPv6 Common Instance

ISDE Property Value Description

Type of Service for UDP
requests

Normal, Minimum delay,
Maximum data, Maximum
reliabililty, Minimum cost

Default: Normal

Type of service UDP requests
selection.

Time to live 128 Time to live selection.

Packet Queue depth 5 Packet queue depth selection.

packet alocation timeout
(seconds)

3 Packet allocation timeout
selection.

Interval for active session time
update (seconds)

3 Interval for active session time
update selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,341 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > Configuring the NetX Duo DHCP IPv6 Server Module

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name.

Packet Size in Bytes 640 Packet size selection.

Number of Packets in Pool 16 Number of packets in pool
selection.

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G 2Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX Duo DHCP IPv6 Server Module Clock Configuration

The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the
SSP configurator clock tab prior to a build, or by using the CGC interface at run-time.

NetX Duo DHCP IPv6 Server Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines the peripheral signals available and the MCU pins required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

ETHERC Pins Select Peripherals>
Connectivity:ETHERC>
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,342 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > Configuring the NetX Duo DHCP IPv6 Server Module

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1.

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection.

REF50CK P701 REF50CK pin.

TXD0 P700 TXD0 pin.

TXD1 P406 TXD1 pin.

TXD_EN P405 TXD_EN pin.

RXD0 P702 RXD0 pin.

RXD1 P703 RXD1 pin.

RX_ER P704 RX_ER pin.

CRS_DV P705 CRS_DV pin.

MDC P403 MDC pin.

MDIO P404 MDIO pin.

Note
The example settings are for a project using the S7G2 Synergy MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and other Synergy Kits may have different available pin configuration settings.

4.3.17.6 Using the NetX Duo DHCP IPv6 Server Module in an Application

The following example assumes a system that is already established with a working and enabled IP,
ARP and UDP, and the link is running.

The steps in using the NetX Duo DHCP IPv6 Server module in a typical application are:

1. Create a DUID for the DHCPv6 Server using the nx_dhcpv6_set_server_duid API.
2. Create a pool of assignable IPv6 addresses for the DHCPv6 Server using the

nx_dhcpv6_create_ip_address_range API.
3. Set the DNS Server option for IPv6 using the nx_dhcpv6_create_dns_address API [Optional].
4. Start the DHCPv6 Server with the nx_dhcpv6_server_start API.
5. The DHCPv6 Server can be suspended as needed using thenx_dhcpv6_server_suspend API.
6. The DHCPv6 Server can be resumed using nx_dhcpv6_server_resume API [Optional].
7. Delete the DHCPv6 Server using the nx_dhcpv6_server_delete API.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,343 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DHCPv6 Server > Using the NetX Duo DHCP IPv6 Server Module in an Application

Figure 447: Flow Diagram of a Typical NetX Duo DHCP IPv6 Server Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,344 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client

4.3.18 NetX/NetX Duo DNS Client

4.3.18.1 NetX/NetX Duo DNS Client Introduction

The Domain Name System (DNS) provides a distributed database that contains mapping between
domain names and physical IP addresses. The database is referred to as "distributed" because there
is no single entity on the Internet that contains the complete mapping. An entity that maintains a
portion of the mapping is called a DNS server. The Internet is composed of numerous DNS servers,
each of which contains a subset of the database. DNS servers also respond to DNS client requests for
domain name mapping information, only if the server has the requested mapping. The DNS client
protocol for NetX and NetX Duo provides the application with services to request mapping
information from one or more DNS Servers.

Note
Except where noted, the NetX Duo DNS Client module is identical in the application, set-up and running of DNS
queries as the NetX DNS Client module. For setting up the IP instance for IPv6 in NetX Duo, please refer to the
NetX Duo User Guide for the Renesas Synergy™ Platform.

Unsupported Features

Cache support has not been tested in this version of SSP.

IPV6 has not been tested for NetX Duo in this version of SSP.

NetX/NetX Duo DNS Client Module Features

Optional creation of separate packet pool for DNS operations
Support of Type A, AAAA, and NS DNS queries
Support of CNAME, SRV, TXT, SOA, and MX DNS resource types
Support for DNS cache for storing and retrieving cached DNS data
High-level APIs for:

Name and IP address lookup
Adding and removing DNS servers
Creating and deleting the DNS instance

NetX DNS is compliant with the following RFCs:
RFC1034 Domain Names – Concepts and Facilities
RFC1035 Domain Names - Implementation and Specification
RFC1480 The US Domain
RFC 2782 A DNS RR for specifying the location of services (DNS SRV)
RFC 3596 DNS Extensions to Support IP Version 6

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,345 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > NetX/NetX Duo DNS Client Introduction

Figure 448: NetX/NetX Duo DNS Client Module Block Diagram

Note
In the figure above, the NetX (or NetX Duo) Network Driver modules has multiple implementation options
available. See the description just after the module stack figure in Including the NetX/NetX Duo DNS Client
Module in an Application for additional details.

4.3.18.2 NetX/NetX Duo DNS Client Module APIs Overview

The NetX/NetX Duo DNS Client module defines API functions for connecting, binding, listening,
sending and receiving. A complete list of the available API functions, an example API function call
and a short description of each can be found in the following table.

NetX/NetX Duo DNS Client Module API Summary

Function Name Example API Call and Description

nx_dns_create nx_dns_create(&my_dns, &my_ip, "My DNS");
Create a DNS Client instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,346 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > NetX/NetX Duo DNS Client Module APIs Overview

nx_dns_delete nx_dns_delete(&my_dns);
Delete a DNS Client instance.

nx_dns_packet_pool_set nx_dns_packet_pool_set(&my_dns,
&packet_pool);
Set the DNS Client packet pool.

nx_dns_get_serverlist_size nx_dns_get_serverlist_size (&my_dns, 5);
Return the size of the DNS Client's Server list.

nx_dns_info_by_name_get nx_dns_info_by_name_get(&my_dns,
"www.abc1234.com", ip_address, &port, 200);
Return IPv4 address, port querying on input host
name.

nx_dns_ipv4_address_by_name_get nx_dns_ipv4_address_by_name_get(&client_dns,
(UCHAR *)"www.my_example.com",
record_buffer,sizeof(record_buffer),&record_cou
nt,500);
Look up the IPv4 address for the specified host
name.

nx_dns_host_by_address_get nx_dns_host_by_address_get(&my_dns,
IP_ADDRESS(192.2.2.10),
&resolved_name[0], BUFFER_SIZE, 450);
Look up a host name from a specified IP address
(supports only IPv4 addresses).

nx_dns_host_by_name_get nx_dns_host_by_name_get(&my_dns,
"www.my_example.com", &ip_address, 4000);
Look up an IP address from the host name
(supports only IPv4 addresses).

nx_dns_server_add nxd_dns_server_add(&my_dns, server_address);
Add a DNS Server of the specified IP address to
the Client's Server list (supports only IPv4).

nx_dns_server_get nx_dns_server_get(&my_dns, 5,
&my_server_address);
Return the DNS Server in the Client list at the
specified index (supports only IPv4 addresses).

nx_dns_server_remove nx_dns_server_remove(&my_dns,
IP_ADDRESS(202,2,2,13));
Remove a DNS Server from the Client list
(supports only IPv4 addresses).

nx_dns_server_remove_all nx_dns_server_remove_all(&my_dns);
Remove all DNS Servers from the Client list.

nx_dns_cache_initialize nx_dns_cache_initialize(&my_dns, &dns_cache,
2048);
Initialize a DNS Cache.

nx_dns_cache_notify_clear nx_dns_cache_notify_clear(&my_dns);
Clear the DNS cache full notify function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,347 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > NetX/NetX Duo DNS Client Module APIs Overview

nx_dns_cache_notify_set nx_dns_cache_notify_set(&my_dns,
cache_full_notify_cb);
Set the DNS cache full notify function.

nx_dns_cname_get nx_dns_cname_get(&client_dns, (UCHAR
*)"www.my_example.com ",
record_buffer, sizeof(record_buffer), 500);
Look up the canonical domain name for the
input domain name alias.

nx_dns_authority_zone_start_get nx_dns_authority_zone_start_get(&client_dns,
(UCHAR *)"www.my_example.com",
record _buffer, sizeof(record_buffer),
&record_count, 500);
Look up the start of a zone of authority
associated with the specified host name.

nx_dns_domain_name_server_get nx_dns_domain_name_server_get(&client_dns,
(UCHAR *)" www.my_example.com ",
record_buffer, sizeof(record_buffer),
&record_count, 500);
Look up the authoritative name servers for the
input domain zone

nx_dns_domain_mail_exchange_get nx_dns_domain_mail_exchange_get(&client_dns,
(UCHAR *)"
www.my_example.com",record_buffer,
sizeof(record_buffer),
&record_count, 500);
Look up the mail exchange associated with the
specified host name.

nx_dns_domain_service_get nx_dns_domain_service_get(&client_dns,
(UCHAR *)"www.my_example.com ",
record_buffer, sizeof(record_buffer),
&record_count, 500);
Look up the service(s) associated with the
specified host name.

nxd_dns_ipv6_address_by_name_get** nxd_dns_ipv6_address_by_name_get(&client_dns
,
(UCHAR *)"www.my_example.com",
record__buffer, sizeof(record_buffer),
&record_count, 500);
Look up the IPv6 address from the specified host
name.

nxd_dns_host_by_address_get** nxd_dns_host_by_address_get(&my_dns,
&host_address,
resolved_name, sizeof(resolved_name), 4000);
Look up a host name from the input IP address
(supports both IPv4 and IPv6 addresses).

nxd_dns_host_by_name_get** nxd_dns_host_by_name_get(&my_dns,
"www.my_example.com", &ip_address, 4000,
NX_IP_VERSION_V4);
Look up an IP address from the input host name
(supports both IPv4 and IPv6 addresses).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,348 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > NetX/NetX Duo DNS Client Module APIs Overview

nxd_dns_server_add** nxd_dns_server_add(&my_dns,
&server_address);
Add the input DNS Server to the Client server list
(supports both IPv4 and IPv6 addresses).

nxd_dns_server_get** nxd_dns_server_get(&my_dns, 5,
&my_server_address);
Return the DNS Server in the Client list at the
specified index (supports both IPv4 and IPv6
addresses).

nxd_dns_server_remove** nxd_dns_server_remove(&my_dns,&
server_ADDRESS);
Remove a DNS Server of the specified IP address
from the Client list (supports both IPv4 and IPv6
addresses).

Note
Fordetails on operation and definitions for the function data structures, typedefs, defines, API data, API structures
and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo DNS Client. For definitions of of NetX Duo specific data types,
see the NetX Duo User Guide for the Renesas Synergy™ Platform.

Status Return Values

Name Description

NX_SUCCESS API Call Successful.

NX_DNS_NO_SERVER Client server list is empty.

NX_DNS_QUERY_FAILED No valid DNS response received.

NX_DNS_NEED_MORE_RECORD_BUFFER Input buffer size insufficient to hold the
minimum data.

NX_PTR_ERROR* Invalid IP or DNS pointer.

NX_CALLER_ERROR* Invalid caller of this service.

NX_DNS_ERROR Internal error in DNS Client processing.

NX_DNS_PARAM_ERROR Invalid non-pointer input.

NX_DNS_CACHE_ERROR Invalid Cache pointer.

NX_DNS_TIMEOUT Timed out on obtaining DNS mutex.

NX_DNS_BAD_ADDRESS_ERROR Null input address.

NX_DNS_INVALID_ADDRESS_TYPE Index points to invalid address type (for
example, IPv6).

NX_DNS_IPV6_NOT_SUPPORTED Cannot process record with IPv6 disabled.

NX_NOT_ENABLED Client not configured for this option.

NX_DNS_DUPLICATE_ENTRY DNS Server is already in the Client list.

NX_NO_MORE_ENTRIES No more DNS Servers allowed (list is full).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,349 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > NetX/NetX Duo DNS Client Module APIs Overview

NX_DNS_SERVER_NOT_FOUND Server not in client list.

Note
Lower-level drivers may return common error codes. See SSP User's Manual API References for the associated
module for a definition of all relevant status return values.

These error codes are only returned if error checking is enabled. For details on
error‑checking services, see NetX User Guide for the Renesas Synergy™ Platform or NetX
Duo User Guide for the Renesas Synergy™ Platform in NetX and NetX Duo, respectively.

4.3.18.3 NetX/NetX Duo DNS Client Module Operational Overview

DNS Messages

The NetX DNS Client module creates the IP instance, enables UDP services in NetX, and initializes the
network driver while registering a valid IP address. The module creates an UDP socket for sending
and receiving DNS messages to DNS servers listening on port 53 for DNS queries.

To obtain a mapping, the DNS client prepares a DNS query message containing the name or the IP
address to be resolved. The message goes to the first DNS server in the server list. If the server has
a mapping, it replies to the DNS client using a DNS response message containing the requested
mapping. If the server does not respond, the DNS client queries the next server on its list until all its
DNS servers have been queried. If no response is received from all its DNS servers, the DNS client
retransmits the DNS message starting back at the top of the server list. DNS queries are sent until
the retransmission timeout expires. Until a response is received, each iteration down the list of
servers doubles the retransmission timeout until the maximum transmission timeout is reached. This
timeout is set in the Maximum duration to retransmit a DNS query (seconds) property. The default
value is 64 seconds; the maximum number of times the DNS client iterates down the server list,
which is set by the Maximum retries for a server property and defaults to 3.

The typical NetX DNS Client queries are:

IPv4 address lookups (type A) by using the nx_dns_host_by_name_get service.
Reverse lookups of IP addresses (type PTR queries) to obtain web host names using the
nx_dns_host_by_address_get service.
IPv6 address lookups (type AAAA) or IPv4 address lookups (type A), specified in the IP
address data type input, in the nxd_dns_host_by_name_get service. (This is only available in
the NetX Duo DNS Client.)
Reverse lookups of IP addresses (type PTR queries) to obtain web-host names using the
nxd_dns_host_by_address_get service. (This is only available in the NetX Duo DNS Client.)

The NetX Duo DNS Client module still supports nx_dns_host_by_name_get and
nx_dns_host_by_address_get services. These are equivalent services, but they are limited to IPv4
network communication, so developers are encouraged to use the nxd_dns_host_by_name_get and
nxd_dns_host_by_address_get services instead.

Extended DNS Resource Record Types

If the Extended RR types support property is enabled, the NetX DNS Client module also supports the
following record type queries:

CNAME contains the canonical name for an alias

TXT contains a text string

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,350 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > NetX/NetX Duo DNS Client Module Operational Overview

NS contains an authoritative name server

SOA contains the start of a zone of authority

MX used for mail exchange

SRV contains information on the service offered by the domain

With the exception of CNAME and TXT record types, the application must supply a 4-byte aligned
buffer to receive the DNS data record.

In the NetX DNS Client module, the record data is stored to make efficient use of buffer space. The
following example shows a record buffer of fixed length (type AAAA record):

 For queries whose record types have a variable data-length (such as NS records with variable-length
host names), the NetX DNS Client module saves the data using the following methodology:

Organizes the buffer supplied in the DNS Client query into fixed-length data and
unstructured memory areas.
Organizes the top of the memory buffer into 4-byte aligned record entries.
For each record entry, holds the IP address and a pointer to the variable-length data for that
IP address.
Stores variable-length data for each IP address in unstructured area memory starting at the
end of the memory buffer.
Saves variable-length data for each successive record entry in the next area of memory,
adjacent to the previous record entries' variable data.
'Grows' the variable data towards the structured area of memory holding record entries
until there is insufficient memory to store another record entry and variable data (see
following figure).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,351 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > NetX/NetX Duo DNS Client Module Operational Overview

 The NetX DNS Client queries use the record storage format to return the number of records saved to
the record buffer; this information enables the application to extract NS records from the record
buffer. After calling the nx_dns_domain_service_get with the receive_buffer pointer to the storage
space, the application extracts the SRV data sequentially, taking advantage of the known size of the
SRV entry:

NX_DNS_SRV_ENTRY *nx_dns_srv_entry_ptr[RECORD_COUNT];

status = nx_dns_domain_service_get(&client_dns,

 (UCHAR *)"www.my_example.com",

 &record_buffer[0], BUFFER_SIZE, &record_count,

 NX_IP_PERIODIC_RATE);

for(i =0; i< record_count; i++)

{

 nx_dns_srv_entry_ptr[i] =

 (NX_DNS_SRV_ENTRY *)(record_buffer + i * sizeof(NX_DNS_SRV_ENTRY));

}

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,352 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > NetX/NetX Duo DNS Client Module Operational Overview

DNS Cache

If the Cache support property is enabled, the NetX DNS Client module supports the DNS cache
feature. The application must set up the DNS cache using the nx_dns_cache_initialize service. When
caching is enabled, the DNS client checks the DNS cache resource records before sending a DNS
query. If it finds the answer in the cache, it directly returns it to the application. Otherwise, it sends
out a query message to a DNS server and waits for the reply. When the DNS client gets the response
message, it adds a resource record to the cache, if there is a cache entry available.

Each cache entry is a data structure used to hold a resource record. String entries (resource record
name and data) in resource records are variable length, and as such, are not stored directly in the
resource record. Instead, the resource record sets a pointer to the actual memory location in the
cache where the strings are stored. Strings and resource records share the cache. Records are
stored from the beginning of the cache and grow towards the end of the cache. String entries start
from the end of the cache and grow towards the beginning of the cache. Each string entry has a
length field and a counter field. When a string entry is added to the cache, and the same string is
already present in the table, the counter value is incremented and no memory is allocated for the
string. The cache is considered full if no more resource records or new string entries can be added to
the cache.

NetX/NetX Duo DNS Client Module Important Operational Notes and Limitations

NetX/NetX Duo DNS Client Module Operational Notes

The NetX DNS Client requires a packet pool for transmitting DNS messages; by default, the
application must set the packet pool before using DNS client services. This can either be the packet
pool used by the IP instance (g_packet_pool0), or it can be a separate packet pool added to the
project: Azure RTOS> NetX Duo> NetX Duo Packet Pool Instance (or Azure RTOS> NetX>
NetX Packet Pool Instance in NetX DNS Client).

If the Use application packet pool is disabled, the DNS Client module creates the packet pool when
the DNS client is created. The Maximum DNS queries size property determines the size of the packet
payload and defaults to 512 bytes. The Packets in DNS packet pool property sets the number of
packets in the DNS Client packet pool (defaults to 6).

Note
For user?created packet pools, the packet size holds the DNS maximum message size property. The default
message size is 512 bytes, plus room for the UDP header (8 bytes), IPv4 header (20 bytes), or IPv6 header (40
bytes), and the network frame header. The Ethernet frame header is rounded up to 16 bytes for 4-byte alignment.
This user-created packet pool is only used to send DNS packets. The IP packet pool is set to a 1568?byte packet
payload. This packet pool setting works best for the Synergy network driver and the device MTU (typically, 1518
bytes), and it also avoids the need to chain packets in the driver layer.

Before sending DNS queries, the application must add one or more DNS servers to the server list
kept by the DNS client. The maximum server list size is set by the Maximum number of DNS Servers
in the Client server list property.

To add a DNS server, the application can use either the nx_dns_server_add service (limited to IPv4
packets) or the nxd_dns_server_add service supporting IPv4 and IPv6 packets.

Note
In the NetX Duo DNS Client, enabling the Client has DNS and Gateway Server property has no effect in the latest
SSP release. When the DNS client is created, the IP instance does not have a router/gateway address set.

In the NetX DNS Client, enabling the Client has Gateway Server should be disabled. The IP instance

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,353 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > NetX/NetX Duo DNS Client Module Operational Overview

cannot have its gateway address by the time the DNS client is created and initialized by the
configurator build process, and DNS Client IP instance gateway should not be used. To set a DNS
server, it is recommended to use the nx_dns_server_add.

To set up the DNS cache, the application can use the nx_dns_cache_initialize service with
the cache memory buffer pointing to a previously defined buffer. To be notified if the cache
is full, use the nx_dns_cache_notify_set service. This callback can be 'disabled' by clearing
the callback using the nx_dns_cache_notify_clear service.
A useful feature is the Clear previous DNS queries from queue property; this property
enables the DNS client to remove any old DNS server responses from the DNS client receive
queue when looking for a response that matches the current query. This means older
packets received from previous DNS queries are discarded to prevent the DNS client socket
from overflowing and dropping valid packets.
Refer to the following list for NetX DNS services and their NetX Duo DNS equivalents:

NetX DNS API Service (IPv4 only) NetX Duo DNS API Service (IPv4 and IPv6
supporte)

nx_dns_host_by_name_get nxd_dns_host_by_name_get

nx_dns_host_by_address_get nxd_dns_host_by_address_get

nx_dns_server_get nxd_dns_server_get

nx_dns_server_add nxd_dns_server_add

nx_dns_server_remove nxd_dns_server_remove

NetX/NetX Duo DNS Client Module Limitations

The DNS client supports one DNS request at a time; threads attempting to make another
DNS request are temporarily blocked until the previous DNS request is complete.
The NetX DNS Client module does not use data from authoritative answers to forward
additional DNS queries to other DNS servers.
Refer to the latest SSP Release Notes for any additional operational limitations for this
module.

4.3.18.4 Including the NetX/NetX Duo DNS Client Module in an Application

This section describes how to include either or both the NetX and NetX Duo DNS Client module in an
application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo DNS Client module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo DNS Client Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_dns0 NetX DNS Client Threads New Stack> X-Ware> NetX>
Protocols> NetX DNS Client

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,354 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > Including the NetX/NetX Duo DNS Client Module in an Application

g_dns0 NetX Duo DNS Client Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
DNS Client

When the NetX and/or NetX Duo DNS Client module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,355 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > Including the NetX/NetX Duo DNS Client Module in an Application

Figure 449: NetX/NetX Duo DNS Client Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,356 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > Including the NetX/NetX Duo DNS Client Module in an Application

NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.18.5 Configuring the NetX/NetX Duo DNS Client Module

The NetX/NetX Duo DNS Client module must be configured by the user for the desired operation. The
SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo DNS Client Module

ISDE Property Value Description

DNS Control Type of Service Normal, Minimum delay,
Maximum data, Maximum
reliability, Minimum cost

Default: Normal

DNS control type of service
selection.

Socket fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Socket fragmentation option
selection.

Time to live 128 Time to live selection.

**Client DNS IP version IPv4, IPv6

Default: IPv4

Client DNS IP version selection.

Maximum number of DNS
Servers in Client server list

5 Maximum number of DNS
Servers in Client server list
selection.

Maximum DNS queries size
(bytes)

512 Maximum DNS queries size
selection.

Packets in DNS packet pool
(units)

16 Packets in DNS packet pool
selection.

Maximum retries for a server 3 Maximum retries for a server
selection.

Maximum duration to
retransmit a DNS query
(seconds)

64 Maximum duration to
retransmit a DNS query
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,357 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > Configuring the NetX/NetX Duo DNS Client Module

Packet allocate timeout
(seconds)

1 Packet allocate timeout
selection.

Client has DNS and Gateway
server

Enable, Disable

Default: Disable

DNS control type of service
selection.

DNS Client IP instance gateway
(use commas for separation)

(Not included in NetX Duo)

192,16,0,1 DNS client IP instance gateway
selection.

Use application packet pool Enable, Disable

Default: Enable

Use application packet pool
selection.

Clear previous DNS queries
from queue

Enable, Disable

Default: Disable

Clear previous DNS queries
from queue selection.

Extended RR types support Enable, Disable

Default: Disable

Extended RR types support
selection.

Cache support Enable, Disable

Default: Disable

Cache support selection.

Name g_dns0 Module name.

Name of generated initialization
function

dns_client_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select different MAC or IP Addresses. The configurable properties for
the lower-level stack modules are provided in the following sections for completeness and as a
reference.

Note
 Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo DNS Client Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,358 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > Configuring the NetX/NetX Duo DNS Client Module

module:

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name.

IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection.

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection.

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection.

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection.

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address
selection.

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection.

IP Helper Thread Priority 3 IP Helper Thread Priority
selection.

ARP Enable ARP selection.

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection.

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection.

TCP Enable, Disable

Default: Enable

TCP selection.

UDP Enable, Disable

Default: Enable

UDP selection.

ICMP Enable, Disable

Default: Enable

ICMP selection.

IGMP Enable, Disable

Default: Enable

IGMP selection.

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection.

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,359 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > Configuring the NetX/NetX Duo DNS Client Module

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function.

Link status change callback NULL Link status change callback
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name.

Packet Size in Bytes 640 Packet size selection.

Number of Packets in Pool 16 Number of packets in pool
selection.

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo DNS Client Module Clock Configuration

The ETHERC peripheral module uses the PCLKA as its clock source. The PCLKA frequency is set using
the SSP configurator Clock tab prior to a build or by using the CGC interface at run-time.

NetX/NetX Duo DNS Client Module Pin Configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,360 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > Configuring the NetX/NetX Duo DNS Client Module

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin Selection Sequence

ETHERC Pins Select Peripherals>
Connectivity:ETHERC>
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1.

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection.

REF50CK P701 REF50CK pin.

TXD0 P700 TXD0 pin.

TXD1 P406 TXD1 pin.

TXD_EN P405 TXD_EN pin.

RXD0 P702 RXD0 pin.

RXD1 P703 RXD1 pin.

RX_ER P704 RX_ER pin.

CRS_DV P705 CRS_DV pin.

MDC P403 MDC pin.

MDIO P404 MDIO pin.

Note
The example settings are for a project using the S7G2 Synergy MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and other Synergy Kits may have different available pin configuration settings.

4.3.18.6 Using the NetX/NetX Duo DNS Client Module in an Application

The steps in using the NetX/NetX Duo DNS Client module in a typical application are:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,361 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo DNS Client > Using the NetX/NetX Duo DNS Client Module in an Application

1. Wait for valid IP address using the nx_ip_status_check API.

2. Enable DNS caching by calling the nx_dns_cache_initialize [optional].

3. Add one or more servers to the client list using the nx_dns_server_add API.

4. Send DNS name query using nxd_dns_host_by_name_get API to obtain an IP address.

5. Extract DNS server resource records using known size and arrangement of records packaged by
the DNS client.

The following figure illustrates common steps in a typical operational flow diagram:

Figure 450: Flow Diagram of a Typical NetX/NetX Duo DNS Client Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,362 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client

4.3.19 NetX/NetX Duo FTP Client

4.3.19.1 NetX/NetX Duo FTP Client Introduction

The File Transfer Protocol (FTP) is a protocol designed for file transfers. The FTP utilizes reliable
Transmission Control Protocol (TCP) services to perform its file transfer function. The actual FTP file
transfer is performed on a dedicated FTP connection.

Note
The NetX™ FTP Client module supports IPv4 only. The NetX Duo™ FTP Client module accommodates both IPv4
and IPv6 networks. IPv6 does not directly change the FTP protocol, although some changes in the original NetX
FTP APIs are necessary to accommodate IPv6 and will be described in this document.

Unsupported Features

Multi-thread support has not been tested in this version of SSP.

Passive transfer mode has not been tested for NetX Duo in this version of SSP.

NetX/NetX Duo FTP Client Module Features

Multi-thread support
High level APIs
Connecting and disconnecting
Directory operations
File operations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,363 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > NetX/NetX Duo FTP Client Introduction

Figure 451: NetX/NetX Duo FTP Client Module Block Diagram

Note
In the figure above, the FileX and NetX (or NetX Duo) Network Driver modules have multiple implementation
options available. See the descriptions just after the module stack figure in Including the NetX/NetX Duo FTP
Client Module in an Application for additional details.

4.3.19.2 NetX/NetX Duo FTP Client Module APIs Overview

The NetX/NetX Duo FTP Client defines APIs for client creation/deletion, connecting/disconnecting to
and from the server, directory operations and file operations. A complete list of the available APIs, an
example API call and a short description of each can be found in the following table. A table of status
return values follows the API summary table.

NetX/NetX Duo FTP Client Module API Summary

Function Name Example API Call and Description

nx_ftp_client_create nx_ftp_client_create(&my_client, "My Client",
&client_ip,
2000, &client_pool);
Delete an FTP Client instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,364 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > NetX/NetX Duo FTP Client Module APIs Overview

nx_ftp_client_delete nx_ftp_client_delete(&my_client);
Delete an FTP Client instance.

nx_ftp_client_connect nxd_ftp_client_connect(&my_client,
server_ip_addr, NULL, NULL, 100);
Connect to an FTP Server with IPv6 and IPv4
support.

**nxd_ftp_client_connect nxd_ftp_client_connect(&my_client,
server_ip_addr, NULL, NULL, 100);
Connect to an FTP Server with IPv6 and IPv4
support.

nx_ftp_client_disconnect nx_ftp_client_disconnect(&my_client, 200);
Disconnect from the FTP Server.

nx_ftp_client_create nx_ftp_client_directory_create(&my_client,
"my_dir", 200);
Create a directory on the server.

nx_ftp_client_directory_set nx_ftp_client_directory_listing_set(&my_client,
"my_dir", &my_packet,
200);
Get a directory listing from the server.

nx_ftp_client_directory_delete nx_ftp_client_directory_delete(&my_client,
"my_dir", 200);
Delete a directory on the server.

nx_ftp_client_directory_listing_get nx_ftp_client_directory_listing_get(&my_client,
"my_dir", &my_packet,
200);
Get a directory listing from the server.

nx_ftp_client_directory_listing_continue nx_ftp_client_directory_listing_continue(&my_clie
nt, &my_packet,
200);
Continue a directory listing from the server.

nx_ftp_client_file_open nx_ftp_client_file_open(&my_client, "my_file.txt",
NX_FTP_OPEN_FOR_READ,
200);
Open a file on the server.

nx_ftp_client_file_close nx_ftp_client_file_close(&my_client, 200);
Close the currently open file on the server.

nx_ftp_client_file_read nx_ftp_client_file_read(&my_client, &my_packet,
200);
Read from a file already open on the server.

nx_ftp_client_file_write nx_ftp_client_file_write(&my_client, my_packet,
200);
Write to an already open file on the server.

nx_ftp_client_file_rename nx_ftp_client_file_rename(&my_client,
"my_file.txt", "new_file.txt",
200);
Rename a file on the server.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,365 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > NetX/NetX Duo FTP Client Module APIs Overview

nx_ftp_client_file_delete nx_ftp_client_file_delete(&my_client,
"my_file.txt", 200);
Delete a file on the server.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API structures
and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo FTP Client. For definitions of NetX Duo specific data types,
see the NetX Duo User Guide for the Renesas Synergy™ Platform.

Status Return Values

Name Description

NX_SUCCESS Successful FTP function.

NX_FTP_NOT_DISCONNECTED FTP client is already connected.

NX_FTP_200_CODE_NOT_RECEIVED Server rejects FTP connection.

NX_FTP_300_CODE_NOT_RECEIVED Server rejects user/password.

NX_PTR_ERROR Invalid FTP, username, or password pointer.

NX_CALLER_ERROR Invalid caller of this service.

NX_IP_ADDRESS_ERROR Invalid IP address.

NX_FTP_NO_2XX_RESPONSE_XXD FTP server error response.

NX_FTP_NO_2XX_RESPONSE_PORT FTP server response to PORT.

NX_FTP_NO_1XX_RESPONSE FTP server response to NLST.

NX_FTP_END_OF_LISTING No more entries in directory.

NX_FTP_NO_2XX_RESPONSE_DISCONNECT FTP server response to disconnect.

Note
Lower-level drivers may return common error codes. See SSP User's Manual API References for the associated
module for a definition of all relevant status return values.

4.3.19.3 NetX/NetX Duo FTP Client Module Operational Overview

FTP Client Requirements

To function properly, the NetX FTP Client package requires NetX. Similarly, the NetX Duo FTP Client
package relies on NetX Duo. The host application must create an IP instance for running NetX
services and periodic tasks. If running the FTP host application over an IPv6 network, IPv6, and
ICMPv6 must be enabled on the IP task. TCP must be also enabled for either IPv6 or IPv4 networks.
The IPv6 host application must set its link local and global IPv6 address using the IPv6 API and/or
DHCPv6.

The FTP Server and Client are also designed to work with the FileX® embedded file system. If FileX is
not available, the host developer can implement or substitute their own file system along the
guidelines suggested in filex_stub.h by defining each of the services listed in that file.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,366 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > NetX/NetX Duo FTP Client Module Operational Overview

The FTP Client portion of the NetX FTP package has no further requirements.

FTP File Names

FTP file names should be in the format of the target file system, usually FileX. They should be NULL
terminated ASCII strings, with full path information if necessary. There is no specified limit for the
size of FTP file names in the NetX FTP implementation. The packet pool payload size should be able
to accommodate the maximum path and file name.

FTP Client Commands

The FTP has a simple mechanism for opening connections and performing file and directory
operations. There is basically a set of standard FTP commands that are issued by the Client after a
connection has been successfully established on the TCP well-known port 21. The following shows
some of the basic FTP commands. Note that the only difference when FTP runs over IPv6 is that the
PORT command is replaced with the EPRT command:

FTP Client Commands

FTP Command Meaning

CWD path Change working directory.

DELE filename Delete specified file name.

EPRT ip_address, port Provide IPv6 address and Client data port.

LIST directory Get directory listing.

MKD directory Make new directory.

NLST directory Get directory listing.

NOOP No operation, returns success.

PASS password Provide password for login.

PORT ip_address,port Provide IP address and Client data port.

PWD path Pickup current directory path.

QUIT Terminate Client connection.

RETR filename Read specified file.

RMD directory Delete specified directory.

RNFR oldfilename Specify file to rename.

RNTO newfilename Rename file to supplied file name.

STOR filename Write specified file.

TYPE I Select binary file image.

USER username Provide username for login.

Note
These ASCII commands are used internally by the NetX FTP Client software to perform FTP operations with the
FTP Server.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,367 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > NetX/NetX Duo FTP Client Module Operational Overview

FTP Server Responses

Once the FTP Server processes the Client request, it returns a 3-digit coded response in ASCII
followed by optional ASCII text. The numeric response is used by the FTP Client software to
determine whether the operation succeeded or failed. The following list shows various FTP Server
responses to Client requests:

First Numeric Field

First Numeric Field Meaning

1xx Positive preliminary status – another reply
coming.

2xx Positive completion status.

3xx Positive preliminary status – another command
must be sent.

4xx Temporary error condition.

5xx Error condition.

Second Numeric Field

Second Numeric Field Meaning

0xx Syntax error in command.

1xx Positive preliminary status – another reply
coming.

2xx Positive completion status.

3xx Positive preliminary status – another command
must be sent.

4xx Temporary error condition.

5xx Error condition.

FTP Write Requests:

1. Client issues TCP connect to Server port 21.
2. Server sends 220 response to signal success.
3. Client sends USER message with username.
4. Server sends 331 response to signal success.
5. Client sends PASS message with password.
6. Server sends 230 response to signal success.
7. Client sends TYPE I message for binary transfer.
8. Server sends 200 response to signal success.
9. IPv6 applications: Client sends EPRT message with IP address and port. IPv4 applications:

Client sends PORT message with IP address and port.
10. Server sends 200 response to signal success.
11. Client sends STOR message with file name to write.
12. Server creates data socket and connects with client data port specified in the previous EPRT

or PORT command.
13. Server sends 125 response to signal file write has started.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,368 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > NetX/NetX Duo FTP Client Module Operational Overview

14. Client sends contents of file through the data connection. This process continues until file is
completely transferred.

15. When finished, Client disconnects data connection.
16. Server sends 250 response to signal file write is successful.
17. Clients sends QUIT to terminate FTP connection.
18. Server sends 221 response to signal disconnect is successful.
19. Server disconnects FTP connection.

FTP Authentication

Whenever a FTP connection takes place, the Client must provide the Server with a username and
password. Some FTP sites allow what is called Anonymous FTP, that allows FTP access without a
specific username and password. For this type of connection, anonymous should be supplied for
username and the password should be a complete e-mail address.

You are responsible for supplying the NetX FTP Client and the NetX Duo FTP Client with login and
logout authentication routines. These are supplied during the nxd_ftp_server_create and
nx_ftp_server_create services and called from the password processing. The difference between the
two is the nxd_ftp_server_create input function pointers to login and logout authenticate functions
expect the NetX Duo address type NXD_ADDRESS. This data type holds both IPv4 or IPv6 address
formats, making this function the Duo service supporting both IPv4 and IPv6 networks. The
nx_ftp_server_create input function pointers to login and logout authenticate functions expect
ULONG IP address type. This function is limited to IPv4 networks. You are encouraged to use the Duo
service whenever possible.

If the login function returns NX_SUCCESS, the connection is authenticated and the FTP operations are
allowed. Otherwise, if the login function returns something other than NX_SUCCESS, the connection
attempt is rejected.

NetX/NetX Duo FTP Client Module Important Operational Notes and Limitations

NetX/NetX Duo FTP Client Module Operational Notes

FTP Multi-Thread Support

The NetX FTP Client services can be called from multiple threads simultaneously. However,
read or write requests for a particular FTP Client instance should be done in sequence from
the same thread.

RFCs

NetX Duo FTP is compliant with RFC 959, RFC 2428 and related RFCs.

NetX/NetX Duo FTP Client Module Limitations

FTP Constraints

The FTP standard has many options regarding the representation of file data. NetX FTP does not
implement switch options like ls – al. The NetX FTP Server and the NetX Duo FTP Server expect to
receive requests and their arguments in a single packet rather than consecutive packets.

Like UNIX implementations, NetX FTP assumes the following file format constraints:

File Type: Binary
File Format: Nonprint Only

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,369 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > NetX/NetX Duo FTP Client Module Operational Overview

File Structure: File Structure Only

4.3.19.4 Including the NetX/NetX Duo FTP Client Module in an Application

This section describes how to include either or both the NetX and NetX Duo FTP Client module in an
application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo FTP Client module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo FTP Client Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_dns0 NetX FTP Client Threads New Stack> X-Ware> NetX>
Protocols> NetX FTP Client

g_dns0 NetX Duo FTP Client Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
FTP Client

When the NetX and/or NetX Duo FTP Client module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,370 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > Including the NetX/NetX Duo FTP Client Module in an Application

Figure 452: NetX/NetX Duo FTP Client Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

Additionally, in the stack above, the FileX stack has also not been populated yet. There are multiple
possible selections for the FileX module; they are not all provided so as not to needlessly complicate
the figure and the following configuration tables. The available options depend on the MCU target,
but some typical options include:

FileX Stub
FileX on Block Media (implemented on Block Media Framework on sf_block_media_ram)
FileX on USB Mass Storage (implemented on USBX Host Class Mass Storage)

4.3.19.5 Configuring the NetX/NetX Duo FTP Client Module

The NetX/NetX Duo FTP Client module must be configured by the user for the desired operation. The
SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,371 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > Configuring the NetX/NetX Duo FTP Client Module

manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo FTP Client Module

ISDE Property Value Description

**TCP socket to use NX_ANY_PORT TCP socket to use selection

Name g_ftp_client0 Module name.

TCP socket window size (bytes) 2048 TCP socket window size
selection

Name of generated initialization
function

ftp_client_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select different pins for the Ethernet peripheral. The configurable
properties for the lower-level stack modules are provided in the following sections for completeness
and as a reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo FTP Client Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name.

IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,372 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > Configuring the NetX/NetX Duo FTP Client Module

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection.

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection.

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection.

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address
selection.

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection.

IP Helper Thread Priority 3 IP Helper Thread Priority
selection.

ARP Enable ARP selection.

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection.

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection.

TCP Enable, Disable

Default: Enable

TCP selection.

UDP Enable, Disable

Default: Enable

UDP selection.

ICMP Enable, Disable

Default: Enable

ICMP selection.

IGMP Enable, Disable

Default: Enable

IGMP selection.

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection.

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function.

Link status change callback NULL Link status change callback
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,373 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > Configuring the NetX/NetX Duo FTP Client Module

different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo FTP Common Instance

ISDE Property Value Description

FileX support Enabled, Disabled

Default: Enabled

FileX support selection.

Control Type of Service Normal, Minimum delay,
Maximum data, Maximum
reliability, Minimum cost

Default: Normal

Control type of service
selection.

Data Type of Service Normal, Minimum delay,
Maximum data, Maximum
reliability, Minimum cost

Default: Normal

Data type of service selection.

Fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Fragment option selection.

Time to live 128 Time to live selection.

Duration between client
inactivity check (seconds)

60 Duration between client
inactivity check selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,374 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > Configuring the NetX/NetX Duo FTP Client Module

Packet Size in Bytes 640 Packet size selection.

Number of Packets in Pool 16 Number of packets in pool
selection.

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo FTP Client Module Clock Configuration

The ETHERC peripheral module uses the PCLKA as its clock source. The PCLKA frequency is set using
the SSP configurator Clock tab prior to a build or by using the CGC interface at run-time.

NetX/NetX Duo FTP Client Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin Selection Sequence

ETHERC Pins Select Peripherals>
Connectivity:ETHERC>
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1.

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection.

REF50CK P701 REF50CK pin.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,375 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > Configuring the NetX/NetX Duo FTP Client Module

TXD0 P700 TXD0 pin.

TXD1 P406 TXD1 pin.

TXD_EN P405 TXD_EN pin.

RXD0 P702 RXD0 pin.

RXD1 P703 RXD1 pin.

RX_ER P704 RX_ER pin.

CRS_DV P705 CRS_DV pin.

MDC P403 MDC pin.

MDIO P404 MDIO pin.

Note
The example settings are for a project using the S7G2 Synergy MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and other Synergy Kits may have different available pin configuration settings.

4.3.19.6 Using the NetX/NetX Duo FTP Client Module in an Application

The steps in using the NetX/NetX Duo FTP Client module in a typical application are:

Step 1. Create FTP Client using the nx_ftp_client_create API.

Step 2. Connect to the FTP Server using the nx_ftp_client_connect API.

The following steps can be used for writing to a file.

Step 3. Open a file using the nx_ftp_client_open API.

Step 4. Write to a file as needed using the nx_ftp_client_write API.

Step 5. Close a file using the nx_ftp_client_close API.

The following steps can be taken for reading from a file.

Step 6. Open a file using the nx_ftp_client_open API.

Step 7. Read from a file as needed using the nx_ftp_client_read API.

Step 8. Close a file using the nx_ftp_client_close API.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,376 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Client > Using the NetX/NetX Duo FTP Client Module in an Application

Figure 453: Flow Diagram of a Typical NetX/NetX Duo FTP Client Module Application

4.3.20 NetX/NetX Duo FTP Server

4.3.20.1 NetX/NetX Duo FTP Server Introduction

The File Transfer Protocol (FTP) is a protocol designed for file transfers. FTP utilizes reliable
Transmission Control Protocol (TCP) services to perform its file transfer function. The actual FTP file
transfer is performed on a dedicated FTP connection.

Note
The NetX™ FTP Server module is specific to IPv4. The NetX Duo™ FTP Server module accommodates both IPv4
and IPv6 networks. IPv6 does not directly change the FTP protocol, although some changes in the original NetX
FTP APIs are necessary to accommodate IPv6 and will be described in this document.

Unsupported Features

Passive transfer mode has not been tested for NetX in this version of SSP.

NetX/NetX Duo FTP Server Module Features

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,377 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > NetX/NetX Duo FTP Server Introduction

NetX is IPv4 specific
NetX Duo supports both IPv4 and IPv6 networks
Works with FileX® file system
No limit to file name size; uses NULL terminated ASCII strings
Supports TCP port 21 to field client requests
Provide high-Level APIs for creating, starting, stopping and deleting service
NetX FTP and NetX Duo FTP are compliant with RFC 959, RFC 2428 and related RFCs.

Figure 454: NetX/NetX Duo FTP Server Module Block Diagram

Note
In the figure above, the FileX and NetX (or NetX Duo) Network Driver modules have multiple implementation
options available. See the descriptions just after the module stack figure in Including the NetX/NetX Duo FTP
Server Module in an Application for additional details.

4.3.20.2 NetX/NetX Duo FTP Server Module APIs Overview

The NetX FTP Server defines APIs for creating, deleting, starting and stopping service. A complete list
of the available APIs, an example API call and a short description of each can be found in the
following table. A table of status return values follows the API summary table.

NetX/NetX Duo FTP Server Module API Summary

Function Name Example API Call and Description

nx_ftp_server_create nx_ftp_server_create(&my_server, "My Server
Name", &ip_0, &ram_disk, stack_ptr, stack_size,
&pool_0, my_login, my_logout);
Create FTP Server with IPv4 support only.

**nxd_ftp_server_create nxd_ftp_server_create(&my_server, "My Server
Name", &ip_0, &ram_disk, stack_ptr, stack_size,
&pool_0, my_duo_login, my_duo_logout);
Create FTP Server with IPv4 and IPv6 support.

nx_ftp_server_delete nx_ftp_server_delete(&my_server);
Delete FTP Server.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,378 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > NetX/NetX Duo FTP Server Module APIs Overview

nx_ftp_server_start nx_ftp_server_start(&my_server);
Start FTP Server.

nx_ftp_server_stop nx_ftp_server_stop(&my_server);
Stop FTP Server.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API structures
and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo FTP Client. For definitions of of NetX Duo specific data types,
see the NetX Duo User Guide for the Renesas Synergy™ Platform.

Status Return Values

Name Description

NX_SUCCESS Successful FTP server function.

NX_PTR_ERROR Invalid FTP pointer.

NX_CALLER_ERROR Invalid caller of this service.

Note
Lower-level drivers may return common error codes. See SSP User's Manual API References for the associated
module for a definition of all relevant status return values.

4.3.20.3 NetX/NetX Duo FTP Server Module Operational Overview

Because FTP Client and Server operations are so closely linked, the following descriptions cover key
elements of both Client and Server operations.

FTP Requirements

The NetX FTP package requires NetX or NetX Duo for proper operation. The host application must
create an IP instance for running NetX services and periodic tasks. If running the FTP host application
over an IPv6 network, IPv6, and ICMPv6 must be enabled on the IP task. TCP must be also enabled
for either IPv6 or IPv4 networks. The IPv6 host application must set its linklocal and global IPv6
address using the IPv6 API and/or DHCPv6.

The FTP Server and Client are also designed to work with the FileX embedded file system. If FileX is
not available, the host developer can implement or substitute their own file system along the
guidelines suggested in filex_stub.h by defining each of the services listed in that file. This is
discussed in later sections of this guide.

The FTP Client portion of the NetX FTP package has no further requirements.

The FTP Server portion of the NetX FTP package has several additional requirements. It requires
complete access to TCP well-known port 21 for handling all Client FTP command requests and well-
known port 20 for handling all Client FTP data transfers.

FTP File Names

FTP file names should be in the format of the target file system, usually FileX. They should be NULL
terminated ASCII strings, with full path information if necessary. There is no specified limit for the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,379 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > NetX/NetX Duo FTP Server Module Operational Overview

size of FTP file names in the NetX FTP implementation. The packet pool payload size should be able
to accommodate the maximum path and/or file name.

FTP Client Commands

The FTP has a simple mechanism for opening connections and performing file and directory
operations. There is a set of standard FTP commands that are issued by the Client after a connection
has been successfully established on the TCP well-known port 21. The following table shows some of
the basic FTP commands. Note that the only difference when FTP runs over IPv6 is that the PORT
command is replaced with the EPRT command:

FTP Server Commands

FTP Command Meaning

CWD path Change working directory

DELE filename Delete specified file name

EPRT ip_address, port Provide IPv6 address and Client data port

LIST directory Get directory listing

MKD directory Make new directory

NLST directory Get directory listing

NOOP No operation, returns success

PASS password Provide password for login

PORT ip_address,port Provide IP address and Client data port

PWD path Pickup current directory path

QUIT Terminate Client connection

RETR filename Read specified file

RMD directory Delete specified directory

RNFR oldfilename Specify file to rename

RNTO newfilename Rename file to supplied file name

STOR filename Write specified file

TYPE I Select binary file image

USER username Provide username for login

These ASCII commands are used internally by the NetX FTP Client software to perform FTP
operations with the FTP Server.

FTP Server Responses

Once the FTP Server processes the Client request, it returns a 3-digit coded response in ASCII
followed by optional ASCII text. The numeric response is used by the FTP Client software to
determine whether the operation succeeded or failed. The following list shows various FTP Server
responses to Client requests:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,380 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > NetX/NetX Duo FTP Server Module Operational Overview

First Numeric Field

First Numeric Field Meaning

1xx Positive preliminary status – another reply
coming.

2xx Positive completion status.

3xx Positive preliminary status – another command
must be sent.

4xx Temporary error condition.

5xx Error condition.

Second Numeric Field

Second Numeric Field Meaning

x0x Syntax error in command.

x1x Informational message.

x2x Connection related.

x3x Authentication related.

x4x Unspecified.

x5x File system related.

For example, a Client request to disconnect a FTP connection with the QUIT command will typically
be responded with a 221 code from the Server – if the disconnect is successful.

FTP Communication

The FTP Server utilizes the well-known TCP port 21 to field Client requests. FTP Clients may use any
available TCP port. The general sequence of FTP events are as follows. As mentioned previous, the
only difference with FTP running over IPv6 is the PORT command is replaced with the EPRT
command:

FTP Read File Requests:

1. Client issues TCP connect to Server port 21.
2. Server sends 220 response to signal success.
3. Client sends USER message with "username."
4. Server sends 331 response to signal success.
5. Client sends PASS message with "password."
6. Server sends 230 response to signal success.
7. Client sends TYPE I message for binary transfer.
8. Server sends 200 response to signal success.
9. Client sends PORT message with IP address and port.

10. Server sends 200 response to signal success.
11. Client sends RETR message with file name to read.
12. Server creates data socket and connects with client data port specified in the EPRT

command.
13. Server sends 125 response to signal file read has started.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,381 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > NetX/NetX Duo FTP Server Module Operational Overview

14. Server sends contents of file through the data connection. This process continues until file
is completely transferred.

15. When finished, Server disconnects data connection.
16. Server sends 250 response to signal file read is successful.
17. Clients sends QUIT to terminate FTP connection.
18. Server sends 221 response to signal disconnect is successful.
19. Server disconnects FTP connection.

FTP Write Requests:

1. Client issues TCP connect to Server port 21.
2. Server sends 220 response to signal success.
3. Client sends USER message with "username."
4. Server sends 331 response to signal success.
5. Client sends PASS message with "password."
6. Server sends 230 response to signal success.
7. Client sends TYPE I message for binary transfer.
8. Server sends 200 response to signal success.
9. IPv6 applications: Client sends EPRT message with IP address and port. IPv4 applications:

Client sends PORT message with IP address and port.
10. Server sends 200 response to signal success.
11. Client sends STOR message with file name to write.
12. Server creates data socket and connects with client data port specified in the previous EPRT

or PORT command.
13. Server sends 125 response to signal file write has started.
14. Client sends contents of file through the data connection. This process continues until file is

completely transferred.
15. When finished, Client disconnects data connection.
16. Server sends 250 response to signal file write is successful.
17. Clients sends QUIT to terminate FTP connection.
18. Server sends 221 response to signal disconnect is successful.
19. Server disconnects FTP connection.

FTP Authentication

Whenever a FTP connection takes place, the Client must provide the Server with a username and
password. Some FTP sites allow what is called Anonymous FTP, which allows FTP access without a
specific username and password. For this type of connection, anonymous should be supplied for
username and the password should be a complete e-mail address.

You are responsible for supplying NetX FTP with login and logout authentication routines. These are
supplied during the nxd_ftp_server_create and nx_ftp_server_create services and called from the
password processing. The difference between the two is the nxd_ftp_server_create input function
pointers to login and logout authenticate functions expect the NetX Duo address type
NXD_ADDRESS. This data type holds both IPv4 or IPv6 address formats, making this function the duo
service supporting both IPv4 and IPv6 networks. The nx_ftp_server_create input function pointers to
login and logout authenticate functions expect ULONG IP address type. This function is limited to
IPv4 networks. You are encouraged to use the duo service whenever possible.

If the login function returns NX_SUCCESS, the connection is authenticated and FTP operations are
allowed. Otherwise, if the login function returns something other than NX_SUCCESS, the connection
attempt is rejected.

NetX/NetX Duo FTP Server Module Important Operational Notes and Limitations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,382 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > NetX/NetX Duo FTP Server Module Operational Overview

NetX/NetX Duo FTP Server Module Operational Notes

FTP Multi-Thread Support

The NetX FTP Client services can be called from multiple threads simultaneously. However,
read or write requests for a particular FTP Client instance should be done in sequence from
the same thread.

RFCs

NetX Duo FTP is compliant with RFC 959, RFC 2428 and related RFCs.

NetX/NetX Duo FTP Server Module Limitations

FTP Constraints

The FTP standard has many options regarding the representation of file data. NetX FTP does not
implement switch options like ls – al. The NetX FTP Server and the NetX Duo FTP Server expect to
receive requests and their arguments in a single packet rather than consecutive packets.

Like UNIX implementations, NetX FTP assumes the following file format constraints:

File Type: Binary
File Format: Nonprint Only
File Structure: File Structure Only

4.3.20.4 Including the NetX/NetX Duo FTP Server Module in an Application

This section describes how to include either or both the NetX and NetX Duo FTP Server module in an
application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo FTP Server module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo FTP Server Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_dns0 NetX FTPServer Threads New Stack> X-Ware> NetX>
Protocols> NetX FTPServer

g_dns0 NetX Duo FTPServer Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
FTP Server

When the NetX and/or NetX Duo FTP Server module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,383 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > Including the NetX/NetX Duo FTP Server Module in an Application

band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 455: NetX/NetX Duo FTP Server Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

Additionally, in the stack above, the FileX stack has also not been populated yet. There are multiple
possible selections for the FileX module; they are not all provided so as not to needlessly complicate
the figure and the following configuration tables. The available options depend on the MCU target,
but some typical options include:

FileX Stub
FileX on Block Media (implemented on Block Media Framework on sf_block_media_ram)
FileX on USB Mass Storage (implemented on USBX Host Class Mass Storage)

4.3.20.5 Configuring the NetX/NetX Duo FTP Server Module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,384 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > Configuring the NetX/NetX Duo FTP Server Module

The NetX/NetX Duo FTP Server module must be configured by the user for the desired operation. The
SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo FTP Server Module

ISDE Property Value Description

Internal Thread Priority 16 Internal thread priority
selection.

Internal thread time slicing
interval (ticks)

2 Internal thread time slicing
interval selection.

Maximum clients to serve
simultaneously

4 Maximum number of clients
allowed.

Control window size (bytes) 400 Control window size selection.

Data window size (bytes) 2048 Data window size selection.

Duration internal services will
suspend for (seconds)

1 Duration internal services will
suspend for selection.

Maxixum username length
(bytes)

20 Maximum username length
selection.

Maximum password length
(bytes)

20 Maximum password length
selection.

Duration allowed with no
activity (seconds)

240 Duration allowed with no
activity.

Socket retransmit timeout
(seconds)

2 Duration for initial timeout.

Maximum queued transmit
packets

20 Maximum queued transmit
selection.

Number of socket
retransmissions

10 Maximum retries per selection.

Binary left shift as multiplier for
retry duration

1 Binary left shift as multiplier for
retry duration selection.

Name g_ftp_server0 Module name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,385 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > Configuring the NetX/NetX Duo FTP Server Module

Internal thread stack size
(bytes)

4096 Internal thread stack size
stacks selection.

Name of Login Function ftp_login Name of login function
selection.

Name of Logout Function ftp_logout Name of logout function
selection.

Name of generated initialization
function

ftp_server_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select different MAC Addresses. The configurable properties for the
lower-level stack modules are provided in the following sections for completeness and as a
reference.

Note
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo FTP Server Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name.

IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection.

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection.

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection.

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection.

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address
selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,386 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > Configuring the NetX/NetX Duo FTP Server Module

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection.

IP Helper Thread Priority 3 IP Helper Thread Priority
selection.

ARP Enable ARP selection.

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection.

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection.

TCP Enable, Disable

Default: Enable

TCP selection.

UDP Enable, Disable

Default: Enable

UDP selection.

ICMP Enable, Disable

Default: Enable

ICMP selection.

IGMP Enable, Disable

Default: Enable

IGMP selection.

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection.

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function.

Link status change callback NULL Link status change callback
selection.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo FTP Common Instance

ISDE Property Value Description

FileX support Enabled, Disabled

Default: Enabled

FileX support selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,387 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > Configuring the NetX/NetX Duo FTP Server Module

Control Type of Service Normal, Minimum delay,
Maximum data, Maximum
reliability, Minimum cost

Default: Normal

Control type of service
selection.

Data Type of Service Normal, Minimum delay,
Maximum data, Maximum
reliability, Minimum cost

Default: Normal

Data type of service selection.

Fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Fragment option selection.

Time to live 128 Time to live selection.

Duration between client
inactivity check (seconds)

60 Duration between client
inactivity check selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name.

Packet Size in Bytes 640 Packet size selection.

Number of Packets in Pool 16 Number of packets in pool
selection.

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,388 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > Configuring the NetX/NetX Duo FTP Server Module

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo FTP Server Module Clock Configuration

The ETHERC peripheral module uses the PCLKA as its clock source. The PCLKA frequency is set using
the SSP configurator Clock tab prior to a build or by using the CGC interface at run-time.

NetX/NetX Duo FTP Server Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin Selection Sequence

ETHERC Pins Select Peripherals>
Connectivity:ETHERC>
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1.

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection.

REF50CK P701 REF50CK pin.

TXD0 P700 TXD0 pin.

TXD1 P406 TXD1 pin.

TXD_EN P405 TXD_EN pin.

RXD0 P702 RXD0 pin.

RXD1 P703 RXD1 pin.

RX_ER P704 RX_ER pin.

CRS_DV P705 CRS_DV pin.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,389 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > Configuring the NetX/NetX Duo FTP Server Module

MDC P403 MDC pin.

MDIO P404 MDIO pin.

Note
The example settings are for a project using the S7G2 Synergy MCU Group and the SK-S7G2 Kit. Other Synergy
MCUs and other Synergy Kits may have different available pin configuration settings.

4.3.20.6 Using the NetX/NetX Duo FTP Server Module in an Application

The steps in using the NetX/NetX Duo FTP Server module in a typical application are:

1. Create the FTP Server using the nx_ftp_server_create (or the nxd_ftp_server_create API for NetX
Duo systems).

2. Start the FTP Server using the nx_ftp_server_start API.

3. Create the FTP Client using nx_ftp_client_create API.

4. Connect to the FTP Server using the nx_ftp_client_connect API.

5. Open a file using the nx_ftp_client_open API.

6. Read from a file using the nx_ftp_client_read API.

7. Close a file using the nx_ftp_client_close API.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,390 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo FTP Server > Using the NetX/NetX Duo FTP Server Module in an Application

Figure 456: Flow Diagram of a Typical NetX/NetX Duo FTP Server Module Application

4.3.21 NetX/NetX Duo HTTP Client

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,391 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Client > NetX/NetX Duo HTTP Client Introduction

4.3.21.1 NetX/NetX Duo HTTP Client Introduction

The Hypertext Transfer Protocol (HTTP) is a protocol designed for transferring content on the web.
HTTP is a simple protocol that utilizes reliable Transmission Control Protocol (TCP) services to
perform its content-transfer function. All operations on the web utilize the HTTP protocol.

Note
The NetX Duo™ HTTP Client accommodates both IPv4 and IPv6 networks while the NetX™ HTTP Client only
supports IPv4 communications. IPv6 does not directly affect the HTTP protocol; some differences with the NetX
HTTP Client are necessary to accommodate IPv6 and will be described in this document.

Unsupported Features

Multi-thread support has not been tested in this version of SSP. Multi-part support has not been
tested in this version of SSP.

NetX/NetX Duo HTTP Client Module Features

Provides high-level APIs to:
Create and delete an HTTP client instance
Send Get and Put requests to HTTP servers

The NetX HTTP is compliant with RFC1945, Hypertext Transfer Protocol/1.0, RFC 2581, TCP
Congestion Control, RFC 1122, Requirements for Internet Hosts and related RFCs.

Figure 457: NetX/NetX Duo HTTP Client Module Block Diagram

Note
In the figure above, the NetX (or NetX Duo) Network Driver modules has multiple implementation options
available. See the description just after the module stack figure in Including the NetX/NetX Duo HTTP Client
Module in an Application for additional details.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,392 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Client > NetX/NetX Duo HTTP Client Module APIs Overview

4.3.21.2 NetX/NetX Duo HTTP Client Module APIs Overview

The NetX HTTP Client module defines APIs for creating, deleting, getting and putting. A complete list
of the available APIs, an example API call and a short description of each can be found in the
following table. A table of status return values follows the API summary table.

NetX/NetX Duo HTTP Client Module API Summary

Function Name Example API Call and Description

nx_http_client_create nx_http_client_create(&my_client, "my client",
&ip_0, &pool_0, 100);
Create an HTTP Client Instance.

nx_http_client_delete nx_http_client_delete(&my_client);
Delete an HTTP Client instance.

nx_http_client_get_start nx_http_client_get_start(&my_client,
IP_ADDRESS(1,2,3,5), "/TEST.HTM",
NX_NULL, 0, "myname", "mypassword", 1000);
Start an HTTP GET request (IPv4 only).

nxd_http_client_get_start** nxd_http_client_get_start(&my_client,
&server_ip_address, "/TEST.HTM",
NX_NULL, 0, "myname", "mypassword", 1000);
Start an HTTP GET request (IPv4 or IPv6)

nx_http_client_get_packet nx_http_client_get_packet(&my_client,
&next_packet, 1000);
Get next resource data packet.

nx_http_client_put_start nx_http_client_put_start(&my_client,
IP_ADDRESS(1, 2, 3, 5),
"/TEST.HTM", "myname", "mypassword", 20,
NX_WAIT_FOREVER);
Start an HTTP PUT request (IPv4 only).

nxd_http_client_put_start** nxd_http_client_put_start(&my_client,
&server_ip_address,
"/client_test.htm", "name", "password", 103, 50);
Start an HTTP PUT request (IPv4 or IPv6)

nx_http_client_put_packet nx_http_client_put_packet(&my_client,
packet_ptr, NX_WAIT_FOREVER);
Send next resource data packet.

nx_http_client_set_connect_port** nx_http_client_set_connect_port(&g_http_client0,
81);
Connect to the HTTP server port on the specified
port. Intended for situations where the Client
must use another port beside 80.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API structures
and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo HTTP Client. For definitions of of NetX Duo specific data
types, see the NetX Duo User Guide for the Renesas Synergy™ Platform.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,393 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Client > NetX/NetX Duo HTTP Client Module APIs Overview

Status Return Values

Name Description

NX_SUCCESS Successful HTTP function

NX_CALLER_ERROR** Invalid caller of the service

NX_PTR_ERROR** Invalid HTTP, ip_ptr, or packet pool pointer

NX_INVALID_PORT** Invalid port input

NX_HTTP_POOL_ERROR Invalid payload size in packet pool

NX_HTTP_NOT_READY HTTP Client not in ready state

NX_HTTP_PASSWORD_TOO_LONG Password exceeded expected length

NX_HTTP_AUTHENTICATION_ERROR Invalid name and/or password

NX_HTTP_FAILED HTTP client error communicating with the HTTP
server

NX_HTTP_GET_DONE HTTP client get packet operation is complete

NX_HTTP_BAD_PACKET_LENGTH Invalid packet received - length incorrect

NX_HTTP_INCOMPLETE_PUT_ERROR Server responds before PUT is complete

NX_HTTP_REQUEST_UNSUCCESSFUL_CODE Received an error code instead of 2xx from
server

NX_HTTP_PASSWORD_TOO_LONG Password exceeded expected length

NX_HTTP_USERNAME_TOO_LONG Username exceeded expected length

NX_SIZE_ERROR Invalid total size of resource in PUT request

NX_INVALID_PACKET Invalid TCP packet; not enough room for packet
header

Note
Lower-level drivers may return common error codes. See SSP User's Manual API References for the associated
module for a definition of all relevant status return values.

**These are error codes which are only returned if error checking is enabled. Refer to the NetX User's
Guide for the Renesas Synergy Platform or NetX Duo User's Guide for the Renesas Synergy Platform
for more details on error‑checking services in NetX and NetX Duo, respectively.

4.3.21.3 NetX/NetX Duo HTTP Client Module Operational Overview

The NetX HTTP Client module creates an IP instance which carries out NetX operations and enables
TCP services in the NetX library. It creates the HTTP client instance and a TCP socket for sending
and receiving HTTP messages to the server listening on port 80. The HTTP client requires a packet
pool; the module can supply one by sharing the IP default packet pool (g_packet_pool0), or by
creating a new one. The minimum packet payload is set by the Minimum packet size property of the
HTTP client instance. This packet pool is used by the HTTP client only to transmit packets, so the
packet-pool size and payload can be optimized based on the expected size and the number of HTTP
client packets sent out.

The NetX Duo HTTP Client supports both IPv4 and IPv6 connections; if the HTTP client needs to use

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,394 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Client > NetX/NetX Duo HTTP Client Module Operational Overview

IPv6 to connect to a server, make sure the NetX Duo IPv6 Support property is enabled in the NetX
Duo Source element. It may also be necessary to enable ICMPv6 checksum computation for the
underlying ICMPv6 protocols; to do so, set the Checksum computation support on transmitted
ICMPv6 packets and Checksum computation support on received ICMPv6 packets properties of the
NetX Duo source element to be enabled. (If the host hardware automatically computes ICMPv6
checksums, these can be left disabled.) Make sure the IPv6 Global Address of the Client host is set in
the IP instance element; NetX Duo will do the necessary processing to enable IPv6 and ICMPv6
services required for IPv6 underlying protocols.

Once the HTTP client has a valid IP address, it can make PUT and GET requests. To upload packets,
use the nx_http_client_put_start service. This service has a server IP address input, so the HTTP
client can connect to the server. If the data to upload exceeds more than one packet, the
application uses the nx_http_client_put_packet service until all the data is uploaded. To download
data from the server, use the nx_http_client_get_start service; this requires the server IP address so
the HTTP client can connect to the server. If the data to download exceeds more than one packet,
the application uses the nx_http_client_get_packet service until all the data is downloaded; this is
indicated by getting the NX_HTTP_GET_DONE status return.

In the NetX Duo HTTP Client module, the application can use the nxd_http_client_put_start for IPv4
connections, and the nxd_http_client_get_start service for either IPv4 or IPv6 connections;
nx_http_client_put_start and nx_http_client_get_start services are also available in the Net Duo HTTP
Client. The nx_http_client_put_packet and nx_http_client_get_packet services do not require an HTTP
Server IP address, so there is no Duo-equivalent APIs for these services.

In NetX Duo HTTP Client, the nx_http_client_set_connect_port service is available for those
circumstances where the HTTP client needs to connect to the HTTP server on a port other than the
default of Port 80.

HTTP Server Responses

Once the HTTP server processes the client command, it returns an ASCII response string that
includes a 3-digit numeric-status code listed in the following table. The numeric response is used by
the HTTP client software to determine whether the operation succeeded or failed.

Various HTTP server responses to client commands

Numeric Field Meaning

200 Request was successful

400 Request was not formed properly

401 Unauthorized request, client needs to send
authentication

404 Specified resource in request was not found

500 Internal HTTP server error

501 Request not implemented by HTTP server

502 Service is not available

For example, a successful client request to PUT the file test.htm is responded to with the message
HTTP/1.0 200 OK.

NetX/NetX Duo HTTP Client Module Important Operational Notes and Limitations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,395 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Client > NetX/NetX Duo HTTP Client Module Operational Overview

NetX/NetX Duo HTTP Client Module Operational Notes

The HTTP client packet pool must be large enough to hold the complete HTTP header.
The wait option for disconnecting from the server before deleting the client TCP socket is
set by the Operation Timeout property; the wait option for all other HTTP client services is
set in the API.
Both GET and PUT start services require a resource, username and password as an input.
The maximum size of each is set by the Maximum resource name length, Maximum
username length and Maximum password length properties in the NetX HTTP Common
element. When the GET and PUT operation is completed, the HTTP client disconnects from
the server.
The HTTP client TCP socket receive window is set by the TCP socket window size property.
This is used in the TCP protocol for one peer to let the other know not to send more data
pending-acknowledgment packets for data already received.

NetX/NetX Duo HTTP Client Module Limitations

The HTTP protocol in NetX and NetX Duo implements the HTTP 1.0 standard; it does not
support 1.1. The constraints are as follows:

Persistent connections are not supported
Request pipelining is not supported
Content compression is not supported
TRACE, OPTIONS, and CONNECT requests are not supported

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.21.4 Including the NetX/NetX Duo HTTP Client Module in an Application

This section describes how to include either or both the NetX and NetX Duo HTTP Client module in an
application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo HTTP Client module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo HTTP Client Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_dns0 NetXHTTP Client Threads New Stack> X-Ware> NetX>
Protocols> NetXHTTP Client

g_dns0 NetX Duo HTTP Client Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
HTTP Client

When the NetX and/or NetX Duo HTTP Client module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,396 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Client > Including the NetX/NetX Duo HTTP Client Module in an Application

band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 458: NetX/NetX Duo HTTP Client Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.21.5 Configuring the NetX/NetX Duo HTTP Client Module

The NetX/NetX Duo HTTP Client module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,397 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Client > Configuring the NetX/NetX Duo HTTP Client Module

and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo HTTP Client Module

ISDE Property Value Description

Minimum packet size (bytes) 300 Minimum packet size selection

Operation timeout (seconds) 10 Operation timeout selection

*Maximum password length
(bytes)

20 Maximum password length
selection

*Maximum username length
(bytes)

20 Maximum username length
selection

Name g_http_client0 Module name

TCP socket window size (bytes) 1024 TCP socket window size
selection

Name of generated initialization
function

http_client_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

*Indicates properties that are not available in NetX Duo.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select different pins for the Ethernet peripheral. The configurable
properties for the lower-level stack modules are provided in the following sections for completeness
and as a reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo HTTP Client Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,398 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Client > Configuring the NetX/NetX Duo HTTP Client Module

module:

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,399 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Client > Configuring the NetX/NetX Duo HTTP Client Module

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function

Link status change callback NULL Link status change callback
selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo HTTP Common Instance

ISDE Property Value Description

Type of Service Normal, Minimum delay,
Maximum data, Maximum
reliabililty, Minimum cost

Default: Normal

Type of service UDP requests
selection

Fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Fragment option selection

Time to live 128 Time to live selection

MD5 Support Enable, Disable

Default: Disable

MD5 support selection

Maximum resource name
length (bytes)

40 Packet queue depth selection

**Maximum password length
(bytes)

20 Maximum password length
selection

**Maximum username length
(bytes)

20 Minimum username length
selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,400 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Client > Configuring the NetX/NetX Duo HTTP Client Module

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 640 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX MD5 Instance

ISDE Property Value Description

No configurable properties

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo HTTP Client Module Clock Configuration

The ETHERC peripheral module uses the PCLKA as its clock source. The PCLKA frequency is set using
the SSP configurator Clock tab prior to a build or by using the CGC interface at run-time.

NetX/NetX Duo HTTP Client Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,401 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Client > Configuring the NetX/NetX Duo HTTP Client Module

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin Selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.21.6 Using the NetX/NetX Duo HTTP Client Module in an Application

The steps in using the NetX/NetX Duo HTTP Client module in a typical application are:

1. Wait for valid IP address and network driver initialization using the nx_ip_status_check API.

2. Upload data to the HTTP server with the nx_http_client_put_start API. For IPv6 connections, use
the nxd_http_client_put_start API in the NetX Duo HTTP Client (which can also be used for IPv4
connections).

3. Download data from the HTTP server with the nx_http_client_get_start API. For IPv6 connections,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,402 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Client > Using the NetX/NetX Duo HTTP Client Module in an Application

use the nxd_http_client_get_start API in the NetX Duo HTTP Client (which can also be used for IPv4
connections).

4. Delete the HTTP client with the nx_http_client_delete API. (Note that the packet pool can also be
deleted if it's not used elsewhere in the application.)

The following figure illustrates common steps in a typical operational flow diagram:

Figure 459: Flow Diagram of a Typical NetX/NetX Duo HTTP Client Module Application

4.3.22 NetX/NetX Duo HTTP Server

4.3.22.1 NetX/NetX Duo HTTP Server Introduction

The Hypertext Transfer Protocol (HTTP) utilizes reliable Transmission Control Protocol (TCP) services
to perform its content transfer function; all operations on the Web utilize the HTTP protocol. The
NetXTM Duo HTTP Server accommodates both IPv4 and IPv6 networks, while the NetXTM HTTP
Server only supports IPv4 communications. IPv6 does not directly affect the HTTP protocol; however,
some differences with the NetX HTTP Server are necessary to accommodate IPv6 and are noted in
this document.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,403 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > NetX/NetX Duo HTTP Server Introduction

Note
Except for internal processing, the NetX Duo HTTP Server module is almost identical in the application, set up and
running of an HTTP session as the NetX HTTP Server module. Where they differ is noted in this document.

Unsupported Features

HTTP Insert GMT Date Header Callback has not been tested in this version of SSP. HTTP Cache Info
Get Callback has not been tested in this version of SSP.

NetX/NetX Duo HTTP Server Module Features

Compliant with Request for Comments (RFC) RFC1945 Hypertext Transfer Protocol/1.0, RFC
2581 TCP Congestion Control, RFC 1122 Requirements for Internet Hosts, and related RFCs.
Multipart support
Basic and digest authentication support
Callback support for several key functions:

HTTP Authentication Callback
HTTP Request Notify Callback
HTTP Invalid Username/Password Callback
HTTP Insert GMT Date Header Callback
HTTP Cache Info Get Callback

Figure 460: NetX/NetX Duo HTTP Server Module Block Diagram

Note
In the figure above, the FileX and NetX (or NetX Duo) Network Driver modules have multiple implementation
options available. See the descriptions just after the module stack figure in Including the NetX/NetX Duo HTTP
Server Module in an Application for additional details.

4.3.22.2 NetX/NetX Duo HTTP Server Module APIs Overview

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,404 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > NetX/NetX Duo HTTP Server Module APIs Overview

The NetX HTTP Server module defines APIs for creating, deleting, generating response packets,
response sending and getting information from a received packet. A complete list of the available
APIs, an example API call and a short description of each can be found in the following table. A table
of status return values follows the API summary table.

NetX/NetX Duo HTTP Server Module API Summary

Function Name Example API Call and Description

nx_http_server_cache_info_callback_set nx_http_server_cache_info_callback_set(&my_ser
ver, cache_info_get);
Set callback to retrieve age and last modified
date of specified URL.

nx_http_server_callback_data_send nx_http_server_callback_data_send(server_ptr,
"HTTP/1.0 200 rnContent-Length: 103rnContent-
Type: text/htmlrnrn",63);
nx_http_server_callback_data_send(server_ptr,
"<HTML>rn<HEAD><TITLE>NetX HTTP Test
</TITLE></HEAD>rn <BODY>rn<H1>NetX Test
Page </H1>rn</BODY>rn</HTML>rn", 103);
Send HTTP data from callback function.

nx_http_server_callback_generate_response_hea
der

nx_http_server_callback_generate_response_hea
der (server_ptr, &packet_ptr, status_code,
content_length, content_type,
additional_header);
Create response header in callback functions.

nx_http_server_callback_packet_send nx_http_server_callback_packet_send(server_ptr,
packet_ptr);
Send an HTTP packet from an HTTP callback.

nx_http_server_callback_response_send nx_http_server_callback_response_send(server_p
tr,"HTTP/1.0 404 ", "NetX HTTP Server unable to
find file: ", resource);
Send response from callback function.

nx_http_server_content_get nx_http_server_content_get(server_ptr,
packet_ptr, 0, my_buffer, 100, &actual_size);
Get content from the request.

nx_http_server_content_get_extended nx_http_server_content_get_extended(server_ptr
, packet_ptr, 0, my_buffer, 100, &actual_size);
Get content from the request; supports empty
(zero Content Length) requests.

nx_http_server_content_length_get nx_http_server_content_length_get(packet_ptr);
Get length of content in the request. Length is
the status return value. A length of zero
indicates an error.

nx_http_server_content_length_get_extended nx_http_server_content_length_get_extended(pa
cket_ptr, &content_length);
Get length of content in the request; supports
empty
(zero Content Length) requests.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,405 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > NetX/NetX Duo HTTP Server Module APIs Overview

nx_http_server_create nx_http_server_create(&my_server, "my server",
&ip_0, &ram_disk, stack_ptr, stack_size,
&pool_0, my_authentication_check,
my_request_notify);
Create an HTTP Server instance.

nx_http_server_delete nx_http_server_delete(&my_server);
Delete an HTTP Server instance.

nx_http_server_get_entity_content nx_http_server_get_entity_content(server_ptr,
&packet_ptr, &offset, &length);
Return size and location of entity content in URL.

nx_http_server_get_entity_header nx_http_server_get_entity_header(server_ptr,
&packet_ptr, entity_header_buffer, buffer_size);
Extract URL entity header into specified buffer.

nx_http_server_gmt_callback_set nx_http_server_gmt_callback_set(&my_server,
gmt_get);
Set callback to retrieve GMT date and time.

**nx_http_server_invalid_userpassword_notify_se
t

nx_http_server_invalid_userpassword_notify_set(
&my_server,
invalid_username_password_callback);
Set callback for when invalid username and
password is received in a Client request.

nx_http_server_mime_maps_additional_set nx_http_server_mime_maps_additional_set(&my
_server, &my_mime_maps[0], 2);
Define additional mime maps for HTML.

nx_http_server_packet_content_find nx_http_server_packet_content_find(server_ptr,
packet_ptr, &content_length);
Extract content length in HTTP header and set
pointer to start of content data.

nx_http_server_packet_get nx_http_server_packet_get(server_ptr,
&packet_ptr);
Receive client packet directly.

nx_http_server_param_get nx_http_server_param_get(packet_ptr, 0,
param_destination, 30);
Get parameter from the request.

nx_http_server_query_get nx_http_server_query_get(packet_ptr, 0,
query_destination, 30);
Get query from the request.

nx_http_server_start nx_http_server_start(&my_server);
Start the HTTP Server.

nx_http_server_stop nx_http_server_stop(&my_server);
Stop the HTTP Server.

nx_http_server_type_get nx_http_server_type_get(server_ptr,
resource_name, type_string);
Extract HTTP type e.g. text/plain from header.
Type is returned in the status return. A value of
zero indicates an error.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,406 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > NetX/NetX Duo HTTP Server Module APIs Overview

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API structures
and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo HTTP Server. For definitions of of NetX Duo specific data
types, see the NetX Duo User Guide for the Renesas Synergy™ Platform.

Status Return Values

Name Description

NX_SUCCESS Successfully performed function

NX_PTR_ERROR** Invalid pointer input

NX_CALLER_ERROR ** Invalid caller of service

NX_HTTP_DATA_END End of request content

NX_HTTP_TIMEOUT HTTP Server timeout in getting next packet of
content

NX_CALLER_ERROR Invalid caller of this service

NX_HTTP_INCOMPLETE_PUT_ERROR Improper HTTP header format

NX_HTTP_POOL_ERROR Packet payload of pool is not large enough to
contain complete HTTP request

NX_HTTP_BOUNDARY_ALREADY_FOUND Content for the HTTP server internal multipart
markers is already found

NX_HTTP_NOT_FOUND Entity header field or client request parameter
or multipart component not found

NX_HTTP_IMPROPERLY_TERMINATED_PARAM Client request parameter not properly
terminated

NX_HTTP_NO_QUERY_PARSED Server unable to find query in client request

NX_HTTP_TIMEOUT No packet received in the specified wait interval

NX_HTTP_ERROR Internal HTTP Server error

NX_HTTP_SERVER_DEFAULT_MIME No matching extension type found. Return the
default MIME type. Not an error status.

NX_SIZE_ERROR Invalid total size of resource in PUT request

NX_INVALID_PACKET Invalid TCP packet; not enough room for packet
header

Note
Lower-level drivers may return common error codes. See SSP User's Manual API References for the associated
module for a definition of all relevant status return values.

**These are error codes which are only returned if error checking is enabled. Refer to the NetX User's
Guide for the Renesas Synergy Platform or NetX Duo User's Guide for the Renesas Synergy Platform
for more details on error‑checking services in NetX and NetX Duo, respectively.

4.3.22.3 NetX/NetX Duo HTTP Server Module Operational Overview

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,407 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > NetX/NetX Duo HTTP Server Module Operational Overview

The NetX HTTP Server module creates an IP instance that carries out NetX operations and enables it
for TCP services in the NetX library; it then creates the HTTP Server instance and TCP socket for
listening to client requests on port 80. The HTTP Server requires a packet pool; the module can
supply one either by sharing the IP default packet pool (g_packet_pool0) or create a new one. The
minimum packet payload is set by the Minimum size of packets in pool property of the HTTP Server
module. This packet pool is used by the HTTP Server only to transmit packets, so the packet pool
size and payload can be optimized on the expected size and number of HTTP Server packets sent
out.

The NetX Duo HTTP Server supports both IPv4 and IPv6 connections. If the HTTP Server has clients
desiring to connect over IPv6, make sure the NetX Duo IPv6 Support property is enabled in the NetX
Duo Source element. It may be necessary to enable ICMPv6 checksum computation for the
underlying ICMPv6 protocols. To do so, set the Checksum computation support on transmitted
ICMPv6 packets and Checksum computation support on received ICMPv6 packets properties of the
NetX Duo Source element to Enabled. (If the host hardware automatically computes ICMPv6
checksums, these can be left disabled.) Make sure the IPv6 Global Address of the Client host is set in
the IP instance element. Thereafter, the NetX Duo does the necessary processing to enable IPv6 and
ICMPv6 services required for IPv6 underlying protocols.

The HTTP Server is also designed for use with the FileX® embedded file system.

HTTP Server Responses

When the HTTP Server processes the client command, it returns an ASCII response string that
includes a 3-digit numeric status code. The numeric response is used by the HTTP Client software to
determine whether the operation succeeded or failed. Following is a list of various HTTP Server
responses to client commands:

HTTP Server responses to client commands

Numeric Field Meaning

200 Request was successful

400 Request was not formed properly

401 Unauthorized request, client needs to send
authentication

404 Specified resource in request was not found

500 Internal HTTP Server error

501 Request not implemented by HTTP Server

502 Service is not available

For example, a successful client request to PUT the file test.htm is responded to with the message
HTTP/1.0 200 OK.

HTTP Authentication

HTTP authentication is optional and is not required for all web requests. There are two types of
authentication, basic and digest. Basic authentication is equivalent to the name and password
authentication found in many protocols. In HTTP basic authentication, the name and passwords are
concatenated and encoded in the base64 format. The main disadvantage of basic authentication is
the name and password are transmitted openly in the request, making it easy for the name and

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,408 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > NetX/NetX Duo HTTP Server Module Operational Overview

password to be stolen. Digest authentication addresses this problem by never transmitting the name
and password in the request. Instead, an algorithm is used to derive a 128-bit key or digest from the
name, password, and other information. The NetX HTTP Server supports the standard MD5 digest
algorithm.

The HTTP Server authentication callback can decide if a requested resource requires authentication.
If authentication is required and the client request did not include the proper authentication, an
HTTP/1.0 401 Unauthorized response with the type of authentication required is sent to the client.
The client is then expected to form a new request with the proper authentication.

HTTP Authentication Callback

The HTTP Server authentication callback routine is specified by the Name of Authentication Checking
Function property of the HTTP Server Thread. This function is called at the beginning of each HTTP
Client request.

The callback routine provides the NetX HTTP Server with the username, password, and realm strings
associated with the resource and returns the type of authentication necessary. If no authentication is
necessary for the resource, the authentication callback should return the value of
NX_HTTP_DONT_AUTHENTICATE. If basic authentication is required for the specified resource, the
routine should return NX_HTTP_BASIC_AUTHENTICATE. If MD5 digest authentication is required, the
callback routine should return NX_HTTP_DIGEST_AUTHENTICATE.

The format of the authenticate callback routine is defined as:

UINT nx_http_server_authentication_check(NX_HTTP_SERVER *server_ptr, UINT

request_type, CHAR *resource, CHAR **name, CHAR **password, CHAR **realm);

The input parameters are defined as follows:

Input Parameters Definitions

Parameter Meaning

request_type Specifies the HTTP Client request, valid requests
are defined as:
NX_HTTP_SERVER_GET_REQUEST
NX_HTTP_SERVER_POST_REQUEST
NX_HTTP_SERVER_HEAD_REQUEST
NX_HTTP_SERVER_PUT_REQUEST
NX_HTTP_SERVER_DELETE_REQUEST

resource Specific resource requested.

name Destination for the pointer to the required
username.

password Destination for the pointer to the required
password.

realm Destination for the pointer to the realm for this
authentication.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,409 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > NetX/NetX Duo HTTP Server Module Operational Overview

Name, password, and realm pointers are not used if NX_HTTP_DONT_AUTHENTICATE is returned by
the authentication callback routine. The HTTP Server developer must ensure that the maximum size
of the username and password (defined by the Maximum username length and Maximum password
length properties of the NetX HTTP Common) are large enough for the username and password
specified in the authentication callback. These are both defaulted to size 20 characters.

HTTP Server Request Notify callback

If a request callback is specified, (the Name of Request Notify Callback Function property of the NetX
HTTP Server module) the NetX HTTP Server forwards requests to the specified function after
authentication and validity of the client request is completed without errors. The callback should
indicate (by the return status) if no more processing of the client request is required (return status
NX_HTTP_CALLBACK_COMPLETED), if there was an error in the callback processing, (status is non-
zero), or the process was completed successfully and the HTTP Server should continue processing
the client request. The format of this callback is:

UINT request_notify(NX_HTTP_SERVER *server_ptr, UINT request_type, CHAR

*resource,

NX_PACKET *packet_ptr)

To disable the request notify callback, set the Name of Request Notify Callback Function property to
NULL.

HTTP Invalid Username/Password Callback

The optional Invalid Username/Password callback in the NetX HTTP Server module is invoked if the
HTTP Server receives an invalid username-and-password combination in a client request. To set the
Invalid Username/Password callback function, use the nx_http_server_invalid_user_password_set
service. Note that for NetX Duo HTTP Server module, this takes a NXD_ADDRESS *client_ip_address,
while NetX HTTP Server module takes a ULONG client_ip_address.

HTTP Insert GMT Date Header Callback

The NetX HTTP Server supports an optional callback to insert a date header in its response
messages. This callback is invoked when the Server responds to a Client PUT or GET request. To set
the GMT callback use the nx_http_server_gmt_callback service before starting the NetX HTTP Server
thread.

HTTP Cache Info Get Callback

The NetX HTTP Server has an optional callback to request the maximum age and date from the HTTP
application for a specific resource. This information is used to determine if the HTTP server sends the
entire page in response to a Client Get request. If the if modified since in the Client request is not
found or does not match the last modified date returned by the get-cache callback, the entire page
is sent. To set a cache callback function, use the nx_http_server_cache_info_callback_set service.

HTTP Multipart Support

Multipurpose Internet Mail Extensions (MIME) was originally intended for the SMTP protocol, but its
use has spread to HTTP. MIME allows messages to contain mixed message types (for example,
image/jpg and text/plain) within the same message. The NetX HTTP Server has added services to

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,410 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > NetX/NetX Duo HTTP Server Module Operational Overview

determine content type in HTTP messages containing MIME from the client. To enable multipart
support, set the Multipart HTTP requests support property of the NetX HTTP Server module to enable.

NetX/NetX Duo HTTP Server Module Important Operational Notes and Limitations

NetX/NetX Duo HTTP Server Module Operational Notes

The NetX HTTP Server module requires a FileX media (Block media or USB Mass Storage).
When an HTTP Server stack element is added to the project, an Add FileX box is attached to
it. The configurator automatically sets up and initializes the FileX media for the server
before the server is started. For more details for configuring FileX, see FileX™ User's Guide
for the Renesas Synergy™ Platform.
The NetX HTTP Server also requires a packet pool for transmitting packets. It can share the
IP default packet pool or create a separate packet pool. See the section on Including the
NetX HTTP Server Module in an Application for details on setting the HTTP Server packet
pool.

NetX/NetX Duo HTTP Server Module Limitations

Persistent connections are not supported.
Request pipelining is not supported.
The HTTP Server supports both basic and MD5 digest authentication, but not MD5-sess.
No content compression is supported.
Trace, Options, and Connect requests are not supported.
The packet pool associated with the HTTP Server must be large enough to hold the
complete HTTP header.

4.3.22.4 Including the NetX/NetX Duo HTTP Server Module in an Application

This section describes how to include either or both the NetX and NetX Duo HTTP Server module in
an application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo HTTP Server module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo HTTP Server Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_http_server0 NetX HTTP
Server

Threads New Stack> X-Ware> NetX>
Protocols> NetX HTTP Server

g_http_server0 NetX Duo HTTP
Server

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
HTTP Server

When the NetX and/or NetX Duo HTTP Server module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,411 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > Including the NetX/NetX Duo HTTP Server Module in an Application

band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 461: NetX/NetX Duo HTTP Server Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

Additionally, in the stack above, the FileX stack has also not been populated yet. There are multiple
possible selections for the FileX module; they are not all provided so as not to needlessly complicate
the figure and the following configuration tables. The available options depend on the MCU target,
but some typical options include:

FileX Stub
FileX on Block Media (implemented on Block Media Framework on sf_block_media_ram)
FileX on USB Mass Storage (implemented on USBX Host Class Mass Storage)

4.3.22.5 Configuring the NetX/NetX Duo HTTP Server Module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,412 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > Configuring the NetX/NetX Duo HTTP Server Module

The NetX/NetX Duo HTTP Server module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo HTTP Server Module

ISDE Property Value Description

FileX Support Enable, Disable

Default: Enable

FileX support selection

Multipart HTTP requests
support

Enable, Disable

Default: Disable

Multipart HTTP requests
support selection

Internal thread priority 16 Internal thread priority
selection

Internal thread time slicing
interval (bytes)

NetX Default: 1

NetX Duo Default: 2

Internal thread time slicing
interval selection

Server socket window size
(bytes)

2048 Server socket window size
selection

Server time out (seconds) 10 Server time out selection

Server time out for accept
(seconds)

10 Server time out for accept
selection

Server time out for disconnect
(seconds)

10 Server time out for disconnect
selection

Server time out for receive
(seconds)

10 Server time out for receive
selection

Server time out for send
(seconds)

10 Server time out for send
selection

Maximum size of header field
(bytes)

256 Maximum size of header field
selection

Maximum connections in queue 5 Maximum connections in queue
selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,413 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > Configuring the NetX/NetX Duo HTTP Server Module

Maximum client user user name
length (bytes)

20 Maximum client user password
length selection

Maximum client user password
length (bytes)

20 Minimum size of packets in pool
selection

Minimum size of packets in pool
(bytes)

600 Minimum size of packets in pool
selection

Name g_http_server0 Module name

Internal thread stack size
(bytes)

4096 Internal thread stack size
selection

Name of Authentication
Checking Function

authentication_check Name of Authentication
Checking Function selection

Name of Request Notify
Callback Function

request_notify Name of Authentication
Checking Function selection

Name of generated initialization
function

http_server_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select different IP masks and addresses. The configurable properties
for the lower-level stack modules are provided in the following sections for completeness and as a
reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo HTTP Server Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,414 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > Configuring the NetX/NetX Duo HTTP Server Module

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function

Link status change callback NULL Link status change callback
selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,415 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > Configuring the NetX/NetX Duo HTTP Server Module

Configuration Settings for the NetX/NetX Duo HTTP Common Instance

ISDE Property Value Description

Type of Service Normal, Minimum delay,
Maximum data, Maximum
reliabililty, Minimum cost

Default: Normal

Type of service UDP requests
selection

Fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Fragment option selection

Time to live 128 Time to live selection

MD5 Support Enable, Disable

Default: Disable

MD5 support selection

Maximum resource name
length (bytes)

40 Packet queue depth selection

**Maximum password length
(bytes)

20 Maximum password length
selection

**Maximum username length
(bytes)

20 Minimum username length
selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 640 Packet size selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,416 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > Configuring the NetX/NetX Duo HTTP Server Module

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX MD5 Instance

ISDE Property Value Description

No configurable properties

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo HTTP Server Module Clock Configuration

The ETHERC peripheral module uses the PCLKA as its clock source. The PCLKA frequency is set using
the SSP configurator Clock tab prior to a build or by using the CGC interface at run-time.

NetX/NetX Duo HTTP Server Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin Selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,417 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > Configuring the NetX/NetX Duo HTTP Server Module

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.22.6 Using the NetX/NetX Duo HTTP Server Module in an Application

The steps in using the NetX/NetX Duo HTTP Server module in a typical application are:

Auto Generated code to initialize NetX and NetX Duo HTTP Server in the Application
(common_data.c)

Create HTTP Packet pool using the nx_packet_pool_create API
Create IP Instance using the nx_ip_create API
Enable ARP using the nx_arp_enable API
Enable TCP using the nx_tcp_enable API
Create HTTP Server using the nx_http_server_create API

User Application Code (<thread>_entry.c)

1. Wait for valid IP address using the nx_ip_status_check API.
2. Start HTTP Server using the nx_http_server_start API.
3. Handle optional callbacks if registered with the HTTP Server (Authentication Check, Request

Notify, GMT set, Cache get and Invalid Username).
4. Stop HTTP Server using the nx_http_server_stop API.
5. Delete HTTP Server using the nx_http_server_delete API.

Note
If the server packet pool is used only by the server, this can be deleted too using the nx_packet_pool_delete API.

Users do not have to worry about auto-generated code. Auto-generated code is included once the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,418 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP Server > Using the NetX/NetX Duo HTTP Server Module in an Application

user generates the project after configuring the stack. Users only need to write the user application
code in the associated file (typically <thread>_entry.c).

The following figure illustrates common steps in a typical operational flow diagram:

Figure 462: Flow Diagram of a Typical NetX/NetX Duo HTTP Server Module Application

4.3.23 NetX Duo HTTP Client (HTTPS/HTTPS 1.1)

4.3.23.1 NetX Duo Web HTTP/HTTPs Client Introduction

The NetX Web HTTP/HTTPs Client module provides a high-level API for Hyper Text Transport
Protocol(HTTP) for transferring content on the web. The HTTP protocol utilizes Transmission Control
Protocol (TCP) services to perform its content transfer function. HTTPs is the secure version of the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,419 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > NetX Duo Web HTTP/HTTPs Client Introduction

HTTP protocol which uses HTTP on top of the Transport Layer Security (TLS) protocol to secure
underlying TCP connection.

HTTP/HTTPs client is implemented on top of NetX Duo IP and NetX Duo Packet Pool. NetX Duo IP
attaches itself to appropriate link layer driver such ethernet/Wi-Fi/cellular. HTTP client can optionally
connect to HTTP server over secure connection and in such case, it uses service provided by NetX
Duo TLS Common

Unsupported Features

HTTP Client authentication using username and password integrated but not tested.
Request pipelining is not supported
At present, the HTTP Client supports only basic authentication. When using TLS for HTTPS,
HTTP authentication may still be used.
No content compression is supported.
TRACE, OPTIONS, and CONNECT requests are not supported.
The packet pool associated with the HTTP Server or Client must be large enough to hold the
complete HTTP header.

NetX Duo Web HTTP/HTTPs Client Module Features

NetX Web HTTP/HTTPs client is compliant with below RFCs
RFC1945 "Hypertext Transfer Protocol/1.0"
RFC 2616 "Hypertext Transfer Protocol – HTTP/1.1"
RFC 2818 "HTTP Over TLS"
RFC 2581 "TCP Congestion Control"
RFC 1122 "Requirements for Internet Hosts", and related RFCs.
RFC 2818 "HTTP over TLS" for HTTPS

Support HTTP Get/POST/HEAD/PUT/DELETE commands. Note that these commands are
generated internally by NetX Web HTTP/HTTPs client APIs.
Support basic authentication. When using TLS for HTTPs, HTTP authentication may still be
used
Provides option to enable/disable TLS for secure communication using NetX Secure in SSP

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,420 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > NetX Duo Web HTTP/HTTPs Client Introduction

Figure 463: NetX Duo Web HTTP/HTTPs Client Module Block Diagram

Note
 In the figure above, the NetX Duo Network Driver module has multiple implementation options available. See the
description just after the module stack figure in Including the NetX Duo Web HTTP/HTTPs Client Module in an
Application for additional details.

4.3.23.2 NetX Duo Web HTTP/HTTPs Client Module APIs Overview

The NetX Duo Web HTTP/HTTPs Client module defines APIs for creating, deleting, getting and putting.
A complete list of the available APIs, an example API call and a short description of each can be
found in the following table. A table of status return values follows the API summary table.

NetX Duo Web HTTP/HTTPs Client Module API Summary

Function Name Example API Call and Description

nx_web_http_client_connect nx_web_http_client_connect(NX_WEB_HTTP_CLIE
NT *client_ptr, NXD_ADDRESS *server_ip, UINT
server_port, ULONG wait_option);
Open a plaintext socket to an HTTP server for
custom requests.

nx_web_http_client_create nx_web_http_client_create(NX_WEB_HTTP_CLIEN
T
*client_ptr, CHAR *client_name, NX_IP *ip_ptr,
NX_PACKET_POOL *pool_ptr, ULONG
window_size);
Create an HTTP Client Instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,421 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > NetX Duo Web HTTP/HTTPs Client Module APIs Overview

nx_web_http_client_delete nx_web_http_client_delete(NX_WEB_HTTP_CLIEN
T
*client_ptr);
Delete an HTTP Client Instance.

nx_web_http_client_delete_start nx_web_http_client_delete_start(NX_WEB_HTTP_
CLIE
NT *client_ptr, NXD_ADDRESS ip_address, UINT
server_port, CHAR *resource, CHAR *host, CHAR
*username, CHAR *password, ULONG
wait_option);
Start a plaintext HTTP DELETE request.

nx_web_http_client_delete_secure_start nx_web_http_client_delete_secure_start(
NX_WEB_HTTP_CLIENT *client_ptr,
NXD_ADDRESS
ip_address, UINT server_port, CHAR *resource,
CHAR
*host, CHAR *username, CHAR *password, UINT
(*tls_setup)(NX_WEB_HTTP_CLIENT *client_ptr,
NX_SECURE_TLS_SESSION *tls_session), ULONG
wait_option);
Start an encrypted HTTPS DELETE request.

nx_web_http_client_get_start nx_web_http_client_get_start(NX_WEB_HTTP_CLI
ENT
*client_ptr, NXD_ADDRESS ip_address, UINT
server_port, CHAR *resource, CHAR *host, CHAR
*username, CHAR *password, ULONG
wait_option);
Start a plaintext HTTP GET request.

nx_web_http_client_get_secure_start nx_web_http_client_get_secure_start(
NX_WEB_HTTP_CLIENT *client_ptr,
NXD_ADDRESS
ip_address, UINT server_port, CHAR *resource,
CHAR
*host, CHAR *username, CHAR *password, UINT
(*tls_setup)(NX_WEB_HTTP_CLIENT *client_ptr,
NX_SECURE_TLS_SESSION *tls_session), ULONG
wait_option);
Start an encrypted HTTPS GET request.

nx_web_http_client_head_start nx_web_http_client_head_start(NX_WEB_HTTP_C
LIEN
T *client_ptr, NXD_ADDRESS ip_address, UINT
server_port, CHAR *resource, CHAR *host, CHAR
*username, CHAR *password, ULONG
wait_option);
Start a plaintext HTTP HEAD request.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,422 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > NetX Duo Web HTTP/HTTPs Client Module APIs Overview

nx_web_http_client_head_secure_start nx_web_http_client_head_secure_start(
NX_WEB_HTTP_CLIENT *client_ptr,
NXD_ADDRESS
ip_address, UINT server_port, CHAR *resource,
CHAR
*host, CHAR *username, CHAR *password, UINT
(*tls_setup)(NX_WEB_HTTP_CLIENT *client_ptr,
NX_SECURE_TLS_SESSION *tls_session), ULONG
wait_option);
Start an encrypted HTTPS HEAD request.

nx_web_http_client_post_start nx_web_http_client_post_start(NX_WEB_HTTP_CL
IENT
*client_ptr, NXD_ADDRESS ip_address, UINT
server_port, CHAR *resource, CHAR *host, CHAR
*username, CHAR *password, ULONG
total_bytes,
ULONG wait_option);
Start an HTTP POST request.

nx_web_http_client_post_secure_start nx_web_http_client_post_secure_start(
NX_WEB_HTTP_CLIENT *client_ptr,
NXD_ADDRESS
ip_address, UINT server_port, CHAR *resource,
CHAR
*host, CHAR *username, CHAR *password,
ULONG
total_bytes, UINT
(*tls_setup)(NX_WEB_HTTP_CLIENT
*client_ptr, NX_SECURE_TLS_SESSION
*tls_session),
ULONG wait_option);
Start an encrypted HTTPS POST request.

nx_web_http_client_put_start nx_web_http_client_put_start(NX_WEB_HTTP_CLI
ENT
*client_ptr, NXD_ADDRESS ip_address, UINT
server_port, CHAR *resource, CHAR *host, CHAR
*username, CHAR *password, ULONG
total_bytes,
ULONG wait_option);
Start an HTTP PUT request.

nx_web_http_client_put_secure_start nx_web_http_client_put_secure_start(
NX_WEB_HTTP_CLIENT *client_ptr,
NXD_ADDRESS
ip_address, UINT server_port, CHAR *resource,
CHAR
*host, CHAR *username, CHAR *password,
ULONG
total_bytes, UINT
(*tls_setup)(NX_WEB_HTTP_CLIENT
*client_ptr, NX_SECURE_TLS_SESSION
*tls_session),
ULONG wait_option);
Start an encrypted HTTPS PUT request.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,423 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > NetX Duo Web HTTP/HTTPs Client Module APIs Overview

nx_web_http_client_put_packet nx_web_http_client_put_packet(NX_WEB_HTTP_C
LIEN
T *client_ptr, NX_PACKET *packet_ptr, ULONG
wait_option);
Send next resource data packet.

nx_web_http_client_request_header_add nx_web_http_client_request_header_add(
NX_WEB_HTTP_CLIENT *client_ptr, CHAR
*field_name,
UINT name_length, CHAR *field_value, UINT
value_length, UINT wait_option);
Add a custom header to a custom HTTP request.

nx_web_http_client_request_initialize nx_web_http_client_request_initialize (
NX_WEB_HTTP_CLIENT *client_ptr, UINT method,
CHAR *resource, CHAR *host, UINT input_size,
UINT
transfer_encoding_trunked, CHAR *username,
CHAR
*password, UINT wait_option);
Initialize a custom HTTP request.

nx_web_http_client_request_send nx_web_http_client_request_send(NX_WEB_HTTP
_CLI
ENT *client_ptr, UINT wait_option);
Send a custom HTTP request.

nx_web_http_client_response_body_get nx_web_http_client_response_body_get(
NX_WEB_HTTP_CLIENT *client_ptr, NX_PACKET
**packet_ptr, ULONG wait_option);
Get next resource data packet.

nx_web_http_client_response_header_callback_s
et

nx_web_http_client_response_header_callback_s
et(
NX_WEB_HTTP_CLIENT *client_ptr, VOID
(*callback_function)(NX_WEB_HTTP_CLIENT
*client_ptr, CHAR *field_name, UINT
field_name_length,
CHAR *field_value, UINT field_value_length));
Set callback to invoke when processing HTTP
headers.

nx_web_http_client_secure_connect nx_web_http_client_secure_connect(NX_WEB_HT
TP_C
LIENT *client_ptr, NXD_ADDRESS *server_ip,
UINT
server_port, UINT
(*tls_setup)(NX_WEB_HTTP_CLIENT
*client_ptr, NX_SECURE_TLS_SESSION *tls),
ULONG
wait_option);
Open a TLS session to an HTTPS server for
custom
requests.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API structures

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,424 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > NetX Duo Web HTTP/HTTPs Client Module APIs Overview

and function variables, review the associated Azure RTOS User’s Manual in the References section.

Status Return Values

Name Description

NX_SUCCESS Successful connection of TCP socket.

NX_PTR_ERROR Invalid pointer input.

NX_WEB_HTTP_NOT_READY Another request is already in progress.

NX_WEB_HTTP_POOL_ERROR Invalid payload size in packet pool

NX_CALLER_ERROR Invalid caller of this service.

NX_HTTP_PASSWORD_TOO_LONG Password exceeded expected length

NX_WEB_HTTP_ERROR Internal HTTP Client error.

NX_WEB_HTTP_NOT_READY HTTP Client not ready.

NX_WEB_HTTP_FAILED HTTP Client error communicating with the HTTP
Server.

NX_WEB_HTTP_AUTHENTICATION_ERROR Invalid name and/or password.

NX_WEB_HTTP_USERNAME_TOO_LONG Username too large for buffer.

NX_SIZE_ERROR Invalid total size of resource.

NX_WEB_HTTP_REQUEST_UNSUCCESSFUL_CODE Received Server error code

NX_WEB_HTTP_BAD_PACKET_LENGTH Invalid packet length.

NX_WEB_HTTP_INCOMPLETE_PUT_ERROR Server responds before PUT is complete.

NX_INVALID_PACKET Packet too small for TCP header.

NX_WEB_HTTP_METHOD_ERROR Some required information was missing (e.g.
input_size for PUT or POST).

NX_WEB_HTTP_GET_DONE HTTP Client get packet is done.

Note
Lower-level drivers may return common error codes. See SSP User’s Manual API References for the associated
module for a definition of all relevant status return values.

4.3.23.3 NetX Duo Web HTTP/HTTPs Client Module Operational Overview

HTTP (Hyper Text Transport Protocol) is used to exchange hypertext between HTTP client and server.
An HTTP client initiates a HTTP request such as Get/POST/HEAD/PUT/DELETE by establishing a TCP
connection to particular port on HTTP server e.g. port 80, port 443. An HTTP server listening on that
port waits for a client’s request message. Upon receiving the request, the server sends back a status
message such as "HTTP/1.1 200 ok" followed by a message of its own.

The NetX Web HTTP/HTTPs client module can be used in the normal mode or secure mode

NetX Web HTTP/HTTPs client module Normal Mode Operational Description

In normal mode, the communication between HTTP client and server is not secure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,425 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > NetX Duo Web HTTP/HTTPs Client Module Operational Overview

Netx Web HTTP/HTTPs client module Secure Mode Operational Description

In Secure mode, the communication between HTTP client and server is secured using the TLS
protocol. In the thread pane, TLS protocol is represented by "Add NetX Duo TLS common [Optional]"
block as shown in the figure below

Figure 464: NetX Duo Web HTTP/HTTPs Client Module Component Thread-Pane View

 Adding NetX Duo TLS Common block enables TLS support and internally defines the
NX_SECURE_ENABLE macro. The figure below shows the thread pane view of HTTP client with TLS
support enabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,426 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > NetX Duo Web HTTP/HTTPs Client Module Operational Overview

Figure 465: NetX Duo Web HTTP/HTTPs Client Module Component with TLS Support Enabled

NetX Duo Web HTTP/HTTPs Client Module Important Operational Notes and Limitations

NetX Duo Web HTTP/HTTPs Client Module Operational Notes

The NetX Web HTTP/HTTPs Client component is added by clicking on the (+) sign in the thread pane
window -> Azure RTOS -> NetX Duo -> Protocols -> NetX Web HTTP/HTTPs Client.

Adding the NetX Web HTTP/HTTPs Client component to a project automatically adds the option to
add the NetX Duo TLS component required for secure HTTP client.

The NetX Web HTTP/HTTPs Client properties are listed in the following table:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,427 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > NetX Duo Web HTTP/HTTPs Client Module Operational Overview

Figure 466: NetX Duo Web HTTP/HTTPs Client Module Component Configurable Properties

 In the figure above, "Common" properties are those configurable options in the NetX Web
HTTP/HTTPs Client that are common to all instances of the HTTP/HTTPs client in the project. The
"Module" properties are specific to each instance of HTTP/HTTPs Client in the project.

Common Properties

Parameter Checking: This enables/disables basic HTTP error checking. It is typically used
after the application has been debugged. The default value is BSP.
Minimum Packet Size (bytes): The minimum size of the packets in the pool specified at
Client creation. The minimum size is needed to ensure the complete HTTP header can be
contained in one packet. The default value is 300 bytes.
HTTPS: This enables/disables TLS which is used to establish secure channel. The default
value is disable.

Module Properties

Name: Name of the HTTP/HTTPs client instance.
TCP socket window size(bytes) : Set the size of client’s TCP socket receive window size. The
default is 1024 bytes.
Name of generated initialization function: Name of initialization function which creates
HTTP/HTTPs client instance. The default is the auto-generated function named
web_http_client_init0.
Auto Initialization: Enable/disable call to initialization function. This determines if the
function specified in the Name of Generated Initialization function option is called. If set to
Enable, it will invoke this function. Otherwise if set to Disable, the application must call the
nx_web_http_client_create() API before using any NetX Web HTTP/HTTPs Client services.

NetX Duo Web HTTP Common Configurable Properties

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,428 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > NetX Duo Web HTTP/HTTPs Client Module Operational Overview

The common properties are listed in the following table:

Figure 467: NetX Duo Web HTTP/HTTPs Client Module Component Common Configurable Properties

Type of Service: Type of network service required for the HTTP TCP requests. The network
service can be of type (Normal, Minimum delay, Maximum data, Maximum reliability,
Minimum cost) and the default value is Normal.
Fragmentation Option: This enables/disables TCP fragmentation for HTTP client request. The
default value is Don’t Fragment.
MD5 Support: This enables/disables MD5 digest support required for digest authentication.
The default value is disable.
Time to live: This specifies maximum no. of routers the HTTP packet can pass through
before it get discarded. The default is 128.
Maximum password length (bytes): This defines the maximum length of client supplied
password. The default is 20.
The Maximum username length (bytes): This defines the maximum length of client supplied
username. The default is 20.

NetX Duo Web HTTP/HTTPs Client Module Limitations

Request pipelining is not supported
No content compression is not supported
TRACE, OPTIONS, and CONNECT HTTP requests are not supported
The packet pool associated with client must be large enough to hold the complete HTTP
header
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.23.4 Including the NetX Duo Web HTTP/HTTPs Client Module in an Application

This section describes how to include either or both the NetX Duo Web HTTP/HTTPs Client module in
an application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User’s Manual to learn how to manage each of these important steps in creating SSP-based applications.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,429 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > Including the NetX Duo Web HTTP/HTTPs Client Module in an Application

To add the NetX Duo Web HTTP/HTTPs Client module to an application, simply add it to a thread
using the stacks selection sequence given in the following table.

NetX Duo Web HTTP/HTTPs Client Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_web_http_client0 NetX Duo
Web HTTP/HTTPs Client

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
Web
HTTP/HTTPs Client

When the NetX Duo Web HTTP/HTTPs Client module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower-level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with a
Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 468: NetX Duo Web HTTP/HTTPs Client Module Stack

 In the stack above, the NetX Duo Network Driver has not been populated yet. There are multiple
possible selections for the Network Driver; they are not all provided so as not to needlessly
complicate the figure and the following configuration tables. The available options depend on the
MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,430 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > Including the NetX Duo Web HTTP/HTTPs Client Module in an Application

NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.23.5 Configuring the NetX Duo Web HTTP/HTTPs Client Module

The NetX Duo Web HTTP/HTTPs Client module must be configured by the user for the desired
operation. The SSP configuration window automatically identifies (by highlighting the block in red)
any required configuration selections, such as interrupts or operating modes, which must be
configured for lower-level modules for successful operation. Only properties that can be changed
without causing conflicts are available for modification. Other properties are locked and not available
for changes and are identified with a lock icon for the locked property in the Properties window in the
ISDE. This approach simplifies the configuration process and makes it much less error-prone than
previous manual approaches to configuration. The available configuration settings and defaults for
all the user-accessible properties are given in the Properties tab within the SSP Configurator and are
shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX Duo Web HTTP/HTTPs Client Module

ISDE Property Value Description

Parameter Checking Enable, Disable, BSP

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

Minimum packet size (bytes) 300 Select the minimum packet size
in bytes.

HTTPS Support Enable, Disable

Default: Disable

Select whether to enable HTTPS
support.

Name g_web_http_client0 Module name.

TCP socket window size (bytes) 1024 Select the TCP socket window
size in bytes.

Name of generated initialization web_http_client_init0 Name of generated initialization
selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select different pins for the Ethernet peripheral. The configurable
properties for the lower-level stack modules are provided in the following sections for completeness
and as a reference.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,431 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > Configuring the NetX Duo Web HTTP/HTTPs Client Module

Note
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the NetX Duo Web HTTP/HTTPs Client Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection

IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Disable

TCP selection

UDP Enable, Disable

Default: Disable

UDP selection

ICMP Enable, Disable

Default: Disable

ICMP selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,432 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > Configuring the NetX Duo Web HTTP/HTTPs Client Module

IGMP Enable, Disable

Default: Disable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function

Link status change callback NULL Link status change callback
selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Web HTTP Common Instance

ISDE Property Value Description

Type of Service Normal, Minimum delay,
Maximum data, Maximum
reliability, Minimum cost

Default: Normal

Type of service selection.

Fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Fragmentation option selection.

MD5 Support Enable, Disable

Default: Disable

MD5 support selection.

Time to live 128 Time to live selection.

Maximum password length
(bytes)

20 Maximum password length in
bytes.

Maximum username length
(bytes)

20 Maximum username length in
bytes.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Common Instance

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,433 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > Configuring the NetX Duo Web HTTP/HTTPs Client Module

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 640 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX MD5 Instance

ISDE Property Value Description

No configurable properties

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX Duo Web HTTP/HTTPs Client Module Clock Configuration

The ETHERC peripheral module uses the PCLKA as its clock source. The PCLKA frequency is set using
the SSP configurator Clock tab prior to a build or by using the CGC interface at run-time.

NetX Duo Web HTTP/HTTPs Client Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,434 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > Configuring the NetX Duo Web HTTP/HTTPs Client Module

The selected operation mode determines what peripheral signals available and what MCU pins are required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin Selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.23.6 Using the NetX Duo Web HTTP/HTTPs Client Module in an Application

Once the module has been configured and the files auto generated, the NetX Web HTTP/HTTPs client
Module is ready to be used in an application. Note that the auto generated code includes the
initialization function with the name specified under the Name of generated initialization function
property. This function internally calls the nx_web_http_client_create() API to create a HTTP/HTTPs
client instance with the name specified under the Name property. Calls to this initialization function
will be enabled or disabled depending the Auto Initialization property value. Once the client instance
is created, the typical steps in using the module in an application are:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,435 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > Using the NetX Duo Web HTTP/HTTPs Client Module in an Application

1. The application can connect to a plaintext HTTP server by invoking
nx_web_http_client_connect(). If the application needs to use secure connection, it can
connect to a secure HTTP server by invoking nx_web_http_client_secure_connect(). Note
that application needs to implement the TLS setup callback function for secure connection.
If needed, the application can include additional server certificate validation using DNS
validation, certificate revocation and certificate policy enforcement. This can be done by
invoking nx_secure_tls_session_certificate_callback_set() inside the TLS setup callback
function. A reference implementation of TLS setup callback function is provided in Figure 1
of appendix.These APIs just opens a plain or secure connection to server but does not send
any request.

2. After connecting to the server, the client can create a custom HTTP request such as GET by
calling nx_web_http_- client_request_initialize().

3. The client can add custom header to request created in step 2 by invoking
nx_web_http_client_request_header_add()API.

4. After connecting to the server, the client can send request to server using
nx_web_http_client_request_send() API.

5. The application can retrieve the response sent by the server by repeatedly calling the
nx_web_http_client_response_body_get() API until the entire response is retrieved.

6. The application should invoke nx_web_http_client_delete() to delete all the resources
associated with HTTP client instance.

Note
If the application does not want to create custom requests, then it can use nx_web_http_*_start() APIs to send a
standard request. For example, to send a standard GET request to plain text server, the application can use
nx_web_http_client_get_start(). Similarly, the application can use nx_web_http_client_get_secure_start() to send a
standard GET request over a secure channel to server. The nx_web_http_*_start() APIs internally uses
nx_web_http_client_request_initialize() to create and send the desired HTTP request.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,436 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo HTTP Client (HTTPS/HTTPS 1.1) > Using the NetX Duo Web HTTP/HTTPs Client Module in an Application

Figure 469: Flow Diagram of a Typical NetX Duo Web HTTP/HTTPs Client Module Application

4.3.24 NetX/NetX Duo HTTP/HTTPS Web Server Framework

4.3.24.1 NetX Duo Web HTTP/HTTPs Server Introduction

The NetX Duo Web HTTP/HTTPs Server module provides a high-level API for hosting Hyper Text

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,437 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Introduction

Transport Protocol (HTTP) Server on the web. The HTTP protocol utilizes Transmission Control
Protocol (TCP) services to perform its function. HTTPs is the secure version of the HTTP protocol
which uses HTTP on top of the Transport Layer Security (TLS) protocol to secure underlying TCP
connection.

HTTP/HTTPs server is implemented on top of NetX Duo IP and NetX Duo Packet Pool. NetX Duo IP
attaches itself to appropriate link layer driver such as Ethernet/Wi-Fi/Cellular. Web HTTP server can
be started over secure connection and in such case, it uses service provided by NetX Duo TLS
Common.

Unsupported Features

NetXDuo HTTPs Server has not been tested on the Cellular CAT1 and Quectel BG96 Cellular Modules.

NetX Duo Web HTTP/HTTPs Server Module Features

NetX Web HTTP/HTTPs server is compliant with below RFCs
RFC1945 "Hypertext Transfer Protocol/1.0"
RFC 2616 "Hypertext Transfer Protocol – HTTP/1.1"
RFC 2818 "HTTP over TLS"
RFC 2581 "TCP Congestion Control"
RFC 1122 "Requirements for Internet Hosts", and related RFCs

Multipart support
Basic and digest authentication support
Custom MIME Support
Callback support for several key functions:

HTTP Authentication Callback
HTTP Request Notify Callback
HTTP Invalid Username/Password Callback
HTTP Insert GMT Date Header Callback
HTTP Cache Info Get Callback

Provides option to enable/disable TLS for secure communication using NetX Secure in SSP

Figure 470: NetX Duo Web HTTP/HTTPs Server Module Block Diagram

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,438 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Introduction

Note
In the figure above, the NetX Duo Network Driver module has multiple implementation options available. See the
description just after the module stack figure in Including the NetX Duo Web HTTP/HTTPs Server Module in an
Application for additional details.

4.3.24.2 NetX Duo Web HTTP/HTTPs Server Module APIs Overview

The NetX Duo Web HTTP/HTTPs Server module defines APIs for creating, deleting, starting, stopping,
response sending and getting information for a received HTTP request. A complete list of the
available APIs, an example API call and a short description of each can be found in the following
table. A table of status return values follows the API summary table.

NetX Duo Web HTTP/HTTPs Server Module API Summary

Function Name Example API Call and Description

nx_web_http_server_cache_info_callback_set nx_web_http_server_cache_info_callback_set(
NX_WEB_HTTP_SERVER *server_ptr,
UINT (*cache_info_get)(CHAR *resource,
UINT *max_age,
NX_WEB_HTTP_SERVER_DATE *date));
Set the callback to retrieve URL max age and
date

nx_web_http_server_callback_data_send nx_web_http_server_callback_data_send(
NX_WEB_HTTP_SERVER *server_ptr,
VOID *data_ptr, ULONG data_length);
Send data from callback function

nx_web_http_server_callback_generate_response
_header

nx_web_http_server_callback_generate_response
_header(
NX_WEB_HTTP_SERVER *server_ptr,
NX_PACKET **packet_pptr,
CHAR *status_code, UINT content_length,
CHAR *content_type, CHAR* additional_header);
Create a response header in a callback function

nx_web_http_server_callback_packet_send nx_web_http_server_callback_packet_send(
NX_WEB_HTTP_SERVER *server_ptr,
NX_PACKET *packet_ptr);
Send an HTTP packet from callback function

nx_web_http_server_callback_response_send nx_web_http_server_callback_response_send(
NX_WEB_HTTP_SERVER *server_ptr,
CHAR *header,
CHAR *information,
CHAR additional_info);
Send response from callback function

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,439 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Module APIs Overview

nx_web_http_server_content_get nx_web_http_server_content_get(NX_WEB_HTTP_
SERVER *server_ptr,
NX_PACKET *packet_ptr,
ULONG byte_offset,
CHAR *destination_ptr,
UINT destination_size,
UINT *actual_size);
Get content from the request

nx_web_http_server_content_get_extended nx_web_http_server_content_get_extended(
NX_WEB_HTTP_SERVER *server_ptr,
NX_PACKET *packet_ptr, ULONG byte_offset,
CHAR *destination_ptr, UINT destination_size,
UINT *actual_size);
Get content from the request/supports zero
length Content Length

nx_web_http_server_content_length_get nx_web_http_server_content_length_get(
NX_PACKET *packet_ptr,
UINT *content_length);
Get length of content in the request/supports
Content Length of zero value

nx_web_http_server_create nx_web_http_server_create(NX_WEB_HTTP_SERV
ER *http_server_ptr,
CHAR *http_server_name, NX_IP *ip_ptr, UINT
server_port,
FX_MEDIA *media_ptr, VOID *stack_ptr, ULONG
stack_size, NX_PACKET_POOL *pool_ptr,
UINT
(*authentication_check)(NX_WEB_HTTP_SERVER
*server_ptr,
UINT request_type, CHAR *resource, CHAR
**name, CHAR **password, CHAR **realm),
UINT (*request_notify)(NX_WEB_HTTP_SERVER
*server_ptr, UINT request_type, CHAR *resource,
NX_PACKET *packet_ptr));
Create an HTTP Server instance

nx_web_http_server_delete nx_web_http_server_delete(NX_WEB_HTTP_SERV
ER *http_server_ptr);
Delete an HTTP Server instance

nx_web_http_server_get_entity_content nx_web_http_server_get_entity_content(
NX_WEB_HTTP_SERVER *server_ptr,
NX_PACKET **packet_pptr, ULONG
*available_offset, ULONG *available_length);
Retrieve the location and length of entity data

nx_web_http_server_get_entity_header nx_web_http_server_get_entity_header(
NX_WEB_HTTP_SERVER *server_ptr,
NX_PACKET **packet_pptr,
UCHAR *entity_header_buffer,
ULONG buffer_size);
Retrieve the contents of entity header

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,440 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Module APIs Overview

nx_web_http_server_gmt_callback_set nx_web_http_server_gmt_callback_set(
NX_WEB_HTTP_SERVER *server_ptr,
VOID (*gmt_get)(NX_WEB_HTTP_SERVER_DATE
*date);
Set the callback to obtain GMT date and time

nx_web_http_server_invalid_userpassword_notify
_set

nx_web_http_server_invalid_userpassword_notify
_set(
NX_WEB_HTTP_SERVER *http_server_ptr,
UINT (*invalid_username_password_callback)
(CHAR *resource, ULONG client_address, UINT
request_type));
Set the callback to handle invalid user/password

nx_web_http_server_mime_maps_additional_set nx_web_http_server_mime_maps_additional_set(
NX_WEB_HTTP_SERVER *server_ptr,
NX_WEB_HTTP_SERVER_MIME_MAP
*mime_maps,
UINT mime_maps_num);
Set additional MIME maps for HTML

nx_web_http_server_response_packet_allocate nx_web_http_server_response_packet_allocate(
NX_WEB_HTTP_SERVER *server_ptr,
NX_PACKET **packet_ptr,
ULONG wait_option);
Allocate a HTTP(S) packet

nx_web_http_server_packet_content_find nx_web_http_server_packet_content_find(
NX_WEB_HTTP_SERVER *server_ptr,
NX_PACKET **packet_ptr,
UINT *content_length);
Extract content length and set pointer to start of
data

nx_web_http_server_packet_get nx_web_http_server_packet_get(NX_WEB_HTTP_
SERVER *server_ptr,
NX_PACKET **packet_ptr);
Receive the next HTTP packet

nx_web_http_server_param_get nx_web_http_server_param_get(NX_PACKET
*packet_ptr,
UINT param_number, CHAR *param_ptr,
UINT *param_size, UINT max_param_size);
Get parameter from the request

nx_web_http_server_query_get nx_web_http_server_query_get(NX_PACKET
*packet_ptr,
UINT query_number, CHAR *query_ptr, CHAR
*query_size,
UINT max_query_size);
Get query from the request

nx_web_http_server_response_chunked_set nx_web_http_server_response_chunked_set(
NX_WEB_HTTP_SERVER *server_ptr,
UINT chunk_size, NX_PACKET *packet_ptr);
Set chunked transfer for HTTP(S) response

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,441 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Module APIs Overview

nx_web_http_server_secure_configure nx_web_http_server_secure_configure(
NX_WEB_HTTP_SERVER *http_server_ptr,
const NX_SECURE_TLS_CRYPTO *crypto_table,
VOID *metadata_buffer, ULONG metadata_size,
UCHAR* packet_buffer, UINT packet_buffer_size,
NX_SECURE_X509_CERT *identity_certificate,
NX_SECURE_X509_CERT *trusted_certificates[],
UINT trusted_certs_num,
NX_SECURE_X509_CERT *remote_certificates[],
UINT remote_certs_num,
UCHAR *remote_certificate_buffer,
UINT remote_cert_buffer_size);
Configure an HTTP Server to use TLS for secure
HTTPS

Note
Parameter crypto_table is a pointer to crypto
cipher suite table. Suggested ciphersuite to be used
is "nx_crypto_tls_ciphers_synergys7" which is a
cipher suite table under NetX in SSP. For further
information on Ciphersuite Refer NetX TLS User
Manual.

nx_web_http_server_start nx_web_http_server_start(NX_WEB_HTTP_SERVE
R *http_server_ptr);
Start the HTTP Server

nx_web_http_server_stop nx_web_http_server_stop(NX_WEB_HTTP_SERVE
R *http_server_ptr);
Stop the HTTP Server

nx_web_http_server_type_get nx_web_http_server_type_get(NX_WEB_HTTP_SE
RVER *http_server_ptr,
CHAR *name, CHAR *http_type_string,
UINT *string_size);
Extract file type from Client HTTP request

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API structures
and function variables, review the associated Azure RTOS User's Manual in the References section.

Status Return Values

Name Description

NX_SUCCESS Successful connection of TCP socket.

NX_PTR_ERROR Invalid pointer input.

NX_WEB_HTTP_DATA_END End of request content

NX_WEB_HTTP_POOL_ERROR Invalid payload size in packet pool

NX_CALLER_ERROR Invalid caller of this service.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,442 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Module APIs Overview

NX_WEB_HTTP_TIMEOUT HTTP Server timeout in getting
next packet of content

NX_WEB_HTTP_ERROR Internal HTTP Server error.

NX_WEB_HTTP_FAILED Query size too small

NX_CALLER_ERROR Invalid caller of this service

NX_WEB_HTTP_BOUNDARY_ALREADY_FOUND Content for the HTTP server internal multipart
markers is already found

NX_WEB_HTTP_NOT_FOUND Entity header field/query not found

NX_NO_PACKET No packet available

NX_WAIT_ABORTED Requested suspension was aborted

NX_WEB_HTTP_INCOMPLETE_PUT_ERROR Improper HTTP header format

NX_INVALID_PARAMETERS Packet size cannot support protocol

NX_WEB_HTTP_IMPROPERLY_TERMINATED_PARA
M

Request parameter not properly terminated

NX_WEB_HTTP_NO_QUERY_PARSED No query in Client request

NX_NOT_CONNECTED The underlying TCP socket is no longer
connected.

NX_SECURE_TLS_UNRECOGNIZED_MESSAGE_TYP
E

A received TLS message type is incorrect.

NX_SECURE_TLS_UNSUPPORTED_CIPHER Cipher provided by the remote host is not
supported.

NX_SECURE_TLS_HANDSHAKE_FAILURE Message processing during the TLS handshake
has failed.

NX_SECURE_TLS_HASH_MAC_VERIFY_FAILURE An incoming message failed a hash MAC check.

NX_SECURE_TLS_TCP_SEND_FAILED An underlying TCP socket send failed.

NX_SECURE_TLS_INCORRECT_MESSAGE_LENGTH An incoming message had an invalid length
field.

NX_SECURE_TLS_BAD_CIPHERSPEC An incoming ChangeCipherSpec message
was incorrect.

NX_SECURE_TLS_INVALID_SERVER_CERT An incoming TLS certificate is unusable for
identifying the remote TLS server.

NX_SECURE_TLS_UNSUPPORTED_PUBLIC_CIPHER The public-key cipher provided by the remote
host is unsupported

NX_SECURE_TLS_NO_SUPPORTED_CIPHERS The remote host has indicated no ciphersuites
that are supported by the NetX Secure TLS
stack.

NX_SECURE_TLS_UNKNOWN_TLS_VERSION A received TLS message had an unknown TLS
version in its header.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,443 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Module APIs Overview

NX_SECURE_TLS_UNSUPPORTED_TLS_VERSION A received TLS message had a known but
unsupported TLS version in its header.

NX_SECURE_TLS_ALLOCATE_PACKET_FAILED An internal TLS packet allocation failed.

NX_SECURE_TLS_INVALID_CERTIFICATE The remote host provided an invalid certificate.

NX_SECURE_TLS_ALERT_RECEIVED The remote host sent an alert indicating an error
and ending the TLS session.

NX_SECURE_TLS_MISSING_CRYPTO_ROUTINE An entry in the ciphersuite table had a NULL
function pointer.

NX_WEB_HTTP_EXTENSION_MIME_DEFAULT Default "text/plain" returned

Note
Lower-level drivers may return common error codes. See SSP User's Manual API References for the associated
module for a definition of all relevant status return values.

4.3.24.3 NetX Duo Web HTTP/HTTPs Server Module Operational Overview

The NetX Duo Web HTTP Server module creates an IP instance that carries out NetX Duo operations
and enables it for TCP services in the NetX Duo library; it then creates the Web HTTP Server instance
and TCP socket for listening to client requests on configured port number. The Web HTTP Server
requires a packet pool; the module can supply one either by sharing the IP default packet pool
(g_packet_pool0) or create a new one. The minimum packet payload is set by the Minimum size of
packets in pool property of the Web HTTP Server module. This packet pool is used by the Web HTTP
Server only to transmit packets, so the packet pool size and payload can be optimized on the
expected size and number of HTTP Server packets sent out.

The NetX Duo Web HTTP Server supports both IPv4 and IPv6 connections. If the HTTP Server has
clients desiring to connect over IPv6, make sure the NetX Duo IPv6 Support property is enabled in
the NetX Duo Source element. It may be necessary to enable ICMPv6 checksum computation for the
underlying ICMPv6 protocols. To do so, set the Checksum computation support on transmitted
ICMPv6 packets and Checksum computation support on received ICMPv6 packets properties of the
NetX Duo Source element to Enabled. (If the host hardware automatically computes ICMPv6
checksums, these can be left disabled.) Make sure the IPv6 Global Address of the Client host is set in
the IP instance element. Thereafter, the NetX Duo does the necessary processing to enable IPv6 and
ICMPv6 services required for IPv6 underlying protocols.

The NetX Duo Web HTTP Server is also designed for use with the FileX embedded file system.

The NetX Duo Web HTTP/HTTPs server module can be used in the normal mode or secure mode

NetX Duo Web HTTP/HTTPs server module Normal Mode Operational Description

In normal mode, the communication between HTTP client and server is not secure.

Netx Duo Web HTTP/HTTPs server module Secure Mode Operational Description

In Secure mode, the communication between HTTP client and server is secured using the TLS
protocol. In the thread pane, TLS protocol is represented by "Add NetX Duo TLS common [Optional]"
block as shown in the figure below

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,444 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Module Operational Overview

Figure 471: NetX Duo Web HTTP/HTTPs Server Module Component Thread-Pane View

 Adding NetX Duo TLS Common block enables TLS support. The figure below shows the thread pane
view of Web HTTP server with TLS support enabled.

Figure 472: NetX Duo Web HTTP/HTTPs Server Module Component with TLS Support Enabled

 NetX Duo Web HTTP Server Responses

When the Web HTTP Server processes the client command, it returns an ASCII response string that
includes a 3-digit numeric status code. The numeric response is used by the HTTP Client software to
determine whether the operation succeeded or failed. Following is a list of various HTTP Server
responses to client commands:

Web HTTP Server responses to client commands

Numeric Field Meaning

200 Request was successful

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,445 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Module Operational Overview

400 Request was not formed properly

401 Unauthorized request, client needs to send
authentication

404 Specified resource in request was not found

500 Internal HTTP Server error

501 Request not implemented by HTTP Server

502 Service is not available

For example, a successful client request to PUT the file test.htm is responded to with the message
HTTP/1.0 200 OK.

NetX Duo Web HTTP Authentication

HTTP authentication is optional and is not required for all web requests. There are two types of
authentication, basic and digest. Basic authentication is equivalent to the name and password
authentication found in many protocols. In HTTP basic authentication, the name and passwords are
concatenated and encoded in the base64 format. The main disadvantage of basic authentication is
the name and password are transmitted openly in the request, making it easy for the name and
password to be stolen. Digest authentication addresses this problem by never transmitting the name
and password in the request. Instead, an algorithm is used to derive a 128-bit key or digest from the
name, password, and other information. The NetX Web HTTP Server supports the standard MD5
digest algorithm.

The Web HTTP Server authentication callback can decide if a requested resource requires
authentication. If authentication is required and the client request did not include the proper
authentication, an HTTP/1.0 401 Unauthorized response with the type of authentication required is
sent to the client. The client is then expected to form a new request with the proper authentication.

NetX Duo Web HTTP Authentication Callback

The Web HTTP Server authentication callback routine is specified by the Name of Authentication
Checking Function property of the HTTP Server Thread. This function is called at the beginning of
each HTTP Client request.

The callback routine provides the NetX Web HTTP Server with the username, password, and realm
strings associated with the resource and returns the type of authentication necessary. If no
authentication is necessary for the resource, the authentication callback should return the value of
NX_WEB_HTTP_DONT_AUTHENTICATE. If basic authentication is required for the specified resource,
the routine should return NX_WEB_HTTP_BASIC_AUTHENTICATE. If MD5 digest authentication is
required, the callback routine should return NX_WEB_HTTP_DIGEST_AUTHENTICATE.

The format of the authenticate callback routine is defined as:

UINT nx_web_http_server_authentication_check(NX_WEB_HTTP_SERVER *server_ptr, UINT
request_type, CHAR *resource, CHAR **name, CHAR **password, CHAR **realm);

The input parameters are defined as follows:

Input Parameters Definitions

Parameter Meaning

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,446 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Module Operational Overview

request_type Specifies the HTTP Client request, valid requests
are defined as:
NX_WEB_HTTP_SERVER_GET_REQUEST
NX_WEB_HTTP_SERVER_POST_REQUEST
NX_WEB_HTTP_SERVER_HEAD_REQUEST
NX_WEB_HTTP_SERVER_PUT_REQUEST
NX_WEB_HTTP_SERVER_DELETE_REQUEST

resource Specific resource requested.

name Destination for the pointer to the required
username.

password Destination for the pointer to the required
password.

realm Destination for the pointer to the realm for this
authentication.

Name, password, and realm pointers are not used if NX_WEB_HTTP_DONT_AUTHENTICATE is
returned by the authentication callback routine. The HTTP Server developer must ensure that the
maximum size of the username and password (defined by the Maximum username length and
Maximum password length properties of the NetX Duo Web HTTP Common) are large enough for the
username and password specified in the authentication callback. These are both defaulted to size 20
characters.

NetX Duo Web HTTP Server Request Notify callback

If a request callback is specified, (the Name of Request Notify Callback Function property of the NetX
Web HTTP Server module) the NetX Web HTTP Server forwards requests to the specified function
after authentication and validity of the client request is completed without errors. The callback
should indicate (by the return status) if no more processing of the client request is required (return
status NX_WEB_HTTP_CALLBACK_COMPLETED), if there was an error in the callback processing,
(status is non-zero), or the process was completed successfully, and the Web HTTP Server should
continue processing the client request. The format of this callback is:

UINT request_notify(NX_WEB_HTTP_SERVER *server_ptr, UINT request_type, CHAR *resource,
NX_PACKET *packet_ptr);

To disable the request notify callback, set the Name of Request Notify Callback Function property to
NULL.

NetX Duo Web HTTP Invalid Username/Password Callback

The optional Invalid Username/Password callback in the NetX Web HTTP Server module is invoked if
the HTTP Server receives an invalid username-and-password combination in a client request. To set
the Invalid Username/Password callback function, use the
nx_web_http_server_invalid_userpassword_notify_set service.

NetX Duo Web HTTP Insert GMT Date Header Callback

The NetX Web HTTP Server supports an optional callback to insert a date header in its response
messages. This callback is invoked when the Server responds to a Client PUT or GET request. To
register a GMT date callback with the HTTP Server, the nx_web_http_server_gmt_callback_set service
is used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,447 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Module Operational Overview

NetX Duo Web HTTP Cache Info Get Callback

The NetX Web HTTP Server has an optional callback to request the maximum age and date from the
HTTP application for a specific resource. This information is used to determine if the HTTP server
sends the entire page in response to a Client Get request. If the if modified since in the Client
request is not found or does not match the last modified date returned by the get-cache callback,
the entire page is sent. To register the callback with the HTTP server
nx_web_http_server_cache_info_callback_set service is used.

NetX Duo Web HTTP Multipart Support

Multipurpose Internet Mail Extensions (MIME) was originally intended for the SMTP protocol, but its
use has spread to HTTP. MIME allows messages to contain mixed message types (for example,
image/jpg and text/plain) within the same message. The NetX Web HTTP Server has added services
to determine content type in HTTP messages containing MIME from the client. To enable multipart
support, set the Multipart HTTP requests support property of the NetX Web HTTP Server module to
enable.

NetX Duo Web HTTP/HTTPs Server Module Important Operational Notes and Limitations

NetX Duo Web HTTP/HTTPs Server Module Operational Notes

The NetX Duo Web HTTP Server module requires a FileX media (Block media or USB Mass
Storage). When an HTTP Server stack element is added to the project, an Add FileX box is
attached to it. The configurator automatically sets up and initializes the FileX media for the
server before the server is started. For more details for configuring FileX, see FileX User's
Guide for the Renesas Synergy Platform.
The NetX Duo Web HTTP Server also requires a packet pool for transmitting packets. It can
share the IP default packet pool or create a separate packet pool.
The NetX Duo Web HTTP/HTTPs Server component is added by clicking on the (+) sign in
the thread pane window -> Azure RTOS -> NetX Duo -> Protocols -> NetX Duo Web
HTTP/HTTPs Server
Adding the NetX Duo Web HTTP/HTTPs Server component to a project automatically adds
the option to add the NetX Duo TLS component required for secure HTTP server

The NetX Duo Web HTTP/HTTPs Server properties are listed in the following table:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,448 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Module Operational Overview

Figure 473: NetX Duo Web HTTP/HTTPs Server Module Component Configurable Properties

 In the figure above, "Common" properties are those configurable options in the NetX Duo Web
HTTP/HTTPs Server that are common to all instances of the HTTP/HTTPs server in the project. The
"Module" properties are specific to each instance of HTTP/HTTPs Server in the project.

NetX Duo Web HTTP/HTTPs Server Module Common Properties

Parameter Checking:This option removes the basic HTTP error checking. It is typically used
after the application has been debugged. Default value is BSP.
HTTPS Support: If defined, this macro enables TLS and HTTPS. Leave undefined to free up
resources if only plaintext HTTP is desired. Default value is Disable.
FileX Support: This option provides User to select either "FileX Stub", "FileX on USB Mass
Storage" or "FileX on Block Media". Default value is Enable.
Multipart HTTP requests support: If defined, this option enables HTTP Server to support
multipart HTTP requests. Default value is Disable.
Server Thread Priority: The priority of the HTTP Server thread. Default value is 16.
Server Thread time slicing interval (ticks): The number of timer ticks the Server thread is
allowed to run before yielding to threads of the same priority. Default value is 2 ticks.
Server socket window size (bytes): Size of the Server TCP socket receive window. Default
value is 2048 bytes.
Server time out (seconds): Time period for which internal services of server will suspend.
Default value is set to 10 seconds (10 * NX_IP_PERIODIC_RATE).
Server time out for accept (seconds): Time period for which internal services will suspend
for in internal nx_tcp_server_socket_accept() calls. The default value is set to 10 seconds
(10 * NX_IP_PERIODIC_RATE).
Server time out for disconnect (seconds): Specifies the number of ThreadX ticks that
internal services will suspend for in internal nx_tcp_socket_disconnect() calls. The default

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,449 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Module Operational Overview

value is set to 10 seconds (10 * NX_IP_PERIODIC_RATE)
Server time out for receive (seconds): Specifies the number of ThreadX ticks that internal
services will suspend for in internal nx_tcp_socket_receive() calls. The default value is set to
10 seconds (10 * NX_IP_PERIODIC_RATE)
Server time out for send (seconds): Specifies the number of ThreadX ticks that internal
services will suspend for in internal nx_tcp_socket_send() calls. The default value is set to
10 seconds (10 * NX_IP_PERIODIC_RATE)
Maximum size of header field (bytes): Specifies the maximum size of the HTTP header field.
Default value is 256 bytes.
Maximum connections in queue: Specifies the number of connections that can be queued
for the HTTP Server. The default value is 4 (twice the maximum number of server sessions).
Maximum length of resource name: Specifies the length of the resource name. Default
value is 40.
Number of simultaneous sessions for server: Specifies the number of simultaneous sessions
for an HTTP or HTTPS server. A TCP socket and a TLS session (if HTTPS is enabled) are
allocated for each session. Default value is 2.
Minimum size of packets in pool (bytes): Specifies the minimum size of the packets in the
pool specified at Server creation. The minimum size is needed to ensure the complete HTTP
header can be contained in one packet. Default value is 600 bytes.
Maximum number of queued transmit packets (units): This option specifies the maximum
number of packets that can be enqueued on the Server socket re-transmission queue. If the
number of packets enqueued reaches this number, no more packets can be sent until one
or more enqueued packets are released. Default value is 20 units.
Server Socket Re-transmission Timeout (seconds): Timeout for Server socket re-
transmission. Default value is 2 seconds.
Maximum number of retries per packet: This parameter sets the maximum number of re-
transmissions on Server socket. Default value is 10.
Server Next Re-transmission timeout shift: This value is used to set the next re-transmission
timeout. The current timeout is multiplied by the number of re-transmissions thus far,
shifted by the value of the socket timeout shift. Default value is 1 for doubling the timeout

NetX Duo Web HTTP/HTTPs Server Module Properties

Name: Name of Web HTTP/HTTPs server instance. Default value is g_web_http_server0
Internal Thread stack size (bytes): HTTP Server thread stack size. Used as a parameter
while creating web HTTP Server instance. Default value is 4096 bytes
TCP listening port for HTTP/HTTPS Server: TCP listening port for secured/unsecured HTTP
server instance. Default value is 80.

Note: If user wants to start Web HTTP server in secured mode then user can set the port number
accordingly using this property. For example, user can set 443 as port number for secured HTTP
server and can set port number as 80 for unsecured HTTP server.

Name of authentication checking callback function: Application's authentication checking
routine. If specified, this routine is called for each HTTP Client request. If this parameter is
NULL, no authentication will be performed. Default value is NULL.
Name of request notify callback function: Application's request notify routine. If specified,
this routine is called prior to the HTTP server processing of the request. This allows the
resource name to be redirected or fields within a resource to be updated prior to
completing the HTTP Client request. Default value is NULL.
Name of generated initialization function: Name of initialization function under whichweb
HTTP Server instance is created. Default value is web_http_server_init0.
Auto Initialization: Enable/disable call to initialization function. This determines if the
function specified in the Name of Generated Initialization function option is called. If set to
Enable, it will invoke this function. Otherwise if set to Disable, the application must call the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,450 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > NetX Duo Web HTTP/HTTPs Server Module Operational Overview

nx_web_http_server_create() API before using any NetX Web HTTP/HTTPs Server services.

NetX Duo Web HTTP Common Configurable Properties

The common properties are listed in the following table:

Figure 474: NetX Duo Web HTTP/HTTPs Client Module Component Common Configurable Properties

Type of Service: Type of network service required for the HTTP TCP requests. The network
service can be of type (Normal, Minimum delay, Maximum data, Maximum reliability,
Minimum cost) and the default value is Normal.
Fragmentation Option: This enables/disables TCP fragmentation for HTTP client request. The
default value is Don't Fragment.
MD5 Support: This enables/disables MD5 digest support required for digest authentication.
The default value is disable.
Time to live: This specifies maximum no. of routers the HTTP packet can pass through
before it get discarded. The default is 128.
Maximum password length (bytes): This defines the maximum length of client supplied
password. The default is 20.
The Maximum username length (bytes): This defines the maximum length of client supplied
username. The default is 20.

NetX Duo Web HTTP/HTTPs Server Module Limitations

TRACE, OPTIONS, and CONNECT HTTP requests are not supported.
The HTTP Server supports both basic and MD5 digest authentication, but not MD5-sess.
No content compression is supported.
The packet pool associated with the HTTP Server must be large enough to hold the
complete HTTP header.
Request pipelining is not supported

4.3.24.4 Including the NetX Duo Web HTTP/HTTPs Server Module in an Application

This section describes how to include either or both the NetX Duo Web HTTP/HTTPs Server module in
an application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX Duo Web HTTP/HTTPs Server module to an application, simply add it to a thread
using the stacks selection sequence given in the following table.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,451 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > Including the NetX Duo Web HTTP/HTTPs Server Module in an Application

NetX Duo Web HTTP/HTTPs Server Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_web_http_server0 NetX Duo
WebHTTP/HTTPsServer

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
Web HTTP/HTTPsServer

When the NetX Duo Web HTTP/HTTPs Server module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 475: NetX Duo Web HTTP/HTTPs Server Module Stack

 In the stack above, the NetX Duo Network Driver has not been populated yet. There are multiple
possible selections for the Network Driver; they are not all provided so as not to needlessly
complicate the figure and the following configuration tables. The available options depend on the
MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

Additionally, in the stack above, the FileX stack has also not been populated yet. There are multiple
possible selections for the FileX module; they are not all provided so as not to needlessly complicate

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,452 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > Including the NetX Duo Web HTTP/HTTPs Server Module in an Application

the figure and the following configuration tables. The available options depend on the MCU target,
but some typical options include:

FileX Stub
FileX on Block Media (implemented on Block Media Framework on sf_block_media_ram)
FileX on USB Mass Storage (implemented on USBX Host Class Mass Storage)

4.3.24.5 Configuring the NetX Duo Web HTTP/HTTPs Server Module

The NetX Duo Web HTTP/HTTPs Server module must be configured by the user for the desired
operation. The SSP configuration window automatically identifies (by highlighting the block in red)
any required configuration selections, such as interrupts or operating modes, which must be
configured for lower-level modules for successful operation. Only properties that can be changed
without causing conflicts are available for modification. Other properties are locked and not available
for changes and are identified with a lock icon for the locked property in the Properties window in the
ISDE. This approach simplifies the configuration process and makes it much less error-prone than
previous manual approaches to configuration. The available configuration settings and defaults for
all the user-accessible properties are given in the Properties tab within the SSP Configurator and are
shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX Duo Web HTTP/HTTPs Server Module

ISDE Property Value Description

Parameter Checking Enable, Disable, BSP

Default: BSP

Selects if code for parameter
checking is to be included in
the build.

HTTPS Support Enable, Disable

Default: Disable

Select whether to enable HTTPS
support.

FileX Support Enable, Disable
Default: Enable

This option provides User to
select either "FileX Stub", "FileX
on USB Mass Storage" or "FileX
on Block Media"

Multipart HTTP requests
support

Enable, Disable
Default: Disable

Option enables HTTP Server to
support multipart HTTP
requests

Server Thread Priority 16 Priority of the HTTP Server
thread

Server Thread time slicing
interval (ticks)

2 Number of timer ticks the
Server thread is allowed to run
before yielding to threads of the
same priority.

Server socket window size
(bytes)

2048 Size of the Server TCP socket
receive window

Server time out (seconds) 10 Server time out selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,453 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > Configuring the NetX Duo Web HTTP/HTTPs Server Module

Server time out for accept
(seconds)

10 Server time out for accept
selection

Server time out for disconnect
(seconds)

10 Server time out for disconnect
selection

Server time out for receive
(seconds)

10 Server time out for receive
selection

Server time out for send
(seconds)

10 Server time out for send
selection

Maximum size of header field
(bytes)

256 maximum size of the HTTP
header field

Maximum connections in queue 4 Number of connections that can
be queued for the HTTP Server

Maximum length of resource
name

40 Length of the resource name

Number of simultaneous
sessions for server

2 Number of simultaneous
sessions for an HTTP or HTTPS
server. A TCP socket and a TLS
session (if HTTPS is enabled)
are allocated for each session.

Minimum size of packets in pool
(bytes)

600 Minimum size of the packets in
the pool specified at Server
creation.

Maximum number of queued
transmit packets (units)

20 Specifies the maximum number
of packets that can be
enqueued on the Server socket
re-transmission queue.

Server Socket Re-transmission
Timeout (seconds)

2 Timeout for Server socket re-
transmission

Maximum number of retries per
packet

10 Maximum number of re-
transmissions on Server socket.

Server Next Re-transmission
timeout shift

1 This value is used to set the
next re-transmission timeout.
The current timeout is
multiplied by the number of re-
transmissions thus far, shifted
by the value of the socket
timeout shift.

Name g_web_http_server0 Name of Web HTTP server
instance

Internal Thread stack size
(bytes)

4096 HTTP Server thread stack size

TCP listening port for
HTTP/HTTPS Server

80 TCP listening port for
secured/unsecured HTTP server
instance

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,454 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > Configuring the NetX Duo Web HTTP/HTTPs Server Module

Name of authentication
checking callback function

NULL Name of Authentication
Checking Function selection

Name of request notify callback
function

NULL Name of Request notify
Function selection

Name of generated initialization
function

web_http_server_init0 Name of initialization function
under which web HTTP Server
instance is created

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S5D9 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select different pins for the Ethernet peripheral. The configurable
properties for the lower-level stack modules are provided in the following sections for completeness
and as a reference.

Note
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the NetX Duo Web HTTP/HTTPs Server Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection

IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,455 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > Configuring the NetX Duo Web HTTP/HTTPs Server Module

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP cache storage units Bytes, Entries

Default: Bytes

ARP cache storage units
selection

ARP cache size (in storage
units)

520 ARP Cache Size in Bytes/Entries
selection

Note: 1 Entry = 52 Bytes

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function

Link status change callback NULL Link status change callback
selection

Note
The example settings and defaults are for a project using the Synergy S5D9 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Web HTTP Common Instance

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,456 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > Configuring the NetX Duo Web HTTP/HTTPs Server Module

ISDE Property Value Description

Type of Service Normal, Minimum delay,
Maximum data, Maximum
reliability, Minimum cost

Default: Normal

Type of service selection.

Fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Fragmentation option selection.

MD5 Support Enable, Disable

Default: Disable

MD5 support selection.

Time to live 128 Time to live selection.

Maximum password length
(bytes)

20 Maximum password length in
bytes.

Maximum username length
(bytes)

20 Maximum username length in
bytes.

Note
The example settings and defaults are for a project using the S5D9Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S5D9Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 1568 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,457 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > Configuring the NetX Duo Web HTTP/HTTPs Server Module

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S5D9Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo FileX on Block Media

ISDE Property Value Description

Name g_fx_media0 Module name

Format media during
initialization

Enable, Disable

Default: Enabled

Enabling this will format the
media

File System is on block media True, False

Default: True

Whether or not the media as
filesystem support

Volume Name Volume 1 Volume name string

Number of FATs 1 Number of FATs in the media

Directory Entries 256 Number of directory entries in
the root directory

Hidden Sectors 0 Number of sectors hidden
before this media's boot sector

Total Sectors 3751936 Total number of sectors in the
media

Bytes per Sector 512 Number of bytes per sector

Sectors per Cluster 1 Number of sectors in each
cluster

Working media memory size 512 Memory allocated for file
system

Name of generated initialization
function

fx_media_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S5D9Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX MD5 Instance

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,458 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > Configuring the NetX Duo Web HTTP/HTTPs Server Module

No configurable properties

Note
The example settings and defaults are for a project using the S5D9 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

4.3.24.6 Using the NetX Duo Web HTTP/HTTPs Server Module in an Application

Once the module has been configured and the files auto generated, the NetX Web HTTP/HTTPs
server module is ready to be used in an application. Note that the auto generated code includes the
initialization function with the name specified under the Name of generated initialization function
property. This function internally calls the nx_web_http_server_create() API to create a HTTP/HTTPs
server instance with the name specified under the Name property. Calls to this initialization function
will be enabled or disabled depending on the Auto Initialization property value. Once the server
instance is created, the typical steps in using the module in an application are:

1. Wait for valid IP address using the nx_ip_status_check API.
2. Start the Web HTTP Server.

a. If user wants to start a secured HTTP server i.e HTTPS, the application should
initialize device certificates by invoking the nx_secure_x509_certificate_initialize()
API. The application should then configure an HTTP server to use TLS for secure
HTTPS by invoking the nx_web_http_server_secure_configure() API. The application
can start HTTPS server by invoking the nx_web_http_server_start() API.

b. If user wants plain HTTP Server, application can start HTTP server by just invoking
nx_web_http_server_start() API.

3. Handle optional callbacks if registered with the HTTP Server (Authentication Check, Request
Notify, GMT set, Cache get and Invalid Username).

a. The authentication_check callback routine provides the NetX Duo Web HTTP
Server with the username, password, and realm strings associated with the
resource and return the type of authentication necessary. If this callback is set to
NULL, no authentication will be performed.

b. The request_notify routine is called prior to the HTTP server processing of the
request. This allows the resource name to be redirected or fields within a resource
to be updated prior to completing the HTTP Client request.

4. Once the HTTP/HTTPS server is started, HTTP client can send GET/PUT/POST/HEAD/DELETE
requests to the Web HTTP/HTTPS server.

5. The application should invoke nx_web_http_server_stop() to stop the server.
6. The application should invoke nx_web_http_server_delete () to delete all the resources

associated with Web HTTP server instance.

Users do not have to worry about auto-generated code. Auto-generated code is included once the
user generates the project after configuring the stack. Users only need to write the user application
code in the associated file.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,459 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo HTTP/HTTPS Web Server Framework > Using the NetX Duo Web HTTP/HTTPs Server Module in an Application

Figure 476: Flow Diagram of a Typical NetX Duo Web HTTP/HTTPs Server Module Application

4.3.25 NetX/NetX Duo SMTP Client

4.3.25.1 NetX/NetX Duo SMTP Client Introduction

The Simple Mail Transfer Protocol (SMTP) is a protocol for sending mail across networks and the
Internet and utilizes the reliable Transmission Control Protocol (TCP) services to perform its content
transfer function.

Note
Except for internal processing, the NetX Duo™ SMTP Client module is identical in the application, set-up and
running of an SMTP Client session as the NetX™ SMTP Client module. For setting up the IP instance for IPv6 in
NetX Duo, please refer to the NetX Duo User Guide for the Renesas Synergy™ Platform.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,460 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SMTP Client > NetX/NetX Duo SMTP Client Introduction

Unsupported Features

Multiple network interface has not been tested for NetX Duo in this version of SSP.

NetX/NetX Duo SMTP Client Module Features

The NetX SMTP Client API is compliant with RFC2821 "Simple Mail Transfer Protocol" and
RFC 2554 "SMTP Service Extension for Authentication."
Provides high-level APIs for:

Creating and deleting an SMTP Client
Sending mail messages

Figure 477: NetX/NetX Duo SMTP Client Module Block Diagram

Note
In the figure above, the NetX (or NetX Duo) Network Driver modules has multiple implementation options
available. See the description just after the module stack figure in Including the NetX/NetX Duo SMTP Client
Module in an Application for additional details.

4.3.25.2 NetX/NetX Duo SMTP Client Module APIs Overview

The NetX SMTP Client defines APIs for creating, deleting and sending mail. A complete list of the
available APIs, an example API call and a short description of each can be found in the following
table. A table of status return values follows the API summary table.

NetX/NetX Duo SMTP Client Module API Summary

Function Name Example API Call and Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,461 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SMTP Client > NetX/NetX Duo SMTP Client Module APIs Overview

nx_smtp_client_create nxd_smtp_client_create(&demo_client,
&client_ip,
&client_packet_pool,USERNAME,PASSWORD,
FROM_ADDRESS, LOCAL_DOMAIN,
CLIENT_AUTHENTICATION_TYPE,
server_ip_address, SERVER_PORT);
Create an SMTP Client Instance.

**nxd_smtp_client_create nxd_smtp_client_create(&demo_client,
&client_ip, client_packet_pool, USERNAME,
PASSWORD, from_address, client_domain,
authentication_type, &server_address, port);
Create an SMTP Client instance for IPv4 or IPv6
networks.

nx_smtp_client_delete nx_smtp_client_delete(&demo_client);
Delete an SMTP Client instance.

nx_smtp_mail_send nx_smtp_mail_send(&demo_client,
recipient_address,
NX_SMTP_MAIL_PRIORITY_NORMAL,
SUBJECT_LINE, MAIL_BODY, strlen(MAIL_BODY));
Create and send an SMTP Mail item.

Note
Fordetails on operation and definitions for the function data structures, typedefs, defines, API data, API structures,
and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo SMTP Client. Please refer to the NetX Duo User Guide for the
Renesas Synergy™ Platform for definition of NetX Duo specific data types.

Status Return Values

Name Description

NX_SUCCESS SMTP call successful

NX_CALLER_ERROR* Invalid caller of this service

NX_PTR_ERROR* Invalid input pointer parameter

NX_SMTP_INVALID_PARAM* Invalid non-pointer input

NX_IP_ADDRESS_ERROR* Invalid IP address type

NX_SMTP_CLIENT_NOT_INITIALIZED SMTP Client instance initialized for SMTP session

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

These are error codes which are only returned if error checking is enabled. Refer to the
NetX User Guide for the Renesas Synergy™ Platform or NetX Duo User's Guide for the
Renesas Synergy™ Platform for more details on error-checking services in NetX and NetX
Duo, respectively.

4.3.25.3 NetX/NetX Duo SMTP Client Module Operational Overview

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,462 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SMTP Client > NetX/NetX Duo SMTP Client Module Operational Overview

A NetX IP instance is created and enabled for TCP services. The SMTP Client is created with a
previously created packet pool as input, as well as information from the host, including the host's
email address, mail domain, authentication type and server IP address** (Server IPv4 Address in the
SMTP Client Module configuration table found below) and port (Server port in the SMTP Client Module
configuration table found below). Server port defaults to the well-known SMTP port 25.

Note
nx_smtp_client_create is also available in NetX Duo POP3 Client; in this case, setting the Server IPv4 Address is
correct. However, to use the SMTP Client with an IPv6 server, the application must supply an IPv6 address.

The payload of the packet pool used by the SMTP Client should be optimized to the typical SMTP
data size plus network headers (IP, TCP and physical frame). For messages exceeding that packet
payload, the SMTP Client will allocate additional packets for messages that exceed the packet
payload. In the Packet Pool Instance configuration table found below, the setting for the packet pool
payload defaults to 512 and the number of packets defaults to 16.

Note
The SMTP Client instance must have a fully qualified email address (Client Address in the SMTP Client Module
configuration table found below). A fully qualified domain name contains a local-part and a domain name,
separated by an '@' character. The domain name, which is usually the right half after the '@' symbol of the Client
address, must also be specified (Client Domain in the configuration table below). This is used in the SMTP Client
HELO and EHLO greeting to the Server.

NetX SMTP Authentication

The creation of the SMTP Client also requires setting Authentication type, Client Name and Client
Password (In the SMTP Client Module configuration table found below). Client Names can either be
fully qualified domain names or display user names.

Authentication is a way for SMTP Clients to prove their identity to the SMTP Server and have their
mail delivered as trusted users. Most commercial SMTP Servers require that Clients be
authenticated.

Typically, authentication data consists of the sender's username and password. During an
authentication challenge, the Server prompts for this information and the Client responds by sending
the requested data in encoded format. The Server decodes the data and attempts to find a match in
its user database. If found, the Server indicates the authentication is successful.

There are two flavors of authentication: basic and digest. Digest is not supported in the current NetX
SMTP Client, and will not be discussed here. Basic authentication is equivalent to the name and
password authentication described above. In SMTP basic authentication, the name and passwords
are base64 encoded. The advantage of basic authentication is its ease of implementation and
widespread use. The main disadvantage of basic authentication is name and password data is
transmitted openly in the request.

Plain Authentication

The NetX SMTP Client sends an AUTH command with the PLAIN parameter. The NetX SMTP Server
will indicate if it supports this type of authentication. If so, the Client replies with a single base64
encoded username and password message to the Server. The Server responds with a status code
indicating if the Client authentication is successful or not.

Login Authentication

The NetX SMTP Client sends an AUTH command with the LOGIN parameter. The SMTP Server will

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,463 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SMTP Client > NetX/NetX Duo SMTP Client Module Operational Overview

indicate if it supports this type of authentication and start the authentication 'challenge'. It sends a
base64 encoded prompt back to the Client which is typically "Username". The Client decodes the
prompt, and replies with a base64 encoded username. If the Server accepts the Client username, it
sends out a base64 encoded prompt for the Client password. The Client responds with a base64
encoded password. The Server will indicate if Client authentication is successful.

No Authentication

Some SMTP Servers are configured without authentication. If so, their 250 response to the Client
EHLO message will not list any authentication types. However, no authentication types listed does
not necessarily mean the Server does not require or support authentication. If the Client is
configured for PLAIN or LOGIN authentication in this situation, the NetX Client thread task will default
to PLAIN. If the Client is configured for NONE, the authentication step is skipped and the SMTP state
advances to the MAIL state.

Note that if the Client is configured for no authentication and the SMTP Server does support
authentication, the Client authentication type is switched to PLAIN.

Sending a Mail Message

After the SMTP Client is created, the SMTP Client application can start sending messages by calling
the nx_smtp_mail_send service. Each time this service is called, NetX SMTP Client creates a new TCP
connection with the SMTP server and begins an SMTP session. In this session, the Client sends a
series of commands to the SMTP Server as part of the SMTP protocol, including passing
authentication, and culminating in sending out the actual mail message. The TCP connection is then
terminated, regardless of the outcome of the SMTP session. If the mail message is successfully sent,
NX_SUCCESS is returned. If not the error code reflects either the SMTP Client error, e.g. failing
authentication, or the underlying NetX error, e.g. failing to connect to the server.

After an SMTP session, regardless of success or failure in sending out a mail message, the SMTP
Client is returned to the 'initial' state, and ready for another SMTP session (with the same SMTP
server).

NetX/NetX Duo SMTP Client Module Important Operational Notes and Limitations

NetX/NetX Duo SMTP Client Module Operational Notes

NetX SMTP Client API is compliant with RFC2821 "Simple Mail Transfer Protocol" and RFC
2554 "SMTP Service Extension for Authentication."

NetX/NetX Duo SMTP Client Module Limitations

The NetX SMTP Client does not support CRAM-MD5 digest authentication.
The NetX SMTP Client messages are limited to one recipient per mail item, and only one
mail message per TCP connection with the SMTP server.
SMTP commands VRFY, SEND, SOML, EXPN, SAML, ETRN, TURN and SIZE SMTP options are
not supported.
The SMTP Client is not mail browser ("mail user agent") which is typically used for creating
the mail message. It is a "mail transfer agent" only. It will provide the necessary processing
of the mail message body for SMTP transport as specified in RFC 2821. It does not check
the contents for correct syntax e.g. the recipient and reverse pathway. There is no
restriction what is in the mail buffer e.g. MIME data or clear text messages. Mail message
format, specified in RFC 2822 for including headers and message body is beyond the scope
of the SMTP Client API.
Refer to the "NetX™ Simple Mail Transfer Protocol (SMTP) Client User Guide for the Renesas

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,464 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SMTP Client > NetX/NetX Duo SMTP Client Module Operational Overview

Synergy™ Platform" for additional information on limitations.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.25.4 Including the NetX/NetX Duo SMTP Client Module in an Application

This section describes how to include either or both the NetX and NetX Duo SMTP Client module in an
application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo SMTP Client module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo SMTP Client Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_smtp_client0 NetX SMTP
Client

Threads New Stack> X-Ware> NetX>
Protocols> NetX SMTP Client

g_smtp_client0 NetX Duo SMTP
Client

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
SMTP Client

When the NetX and/or NetX Duo SMTP Client module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,465 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SMTP Client > Including the NetX/NetX Duo SMTP Client Module in an Application

Figure 478: NetX/NetX Duo SMTP Client Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.25.5 Configuring the NetX/NetX Duo SMTP Client Module

The NetX/NetX Duo SMTP Client module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,466 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SMTP Client > Configuring the NetX/NetX Duo SMTP Client Module

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo SMTP Client Module

ISDE Property Value Description

TCP window size (bytes) 1460 TCP window size selection

Packet allocation timeout
(seconds)

2 Packet allocation timeout
selection

TCP socket connect timeout
(seconds)

10 TCP socket connect timeout
selection

TCP socket disconnect timeout
(seconds)

5 TCP socket disconnect timeout
selection

Server greeting reply timeout 10 Server greeting reply timeout
selection

Command timeout (seconds) 10 Command timeout selection

Mail data request timeout
(seconds)

30 Mail data request timeout
selection

TCP socket send completion
timeout (seconds)

5 TCP socket send completion
timeout selection

Server challenge maximum
string length (bytes)

200 Server challenge maximum
string length selection

Maximum password length
(bytes)

20 Maximum password length
selection

Maximum username length
(bytes)

40 Maximum username length
selection

Name g_smtp_client0 Name selection

**Use server address type IPv4, IPv6

Default: IPv6

Use server address type
selection

Server IPv4 Address (use
commas for separation)

192, 168, 0, 2 Server IPv4 Address selection

**Server IPv6 Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

Server IPv6 Address selection

Server Port 25 Server Port selection

Client Name username Client Name selection

Client Password password Client Password selection

Client Address username@domain.com Client Address selection

Client Domain domain.com Client Domain selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,467 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SMTP Client > Configuring the NetX/NetX Duo SMTP Client Module

Authentication Type Login Authentication Type selection

Name of generated initialization
function

smtp_client_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

 ** Indicates properties that are only available in NetX Duo.

In some cases, settings other than the defaults for stack modules can be desirable. For example, it
might be useful to select different addresses for the Ethernet port. The configurable properties for
the lower-level stack modules are given in the following sections for completeness and as a
reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo SMTP Client Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

0,0,0,0 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,468 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SMTP Client > Configuring the NetX/NetX Duo SMTP Client Module

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,469 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SMTP Client > Configuring the NetX/NetX Duo SMTP Client Module

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 640 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo SMTP Client Module Clock Configuration

The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the
SSP configurator clock tab prior to a build, or by using the CGC interface at run-time.

NetX/NetX Duo SMTP Client Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines the peripheral signals available and the MCU pins required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,470 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SMTP Client > Configuring the NetX/NetX Duo SMTP Client Module

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.25.6 Using the NetX/NetX Duo SMTP Client Module in an Application

The steps in using the NetX/NetX Duo SMTP Client module in a typical application are:

1. Create a mail message to send with nx_smtp_mail_send.
2. Continue sending mail messages as needed.
3. When done, delete the SMTP Client when done sending messages by calling

nx_smtp_client_delete.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,471 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SMTP Client > Using the NetX/NetX Duo SMTP Client Module in an Application

Figure 479: Flow Diagram of a Typical NetX/NetX Duo SMTP Client Module Application

4.3.26 NetX/NetX Duo SNMP Agent

4.3.26.1 NetX/NetX Duo SNMP Agent Introduction

The NetX/NetX Duo SNMP Agent module provides a high-level API for implementing the SNMP agent
for the SSP architecture and is part of the NetX and NetX Duo application bundle included in the SSP
Azure RTOS integration. This module is MCU independent, so any MCU that supports NetX and NetX
Duo can implement the SNMP agent.

Note
Except for internal processing, the NetX Duo™ SNMP Agent module is identical in the application, set-up and
running of an SNMP Agent session as the NetX™ SNMP Agent module.

NetX/NetX Duo SNMP Agent Module Features

The NetX/NetX Duo SNMP Agent module is compliant with RFC1155, RFC1157, RFC1215,
RFC1901, RFC1905, RFC1906, RFC1907, RFC1908, RFC2571, RFC2572, RFC2574, RFC2575,
RFC 3414 and related RFCs.
Operates only in UDP. TCP is not supported.
Doesn't support Transport Layer Security (TLS) or Datagram Transport Layer Security
(DTLS).
The NetX/NetX Duo SNMP protocol implements SNMP Version 1, 2 and 3. The SNMPv3
implementation supports MD5 and Secure Hash Algorithm 1(SHA-1) authentication and
Data Encryption Standard (DES) encryption. This version of the NetX and NetX Duo SNMP
Agent has the following constraints:

One SNMP Agent per NetX IP Instance.
No support for RMON.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,472 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > NetX/NetX Duo SNMP Agent Introduction

SNMP v3 Inform messages are not supported
Provides a mechanism to register callbacks for handling username, get, set and getnext
when creating a SNMP agent.

Figure 480: NetX/NetX Duo SNMP Agent Module Block Diagram

Note
In the figure above, the NetX (or NetX Duo) Network Driver modules has multiple implementation options
available. See the description just after the module stack figure in Including the NetX/NetX Duo SNMP Agent
Module in an Application for additional details.

4.3.26.2 NetX/NetX Duo SNMP Agent Module APIs Overview

The NetX Duo SNMP Agent defines APIs for creating and deleting the SNMP Agent instance and
getting its messages. A complete list of the available APIs, an example API call and a short
description of each can be found in the following table. A table of status return values follows the API
summary table.

NetX/NetX Duo SNMP Agent Module API Summary (Part 1)

Function Name Example API Call and Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,473 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > NetX/NetX Duo SNMP Agent Module APIs Overview

nx_snmp_agent_authenticate_key_use (NX_SNMP_AGENT *agent_ptr,
NX_SNMP_SECURITY_KEY *key);
Register a previously created authentication key
with the SNMP Agent for SNMP Agent responses

nx_snmp_agent_auth_trap_key_use (NX_SNMP_AGENT *agent_ptr,
NX_SNMP_SECURITY_KEY *key);
Register a previously created authentication key
with the SNMP Agent for SNMP trap messages.

nx_snmp_agent_community_get (NX_SNMP_AGENT *agent_ptr, UCHAR
**community_string_ptr);
Retrieve the community string from the SNMP
manager GET or GETNEXT request. The SNMP
Agent should compare that to its own
community string (see the
nx_snmp_agent_public_string_test API
description).

nx_snmp_agent_context_engine_set (NX_SNMP_AGENT *agent_ptr, UCHAR
*context_engine, UINT context_engine_size);
Set the context engine ID of the SNMP Agent.
Must specify the size of the ID string. Only used
in SNMPv3 to identify the Agent to the SNMP
Manager.

nx_snmp_agent_context_name_set (NX_SNMP_AGENT *agent_ptr, UCHAR
*context_name, UINT context_name_size);
Set the context name of the SNMP Agent. This
string must be null terminated and the size of
the name must be specified. This name must be
known to the SNMP Manager. Only used in
SNMPv3.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,474 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > NetX/NetX Duo SNMP Agent Module APIs Overview

nx_snmp_agent_create (NX_SNMP_AGENT *agent_ptr, CHAR
*snmp_agent_name, NX_IP *ip_ptr, VOID
*stack_ptr, ULONG stack_size, NX_PACKET_POOL
*pool_ptr,
UINT (*snmp_agent_username_process)(struct
NX_SNMP_AGENT_STRUCT *agent_ptr, UCHAR
*username),
UINT (*snmp_agent_get_process)(struct
NX_SNMP_AGENT_STRUCT *agent_ptr, UCHAR
*object_requested, NX_SNMP_OBJECT_DATA
*object_data),
UINT (*snmp_agent_getnext_process)(struct
NX_SNMP_AGENT_STRUCT *agent_ptr, UCHAR
*object_requested, NX_SNMP_OBJECT_DATA
*object_data),
UINT (*snmp_agent_set_process)(struct NX_SNM
P_AGENT_STRUCT *agent_ptr, UCHAR
*object_requested, NX_SNMP_OBJECT_DATA
*object_data));
Create the SNMP Agent and set the Agent thread
task size, packet pool for transmitting SNMP
messages, and user defined callbacks for
handling GET, GETNEXT, SET and username
requests.

nx_snmp_agent_current_version_get (NX_SNMP_AGENT *agent_ptr, UINT *version);
Obtain the current version of SNMP based on the
last message received.

nx_snmp_agent_delete (NX_SNMP_AGENT *agent_ptr);
Delete the SNMP instance

nx_snmp_agent_md5_key_create (NX_SNMP_AGENT *agent_ptr, UCHAR
*password, NX_SNMP_SECURITY_KEY
*destination_key);
Create a key based on a supplied password and
SNMP Agent context engine ID using the MD5
algorithm. This key can be used for
authentication or encryption.

nx_snmp_agent_privacy_key_use (NX_SNMP_AGENT *agent_ptr,
NX_SNMP_SECURITY_KEY *key);
Register a previously created security key with
the SNMP Agent for encrypting and decrypting
SNMPv3 messages.

nx_snmp_agent_priv_trap_key_use (NX_SNMP_AGENT *agent_ptr,
NX_SNMP_SECURITY_KEY *key);
Register a previously created security key with
the SNMP Agent for encrypting SNMPv3 trap
messages.

nx_snmp_agent_private_string_set (NX_SNMP_AGENT *agent_ptr, UCHAR
*private_string);
Register a null terminated privacy string to the
SNMP Agent. Only used in SNMP1 and SNMPv2.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,475 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > NetX/NetX Duo SNMP Agent Module APIs Overview

nx_snmp_agent_private_string_test (NX_SNMP_AGENT *agent_ptr, UCHAR
*community_string, UINT *is_private);
The SNMP Agent compares the privacy string in
a SET request with the its own privacy string to
determine if the SET request will be permitted.

nx_snmp_agent_public_string_set (NX_SNMP_AGENT *agent_ptr, UCHAR
*public_string);
Register a null terminated public string to the
SNMP Agent. Only used in SNMP1 and SNMPv2.

nx_snmp_agent_public_string_test (NX_SNMP_AGENT *agent_ptr, UCHAR
*community_string, UINT *is_public);
The SNMP Agent compares the public string in a
GET or GETNEXT request with the its own public
string to determine if the request will be
permitted.

nx_snmp_agent_request_get_type_test (NX_SNMP_AGENT *agent_ptr, UINT
*is_get_type);
Determine if the last SNMP packet received was
a GET, GETNEXT, or GET_BULT_REQUEST
request type (returns TRUE) or a SET request
(returns FALSE). Intended for use in the
username callback for type of request received
and checking public or private strings in the
request message.

nx_snmp_agent_set_interface (NX_SNMP_AGENT *agent_ptr, UINT if_index);
Determine on which network interface to run the
SNMP Agent protocol. The default interface is
the primary (0) interface.

nx_snmp_agent_sha_key_create (NX_SNMP_AGENT *agent_ptr, UCHAR
*password, NX_SNMP_SECURITY_KEY
*destination_key);
Create a key based on a supplied password and
SNMP Agent context engine ID using the SHA1
algorithm. This key can be used for
authentication or encryption.

nx_snmp_agent_start (NX_SNMP_AGENT *agent_ptr);
Start the SNMP Agent thread task. This task
waits to receive SNMP messages and formulates
the response to the SNMP Manager.

nx_snmp_agent_stop (NX_SNMP_AGENT *agent_ptr);
Stop the SNMP Agent task thread. The SNMP
Agent thread can be restarted by calling the
nx_snmp_agent_start API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,476 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > NetX/NetX Duo SNMP Agent Module APIs Overview

nx_snmp_agent_trap_send (NX_SNMP_AGENT *agent_ptr, ULONG
ip_address, UCHAR * username, UCHAR
*enterprise, UINT trap_type, UINT trap_code,
ULONG elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);
Send a trap message in SNMPv1. This does not
result from a request from the SNMP Manager.
The SNMP application sends out traps as
needed.

nx_snmp_agent_trapv2_send (NX_SNMP_AGENT *agent_ptr, ULONG
ip_address, UCHAR *username, UINT trap_type,
ULONG elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);
Send a trap message in SNMPv2. This does not
result from a request from the SNMP Manager.
The SNMP application sends out traps as
needed.

nx_snmp_agent_trapv3_send (NX_SNMP_AGENT *agent_ptr, ULONG
ip_address, UCHAR * username, UINT trap_type,
ULONG elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);
Send a trap message in SNMPv3. This does not
result from a request from the SNMP Manager.
The SNMP application sends out traps as
needed. Both the SNMP agent and browser must
previously agree on the security (authentication
and encryption) settings.

nx_snmp_agent_trapv2_oid_send (NX_SNMP_AGENT *agent_ptr, ULONG
ip_address, UCHAR *username, UCHAR *oid,
ULONG elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);
Send a trap message in SNMPv2. This differs
from nx_snmp_agent_trapv2_send in that it
allows the caller to specify the OID directly.

nx_snmp_agent_trapv3_oid_send (NX_SNMP_AGENT *agent_ptr, ULONG
ip_address, UCHAR * username, UCHAR *oid,
ULONG elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);
Send a trap message in SNMPv3. This differs
from nx_snmp_agent_trapv3_send in that it
allows the caller to specify the OID directly.

nx_snmp_agent_v3_context_boots_set (NX_SNMP_AGENT *agent_ptr, UINT boots);
Set the number of times the SNMP Agent has
rebooted since the last communication with the
SNMP Manager. Used in SNMPv3 only.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,477 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > NetX/NetX Duo SNMP Agent Module APIs Overview

nx_snmp_agent_version_set (NX_SNMP_AGENT *agent_ptr, UINT enabled_v1,
UINT enable_v2, UINT enable_v3);
Determine which type of SNMP packets the
SNMP Agent will process. The application can
choose V1, V2 and/or V3. Packets received from
which the SNMP Agent is not enabled are
dropped.

**nxd_snmp_agent_trap_send (NX_SNMP_AGENT *agent_ptr, NXD_ADDRESS
*ip_address, UCHAR * username, UCHAR
*enterprise, UINT trap_type, UINT trap_code,
ULONG elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);
Send a trap message in SNMPv1 over IPv6. Note
that this takes an NXD_ADDRESS* ip_address
instead of ULONG ip_address.

**nxd _snmp_agent_trapv2_send (NX_SNMP_AGENT *agent_ptr, NXD_ADDRESS
*ip_address, UCHAR * username, UINT trap_type,
ULONG elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);
Send a trap message in SNMPv2. Note that this
takes an NXD_ADDRESS* ip_address instead of
ULONG ip_address

**nxd _snmp_agent_trapv3_send (NX_SNMP_AGENT *agent_ptr, NXD_ADDRESS
*ip_address, UCHAR *username, UINT trap_type,
ULONG elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);
Send a trap message in SNMPv3. Note that this
takes an NXD_ADDRESS* ip_address instead of
ULONG ip_address

nx_snmp_agent_trapv2_oid_send (NX_SNMP_AGENT *agent_ptr, NXD_ADDRESS
*ip_address,, UCHAR *username, UCHAR *oid,
ULONG elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);
Send a trap message in SNMPv2. Note that this
takes an NXD_ADDRESS* ip_address instead of
ULONG ip_address

**nxd _snmp_agent_trapv3_oid_send (NX_SNMP_AGENT *agent_ptr, NXD_ADDRESS
*ip_address, UCHAR * username, UCHAR *oid,
ULONG elapsed_time, NX_SNMP_TRAP_OBJECT
*object_list_ptr);
Send a trap message in SNMPv3. Note that this
takes an NXD_ADDRESS* ip_address instead of
ULONG ip_address

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API
structures, and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo SNMP Agent. Please refer to the NetX Duo User Guide for the
Renesas Synergy™ Platform for definition of NetX Duo specific data types.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,478 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > NetX/NetX Duo SNMP Agent Module APIs Overview

The following API calls are for processing data items into the SNMP Agent response.

NetX/NetX Duo SNMP Agent Module API Summary (Part 2)

Function Name Example API Call and Description

nx_snmp_object_copy (UCHAR *source_object_name, UCHAR
*destination_object_name);
This copies the string pointed to by
source_object_name into the
destination_object_name buffer (typically a trap
message).

nx_snmp_object_counter_get (VOID *source_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This extracts the counter data from the location
pointed to by source_ptr into the object data.
Also used internally to copy internal counters of
SNMPv3 statistics into error messages in
SNMPv3 messages

nx_snmp_object_counter_set (VOID *destination_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This sets the value of data extracted from the
object_data into the location pointed to by the
destination_ptr.

nx_snmp_object_counter64_get (VOID *source_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This extracts the counter data from the location
pointed to by source_ptr into the object data.
The difference with nx_snmp_objext_counter_get
is the value is two words instead of one.

nx_snmp_object_counter64_set (VOID *source_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This sets the value of data extracted from the
object_data into the location pointed to by the
destination_ptr. The difference with
nx_snmp_objext_counter_set is the value is two
words instead of one.

nx_snmp_object_compare (UCHAR *requested_object, UCHAR
*reference_object);
This compares the two input objects and if equal
returns NX_SUCCESS.

nx_snmp_object_copy (UCHAR *source_object_name, UCHAR
*destination_object_name)
This copies the data pointed to by the source
object pointer into memory pointed to by the
destination object pointer. Also used internally
to copy internal counters of SNMPv3 statistics
into error messages in SNMPv3 messages.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,479 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > NetX/NetX Duo SNMP Agent Module APIs Overview

nx_snmp_object_end_of_mib (VOID *not_used_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This appends an END_OF_MIB_VIEW macro as
the input object's value. This signals the end of
the MIB. See the snmp_mib_helper.h for an
example.

nx_snmp_object_gauge_get (VOID *source_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This sets the input object to type SNMP GAUGE
and places the value pointed to by the
source_ptr into the object value.

nx_snmp_object_gauge_set (VOID *destination_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This verifies the input object is an SNMP GAUGE
data type, and extracts the value into the
location pointed to by the destination pointer.

nx_snmp_object_id_get (VOID *source_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This function retrieves the object ID from the
specified source location and writes it into the
object data value.

nx_snmp_object_id_set (VOID *destination_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This function retrieves the ASCII string from the
input object and writes it to the area pointed to
by the destination pointer.

nx_snmp_object_integer_get (VOID *source_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This retrieves the object integer from the
specified source location and stores it to the
object data.

nx_snmp_object_integer_set (VOID *destination_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This retrieves the integer from the input object
and places it in the destination.

nx_snmp_object_ip_address_get (VOID *source_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This retrieves the IP address from the specified
source location and stores it to the object data.

nx_snmp_object_ip_address_set (VOID *destination_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This retrieves the IP address from the input
object and places it in the destination.

**nx_snmp_object_ipv6_address_get (VOID *source_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This retrieves the IPv6 address from the
specified source location and stores it to the
object data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,480 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > NetX/NetX Duo SNMP Agent Module APIs Overview

**nx_snmp_object_ipv6_address_set (VOID *destination_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This retrieves the IPv6 address from the input
object and places it in the destination.

nx_snmp_object_octet_string_get (VOID *source_ptr, NX_SNMP_OBJECT_DATA
*object_data, UINT length);
This retrieves the string data from the specified
source location and stores it to the object data.

nx_snmp_object_octet_string_set (VOID *destination_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This retrieves the string from the input object
and places it in the destination.

nx_snmp_object_no_instance (VOID *not_used_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This function places a no-instance value
(NX_SNMP_ANS1_NO_SUCH_INSTANCE) in the
object data.

nx_snmp_object_not_found (VOID *not_used_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This function places a not-found value
(NX_SNMP_ANS1_NO_SUCH_OBJECT) in the
object data.

nx_snmp_object_string_get (VOID *source_ptr, NX_SNMP_OBJECT_DATA
*object_data, UINT length);
This function retrieves the ASCII string from the
specified source location and stores it to the
object data.

nx_snmp_object_string_set (VOID *destination_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This retrieves the ASCII string from the input
object and stores it to the destination.

nx_snmp_object_timetics_get (VOID *source_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This function retrieves the data of type timer
ticks from the specified source location and
stores it to the object data.

nx_snmp_object_timetics_set (VOID *destination_ptr, NX_SNMP_OBJECT_DATA
*object_data);
This retrieves the timer tick from the input
object and stores it to the destination.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API
structures, and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo SNMP Agent. Please refer to the NetX Duo User Guide for the
Renesas Synergy™ Platform for definition of NetX Duo specific data types.

Status Return Values

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,481 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > NetX/NetX Duo SNMP Agent Module APIs Overview

Name Description

NX_SUCCESS API Call Successful

NX_PTR_ERROR* Invalid input pointer parameter

NX_SNMP_UNSUPPORTED_AUTHENTICATION* The authentication key is of an unknown or
unsupported type (for example, not MD5 or
SHA).

NX_SNMP_INVALID_PDU_ENCRYPTION* The encryption key is of an unknown or
unsupported type (for example, not MD5 or
SHA).

NX_IP_ADDRESS_ERROR* IP address supplied in a trap send API is null or
invalid.

NX_SNMP_ERROR Internal processing error e.g. not able to append
data into the SNMP response.

NX_NOT_ENABLED SNMP Agent is not enabled with the correct
security settings for certain operations such as
sending messages or processing authentication
and encryption keys.

NX_SNMP_ERROR_TOOBIG Data exceeds the size of the response buffer or
exceed the allowable size of the parameter e.g.
NX_SNMP_MAX_USER_NAME.

**NX_SNMP_INVALID_IP_PROTOCOL_ERROR An IPv6 address is received in a trap send API
but the NetX Duo library is not enabled for IPv6.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

These are error codes which are only returned if error checking is enabled. Refer to the
NetX User Guide for the Renesas Synergy™ Platform or NetX Duo User's Guide for the
Renesas Synergy™ Platform for more details on error-checking services in NetX and NetX
Duo, respectively.

4.3.26.3 NetX/NetX Duo SNMP Agent Module Operational Overview

The SNMP agent module makes use of the underlying NetX/NetX Duo stack to perform operations.
Along with the IP stack, it makes use of the NetX MD5, NetX SHA1 and NetX DES modules for
authentication and encryption in SNMP v3 operation.

The SNMP agent module can be created with the nx_snmp_agent_create API. For the implementation
of the SNMP agent, the user needs to define the handler functions for username, get, getnext, and
set operations.

NetX/NetX Duo SNMP Agent Module Important Operational Notes and Limitations

NetX/NetX Duo SNMP Agent Module Operational Notes

Disabling SNMP Version 1

The SNMP Agent module can disable processing of version 1 requests by selecting Disable in the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,482 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > NetX/NetX Duo SNMP Agent Module Operational Overview

configuration properties for the SNMP Agent for SNMP Version 1. By default, this is enabled. When
disabled, the SNMP Agent simply drops the packet with version 1, resulting in a timeout for the SNMP
manager.

Disabling SNMP Version 2

The SNMP Agent module can disable processing of version 2 requests by selecting Disable in the
configuration properties for the SNMP Agent for SNMP Version 2. By default, this is enabled. When
disabled, the SNMP Agent simply drops the packet with version 2, resulting in a timeout for the SNMP
manager.

Disabling SNMP Version 3

The SNMP Agent can disable processing of version 3 requests by selecting Disable in the
configuration properties for the SNMP Agent for SNMP Version 3. By default, this is enabled. When
disabled, the SNMP Agent simply drops the packet with version 3 resulting in a timeout for the SNMP
manager. Enabling SNMP version 3 requires MD5, SHA1 authentication and DES encryption.

NetX/NetX Duo SNMP Agent Module Limitations

One SNMP Agent per NetX IP Instance.
No support for RMON
SNMP v3 Informs are not supported
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.26.4 Including the NetX/NetX Duo SNMP Agent Module in an Application

This section describes how to include either or both the NetX and NetX Duo SNMP Agent module in
an application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo SNMP Agent module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo SNMP Agent Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_snmp_agent0 NetX SNMP
Agent

Threads New Stack> X-Ware> NetX>
Protocols> NetX SNMP Agent

g_snmp_agent0 NetX Duo SNMP
Agent

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
SNMP Agent

When the NetX and/or NetX Duo SNMP Agent module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,483 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > Including the NetX/NetX Duo SNMP Agent Module in an Application

band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 481: NetX/NetX Duo SNMP Agent Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.26.5 Configuring the NetX/NetX Duo SNMP Agent Module

The NetX/NetX Duo SNMP Agent module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,484 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > Configuring the NetX/NetX Duo SNMP Agent Module

learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo SNMP Agent Module

ISDE Property Value Description

Internal thread stack size
(bytes)

4096 Internal thread stack size
selection

SNMP agent priority 16 SNMP agent priority selection

Type of service for SNMP
responses

Normal, Minimum Delay,
Maximum Delay, Maximum
Reliability, Minimum Cost

Default: Normal

Type of service for SNMP
responses selection

Fragment enable for SNMP PDU
requests

Fragment, Don't Fragment

Default: Don't Fragment

Fragment enable for SNMP PDU
requests selection

SNMP socket time to live 128 SNMP socket time to live
selection

Agent timeout 100 Agent timeout selection

Max octet string size 255 Max octet string size selection

Max content string size 32 Max content string size
selection

Max User Name Size 64 Max user name size selection

Max security Key Size 64 Max security key size selection

Minimum SNMP packet size 560 Minimum SNMP packet size
selection (Value must be
between 560 to 1500)

UDP port number 161 UDP port number selection
(Value must be between 1 to
65535)

Trap destination port 162 Trap destination port selection

Max trap Name Size 64 Max trap Name Size selection

Max trap Key Size 64 Max trap Key Size selection

Interval between SNMP packet
processing timer ticks

100 Interval between SNMP packet
processing timer ticks selection

SNMP Version 1 Enable, Disable

Default: Enable

SNMP Version 1 selection

SNMP Version 2 Enable, Disable

Default: Enable

SNMP Version 2 selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,485 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > Configuring the NetX/NetX Duo SNMP Agent Module

SNMP Version 3 Enable, Disable

Default: Enable

SNMP Version 3 selection

Name g_snmp_agent0 Name selection

Read Community String public Read Community String
selection (Must be less than 64
chars)

Write Community String private Write Community String
selection (Must be less than 64
chars)

Name of SNMP Username
Handler

sf_snmp0_username_handler Name of SNMP Username
Handler selection

Name of SNMP GET Handler sf_snmp0_get_handler Name of SNMP GET Handler
selection

Name of SNMP GETNEXT
Handler

sf_snmp0_getnext_handler Name of SNMP GETNEXT
Handler selection

Name of SNMP SET Handler sf_snmp0_set_handler Name of SNMP SET Handler
selection

Name of generated initialization
function

snmp_agent_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto Initialization selection

SNMP agent instance id 0 SNMP agent instance id
selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for stack modules can be desirable. For example, it
might be useful to select different addresses for the Ethernet port. The configurable properties for
the lower-level stack modules are given in the following sections for completeness and as a
reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo SNMP Agent Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX/NetX Duo IP Instance

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,486 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > Configuring the NetX/NetX Duo SNMP Agent Module

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

0,0,0,0 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,487 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > Configuring the NetX/NetX Duo SNMP Agent Module

different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 640 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo MD5 Instance

ISDE Property Value Description

No configurable properties

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo DES Instance

ISDE Property Value Description

No configurable properties

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo SHA1 Instance

ISDE Property Value Description

No configurable properties

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,488 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > Configuring the NetX/NetX Duo SNMP Agent Module

Configuration Settings for the NetX/NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo SNMP Agent Module Clock Configuration

The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the
SSP configurator clock tab prior to a build, or by using the CGC interface at run-time.

NetX/NetX Duo SNMP Agent Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines the peripheral signals available and the MCU pins required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,489 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > Configuring the NetX/NetX Duo SNMP Agent Module

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.26.6 Using the NetX/NetX Duo SNMP Agent Module in an Application

The steps in using the NetX/NetX Duo SNMP Agent module in a typical application are:

1. Create an agent with nx_snmp_agent_create API
2. Define handler functions

a. username handler function nx_snmp_agent_username_process in user code
b. get handler function nx_snmp_agent_get_process in user code
c. get next handler function nx_snmp_agent_getnext_process in user code
d. set handler function nx_snmp_agent_set_process in user code

3. Create a structure to map OIDs to action handlers in user code
4. Configure read, write community strings nx_snmp_agent_public_string_set and

nx_snmp_agent_private_string_set
5. If the user wants to use SNMPv3, they must create the keys using the

nx_snmp_agent_md5_key_create API or the nx_snmp_agent_sha_key_create and associate
the keys with authentication, encryption and trap services
nx_snmp_agent_authenticate_key_use, nx_snmp_agent_privacy_key_use,
nx_snmp_agent_auth_trap_key_use and nx_snmp_agent_priv_trap_key_use

6. Start the SNMP agent using the nx_snmp_agent_start API

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,490 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > Using the NetX/NetX Duo SNMP Agent Module in an Application

Figure 482: Flow Diagram of a Typical NetX/NetX Duo SNMP Agent Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,491 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNMP Agent > Using the NetX/NetX Duo SNMP Agent Module in an Application

4.3.27 NetX/NetX Duo SNTP Client

4.3.27.1 NetX/NetX Duo SNTP Client Introduction

The Simple Network Time Protocol (SNTP) is a protocol designed for synchronizing clocks over the
Internet. SNTP Version 4 is a simplified protocol based on the Network Time Protocol (NTP) and
utilizes User Datagram Protocol (UDP) services to perform time updates in a simple, stateless
protocol. On the internet, the SNTP provides accuracies of 1-50 milliseconds, depending on the
characteristics of the synchronization source and network paths. The SNTP has many options to
provide reliability of receiving time updates. Ability to switch to alternative servers, applying back-off
polling algorithms and automatic time server discovery are just a few of the means for an SNTP
Client to handle a variable internet time service environment. What it lacks in precision it makes up
for in simplicity and ease of implementation. The SNTP is intended primarily for providing
comprehensive mechanisms to access national time and frequency dissemination for NTP Server
services.

Note
Except for internal processing, the NetX Duo™ SNTP Client is identical in the application, set up and running of an
SNTP thread as the NetX™ SNTP Client. This document will clearly identify any differences in use between the NetX
and NetX Duo SNTP Client.

Unsupported Features

Broadcast has not been tested in this version of SSP.

Multiple network interface has not been tested in this version of SSP.

NetX/NetX Duo SNTP Client Module Features

Supports the SNTP standard to obtain time over the internet
The NetX SNTP client is compliant with RFC4330 Simple Network Time Protocol (SNTP)
Version 4 for IPv4, IPv6 and OSI and related RFCs
Supports both unicast and broadcast SNTP messaging
Utilities for converting NTP time into date and time format.
Performs sanity checks for valid time reception
Support for a SNTP Client on secondary interfaces
Callbacks to be notified of receiving time updates

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,492 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNTP Client > NetX/NetX Duo SNTP Client Introduction

Figure 483: NetX/NetX Duo SNTP Client Module Block Diagram

Note
In the figure above, the NetX (or NetX Duo) Network Driver modules has multiple implementation options
available. See the description just after the module stack figure in Including the NetX/NetX Duo SNTP Client
Module in an Application for additional details.

4.3.27.2 NetX/NetX Duo SNTP Client Module APIs Overview

The NetX SNTP Client module defines APIs for creating, deleting, generating response packets,
response sending and getting information from a received packet. A complete list of the available
APIs, an example API call and a short description of each can be found in the following table. A table
of status return values follows the API summary table.

NetX/NetX Duo SNTP Client Module API Summary

Function Name Example API Call and Description

nx_sntp_client_create nx_sntp_client_create(&demo_client,
iface_index,&client_ip,
&client_packet_pool, leap_second_handler,
kiss_of_death_handler,NULL // no
random_number_generator callback);
This service creates an SNTP Client instance.

nx_sntp_client_delete nx_sntp_client_delete(&demo_client);
Delete the SNTP Client.

nx_sntp_client_get_local_time nx_sntp_client_get_local_time(&demo_client,
&base_seconds,&base_milliseconds, NX_NULL);
Get SNTP Client local time.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,493 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNTP Client > NetX/NetX Duo SNTP Client Module APIs Overview

nx_sntp_client_initialize_broadcast nx_sntp_client_initialize_broadcast(&demo_client
,0x0, NX_NULL, IP_ADDRESS(192,2,2,255);
Initialize Client for IPv4 broadcast operation.

**nxd_sntp_client_initialize_broadcast nxd_sntp_client_initialize_broadcast(&demo_clie
nt,0x0, NX_NULL, &broadcast_server)
Initialize Client for IPv6 or IPv4 broadcast
operation.

nx_sntp_client_initialize_unicast nx_sntp_client_initialize_unicast(&demo_client,
IP_ADDRESS(192,2,2,1));
Initialize Client for IPv4 unicast operation.

**nxd_sntp_client_initialize_unicast nxd_sntp_client_initialize_unicast(&demo_client,
*unicast_server);
Initialize Client for IPv4 or IPv6 unicast operation.

nx_sntp_client_receiving_updates nx_sntp_client_receiving_updates(&demo_client,
&receive_status);
Client is currently receiving valid SNTP updates.

nx_sntp_client_request_unicast_time nx_sntp_client_request_unicast_time(&demo_clie
nt, 400);
Send a request asynchronously to NTP server.

nx_sntp_client_run_broadcast nx_sntp_client_run_broadcast(&demo_client);
Receive time updates from server.

nx_sntp_client_run_unicast nx_sntp_client_run_unicast(&demo_client);
Send requests and receive time updates from
server.

nx_sntp_client_set_local_time nx_sntp_client_set_local_time(&demo_client,
base_seconds, base_fraction);
Set SNTP Client initial local time.

nx_sntp_client_set_time_update_notify nx_sntp_client_set_time_update_notify(&demo_cl
ient, time_update_cb);
Sets callback to notify the application when the
SNTP Client receives a valid time update.

nx_sntp_client_stop nx_sntp_client_stop(&demo_client);
Stop the SNTP Client thread.

nx_sntp_client_utility_display_date_and_time nx_sntp_client_utility_display_date_time(&demo_
client, buffer, sizeof(buffer));
Display NTP time in date and time format

nx_sntp_client_utililty_msecs_to_fraction nx_sntp_client_utility_msecs_to_fraction(millisec
onds, &fraction);
Convert milliseconds to NTP fraction component.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API
structures, and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo SNTP Client. Please refer to the NetX Duo User Guide for the
Renesas Synergy™ Platform for definition of NetX Duo specific data types.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,494 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNTP Client > NetX/NetX Duo SNTP Client Module APIs Overview

Status Return Values

Name Description

NX_SUCCESS API Call Successful

NX_SNTP_INSUFFICIENT_PACKET_PAYLOAD Invalid non-pointer input

NX_PTR_ERROR ** Invalid pointer input

NX_CALLER_ERROR** Invalid caller of service

NX_INVALID_INTERFACE Invalid network interface

NX_INVALID_PARAMETERS Invalid non-pointer input

NX_SNTP_PARAM_ERROR Invalid non-pointer input

NX_SNTP_CLIENT_NOT_STARTED SNTP Client not running

NX_SNTP_CLIENT_ALREADY_STARTED Client already running

NX_SNTP_CLIENT_NOT_INITIALIZED Client not initialized

NX_SNTP_ERROR_CONVERTING_DATETIME NX_SNTP_CURRENT_YEAR not defined or no local
time established

NX_SNTP_INVALID_DATETIME_BUFFER Insufficient buffer length

NX_SNTP_OVERFLOW_ERROR Error converting time to a date

NX_SNTP_INVALID_TIME Invalid SNTP data input

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

These are error codes which are only returned if error checking is enabled. Refer to the
NetX User Guide for the Renesas Synergy™ Platform or NetX Duo User's Guide for the
Renesas Synergy™ Platform for more details on error-checking services in NetX and NetX
Duo, respectively.

4.3.27.3 NetX/NetX Duo SNTP Client Module Operational Overview

The NetX/NetX Duo SNTP Client module creates an IP instance and packet pool. In addition, the UDP
is enabled on that IP instance and a UDP socket is created and bound to the well-known port 123 for
sending time update requests to and receiving time data from an SNTP Server, although alternative
ports will work as well. Broadcast clients should bind the UDP port when their broadcast server is
sending on, usually 123. The NetX/NetX Duo SNTP Client application requires a server address to
initialize a SNTP Client thread task for either unicast or broadcast operations.

The NetX/NetX Duo SNTP Client can operate in one of two basic modes, unicast or broadcast, to
obtain time over the internet. In unicast mode, the Client polls its SNTP Server on regular intervals
and waits to receive a reply from that server. When one is received, the client verifies that the reply
contains a valid time update by applying a set of sanity checks recommended by RFC 4330. The
client then applies the time difference locally, if there is a time difference between the server clock
and the local clock. In broadcast mode, the client merely listens for time update broadcasts and
maintains its local clock after applying a similar set of sanity checks to verify the update time data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,495 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNTP Client > NetX/NetX Duo SNTP Client Module Operational Overview

Before the client can run in either mode, the application can get an estimate of the absolute time. In
NTP, that means the number of seconds since Jan 1, 1970 at midnight. For example:

 base_seconds = 0xd2c96b90; /* This is the number of seconds since

1970

 on Jan 24, 2012 UTC */

 base_fraction = 0xa132db1e; /* between 0-1 seconds, not so critical */

It is not required, but if this time is registered with the SNTP Client (using the
nx_sntp_client_set_local_time service), it gives the SNTP Client a means to gauge if the first received
time update is reasonably accurate. NTP time keepers are more accurate than all but the most
demanding time-based applications, but there is the need to check for invalid or rogue SNTP
packets. If obtaining this baseline time is not possible, and no local time is set before starting the
SNTP Client, the SNTP Client will accept the time updates at face value.

Now the application can prepare the SNTP Client for receiving time updates. This is done by calling
either nx_sntp_client_initialize_unicast, or nx_sntp_client_initialize_broadcast for unicast or broadcast
modes. (These are limited to IPv4 networks only.) If using the NetX Duo SNTP Client Module,
nxd_sntp_client_initialize_broadcast and nxd_sntp_client_initialize_unicast are available services
which support both IPv4 and IPv6 networks. If these initialization service calls succeed, the
application can start the SNTP Client by calling the nx_sntp_client_run_broadcast or
nx_sntp_client_run_unicast services.

The application can set the following parameters to fine-tune SNTP Client operation:

The maximum time adjustment to make the local clock, which is the Maximum time
adjustment allowed to local clock time (milliseconds) property. If there is no notion of local
time, the Ignore maximum time adjust limit at startup property can be enabled to skip this
check on the first time update.
The unicast polling rate which is the Starting poll interval for unicast update request
(seconds) property. This is the rate at which the SNTP Client polls the NTP time server for an
update if running in unicast mode.
The maximum allowed interval between time requests sent to the server, which is the
Maximum time lapse without valid update (seconds) property. If a time request goes
unanswered, the SNTP Client doubles the polling interval up to this maximum interval.
The maximum number of invalid SNTP packets received from a server before marking the
server invalid, which is the Invalid message limit to mark server invalid property.

If these limits are exceeded, the SNTP Client continues to run but sets the current SNTP Server status
to invalid. The application can call the nx_sntp_client_receiving_updates service periodically to check
for valid server status. If this service indicates no updates received, the application should stop the
SNTP Client thread using the nx_sntp_client_stop service and use another SNTP Server. To restart
the SNTP Client, call either of the two initialize services, nx_sntp_client_initialize_broadcast or
nx_sntp_client_initialize_unicast for IPv4 networks (or nxd_sntp_client_initialize_broadcast or
nxd_sntp_client_initialize_unicast), then restart the SNTP Client with the
nx_sntp_client_run_broadcast or nx_sntp_client_run_unicast services.

Additional details on the topics of local clock operation, SNTP sanity checks, and SNTP asynchronous
and unicast requests are described in detail in the NetX Simple Network Time Protocol (SNTP) Client
User Guide for the Renesas Synergy™ Platform document described in the introduction to this
document.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,496 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNTP Client > NetX/NetX Duo SNTP Client Module Operational Overview

NetX/NetX Duo SNTP Client Module Important Operational Notes and Limitations

NetX/NetX Duo SNTP Client Module Operational Notes

The application can be notified of time updates if it registers a callback with the SNTP
Client. To do so, use the _nx_sntp_client_set_time_update_notify service to specify the
callback.
Once the SNTP Client begins receiving time updates, the application can query the SNTP
Client for status on time updates. It can receive the NTP time directly using the
nx_sntp_client_get_local_time service, or it can receive a formatted date time output using
the _nx_sntp_client_utility_display_date_time service. In the latter case, the application
must set the Current calendar year property of the SNTP Client module for SNTP Client to
process NTP time data correctly.
RFC 4330 recommends that SNTP clients should operate only at the highest stratum of their
local network and preferably in configurations where no NTP or SNTP Client is dependent on
them for synchronization. Stratum level reflects the host position in the NTP time hierarchy
where stratum 1 is the highest level (a root time server) and 15 is the lowest allowed level
(per client). The SNTP Client default minimum stratum is 2.

NetX/NetX Duo SNTP Client Module Limitations

Precision in local time representation in NTP time updates handled by the SNTP Client API is
limited to millisecond resolution.
The NetX/NetX Duo SNTP Client only holds a single SNTP Server address at any time. If that
server appears to be no longer valid, the application must stop the SNTP Client task and
reinitialize it with another SNTP server address, using either broadcast or unicast SNTP
communication.
The NetX/NetX Duo SNTP Client does not support many cast.
The NetX/NetX Duo SNTP Client does not support authentication mechanisms for verifying
received packet data.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.27.4 Including the NetX/NetX Duo SNTP Client Module in an Application

This section describes how to include either or both the NetX and NetX Duo SNTP Client module in an
application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo SNTP Client module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo SNTP Client Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sntp_client0 NetX SNTP Client Threads New Stack> X-Ware> NetX>
Protocols> NetX SNTP Client

g_sntp_client0 NetX Duo SNTP
Client

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
SNTP Client

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,497 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNTP Client > Including the NetX/NetX Duo SNTP Client Module in an Application

When the NetX and/or NetX Duo SNTP Client module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 484: NetX/NetX Duo SNTP Client Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.27.5 Configuring the NetX/NetX Duo SNTP Client Module

The NetX/NetX Duo SNTP Client module must be configured by the user for the desired operation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,498 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNTP Client > Configuring the NetX/NetX Duo SNTP Client Module

The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo SNTP Client Module

ISDE Property Value Description

Internal thread stack size
(bytes)

2048 Internal thread stack size
selection

SNTP client thread time slicing
interval (ticks)

TX_NO_TIME_SLICE SNTP client thread time slicing
interval selection

Internal thread priority 2 Internal thread priority
selection

UDP socket name SNTP Client socket UDP socket name selection

UDP port number 123 UDP port number selection

Server UDP port 123 Server UPD port selection

Time to live 128 Time to live selection

Maximum UDP packets queue
depth (units)

5 Maximum UDP packets queue
depth selection

Packet allocation timeout
(seconds)

1 Packet allocation timeout
selection

SNTP version to use 3 SNTP version to use selection

NTP minimum version 3 NTP minimum version selection

Lowest level server stratum
client accepts

2 Lowest level server stratum
client accepts selection

Minimum time difference that
triggers adjustment
(milliseconds)

10 Minimum time difference that
triggers adjustment selection

Maximum time adjustment
allowed to local clock time
(milliseconds)

180000 Maximum time adjustment
allowed to local clock time
selection

Ignore maximum time adjust
limit at startup

True, False

Default: True

Ignore maximum time adjust
limit at startup selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,499 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNTP Client > Configuring the NetX/NetX Duo SNTP Client Module

Maximum time lapse without
valid update (seconds)

7200 Maximum time lapse without
valid update selection

Update time remaining timer
update interval (seconds)

1 Update time remaining timer
update interval selection

Starting poll interval for unicast
update request (seconds)

3600 Starting poll interval for unicast
update request selection

Poll interval increment after
failed time update

2 Poll interval increment after
failed time update selection

Calculate round trip time of
messages

True, False

Default: False

Calculate round trip time of
messages selection

**Maximum server clock
inaccuracy to accept (to disable
set to 0)

50000 Maximum server clock
inaccuracy to accept selection

Invalid message limit to mark
server invalid

3 Invalid message limit to mark
server invalid selection

Randomize update request
interval on startup

True, False

Default: False

Randomize update request
interval on startup selection

Internal Task sleep interval
(ticks)

1 Internal task sleep interval
selection

Current calendar year 2016 Current calendar year selection

Name g_sntp_client0 Module name

Index to SNTP Network
Interface

0 Index to SNTP network interface
selection

Name of Leap Second Handler leap_second_handler Name of leap second handler
selection

Name of Kiss of Death Handler kiss_of_death_handler Name of kiss of death handler
selection

Name of Random Number
Generator Function (optional)

NULL Name of random number
generator function selection

Name of generated initialization
function

sntp_client_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

In some cases, settings other than the defaults for stack modules can be desirable. For example, it

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,500 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNTP Client > Configuring the NetX/NetX Duo SNTP Client Module

might be useful to select different addresses for the Ethernet port. The configurable properties for
the lower-level stack modules are given in the following sections for completeness and as a
reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo SNTP Client Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

0,0,0,0 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,501 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNTP Client > Configuring the NetX/NetX Duo SNTP Client Module

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 640 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,502 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNTP Client > Configuring the NetX/NetX Duo SNTP Client Module

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo SNTP Client Module Clock Configuration

The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the
SSP configurator clock tab prior to a build, or by using the CGC interface at run-time.

NetX/NetX Duo SNTP Client Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines the peripheral signals available and the MCU pins required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,503 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNTP Client > Configuring the NetX/NetX Duo SNTP Client Module

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.27.6 Using the NetX/NetX Duo SNTP Client Module in an Application

The steps in using the NetX/NetX Duo SNTP Client module in a typical application are:

1. Wait for a valid IP address using the nx_ip_status_check API.
2. Set the mode for access to the SNTP Server with nx_sntp_client_initialize_unicast or

nx_sntp_client_initialize_broadcast API, or if using NetX Duo
nxd_sntp_client_initialize_unicast or nxd_sntp_client_initialize_broadcast API.

3. Set the local time with the nx_sntp_client_set_local_time API (optional).
4. Run the client using the nx_sntp_client_run_unicast or nx_sntp_client_run_broadcast API.
5. Check if the SNTP is valid and running with the nx_sntp_client_receiving_updates API

(recommended).
6. Get the local time with the nx_sntp_client_get_local_time API or get the local time in date

time format with the nx_sntp_client_utility_display_date_time API (optional).
7. Stop the SNTP service with the nx_sntp_client_stop API.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,504 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo SNTP Client > Using the NetX/NetX Duo SNTP Client Module in an Application

Figure 485: Flow Diagram of a Typical NetX/NetX Duo SNTP Client Module Application

4.3.28 NetX/NetX Duo POP3 Client

4.3.28.1 NetX/NetX Duo POP3 Client Introduction

The Post Office Protocol Version 3 (POP3) is a protocol designed to provide a mail transport system
for small workstations to access Client maildrops on POP3 Servers. The POP3 utilizes Transmission

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,505 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > NetX/NetX Duo POP3 Client Introduction

Control Protocol (TCP) services to perform mail transfers.

Client mail is stored on a POP3 Server in a mailbox or "maildrop." A maildrop is represented as a
1-based array of mail items where each mail is retrieved and deleted using its index in the maildrop.
Once a mail message is downloaded, the Client typically marks the mail item for deletion in the
Server's maildrop (the Server will probably do this automatically anyway). When finished retrieving
mail items, the application should delete the POP3 Client instance and close the TCP connection. To
retrieve the mail again, another POP3 Client must be created.

Note
Except where noted, the NetX Duo POP3 Client module is identical in the application, set up and running of a
POP3 session as the NetX POP3 Client module. For setting up the IP instance for IPv6 in NetX Duo, please refer
to the NetX Duo User Guide for the Renesas Synergy™ Platform.

NetX/NetX Duo POP3 Client Module Features

NetX Client POP3 is compliant with RFC 1939.
Provides high-level APIs to:

Create and delete POP3 Client instances
Query for number and size of mail messages to receive
Receive individual mail messages
Remove mail messages from the Server maildrop box

Figure 486: NetX/NetX Duo POP3 Client Module Block Diagram

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,506 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > NetX/NetX Duo POP3 Client Introduction

Note
In the figure above, the NetX (or NetX Duo) Network Driver modules has multiple implementation options
available. See the description just after the module stack figure in Including the NetX/NetX Duo POP3 Client
Module in an Application for additional details.

4.3.28.2 NetX/NetX Duo POP3 Client Module APIs Overview

The NetX POP3 Client defines APIs for creating and deleting the POP3 instance and getting its
messages. A complete list of the available APIs, an example API call and a short description of each
can be found in the following table.

NetX/NetX Duo POP3 Client Module API Summary

Function Name Example API Call and Description

nx_pop3_client_create nx_pop3_client_create(&demo_client,
NX_FALSE ⁄* disable APOP authentication *⁄,
&client_ip, &client_packet_pool,
POP3_SERVER_ADDRESS, POP3_SERVER_PORT,
LOCALHOST, LOCALHOST_PASSWORD);
Create a POP3 Client Instance for IPv4 only.

**nxd_pop3_client_create nxd_pop3_client_create(&demo_client,
NX_FALSE ⁄* disable APOP authentication *⁄,
&client_ip, &client_packet_pool,
*server_ip_address,
ULONG server_port,
CHAR *client_name, CHAR *client_password);
Create a POP3 Client Instance for either IPv4 or
IPv6

nx_pop3_client_delete nx_pop3_client_delete (&demo_client);
Delete a POP3 Client Instance

nx_pop3_client_mail_item_delete nx_pop3_client_mail_item_delete(&demo_client,
item_index);
Delete a Client mail item for a Server maildrop.

nx_pop3_client_mail_item_get nx_pop3_client_mail_item_get (&demo_client, 1,
&item_size);
Retrieve a specific mail message size.

nx_pop3_client_mail_items_get nx_pop3_client_mail_item_get (&demo_client, 1,
&number_mail_items,
&maildrop_total_size);
Obtain the number of mail items in a maildrop.

nx_pop3_client_mail_item_message_get nx_pop3_client_mail_item_message_get
(&demo_client, &recv_packet_ptr,
&bytes_retrieved, &final_packet);
Download a specific mail message.

nx_pop3_client_mail_item_size_get nx_pop3_client_mail_item_size_get
(&demo_client, mail_item, &size);
Obtain the size of a specific mail item.

nx_pop3_client_quit nx_pop3_client_quit(&demo_client);
Sends a QUIT command to the POP3 server.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,507 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > NetX/NetX Duo POP3 Client Module APIs Overview

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API structures
and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo POP3 Client. For definitions of of NetX Duo specific data
types, see the NetX Duo User Guide for the Renesas Synergy™ Platform.

Status Return Values

Name Description

NX_SUCCESS API Call Successful

NX_PTR_ERROR* Invalid input pointer parameter

NX_POP3_CLIENT_INVALID_INDEX* Null mail index input

NX_POP3_PARAM_ERROR Invalid non-pointer input

NX_POP3_APOP_FAILED_MD5_DIGEST POP3 Client failed APOP authentication

NX_POP3_INVALID_MAIL_ITEM Invalid mail item index (exceeds number of
items in the maildrop box)

NX_POP3_INSUFFICIENT_PACKET_PAYLOAD Client packet payload too small for POP3 request

NX_POP3_SERVER_ERROR_STATUS Server replies with error status

NX_POP3_CLIENT_INVALID_STATE Client not initialized to receive mail messages

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API structures
and function variables, review the associated Azure RTOS User's Manual in the References section.

*These are error codes which are only returned if error checking is enabled. Please refer to the NetX
User Guide for the Renesas Synergy™ Platform for more details on error checking services in NetX.

4.3.28.3 NetX/NetX Duo POP3 Client Module Operational Overview

The POP3 protocol requires that Clients maintain the state of the POP3 session. The POP3 Client has
three distinct states defined by RFC 1939. The initial state is the authorization state in which it must
identify itself to the Server. Then the Client enters the Transaction state where the Client downloads
mail. When the POP3 Client chooses to end the session, it enters the Update state to disconnect from
the Server.

The NetX POP3 Client requires a previously created NetX IP instance and a packet pool to send POP3
messages to the Server. The NetX POP3 Client needs the packet pool for sending out POP3
messages. It can use the same packet pool used by the IP instance or NetX can create a separate
packet pool. POP3 Client messages to the Server are limited to simple POP3 commands and login
authentication data. This means that if the NetX POP3 Client is using its own packet pool, it need not
set the payload size much greater than 150-200 bytes, depending on the length of POP3 Client
username and password. Note that the packet pool used by the IP instance, however, must have a
payload large enough for receiving POP3 mail data up to the device MTU (typically 1518 bytes).

Because the NetX POP3 Client utilizes TCP services, the TCP must be enabled on the IP instance.

NetX/NetX Duo POP3 Client Module Important Operational Notes and Limitations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,508 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > NetX/NetX Duo POP3 Client Module Operational Overview

NetX/NetX Duo POP3 Client Module Operational Notes

The NetX Client POP3 is compliant with RFC 1939.

The auto generated Synergy code takes care of these tasks at startup/initialization. IP instance and
packet pool creation, as well as enabling TCP services, is done automatically.

The POP3 Client property Auto initialization defaults to Disable. You must not enable this property,
because the auto generated code will try to connect to the server during initialization before the
network link is enabled, and fail. This in turn will abort the application initialization.

So with Auto initialization disabled, the application handles connecting to the Server and retrieving
its mail.

The following properties are necessary for connecting to the Server:

APOP authentication: defaults to Disable. This enables username and password to be
exchanged in encrypted text and is recommended to avoid exposing this data.
Server port number: defaults to 110, as recommended in RFC 1939, but can be any value.
Server_IPv4 Address: This is the server to connect to if using IPv4 connections
Server_IPv6 Address: This is the server to connect to if using IPv6 connections
User server address type: set to IPv4 or IPv6 depending on which your application will use
Client Name: user name to identify the POP3 client to the server
Client Password: password which has been previously agreed to if the server requires one

However, because of the structure of the POP3 Client, setting these properties are not accessible to
the application. Your application must connect to the server using the nx_pop3_client_create API
and input these properties directly.

UINT nx_pop3_client_create(NX_POP3_CLIENT *client_ptr,

 UINT APOP_authentication, NX_IP *ip_ptr,

 NX_PACKET_POOL *packet_pool_ptr,

 ULONG server_ip_address,

 ULONG server_port,

 CHAR *client_name,

 CHAR *client_password)

For most applications a typical call might look like:

Status = nx_pop3_client_create(&g_pop3_client0, NX_TRUE, &g_ip0,

 &g_packet_pool0, /* If sharing IP packet pool */

 IP_ADDRESS(192,168,0,2,

 110,

 "myusername",

 "mypassword")

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,509 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > NetX/NetX Duo POP3 Client Module Operational Overview

For NetX Duo, the ULONG server_ip_address is replaced by a pointer to an NXD_ADDRESS type:

NXD_ADDRESS server_address;

server_address.nxd_ip_version = NX_IP_VERSION_IPv4; /* e.g. 4 */

/* If the local IP address is 192.168.0.2, use the IP_ADDRESS macro to convert to a

ULONG */

server_address.nxd_ip_address.v4 = IP_ADDRESS(192,168,0,);

status = nxd_pop3_client_create(&g_pop3_client0, NX_TRUE, &g_ip0,

 &g_packet_pool0, /* If sharing IP packet pool */

 &server_address,

 110,

 "myusername",

 "mypassword")

This function creates the POP3 Client instance, creates a TCP socket and binds to a local TCP port.
Then it attempts to connect to the POP3 Server TCP socket. If this is successful, then it
authenticates itself with the user password to the server. More details on POP3 authentication are
described later in this section. If all goes well, the POP3 Client is now ready to get its mail.

The application can query the server for how many mail items are in its inbox with the
nx_pop3_client*_*mail_items_get API. This will also return the total number of bytes of mail
messages, although this should be taken as an estimate. The application can further query the size
of each mail item, using the nx_pop3_client_mail_item_size_get API, and again this should be taken
as an estimate as the actual size might vary somewhat. Note that the first mail item in the maildrop
is at index 1, not zero.

To actually download the mail item, the application indicates to the server which mail item it wants
to receive using the nx_pop3_client_get_mail_item service, specifying the index of the mail item.
This will also return the mail item size but now the POP3 client can get the message text by calling
nx_pop3_client_mail_item_get_message_data. This API will receive one packet at a time. So the
application must call it one or more times until the last packet containing the message is received.
The Server will indicate the last packet to the Client in the final_packet pointer as shown below:

 /* Find out how many items are in our mailbox. */

 status = nx_pop3_client_mail_items_get(&demo_client, &number_mail_items,

 &total_size);

 mail_item = 1;

 /* Download all mail items. */

 while (mail_item <= number_mail_items)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,510 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > NetX/NetX Duo POP3 Client Module Operational Overview

 {

 /* Submit a request for the next mail item. */

 status = nx_pop3_client_mail_item_get(&demo_client, mail_item,

 &mail_item_size);

 /* Loop to get the next mail message until it is completely downloaded. */

 do

 {

 status = nx_pop3_client_mail_item_message_get(&demo_client, &packet_ptr,

 &bytes_retrieved,

&final_packet);

 /* Determine if this is the last data packet. */

 if (final_packet)

 status = nx_pop3_client_mail_item_delete(&demo_client, mail_item);

 } while (final_packet == NX_FALSE);

 /* Get the next mail item. */

 mail_item++;

 }

After receiving each packet, the application should copy the packet data to a buffer and release the
packet back to the packet pool (not shown above). This prevents depleting the packet pool used to
receive packets. After downloading a message, it is common practice to mark the mail item for
deletion. To do so, the application calls nx_pop3_client_mail_item_delete with the index of the mail
item to delete.

When done downloading mail items, the Client quits the session by calling nx_pop3_client_quit. This
terminates the TCP session. If no longer using POP3, the application can delete the TCP socket by
calling nx_pop3_client_delete. If no other tasks are using the POP3 Client packet pool, the
application can delete the packet pool using the nx_packet_pool_delete service.

POP3 Authentication

After the TCP connection is established, a POP3 client needs to identify itself to the POP3 server
through authentication to access its mailbox. Authentication is accomplished by sending the server a
username and password. The username is typically a fully qualified domain name (contains a local
part and a domain name, separated by an '@' character.

To enable APOP Authentication, set the APOP Authentication input in the
nx_pop3_client_create/nxd_pop3_client_create API to NX_TRUE (or nxd_pop3_client_create API in
NetX Duo). APOP Authentication creates an MD5 digest of user name/password supplied to the
nx_pop3_client_create/nxd_pop3_client_create call and avoids the security risk of transmitting

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,511 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > NetX/NetX Duo POP3 Client Module Operational Overview

username and password in clear text. If APOP authentication fails, the NetX POP3 Client will attempt
to login using the username and password without encryption.

NetX/NetX Duo POP3 Client Module Limitations

The NetX POP3 Client does not support the AUTH command but does support APOP
authentication using DIGEST MD5.
NetX POP3 Client does not implement all POP3 commands (for example, the TOP or UIDL
commands).
See the most recent SSP Release Notes for any additional operational limitations for this
module.

4.3.28.4 Including the NetX/NetX Duo POP3 Client Module in an Application

This section describes how to include either or both the NetX and NetX Duo POP3 Client module in an
application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo POP3 Client module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo POP3 Client Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_pop3_client0 NetX POP3
Client

Threads New Stack> X-Ware> NetX>
Protocols> NetX POP3 Client

g_pop3_client0 NetX POP3
Client

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
POP3 Client

When the NetX and/or NetX Duo POP3 Client module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,512 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > Including the NetX/NetX Duo POP3 Client Module in an Application

Figure 487: NetX/NetX Duo POP3 Client Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.28.5 Configuring the NetX/NetX Duo POP3 Client Module

The NetX/NetX Duo POP3 Client module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,513 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > Configuring the NetX/NetX Duo POP3 Client Module

You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo POP3 Client Module

ISDE Property Value Description

Maximum buffer size to store
messages (bytes)

2000 Maximum buffer size to store
messages selection

Packet time out (seconds) 1 Packet time out selection

Connection time out (seconds) 30 Connection time out selection

Disconnect time out (seconds) 2 Disconnect time out selection

TCP socket send wait (seconds) 2 TCP socket send wait selection

Server reply timeout (seconds) 10 Server reply timeout selection

TCP window size (bytes) 1460 TCP window size selection

Maximum user name length
(bytes)

40 Maximum user name length
selection

Maximum password length
(bytes)

20 Maximum password length
selection

Name g_pop3_client0 Module name

APOP Authentication Enable, Disable

Default: Disable

Apop authentication selection

**Use server address type IPv4, IPv6

Default: IPv6

Use server address type
selection

Server IPv4 Address (use
commas for separation)

192, 168, 0, 2 Server IPv4 Address selection

**Server IPv6 Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

Server IPv6 Address selection

Server Port number 110 Server Port number selection

Client Name username@domain.com Client name selection

Client Password password Client password selection

Auto initialization Enable, Disable

Default: Disable

Auto initialization selection

Name of generalized
initialization function

pop3_client_init0 Name of generalized
initialization function selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,514 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > Configuring the NetX/NetX Duo POP3 Client Module

** Indicates properties that are only available in NetX Duo.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select different MAC or IP Addresses. The configurable properties for
the lower-level stack modules are provided in the following sections for completeness and as a
reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo POP3 Client Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,515 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > Configuring the NetX/NetX Duo POP3 Client Module

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function

Link status change callback NULL Link status change callback
selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 640 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,516 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > Configuring the NetX/NetX Duo POP3 Client Module

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX MD5 Instance

ISDE Property Value Description

No configurable properties

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo POP3 Client Module Clock Configuration

The ETHERC peripheral module uses the PCLKA as its clock source. The PCLKA frequency is set using
the SSP configurator Clock tab prior to a build or by using the CGC interface at run-time.

NetX/NetX Duo POP3 Client Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,517 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > Configuring the NetX/NetX Duo POP3 Client Module

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.28.6 Using the NetX/NetX Duo POP3 Client Module in an Application

The steps in using the NetX and NetX Duo BSD Support module in a typical application are:

Step 1. Wait for the network link to be enabled with the nx_ip_status_check API.

Step 2. Create the POP3 Client using nx_pop3_client_create API (nxd_pop3_client_create in NetX Duo
POP3 Client).

Step 3. Send a request to the POP3 Server for the number of mail items in mailbox with the
nx_pop3_client_mail_items_get API.

Step 4. Assuming there are one or more items in the POP3 Client maildrop, send a request to the
POP3 Server one or all of them by calling the nx_pop3_client_mail_item_get API.

Step 5. After each call to nx_pop3_client_mail_item_get, download the actual mail message data
using the nx_pop3_client_mail_message_get API.

Step 6. Copy the packet data into a separate buffer and release the receive packet(s) using the
nx_packet_release API [Strongly recommended to avoid packet pool depletion]

Step 7. Check if this is the last packet of the message: the final_packet pointer input of
nx_pop3_client_mail_message_get will be TRUE if it is the last packet.

If FALSE, call nx_pop3_client_mail_message_get again. If TRUE, go on to step 8.

Step 8. Mark the current mail item for deletion using the nx_pop3_client_mail_item_delete API. This
will send a DELE message to the server for it to delete the mail item at some later time.

Step 9. Check if there are more mail items to download. If yes, get the next mail item by calling

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,518 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo POP3 Client > Using the NetX/NetX Duo POP3 Client Module in an Application

nx_pop3_client_mail_item_get. If no, go on to step 10.

Step 10. Send a QUIT message to the Server with the nx_pop3_client_delete API

Step 11. Delete the POP3 instance by calling nx_pop3_client_delete API.

The following figure illustrates common steps in a typical operational flow diagram:

Figure 488: Flow Diagram of a Typical NetX/NetX Duo POP3 Client Module Application

4.3.29 NetX/NetX Duo Telnet Client

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,519 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Client > NetX and NetX Duo Telnet Client Introduction

4.3.29.1 NetX and NetX Duo Telnet Client Introduction

The Telnet Protocol (Telnet) protocol is designed for transferring commands and responses between
two nodes on the Internet. Telnet is a simple protocol that utilizes reliable Transmission Control
Protocol (TCP) services to perform its transfer function. The NetX™ Telnet Client provides a high-
level API for applications wishing to implement a Telnet Client.

Note
Except for internal processing, the NetX Duo™ Telnet Client is nearly identical in the application, set up and
running a Telnet session as the NetX™ Telnet Client (except where noted).

Unsupported Features

Multi-thread support has not been tested in this version of SSP.

NetX and NetX Duo Telnet Client Module Features

The NetX™ Telnet Client Module is compliant with RFC854 and related RFCs
Provides high-level APIs to:

Create and delete a Telnet Client instance
Connect and disconnect a Telnet Client instance
Send to and receive packets from a Telnet Server
Support multi-thread operation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,520 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Client > NetX and NetX Duo Telnet Client Introduction

Figure 489: NetX and NetX Duo Telnet Client Module Block Diagram

Note
In the figure above, the NetX (or NetX Duo) Network Driver module has multiple implementation options available.
See the description just after the module stack figure in Including the NetX and NetX Duo Telnet Client Module in
an Application for additional details.

4.3.29.2 NetX and NetX Duo Telnet Client Module APIs Overview

The NetX™ Telnet Client Module defines APIs for creating, deleting, connecting, disconnecting,
receiving and sending telnet communications. A complete list of the available APIs, an example API
call and a short description of each can be found in the following table. A table of status return
values follows the API summary table.

NetX and NetX Duo Telnet Client Module API Summary

Function Name Example API Call and Description

nx_telnet_client_connect nx_telnet_client_connect(&g_telnet_client0,
server_ip_address, server_port,
NX_WAIT_FOREVER);
Connect a Telnet Server. Supports only IPv4.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,521 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Client > NetX and NetX Duo Telnet Client Module APIs Overview

**nxd_telnet_client_connect nxd_telnet_client_connect(&g_telnet_client0,
&server_ip_address_v6, server_port,
NX_WAIT_FOREVER);
Connect to a Telnet Server. Supports IPv4 and
IPv6.

nx_telnet_client_create nx_telnet_client_create(&g_telnet_client0,
"Telnet Client", &g_ip0, 1024);
Create a Telnet Client.

nx_telnet_client_delete nx_telnet_client_delete(&g_telnet_client0);
Delete a Telnet Client.

nx_telnet_client_disconnect nx_telnet_client_disconnect(&g_telnet_client0,
NX_WAIT_FOREVER);
Disconnect from the Telnet Server (IPv4 or IPv6).

nx_telnet_client_packet_receive nx_telnet_client_packet_receive(&g_telnet_client
0, &packet_ptr, NX_WAIT_FOREVER);
Receive packet from the Telnet Server.

nx_telnet_client_packet_send nx_telnet_client_packet_send(&g_telnet_client0,
packet_ptr, NX_WAIT_FOREVER);
Send packet to the Telnet Server (IPv4 or IPv6).

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API structures
and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo Telnet Client. For definitions of NetX Duo specific data types,
see the NetX Duo User Guide for the Renesas Synergy™ Platform.

Status Return Values

Name Description

NX_SUCCESS API Call Successful

NX_TELNET_ERROR Error while creating TCP socket as part of
creating the Telnet Client instance

NX_TELNET_NOT_CONNECTED Client not disconnected

NX_TELNET_NOT_DISCONNECTED Client socket is not in closed state (cannot make
a TCP connection; cannot delete the Telnet
Client if the socket is still connected).

NX_TELNET_INVALID_PARAMETER* Invalid non-pointer input to Telnet Client create

NX_PTR_ERROR* Invalid pointer input

NX_IP_ADDRESS_ERROR* Invalid IP address to connect to Telnet Server

NX_CALLER_ERROR* Invalid caller of this service

Note
Lower-level drivers may return common error codes. See SSP User's Manual API References for the associated
module for a definition of all relevant status return values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,522 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Client > NetX and NetX Duo Telnet Client Module APIs Overview

*These error codes are only returned if error checking is enabled. Please refer to the NetX Duo User
Guide for the Renesas Synergy™ Platform for more details on error checking services in NetX Duo.

4.3.29.3 NetX and NetX Duo Telnet Client Module Operational Overview

In the NetX™ Telnet Client Module, the IP thread task for NetX™ is created and runs, the Telnet
Client is created and the TCP socket for connecting to the Telnet Server is ready for use
automatically. The Telnet Client connects to the server by calling the nx_telnet_client_connect API.
(This API is available in NetX Duo™ Telnet and is limited to IPv4 TCP connections. In NetX Duo™, the
application can also use the nxd_telnet_client_connect which supports both IPv4 and IPv6.) If that
succeeds, then the Telnet Client should wait to receive a Server 'banner' announcing itself using the
nx_telnet_client_packet_receive API. Thereafter the Telnet Client can create packets with single
characters of data using the nx_packet_allocate and nx_packet_data_append API. These packets are
sent to the Telnet Server by calling the nx_telnet_client_packet_send API.

For a more complete description of the NetX™ Telnet Client and NetX Duo™ Telnet Client operations,
refer to the associated User Guides found in the Synergy Gallery, under the SSP Documentation tab
as "Azure RTOS and NetX™ Component Documentation for Renesas Synergy". Open the zip file and
navigate to the related User Guides for detailed descriptions. This document provides only an
introduction to component operations. Module selection, configuration, and example uses are
described in detail in the following sections.

NetX and NetX Duo Telnet Client Module Important Operational Notes and Limitations

NetX and NetX Duo Telnet Client Module Operational Notes

The NetX Duo™ Telnet Client Module services can be called from multiple threads
simultaneously. However, read or write requests for a particular Telnet Client instance
should be done in sequence from the same thread.

NetX and NetX Duo Telnet Client Module Limitations

The Telnet Client does not support Telnet negotiation or send IAC and command code
sequences.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.29.4 Including the NetX and NetX Duo Telnet Client Module in an Application

This section describes how to include either or both the NetX and NetX Duo Telnet Client module in
an application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX and NetX Duo Telnet Client module to an application, simply add it to a thread using
the stacks selection sequence given in the following table.

NetX and NetX Duo Telnet Client Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,523 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Client > Including the NetX and NetX Duo Telnet Client Module in an Application

g_telnet_client0 NetX™ Telnet
Client

Threads New Stack> X-Ware> NetX™>
Protocols> NetX™ Telnet Client

g_telnet_client0 NetX Duo™
Telnet Client

Threads New Stack> X-Ware> NetX
Duo™> Protocols> NetX Duo™
Telnet Client

When the NetX and/or NetX Duo Telnet Client module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 490: NetX and NetX Duo Telnet Client Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,524 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Client > Including the NetX and NetX Duo Telnet Client Module in an Application

all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.29.5 Configuring the NetX and NetX Duo Telnet Client Module

The NetX and NetX Duo Telnet Client module must be configured by the user for the desired
operation. The SSP configuration window automatically identifies (by highlighting the block in red)
any required configuration selections, such as interrupts or operating modes, which must be
configured for lower-level modules for successful operation. Only properties that can be changed
without causing conflicts are available for modification. Other properties are locked and not available
for changes and are identified with a lock icon for the locked property in the Properties window in the
ISDE. This approach simplifies the configuration process and makes it much less error-prone than
previous manual approaches to configuration. The available configuration settings and defaults for
all the user-accessible properties are given in the Properties tab within the SSP Configurator and are
shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX and NetX Duo Telnet Client Module

ISDE Property Value Description

Name g_telnet_client0 Module name

TCP Socket Window Size in
Bytes

1024 TCP socket window size
selection

Name of generated initialization
function

telnet_client_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select different IP addresses and subnet masks. The configurable
properties for the lower-level stack modules are provided in the following sections for completeness
and as a reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the NetX and NetX Duo Telnet Client Lower-Level Modules

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,525 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Client > Configuring the NetX and NetX Duo Telnet Client Module

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX and NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,526 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Client > Configuring the NetX and NetX Duo Telnet Client Module

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function

Link status change callback NULL Link status change callback
selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX and NetX Duo Telnet Common Instance

ISDE Property Value Description

Type of Service for UDP
requests

Normal, Minimum delay,
Maximum data, Maximum
reliability, Minimum cost

Default: Normal

Type of service UDP requests
selection

Fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Fragment option selection

Server TCP port number 23 Server TCP port number
selection

Time to live 128 Time to live selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX and NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,527 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Client > Configuring the NetX and NetX Duo Telnet Client Module

different default values and available configuration settings.

Configuration Settings for the NetX and NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 640 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX and NetX Duo Telnet Client Module Clock Configuration

The ETHERC peripheral module uses the PCLKA as its clock source. The PCLKA frequency is set using
the SSP configurator Clock tab prior to a build or by using the CGC interface at run-time.

NetX and NetX Duo Telnet Client Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin Selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,528 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Client > Configuring the NetX and NetX Duo Telnet Client Module

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.29.6 Using the NetX and NetX Duo Telnet Client Module in an Application

The NetX™ Telnet Client Module does not need the usual initialization by an application. A
configurator generates initialization process. The user application only needs Telnet communication
processing.

The steps in using the NetX and NetX Duo Telnet Client module in a typical application are:

1. Use the nx_ip_status_check API to check that the IP instance is initialized and the application can
start using NetX™ services.

2. Connect to the Telnet Server via the nx_telnet_client_connect API. (Note: For NetX Duo™ the
preferred API is nxd_telnet_client_connect).

3. Receive the Telnet Server welcome banner using nx_telnet_client_packet_receive API [Optional]

4. Create a packet to send with the nx_packet_allocate and nx_packet_data_append APIs.

5. Send the packet using the nx_telnet_client_packet_send API

6. Receive the Server's response packet using the nx_telnet_client_receive API.

7. Disconnect communication using the nx_telnet_client_disconnect API

8. Delete the instance using the nx_telnet_client_delete API when done sending and receiving.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,529 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Client > Using the NetX and NetX Duo Telnet Client Module in an Application

The following figure illustrates common steps in a typical operational flow diagram:

Figure 491: Flow Diagram of a Typical NetX and NetX Duo Telnet Client Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,530 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Server

4.3.30 NetX/NetX Duo Telnet Server

4.3.30.1 NetX and NetX Duo Telnet Server Introduction

The Telnet Protocol (Telnet) is a protocol designed for transferring commands and responses
between two nodes on the internet. Telnet is a simple protocol that utilizes reliable Transmission
Control Protocol (TCP) services to perform its transfer function.

Note
Except for internal processing, the NetX Duo™ Telnet Server is nearly identical in the application, setup and
running of a Telnet session as the NetX™ Telnet Server (except where noted).

Unsupported Features

Telnet Option Negotiation has not been tested for NetX Duo Telnet Server in this version of SSP

NetX and NetX Duo Telnet Server Module Features

The NetX Telnet Server module is compliant with RFC854 and related RFCs.
Provides high-level APIs to:

Support multi-thread operation
Support callbacks for common functions
Authentication
New Connection
Receive Data
End Connection

Supports some option negotiation
Echo
Suppress Go Ahead

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,531 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Server > NetX and NetX Duo Telnet Server Introduction

Figure 492: NetX and NetX Duo Telnet Server Module Block Diagram

Note
In the figure above, the NetX (or NetX Duo) Network Driver module has multiple implementation options available.
See the description just after the module stack figure in Including the NetX and NetX Duo Telnet Server Module in
an Application for additional details.

4.3.30.2 NetX and NetX Duo Telnet Server Module APIs Overview

The NetX Telnet Server module defines APIs for creating, deleting, sending packets, starting and
stopping. A complete list of the available APIs, an example API call and a short description of each
can be found in the following table. A table of status return values follows the API summary table.

NetX and NetX Duo Telnet Server Module API Summary

Function Name Example API Call and Description

nx_telnet_server_create nx_telnet_server_create(&my_server, "Telnet
Server", &ip_0,pointer, 2048,
telnet_new_connection, telnet_receive_data,
telnet_connection_end);
Create a Telnet Server.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,532 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Server > NetX and NetX Duo Telnet Server Module APIs Overview

nx_telnet_server_delete nx_telnet_server_delete(&my_server);
Delete a Telnet Server.

nx_telnet_server_disconnect nx_telnet_server_disconnect(&my_server, 2);
Disconnect the Telnet Client specified by the
client list index (2nd input).

nx_telnet_server_get_open_connection_count nx_telnet_server_get_open_connection_count(&
my_server, &conn_count);
Retrieve the number of open connections.

nx_telnet_server_packet_send nx_telnet_server_packet_send(&my_server, 2,
my_packet, 100);
Send packet to Telnet Client specified by client
list index (second input).

nx_telnet_packet_pool_set nx_telnet_server_packet_pool_set(&my_server,
&telnet_server_packet_pool);
Set packet pool as Telnet Server packet pool.

nx_telnet_server_start nx_telnet_server_start(&my_server);
Start theTelnet Server.

nx_telnet_server_stop nx_telnet_server_stop(&my_server);
Stop the Telnet Server.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API structures
and function variables, review the associated Azure RTOS User's Manual in the References section.

Status Return Values

Name Description

NX_SUCCESS Successful telnet function

NX_PTR_ERROR* Invalid Server, IP, stack, or application callback
pointers

NX_CALLER_ERROR* Invalid caller of this service

NX_OPTION_ERROR* Invalid logical connection

NX_IP_ADDRESS_ERROR* Invalid IP address

NX_TELNET_FAILED Server packet send failed

NX_TELNET_NO_PACKET_POOL Cannot start Telnet Server, no packet pool
available

NX_TELNET_NOT_CONNECTED Cannot disconnect Telnet Server because it is
not connected

NX_TELNET_NOT_DISCONNECTED Cannot connect or delete Telnet Server because
it is not disconnected

Note
Lower-level drivers may return common error codes. See SSP User's Manual API References for the associated
module for a definition of all relevant status return values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,533 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Server > NetX and NetX Duo Telnet Server Module APIs Overview

*These error codes are only returned if error checking is enabled. Please refer to the NetX Duo User
Guide for the Renesas Synergy™ Platform for more details on error checking services in NetX Duo.

4.3.30.3 NetX and NetX Duo Telnet Server Module Operational Overview

The NetX Telnet package requires that a NetX IP instance has already been created. In addition, TCP
must be enabled on that same IP instance. The Telnet Client portion of the NetX Telnet package has
no further requirements. It also requires complete access to TCP well-known port 23 for handling all
Telnet Client requests. The Telnet Server keeps a list of client connections and uses an index into
this list to specify certain clients when needed. The size of this list is set in the Maximum clients to
server simultaneously property.

The Telnet Server can be enabled for limited Option negotiation with the Telnet Client. To enable this
feature, set the Option negotiation to enable. If this feature is enabled, the Telnet Server needs a
packet pool. The application can set the packet payload and number of packets; packet_size_inthe
pool and Totalpacket_pool_sizeProperties, respectively and let the Telnet Server create the packet
pool. When the Telnet Server is deleted, the packet pool is deleted with it.

Alternatively, it can create the packet pool directly and be set as the Telnet Server packet pool by 1)
enabling Use application packet pool or by 2) creating the packet pool by calling the
NetXnx_packet_pool_create API and 3) setting the packet pool in the Telnet Server using the
nx_telnet_server_packet_pool_set API. When the Telnet Server is deleted, the application must delete
the packet pool directly (nx_packet_pool_delete API).

Telnet New Connection Callback

The NetX Telnet Server calls the new connection callback function when a new Telnet Client request
is received. The callback function is set in the NetX Telnet Server Name of Client Connect Callback
Function property. Actions of the new connection callback include sending a banner or prompt to the
client. It could also include a prompt for login information if authentication is required. The second
argument of the new connection callback specifies the client is connecting.

Telnet Receive Data Callback

The NetX Telnet Server Module calls the data received callback function when a new Telnet Client
data is received. The second input of the callback is an index into the Telnet Server's list of clients
so the Telnet Server knows which client wants to disconnect. The callback function is set in the Name
of Receive Data Callback Function property. Typical actions of the receive data callback include
echoing the data back and/or parsing the data and providing data because of interpreting a
command from the client.

Note
This callback routine must release the received packet.

Telnet End Connection Callback

The NetX Telnet Server calls the end connection callback function when it receives a Telnet Client
disconnect request. The second input of the callback is an index into the Telnet Server's list of clients
so the Telnet Server knows which Client wants to disconnect. The callback function is set in the
Name of Client Disconnect Callback Function property. Typical actions of the end connection callback
include cleaning up resources used for the Telnet Client session.

Telnet Option Negotiation

Upon making a connection with the Telnet Client, the Telnet Server will send out this set of Telnet

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,534 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Server > NetX and NetX Duo Telnet Server Module Operational Overview

options to the client if it has not received option requests from the client:

will echo

don't echo

will sga

When it receives Telnet data from the client, the Telnet Server checks if the first byte is the IAC
(Interpret as Command) code; if so, it will process all the options in the client packet. Options not in
the list above are not supported and will be ignored.

NetX and NetX Duo Telnet Server Module Important Operational Notes and Limitations

NetX and NetX Duo Telnet Server Module Operational Notes

For the connect callback, the application can use any packet pool it has created or the IP
default packet pool. If nx_telnet_server_packet_send fails, the callback must release that
packet.
The number of active client connections can be obtained at any time by calling the
nx_telnet_server_get_open_connection_count API.
The Telnet Server thread task periodically checks the time remaining on each client
connection inactivity timeout. If the timeout has expired, the client connection is dropped.
To set the length of the inactivity timeout, set the value of the Client inactivity timeout
property of the Telnet Server to the desired value. The interval that the Telnet Server
thread task checks the inactivity timeout is the Timeout check period property; this must be
less than the client inactivity timeout.
The Telnet Server can be stopped using the nx_telnet_server_stop API and restarted using
the nx_telnet_server_start API. When the Telnet Server is stopped, all client connections
are dropped and the server stops listening on the Telnet port.
Deleting the Telnet Server is like stopping the Telnet Server, but additionally releases all
resources used for the Telnet Server; timer, thread, TCP socket and if created by the Telnet
Server, the Telnet Packet pool.
The interpretation and response to Telnet Client commands, indicated by a byte with the
value of 255, is the responsibility of the application.

NetX and NetX Duo Telnet Server Module Limitations

The NetX Telnet Server supports only a limited set of Telnet Option commands.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.30.4 Including the NetX and NetX Duo Telnet Server Module in an Application

This section describes how to include either or both the NetX and NetX Duo Telnet Server module in
an application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX and NetX Duo Telnet Server module to an application, simply add it to a thread
using the stacks selection sequence given in the following table.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,535 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Server > Including the NetX and NetX Duo Telnet Server Module in an Application

NetX and NetX Duo Telnet Server Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_telnet_server0 NetX Telnet
Server

Threads New Stack> X-Ware> NetX>
Protocols> NetX Telnet Server

g_telnet_server0 NetX Duo
Telnet Server

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
Telnet Server

When the NetX and/or NetX Duo Telnet Server module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 493: NetX and NetX Duo Telnet Server Module Stack

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,536 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Server > Including the NetX and NetX Duo Telnet Server Module in an Application

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.30.5 Configuring the NetX and NetX Duo Telnet Server Module

The NetX and NetX Duo Telnet Server module must be configured by the user for the desired
operation. The SSP configuration window automatically identifies (by highlighting the block in red)
any required configuration selections, such as interrupts or operating modes, which must be
configured for lower-level modules for successful operation. Only properties that can be changed
without causing conflicts are available for modification. Other properties are locked and not available
for changes and are identified with a lock icon for the locked property in the Properties window in the
ISDE. This approach simplifies the configuration process and makes it much less error-prone than
previous manual approaches to configuration. The available configuration settings and defaults for
all the user-accessible properties are given in the Properties tab within the SSP Configurator and are
shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX and NetX Duo Telnet Server Module

ISDE Property Value Description

Internal thread priority 16 Internal thread priority
selection

Maximum clients to serve
simultaneously

4 Maximum clients to serve
simultaneously selection

Socket window size (bytes) 2048 Socket window size (bytes)
selection

Server time out (seconds) 10 Server time out (seconds)
selection

Client inactivity timeout
(seconds)

600 Client inactivity timeout
(seconds) selection

Timeout check period (seconds) 60 Timeout check period (seconds)
selection

Option negotiation Enable, Disable

Default: Enable

Option negotiation selection

Use application packet pool Enable, Disable

Default: Disable

Use application packet pool
selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,537 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Server > Configuring the NetX and NetX Duo Telnet Server Module

Packet size in the pool (bytes) 300 Packet size in the pool (bytes)
selection

Total packet pool size (bytes) 2048 Total packet pool size (bytes)
selection

Name g_telnet_server0 Name selection

Internal thread stack size
(bytes)

2048 Internal thread stack size
(bytes) selection

Name of Client Connect
Callback Function

telnet_client_connect Name of Client Connect
Callback Function selection

Name of Receive Data Callback
Function

telnet_receive_data Name of Receive Data Callback
Function selection

Name of Client Disconnect
Callback Function

telnet_client_disconnect Name of Client Disconnect
Callback Function selection

Name of generated initialization
function

telnet_server_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select different IP addresses and subnet masks. The configurable
properties for the lower-level stack modules are provided in the following sections for completeness
and as a reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the NetX and NetX Duo Telnet Server Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX and NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,538 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Server > Configuring the NetX and NetX Duo Telnet Server Module

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function

Link status change callback NULL Link status change callback
selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,539 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Server > Configuring the NetX and NetX Duo Telnet Server Module

Configuration Settings for the NetX and NetX Duo Telnet Common Instance

ISDE Property Value Description

Type of Service for UDP
requests

Normal, Minimum delay,
Maximum data, Maximum
reliability, Minimum cost

Default: Normal

Type of service UDP requests
selection

Fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Fragment option selection

Server TCP port number 23 Server TCP port number
selection

Time to live 128 Time to live selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX and NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX and NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 640 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,540 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Server > Configuring the NetX and NetX Duo Telnet Server Module

The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX and NetX Duo Telnet Server Module Clock Configuration

The ETHERC peripheral module uses the PCLKA as its clock source. The PCLKA frequency is set using
the SSP configurator Clock tab prior to a build or by using the CGC interface at run-time.

NetX and NetX Duo Telnet Server Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin Selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,541 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Server > Configuring the NetX and NetX Duo Telnet Server Module

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.30.6 Using the NetX and NetX Duo Telnet Server Module in an Application

The steps in using the NetX and NetX Duo Telnet Server module in a typical application are:

1. Use the nx_ip_status_check API to check that the IP instance can communicate.

2. Configure the Telnet Server to do option negotiation [optional].

3. If options negotiation is enabled, configure the Telnet Server to create its own packet pool
(default) or set the Telnet Server pool from the application.

4. Start the Telnet Server using the nx_telnet_server_start API.

5. Process client requests with the callbacks specified at build time.

6. Delete the Telnet Server when done.

7. If the Telnet Server packet pool was created by the application, it can be deleted if not in use by
other threads.

The NetX Telnet Server module application needs to execute response processing in the registered
callback function. Typically, in callback processing, the content of the received packet is confirmed
and data content is transmitted with the nx_telnet_server_packet_send API. When disconnection of
communication is required from the server side, call the nx_telnet_server_disconnect API.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,542 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo Telnet Server > Using the NetX and NetX Duo Telnet Server Module in an Application

Figure 494: Flow Diagram of a Typical NetX and NetX Duo Telnet Server Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,543 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Client

4.3.31 NetX/NetX Duo TFTP Client

4.3.31.1 NetX/NetX Duo TFTP Client Introduction

The Trivial File Transfer Protocol (TFTP) is a lightweight protocol designed for file transfers over UDP.
Unlike more robust TCP based protocols, TFTP does not perform extensive error checking and can
have limited performance because it is a stop-and-wait protocol. After a TFTP data packet is sent, the
sender waits for an ACK to be returned by the recipient. Although this is simple, it does limit the
overall TFTP throughput. The TFTP Server utilizes the well-known UDP port 69 to listen for client
requests. TFTP Clients may use any available UDP port. Data packets are 512 bytes, until the last
packet. A packet containing fewer than 512 bytes signals the end of file.

Note
Except where noted, the NetX Duo TFT Client is identical in application set up and running of a TFTP session as
the NetX TFTP Client. For setting up the IP instance for IPv6 in NetX Duo, please refer to the NetX Duo User
Guide for the Renesas Synergy™ Platform.

Unsupported Features

Multi-thread support has not been tested in this version of SSP.

NetX/NetX Duo TFTP Client Module Features

The NetX TFTP Client Module is compliant with RFC 1350 and related RFCs.
High level APIs for:

Creating and deleting a TFTP client
Reading and writing files to TFTP recipient (server)
Set network interface for TFTP Client to run on

Figure 495: NetX/NetX Duo TFTP Client Module Block Diagram

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,544 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Client > NetX/NetX Duo TFTP Client Introduction

Note
In the figure above, the NetX (or NetX Duo) Network Driver module has multiple implementation options available.
See the description just after the module stack figure in Including the NetX/NetX Duo TFTP Client Module in an
Application for additional details.

4.3.31.2 NetX/NetX Duo TFTP Client Module APIs Overview

The NetX/NetX Duo TFTP Client module defines APIs for creating and starting the TFTP Client.
Internally, the TFTP Client handles all communication with the TFTP Server to transfer files. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

NetX/NetX Duo TFTP Client Module API Summary

Function Name Example API Call and Description

nx_tftp_client_file_open nx_tftp_client_file_open(&g_tftp_client0,
"test.txt", server_ip_address,
NX_TFTP_OPEN_FOR_READ, NX_WAIT_FOREVER);
Open TFTP client file (IPv4 only).

nxd_tftp_client_file_open** nxd_tftp_client_file_open(&g_tftp_client0,
"test.txt", &server_ip_address_v6,
NX_TFTP_OPEN_FOR_READ, NX_WAIT_FOREVER,
NX_IP_VERSION_V6);
Open TFTP client file. Can be IPv4 type or IPv6

nx_tftp_client_create nx_tftp_client_create(&g_tftp_client0, "TFTP
Client", &g_ip0, &g_packet_pool0);
Create a TFTP client instance

nxd_tftp_client_create** nx_tftp_client_create(&g_tftp_client0,
"g_tftp_client0 TFTP Client", &g_ip0,
&g_packet_pool0, NX_IP_VERSION_V6);
Create a TFTP client instance.

nx_tftp_client_delete nx_tftp_client_delete(&g_tftp_client0);
Delete a TFTP client instance.

nxd_tftp_client_delete** nxd_tftp_client_delete(&g_tftp_client0);
Delete a TFTP client instance.

nx_tftp_client_error_info_get nx_tftp_client_error_info_get(&g_tftp_client0,
&error_code, &error_string);
Get client error information.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API structures
and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo TFTP Client. For definitions of NetX Duo specific data types,
see the NetX Duo User Guide for the Renesas Synergy™ Platform.

Status Return Values

Name Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,545 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Client > NetX/NetX Duo TFTP Client Module APIs Overview

NX_SUCCESS Successful TFTP create

NX_PTR_ERROR* Invalid IP, pool, or TFTP pointer

NX_CALLER_ERROR * Invalid caller of this service

NX_TFTP_NOT_CLOSED Cannot open file; Client already has file open

NX_TFTP_CODE_ERROR Error status received from TFTP server

NX_INVALID_TFTP_SERVER_ADDRESS Invalid server address received

NX_TFTP_FAILED Unknown code received from Server

NX_TFTP_NO_ACK_RECEIVED No ACK received from server on read or write

NX_TFTP_INVALID_BLOCK_NUMBER Block of data in TFTP server ACK does not match
TFTP Client after read or write request.

NX_TFTP_NOT_OPEN TFTP client not in the open state for file read or
write

NX_IP_ADDRESS_ERROR* Invalid Server IP address

NX_OPTION_ERROR* Invalid open type

NX_INVALID_TFTP_SERVER_ADDRESS Invalid server address received

NX_TFTP_END_OF_FILE End of file detected (not an error) during file
download (read) transfer

NX_TFTP_TIMEOUT Timeout waiting for Server ACK of write request

NX_TFTP_INVALID_INTERFACE* Invalid interface input

Note
Lower-level drivers may return common error codes. See SSP User's Manual API References for the associated
module for a definition of all relevant status return values.

*These error codes are only returned if error checking is enabled. Please refer to the NetX Duo User
Guide for the Renesas Synergy™ Platform for more details on error checking services in NetX Duo.

4.3.31.3 NetX/NetX Duo TFTP Client Module Operational Overview

In the NetX/NetX Duo TFTP Client module, the client is automatically created and the UDP socket is
created for sending and receiving TFTP packets. In a TFTP Client application, the TFTP Client first
'opens' a file. If the Server returns an acknowledgment, the Client can then request a file transfer for
either reading (receiving from) or writing (sending to) the TFTP Server. After each file transfer the
TFTP Client closes the file.

A TFTP Server listens for Client requests on the well-known port 69. The TFTP Client socket can bind
to any port. When transferring a file in TFTP, the amount of data that added to a packet can only be
512 bytes, unless there is less than 512 bytes left to send. A packet containing fewer than 512 bytes
signals the end of file. The general sequence of events is as follows:

TFTP Read File Requests:

1. Client issues an "Open for Read" request with the file name and waits for the Server
response.

2. Server sends the first 512 bytes of the file as 'block number 1'

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,546 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Client > NetX/NetX Duo TFTP Client Module Operational Overview

3. Client receives the data, sends an ACK specifying block number is '1' , and waits for the
next packet.

4. The Server sends the rest of the data incrementing the block number each time, and the
Client ACKs sends an ACK with the corresponding block number each time.

5. The sequence ends when the last packet containing fewer than 512 bytes is received.
nx_tftp_client_file_read returns NX_TFTP_END_OF_FILE when the last packet of a file transfer
is received.

TFTP Write Requests:

1. Client issues an "Open for Write" request with the file name and waits for an ACK with a
block number of 0 from the Server.

2. The Server sends an ACK with a block number of zero.
3. Client sends the first 512 bytes of the file to the Server and waits for an ACK.
4. Server sends ACK after the bytes are written.
5. The sequence ends when the Client completes sends a packet containing fewer than 512

bytes.

NetX/NetX Duo TFTP Client Module Important Operational Notes and Limitations

NetX/NetX Duo TFTP Client Module Operational Notes

If nx_tftp_client_file_read returns NX_SUCCESS, the caller must release the packet after it is
done with it.
If nx_tftp_client_file_write returns NX_TFTP_NOT_OPEN, the caller must release the packet.
In all other cases NetX or NetX TFTP Client Module will release the packet.
For file data, any data can be used. The NetX TFTP Client Module does not make any
changes to send or receive data.
The NetX TFTP Client Module is compliant with RFC 1350 and related RFCs.

NetX/NetX Duo TFTP Client Module Limitations

The line feed code of the text file cannot be changed; this must be processed by the user
application.
The NetX TFTP Client Module services can be called from multiple threads simultaneously.
However, read or write requests for a particular client instance should be done in sequence
from the same thread.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.31.4 Including the NetX/NetX Duo TFTP Client Module in an Application

This section describes how to include either or both the NetX and NetX Duo TFTP Client module in an
application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX/NetX Duo TFTP Client module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX/NetX Duo TFTP Client Module Selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,547 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Client > Including the NetX/NetX Duo TFTP Client Module in an Application

Resource ISDE Tab Stacks Selection Sequence

g_tftp0 NetXTFTP Client Threads New Stack> X-Ware> NetX>
Protocols> NetXTFTP Client

g_tftp0 NetX Duo TFTP Client Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
TFTP Client

When the NetX and/or NetX Duo TFTP Client module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 496: NetX/NetX Duo TFTP Client Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,548 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Client > Including the NetX/NetX Duo TFTP Client Module in an Application

NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.31.5 Configuring the NetX/NetX Duo TFTP Client Module

The NetX/NetX Duo TFTP Client module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX/NetX Duo TFTP Client Module

ISDE Property Value Description

Source port to use NX_ANY_PORT Source port to use selection

Name g_tftp_client0 Module name

Name of generated initialization
function

tftp_client_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select different pins for the Ethernet peripheral. The configurable
properties for the lower-level stack modules are provided in the following sections for completeness
and as a reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the NetX/NetX Duo TFTP Client Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,549 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Client > Configuring the NetX/NetX Duo TFTP Client Module

Configuration Settings for the NetX/NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,550 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Client > Configuring the NetX/NetX Duo TFTP Client Module

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function

Link status change callback NULL Link status change callback
selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX/NetX Duo TFTP Common Instance

ISDE Property Value Description

Maximum error string length
(bytes)

64 Maximum error string length
selection

Time to live 128 Time to live selection

Type of Service for UDP
requests

Normal, Minimum delay,
Maximum data, Maximum
reliability, Minimum cost

Default: Normal

Type of service UDP requests
selection

Fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Fragment option selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX/NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,551 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Client > Configuring the NetX/NetX Duo TFTP Client Module

Packet Size in Bytes 640 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX/NetX Duo TFTP Client Module Clock Configuration

The ETHERC peripheral module uses the PCLKA as its clock source. The PCLKA frequency is set using
the SSP configurator Clock tab prior to a build or by using the CGC interface at run-time.

NetX/NetX Duo TFTP Client Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin Selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,552 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Client > Configuring the NetX/NetX Duo TFTP Client Module

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.31.6 Using the NetX/NetX Duo TFTP Client Module in an Application

The following example assumes that a system is already establish with a working IP, ARP and UDP
enabled and the link is running.

The steps in using the NetX/NetX Duo TFTP Client module in a typical application are:

1. Poll the nx_ip_status_check API for when the IP instance has a valid IP address.

2. To request a file write, call the nx_tftp_client_file_open API with NX_TFTP_OPEN_FOR_WRITE as the
open_type input.

3. Allocate a packet using the nx_tftp_client_packet_allocate API and write the file data into the
packet buffer. This packet is ready to send.

4. Send to the Server by calling the nx_tftp_client_file_write API.

5. Repeat until all file data is sent. Unless this API returns NX_TFTP_NOT_OPEN, the application
should not release the packet.

6. Close the file by calling the nx_tftp_client_file_close.

7. To request a file read, call the nx_tftp_client_file_open API with NX_TFTP_OPEN_FOR_READ as the
open_type input.

8. Receive file data by calling the nx_tftp_client_file_read API.

9. Continue until a packet of less than 512 bytes is received. Release the packets back to the packet
pool when done with it.

10. Use the nx_tftp_client_file_close API to close the file.

11. Delete instance by nx_tftp_client_delete API when done with the TFTP Client.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,553 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Client > Using the NetX/NetX Duo TFTP Client Module in an Application

Figure 497: Flow Diagram of a Typical NetX/NetX Duo TFTP Client Module Application

4.3.32 NetX/NetX Duo TFTP Server

4.3.32.1 NetX and NetX Duo TFTP Server Introduction

The NetX™ Trivial File Transfer Protocol (TFTP) is a lightweight protocol designed for file transfers.
Unlike more robust protocols, TFTP does not perform extensive error-checking and can have limited
performance due to its stop‑and-wait protocol. After a TFTP data packet is sent, the sender waits for
an ACK to be returned by the recipient. Although this process is simple, it does limit the overall TFTP
throughput. The TFTP package enables hosts to use the TFTP protocol over IP networks.

Note
Except for internal processing, the NetX Duo™ TFTP Server is identical to the NetX TFTP when performing the
application, setup and running of a TFTP session.

NetX and NetX Duo TFTP Server Module Features

NetX Server TFTP module is compliant with RFC 1350 and related RFCs.
Provides high-level APIs for:

Creating and deleting a TFTP Server
Starting and stopping the TFTP Server task thread

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,554 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Server > NetX and NetX Duo TFTP Server Introduction

Figure 498: NetX/NetX Duo TFTP Server Module Block Diagram

Note
In the figure above, the FileX and NetX (or NetX Duo) Network Driver modules have multiple implementation
options available. See the descriptions just after the module stack figure in Including the NetX and NetX Duo TFTP
Server Module in an Application for additional details.

4.3.32.2 NetX and NetX Duo TFTP Server Module APIs Overview

The NetX TFTP Server module defines APIs for creating, deleting, generating response packets,
response sending and getting information from a received packet. A complete list of the available
APIs, an example API call and a short description of each can be found in the following table. A table
of status return values follows the API summary table.

NetX and NetX Duo TFTP Server Module API Summary

Function Name Example API Call and Description

nx_tftp_server_create nx_tftp_server_create(&my_server, "My TFTP
Server", server_ip, &ram_disk, stack_ptr, 2048,
pool_ptr);
Create TFTP server (IPv4 only)

nxd_tftp_server_create** nxd_tftp_server_create(&my_server, "My TFTP
Server", &server_ip, &ram_disk, stack_ptr, 2048,
pool_ptr);
Create TFTP server (IPv4 and IPv6 supported).

nx_tftp_server_delete nx_tftp_server_delete(&my_server);
Delete TFTP server.

nxd_tftp_server_delete** nxd_tftp_server_delete(&my_server);
Delete TFTP server.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,555 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Server > NetX and NetX Duo TFTP Server Module APIs Overview

nx_tftp_server_start nx_tftp_server_start(&my_server);
Start the TFTP server.

nxd_tftp_server_start** nxd_tftp_server_start(&my_server);
Start the TFTP server.

nx_tftp_server_stop nx_tftp_server_stop(&my_server);
Stop the TFTP server.

nxd_tftp_server_stop** nxd_tftp_server_stop(&my_server);
Stop the TFTP server.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API structures
and function variables, review the associated Azure RTOS User's Manual in the References section.

**This API is only available in NetX Duo TFTP Server. For definitions of of NetX Duo specific data
types, see the NetX Duo User Guide for the Renesas Synergy™ Platform.

Status Return Values

Name Description

NX_SUCCESS API Call Successful

NX_TFTP_POOL_ERROR* Packet pool payload is too small for the 512
bytes of TFTP data.

NX_PTR_ERROR* Invalid pointer input

NX_CALLER_ERROR* Invalid caller of this service

Note
Lower-level drivers may return common error codes. See SSP User's Manual API References for the associated
module for a definition of all relevant status return values.

*These error codes are only returned if error checking is enabled. Please refer to the NetX Duo User
Guide for the Renesas Synergy™ Platform for more details on error checking services in NetX Duo.

4.3.32.3 NetX and NetX Duo TFTP Server Module Operational Overview

To function properly, the TFTP Clients portion of the NetX Duo TFTP package requires an already-
created IP instance.

Note
When a TFTP Server instance is added to the project, an IP Instance for the TFTP Server with an ARP and TCP
enabled is automatically created.

The UDP must be enabled on that same IP instance. The client portion of the NetX Duo TFTP package
has no further requirements.

The TFTP Server portion of the NetX TFTP package requires complete access to the UDP port 69 for
handling all client TFTP requests; the TFTP Server is also designed for use with the FileX® embedded
file system. If FileX is not available, the user may port portions of the FileX used to their own
environment (details in later module guide sections).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,556 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Server > NetX and NetX Duo TFTP Server Module Operational Overview

File names should be in the format of the target file system. Filenames should be NULL terminated
ASCII strings, with full path information, if necessary. There is no specified limit in the size of TFTP
file names in the NetX Server TFTP implementation.

TFTP Messages

The TFTP has a simple mechanism for opening, reading, writing and closing files, with 2-4 bytes of
the TFTP header underneath the UDP header. The definition of the TFTP file open messages has the
following format:

| A | B | C | D | Fstart | Fend | 0 | | O | C | T | E | T | 0 |
|--—|--—|--—|--—|-----—|---—|--—|--—|--—|--—|--—|--—|--—|--—|

Where,

File Open protocol field

A B C D 2 Byte Opcode
field

0 0 0 1 Open for read

0 0 0 2 Open for write

Fstart - Fend, File name

0, 1-byte NULL termination character.

OCTET, ASCII "OCTET" to specify binary transfer

The definition of the TFTP write, ACK and error messages are slightly different:

| A | B | C | D | W | X | Y | Z | Nstart | Nend | |--—|--—|--—|--—|--—|--—|--—|--—|-----—|---—|

Where,

Protocol field for TFTP write

A B C D 2 Byte Opcode
field

0 0 0 3 Data packet

0 0 0 4 ACK for last read

0 0 0 5 Error condition

Nstart - Nend,, n-byte Data field

WXYZ, 2-byte Block Number field (1-n)

TFTP Communication

The data packet payload containing the file to upload or download is sent in 512 byte chunks until
the last packet contains less than 512 bytes, where the packet containing fewer than 512 bytes
signals the end of file. The general sequence of events is as follows:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,557 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Server > NetX and NetX Duo TFTP Server Module Operational Overview

TFTP Read File Requests:

1. The client issues an Open for Read request with the file name and waits for a reply from the
server.

2. The server sends the first 512 bytes of the file or less if the file size is less than 512 bytes.
3. The client receives data, sends an ACK, and waits for the next packet from the server for

files containing more than 512 bytes.
4. The sequence ends when the client receives a packet containing fewer than 512 bytes.

TFTP Write Requests:

1. The client issues an Open for Write request with the file name and waits for an ACK with a
block number of 0 from the server.

2. When the server is ready to write the file, it sends an ACK with a block number of zero.
3. The client sends the first 512 bytes of the file (or less for files less than 512 bytes) to the

server and waits for an ACK back.
4. The server sends an ACK after the bytes are written.
5. The sequence ends when the client completes writing a packet containing fewer than 512

bytes.

NetX and NetX Duo TFTP Server Module Important Operational Notes and Limitations

NetX and NetX Duo TFTP Server Module Operational Notes

The NetX TFTP Server module requires FileX media (Block media or USB Mass Storage). When a TFTP
Server stack element is added to the project, an Add FileX box is attached to it. The configurator
automatically sets up and initializes the FileX media for the server before the server is started. For
details on configuring FileX, see the FileX™ User's Guide for the Renesas Synergy™ Platform.

The NetX TFTP Server also requires a packet pool for transmitting packets; it can share the IP default
packet pool or create a separate packet pool. (Details on setting the TFTP Server packet pool are
found in Including the NetX and NetX Duo TFTP Server Module in an Application.)

NetX and NetX Duo TFTP Server Module Limitations

The TFTP Server maintains a TFTP Client session, even when the client stops responding,
responses stop if the retransmission on client request support property is not enabled. In
this manner, the TFTP Server can potentially fill up with dropped client connections and not
be able to accept new client requests.
The TFTP Server cannot respond to a duplicate client packet if retransmission on client
request support property is not enabled. Duplicate packets are simply dropped and the
TFTP Server does not send out any ACK or data packets, resulting in the client and the
server being deadlocked.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.32.4 Including the NetX and NetX Duo TFTP Server Module in an Application

This section describes how to include either or both the NetX and NetX Duo TFTP Server module in
an application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,558 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Server > Including the NetX and NetX Duo TFTP Server Module in an Application

To add the NetX/NetX Duo TFTP Server module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX and NetX Duo TFTP Server Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_tftp0 NetX TFTPServer Threads New Stack> X-Ware> NetX>
Protocols> NetX TFTPServer

g_tftp0 NetX Duo TFTPServer Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
TFTP Server

When the NetX and/or NetX Duo TFTP Server module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 499: NetX and NetX Duo TFTP Server Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,559 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Server > Including the NetX and NetX Duo TFTP Server Module in an Application

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

Additionally, in the stack above, the FileX stack has also not been populated yet. There are multiple
possible selections for the FileX module; they are not all provided so as not to needlessly complicate
the figure and the following configuration tables. The available options depend on the MCU target,
but some typical options include:

FileX Stub
FileX on Block Media (implemented on Block Media Framework on sf_block_media_ram)
FileX on USB Mass Storage (implemented on USBX Host Class Mass Storage)

4.3.32.5 Configuring the NetX and NetX Duo TFTP Server Module

The NetX and NetX Duo TFTP Server module must be configured by the user for the desired
operation. The SSP configuration window automatically identifies (by highlighting the block in red)
any required configuration selections, such as interrupts or operating modes, which must be
configured for lower-level modules for successful operation. Only properties that can be changed
without causing conflicts are available for modification. Other properties are locked and not available
for changes and are identified with a lock icon for the locked property in the Properties window in the
ISDE. This approach simplifies the configuration process and makes it much less error-prone than
previous manual approaches to configuration. The available configuration settings and defaults for
all the user-accessible properties are given in the Properties tab within the SSP Configurator and are
shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX and NetX Duo TFTP Server Module

ISDE Property Value Description

FileX Support Enable, Disable

Default: Enable

FileX support selection

Retransmission on client
request support

Enable, Disable

Default: Disable

Retransmission on client
request support selection

Internal thread priority 16 Internal thread priority
selection

Maximum clients to serve
simultaneously

10 Maximum clients to serve
simultaneously selection

Time slice for internal thread 2 Time slice for internal thread
selection

Client request activity timeout
check interval (ticks)

20 Client request activity timeout
(ticks) selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,560 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Server > Configuring the NetX and NetX Duo TFTP Server Module

Ack or data retransmission
interval (ticks)

200 Ack or data retransmission
interval (ticks) selection

Maximum retries for
transmission without response

5 Maximum retries for
transmission without response
selection

Maximum retries for
transmission with duplicate
response

2 Maximum retries for
transmission with duplicate
response selection

Name g_tftp_server0 Module name

Internal thread stack size
(bytes)

2048 Internal thread stack size
(bytes) selection

Name of generated initialization
function

tftp_server_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower-level modules can be desirable. For
example, it might be useful to select different MAC Addresses. The configurable properties for the
lower-level stack modules are provided in the following sections for completeness and as a
reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the NetX and NetX Duo TFTP Server Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX and NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

192,168,0,2 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

Default Gateway Address (use
commas for separation)

0,0,0,0 Default gateway address
selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,561 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Server > Configuring the NetX and NetX Duo TFTP Server Module

**IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

**IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization function

Link status change callback NULL Link status change callback
selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

** Indicates properties that are only available in NetX Duo.

Configuration Settings for the NetX and NetX Duo TFTP Common Instance

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,562 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Server > Configuring the NetX and NetX Duo TFTP Server Module

ISDE Property Value Description

Maximum error string length
(bytes)

64 Maximum error string length
selection

Time to live 128 Time to live selection

Type of Service for UDP
requests

Normal, Minimum delay,
Maximum data, Maximum
reliabililty, Minimum cost

Default: Normal

Type of service UDP requests
selection

Fragmentation option Don't fragment, Fragment okay

Default: Don't fragment

Fragment option selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX and NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX and NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 640 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,563 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Server > Configuring the NetX and NetX Duo TFTP Server Module

NetX and NetX Duo TFTP Server Module Clock Configuration

The ETHERC peripheral module uses the PCLKA as its clock source. The PCLKA frequency is set using
the SSP configurator Clock tab prior to a build or by using the CGC interface at run-time.

NetX and NetX Duo TFTP Server Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin Selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,564 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Server > Configuring the NetX and NetX Duo TFTP Server Module

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.32.6 Using the NetX and NetX Duo TFTP Server Module in an Application

The steps in using the NetX and NetX Duo TFTP Server module in a typical application are:

1. Create the TFTP server using the nx_tftp_server_create API.

2. Prepare the FileX on Block media or USB mass storage API.

3. Start the TFTP Server using the nx_tftp_server_start API.

4. The TFTP Server now periodically checks for inactivity on active client connections.

5. All received packets are checked for being duplicate packets the server already received.

6. Receive a client open for read request (internal operation).

7. Check if the server can accommodate another client request (set by Maximum clients to server
simultaneously property) (internal operation).

8. Download packets of file data in 512 chunks till the last packet (internal operation).

9. Close a file and delete the client request (internal operation).

The following figure illustrates common steps in a typical operational flow diagram:

Figure 500: Flow Diagram of a Typical NetX and NetX Duo TFTP Server Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,565 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX/NetX Duo TFTP Server > Using the NetX and NetX Duo TFTP Server Module in an Application

4.3.33 NetX Duo MQTT Client

4.3.33.1 NetX Duo MQTT Client Introduction

The MQTT (Message Queue Telemetry Transport) is a communication protocol based on a
publisher/subscriber model. A data producer can publish information to other clients through a
broker. Multiple data consumers, if interested in a topic, can subscribe to the topic through the
broker. The broker is responsible for authentication and authorization of the clients and delivering
published messages to its topic subscribers. In this publisher/subscriber model, multiple clients may
publish data with the same topic. A client will receive the messages it publishes if the client
subscribes to the same topic.

NetX Duo MQTT Client Module Features

Compliant with OASIS MQTT Version 3.1.1 Oct 29th, 2014. The specification can be found
at: http://mqtt.org/
Provides option to enable/disable TLS for secure communications using NetX Secure in SSP
Supports QoS and provides the ability to choose the levels that can be selected while
publishing the message
Internally buffers and maintains queue of received messages
Provides mechanism to register callback when new message is received.
Provides mechanism to register callback when connection with the broker is terminated.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,566 / 5,198

http://mqtt.org/

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > NetX Duo MQTT Client Introduction

Figure 501: NetX Duo MQTT Client Module Block Diagram

Note
In the figure above, the NetX Duo Network Driver modules has multiple implementation options available. See the
description just after the module stack figure in Including the NetX Duo MQTT Client Module in an Application for
additional details.

4.3.33.2 NetX Duo MQTT Client Module APIs Overview

The NetX Duo MQTT Client Support module defines APIs for creating the MQTT Client, connecting to a
broker, setting up TLS security and receiving MQTT messages. A complete list of the available APIs,
an example API call and a short description of each can be found in the following table. A table of
status return values follows the API summary table.

NetX Duo MQTT Client Module API Summary

Function Name Example API Call and Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,567 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > NetX Duo MQTT Client Module APIs Overview

nxd_mqtt_client_create nxd_mqtt_client_create(&mqtt_client_secure,
"my_client", CLIENT_ID_STRING,
strlen(CLIENT_ID_STRING), ip_ptr, pool_ptr,
(VOID*)mqtt_client_stack,
sizeof(mqtt_client_stack),
mqtt_thread_priority,
(UCHAR*)client_memory,
sizeof(client_memory));
Create an MQTT client with the specified Client
ID, stack memory and stack size, and message
block memory.

nxd_mqtt_client_connect nxd_mqtt_client_connect(&mqtt_client,
&server_ip, NXD_MQTT_PORT,
MQTT_KEEP_ALIVE_TIMER, 0,
NX_WAIT_FOREVER)
Non-secure connect to the MQTT broker
specifying broker IP address and port, keep alive
timer, and disabling the clean session option

nxd_mqtt_client_secure_connect nxd_mqtt_client_secure_connect(&mqtt_client_s
ecure, &server_ip, NXD_MQTT_TLS_PORT,
tls_setup_amazon, 600, 1, NX_WAIT_FOREVER)
Connect to broker with TLS security using the
tls_setup_amazon, which is a user-defined
function, to set up TLS and set TLS parameters.
The clean session option is enabled. This is only
available if the NetX Duo library is built with
NX_SECURE_ENABLE set, and if the MQTT client
property NX Secure is set.

nxd_mqtt_client_login_set nxd_mqtt_client_login_set(mqtt_client_ptr,
"Username", strlen("Username"), "Password",
strlen("Password");
Set the optional MQTT username and password.
This must be called before the
nxd_mqtt_client_connect or
nxd_mqtt_client_secure_connect call if the
broker requires username and password.

nxd_mqtt_client_message_get nxd_mqtt_client_message_get(&mqtt_client_sec
ure, &topic, &topic_length, &message,
&message_length, &packet_ptr);
Retreive a published MQTT message for the
specified topic.

nxd_mqtt_client_receive_notify_set nxd_mqtt_client_receive_notify_set(&mqtt_client
_secure, my_notify_func);
Specify the function the MQTT Client thread task
calls when an MQTT message is received.

nxd_mqtt_client_subscribe nxd_mqtt_client_subscribe(&mqtt_client_secure,
TEST_SUBSCRIBE_TOPIC_NAME,
strlen(TEST_SUBSCRIBE_TOPIC_NAME), 0);
Send a subscriber message to the broker for the
specified topic for QoS (quality of service) level
0.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,568 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > NetX Duo MQTT Client Module APIs Overview

nxd_mqtt_client_unsubscribe nxd_mqtt_client_unsubscribe(NXD_MQTT_CLIENT
*mqtt_client_pr,CHAR *topic_name,
UINT topic_name_length);
Send an unsubscriber message to the broker for
the specified topic.

nxd_mqtt_client_publish nxd_mqtt_client_publish(&mqtt_client_secure,
TEST_SUBSCRIBE_TOPIC_NAME, strlen(TEST_SUB
SCRIBE_TOPIC_NAME),
 message_buffer, strlen(message_buffer), 0, 1,
NX_WAIT_FOREVER);
Send a message to the broker for the specified
topic previously subscribed to for QoS (quality of
service) level 1, and the retain message option
disabled.

nxd_mqtt_client_disconnect nxd_mqtt_client_disconnect(&mqtt_client);
Disconnect from the MQTT broker.

nxd_mqtt_client_disconnect_notify_set nxd_mqtt_client_disconnect_notify_set(mqtt_clie
nt_ptr, my_disconnect_notify);
Specify the user defined function for the MQTT
Client thread task to call if the broker initiates
disconnecting from the client.

nxd_mqtt_client_delete nxd_mqtt_client_delete(mqtt_client_ptr);
Delete the MQTT instance, clear transmit and
message queue messages

nxd_mqtt_client_will_message_set nxd_mqtt_client_will_message_set(mqtt_client_p
tr, will_topic, will_topic_length, "will_message",
strlen("will_message"), 0, 1);
Set the optional MQTT Client will message
without the retain will message option, for QOS
1. If a will message is needed, this must be
called before connecting to the broker.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API
structures, and function variables, review the associated Azure RTOS User's Manual in the References section.
Refer to the Azure RTOS NetX Duo MQTT Client User's Manual for additional information on MQTT Client
Module API functions.

4.3.33.3 NetX Duo MQTT Client Module Operational Overview

The MQTT (Message Queue Telemetry Transport) is a protocol based on the NetX Duo TCP/IP stack
and a publisher-subscriber model. A client can publish information to other clients through an MQTT
Server (broker). A client, if interested in a topic, can subscribe to the topic through the broker. A
broker is responsible for delivering published messages to its clients who subscribe to the topic. In
this publisher-subscriber model, multiple clients may publish data with the same topic. A client will
receive a message it publishes if the client subscribes to the same topic.

The following figure provides an overview of the MQTT Client publish/subscribe model:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,569 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > NetX Duo MQTT Client Module Operational Overview

Figure 502: NetX Duo MQTT Client Module MQTT Client Publish/Subscribe Model

 NetX Duo MQTT Client Module Publish/Subscribe Model

The NetX Duo MQTT client module can be used in the normal mode or the secure mode.

NetX Duo MQTT Client Module Normal Mode Operational Description

In normal mode, the communication between the MQTT client and broker is not secure.

NetX Duo MQTT Client Module Secure Mode Operational Description

In Secure mode, the communication between the MQTT client and broker is secured using the TLS
protocol. In the thread pane, the TLS protocol is represented by "Add NetX Duo TLS common
[Optional]" block.

Depending on the use case, a client may choose one of the 3 QoS levels when publishing a message:

QoS 0: The message is delivered at most once. Messages sent with QoS 0 may be lost.

QoS 1: The message is delivered at least once. Messages sent with QoS 1 may be delivered more
than once.

QoS 2: The message is delivered exactly once. Messages sent with QoS 2 is guaranteed to be
delivered, with no duplication.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,570 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > NetX Duo MQTT Client Module Operational Overview

This implementation of MQTT client does not support QoS level 2 messages.

Since QoS 1 and QoS 2 are guaranteed to be delivered, the broker keeps track the state of QoS 1
and QoS 2 messages sent to each client. This is particularly important for clients that expect QoS1
or QoS 2 messages. The client may be disconnected from the broker (for example when the client
reboots, or the communication link is temporarily lost). The broker must store QoS 1 and QoS 2
messages so the messages can be delivered later once the client is reconnected to the broker.

However, the client may choose not to receive any stale messages from the broker after
reconnection. The client can do so by initiating the connection with the clean_session flag set to
NX_TRUE (1) in the nxd_mqtt_client_connect API. In this case, upon receiving the MQTT CONNECT
message, the broker shall discard any session information associated with this client, including
undelivered or unconfirmed QoS 1 or QoS 2 messages.

If the clean_session flag is to NX_FALSE, the server shall resend the QoS 1 and QoS 2 messages. The
MQTT Client also resends any un-acknowledged messages if clean_session is set to NX_TRUE. This
acknowledgment is different from the TCP socket layer ACK, although that happens as well. The
MQTT client sends an MQTT acknowledgment message to the broker upon receipt of a message, and
gets one back when it publishes a message.

Incoming MQTT messages are stored in the receive queue of the MQTT client instance. The
application retrieves these messages by calling the nxd_mqtt_client_message_get API which returns
both the topic and the topic message. The application must ensure to provide a large enough buffer
for each. The oldest message in the queue is returned to the caller first. The
nxd_mqtt_client_message_get is non-blocking. If the MQTT client receive queue is empty, it returns
immediately with an NXD_MQTT_NO_MESSAGE (0x1000A) status. This should not be handled as an
error, but that the receive queue is empty.

To avoid polling the receive queue for incoming messages, the application can register a receive
message callback function with the MQTT client by calling the nxd_mqtt_client_recieve_notify_set
API. The callback function is defined as:

VOID (*receive_notify_callback)(NXD_MQTT_CLIENT *client_ptr, UINT message_count);

As the MQTT client receives messages from the broker, it invokes the callback function if the function
is set. The callback function passes the pointer to the client control block and a message count
value. The message count value indicates the number of MQTT messages in the receive queue.
Note that this callback function executes in the MQTT client thread context. Therefore, the callback
function should not execute any procedures that may block the MQTT client thread. The callback
function should trigger the application thread to call the nxd_mqtt_client_message_get API to
retrieve the messages. This is demonstrated in the module guide project.

To disconnect the MQTT client service, the application shall use the service
nxd_mqtt_client_disconnect and nxd_mqtt_client_delete, APIs respectively. Calling
nxd_mqtt_client_disconnect disconnects the TCP connection to the broker. It releases messages
already received and stored in the receive queue. However, it does not release QoS level 1
messages in the transmit queue. QoS level 1 messages are retransmitted upon connection,
assuming the clean_session flag is set to NX_FALSE.

The broker may initiate the disconnect from the client. The application can be notified of the
disconnect request by registering a disconnect notify function with the MQTT Client. This is done by
calling the nxd_mqtt_client_disconnect_notify_set API.

To delete an MQTT Client, call the nxd_mqtt_client_delete API. This releases all message blocks in the
transmit queue and the receive queue. Unacknowledged QoS level 1 messages are also deleted.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,571 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > NetX Duo MQTT Client Module Operational Overview

Using Secure Communication

To secure the communication between MQTT client and broker, TLS protocol is required. In the
thread pane, TLS protocol is represented by "Add NetX Duo TLS common \[Optional]" block. Adding
NetX Duo TLS Common block enables the TLS support.

MQTT with TLS/NetX Duo Secure

When using TLS with MQTT Client, it is strongly recommended that the TLS setup callback in the
nxd_mqtt_client_secure_connect call contain all of the TLS set up, including creating the TLS
instance, defining the local certificates, allocating memory for remote certificate processing, and
optional callbacks such as timestamp and certificate authentication. Once the callback has
completed its operation successfully it should return Success. If the TLS setup callback returns a
failure, the nxd_mqtt_client_secure_connect API also returns a failure to the application program.

Regardless if the MQTT Client was able to connect via TCP successfully or not, or whether the TLS
session was successfully started, the application MUST call nxd_mqtt_client_disconnect to properly
clear and reset the TLS session before attempting to reconnect again.

If the session was terminated improperly, nxd_mqtt_client_disconnect must still be called for the
same reason.

For SSP 1.3.x, the TLS setup callback will need to call a memset on the NXD_SECURE_TLS_SESSION
data block before (re)creating a TLS session (nxd_secure_tls_session_create).

The definition of the nxd_mqtt_client_secure_connect API with the TLS setup input is:

UINT nxd_mqtt_client_secure_connect(NXD_MQTT_CLIENT *client_ptr,

 NXD_ADDRESS *server_ip,

 UINT server_port,

 UINT (*tls_setup)(

 NXD_MQTT_CLIENT *client_ptr,

 NX_SECURE_TLS_SESSION *session_ptr,

 NX_SECURE_X509_CERT

*,

 NX_SECURE_X509_CERT *),

 UINT keepalive,

 UINT clean_session,

 ULONG wait_option)

Add this logic to the tls_setup callback function (assuming the MQTT Client instance name is
g_mqtt_client0):

 session_ptr = &(g_mqtt_client0.nxd_mqtt_tls_session);

 memset(session_ptr, 0, sizeof(NX_SECURE_TLS_SESSION));

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,572 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > NetX Duo MQTT Client Module Operational Overview

 status = nxd_secure_tls_session_create(....)

If memset is not called, the TLS nxd_secure_tls_session_create call may not succeed. In SSP 1.4.0 it
will no longer be necessary to call memset, but it is still strongly recommended to put all TLS setup,
including TLS creation in the callback. It may seem wasteful to completely delete and recreate a TLS
session. But the manner in which TLS is integrated into MQTT Client makes this the most sensible
and reliable method to guarantee successful reconnection attempts.

For more details about TLS protocol, please see the NetX Duo TLS Secure Module Guide.

Multiple Instances of MQTT Client Per Device

For SSP 1.4.0 and earlier, a device cannot safely run multiple instances of the MQTT Client because
the MQTT Client in these releases assumes global variables. That should be remedied in a
subsequent release.

NetX Duo MQTT Client Module Important Operational Notes and Limitations

NetX Duo MQTT Client Module Operational Notes

The NetX Duo MQTT Client component is added by clicking on the (+) sign in the thread pane
window -> Azure RTOS -> NetX Duo -> Protocols -> NetX Duo MQTT Client.

Adding the NetX Duo MQTT Client component to a project automatically adds the option to add the
NetX Duo TLS component required for secure MQTT.

The MQTT Client properties are listed in the following table:

Figure 503: NetX Duo MQTT Client Module MQTT Client Block Configurable Properties

 In the figure above, "Common" properties are those configurable options in the NetX Duo MQTT
Client that are common to all instances of the MQTT client in the project. The "Module" properties
are specific to each instance of MQTT Client in the project.

Common Properties

NX Secure: This enables/disables TLS support. If this property is set to Enabled, the MQTT
Client is built with TLS support. Note: enabling the property requires adding the NetX Duo
TLS component to the project to supply the necessary source code to the project, or the
project will not build. If set to Disabled, adding the NetX Duo TLS component has no effect

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,573 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > NetX Duo MQTT Client Module Operational Overview

though the project will still build and run.
Topic Name Max Length: The maximum topic length (in bytes) the application is going to
subscribe to. The default is 12 bytes.
Message Max Length: The maximum message length (in bytes) the application is going to
send or receive. The default is 32 bytes.
Keepalive Timer Rate: This timer is used to keep track of the time since last MQTT control
message was sent, and sends out an MQTT PINGREQ message before the keep-alive time
expires. The default value is 1 second.
Ping Timeout Delay: The time MQTT client waits for PINGRESP from the broker for after it
sends out MQTT PINGREQ. The default value is 1 second.

Module Properties

Name: Name of the MQTT client instance
Name of generated initialization function: Name of initialization function which creates
MQTT client instance. The default is the auto-generated function auto generated function
mqtt_client_init0.
Auto Initialization: Enable/disable call to initialization function. If disabled, the application
thread entry function must obtain the Client ID and create the MQTT Client instance.
Client ID Callback: Callback function provided by user for the MQTT Client thread task to
obtain a unique client ID. If Auto Initialization is disabled, this and the Client ID length have
no effect.
Client ID Max Length: Maximum Length in bytes of the client ID.
Client Thread Stack Size: MQTT Client thread stack size in bytes.
Number of Messages to be stored in Memory: MQTT client uses memory area to store
messages. The memory needed for MQTT client operation depends on the amount of data
being sent or received. The minimal memory size is the size of a single
MQTT_MESSAGE_BLOCK instance which is 60 bytes. The default value is 1
MQTT_MESSAGE_BLOCK or 60 bytes. However, this it not a good choice if there will be
multiple messages received before the application can receive them. Transmitted
messages cannot be released until thee TCP socket receives an ACK for the data, or if the
QoS level is 1 or higher and the MQTT Client has received an ACK from the MQTT server. So
the module guide project uses 6 message blocks. That number can probably be reduced to
3 or 4.
Client Thread Priority: MQTT Client thread priority.
Name of Generated Initialization function: Name of the function that will call the
nxd_mqtt_client_create API. If Auto Initialization is disabled, this has no effect. If it is,
Synergy will create this function automatically.
Auto Initialization: This determines if the function specified in the Name of Generated
Initialization function option is called. If set to Enable, it will invoke this function. Otherwise
if set to Disable, the application must call the nxd_mqtt_client_create API before using any
NetX Duo MQTT Client services.

Setting a Unique Client ID

As mentioned previously, an MQTT client instance is created using nxd_mqtt_client_create() API. If
the MQTT Client application is letting the ISDE create the MQTT client, then it must define the Client
ID Callback. This will be called before the ISDE calls nxd_mqtt_client_create internally with a defined
Client ID string. The MQTT Client component allows you to set the Client ID Callback and Client ID
Max Length in the list of MQTT Client properties (see above Module Properties).

The Client ID should be unique and is one of the parameters the MQTT broker uses to identify the
client.

The prototype for Client ID callback is as follows:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,574 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > NetX Duo MQTT Client Module Operational Overview

void mqtt_client_id_callback(char * p_client_id, uint32_t * p_client_id_length);

p_client_id is a pointer to the Client ID to obtain, thus it is an output parameter which will be filled in
by this callback function. p_client_id_length is a pointer to the length of the Client ID, thus it is an
input and output parameter. This mechanism enables the Client ID to be determined at run time
instead of at compile time.

If Client ID Callback is left empty in the properties pane of e2 studio, a compiler error occurs. NULL is
an acceptable entry. If your application prefers to create the MQTT Client directly, set this callback
to NULL and set Auto Initialization to Disabled. Then when your application calls the
nxd_mqtt_client_create API, provide the Client ID string directly, and the length of it as the input
parameters:

 /* Create MQTT client instance. */

 nxd_mqtt_client_create(&mqtt_client, "my_client", CLIENT_ID_STRING,

strlen(CLIENT_ID_STRING), ip_ptr, pool_ptr, (VOID*)mqtt_client_stack, sizeof

(mqtt_client_stack), MQTT_THREAD_PRIORTY, (UCHAR*)client_memory, sizeof

(client_memory));

Below is the sample reference implementation of the Client ID callback function which copies MAC
address to a Client ID:

void mqtt_client_id_callback(char *p_client_id, uint32_t *p_client_id_length)

{

 uint32_t id_length;

 UCHAR mac_id[6] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06};

 if (*p_client_id_length < sizeof(mac_id))

 {

 id_length = *p_client_id_length;

 }

 else

 {

 id_length = sizeof(mac_id);

 }

 /* Copy MAC address to CLient ID and update client ID length */

 memcpy(p_client_id, mac_id, id_length);

 return;

 }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,575 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > NetX Duo MQTT Client Module Operational Overview

Note
It is possible to have an MQTT session with a zero length Client ID string. If an MQTT Client supplies a zero-byte
Client ID, the Client MUST also set the clean_session input in the nxd_mqtt_client_connect API to NX_TRUE (1)
as per the MQTT protocol. If the Client supplies a zero-byte Client ID with clean_session set to NX_FALSE (0), the
Server will respond to the CONNECT Packet with a CONNACK return code 0x02 (Identifier rejected) and then
close the Network Connection.

NetX Duo MQTT Client Module Limitations

NetX Duo MQTT Client does not support sending or receiving QoS level 2 messages.
NetX Duo MQTT Client does not support chained packets.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.33.4 Including the NetX Duo MQTT Client Module in an Application

This section describes how to include either or both the NetX Duo MQTT Client module in an
application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX Duo MQTT Client module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX Duo MQTT Client Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_mqtt_client0NetXDuo MQTT
Client

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetXDuo
MQTT Client

When the NetX Duo MQTT Client module is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,576 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > Including the NetX Duo MQTT Client Module in an Application

Figure 504: NetX Duo MQTT Client Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.33.5 Configuring the NetX Duo MQTT Client Module

The NetX Duo MQTT Client module must be configured by the user for the desired operation. The SSP
configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,577 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > Configuring the NetX Duo MQTT Client Module

You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX Duo MQTT Client Module

ISDE Property Value Description

NX Secure Enable, Disable

Default: Enable

This enables/disables TLS
support. If this property is set to
Enabled, the MQTT Client is
built with TLS support.

Note: enabling the property
requires adding the NetX Duo
TLS component to the project to
supply the necessary source
code to the project, or the
project will not build. If set to
Disabled, adding the NetX Duo
TLS component has no effect
though the project will still build
and run.

Topic Name Max Length 12 The maximum topic length (in
bytes) the application is going
to subscribe to. The default is
12 bytes.

Message Max Length 32 The maximum message length
(in bytes) the application is
going to send or receive. The
default is 32 bytes.

Keepalive Timer Rate(s) 1 This timer is used to keep track
of the time since last MQTT
control
message was sent, and sends
out an MQTT PINGREQ message
before the keep-alive time
expires. The default value is 1
second.

Ping Timeout Delay(s) 1 The time MQTT client waits for
PINGRESP from the broker for
after it sends out MQTT
PINGREQ. The default value is 1
second.

Name g_mqtt_client0 Name of the MQTT client
instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,578 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > Configuring the NetX Duo MQTT Client Module

Client ID Callback mqtt_client_id_callback Callback function provided by
user for the MQTT Client thread
task to obtain a unique client
ID. If Auto Initialization is
disabled, this and the Client ID
length have no effect.

Client ID Max Length 12 Maximum Length in bytes of
the client ID.

Client Thread Stack Size 4096 MQTT Client thread stack size in
bytes.

Number of Messages to be
stored in memory

1 MQTT client uses memory area
to store messages. The memory
needed for MQTT client
operation depends on the
amount of data being sent or
received. The minimal memory
size is the size of a single
MQTT_MESSAGE_BLOCK
instance which is 60 bytes. The
default value is 1
MQTT_MESSAGE_BLOCK or 60
bytes. However, this it not a
good choice if there will be
multiple messages received
before the application can
receive them. Transmitted
messages cannot be released
until thee TCP socket receives
an ACK for the data, or if the
QoS level is 1 or higher and the
MQTT Client has received an
ACK from the MQTT server. So
the module guide project uses 6
message blocks. That number
can probably be reduced to 3 or
4.

Client thread priority 2 MQTT Client thread priority.

Name of generated initialization
function

mqtt_client_init0 Name of the function that will
call the nxd_mqtt_client_create
API. If Auto Initialization is
disabled, this has no effect. If it
is, Synergy will create this
function automatically

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,579 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > Configuring the NetX Duo MQTT Client Module

Auto Initialization Enable, Disable

Default: Enable

This determines if the function
specified in the Name of
Generated Initialization function
option is called. If set to Enable,
it will invoke this function.
Otherwise if set to Disable, the
application must call the
nxd_mqtt_client_create API
before using any NetX Duo
MQTT Client services.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for stack modules can be desirable. For example, you
may require a longer Client ID string or to disable NX Secure. The configurable properties for the
lower-level stack modules are given in the following sections for completeness and as a reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the NetX Duo MQTT Client Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

0,0,0,0 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,580 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > Configuring the NetX Duo MQTT Client Module

ARP cache storage units Bytes, Entries
Default: Bytes

ARP cache storage units
selection

ARP Cache cache Size (in Bytes
or storage units)

520 ARP Cache Size in Bytes/Entries
selection. Must be a multiple of
52 Bytes.
Note: 1 Entry = 52 Bytes

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,581 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > Configuring the NetX Duo MQTT Client Module

Configuration Settings for the NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 1568 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo TLS Common

ISDE Property Value Description

Crypto Engine Hardware Crypto engine selection

Self Signed Certificates Enable, Disable

Default: Disable

Self signed certificates
selection

PSK Cipher Suite Enable, Disable

Default: Disable

PSK cipher suite selection

ECC Cipher Suite Enable, Disable

Default: Disable

ECC cipher suite selection

X509 Strict Name Compare Enable, Disable

Default: Disable

X509 strict name compare
selection

X509 Extended Distinguished
Names

Enable, Disable

Default: Disable

X509 extended distinguished
names selection

Maximum RSA Modulus size
(bits)

1024, 2048, 3072, 4096

Default: 4096

Maximum RSA modulus size
(bits) selection

Server Mode Enable, Disable

Default: Enable

Server mode selection

Client Mode Enable, Disable

Default: Enable

Client mode selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,582 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > Configuring the NetX Duo MQTT Client Module

Name of generated initialization
function

nx_secure_common_init Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Software Crypto

ISDE Property Value Description

Name g_crypto_generic Module name

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Crypto Hardware Accelerator

ISDE Property Value Description

Name g_sf_el_nx_crypto Module name

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the SCE Common Driver

ISDE Property Value Description

Name g_sce_0 Module name

Endian Flag CRYPTO_WORD_ENDIAN_BIG,
CRYPTO_WORD_ENDIAN_LITTLE

Default:
CRYPT_WORD_ENDIAN_BIG

Endian flag selection

Interfaces available from the
InterfaceGet API

AES<subset> Enable, Disable
Default: Enable

Enable or disable available
interface (Plain-text ECB
128-bit, CBC 128-bit, etc. See
configuration properties in the
SSP Configurator for a complete
list of those available for the
target MCU)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,583 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > Configuring the NetX Duo MQTT Client Module

RSA<subset> Enable, Disable
Default: Enable

Enable or disable available
interface (Plain-text 1024-bit,
2048-bit, etc. See configuration
properties in the SSP
Configurator for a complete list
of those available for the target
MCU)

ECC<subset> Enable, Disable
Default: Enable

Enable or disable available
interface (Plain-text 192-bit,
256-bit, etc. See configuration
properties in the SSP
Configurator for a complete list
of those available for the target
MCU)

HASH<subset> Enable, Disable
Default: Enable

Enable or disable available
interface (SHA1, SHA224, etc.
See configuration properties in
the SSP Configurator for a
complete list of those available
for the target MCU)

True Random Number
Generator

Enable, Disable
Default: Enable

Enable or Disable True Random
Number Generator interface

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX Duo MQTT Client Module Clock Configuration

The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the
SSP configurator clock tab prior to a build, or by using the CGC interface at run-time.

NetX Duo MQTT Client Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines the peripheral signals available and the MCU pins required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,584 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > Configuring the NetX Duo MQTT Client Module

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.33.6 Using the NetX Duo MQTT Client Module in an Application

The steps in using the NetX Duo MQTT Client module in a typical application are:

1. Wait for the network link to be enabled by calling the nx_ip_status_check (or if your system
has multiple network interfaces, call nx_ip_interface_status_check) with the
NX_IP_LINK_ENABLED option.

2. Create an event flag group using the tx_event_flags_create API.
3. Connect to the MQTT server (broker) using the nxd_mqtt_client_connect API.
4. Set a receive notification callback using the nxd_mqtt_client_receive_notify_set API. The

receive callback sets a flag when notified by the underlying NetX Duo socket services that it
has received a packet on this connection.

5. Subscribe to a topic on the MQTT Server using the nxd_mqtt_client_subscribe API.
6. Publish a message to the topic using the nxd_mqtt_client_publish API.
7. Wait to receive messages by calling the tx_event_flags_get API.
8. Receive the message using the nxd_mqtt_client_message_get API. Note that unlike

receiving packets from a socket, the MQTT Client need not be concerned about releasing
packets. The MQTT Client thread task handles packet and message block allocate and
release.

9. Unsubscribe from the topic by calling the nxd_mqtt_client_unsubscribe API, specifying the
topic.

10. Disconnect from the topic by calling nxd_mqtt_client_disconnect API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,585 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo MQTT Client > Using the NetX Duo MQTT Client Module in an Application

The following figure illustrates common steps in a typical operational flow diagram:

Figure 505: Flow Diagram of a Typical NetX Duo MQTT Client Module Application

4.3.34 NetX Duo NAT

4.3.34.1 NetX Duo NAT Introduction

The IP Network Address Translation (NAT) solves the problem of a limited number of Internet IPv4
addresses that arises when multiple devices need access to the Internet, but only one IPv4 Internet
address is assigned by the Internet Service Provider (ISP). A NAT-enabled router is installed between
the public and private network to translate between internal private IPv4 addresses and assigned
public IPv4 address, so devices on the private network can share the same public IPv4 address.

NetX Duo NAT Module Features

NetX NAT supports the following RFCs:
RFC 2663: IP Network Address Translator (NAT) Terminology and Considerations
RFC 3022: Traditional IP Network Address Translator (Traditional NAT)
RFC 4787: Network Address Translation (NAT) Behavioral Requirements for Unicast
User Datagram Protocol (UDP)

NetX NAT provides the following high level APIs:
Creating and deleting a NAT server
Enabling and disabling NAT in NetX Duo

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,586 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > NetX Duo NAT Introduction

Set callbacks for NAT to notify application if NAT entry table is full
Creating static inbound entries in the NAT table

Figure 506: NetX Duo NAT Module Block Diagram

Note
In the figure above, The NetX Duo Network Driver modules has multiple implementation options available. See the
description just after the module stack figure in Including the NetX Duo NAT Module in an Application for
additional details.

4.3.34.2 NetX Duo NAT Module APIs Overview

The NetX Duo NAT Module defines APIs for creating, deleting and enabling operations. A complete
list of the available APIs, an example API call and a short description of each can be found in the
following table. A table of status return values follows the API summary table.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,587 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > NetX Duo NAT Module APIs Overview

NetX Duo NAT Module API Summary

Function Name Example API Call and Description

nx_nat_create nx_nat_create(nat_ptr, ip_ptr,
global_interface_index, nat_cache,
NX_NAT_ENTRY_CACHE_SIZE);
Create a NAT Instance in which the network
interface is the global interface (not the
local/private network) with the specified network
index.

nx_nat_delete nx_nat_delete (nat_ptr);
Delete a NAT instance.

nx_nat_enable nx_nat_enable (nat_ptr);
Enable the NAT server.

nx_nat_disable nx_nat_disable (nat_ptr);
Disable the NAT server.

nx_nat_cache_notify_set nx_nat_cache_notify_set(nat_ptr,
cache_full_notify_cb);
Set the NAT cache full notify function to a
user‑defined notify function.

nx_nat_inbound_entry_create nx_nat_inbound_entry_create(nat_ptr, entry_ptr,
IP_ADDRESS(192,168,2,2), 5001, 5001,
NX_PROTOCOL_TCP);
Create an inbound translation table entry. This is
typically used by application servers to allow
clients to initiate a connection externally.

nx_nat_inbound_entry_delete nx_nat_inbound_entry_delete(nat_ptr,
delete_entry_ptr);
Delete an inbound translation table entry.

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API
structures, and function variables, review the associated Azure RTOS User's Manual in the References section.

Status Return Values

Name Description

NX_SUCCESS Successful NAT function

NX_PTR_ERROR* Invalid input pointer parameter

NX_CALLER_ERROR* Invalid caller (for example, must be a thread) of
a service

NX_NAT_PARAM_ERROR* Invalid non pointer input

NX_NAT_CACHE_ERROR* Cache memory not 4 byte aligned, or is too
small

NX_NAT_PORT_UNAVAILABLE Invalid external port for creating static entry

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,588 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > NetX Duo NAT Module APIs Overview

NX_NAT_ENTRY_NOT_FOUND Entry to delete is not found in Cache table

NX_NAT_ENTRY_TYPE_ERROR* Invalid entry (not static) to delete

Note
Lower-level drivers may return common error codes. See the SSP User's Manual API References for the associated
module for a definition of all relevant status return values.

These are error codes which are only returned if error checking is enabled. Refer to the
NetX User Guide for the Renesas Synergy™ Platform or NetX Duo User's Guide for the
Renesas Synergy™ Platform for more details on error-checking services in NetX and NetX
Duo, respectively.

4.3.34.3 NetX Duo NAT Module Operational Overview

A NAT-enabled router typically has two network interfaces: one connected to the public Internet, the
other connected to the private network. A typical router in this setup is responsible for routing IP
datagrams between the private network and the public network based on the destination IP address.
A NAT-enabled router performs address translation before routing an IPv4 datagram between the
public and the private interface. Translation is established for each TCP or UDP session, based the
internal source address and source port number, as well as the external destination address and
destination port number. For the ICMP echo request and response datagram, the Internet Control
Message Protocol (ICMP) query ID is used instead of the port number.

Typically, connections across the NAT boundary are initiated by the hosts on the private network
sending outbound packets to an external host. In these cases, hosts are usually assigned dynamic
(temporary) IP addresses. It is also possible to have connections initiated in the opposite direction if
the private network has 'servers' (such as HTTP or FTP) that accept client requests from the external
network. NAT applications typically assign these local hosts a static (permanent) IP address port.

The following three illustrations and accompanying steps illustrate the sequence of events when
sending packets through a NAT router.

Figure 507: NetX Duo NAT Module Connection Start

 Step 1. Client transmits a TCP SYN message to the web server. The Client address on the private
network is 192.168.1.15, port number 6732; the destination address is 128.15.54.3, port number
80.

Step 2. The packet from the Client is received on the private network interface by the NAT router.
The outbound traffic rule applies to the packet: the sender's (Client's) address is translated to the
NAT router's public IP address 202.151.25.14, and sender (Client) source port number is translated
to the TCP port number 2015 for transmission out on the public interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,589 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > NetX Duo NAT Module Operational Overview

Step 3. The packet is then transmitted over the Internet and ultimately reaches its destination host
128.15.54.3. On the receiving side, notice in the following figure that the packet appears to have
originated from 202.151.25.14, port number 2015 when it was in fact relayed from that IP address
and port.

Figure 508: NetX Duo NAT Module Network Address Translation

 Step 4. Host 128.15.54.3 sends back a response packet with the NAT router's Internet address as its
destination.

Step 5. The packet reaches the NAT router. Since this is an in-bound packet, the in-bound
translation rules apply: the destination address is changed back (translated) to the original sender's
(Client's) IP address: 192.168.1.15, destination port number 6732.

Step 6. The packet is then forwarded to the Client through the interface connected to the internal
network.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,590 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > NetX Duo NAT Module Operational Overview

Figure 509: NetX Duo NAT Module Packet Return Path

 When sending packets through a NAT router, the sender's Internet network address and port
number is not exposed to other hosts on the public Internet.

To keep track of the network address translations for all active connections between local and
external networks, the NetX Duo NAT-enabled router maintains a translation table with information
about each private host connection that includes source and destination IP address and port number.

NetX Duo NAT is intended for use on an IPv4 router. For the NAT to work, the NetX Duo must be
configured to forward-receive packets to an internal NetX Duo NAT handler. The handler determines
whether the packet is received from the global network (inbound) or from the private network
(outbound).

For inbound packets, the handler determines whether it can forward (consume) the packet
to the host on the private (local) network. To make the determination, the handler looks for
a matching entry based on the packet destination address and port in the NAT translation
table. If a matching entry is found, the handler translates the destination address to the
matching private host IP address and port, and sends the packet to that host. If it cannot
find an entry, it lets the NetX Duo process the packet as normal; as if the packet was
intended for the NAT device itself.
For outbound packets, the NAT handler checks the destination IP address to determine
whether it can forward the packet out onto the global network or whether NetX Duo should
handle the packet as it does normally. If the packet has a broadcast or loopback destination
address, or an IP address which does not match the NAT device global network address, the
NAT handler lets the NetX Duo handle the packet. Otherwise, the handler looks for a
matching entry of the sender's IP and address in the translation table. If it finds a match, it
translates the IP address and port to the local IP address and port, and forwards (consumes)
the packet to the local host. If a previous entry is not found, the NAT creates an entry in the
NAT translation table, translates the sender's IP address for the global interface and
forwards the packet to the external host.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,591 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > NetX Duo NAT Module Operational Overview

NetX Duo NAT Module Important Operational Notes and Limitations

NetX Duo NAT Module Operational Notes

To enable the NAT, add the NetX Duo Source component to the Configurator pane, and set
the NAT property of NetX Duo Source. The prebuilt NetX Duo source library does not have
NAT enabled.
The Maximum Physical Interfaces property, also in NetX Duo Source, must be set to 2,
assuming one private network and one global network. Auto-generated code creates the IP
instance using the global network IP address, and attach the secondary interface as the
private network interface.
There must be two network driver instances. The project for this module uses the NetX Port
ETHER framework (sf_el_nx) for both interfaces but one network interface can be on Wi-Fi,
or other network media. If using two sf_el_nx driver instances, ensure their names are not
the same and that one references channel 0 and the other channel 1. The MAC addresses
for a dual-ported driver are in a single NetX Port Ether configuration, so no need to change
these but ensure they are not identical between Channel 0 and Channel 1.
The function specified in the Name of the generated initialization function property must
attach the secondary interface and create the NAT instance-if the Auto initialization
property of the NAT instance is enabled in the configurator (by default it is enabled). The
Private IPv4 Address property is the local IP address of the NAT device (server). The Global
network interface index specifies the network interface the global network uses. By default,
this index is set to zero (the primary interface of the IP instance), and the secondary
interface is the local network (interface index 1).
If Auto Initialization is disabled, then the NAT application must attach a secondary interface
and create a NAT instance before using any NAT service. After attaching the secondary
interface, the application should wait for the internal NetX Duo processing to enable the link
on that interface using the nx_ip_interface_status_check API (see the module guide project
example for how this is done).
At runtime, the NetX Duo NAT Framework also creates a 4-byte aligned table, or cache, to
store NAT translation entries. The size of the cache is set by the Cache Size property of the
NAT instance. The default value is 1024 bytes (a NAT translation record is 28 bytes). The
minimum size of a NetX Duo NAT Translation table is three entries. This value is set in the
Minimum count for translation entry property which defaults to 3 but should be set to a
larger number in a busy network with many local hosts.
By default, entries created by the NAT server when receiving inbound or outbound packets
are dynamic entries. They are assigned a timeout value (Timeout for translation_entry
property); the default value of 240 seconds is the timeout recommended by RFC 2663.
When an entry timeout expires, the entry is marked for deletion. However, because the
NetX Duo NAT server implementation does not have a timer, it checks the entire table for
expired entries and deletes them when adding a new entry to the table. If there are no
entries that have expired, and the table is full, the NetX Duo NAT server notifies the
application with the cache full callback. The application can set this callback with the
nx_nat_cache_notify_set service.
To create static entries that never expire, the application can use the
nx_nat_inbound_entry_create service. These entries can only be created for inbound
packets and are sometimes referred to as 'inbound rules.' The entries are intended for
server applications, to allow clients to initiate connection sessions with the server.
Internally, the NAT verifies whether the global and local ports requested in the inbound rule
are available. To delete these entries, the application calls the nx_nat_inbound_entry_delete
service.
The NetX Duo NAT is configured with a range of TCP, UDP and ICMP translation ports to
create unique local address: port entries for local hosts connecting with outside hosts.

TCP ports available for TCP translation ports are between the minimum value (
Minimum assigned port number for outbound TCP packets property) and the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,592 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > NetX Duo NAT Module Operational Overview

maximum value (Maximum assigned port number for outbound TCP packets
property).
Similarly, for UDP entries ports, Minimum assigned port number for outbound UDP
packets and Maximum assigned port number for outbound UDP packets
properties.
ICMP packets do not have ports; instead, the ICMP ID can be used as the entry
translation port, Minimum ICMP query identifier and Maximum ICMP query
identifier properties.

To start NetX Duo forwarding packets using the NAT protocol, the application calls the
nx_nat_enable service. To suspend NetX forwarding, the application calls the nx_nat_disable
service.
Once the NAT is enabled, the NAT thread entry application lets the internal processing for
NAT handle packets transmission between the global and local networks. It can create
inbound rules at any time to allow a host on the global network to reach a local host, as is
typically done for servers on the local network.

NetX Duo NAT Module Limitations

Internet Group Management Protocol (IGMP) is not supported. NetX Duo NAT supports only
TCP, UDP and ICMP.
NAT protocol does not apply to IPv6 packet transmission.
NetX Duo NAT does not include DNS or DHCP services, although NetX Duo NAT can
integrate those services with its NAT operations.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.34.4 Including the NetX Duo NAT Module in an Application

This section describes how to include either or both the NetX Duo NAT module in an application
using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX Duo NAT module to an application, simply add it to a thread using the stacks
selection sequence given in the following table.

NetX Duo NAT Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_nat0NetX Duo NAT Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo NAT

When the NetX Duo NAT module is added to the thread stack as shown in the following figure, the
configurator automatically adds any needed lower‑level modules. Any modules needing additional
configuration information have the box text highlighted in Red. Modules with a Gray band are
individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,593 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > Including the NetX Duo NAT Module in an Application

Figure 510: NetX Duo NAT Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are not
all provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.34.5 Configuring the NetX Duo NAT Module

The NetX Duo NAT module must be configured by the user for the desired operation. The SSP
configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,594 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > Configuring the NetX Duo NAT Module

approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX Duo NAT Module

ISDE Property Value Description

Minimum count for translation
entry

3 Minimum count for translation
entry selection

Timeout for translation entry
(ticks)

240 Timeout for translation entry
selection

Minimum assigned port number
for outbound TCP packets

20000 Minimum assigned port number
for outbound TCP packets
selection

Maximum assigned port
number for outbound TCP
packets

30000 Maximum assigned port
number for outbound TCP
packets selection

Minimum assigned port number
for outbound UDP packets

20000 Minimum assigned port number
for outbound UDP packets
selection

Maximum assigned port
number for outbound UDP
packets

30000 Maximum assigned port
number for outbound UDP
packets selection

Minimum ICMP query identifier 20000 Minimum ICMP query identifier
selection

Maximum ICMP query identifier 30000 Maximum ICMP query identifier
selection

Name g_nat0 Module name

Cache size (bytes) 1024 Cache size selection

Private IPv4 Address (use
commas for separation)

192,168,0,2 Private IPv4 Address selection

Private IPv4 Netmask (use
commas for separation)

255, 255, 255, 0 Private IPv4 Netmask selection

Global network interface index 0 Global network interface index
selection

Name of generated initialization
function

nat_init0 Name of generated initialization
function selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,595 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > Configuring the NetX Duo NAT Module

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for stack modules can be desirable. For example, it
might be useful to select different IP addresses and subnet masks. The configurable properties for
the lower-level stack modules are given in the following sections for completeness and as a
reference.

Note
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the NetX Duo NAT Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

IPv4 Address (use commas for
separation)

0,0,0,0 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP Cache Size in Bytes 512 ARP Cache Size in Bytes
selection

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,596 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > Configuring the NetX Duo NAT Module

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 640 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,597 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > Configuring the NetX Duo NAT Module

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX Duo NAT Module Clock Configuration

The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the
SSP configurator clock tab prior to a build, or by using the CGC interface at run-time.

NetX Duo NAT Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines the peripheral signals available and the MCU pins required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,598 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > Configuring the NetX Duo NAT Module

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.34.6 Using the NetX Duo NAT Module in an Application

The following example assumes that a system is already established with a working IP, ARP, ICMP,
TCP and UDP enabled, and that the link is running.

The steps in using the NetX Duo NAT module in a typical application are:

1. Wait for the IP instance to initialize the driver and have a valid IP address using the
nx_ip_status_check API for the primary ("global") interface.

2. Wait for the IP secondary ("local") interface to also have a valid IP address at this point
using the nx_ip_interface_status_check API.

3. Set the cache full callback to be notified when the NAT translation table it full by calling the
nx_nat_cache_notify_set API [Optional].

4. Start packet forwarding by the IP layer in NetX as per NAT protocol by calling the
nx_nat_enable API. The IP thread task and NAT services handle the rest.

5. Add static entries as desired (for example server applications that are waiting for client
requests) by calling the nx_nat_inbound_entry_create [Optional]. Note this can be done
before or after enabling NAT services.

6. Suspend NAT by calling the nx_nat_disable API.
7. Delete NAT by calling the nx_nat_delete API.

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,599 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo NAT > Using the NetX Duo NAT Module in an Application

Figure 511: Flow Diagram of a Typical NetX Duo NAT Module Application

4.3.35 NetX Duo TLS Session

4.3.35.1 NetX Duo TLS Session Introduction

The NetX Duo TLS Session Module provides a high-level API for Transport Layer Security (TLS)
protocol-based clients. It uses services provided by the Synergy Crypto Engine (SCE) to carry out
hardware-accelerated encryption and decryption.

The NetX Duo TLS Session module is based on ThreadX "NetX Duo Secure," which implements the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,600 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > NetX Duo TLS Session Introduction

Secure Socket Layer (SSL) and its replacement Transport Layer Security (TLS) protocol as described
in RFCs 5246 (version 1.2) and 8446 (version 1.3). NetX Duo Secure also includes routines for basic
X.509 (RFC 5280). NetX Duo Secure is intended for applications using the ThreadX RTOS.

The TLS/SSL protocol provides privacy and reliability between two communicating applications. It has
the following basic properties:

Encryption: The messages exchanged between communicating applications are encrypted
to ensure that the connection is private. Symmetric cryptography mechanism such as AES
(Advanced Encryption Standard is used for data encryption.
Authentication: A mechanism to check the peer's identity using certificates
Integrity: A mechanism to detect message tampering and forgery to ensure that
connection is reliable. Message Authentication Code (MAC) such as Secure Hash Algorithm
(SHA) is used to ensure message integrity

An application project that demonstrates the use of the TLS as part of an MQTT client is available on
the Renesas web site. The "Synergy Enterprise Cloud Toolbox" application project and application
note can be found by searching the Renesas web site for "R20AN0485."

NetX Duo TLS Session Module Features

RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2
RFC 8446 The Transport Layer Security (TLS) Protocol Version 1.3

Note
TLS v1.0 and v1.1 are not supported by SSP. Users are strongly recommended to migrate
their projects to TLS v1.2 or TLS v1.3 in SSP immediately.

RFC 5280 X.509 PKI Certificates (v3)
RFC 3268 Advanced Encryption Standard (AES) Cipher suites for Transport Layer Security
(TLS)
RFC 3447 Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1
RFC 2104 HMAC: Keyed-Hashing for Message Authentication
RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)
RFC 4279 Pre-Shared Key Cipher suites for TLS
Supports TLS extensions for:

Secure Renegotiation Indication: This extension mitigates a Man-in-the-Middle
attack vulnerability that could occur during a renegotiation handshake.
Server Name Indication: This extension allows a TLS Client to supply a specific
DNS name to a TLS Server, allowing the server to select the correct credentials
(assumes the server has multiple identity certificates and network entry points).
Signature Algorithms: This extension enables a TLS Client to provide a list of
acceptable signature and hash algorithms to a TLS Server

Supports X.509 extensions for:
Key Usage: Provides acceptable uses for a certificate's public key in a bitfield
Extended Key Usage: Provides additional acceptable uses for a certificate's public
key using OIDs

Certificate verification: Supports SHA-1, SHA-256, SHA-384,and SHA-512 signature hashing
algorithms
Subject Alternative Name: Provides alternative DNS names that are also represented by the
certificate

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,601 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > NetX Duo TLS Session Introduction

Figure 512: NetX Duo TLS Session Module Block Diagram

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,602 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > NetX Duo TLS Session Module APIs Overview

4.3.35.2 NetX Duo TLS Session Module APIs Overview

The NetX Duo TLS Support module defines APIs for creating and setting up a TLS security session. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table.

NetX Duo TLS Session Module API Summary

Function Name Example API Call and Description

nx_secure_crypto_table_self_test nx_secure_crypto_table_self_test(const
NX_SECURE_TLS_CRYPTO *crypto_table,VOID
*metadata, UINT metadata_size);
Perform self-test on the crypto methods

nx_secure_module_hash_compute nx_secure_module_hash_compute(NX_CRYPTO_
METHOD *hamc_ptr,UINT start_address, UINT
end_address, UCHAR *key, UINT
key_length,VOID *metadata, UINT
metadata_size,UCHAR *output_buffer, UINT
output_buffer_size, UINT *actual_size);
Computes hash value using user-supplied hash
function

nx_secure_tls_active_certificate_set nx_secure_tls_active_certificate_set(NX_SECURE
_TLS_SESSION
*tls_session,NX_SECURE_X509_CERT
*certificate);
Set the active identity certificate for a NetX
Secure TLS Session

nx_secure_tls_initialize nx_secure_tls_initialize(VOID);
Initializes the NetX Secure TLS module

nx_secure_tls_remote_certificate_buffer_allocate nx_secure_tls_remote_certificate_buffer_allocate
(NX_SECURE_TLS_SESSION *session_ptr,UINT
certs_number, VOID *certificate_buffer,ULONG
buffer_size);
Allocate space for all certificates provided by a
remote TLS host

nx_secure_tls_remote_certificate_free_all nx_secure_tls_remote_certificate_free_all(NX_SE
CURE_TLS_SESSION *session_ptr);
Free space allocated for incoming certificates

nx_secure_tls_server_certificate_add nx_secure_tls_server_certificate_add(NX_SECURE
_TLS_SESSION *session_ptr,
NX_SECURE_X509_CERT *certificate, UINT
cert_id);
Add a certificate specifically for TLS servers
using a numeric identifier

nx_secure_tls_server_certificate_find nx_secure_tls_server_certificate_find(NX_SECUR
E_TLS_SESSION *session_ptr,
NX_SECURE_X509_CERT **certificate, UINT
cert_id);
Find a certificate using a numeric identifier

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,603 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > NetX Duo TLS Session Module APIs Overview

nx_secure_tls_server_certificate_remove nx_secure_tls_server_certificate_remove(NX_SEC
URE_TLS_SESSION *session_ptr,UINT cert_id);
Remove a local server certificate using a
numeric identifier

nx_secure_tls_session_client_callback_set nx_secure_tls_session_client_callback_set(NX_SE
CURE_TLS_SESSION *tls_session, ULONG
(*func_ptr)(NX_SECURE_TLS_SESSION
*tls_session,
NX_SECURE_TLS_HELLO_EXTENSION
*extensions, UINT num_extensions));
Set up a callback for TLS to invoke at the
beginning of a TLS Client handshake

nx_secure_tls_session_x509_client_verify_config
ure

nx_secure_tls_session_x509_client_verify_config
ure(NX_SECURE_TLS_SESSION *session_ptr,UINT
certs_number, VOID *certificate_buffer,ULONG
buffer_size);
Enable client X.509 verification and allocate
space for client certificates

nx_secure_tls_session_renegotiate_callback_set nx_secure_tls_session_renegotiate_callback_set(
NX_SECURE_TLS_SESSION *tls_session, ULONG
(*func_ptr)(struct
NX_SECURE_TLS_SESSION_struct *session));
Assign a callback that will be invoked at the
beginning of a session renegotiation

nx_secure_tls_session_renegotiate nx_secure_tls_session_renegotiate(NX_SECURE_
TLS_SESSION *tls_session, UINT wait_option)
Initiate a session renegotiation handshake with
the remote host

nx_secure_tls_session_server_callback_set nx_secure_tls_session_server_callback_set(NX_S
ECURE_TLS_SESSION *tls_session, ULONG
(*func_ptr)(NX_SECURE_TLS_SESSION
*tls_session,
NX_SECURE_TLS_HELLO_EXTENSION
*extensions, UINT num_extensions));
Set up a callback for TLS to invoke at the
beginning of a TLS Server handshake

nx_secure_tls_session_sni_extension_parse nx_secure_tls_session_sni_extension_parse(NX_S
ECURE_TLS_SESSION *session_ptr,
NX_SECURE_TLS_HELLO_EXTENSION
*extensions,UINT num_extensions,
NX_SECURE_X509_DNS_NAME *dns_name);
Parse a Server Name Indication (SNI) extension
received from a TLS Client

nx_secure_tls_session_sni_extension_set nx_secure_tls_session_sni_extension_set(NX_SEC
URE_TLS_SESSION *session_ptr,
NX_SECURE_X509_DNS_NAME *dns_name);
Set a Server Name Indication (SNI) extension
DNS name to send to a remote Server

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,604 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > NetX Duo TLS Session Module APIs Overview

nx_secure_tls_timestamp_function_set nx_secure_tls_timestamp_function_set(NX_SECU
RE_TLS_SESSION *session_ptr,ULONG
(*time_func_ptr)(void));
Assign a timestamp function to a NetX Secure
TLS Session

nx_secure_x509_dns_name_initialize nx_secure_x509_dns_name_initialize(NX_SECUR
E_X509_DNS_NAME*dns_name, const UCHAR
*name_string, UINT length);
Initialize an X.509 DNS name structure

nx_secure_x509_extended_key_usage_extension
_parse

nx_secure_x509_extended_key_usage_extension
_parse(NX_SECURE_X509_CERT*certificate, UINT
key_usage);
Find and parse an X.509 extended key usage
extension in an X.509 certificate

nx_secure_x509_extension_find nx_secure_x509_extension_find(NX_SECURE_X50
9_CERT*certificate,
NX_SECURE_X509_EXTENSION
*extension,USHORTextension_id);
Find and return an X.509 extension in an X.509
certificate

nx_secure_x509_key_usage_extension_parse nx_secure_x509_key_usage_extension_parse(NX
_SECURE_X509_CERT*certificate, USHORT
*bitfield);
Find and parse an X.509 Key Usage extension in
an X.509 certificate

nx_secure_tls_local_certificate_add nx_secure_tls_local_certificate_add
(tls_session, certificate);
Adds an initialized certificate to a TLS session for
use as a local identification certificate - the TLS
Server certificate for TLS servers, and the Client
certificate for TLS clients.

nx_secure_tls_local_certificate_remove nx_secure_tls_local_certificate_remove(
tls_session, common_name,
common_name_length);
Removes a certificate instance from the local
certificates list, keyed on the Common Name
field.

nx_secure_tls_metadata_size_calculate nx_secure_tls_metadata_size_calculate(
cipher_table, metadata_size);
Determines the size of the buffer needed by TLS
for encryption metadata for a given ciphersuite
table

nx_secure_tls_packet_allocate nx_secure_tls_packet_allocate(tls_session,
pool_ptr, packet_ptr, wait_option);
Allocates a packet for a TLS application such
that it allows additional room for the TLS header

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,605 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > NetX Duo TLS Session Module APIs Overview

nx_secure_tls_remote_ certificate_allocate nx_secure_tls_remote_certificate_allocate(
tls_session, certificate, raw_certificate_buffer,
buffer_size);
Adds an uninitialized certificate instance to a
TLS session for the purpose of allocating space
for certificates provided by a remote host during
a TLS session

nx_secure_tls_session_certificate_callback_set nx_secure_tls_session_certificate_callback_set(
tls_session, session);
Sets up a function pointer that TLS will invoke
when a certificate is received from a remote
host, allowing the application to perform
validation checks such as certificate revocation
and certificate policy enforcement

nx_secure_tls_session_create nx_secure_tls_session_create(session_ptr,
cipher_table, metadata_area, metadata_size);
Initializes a TLS session control block for later
use in establishing a secure TLS session over a
TCP socket or other lower-level networking
protocol

nx_secure_tls_session_client_verify_disable nx_secure_tls_session_client_verify_ disable(
tls_session);
Disables Client Certificate Verification for a
particular TLS Session which previously had it
enabled.

nx_secure_tls_session_client_verify_enable nx_secure_tls_session_client_verify_enable(tls_se
ssion);
Enables Client Certificate Verification for TLS
Server instances. If enabled, the TLS Server will
request and verify a remote TLS Client
Certificate using all available crypto signature
routines.

nx_secure_tls_session_delete nx_secure_tls_session_delete(tls_session);
Deletes a TLS session object, returning any
resources to the system

nx_secure_tls_session_end nx_secure_tls_session_end(tls_session,
wait_option);
Ends an active TLS session by sending the TLS
CloseNotify alert to the remote host, then
waiting for the response CloseNotify before
returning.

nx_secure_tls_session_packet_buffer_set nx_secure_tls_session_packet_buffer_set(
session_ptr, buffer_ptr, buffer_size);
Sets the buffer TLS uses to reassemble incoming
messages which may span multiple TCP packets.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,606 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > NetX Duo TLS Session Module APIs Overview

nx_secure_tls_session_protocol_oversion_overrid
e

nx_secure_tls_session_protocol_version_
override(tls_session, protocol_version);
Overrides the TLS protocol version to use for the
TLS session. This allows for a different version of
TLS to be utilized even if a newer version is
enabled.

nx_secure_tls_session_receive nx_secure_tls_session_receive(tls_session,
packet_ptr_ptr, wait_option);
Receives data from an active TLS session,
handling all decryption and verification before
returning the data to the caller in the supplied
NX_PACKET structure

nx_secure_tls_session_reset nx_secure_tls_session_reset(session_ptr);
Resets a TLS session object, clearing out all data
for initialization or re-use.

nx_secure_tls_session_send nx_secure_tls_session_send(tls_session,
packet_ptr, wait_option);
Sends data using an active TLS session, handling
all encryption and hashing before sending data
over the established TCP socket connection

nx_secure_tls_session_start nx_secure_tls_session_start(tls_session,
tcp_socket, wait_option);
Starts a TLS session given a TCP socket. The TCP
connection must be established before calling
this function or the TLS handshake will fail.

nx_secure_tls_session_time_function_set nx_secure_tls_session_time_function_set(
tls_session, time_func_ptr);
Sets up a function pointer that TLS will invoke
when it needs to get the current time, which is
used in various TLS handshake messages and
for verification of certificates.

nx_secure_tls_trusted_ certificate_add nx_secure_tls_trusted_certificate_add(
tls_session, certificate);
Adds an initialized certificate to a TLS session for
use as a trusted Root Certificate

nx_secure_tls_trusted_certificate_remove nx_secure_tls_trusted_certificate_remove(
tls_session, common_name,
common_name_length);
Removes a certificate instance from the trusted
certificates store, keyed on the Common Name
field.

nx_secure_tls_remote_certificate_free_all nx_secure_tls_remote_certificate_free_all(
NX_SECURE_TLS_SESSION *session_ptr);
Release certificates previously registered with
the TLS session.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,607 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > NetX Duo TLS Session Module APIs Overview

**nx_secure_tls_psk_add nx_secure_tls_psk_add(tls_session,
pre_shared_key, psk_length, psk_identity,
identity_length, hint, hint_length);
Adds a pre-shared key (PSK) to a TLS session for
use with a PSK ciphersuite. The second
parameter is the PSK identity used during the
TLS handshake to select the proper key.

**nx_secure_tls_psk_find nx_secure_tls_psk_find(tls_session, psk_data,
psk_length,psk_identity, identity_length);
Finds a pre-shared key (PSK) in a TLS session for
use with a PSK ciphersuite. The PSK is found
using an "identity hint" that should match a field
in the PSK structure in the TLS session.

**nx_secure_tls_client_psk_set nx_secure_tls_client_psk_set(tls_session,
pre_shared_key, psk_length, psk_identity,
identity_length, hint, hint_length);
Sets the pre-shared key (PSK) for a TLS Client in
a TLS session control block for use with a remote
server that is sing a PSK ciphersuite.

nx_secure_x509_certificate_initialize nx_secure_x509_certificate_initialize(
NX_SECURE_X509_CERT *certificate_ptr,
const UCHAR *certificate_data,
USHORT certificate_data_length,
UCHAR *raw_data_buffer,
USHORT buffer_size,
const UCHAR *private_key_data,
USHORT private_key_data_length,
UINT private_key_type);
Initialize X.509 Certificate for NetX Secure TLS

nx_secure_x509_common_name_dns_check nx_secure_x509_common_name_dns_check(&ce
rtificate, dns_tld, dns_tld_length)
Check DNS name against X.509 Certificate

nx_secure_x509_crl_revocation_ check nx_secure_x509_crl_revocation_check(&crl_data,
crl_length, &cert_store, &certificate)
Check X.509 Certificate against a supplied
Certificate Revocation List

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API
structures, and function variables, review the associated Azure RTOS User's Manual in the References section.

** Requires that the property PSK Cipher Suite of the TLS Common component be enabled.

NetX Duo TLS Session Status Return Values

Please refer *NetX Secure TLS User Guide* section of Azure RTOS NetX Duo Documentation for
details on status return values by NetX Secure TLS services and NetX secure X.509 Certificate error
codes.

4.3.35.3 NetX Duo TLS Session Module Operational Overview

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,608 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > NetX Duo TLS Session Module Operational Overview

TLS uses TCP and provides secure communications for application layer protocols such as HTTP and
MQTT. TLS can also be used in 'bare' TCP socket applications to send and receive TCP packets in a
secure session to another TCP peer. The module guide for this project uses this simplified
application of TLS to demonstrate a TLS Client TCP and TLS Server TCP sockets exchanging data to a
TCP peer.

Figure 513: NetX Duo TLS Session Module TLS/SSL Layering

 TLS does not have a well-known port number; instead, it uses the designated port number of the
secure variant of the higher layer protocol. For example, port number 443 for secure HTTP, port
number 8883 for MQTT, etc.

When a secure connection is established using TLS/SSL, for example using HTTPS, messages are
exchanged between the client (which always initiates the connection) and a server. The first set of
messages execute a Handshake Protocol after which the client and server can securely send/receive
data bi-directionally, as shown in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,609 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > NetX Duo TLS Session Module Operational Overview

Figure 514: NetX Duo TLS Session Module TLS Protocol Sequences

NetX Duo TLS Session Module Important Operational Notes and Limitations

NetX Duo TLS Session Module Operational Notes

Before the TLS session is created, the metadata buffer must be allocated. The size of meta
data can be set using the properties pane. Also, the user can use NetX Duo Secure
nx_secure_metadata_size_calculate API to calculate the required size of metadata buffer.
The Metadata size is specified in the "Meta data size" of the TLS session component, or in
the nx_secure_tls_session_create call; the default value is 4k but to handle most servers, 8k
is recommended if the memory space is available.
To associate a packet reassembly buffer to a TLS session, use the
nx_secure_tls_session_packet_buffer_set API. The reassembly buffer is used to place the
incoming TLS records which may span multiple TCP packets. If an incoming TLS record is

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,610 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > NetX Duo TLS Session Module Operational Overview

larger than the supplied buffer, the TLS session will end with an error. A reasonable packet
buffer size is 6-8k.
Also, before starting a TLS client session, the application must allocate memory for
processing Server certificate data in the nx_secure_tls_remote_certificate_allocate call. A
reasonable size for most certificates is 2k. The TLS client application should allow for 2-3
certificates from most servers.
For any incoming certificate, the NetX Duo Secure TLS will perform basic X.509 path
validation.
Additionally, at each stage in the verification process the expiration date of each certificate
is checked against the time provided by the application timestamp function. The
nx_secure_tls_session_time_function_set API is used to optionally set up a function pointer
for application timestamp function that TLS will invoke when it needs to get the current
time. The current time is used in some TLS handshake messages for verification of
certificates. If a timestamp function is registered with the TLS session, a timestamp will be
used in the generation of the Server or Client Hello, and in verifying the remote certificate.
Before attempting to reconnect to the same or another TLS server, the TLS client must clear
the TLS session. This is most easily done by calling nx_secure_tls_session_end. It is
recommended to delete the TLS session and recreate it before making another connection
attempt. For applications using SSP 1.3.x, the nx_secure_tls_session_create call should be
preceded by a memset call on the TLS session to clear the session
completely: memset(tls_session_ptr, 0, sizeof(NXD_SECURE_TLS_SESSION));
The user can use "Netx Duo TLS Common" module to configure Maximum RSA modulus size
in bits. When user chooses Maximum RSA Modulus Size as 4096 bits then cryptographic
operation for RSA such as encryption/decryption are done in software. Whereas if the user
chooses Maximum RSA Modulus size as either 1024 or 2048 bits then cryptographic
operations are done using Synergy Crypto Engine (SCE) hardware accelerator.
TLS1.3 implementation in SSP currently supports only ECC based signature and ECDH key
sharing.

NetX Duo TLS Session Module Limitations

Due to the nature of embedded devices, some systems may not have adequate memory to
support the maximum TLS record size of 16 KB. NetX Duo TLS Secure can handle 16KB
records on devices with sufficient resources.
NetX Duo Secure performs basic certificate verification only. NetX Duo TLS Secure will
perform basic X.509 chain verification on a certificate to assure that the certificate is valid
and signed by a trusted Certificate Authority, and can provide the certificate Common
Name for the application to compare against the Top-Level Domain Name of the remote
host. However, verification of certificate extensions and other data is the responsibility of
the application implementer. Refer to the Azure RTOS NetX Duo TLS Secure User Guide
available from the Synergy Gallery for more details.
Software-based cryptography is processor-intensive and not available. Therefore, hardware-
based cryptography is used for optimal performance of NetX Duo TLS Secure.
Refer to the most recent SSP release notes for additional limitations on this module.

4.3.35.4 Including the NetX Duo TLS Session Module in an Application

This section describes how to include either or both the NetX Duo TLS Session module in an
application using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,611 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > Including the NetX Duo TLS Session Module in an Application

To add the NetX Duo TLS Session module to an application, simply add it to a thread using the stacks
selection sequence given in the following table.

Note
Both TLS and DTLS session modules are included through the same stack as mentioned below.

User need not enable 'DTLS' property of 'NetX Duo TLS Common' to use TLS services.

Note
 Both TLS and DTLS session modules are included through the same stack as mentioned below.

User has to enable 'DTLS' property of 'NetX Duo TLS Common' stack to use DTLS services.

NetX Duo TLS Session Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_tls_session0NetX Duo
TLS/DTLS Session

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetX Duo
TLS/DTLS Session

When the NetX Duo TLS/DTLS Session module is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,612 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > Including the NetX Duo TLS Session Module in an Application

Figure 515: NetX Duo TLS Session Module Stack

4.3.35.5 Configuring the NetX Duo TLS Session Module

The NetX Duo TLS Session module must be configured by the user for the desired operation. The SSP
configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,613 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > Configuring the NetX Duo TLS Session Module

accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX Duo TLS Session Module

ISDE Property Value Description

Security Protocol Name TLS, DTLS
Default : TLS

Security protocol Selection

Session Name g_tls_session0 Module name

Meta data size 4000 Meta data size selection

Auto initialization Enable, Disable
Default : Enable

Auto initialization selection

*Name of Timestamp function tls_timestamp_callback0 Name of timestamp function

**Name of Certificate
Verification function

certificate_verification_callback
0

Name of certificate verification
function

Name of generated initialization
function

tls_dtls_session_init0 Name of generated initialization
function

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

*The Time Stamp function is discussed in section 3.1; it is omitted in this module guide in the
interests of simplicity but it is typically used to check the expiration date of each certificate against
the time provided by the application. Not having a timestamp callback may cause interoperability
problems and reduce the security of production release TLS application sessions.

**The Certificate Verification function provides the certificate being verified to the application so
additional verification steps may be performed. It is set to NULL in the module guide project for the
sake of simplicity but in a real TLS session it would be verification tool.

In some cases, settings other than the defaults for stack modules can be desirable. For example, it
might be useful to select different addresses for the Ethernet port. The configurable properties for
the lower-level stack modules are given in the following sections for completeness and as a
reference.

Note
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the NetX Duo TLS Session Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,614 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > Configuring the NetX Duo TLS Session Module

user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo TLS Common

ISDE Property Value Description

Crypto Engine Hardware Crypto engine selection

Self Signed Certificates Enable, Disable

Default: Disable

Self signed certificates
selection

PSK Cipher Suite Enable, Disable

Default: Disable

PSK cipher suite selection

ECC Cipher Suite Enable, Disable

Default: Disable

ECC cipher suite selection

AES-GCM Data
Buffer Size(Bytes)

Default: 2048 Maximum size of internal data
buffer for encryption/decryption
process in AES-GCM based
cipher-suites.

X509 Strict Name Compare Enable, Disable

Default: Disable

X509 strict name compare
selection

X509 Extended Distinguished
Names

Enable, Disable

Default: Disable

X509 extended distinguished
names selection

X509 Certificate Revocation List
Check

Enable, Disable

Default: Enable

Revocation list check selection

X509 Enable, Disable

Default: Enable

X509 feature selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,615 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > Configuring the NetX Duo TLS Session Module

AEAD Cipher Enable, Disable

Default: Disable

AEAD cipher support selection

AEAD Cipher Check Enable, Disable

Default: Disable

AEAD cipher check selection for
the AEAD cipher suites other
than AES-CCM or AES-GCM

Additional AEAD Cipher ID Default: NX_FALSE Name of a valid additional
AEAD cipher ID selection

SCSV Cipher suite Enable, Disable

Default: Disable

SCSV cipher suite selection

Maximum RSA Modulus size
(bits)

1024, 2048, 3072, 4096

Default: 4096

Maximum RSA modulus size
(bits) selection

TLS v 1.3 Enable, Disable

Default: Disable

TLS v 1.3 selection

TLS Version Downgrade Enable, Disable

Default: Enable

TLS version downgrade
selection

DTLS Enable, Disable

Default: Disable

DTLS enabling selection

DTLS Cookie Length 32 DTLS cookie length selection

DTLS Retransmit Retries 10 Number of DTLS retransmit
retries

DTLS Initial
Retransmit Rate(Sec)

1 DTLS initial retransmit rate in
seconds

DTLS Maximum
Retransmit Rate(Sec)

60 DTLS maximum retransmit rate
in seconds

Maximum PSK ID Size Default: 20 Maximum PSK ID size selection
(bytes)

Maximum PSK Keys Default: 5 Maximum PSK Keys selection

Maximum Size of PSK Default: 20 Maximum Size of PSK Selection
(bytes)

Minimum TLS X509 Certificate
Size

Default: 256 Minimum TLS X509 Certificate
size selection (bytes)

Minimum TLS Message Buffer
Size

Default: 4000 Minimum TLS Message Buffer
Size selection (bytes)

Size of TLS Pre-Master Secret Default: 48 Size of TLS Pre-Master Secret
selection (bytes)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,616 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > Configuring the NetX Duo TLS Session Module

Secure Key Clear Enable, Disable

Default: Disable

Secure key clear selection

TLS SNI Extension Enable, Disable

Default: Enable

Server name indication
selection

Server Mode Enable, Disable

Default: Enable

Server mode selection

Client Mode Enable, Disable

Default: Enable

Client mode selection

Client Certificate Verify Enable, Disable

Default: Disable

Client certificate verification
selection

Name of generated initialization
function

nx_secure_common_init Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.
 TLS 1.2 will be enabled by default in any NetX Duo TLS applications.
The AES-GCM data Buffer size refers to the internal input/output buffer used for the data encryption/decryption
process. The value provided should be greater than or equal to the application data packet size, considering the
available RAM space.
The Pre-Master Secret size should be at least 66 bytes when ECC cipher suites are used.
When the AEAD cipher check is enabled, we recommend that the user provide a valid algorithm ID in the
additional AEAD cipher ID field

Configuration Settings for the NetX Duo Software Crypto

ISDE Property Value Description

Name g_crypto_generic Module name

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Crypto Hardware Accelerator

ISDE Property Value Description

Name g_sf_el_nx_crypto Module name

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,617 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > Configuring the NetX Duo TLS Session Module

different default values and available configuration settings.

Configuration Settings for the SCE Common Driver

ISDE Property Value Description

Name g_sce_0 Module name

Endian Flag CRYPTO_WORD_ENDIAN_BIG,
CRYPTO_WORD_ENDIAN_LITTLE

Default:
CRYPT_WORD_ENDIAN_BIG

Endian flag selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX Duo TLS Session Module Clock Configuration

The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the
SSP configurator clock tab prior to a build, or by using the CGC interface at run-time.

NetX Duo TLS Session Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
The selected operation mode determines the peripheral signals available and the MCU pins required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,618 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > Configuring the NetX Duo TLS Session Module

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.35.6 Using the NetX Duo TLS Session Module in an Application

Autogenerated code includes the initialization function with the name as specified in the Name of
generated initialization function property, for example, tls_dlts_session_init0(). The TLS Session
instance variable specified using the Name property of the TLS Session is passed as input to the
initialization function and this instance variable can be passed as input to several APIs of the TLS
layer. The initialization function internally calls the nx_secure_tls_session_create API to create a TLS
session. Calls to the initialization function will be enabled or disabled depending on the Auto
Initialization property value.

The steps in using the NetX Duo TLS Session module in a typical application are:

1. Packet the reassembly buffer for TLS session using the
nx_secure_tls_session_packet_buffer_set API

2. Initialize the root CA certificate using the nx_secure_x509_certificate_initialize API
3. Load the root CA certificate to a trusted store using the

nx_secure_tls_trusted_certificate_add API
4. Allocate space for certificates sent by remote server using the

nx_secure_tls_remote_certificate_allocate API
5. Start the TLS session using the nx_secure_tls_session_start API
6. Send data over the secure connection using the nx_secure_tls_session_send API
7. Receive data over the secure connection using the nx_secure_tls_session_receive API
8. End the session using the nx_secure_tls_session_end API

The following figure illustrates common steps in a typical operational flow diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,619 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo TLS Session > Using the NetX Duo TLS Session Module in an Application

Figure 516: Flow Diagram of a Typical NetX Duo TLS Session Module Application

4.3.36 NetX Duo DTLS Session

4.3.36.1 NetX Duo DTLS Session Introduction

DTLS is closely coupled with TLS, as the underlying security mechanisms are shared between the
protocols. However,TLS is designed to work over a transport layer protocol that guarantees about
packet delivery and order (almost always TCP in practice) and will not function over an unreliable
protocol like UDP. It is precisely because of UDP that DTLS was introduced. DTLS was designed to
handle the unreliable nature of UDP and similar protocols. It does this by including ordering and
reliability logic (e.g. retransmission of dropped data) similar to reliable protocols like TCP

The NetX Duo DTLS Session Module provides a high-level API for Datagram Transport Layer Security
(DTLS) protocol-based clients and servers. It uses services provided by the Synergy Crypto Engine
(SCE) to carry out hardware-accelerated encryption and decryption.

The NetX Duo DTLS Session module is based on ThreadX "NetX Duo Secure," which implements
the Datagram Transport Layer Security (DTLS) protocol as described in RFCs 6347 (version
1.2). NetX Duo Secure also includes routines for basic X.509 (RFC 5280).

 The DTLS protocol provides privacy and reliability between two communicating applications. It has
the following basic properties:

 Encryption: The messages exchanged between communicating applications are encrypted
to ensure that the connection is private. Symmetric cryptography mechanism such as AES
(Advanced Encryption Standard is used for data encryption.
Authentication: A mechanism to check the peer's identity using certificates
Integrity: A mechanism to detect message tampering and forgery to ensure that

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,620 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > NetX Duo DTLS Session Introduction

connection is reliable. Message Authentication Code (MAC) such as Secure Hash Algorithm
(SHA) is used to ensure message integrity.

NetX Duo DTLS Session Module Features

RFC 6347 The Datagram Transport Layer Security (DTLS) Protocol version 1.2
RFC 5280 X.509 PKI Certificates (v3)
RFC 3268 Advanced Encryption Standard (AES) Cipher suites for Datagram Transport Layer
Security (DTLS)
RFC 3447 Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications
Version 2.1
RFC 2104 HMAC: Keyed-Hashing for Message Authentication
RFC 6234 US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF)
RFC 4279 Pre-Shared Key Cipher suites for DTLS
Supports DTLS extensions for the following:

1. Secure Renegotiation Indication: This extension mitigates a Man-in-the-Middle
attack vulnerability that could occur during a renegotiation handshake.

2. Server Name Indication: This extension allows a DTLS Client to supply a specific
DNS name to a DTLS Server, allowing the server to select the correct credentials
(assumes the server has multiple identity certificates and network entry points).

3. Signature Algorithms: This extension enables a DTLS Client to provide a list of
acceptable signature and hash algorithms to a DTLS Server

Supports X.509 extensions for the following:
1. Key Usage: Provides acceptable uses for a certificate's public key in a bitfield
2. Extended Key Usage: Provides additional acceptable uses for a certificate's public

key using OIDs
Certificate verification: Supports SHA-1, SHA-256, SHA-384 and SHA-512 signature hashing
algorithms
Subject Alternative Name: Provides alternative DNS names that are also represented by the
certificate.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,621 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > NetX Duo DTLS Session Introduction

Figure 517: NetX Duo Secure DTLS Session Module Block Diagram

4.3.36.2 NetX Duo DTLS Session Module APIs Overview

The NetX Duo DTLS Session module defines APIs for creating and setting up a DTLS security session.
A complete list of the available APIs, an example API call and a short description of each can be
found in the following table.

Function Name Example API Call and Description

nx_secure_dtls_client_session_start nx_secure_dtls_client_session_start(
NX_SECURE_DTLS_SESSION *dtls_session,
NX_UDP_SOCKET *udp_socket, NXD_ADDRESS
*ip_address, UINT port, UINT wait_option);
Starts DTLS client session connecting to the
provided server address and port using UDP
socket.

nx_secure_dtls_packet_allocate nx_secure_dtls_packet_allocate(
NX_SECURE_DTLS_SESSION *session_ptr,
NX_PACKET_POOL *pool_ptr, NX_PACKET
**packet_ptr, ULONG wait_option);
Allocate a packet for a NetX Secure DTLS
Session

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,622 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > NetX Duo DTLS Session Module APIs Overview

nx_secure_dtls_psk_add nx_secure_dtls_psk_add(NX_SECURE_DTLS_SESS
ION *session_ptr, UCHAR *pre_shared_key, UINT
psk_length, UCHAR *psk_identity, UINT
identity_length, UCHAR *hint, UINT hint_length);
Add a Pre-Shared Key to a NetX Secure DTLS
Session

nx_secure_dtls_server_create nx_secure_dtls_server_create(
NX_SECURE_DTLS_SERVER *server_ptr, NX_IP
*ip_ptr, UINT port, ULONG timeout, VOID
*session_buffer, UINT session_buffer_size, const
NX_SECURE_TLS_CRYPTO *crypto_table, VOID
*crypto_metadata_buffer, ULONG
crypto_metadata_size, UCHAR
*packet_reassembly_buffer, UINT
packet_reassembly_buffer_size, UINT
(*connect_notify)(NX_SECURE_DTLS_SESSION
*dtls_session, NXD_ADDRESS *ip_address, UINT
port), UINT (*receive_notify)(
NX_SECURE_DTLS_SESSION *dtls_session)));
Create a NetX Secure DTLS Server

nx_secure_dtls_server_delete nx_secure_dtls_server_delete(NX_SECURE_DTLS_
SERVER *server_ptr);
Free up resources used by a NetX Secure DTLS
Server

nx_secure_dtls_server_local_certificate_add nx_secure_dtls_server_local_certificate_add(
NX_SECURE_DTLS_SERVER *server_ptr,
NX_SECURE_X509_CERT *certificate, UINT
cert_id);
Add a local server identity certificate to a NetX
Secure DTLS Server

nx_secure_dtls_server_local_certificate_remove nx_secure_dtls_server_local_certificate_remove(
NX_SECURE_DTLS_SERVER *server_ptr, UCHAR
*common_name, UINT common_name_length,
UINT cert_id);
Remove a local server identity certificate from a
NetX Secure DTLS Server

nx_secure_dtls_server_notify_set nx_secure_dtls_server_notify_set(
NX_SECURE_DTLS_SERVER *server_ptr, UINT
(*disconnect_notify)(NX_SECURE_DTLS_SESSION
*dtls_session), UINT (*error_notify)(
NX_SECURE_DTLS_SESSION *dtls_session, UINT
error_code));
Assign optional notification callback routines to a
NetX Secure DTLS Server

nx_secure_dtls_server_psk_add nx_secure_dtls_server_psk_add(
NX_SECURE_DTLS_SERVER *server_ptr, UCHAR
*pre_shared_key, UINT psk_length, UCHAR
*psk_identity, UINT identity_length, UCHAR *hint,
UINT hint_length);
Add a Pre-Shared Key to a NetX Secure DTLS
Server

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,623 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > NetX Duo DTLS Session Module APIs Overview

nx_secure_dtls_server_session_send nx_secure_dtls_server_session_send(
NX_SECURE_DTLS_SESSION *session_ptr,
NX_PACKET *packet_ptr);
Send data over a DTLS session established with
a NetX Secure DTLS Server

nx_secure_dtls_server_session_start nx_secure_dtls_server_session_start(
NX_SECURE_DTLS_SESSION *session_ptr, UINT
wait_option);
Start a DTLS Session from a NetX Secure DTLS
Server

nx_secure_dtls_server_start nx_secure_dtls_server_start(
NX_SECURE_DTLS_SERVER *server_ptr);
Start a NetX Secure DTLS Server instance
listening on the configured UDP port

nx_secure_dtls_server_stop nx_secure_dtls_server_stop(NX_SECURE_DTLS_S
ERVER *server_ptr);
Stop an active NetX Secure DTLS Server
instance

nx_secure_dtls_server_trusted_certificate_add nx_secure_dtls_server_trusted_certificate_add(
NX_SECURE_DTLS_SERVER *server_ptr,
NX_SECURE_X509_CERT *certificate, UINT
cert_id);
Add a trusted CA certificate to a NetX Secure
DTLS Server

nx_secure_dtls_server_trusted_certificate_remov
e

nx_secure_dtls_server_trusted_certificate_remov
e(NX_SECURE_DTLS_SERVER *server_ptr,
UCHAR *common_name, UINT
common_name_length, UINT cert_id);
Remove a trusted CA certificate from a NetX
Secure DTLS Server

nx_secure_dtls_server_x509_client_verify_config
ure

nx_secure_dtls_server_x509_client_verify_config
ure (NX_SECURE_DTLS_SERVER *server_ptr,
UINT certs_per_session, UCHAR *certs_buffer,
ULONG buffer_size);
Configure a NetX Secure DTLS Server to request
and verify client certificates

nx_secure_dtls_server_x509_client_verify_disabl
e

nx_secure_dtls_server_x509_client_verify_disabl
e (NX_SECURE_DTLS_SERVER *server_ptr);
Disables client X.509 certificate verification for a
NetX Secure DTLS Server

nx_secure_dtls_session_client_info_get nx_secure_dtls_session_client_info_get(
NX_SECURE_DTLS_SESSION *session_ptr,
NXD_ADDRESS *client_ip_address, UINT
*client_port, UINT *local_port);
Get remote client information from a DTLS
Server session

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,624 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > NetX Duo DTLS Session Module APIs Overview

nx_secure_dtls_session_create nx_secure_dtls_session_create(
NX_SECURE_DTLS_SESSION *dtls_session, const
NX_SECURE_TLS_CRYPTO *crypto_table, VOID
*metadata_buffer, ULONG metadata_size,
UCHAR *packet_reassembly_buffer, UINT
packet_reassembly_buffer_size, UINT
certs_number, UCHAR
*remote_certificate_buffer, ULONG
remote_certificate_buffer_size));
Create and configure a NetX Secure DTLS
Session

nx_secure_dtls_session_delete nx_secure_dtls_session_delete(
NX_SECURE_DTLS_SESSION *dtls_session);
Free up resources used by a NetX Secure DTLS
Session

nx_secure_dtls_session_end nx_secure_dtls_session_end(NX_SECURE_DTLS_S
ESSION *dtls_session, UINT wait_option);
Shut down an active NetX Secure DTLS Session

nx_secure_dtls_session_local_certificate_add nx_secure_dtls_session_local_certificate_add(
NX_SECURE_DTLS_SESSION *session_ptr,
NX_SECURE_X509_CERT *certificate, UINT
cert_id);
Add a local identity certificate to a NetX Secure
DTLS Session

nx_secure_dtls_session_local_certificate_remove nx_secure_dtls_session_local_certificate_remove(
NX_SECURE_DTLS_SESSION *session_ptr, UCHAR
*common_name, UINT common_name_length,
UINT cert_id);
Remove a local identity certificate from a NetX
Secure DTLS Session

nx_secure_dtls_session_receive nx_secure_dtls_session_receive(
NX_SECURE_DTLS_SESSION *dtls_session,
NX_PACKET **packet_ptr_ptr, UINT wait_option);
Receive application data over an established
NetX Secure DTLS Session

nx_secure_dtls_session_reset nx_secure_dtls_session_reset(NX_SECURE_DTLS_
SESSION *dtls_session);
Clear data in an NetX Secure DTLS Session
instance

nx_secure_dtls_session_send nx_secure_dtls_session_send(NX_SECURE_DTLS_
SESSION *session_ptr, NX_PACKET *packet_ptr,
NXD_ADDRESS *ip_address, UINT port);
Send data over a DTLS session

nx_secure_dtls_session_trusted_certificate_add nx_secure_dtls_session_trusted_certificate_add(
NX_SECURE_DTLS_SESSION *session_ptr,
NX_SECURE_X509_CERT *certificate, UINT
cert_id);
Add a trusted CA certificate to a NetX Secure
DTLS Session

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,625 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > NetX Duo DTLS Session Module APIs Overview

nx_secure_dtls_session_trusted_certificate_remo
ve

nx_secure_dtls_session_trusted_certificate_remo
ve(NX_SECURE_DTLS_SESSION *session_ptr,
UCHAR *common_name, UINT
common_name_length, UINT cert_id);
Remove a trusted CA certificate from a NetX
Secure DTLS Session

Note
For details on operation and definitions for the function data structures, typedefs, defines, API data, API
structures, and function variables, review the associated Azure RTOS User's Manual in the References section.

NetX Duo DTLS Session Status Return Values

Please refer NetX Secure DTLS User Guide section of Azure RTOS NetX Duo Documentation for
details on status return values by NetX Secure DTLS services and NetX secure X.509 Certificate error
codes.

4.3.36.3 NetX Duo DTLS Session Module Operational Overview

DTLS can be used in 'bare' UDP socket applications to send and receive UDP packets in a secure
session to another UDP peer.

When a secure connection is established using DTLS, messages are exchanged between the client
(which always initiates the connection) and a server. The first set of messages execute a Handshake
Protocol after which the client and server can securely send/receive data bi-directionally, as shown in
the following figure:

Figure 518: DTLS Protocol

NetX Duo DTLS Session Module Important Operational Notes and Limitations

NetX Duo DTLS Session Module Operational Notes

For any incoming certificate, the NetX Duo Secure DTLS will perform basic X.509 path
validation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,626 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > NetX Duo DTLS Session Module Operational Overview

Before attempting to reconnect to the same or another DTLS server, the DTLS client must
clear the DTLS session. This is most easily done by calling nx_secure_dtls_session_end. It is
recommended to delete the DTLS session and recreate it before making another connection
attempt.
The user can use "NetX Duo TLS Common" module to configure Maximum RSA modulus size
in bits. When user chooses Maximum RSA Modulus Size as 4096 bits then cryptographic
operation for RSA such as encryption/decryption are done in software. Whereas if the user
chooses Maximum RSA Modulus size as either 1024 or 2048 bits then cryptographic
operations are done using Synergy Crypto Engine (SCE) hardware accelerator.

NetX Duo DTLS Session Module Limitations

1. Due to the nature of embedded devices, some applications may not have the resources to
support the maximum DTLS record size of 16KB. NetX Secure can handle 16KB records on
devices with sufficient resources.

2. Minimal certificate verification. NetX Secure will perform basic X.509 chain verification on a
certificate to assure that the certificate is valid and signed by a trusted Certificate Authority
and can provide the certificate Common Name for the application to compare against the
Top-Level Domain Name of the remote host. However, verification of certificate extensions
and other data is the responsibility of the application implementer. Refer to the Azure RTOS
NetX Duo DTLS Secure User Guide available from the Synergy Gallery for more details.

3. Software-based cryptography is processor-intensive and is currently not supported in SSP.
Therefore, hardware-based cryptography is used for optimal performance of NetX Secure
DTLS.

4. Auto initialization option for DTLS configurable properties is not supported and must be
disabled.

5. Refer to the most recent SSP release notes for additional limitations on this module.

4.3.36.4 Including the NetX Duo DTLS Session Module in an Application

This section describes how to include the NetX Duo DTLS Session module in an application using the
SSP configurator.

Note
 It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX Duo DTLS Session module to an application, simply add it to a thread using the
stacks selection sequence given in the following table and enable 'DTLS' property of
'NetX Duo TLS Common' stack.

Note
 Both TLS and DTLS session modules are included through the same stack as mentioned below.

User has to enable 'DTLS' property of 'NetX Duo TLS Common' stack to use DTLS services.

Resource ISDE Tab Stacks Selection Sequence

g_tls_session0NetX
Duo TLS/DTLS Session

Threads New Stack> X-
Ware> NetX Duo> Protocols>
NetX Duo TLS/DTLS Session

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,627 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > Including the NetX Duo DTLS Session Module in an Application

When the NetX Duo TLS/DTLS Session module is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the new icon and
displays possible choices.

Figure 519: NetX Duo DTLS Session Module Stack

4.3.36.5 Configuring the NetX Duo DTLS Session Module

The NetX Duo DTLS Session module must be configured by the user for the desired operation. The
SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
 You may want to open your ISDE, create the module and explore the property settings in parallel with looking
over the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX Duo DTLS Session Module

ISDE Property Value** **Description

Security Protocol Name TLS, DTLS
Default: TLS

Security protocol selection

Session Name g_tls_session0 Module name

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,628 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > Configuring the NetX Duo DTLS Session Module

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Meta data size 18000 Size of meta data

Name of Timestamp function tls_timestamp_callback0 Name of timestamp function

Name of Certificate Verification
function

certificate_verification_callback
0

Name of certificate verification
function

Name of generated initialization
function

tls_dtls_session_init0 Name of generated initialization
function

Note
 The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.
Auto Initialization has to be disabled for DTLS Session.
The properties 'Meta data size', 'Name of Timestamp function', 'Name of Certificate Verification function', 'Name of
generated initialization function' are applicable only for TLS Session.

Configuration Settings for the NetX Duo DTLS Session Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
 The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo TLS Common

ISDE Property Value Description

Crypto Engine Hardware Crypto engine selection

Self Signed Certificates Enable, Disable

Default: Disable

Self signed certificates
selection

PSK Cipher Suite Enable, Disable

Default: Disable

PSK cipher suite selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,629 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > Configuring the NetX Duo DTLS Session Module

ECC Cipher Suite Enable, Disable

Default: Disable

ECC cipher suite selection

AES-GCM Data
Buffer Size(Bytes)

Default: 2048 Maximum size of internal data
buffer for encryption/decryption
process in AES-GCM based
cipher-suites.

X509 Strict Name Compare Enable, Disable

Default: Disable

X509 strict name compare
selection

X509 Extended Distinguished
Names

Enable, Disable

Default: Disable

X509 extended distinguished
names selection

X509 Certificate Revocation List
Check

Enable, Disable

Default: Enable

Revocation list check selection

X509 Enable, Disable

Default: Enable

X509 feature selection

AEAD Cipher Enable, Disable

Default: Disable

AEAD cipher support selection

AEAD Cipher Check Enable, Disable

Default: Disable

AEAD cipher check selection for
the AEAD cipher suites other
than AES-CCM or AES-GCM

SCSV Cipher suite Enable, Disable

Default: Disable

SCSV cipher suite selection

Maximum RSA Modulus size
(bits)

1024, 2048, 3072, 4096

Default: 4096

Maximum RSA modulus size
(bits) selection

TLS v 1.3 Enable, Disable

Default: Disable

TLS v 1.3 selection

TLS Version Downgrade Enable, Disable

Default: Enable

TLS version downgrade
selection

DTLS Enable, Disable

Default: Disable

DTLS enabling selection

DTLS Cookie Length 32 DTLS cookie length selection

DTLS Retransmit Retries 10 Number of DTLS retransmit
retries

DTLS Initial
Retransmit Rate(Sec)

1 DTLS initial retransmit rate in
seconds

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,630 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > Configuring the NetX Duo DTLS Session Module

DTLS Maximum
Retransmit Rate(Sec)

60 DTLS maximum retransmit rate
in seconds

Maximum PSK ID Size Default: 20 Maximum PSK ID size selection
(bytes)

Maximum PSK Keys Default: 5 Maximum PSK Keys selection

Maximum Size of PSK Default: 20 Maximum Size of PSK Selection
(bytes)

Minimum TLS X509 Certificate
Size

Default: 256 Minimum TLS X509 Certificate
size selection (bytes)

Minimum TLS Message Buffer
Size

Default: 4000 Minimum TLS Message Buffer
Size selection (bytes)

Size of TLS Pre-Master Secret Default: 48 Size of TLS Pre-Master Secret
selection (bytes)

Secure Key Clear Enable, Disable

Default: Disable

Secure key clear selection

TLS SNI Extension Enable, Disable

Default: Enable

Server name indication
selection

Server Mode Enable, Disable

Default: Enable

Server mode selection

Client Mode Enable, Disable

Default: Enable

Client mode selection

Client Certificate Verify Enable, Disable

Default: Disable

Client certificate verification
selection

Name of generated initialization
function

nx_secure_common_init Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
 The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.
 DTLS should be enabled to use DTLS V 1.2 protocol.
 The AES-GCM data Buffer size refers to the internal input/output buffer used for the data encryption/decryption
process. The value provided should be greater than or equal to the application data packet size, considering the
available RAM space.
 The Pre-Master Secret size should be at least 66 bytes when ECC cipher suites are used.

Configuration Settings for the NetX Duo Software Crypto

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,631 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > Configuring the NetX Duo DTLS Session Module

ISDE Property Value Description

Name g_crypto_generic Module name

Note
 The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Crypto Hardware Accelerator

ISDE Property Value Description

Name g_sf_el_nx_crypto Module name

Note
 The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the SCE Common Driver

ISDE Property Value Description

Name g_sce_0 Module name

Endian Flag CRYPTO_WORD_ENDIAN_BIG,
CRYPTO_WORD_ENDIAN_LITTLE

Default:
CRYPT_WORD_ENDIAN_BIG

Endian flag selection

Note
 The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX Duo DTLS Session Module Clock Configuration

The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the
SSP configurator clock tab prior to a build, or by using the CGC interface at run-time.

NetX Duo DTLS Session Module Pin Configuration

 The ETHERC peripheral module uses pins on the MCU device to communicate to external devices.
I/O pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent
table illustrates an example selection for the I2C pins.

Note
 The selected operation mode determines the peripheral signals available and the MCU pins required.

Pin Selection for the ETHERC Module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,632 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > Configuring the NetX Duo DTLS Session Module

Resource ISDE Tab Pin selection Sequence

ETHERC Pins Select Peripherals
> Connectivity:ETHERC >
ETHERC1.RMII

Note
 The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
 The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.36.6 Using the NetX Duo DTLS Session Module in an Application

Note
User cannot enable Auto Initialization for DTLS session from SSP configurator. Hence the client and server
initialization functions has to be invoked from the application.

The steps in using the NetX Duo DTLS Session module in a typical client application are:

1. Create a DTLS session using the nx_secure_dtls_session_create API.
2. Initialize the root CA certificate using the nx_secure_x509_certificate_initialize API
3. Load the root CA certificate to a trusted store using the

nx_secure_dtls_session_trusted_certificate_add API
4. Start DTLS client session using nx_secure_dtls_client_session_start API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,633 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > Using the NetX Duo DTLS Session Module in an Application

5. Allocate a DTLS packet to send some encrypted data to the server using
nx_secure_dtls_packet_allocate API.

6. Populate the packet with some data using nx_packet_data_appendAPI.
7. Send data over the secure connection to the server using nx_secure_dtls_session_sendAPI.
8. Receive data over the secure connection using nx_secure_dtls_session_receive API from the

server.
9. End the session using nx_secure_dtls_session_endAPI.

The following figure illustrates common steps of client application in a typical operational flow
diagram:

Figure 520: Flow Diagram of a Typical NetX Secure DTLS Session Module Client Application

 The steps in using the NetX Duo DTLS Session module in a typical server application are:

1. Create a DTLS server instance using nx_secure_dtls_server_create API. User has to define
Connect and Receive Notify callback functions which will be passed as parameters to
nx_secure_dtls_server_create API.

2. Initialize local server identity certificate with key and add to server using
nx_secure_x509_certificate_initialize API.

3. Add local server identity certificate to DTLS server using
nx_secure_dtls_server_local_certificate_addAPI. API.

4. Start DTLS server using nx_secure_dtls_server_startAPI.
5. If there is a connection attempt from the client, start DTLS server session using

nx_secure_dtls_server_session_startAPI.
6. Receive the data from connected client using nx_secure_dtls_session_receiveAPI.
7. Send the response to client using nx_secure_dtls_server_session_sendAPI
8. Once server processing is done, stop server instance from accepting connection requests

using nx_secure_dtls_server_stopAPI.
9. Delete DTLS server session using nx_secure_dtls_server_deleteAPI.

The following figure illustrates common steps of server application in a typical operational flow
diagram:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,634 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo DTLS Session > Using the NetX Duo DTLS Session Module in an Application

Figure 521: Flow Diagram of a Typical NetX Secure DTLS Session Module Server Application

4.3.37 NetX Duo mDNS/DNS-SD

4.3.37.1 NetX Duo mDNS/DNS-SD Introduction

Multicast DNS/DNS-SD (mDNS) is a protocol that helps in resolving the hostname to IP address in a
local network. The mDNS and DNS-SD are protocols designed to augment the traditional DNS
service. mDNS provides hostname and service lookup to the nodes on the local network. Each node
uses an IPv4 or IPv6 multicast channel to announce services it offers to its neighbors, responds to
queries from its neighbors, and sends queries on behalf of its applications. Throughout the
document, the term mDNS refers to the services that cover both the mDNS specification and the
DNS-SD specification.

NetX Duo mDNS/DNS-SD Module Features

NetX Duo mDNS/DNS-SD is compliant with RFC 6762 and RFC 6763.
NetX Duo mDNS/DNS-SD supports both IPv4 and IPv6 networks.
Optional creation of separate packet pool for mDNS operations.
Provides high-level APIs for:

Creating and deleting mDNS instances.
Creating and deleting local services.
Perform single shot and continuous service discovery.
Service lookup from the local peer service cache.
Setting cache and services notify callbacks.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,635 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > NetX Duo mDNS/DNS-SD Introduction

Figure 522: NetX Duo mDNS/DNS-SD Module Block Diagram

Note
In the figure above, the NetX Duo Network Driver modules has multiple implementation options available. See the
description just after the module stack figure in Including the NetX Duo mDNS/DNS-SD Module in an Application
for additional details.

4.3.37.2 NetX Duo mDNS/DNS-SD Module APIs Overview

The NetX Duo mDNS/DNS-SD Support module defines APIs for creating the mDNS instances, setting
domain name, adding mDNS services, performing a one-shot and continuous discovery. A complete
list of the available APIs, an example API call, and a short description of each can be found in the
following table. A table of status return values follows the API summary table.

NetX Duo mDNS Module API Summary

Function Name Example API Call and Description

nx_mdns_create nx_mdns_create(&my_mdns, &my_ip,
&my_packet_pool, priority,
stack_ptr, sizeof(stack_ptr), "NETX-MDNS-HOST",
local_cache_ptr, sizeof(local_cache_ptr),
peer_cache_ptr, sizeof(peer_cache_ptr),
probing_notify);
Creates an mDNS instance on the specific IP
instance and associated resources.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,636 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > NetX Duo mDNS/DNS-SD Module APIs Overview

nx_mdns_delete nx_mdns_delete(&my_mdns);
deletes the mDNS instance and frees its
resources.

nx_mdns_enable nx_mdns_enable(&my_mdns, interface_index);
Enables mDNS service on a specific physical
interface. Once the service is enabled, the
mDNS module
first probes all its unique service names on the
network before responding to queries received
on the interface.

nx_mdns_disable nx_mdns_disable(&my_mdns, interface_index);
Disables mDNS service on the specific physical
interface. Once the service is disabled, the
mDNS sends
"goodbye" messages for every local service to
the network that is attached to the interface, so
the neighboring nodes are notified.

nx_mdns_cache_notify_set nx_mdns_cache_notify_set(&my_mdns,
cache_full_nofiy_cb);
This service installs a user-supplied callback
function, which is invoked when either the local
service cache or peer service cache becomes
full.

nx_mdns_cache_notify_clear nx_mdns_cache_notify_clear(&my_mdns);
Clears a user-supplied service cache notify
callback function.

nx_mdns_domain_name_set nx_mdns_domain_name_set(&my_mdns,
"home");
This service sets up the default local domain
name. When the mDNS instance is created, the
default local
domain name is set to ".local". This API allows an
application to overwrite the default local domain
name.

nx_mdns_service_announcement_timing_set nx_mdns_service_announcement_timing_set(&m
y_mdns, t, p, k, retrans_interval, period_interval,
max_time);
This service reconfigures the timing parameters
employed by mDNS when sending the service
announcements. Publish period starts from t
ticks and can be expanded telescopically with 2
to the power of k factor. The number of
repetitions per advertisement is p, the interval
between each repeated advertisement is
interval ticks, and Maximum
announcement period is max_time.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,637 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > NetX Duo mDNS/DNS-SD Module APIs Overview

nx_mdns_service_add nx_mdns_service_add(&my_mdns, "NETX-
SERVICE", "_http._tcp", NX_NULL, NX_NULL, 0,
priority, weight, port,is_unique, interface);
This API registers a service offered by the
application. If the flag is_unique is set, mDNS
probes the service name to make sure it is
unique on the local network before starting to
announce the service on the network.

nx_mdns_service_delete nx_mdns_service_delete(&my_mdns, "NETX-
SERVICE", "_http._tcp", NX_NULL);
This API deletes a previous registered service. As
the service is deleted, "goodbye" messages are
sent to the local
network so the neighboring nodes are notified.

nx_mdns_service_one_shot_query nx_mdns_service_one_shot_query(&my_mdns, "
NETX-SERVICE", "_http._tcp", NX_NULL,
service_ptr, wait_option);
This service performs a one-shot mDNS query. If
the specified service is found in the peer service
cache, the first instance is returned. If no
services are found in the local peer service
cache, the mDNS module issues a query
command and waits for a response.

nx_mdns_service_continuous_query nx_mdns_service_continuous_query(&my_mdns,
"NETX-SERVICE", "_http._tcp", NX_NULL);
This service starts a continuous query. Note that
the service returns immediately. After issuing a
continuous query, the application may retrieve
service records by using the API
nx_mdns_service_lookup.

nx_mdns_service_query_stop nx_mdns_service_query_stop(&my_mdns, "NETX-
SERVICE", "_http._tcp", NX_NULL);
Terminates the previous issued continuous
service discovery.

nx_mdns_service_lookup nx_mdns_service_lookup(&my_mdns, "NETX-
SERVICE", "_http._tcp", NX_NULL, 0, service_ptr);
This service looks up services matching the
instance name (if provided) and the type of
service in the local peer service cache.

nx_mdns_service_ignore_set nx_mdns_service_ignore_set(&my_mdns,
service_mask);
This API configures a mask to ignore services
specified by the service_mask bitmask. User
may optionally use the service_mask to select
service types it does not wish to be cached.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,638 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > NetX Duo mDNS/DNS-SD Module APIs Overview

nx_mdns_service_notify_set nx_mdns_service_notify_set(&my_mdns,
service_mask, service_change_notify);
This API configures a service change notify
callback function. This callback function is
invoked when a service offered by other nodes
on the network is added, changed, or is no
longer available.

nx_mdns_service_notify_clear nx_mdns_service_notify_clear(&my_mdns);
Clear the service change notify callback
function.

nx_mdns_host_address_get nx_mdns_host_address_get(&my_mdns, "MDNS-
Host", &ipv4_address, ipv6_address, 500);
This service performs an mDNS query on host
IPv4 and IPv6 addresses. If the address of the
specified hostname is found in the peer service
cache, the address is returned. If no address is
found in the peer service cache, the mDNS
module issues A and AAAA type queries and wait
for a response.

nx_mdns_local_cache_clear nx_mdns_local_cache_clear(&my_mdns);
Clears all entries in the local service cache after
sending the Goodbye message.

nx_mdns_peer_cache_clear nx_mdns_peer_cache_clear(&my_mdns);
Clears all entries in the peer service cache.

Note
For details on operation and definitions for the functions, data structures, typedefs, defines, API data, API
structures, and function variables, review the associated Azure RTOS NetX Duo documentation in the References
section.

Status Return Values

Name Description

NX_MDNS_SUCCESS mDNS success.

NX_MDNS_ERROR mDNS internal error.

NX_MDNS_PARAM_ERROR mDNS parameters error.

NX_MDNS_CACHE_ERROR The cache size is not enough.

NX_MDNS_UNSUPPORTED_TYPE The unsupported resource record type.

NX_MDNS_DATA_SIZE_ERROR The data size is too big.

NX_MDNS_AUTH_ERROR Attempting to parse too large data.

NX_MDNS_PACKET_ERROR The packet can not add the resource record.

NX_MDNS_DEST_ADDRESS_ERROR The destination address error.

NX_MDNS_UDP_PORT_ERROR The UDP port error.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,639 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > NetX Duo mDNS/DNS-SD Module APIs Overview

NX_MDNS_NOT_LOCAL_LINK The message that not originate from the local
link.

NX_MDNS_EXCEED_MAX_LABEL The data exceed the max label size.

NX_MDNS_EXIST_UNIQUE_RR At least one unique record in the cache.

NX_MDNS_EXIST_SHARED_RR At least one shared record in the cache.

NX_MDNS_EXIST_SAME_QUERY Exist the same query record in the cache.

NX_MDNS_EXIST_SAME_SERVICE Exist the same service

NX_MDNS_NO_RR No response for a one-shot query

NX_MDNS_NO_KNOWN_ANSWER No known answer for the query

NX_MDNS_NAME_MISMATCH The name mismatch

NX_MDNS_NOT_STARTED mDNS does not start

NX_MDNS_HOST_NAME_ERROR mDNS hostname error

NX_MDNS_NO_MORE_ENTRIES No more entries are found

NX_MDNS_SERVICE_TYPE_MISMATCH The service type mismatch

NX_MDNS_NOT_ENABLED mDNS not enabled

NX_MDNS_ALREADY_ENABLED mDNS already enabled

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.
Refer to the Azure RTOS NetX Duo documentation for additional information on mDNS/DNS-SD Module API
functions.

4.3.37.3 NetX Duo mDNS/DNS-SD Module Operational Overview

NetX Duo mDNS/DNS-SD module manages two internal service caches: the local service cache, and
the peer service cache.

Local service cache:

The local service cache stores Resource Records related to services offered by applications running
on the node. For incoming queries, if the query matches the service offered, mDNS acknowledges
with responses stored in the local service cache. Applications register services by calling the API
nx_mdns_service_add(). To remove services, applications use the API nx_mdns_service_delete(),
which will, in turn, send "goodbye" messages before removing the corresponding entries in the local
service cache.

When a service is added, mDNS maintains at least 3 Resource Records in the local service cache:
SRV, PTR, and TXT. Additional PTR Resource Record may be added if the service type includes
subtype.

For example, an application registers a service:

name._*subtype*._sub._*type*._tcp.local

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,640 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > NetX Duo mDNS/DNS-SD Module Operational Overview

two PTR Resource Records are added to the local service cache, one for

"*_subtype._*sub*._type._*tcp.local *PTR name.type._*tcp*.*local"

and the other one for

*"_type._*tcp*.*local *PTR name.type._*tcp*.*local"

Peer service cache:

The peer service cache contains mDNS Resource Records received from neighboring nodes. mDNS
module collects Resource Records advertised by other nodes on the network, and stores the
received information in the peer service cache. When an application queries for information such as
host IPv4 or IPv6 addresses, mDNS searches the peer service cache for locally cached responses.
When an application queries for services offered by peers, mDNS searches through the cache for
related PTR, SRV, TXT, and IPv4/IPv6 address records. The peer service cache also stores queries
sent to the node. For example, an application may request a particular service by calling
nx_mdns_service_one_shot_query. If the service is not found in the peer service cache, mDNS
creates query questions (PTR, SRV, and TXT) in the peer service cache. These query questions will be
sent to the network periodically till the service is resolved, or times out. Similarly, the application
may use the API nx_mdns_service_continous_query() to request a particular service over a long
period of time (application cancels a previously issued continuous query by using the API
nx_mdns_service_query_stop()'). To search for a particular service in the peer service cache without
sending queries to the network, applications can use the API nx_mdns_serivce_lookup(). This API only
searches the resource records in the peer service cache.

Resource Record:

Each Resource Record is stored in a data structure NX_MDNS_RR in the service caches. Strings in
Resource Records are of variable length, therefore are not stored in the NX_MDNS_RR structure. The
Resource Record contains a pointer to the actual memory location where the string is stored. The
string table and the Resource Records share the service cache. Resource Records are stored from
the beginning of the service cache, and grow towards the end of the cache. The string table starts
from the end of the service cache and grows towards the beginning of the cache. Each string in the
string table has a length field and a counter field. When a string is added to the string table, if the
same string is already present in the table, the counter value is incremented and no memory is
allocated for the string. The service cache is considered full if no more resource records or new
strings can be added to the service cache.

There are two ways for an application to find services offered on the local network. It can either issue
a specific service look-up through a one-shot query, or it can initiate a continuous query to "monitor"
the activities on the network.

One-Shot query:

In the one-short query scenario, the application must specify the service type. mDNS searches
through the local service cache and the peer service cache. If a service instance is located, the one-
shot query returns with the information found in the Resource Records. If there are no records in the
local service cache or peer service cache, mDNS sends out query messages. If the instance name is
specified, an ANY type (query the SRV and TXT type) with the specific instance name, in the form of
name.type.local, is sent to the local network. If the instance name is not specified, a PTR type of
query is sent to the local network. The first complete service received is returned to the caller.

Continuous query:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,641 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > NetX Duo mDNS/DNS-SD Module Operational Overview

Continuous query works differently. The typical use case for a continuous query is to monitor the
local network for a specific service (for example to constantly look for printing services on the local
network). In this case, the application issues a search query (via the API
nx_mdns_service_continious_query) for a certain type of service. The caller typically does not wait for
a particular response. For queries submitted as continuous queries, the mDNS module transmits the
queries periodically with exponentially increasing intervals. To stop the query, an application must
use the API nx_mdns_service_query_stop to stop the internal timer in these queries. The query type
can be NULL, in which case the query type is set to special PTR type _services._dns-sd._udp.local.
This service type is defined by mDNS as a way to discover all services available on the local network.
If the instance name is supplied, an ANY type (query the SRV and TXT type) with the specific
instance name name.type.local is sent to the local network. If the instance name is NULL, a PTR type
of query is sent to the local network, All responses, including responses from unsolicited queries, are
recorded in the peer service cache. At a later time, the application uses the API
nx_mdns_service_lookup to retrieve specific services from the peer service cache.

NetX Duo mDNS/DNS-SD Important Operational Notes and Limitations

NetX Duo mDNS/DNS-SD Module Operational Notes

The NetX Duo mDNS/DNS-SD requires a packet pool for transmitting mDNS messages; by default,
the application must set the packet pool before using mDNS services. This can either be the packet
pool used by the IP instance (g_packet_pool0), or it can be a separate packet pool added to the
project: Azure RTOS -> NetX Duo -> NetX Duo Packet Pool Instance in NetX Duo mDNS Client.

When mDNS client sends a multicast message/query into the network asking which network
participant matches with the hostname, the request goes into the all the participants in the network.
The device in the network which matches the request responds to the entire network via multicast.
All the participants are informed of the connection between the name and IP address, and can make
a corresponding entry in their mDNS cache.

NetX Duo mDNS/DNS-SD Module Limitations

When using NetX Duo secondary interface feature with mDNS, always use NetX Duo Source.
NetX Duo library doesn't support secondary interface feature.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.37.4 Including the NetX Duo mDNS/DNS-SD Module in an Application

This section describes how to include NetX Duo mDNS/DNS-SD module in an application using the
SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread, and configuring
a block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP
User's Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the NetX Duo mDNS/DNS-SD module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

NetX Duo mDNS/DNS-SD Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,642 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > Including the NetX Duo mDNS/DNS-SD Module in an Application

g_mdns0NetXDuo mDNS/DNS-
SD

Threads New Stack> X-Ware> NetX
Duo> Protocols> NetXDuo
mDNS/DNS-SD

When the NetX Duo mDNS/DNS-SD module is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 523: NetX Duo mDNS/DNS-SD Module Stack

 In the stack above, the NetX Network Driver (or NetX Duo Network Driver in a NetX Duo stack) has
not been populated yet. There are multiple possible selections for the Network Driver; they are all
not provided so as not to needlessly complicate the figure and the following configuration tables. The
available options depend on the MCU target, but some typical options include:

NetX Duo Port using PPP on nxd_ppp
NetX Port ETHER on sf_el_nx
NetX Port using Cellular Framework on sf_cellular_nsal_nx
NetX Port using PPP on nx_ppp
NetX Port using Wi-Fi Framework on sf_wifi_nsal_nx

4.3.37.5 Configuring the NetX Duo mDNS/DNS-SD Module

The NetX Duo mDNS/DNS-SD module must be configured by the user for the desired operation. The
SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,643 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > Configuring the NetX Duo mDNS/DNS-SD Module

accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the NetX Duo mDNS/DNS-SD Module

ISDE Property Value Description

mDNS/DNS-SD Server Support Enable, Disable

Default: Disable

This enables/disables
mDNS/DNS-SD server
functionality.
Without the server
functionality, the mDNS/DNS-
SD module does not announce
services provided by localhost,
nor does it
respond to mDNS inquiries.

mDNS/DNS-SD Client Support Enable, Disable

Default: Enable

This enables/disables
mDNS/DNS-SD
client functionality.
Without the client functionality,
mDNS/DNS-SD does not send
queries, nor does it maintain
mDNS query responses
received
over the network.

Validate address from Received
mDNS messages

Enable, Disable

Default: Enable

Validates addresses (source
address, a destination address,
and port numbers) from the
received mDNS messages.

Verify multicast queries Enable, Disable

Default: Enable

Passive Observation Of Failures,
mDNS /DNS_SD client (querier)
observes the multicast queries
issued by the other hosts on
the network.

Enable mDNS/DNS-SD
generating negative response

Enable, Disable

Default: Enable

mDNS /DNS-SD server
generates negative responses
to queries for which it has
legitimate ownership

Enable mDNS/DNS-SD IPV6
processing

Enable, Disable

Default: Disable

Send/process mDNS message
over IPv6 address.

Max IPV6 address count 2 Maximum IPv6 addresses count
of the host.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,644 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > Configuring the NetX Duo mDNS/DNS-SD Module

Max string size for host 64 Maximum string size for the
host name.

Note
 Does not include the NULL
terminator.

Max string size for service 64 Maximum string size for service
name.

Note
 Does not include the NULL
terminator.

Max string size for Domain 16 Maximum string size for the
domain name.

Note
 Does not include the NULL
terminator.

Max conflict count for host 8 Maximum conflict count for host
name or service name

TTL value for resource records 120 TTL value for resource records
with host name, in seconds.

TTL value for other records 4500 TTL value for other resource
records, in seconds.

Time interval b/w mDNS
probing messages

25 The time interval, in ticks,
between mDNS probing
messages.

Time interval b/w mDNS
announcement messages

25 The time interval, in ticks,
between mDNS announcement
messages.

Time interval b/w goodbye
messages

25 The time interval, in ticks,
between repeated "goodbye"
messages

Min time interval b/w two
queries

100 The minimum time interval, in
ticks, between two queries.

Max time interval b/w two
queries

360000 The maximum time interval, in
ticks, between two queries.

Min delay for sending the first
query

2 The minimum delay for sending
first query, in ticks.

Delay range for sending the
first query

10 The delay range for sending
first query, in ticks.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,645 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > Configuring the NetX Duo mDNS/DNS-SD Module

Query response time interval 100 The time interval, in ticks, in
responding to a query to ensure
an interval of at least 1sec
since the last time the record
was multicast

Probe query response time 25 The time interval, in ticks, in
responding to a probe queries
to ensure an interval of at least
250ms since the last time the
record was multicast.

Unique query response delay 1 The delay, in ticks, in
responding to a query to a
service that is unique to the
local network.

Minimum delay in responding to
a query to a shared resource

2 The minimum delay, in ticks, in
responding to a query to a
shared resource.

Delay range in responding to a
query to a shared resource

10 The delay range, in ticks, in
responding to a query to a
shared resource.

Minimum delay in responding to
a query with TC bit

40 The minimum delay, in ticks, in
responding to a query with TC
bit.

Delay range in responding to a
query with TC bit

10 The delay range, in ticks, in
responding to a query with TC
bit.

Timer count range 12 When sending out mDNS
responses, the packet contains
responses that otherwise would
be sent within this timer
counter range. The timer count
range is expressed in ticks.

Number of retransmitted
probing messages

3 The number of retransmitted
probing messages.

Number of retransmitted
goodbye messages

1 The number of retransmitted
"goodbye" messages.

Minimum number of the count
with no multicast response

2 The number of queries that no
multicast response, then the
host may take this as an
indication that the record may
no longer be valid.

Time interval in deleting the
record from cache

1000 The time interval, in ticks, in
deleting the record from the
cache after seeing two or more
of these queries, and seeing no
multicast response containing
the expected answer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,646 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > Configuring the NetX Duo mDNS/DNS-SD Module

Delay for deleting a resource
record

100 The delay for deleting a
resource record when the TTL
of this record is zero, in ticks.

Name g_mdns0 Name of the mDNS/DNS-SD
instance.

mDNS thread priority 3 Priority of the mDNS thread.

Internal thread stack size 4096 Size of the stack area in bytes

Local service cache size 4096 Storage space for local
registered services in bytes.

Peer service cache size 4096 Storage space for service
information received in bytes.

Name of Probing notify callback
function

probing_notify Optional callback function
invoked at the end of the
probing operation. It notifies
the application whether the
host name (when enabling
mDNS on a local interface), or
the service name (after
registering a service) is unique.

Name of generated initialization
function

mdns_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable
Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

In some cases, settings other than the defaults for lower-level modules can be desirable. The
configurable properties for the lower-level stack modules are given in the following sections for
completeness and as a reference.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the NetX Duo mDNS/DNS-SD Lower-Level Modules

Only a few number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the NetX Duo IP Instance

ISDE Property Value Description

Name g_ip0 Module name

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,647 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > Configuring the NetX Duo mDNS/DNS-SD Module

IPv4 Address (use commas for
separation)

0,0,0,0 IPv4 Address selection

Subnet Mask (use commas for
separation)

255,255,255,0 Subnet Mask selection

IPv6 Global Address (use
commas for separation)

0x2001, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0, 0x1

IPv6 global address selection

IPv6 Link Local Address (use
commas for separation, All
zeros means use MAC address)

0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
0x0, 0x0

IPv6 link local address selection

IP Helper Thread Stack Size
(bytes)

2048 IP Helper Thread Stack Size
(bytes) selection

IP Helper Thread Priority 3 IP Helper Thread Priority
selection

ARP Enable ARP selection

ARP cache storage units Bytes, Entries
Default: Bytes

ARP cache storage units
selection

ARP Cache cache Size (in Bytes
or storage units)

520 ARP Cache Size in Bytes/Entries
selection. Must be a multiple of
52 Bytes.
Note: 1 Entry = 52 Bytes

Reverse ARP Enable, Disable

Default: Disable

Reverse ARP selection

TCP Enable, Disable

Default: Enable

TCP selection

UDP Enable, Disable

Default: Enable

UDP selection

ICMP Enable, Disable

Default: Enable

ICMP selection

IGMP Enable, Disable

Default: Enable

IGMP selection

IP fragmentation Enable, Disable

Default: Disable

IP fragmentation selection

Name of generated initialization
function

ip_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,648 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > Configuring the NetX Duo mDNS/DNS-SD Module

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Common Instance

ISDE Property Value Description

Name of generated initialization
function

nx_common_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the NetX Duo Packet Pool Instance

ISDE Property Value Description

Name g_packet_pool0 Module name

Packet Size in Bytes 1568 Packet size selection

Number of Packets in Pool 16 Number of packets in pool
selection

Name of generated initialization
function

packet_pool_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

NetX Duo mDNS/DNS-SD Module Clock Configuration

The ETHERC peripheral module uses PCLKA as its clock source. The PCLKA frequency is set using the
SSP configurator clock tab prior to a build, or by using the CGC interface at run-time.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group using Ethernet. Other
MCUs and other interfaces like Wi-Fi or cellular may have different default values and available configuration
settings.

NetX Duo mDNS/DNS-SD Module Pin Configuration

The ETHERC peripheral module uses pins on the MCU device to communicate to external devices. I/O
pins must be selected and configured by the external device as required. The following table
illustrates the method for selecting the pins within the SSP configuration window and the subsequent

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,649 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > Configuring the NetX Duo mDNS/DNS-SD Module

table illustrates an example selection for the ETHERC pins.

Note
The selected operation mode determines the peripheral signals available and the MCU pins required.

Pin Selection for the ETHERC Module

Resource ISDE Tab Pin selection Sequence

ETHERC Pins Select Peripherals >
Connectivity:ETHERC >
ETHERC1.RMII

Note
The selection sequence assumes ETHERC1 is the desired hardware target for the driver.

Pin Configuration Settings for the ETHERC1

Property Value Description

Operation Mode Disabled, Custom, RMII

Default: Disabled

Select RMII as the Operation
Mode for ETHERC1

Pin Group Selection Mixed, _A only

Default: _A only

Pin group selection

REF50CK P701 REF50CK Pin

TXD0 P700 TXD0 Pin

TXD1 P406 TXD1 Pin

TXD_EN P405 TXD_EN Pin

RXD0 P702 RXD0 Pin

RXD1 P703 RXD1 Pin

RX_ER P704 RX_ER Pin

CRS_DV P705 CRS_DV Pin

MDC P403 MDC Pin

MDIO P404 MDIO Pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.37.6 Using the NetX Duo mDNS/DNS-SD Module in an Application

The steps in using the NetX Duo mDNS/DNS-SD module in a typical application are:

1. Wait for the network link to be enabled by calling the nx_ip_status_check (or if your system
has multiple network interfaces, call nx_ip_interface_status_check) with the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,650 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > NetX Duo mDNS/DNS-SD > Using the NetX Duo mDNS/DNS-SD Module in an Application

NX_IP_LINK_ENABLED option.
2. Set the cache notify callback using the nx_mdns_cache_notify_set API.
3. Enable the mDNS functionality using the nx_mdns_enable API.
4. If the Application is configured as mDNS server then

a. Register local service using nx_mdns_service_add API by providing the service
name, type, subtype, priority, weight, and port.

b. Once the service is successfully registered then a user-defined probing_notify
callback is invoked.

c. If all the operation is completed delete the service using
nx_mdns_service_delete API.

5. If the Application is configured as mDNS client then
a. Set the service change callback function to listen the service using

nx_mdns_service_notify_set API.
b. Perform single shot or continuous query using nx_mdns_service_one_shot_query

and nx_mdns_service_continuous_query API respectively.
c. Perform Service Lookup for particular service type using nx_mdns_service_lookup

API.

The following figure illustrates common steps in a typical operational flow diagram:

Figure 524: Flow Diagram of a Typical NetX Duo mDNS/DNS-SD Module Application

4.3.38 Azure RTOS USBX Overview

4.3.38.1 Azure RTOS USBX Interface Overview

The Azure RTOS USBX USB stack (ux) is integrated into the SSP. This document provides an
overview and summary of the Azure RTOS USBX Interface for SSP. Specific USBX modules in SSP
each have their own module overview section. Refer to the appropriate module overview sections in
the SSP User's Manual for details on designing with specific modules.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,651 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > What Does the Azure RTOS USBX Module Do?

4.3.38.2 What Does the Azure RTOS USBX Module Do?

USBX supports the two existing USB specifications: 1.1 and 2.0. It is designed to be scalable and will
accommodate simple USB topologies with only one connected device, as well as complex topologies
with multiple devices and cascading hubs. USBX supports both the host and device sides.

4.3.38.3 Supported USB Classes in Azure RTOS USBX

The USBX class modules listed below are fully supported in the Synergy Configuration tool. To use
these USBX class modules, go to the Threads tab of the Synergy Configuration tool
(configuration.xml), and select any of the USB class modules:

ux_device_class_cdc_acm
ux_device_class_hid
ux_device_class_storage
ux_host_class_cdc_acm
ux_host_class_hid
ux_host_class_printer
ux_host_class_storage
ux_host_class_video
ux_host_class_hub

Note
Refer to the USBX Device Class User Guide, USBX Host Class User Guide or USBX Host Stack UVC User Guide
for more information about the USBX Class specification. Each of the modules listed above also has an associated
module overview section in the SSP User's Manual. Additionally, Module Guides for each of these modules are
available from the Renesas Synergy web site.

The USBX class modules listed below are experimental modules for Synergy parts. The experimental
modules are not currently supported in Synergy Configuration. To experiment with these USBX class
modules, go to the Components tab of the Synergy Configuration tool (configuration.xml) and select
any of the USB class modules:

ux_device_class_cdc_ecm
ux_device_class_rndis
ux_host_class_audio
ux_host_class_gser
ux_host_class_prolific
ux_host_class_swar
ux_network_driver
ux_device_class_pima
ux_host_class_pima
ux_pictbridge

Note
Any of the USB classes shown above are experimental and not yet tested for Synergy parts; it is not recommended
to use them for product developments.

When the components above are added, a prebuilt library of the application code is also added. For
each component listed above, there is an analogous component ending in '_src' that contains
protected source files. The '_src' component can be added in addition to the prebuilt library module.

Writing an Application with USBX Modules

Refer to the associated module overview section in the SSP User's Manual for details on how to write

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,652 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > Supported USB Classes in Azure RTOS USBX

an application with USBX modules. Additionally, each of the associated Module Guides have a
working application project that illustrates how to use the module in a typical application. Module
Guides are available from the Renesas Synergy web site.

Writing an Application with Deprecated Modules

In the SSP version 1.2.0 or later, the USBX stack configuration is supported in the Synergy
Configuration tool and the few USBX relevant components, which were defined in previous SSP
versions, are now treated as [DEPRECATED] components. They are kept in the SSP version today to
provide you with backward compatibility. Anyone using a new version of SSP and wanting to keep
their existing application code compatible to an existing SSP version, can use [DEPRECATED]
components.

In e2 studio, create and configure a project and add the drivers:

1. Create the project: Creating a Project.
2. Configure the project: Configuring a Project.
3. Add the following components, if required, the same way as was done when using an

existing version of SSP: Adding Drivers to a Thread and Configuring the Drivers.

Azure RTOS USBX Device Class
CDC-ACM(option)

Threads Framework > USB >
[DEPRECATED] USBX Device

Class CDC-ACM on
ux_device_class_cdc_acm

Azure RTOS USBX (option) Threads Framework > USB >
[DEPRECATED] USBX on ux

Note
Do not use components marked as [DEPRECATED] for new development. Only use these components for existing
user applications which were developed with previous SSP releases.

USB Class Stack Configuration Overview

USBX Device Class Stack Configuration

The following figure shows the interface diagram of the USBX Device Class stack. The stack consists
of one USBX device class component (ux_device_class_xxx) on the top, the USBX (ux) in the middle
and the USBX Port driver (sf_el_ux Device Controller Driver (DCD)) on the bottom of the device class
stack. As a recommended option, the SSP Transfer module (r_dmac) supports data transfer between
memory and hardware FIFO in Synergy USB peripherals (USBHS or USBFS). To support the USB
device stack configuration, there are components named USBX Device Configuration and USBX
Interface Configuration. These two components do not represent actual software modules in SSP;
they are virtual modules to handle the code generation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,653 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > Supported USB Classes in Azure RTOS USBX

Figure 525: USBX Device Class Stack Configuration

 Note: Currently, the r_dtc is not supported for the device side driver (only r_dmac is supported).

USBX Host Class Stack Configuration

The following figure shows the interface diagram of the USBX Host Class stack. The stack consists of
one of the USBX Host Class components (ux_host_class_xxx) on the top, the USBX (ux) in the middle
and the USBX Port driver component (sf_el_ux Host Controller Driver (HCD)) on the bottom of the
host class stack. As a recommended option, the SSP Transfer module (r_dmac) supports data
transfer between memory and hardware FIFO in Synergy USB peripherals (USBHS or USBFS). To
support the USB host stack configuration, there is a virtual component (USBX Host Configuration) to
handle the code generation:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,654 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > Supported USB Classes in Azure RTOS USBX

Figure 526: USBX Host Class Stack Configuration

Note
Currently, the r_dtc is not supported for the host side driver (only r_dmac is supported).

USB Device Descriptor Configuration

USBX Device Configuration

The USBX Device Configuration component has configurations, as shown in below table, to auto-
generate the USB Device Descriptor and USB Configuration Descriptor. Refer to http://www.usb.org
and download USB 2.0 Specification for more information about the specification of USB Device
Descriptor and or Configuration Descriptor.

USBX Device Configuration

Configuration Settings Description

Composite Device Enable or Disable (Default) Enable this configuration only if
composite device support is
required in the application.

Vendor ID 16-bit arbitrary number
(Default: 0x045B)

Specify Vendor ID assigned by
USB-IF. This configuration is a
part of the USB Device
Descriptor (idVendor).

Product ID 16-bit arbitrary number
(Default: 0x0000)

Specify Product ID assigned by
manufacturer. This
configuration is a part of the
Device Descriptor (idProduct).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,655 / 5,198

http://www.usb.org

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > Supported USB Classes in Azure RTOS USBX

Device Release Number 16-bit arbitrary number
(Default: 0x0000)

Specify Device Release Number
in binary-coded decimal. This
configuration is a part of the
USB Device Descriptor
(bcdDevice).

Index of Manufacturer String
Descriptor

Arbitrary number from 0 to 255
(Default: 0x00)

Specify the Index of
Manufacturer String Descriptor
defined in the USBX String
Framework. This configuration
is a part of the USB Device
Descriptor (iManufacturer).
Set zero if String Descriptor is
not used. See section USBX-
String-Framework-Configuration
for more information.

Index of Product String
Descriptor

Arbitrary number from 0 to 255
(Default: 0x00)

Specify the Index of Product
String Descriptor defined in the
USBX String Framework. This
configuration is a part of the
USB Device Descriptor
(iProduct). Set zero if String
Descriptor is not used. See
section "USBX String
Framework Configuration" for
more information.

Index of Serial Number String
Descriptor

Arbitrary number from 0 to 255
(Default: 0x00)

Specify the Index of Serial
Number String Descriptor
defined in the USBX String
Framework. This configuration
is a part of the USB Device
Descriptor (iSerialNumber).
Set zero if the String Descriptor
is not used. See section "USBX
String Framework
Configuration" for more
information.

Class Code Device(0x00),
Communications(CDC) (0x02,
Default), HID (0x03), Mass
Storage (0x08), Miscellaneous
(0xEF), Vendor Specific (0xFF)

Select the USB Device Class
Code. This configuration is a
part of the USB Configuration
Descriptor (bDeviceClass).

Index of String Descriptor
describing this configuration

Arbitrary number from 0 to 255
(Default: 0x00)

Specify the Index of String
Descriptor describing this
configuration. This
configuration is a part of the
USB Configuration Descriptor
(iConfiguration). Set zero if
String Descriptor is not used.
See section "USBX String
Framework Configuration" for
more information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,656 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > Supported USB Classes in Azure RTOS USBX

Size of USB Descriptor in bytes
for this configuration

0x00 (Default) or value to be
set to wTotalLength (calculated
by user)

Specify the size of USB
Descriptor in bytes. Modify the
value for Vendor-specific Class,
otherwise you can set zero to
calculate the size automatically
in the auto-generated code
from Synergy Configuration
tool. This configuration is a part
of the USB Configuration
Descriptor (wTotalLength).

Number of Interfaces 0x00 (Default) or value to be
set to bNumInterfaces
(calculated by user).

Specify the Number of
interfaces supported by this
configuration. Modify the value
for Vendor-specific Class,
otherwise you can set zero to
calculate the value
automatically in the auto-
generated code from Synergy
Configuration tool. This
configuration is a part of the
USB Configuration Descriptor
(bNumInterfaces).

Self-Powered Enable (Default) or Disable Enable this configuration if your
USB Device is a self- powered
device. This configuration is a
part of the USB Configuration
Descriptor (bmAttributes bit6)

Remote Wakeup Enable or Disable (Default) Enable this configuration if your
USB Device supports remote
wakeup. This configuration is a
part of the USB Configuration
Descriptor (bmAttributes bit5)

Maximum Power Consumption
in 2mA units(0-250)

50 (Default), Integer value from
0 to 250.

Set the maximum power
consumption of your device to
indicate the amount of bus
power required. This
configuration is 2mA units,
thus, the maximum 500 mA can
be specified. This configuration
is a part of the USB
Configuration Descriptor
(bMaxPower).

Supported Language Code 16-bit number assigned by
Manufacturer (Default: 0x0409)

Specify the Language ID Code.
For example, 0x0409 English -
United States. This
configuration is used for
Language ID Framework code
generation. See section "USBX
Language Framework
Configuration" for more
information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,657 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > Supported USB Classes in Azure RTOS USBX

Name of USBX String
Framework

Arbitrary C language symbol
(Default: NULL)

Specify the name of user
defined USBX String
Framework. This must be a
valid C symbol. Set NULL if the
String Descriptor is not used.
See section "USBX String
Framework Configuration" for
more information.

Total index number in USB
String Descriptor in USBX String
Framework

Arbitrary integer number
(Default: 0)

Specify the total number of
index for String Descriptor. See
section "USBX String
Framework Configuration" for
more information.

Name of USB Language
Descriptor

Arbitrary C language symbol
(Default: NULL)

Specify the name of user
defined USBX Language
Framework. This must be a
valid C symbol. If '0' is set to
the property "Total Number of
Language Support", this
configuration is ignored. See
section "USBX Language
Framework Configuration" for
more information.

Total Number of Language
Support

Arbitrary integer number
(Default: 0)

Specify the total number of
languages to support. See
section "USBX String
Framework Configuration" for
more information. If '0' is set
here, US English (0x0409) is
applied as the default
language.

USBX Device String Framework Configuration

The USBX String Framework is byte stream data to provide USB device information with human
readable strings to the USB Host device. Users need to define the byte stream data in their
application code if required. See the USBX Device Class User Guide section Definition of the Strings
of the Device Framework for more information about the USBX String Framework. Here is an
example of USBX String Framework, which consists of three indexes String descriptors.

const UCHAR g_usb_string_framework[] =

{

 /* Index #1 (this example shows manufacturer information) */

 (uint8_t) (0x0409), /* Byte0 Language Code, US English */

 (uint8_t) (0x0409 >> 8), /* Byte1 Language Code */

 0x01, /* Byte2 Index */

 7, /* Byte3 Length */

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,658 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > Supported USB Classes in Azure RTOS USBX

 'R', 'E', 'N', 'E', 'S', 'A', 'S',

 /* Index #2 (this example shows product information) */

 (uint8_t) (0x0409), /* Byte0 Language Code, US English */

 (uint8_t) (0x0409 >> 8), /* Byte1 Language Code */

 0x02, /* Byte2 Index */

 10, /* Byte3 Length */

 'C', 'O', 'M', ' ', 'D', 'E', 'V', 'I', 'C', 'E',

 /* Index #3 (this example shows Device Serial Number information) */

 (uint8_t) (0x0409), /* Byte0 Language Code, US English */

 (uint8_t) (0x0409 >> 8), /* Byte1 Language Code */

 0x03, /* Byte2 Index */

 4, /* Byte3 Length */

 '0', '1', '0', '0'

};

You can configure the properties of the USBX Device Configuration component as shown in the
following table. Refer to USBX Device Configuration for more information about each configuration in
the table.

Example of the USBX String Framework Configuration

Configurations for String Descriptor on Synergy
Configuration tool

Setting Example

Name of USB String Framework g_usb_string_framework

Total index number of USB String Descriptor in
USBX String Framework

3 (3 indexes)

Index of Manufacturer String Descriptor 1 (Index #1)

Index of Product String Descriptor 2 (Index #2)

Index of Serial Number String Descriptor 3 (Index #3)

Index of String Descriptor describing this
configuration

0 (no string information)

Index of String Descriptor Describing
Communications Class interface

0 (no string information)

USBX Device Language Framework Configuration

The USBX Languages Framework is byte stream data to support multiple languages. You need to
define the byte stream data in your application code if required. See the USBX Device Class User
Guide section Definition of the Languages Supported by the Device for Each String for more
information. The following is an example of the USBX Language Framework which supports two

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,659 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > Supported USB Classes in Azure RTOS USBX

Languages:

const UCHAR g_usb_language_framework[] =

{

 /* US English */

 (uint8_t) (0x0409),

 (uint8_t) (0x0409 >> 8),

 /* Japanese */

 (uint8_t) (0x0411),

 (uint8_t) (0x0411 >> 8),

};

You can configure the properties of USBX Device Configuration component as shown in the following
table. See section "USBX Device Configuration" for more information.

Example of the USBX Language Framework Configuration

Configurations for String Descriptor on Synergy
Configuration tool

Setting Example

Name of USB Language Descriptor g_usb_language_framework

Total Number of Language Support 2 (2 languages)

Device-Only Size Optimization

The Azure RTOS USBX module is built in device-only mode to reduce code size for Synergy S1 parts.
The configuration (UX_SYSTEM_DEVICE_ONLY) is applied automatically if the S1 board is selected in
the Synergy Configuration tool BSP tab. Note that the following configurations are fixed in the device-
only mode.

UX_THREAD_STACK_SIZE=512
UX_SLAVE_REQUEST_DATA_MAX_LENGTH=512

USBX Hardware support details

USBX
Mass

Storage
Class

USBX
HID

Class

 Host Device Host Device

 High
Speed

Full
Speed

High
Speed

Full
Speed

High
Speed

Full
Speed

High
Speed

Full
Speed

S1JA N/A N/A N/A ✓ N/A N/A N/A ✓

S124 N/A N/A N/A ✓ N/A N/A N/A ✓

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,660 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > Supported USB Classes in Azure RTOS USBX

S128 N/A N/A N/A ✓ N/A N/A N/A ✓

S3A1 N/A ✓ N/A ✓ N/A ✓ N/A ✓

S3A3 N/A ✓ N/A ✓ N/A ✓ N/A ✓

S3A6 N/A ⌧ N/A ✓ N/A ⌧ N/A ✓

S3A7 N/A ✓ N/A ✓ N/A ✓ N/A ✓

S5D5 N/A ✓ N/A ✓ N/A ✓ N/A ✓

S5D3 N/A ✓ N/A ✓ N/A ✓ N/A ✓

S5D9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

USBX
CDC/AC

M

USBX
Video
Class

USBX
HUB
Class

 Host Device Host Host

 High
Speed

Full
Speed

High
Speed

Full
Speed

High
Speed

Full
Speed

High
Speed

Full
Speed

S1JA N/A N/A N/A ✓ N/A N/A N/A ✓

S124 N/A N/A N/A ✓ N/A N/A N/A ✓

S128 N/A N/A N/A ✓ N/A N/A N/A ✓

S3A1 N/A ✓ N/A ✓ N/A ⌧ N/A ✓

S3A3 N/A ✓ N/A ✓ N/A ⌧ N/A ✓

S3A6 N/A ✓ N/A ✓ N/A ⌧ N/A ✓

S3A7 N/A ✓ N/A ✓ N/A ⌧ N/A ✓

S5D5 N/A ✓ N/A ✓ N/A ✓ N/A ✓*

S5D3 N/A ✓ N/A ✓ N/A ⌧ N/A ✓*

S5D9 ✓ ✓ ✓ ✓ ✓ ⌧ ✓ ✓

S7G2 ✓ ✓ ✓ ✓ ✓ ⌧ ✓ ✓

Symbol Meaning

✓ Available (Tested)

⌧ Not Available (Not tested/not functional or both)

N/A Not supported by MCU

✓ * denotes that the HUB class is tested with self-powered hubs only.

4.3.38.4 Azure RTOS USBX Auto-generated Code Procedures

Note
Code samples in this section are subject to change. Note any warranty for contents and possible changes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,661 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > Azure RTOS USBX Auto-generated Code Procedures

USBX Device Stack Auto-generated Code Procedures

The following code sample is pseudo code for USBX Device Classes. The function call sequence is
auto-generated from the Synergy Configuration tool if one (or multiple) USBX Device Class
component(s) is added to the Synergy Configuration tool. Auto-generated code is emitted to
common_data.c file and provides the following features:

Generates the USB Device Descriptor.
Initializes the USBX software contexts in the memory pool.
Initializes the USBX Device Stacks added in the Synergy Configuration tool.
Initializes Synergy USB controller(s) in device mode. The USBX Device stack supports many-
to-one topology between device classes and a device controller. For instance, two USBX
Device Classes which consist of a USB composite device can use a single USB controller.

Note
The USBX Device stack does not support using multiple USB controllers simultaneously. Only one of the USB
controllers is used at a time, even if the Synergy part has multiple USB controllers (like S7G2 parts).

SSP_VECTOR_DEFINE_UNIT();

void g_common_init(void)

{

 // Initialize USBX Memory.

 ux_system_initialize ();

 // Initialize USBX Device stack.

 ux_device_stack_initialize ();

 // Register the Device CDC-ACM Class if the class is used.

 ux_device_stack_class_register();

 // Register the Device HID Class if the class is used.

 ux_device_stack_class_register();

 // Register the Device Mass Storage Class if the class is used.

 ux_device_stack_class_register();

 // Initialize the USB Device Controller. This function calls either of

 // _ux_dcd_synergy_initalize() or

 // _ux_dcd_synergy_initalize_transfer_support()

 ux_dcd_initialize ();

}

USBX Host Stack Auto-generated Code Procedures

The following code sample is pseudo code for USBX Host Classes. The function call sequence is auto-
generated from the Synergy Configuration tool if one (or multiple) USBX Host Class component(s) is
added to the Synergy Configuration tool. Auto-generated code is emitted to the common_data.c file
and provides the following features:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,662 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > Azure RTOS USBX Auto-generated Code Procedures

Initializes the USBX software contexts in the memory pool.
Initializes the USBX Host Stacks added in Synergy Configuration tool. Multi-instances of host
class stacks are allowed to be built.
Initializes the USBX HID Clients if the USBX Host HID Class is added in Synergy
Configuration tool.
Initializes Synergy USB controller(s) in host mode. The USBX Host stack supports Many-to-
one or Many-to-many topology between host classes and host controllers. For instance, Two
USBX Host Classes can use single USB controller, or Two USBX Host Classes can use
different USB controllers individually if the Synergy part has multiple USB controllers (like
S7G2 parts).
Gets a USBX Host Class container for user application.

// Interrupt vector registering for USBHS or USBFS controller.

SSP_VECTOR_DEFINE_UNIT();

void g_common_init(void)

{

 // Initialize FileX (ONLY for Mass Storage Class)

 fx_system_initialize ();

 // Initialize USBX Memory.

 ux_system_initialize ();

 // Initialize the USBX Host stack.

 ux_host_stack_initialize ();

 // Register the HUB Class if the class is used.

 ux_host_stack_class_register();

 // Register the Host CDC-ACM Class if the class is used.

 ux_host_stack_class_register();

 // Register the Host HID Class if the class is used.

 ux_host_stack_class_register();

 // Register the Host HID Clents if the HID clients are used.

 ux_host_class_hid_clients_register ();

 // Register the Host Mass Storage Class if the class is used.

 ux_host_stack_class_register();

 // Register and initialize the USB Host Controller.

 ux_host_stack_hcd_register ();

 // Get the USBX Host Class Container for registered classes.

 ux_host_stack_class_get ();

}

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,663 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > Azure RTOS USBX Application Code Examples

4.3.38.5 Azure RTOS USBX Application Code Examples

Application projects are available in the module guides for each USBX module. Refer to the module
guides for application projects showing working code for typical use cases.

4.3.38.6 Azure RTOS USBX Special Linker Sections

The USBX Device Stack configuration uses the following special memory sections in the linker script
files. The order of memory sections in the linker script needs to consist of the USB Device Descriptor
byte stream, which is given to _ux_device_stack_initialize() function; the linker script definitions must
not be modified.

Memory section for the USBX Device Descriptor

Memory section USB Descriptor to be defined in the section

.usb_device_desc_fs* The USB Device Descriptor for FS mode

.usb_config_desc_fs* The USB Configuration Descriptor for FS mode

.usb_interface_desc_fs* The USB Interface Descriptor for FS mode

.usb_device_desc_hs* The USB Device Descriptor for HS mode

.usb_config_desc_hs* The USB Configuration Descriptor for HS mode

.usb_interface_desc_hs* The USB Interface Descriptor for HS mode

Note
Memory sections for HS mode only exists for Synergy Parts, which has the USBHS controller.

4.3.38.7 Azure RTOS USBX Memory Requirements

The USBX Device stack and/or USBX Host stack consumes RAM for the control block. The Synergy
Configuration tool allocates memory to the USBX memory pool statically in the auto-generated code.
The memory consumption is different for each class. Refer to the module overview section in the SSP
User's Manual for the USBX memory requirements for a specific module.

4.3.38.8 Azure RTOS USBX Limitations

Support for the USB Device vender-specific class is not available.
The module needs the interrupt of a USB Controller enabled. See section "Logic USBX
Synergy Port Framework Limitations" for more information.
USBX classes (ux_device_class_cdc_ecm, ux_device_class_rndis, ux_host_class_audio,
ux_host_class_gser, ux_host_class_prolific, ux_host_class_swar) and USBX network driver
(ux_network_driver) are experimental modules and not yet tested for Synergy parts in this
version of SSP. It is not recommended to use them for product developments.
Composite device class mode is supported only on S3, S5 and S7 series (not on S1 series).
Composite device class mode is tested with combination of CDC-CDC as well as CDC-MSC
classes on Windows 10 PC acting as Host.
In case of USBX composite device with DMA, MSC class will be given highest priority. for
eg.

In case of CDC-MSC, MSC class uses DMA for data transfer and CDC class will use
CPU for data transfer.
In case of CDC-CDC, one of the CDC class will use DMA for data transfer and other
will use CPU for data transfer.

In case of Device class CDC-ACM Read, there might be no difference between DMA and CPU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,664 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > Azure RTOS USBX Overview > Azure RTOS USBX Limitations

performance (Generally DMA should give better performance over CPU).
When using Device class CDC-ACM Read, DMA will be used only when the requested
transfer length is greater than the maximum packet size. For the transfer length less than
maximum packet size, CPU will be used even if DMA module is added in ISDE configurator.

4.3.39 USBX Source

4.3.39.1 USBX Source Component Module Introduction

The purpose of this document is to provide an easy reference for the USBX source component in
e2 studio. The properties are explained in greater detail than the footer comment supplied with each
property. Context specific usage is included for if and when to change a default value. This
document should make it easier to use the USBX source component without having to cross
reference with the Azure RTOS USBX User Guide, and help the developer get familiarized more
quickly with USBX features.

4.3.39.2 When to Include the USBX Source Component

Adding the USBX source component enables the developer in the Synergy configurator environment
to customize the USBX library, change values from default settings and enable or disable certain
features. Otherwise, they must use the prebuilt USBX library. In most projects beyond the simplest,
the developer will typically want to customize their USBX environment. Adding USBX stack
component does not add ThreadX stack source component by default.

Without adding the USBX source component, the e2 studio configurator will use a prebuilt library with
the USBX default settings.

4.3.39.3 Adding the USBX Source Component

In the e2 studio configurator you can add the USBX Source component by selecting any thread from
the Threads list and pressing the "New Stack" button and navigating the menu to X-Ware -> USBX ->
Common -> USBX Source.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,665 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Source > Adding the USBX Source Component

4.3.39.4 Changing the USBX Source Component Properties

After changing USBX property settings, the developer must click on the Generate Project Content
button to update the project configurator in e2 studio; then the USBX library must be rebuilt (for
example, rebuild the project). Simply changing a property (or applying a #define in the
preprocessor list) without rebuilding the project will not affect any change; e2 studio will use the
previously built library.

Default settings are based on use experience and are often the choice that will apply to the most
common use cases.

4.3.39.5 USBX Source Component Overview

The properties of the USBX Source component are given in the order they appear in the properties
window of the Synergy configurator.

Ticks per second for USBX system – default value not displayed, the ThreadX value is
used – By default, USBX will use the value defined at ThreadX. You should not change this unless
you have extensively modified the ThreadX tick timer mechanism.

Maximum Classes – default value not displayed, 8 used – When defined, this value is the
maximum number of classes that can be loaded by USBX. This value represents the class container
and not the number of instances of a class. For instance, if a particular implementation of USBX
needs the hub class, the printer class and the storage class, then the UX_MAX_CLASSES value can be
set to 3 regardless of the number of devices that belong to these.

Maximum Slave Classes – default value not displayed, 3 used – When defined, this value is
the maximum number of classes in the device stack that can be loaded by USBX.

Maximum Slave Interfaces - default value not displayed, 16 used – When defined, this value

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,666 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Source > USBX Source Component Overview

is the maximum number of interfaces in the device framework.

Maximum Host Class Containers - default value not displayed, no maximum set.

Maximum Device Class Containers - default value not displayed, no maximum set.

Maximum Host Controllers - default value not displayed, no maximum set - This value
represents the number of different host controllers that are available in the system. For USB 1.1
support, this value will mostly be 1. For USB 2.0 support, this value can be more than 1. This value
represents the number of concurrent host controllers running at the same time. If, for instance, there
are two instances of OHCI running or one EHCI and one OHCI controllers running, the UX_MAX_HCD
should be set to 2.

Maximum Devices - default value not displayed, 8 used – This value represents the maximum
number of devices that can be attached to the USB. Normally, the theoretical maximum number on a
single USB is 127 devices. This value can be scaled down to conserve memory. It should be noted
that this value represents the total number of devices regardless of the number of USB buses in the
system.

Maximum EDs - default value not displayed, 80 used – This value represents the maximum
number of EDs in the controller pool. This number is assigned to one controller only. If multiple
instances of controllers are present, this value is used by each individual controller.

Maximum TDs - default value not displayed, 128 used – This value represents the maximum
number of regular TDs in the controller pool. This number is assigned to one controller only. If
multiple instances of controllers are present, this value is used by each individual controller.

Note: Sufficient numbers of TDs are required, when user changes this parameter for large size (FS
more than 8KB and HS more the 64KB) of data transfer. Sufficient number of 'Maximum TDs' needs
to be specified in USBX Source module (USBX Source property >> Common >> Maximum TDs).

Maximum TDs for FS mode (maximum data transfer size in bytes /64 bytes = TDs +
additional TDs for SCSI wrapper commands).
Maximum TDs for HS mode (maximum data transfer size in bytes /512 bytes = TDs +
additional TDs for SCSI wrapper commands).

Maximum Isochronous TDs - default value not displayed, 128 used – This value represents
the maximum number of isochronous TDs in the controller pool. This number is assigned to one
controller only. If multiple instances of controllers are present, this value is used by each individual
controller.

Stack size for USBX threads - default value not displayed, 1024 bytes used on host and
mixed controllers, 512 on device only controllers – This value is the size of the stack in bytes
for the USBX threads. It can be typically 1024 or 2048 bytes depending on the processor used and
the host controller.

USBX Enumeration Thread Priority - default value not displayed, 20 used – This is the
ThreadX priority value for the USBX enumeration threads that monitors the bus topology.

USBX Standard Thread Priority - default value not displayed, 20 used – This is the ThreadX
priority value for the standard USBX threads.

USBX HID Keyboard Class Thread Priority - default value not displayed, 20 used – This is
the ThreadX priority value for the USBX HID keyboard class.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,667 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Source > USBX Source Component Overview

USBX HCD Thread Priority - default value not displayed, 2 used – This is the ThreadX priority
value for the host controller thread.

No use of time slice - default value disabled – If enabled the ThreadX target port does not use
time slicing.

Maximum Slave Logical Units - default value not displayed, 2 used – This value represents
the current number of SCSI logical units represented in the device storage class driver.

Maximum Host Logical Units - default value not displayed, 16 used – This value represents
the maximum number of SCSI logical units represented in the host storage class driver.

Slave Request Control Maximum Length - default value not displayed, 256 used – This
value represents the maximum number of bytes received on a control endpoint in the device stack.
The default is 256 bytes, but can be reduced in memory constraint environments.

Note
Slave request control maximum length value have to increase more than event buffer value, If USBX Device HID
class event buffer length value is more then 256 (USBX Device class HID source >> Common >> USBX Device
HID Event Buffer Length).

Slave Request Data Maximum Length - default value not displayed, 512 in device only
controllers, 4096 otherwise – This value represents the maximum number of bytes received on a
bulk endpoint in the device stack. The default is 4096 bytes, but can be reduced in memory
constraint environments.

Enforce Safe Alignment - default value is disabled – When enabled the memory allocation
scheme enforces alignment. The default alignment value is UX_SAFE_ALIGN.

__Control Transfer Timeout - default value not displayed, 10000 used -__ When set, this value
represents the control transfer timeout in milliseconds.

__Non-Control Transfer Timeout - default value not displayed, 50000 used -__ When set, this value
represents the non-control transfer timeout in milliseconds.

__Disable CDC-ACM Non-blocking Transmission - default value is yes -__ Select yes to disable the
CDC ACM non-blocking transmission support.

Note
To enable CDC-ACM Non-blocking transmission, USBX source and USBX device class CDC-ACM source should
be added in thread stack and the property "Disable CDC ACM Non-blocking Transmission" in USBX source
should be set to "No".

__Bidirectional Endpoint Support - default value is disabled -__ This property enables support for
device bi-directional endpoint.

__Enable Assert Check - default value is yes -__ This property enables assert checks inside USBX.

__Enable Assertion On Failure Detection - default value is no -__ Select yes to take assert actions on
failure detection.

__Host Device Class Code Validation - default value is disabled -__ When enabled, the host device
class code is validated.

__USBX Standalone Mode - default value is disabled -__ When enabled, the standalone mode of USBX

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,668 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Source > USBX Source Component Overview

is supported.

Show linkage warning - default value enabled – By default show linking warnings.

4.3.40 USBX Port

4.3.40.1 USBX Synergy Port Framework Introduction

The Azure RTOS USBX Synergy Port framework module (sf_el_ux) is integrated into the SSP and is
used with Azure RTOS USBX. For more information about USBX (including API references), refer to
the USBX User Guide.

Unsupported Features

The following features have not been integrated into this version of SSP:

USBX host class asix
USBX host class audio
USBX host class gser
USBX host class dpump
USBX device class cdc-ecm
USBX device class rndis
USBX device class DFU
USBX device class DPUMP
USBX OTG host and device class

The following features are experimental. They have been integrated but not tested:

USBX PIMA device class
USBX Pictbridge device implementation

USBX Synergy Port Framework Module Features

The Azure RTOS USBX Synergy Port Framework module supports the following features:

Implements Azure RTOS USBX in SSP- supports USBX APIs
Supports the Port Device Controller Driver (DCD) for the USBHS peripheral
Supports the Port Device Controller Driver (DCD) for the USBFS peripheral
Supports the Port Host Controller Driver (HCD) for the USBHS peripheral
Supports the Port Host Controller Driver (HCD) for the USBFS peripheral
Supports manual switch over between host & device USB stack on same USB(ie USBHS or
USBFS) port.
Supports transfer module operation (optional)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,669 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Port > USBX Synergy Port Framework Introduction

Figure 527: USBX Synergy Port Framework Module Block Diagram

 __*

Note
Currently, the r_dtc is not supported for both the host side driver and device side driver (only r_dmac is
supported).***

4.3.40.2 USBX Synergy Port Framework Module APIs Overview

The Azure RTOS USBX Synergy Port Framework module doesn't have API calls of its own- it
implements the API calls for the Azure RTOS USBX API calls. Documentation on these APIs is
available in the Azure RTOS USBX User Manual.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,670 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Port > USBX Synergy Port Framework Module Operational Overview

4.3.40.3 USBX Synergy Port Framework Module Operational Overview

The Azure RTOS USBX Synergy Port framework module provides the Synergy USB hardware port
functions required to use the USBX stack on Synergy hardware. Application code using this module is
expected to use USBX API calls.

USBX Synergy Port Framework Module Important Operational Notes and Limitations

USBX Synergy Port Framework Module Operational Notes

The Azure RTOS USBX Synergy Port framework module includes the support for the Azure RTOS
USBX APIs in SSP. Refer to the Azure RTOS USBX User Manual for a complete description of the
available APIs.

The Azure RTOS USBX Synergy Port framework module supports the Port Device Controller Driver
(DCD) on USBHS and USBFS peripherals as well as the Port Host Controller Driver (HCD) for the
USBHS on USBFS peripherals.

Users have the option of using the Transfer Module for the USBX Synergy Port framework module to
get better USB data throughput by transferring data in the block transfer mode. To enable the
Transfer module, just add two instances of transfer components to the USBX Class stack in the
Synergy Configuration tool and enable the interrupts in the property. The Synergy Configuration tool
auto-generates the driver setup code to enable DMAC or DTC transfer in common_data.c.

Note
Currently, DTC is not supported by the host side driver (only DMAC is supported).

The module uses the interrupt of a USB Controller. Set the appropriate interrupt priority level in the
Synergy Configuration tool; otherwise it does not work. The module uses the interrupt of a transfer
module (implemented as DMAC or DTC) if it is used. Set the appropriate priority level in the Synergy
Configuration tool. The priority level of the transfer module must be higher than the priority level for
the USB Controller; otherwise it does not work.

USBX Synergy Port Framework Module Limitations

Synergy USB controllers (USBHS and USBFS) have a limited number of PIPEs you can use for
the isochronous transfer type (PIPE1 and PIPE2). This will limit the number of UVC devices
(two devices) you can connect to the Synergy board configured as UVC HOST.
The device side driver (sf_el_ux DCD driver) does not support DTC as the transfer interface.
The host side driver (sf_el_ux HCD driver) does not support DTC as the transfer interface.
The isochronous transfer is only supported for USB Host. The transfer type is not supported
for USB Device.
The USBFS controller is unlikely to support typical UVC devices. The maximum packet size
of isochronous PIPEs on USBFS controller is limited to 256 bytes. This would impact in the
UVC usage.
Synergy USB controllers (USBHS and USBFS) do not support high-bandwidth isochronous
transfer. The controllers support 1 transaction per micro-frame if running at high-speed).
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.40.4 Including the USBX Synergy Port Framework Module in an Application

This section describes how to include the USBX Synergy Port Framework module in an application
using the SSP configurator.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,671 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Port > Including the USBX Synergy Port Framework Module in an Application

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the USBX Synergy Port Framework module to an application, simply add it to a thread using
the stacks selection sequence given in the following table.

USBX Synergy Port Framework Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_sf_el_ux_hcd_hs_0 USBX Port
HCD on sf_el_ux for USBHS

Threads New Stack> X-Ware> USBX>
Host > Synergy Port> USBX
Port HCD on sf_el_ux for USBHS

g_sf_el_ux_hcd_fs_0 USBX Port
HCD on sf_el_ux for USBFS

Threads New Stack> X-Ware> USBX>
Host > Synergy Port> USBX
Port HCD on sf_el_ux for USBFS

g_sf_el_ux_dcd_hs_0 USBX Port
HCD on sf_el_ux for USBHS

Threads New Stack> X-Ware> USBX>
Device > Synergy Port> USBX
Port HCD on sf_el_ux for USBHS

g_sf_el_ux_dcd_fs_0 USBX Port
HCD on sf_el_ux for USBFS

Threads New Stack> X-Ware> USBX>
Device > Synergy Port> USBX
Port HCD on sf_el_ux for USBFS

When the USBX Synergy Port Framework module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,672 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Port > Including the USBX Synergy Port Framework Module in an Application

Figure 528: USBX Synergy Port Framework Module Stack

4.3.40.5 Configuring the USBX Synergy Port Framework Module

The USBX Synergy Port Framework module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the USBX Port DCD on sf_el_ux for USBFS

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,673 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Port > Configuring the USBX Synergy Port Framework Module

Full Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
full-speed USB.

LDO Regulator (Only for S3 and
S1 part MCUs)

Enable, Disable

Default: Disable

Select the LDO regulator will be
enabled.

Name g_sf_el_ux_dcd_fs_0 Module name.

USB Controller Selection USBFS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port DCD on sf_el_ux for USBHS

ISDE Property Value Description

High Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
high speed USB.

Name g_sf_el_ux_dcd_hs_0 Module name.

USB Controller Selection USBHS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port HCD on sf_el_ux for USBFS

ISDE Property Value Description

Full Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
full-speed USB.

VBUSEN pin Signal Logic Active Low, Active High

Default: Active High

Select the VBUSEN pin signal
logic.

LDO Regulator (Only for S3 and
S1 part MCUs)

Enable, Disable

Default: Disable

Select the LDO regulator will be
enabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,674 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Port > Configuring the USBX Synergy Port Framework Module

Name g_sf_el_ux_hcd_fs_0 Module name.

USB Controller Selection USBFS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port HCD on sf_el_ux for USBHS

ISDE Property Value Description

High Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
high speed USB.

FIFO size for Bulk/Isochronous
Pipes

512, 1024, 1536, 2048 bytes

Default: 512 bytes

Select the FIFO size for bulk and
isochronous transfers.

Number of Isochronous Pipes
Reserved

0,1,2

Default: 0

Select the number of
isochronous pipes to reserve.

VBUSEN pin Signal Logic Active Low, Active High

Default: Active High

Select the VBUSEN pin signal
logic.

Enable High Speed Enable, Disable

Default: Enable

Select if high speed should be
enabled.

Name g_sf_el_ux_hcd_hs_0 Module name.

USB Controller Selection USBHS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the USBX Synergy Port Framework Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the Transfer Driver on r_dmac

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,675 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Port > Configuring the USBX Synergy Port Framework Module

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Name g_transfer0 Module name.

Channel 0 Specify the hardware channel.

Mode Block Select the transfer mode.

Transfer Size 1 Byte Select the transfer size.

Destination Address Mode Fixed Select the address mode for the
destination.

Source Address Mode Incremented Select the address mode for the
source.

Repeat Area (Unused in Normal
Mode

Source Select the repeat area. Either
the source or destination
address resets to its initial
value after completing Number
of Transfers in Repeat or Block
mode.

Destination Pointer NULL Specify the transfer destination
pointer.

Source Pointer NULL Specify the transfer source
pointer.

Number of Transfers 0 Specify the number of
transfers.

Number of Blocks (Valid only in
Block Mode)

0 Specify the number of blocks to
transfer in Repeat or Block
mode.

Activation Source Device: Event USBFS FIFO 0
Host: Software Activation

Select the DMAC transfer start
event.

Auto Enable False Auto enable the transfer in
open().

Callback NULL A user callback that is called at
the end of the transfer.

Transfer End Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the transfer end
interrupt priority.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the Transfer Driver on r_dmac

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,676 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Port > Configuring the USBX Synergy Port Framework Module

ISDE Property Value Description

Parameter Checking BSP, Enabled, Disabled

Default: BSP

If selected code for parameter
checking is included in the
build.

Name g_transfer0 Module name.

Channel 0 Specify the hardware channel.

Mode Block Select the transfer mode.

Transfer Size 1 Byte Select the transfer size.

Destination Address Mode Incremented Select the address mode for the
destination.

Source Address Mode Fixed Select the address mode for the
source.

Repeat Area (Unused in Normal
Mode

Destination Select the repeat area. Either
the source or destination
address resets to its initial
value after completing Number
of Transfers in Repeat or Block
mode.

Destination Pointer NULL Specify the transfer destination
pointer.

Source Pointer NULL Specify the transfer source
pointer.

Number of Transfers 0 Specify the number of
transfers.

Number of Blocks (Valid only in
Block Mode)

0 Specify the number of blocks to
transfer in Repeat or Block
mode.

Activation Source Device: Event USBFS FIFO 1
Host: Software Activation

Select the DMAC transfer start
event.

Auto Enable False Auto enable the transfer in
open().

Callback NULL A user callback that is called at
the end of the transfer.

Transfer End Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the transfer end
interrupt priority.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,677 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Port > Configuring the USBX Synergy Port Framework Module

USBX Synergy Port Framework Module Clock Configuration

The USB peripheral module uses the UCLK as its clock source; the UCLK should be configured for
48MHz operation. In the SSP configuration window, select the Clocks tab to view the clock-source
setting.

USBX Synergy Port Framework Module Pin Configuration

The USB peripheral module uses MCU pins to communicate with external devices. Select I/O pins and
configure to the external device requirements. The following table illustrates the pin selection
method within the SSP Configuration Window and the subsequent tables demonstrates the selection
process using USB pins as an example.

Note
The selected operation mode determines what peripheral signals are available and what MCU pins are required.

USBFS and USBHS Pin Selection Sequence

Resource ISDE Tab Pin selection Sequence

USBFS Pins Select Peripherals >
Connectivity: USBFS> USBFS0

USBHS Pins Select Peripherals >
Connectivity: USBHS> USBHS0

Note
The selection sequence assumes USBFS0 or USBHS0 is the desired hardware target for the driver.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select device as the Operation
Mode

USBDP USBDP USBDP pin

USBDM USBDM USBDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN None VBUSEN pin

VBUS None, P407

Default: P407

VBUS pin

EXICEN None EXICEN pin

ID None ID Pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,678 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Port > Configuring the USBX Synergy Port Framework Module

VCCUSB VCCUSB VCCUSB pin

VSSUSB VSSUSB VSSUSB pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select Device as the Operation
Mode

USBHSDP USBHSDP USBHSDP pin

USBHSDM USBHSDM USBHSDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN PB00 VBUSEN pin

VBUS PB01 VBUS pin

EXICEN None EXICEN pin

ID None ID pin

USBHSRREF USBHSRREF USBHSRREF pin

AVCCUSBHS AVCCUSBHS AVCCUSBHS pin

AVSSUSBHS AVSSUSBHS AVSSUSBHS pin

PVSSUSBHS PVSSUSBHS PVSSUSBHS pin

VCCUSBHS VCCUSBHS VCCUSBHS pin

VSS1USBHS VSS1USBHS VSS1USBHS pin

VSS2USBHS VSS2USBHS VSS2USBHS pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.40.6 Using the USBX Synergy Port Framework Module in an Application

Once the Azure RTOS Synergy Port USBX framework module is added to a thread, the Azure RTOS
APIs become available for use by higher-level modules. There is usually no need to use the Azure
RTOS Synergy Port USBX framework module directly in application code. Refer to the Azure RTOS
USBX User's Manual if you need to use the module stand-alone and need to access the associated
APIs directly.

Following is the sequence of API's called successfully in a sequential order in an application for

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,679 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Port > Using the USBX Synergy Port Framework Module in an Application

completely deleting detected USB Device class,

!()[media/sf_el_ux_FD.png)

4.3.41 USBX Device Class CDC-ACM

4.3.41.1 USBX Device Class CDC-ACM Module Introduction

The USBX™ Device Class CDC-ACM module provides a high-level API for USBX Device Class CDC-ACM
module applications and uses the USB and data-transfer peripherals on the Synergy MCU. A user
defined callback can be created to determine when the stack activates or deactivates the USB CDC-
ACM class.

USBX Device Class CDC-ACM Module Features

The USB Device Class CDC-ACM module allows for a USB host-system to communicate with the
device as a serial device. This class is based on the USB standard and is a subset of the CDC
standard. The USBX Device Class CDC‑ACM module includes the following key features:

Support for USB Full Speed (USBFS) or USB High Speed (USBHS)
Receive and transmit data-transfer drivers for improved performance
High-level APIs for reading and writing

Figure 529: USBX Device Class CDC-ACM Module Block Diagram

4.3.41.2 USBX Device Class CDC-ACM Module APIs Overview

The USBX Device Class CDC-ACM Module defines APIs for reading and writing over the USB
peripheral. A complete list of the available APIs, an example API call and a short description of each

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,680 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > USBX Device Class CDC-ACM Module APIs Overview

can be found in the following table. A table of status return values follows the API summary table.

USBX Device Class CDC-ACM Module Summary

Function Name Example API Call and Description

ux_device_class_cdc_acm_read status = ux_device_class_cdc_acm_read(cdc,
buffer, UX_DEMO_BUFFER_SIZE, &actual_length);
This function is called when an application needs
to read from the OUT data pipe (OUT from the
host, IN from the device).

ux_device_class_cdc_acm_write status = ux_device_class_cdc_acm_write(cdc,
buffer, UX_DEMO_BUFFER_SIZE, &actual_length);
This function is called when an application needs
to write to the IN data pipe (IN from the host,
OUT from the device).

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

UX_SUCCESS This operation was successful.

UX_CONFIGURATION_HANDLE_UNKNOWN Device is no longer in the configured state.

UX_TRANSFER_NO_ANSWER No answer from device. The device was probably
disconnected while the transfer was pending.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.3.41.3 USBX Device Class CDC-ACM Module Operational Overview

The initialization of the CDC-ACM class expects some specific parameters as illustrated in the
application project associated with this module guide.

The CDC-ACM is based on a USB-IF standard and is automatically recognized by Mac OS® and Linux
OS®. On Windows® platforms, this class requires a .inf file. Azure RTOS supplies a template for the
CDC-ACM class, and it can be found in the usbx_windows_host_files directory. For more recent
versions of Windows, the file CDC_ACM_Template_Win7_64bit.inf should be used; this file needs to be
modified to reflect the PID/VID used by the device. The PID/VID will be specific to the final customer
when the company and the product are registered with the USB-IF. In the .inf file, the fields to modify
are described in the application project associated with this module guide.

In the device framework of the USBX CDC-ACM device, the PID/VID are stored in the device
descriptor (see the device descriptor declared in the application project referenced in the preceding
paragraph).

When a USB host-system discovers the USBX CDC-ACM device, it will mount a serial class and the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,681 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > USBX Device Class CDC-ACM Module Operational Overview

device can be used with any serial terminal program. (See the host operating system for reference.)

USBX Device Class CDC-ACM Module Important Operational Notes and Limitations

USBX Device Class CDC-ACM Module Operational Notes

The USBX Device stack or USBX Host stack consumes RAM for the control block. The Synergy
Configuration tool allocates memory to the USBX memory pool statically in the auto-generate code
as shown in the following table. You need to set the appropriate memory size in bytes to the USBX
Pool Memory Size property of the USBX on ux component in the Synergy Configuration tool in section
"USBX on ux Configuration." If multiple classes are used, set the total memory size to the property.

Memory (RAM) Requirements for the USBX Memory Pool

USBX Class S1 Parts Other Parts

USBX Device CDC-ACM
(ux_device_class_cdc_acm)

6.1KB 18KB

Note
The information shown in the table above is valid if compiled with default USBX configurations.
The memory size of the USBX Classes in the table above are of the pre-built libraries and the following
configuration was applied for the builds:

UX_THREAD_STACK_SIZE: 512 (bytes) for S1 parts; 2048 (bytes) for the other parts

The application needs to save the instance with the callback function registered in USBX CDC-ACM
instance_activate Function Callback. Read and write are executed using the saved instance.

USBX Device Class CDC-ACM Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.41.4 Including the USBX Device Class CDC-ACM Module in an Application

This section describes how to include the USBX Device Class CDC-ACM Module in an application
using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the USBX Device Class CDC-ACM Module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

USBX Device Class CDC-ACM Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_ux_device_class_cdc_acm0
USBX Device Class CDC-ACM

Threads New Stack> X-Ware> USBX>
Device> Classes > CDC-ACM >
USBX Device Class CDC-ACM

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,682 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > Including the USBX Device Class CDC-ACM Module in an Application

When the USBX Device Class CDC-ACM Module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 530: USBX Device Class CDC-ACM Module Stack

4.3.41.5 Configuring the USBX Device Class CDC-ACM Module

The USBX Device Class CDC-ACM Module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,683 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > Configuring the USBX Device Class CDC-ACM Module

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the USBX Device Class CDC-ACM Module

ISDE Property Value Description

Name g_ux_device_class_cdc_acm0 Specify the name of the USBX
Device CDC-ACM Class module
instance. It must be a valid C
symbol.

USBX CDC-ACM
instance_activate Function
Callback

ux_cdc_device0_instance_activa
te

Specify the name of the
instance_activate user callback
function for the USBX Device
CDC-ACM Class module. Name
must be a valid C symbol. See
the USBX Stack User's Manual
"Chapter 5: USBX Device Class
Considerations USB Device CDC-
ACM Class" for more
information about the
instance_activate callback
function.

USBX CDC-ACM
instance_deactivate Function
Callback

ux-cdc_device0_instance_deacti
vate

Specify the name of the
instance_deactivate user
callback function for the USBX
Device CDC-ACM Class module.
Name must be a valid C
symbol. Refer to the USBX
Stack User's Manual "Chapter 5:
USBX Device Class
Considerations USB Device CDC-
ACM Class" for more
information about the
instance_activate callback
function.

USBX CDC-ACM
parameter_change Function
Callback

NULL Specify the name of the
parameter change user callback
function for the USBX Device
CDC-ACM Class module. Name
must be a valid C symbol. Refer
to the USBX Stack User's
Manual "Chapter 5: USBX
Device Class Considerations
USB Device CDC-ACM Class" for
more information about the
parameter_change callback
function.

Name of generated initialization
function

ux_device_class_cdc_acm_init0 Name of generated initialization
function selection.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,684 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > Configuring the USBX Device Class CDC-ACM Module

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the USBX Device Class CDC-ACM Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the USBX Device Class CDC-ACM Source

ISDE Property Value Description

Show linkage warning Enabled, Disabled

Default: Enabled

Notification message for users
will be shown if "Enabled"
option is selected. This is just to
warn users possible linkage
errors by multiple symbol
definitions. Select "Disabled"
stops the notification message.

CDC ACM device write auto ZLP
enable

Enabled, Disabled

Default: Disabled

UX_DEVICE_CLASS_CDC_ACM_
WRITE_AUTO_ZLP
When enabled, the CDC class
sends a ZLP automatically after
a buffer is sent.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Device Configuration Instance

ISDE Property Value Description

Vendor ID 0x045B Specify Vendor ID assigned by
USB-IF. This configuration is a
part of the USB Device
Descriptor (idVendor).

Product ID 0x0000 Specify Product ID assigned by
manufacturer. This
configuration is a part of the
Device Descriptor (idProduct).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,685 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > Configuring the USBX Device Class CDC-ACM Module

Device Release Number 0x0000 Specify Device Release Number
in binary-coded decimal. This
configuration is a part of the
USB Device Descriptor
(bcdDevice).

Index of Manufacturing String
Descriptor

0x00 Specify the Index of
Manufacturer String Descriptor
defined in the USBX String
Framework. This configuration
is a part of the USB Device
Descriptor (iManufacturer). Set
zero if String Descriptor is not
used. See section USBX-String-
Framework-Configuration for
more information.

Index of Product String
Descriptor

0x00 Specify the Index of Product
String Descriptor defined in the
USBX String Framework. This
configuration is a part of the
USB Device Descriptor
(iProduct). Set zero if String
Descriptor is not used. See
section "USBX String
Framework Configuration" for
more information.

Index of Serial Number String
Descriptor

0x00 Specify the Index of Serial
Number String Descriptor
defined in the USBX String
Framework. This configuration
is a part of the USB Device
Descriptor (iSerialNumber). Set
zero if the String Descriptor is
not used. See section "USBX
String Framework
Configuration" for more
information.

Class Code Communications(CDC), HID,
Mass Storage, Miscellaneous,
Vendor specific

Default: Communications(CDC)

Select the USB Device Class
Code. This configuration is a
part of the USB Configuration
Descriptor (bDeviceClass).

Index of String Descriptor
describing this configuration

0x00 Specify the Index of String
Descriptor describing this
configuration. This
configuration is a part of the
USB Configuration Descriptor
(iConfiguration). Set zero if
String Descriptor is not used.
See section "USBX String
Framework Configuration" for
more information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,686 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > Configuring the USBX Device Class CDC-ACM Module

Size of USB Descriptor in bytes
for this configuration (Modify
this value only for Vendor-
specific Class, otherwise set
zero)

0x00 Specify the size of USB
Descriptor in bytes. Modify the
value for Vendor-specific Class,
otherwise you can set zero to
calculate the size automatically
in the auto-generated code
from Synergy Configuration
tool. This configuration is a part
of the USB Configuration
Descriptor (wTotalLength).

Number of Interfaces (Modify
this value only for Vendor-
specific Class, otherwise set
zero)

0x00 Specify the Number of
interfaces supported by this
configuration. Modify the value
for Vendor-specific Class,
otherwise you can set zero to
calculate the value
automatically in the auto-
generated code from Synergy
Configuration tool. This
configuration is a part of the
USB Configuration Descriptor
(bNumInterfaces).

Self-Powered Enable, Disable

Default: Enable

Enable this configuration if your
USB Device is a self- powered
device. This configuration is a
part of the USB Configuration
Descriptor (bmAttributes bit6).

Remote Wakeup Enable, Disable

Default: Disable

Enable this configuration if your
USB Device supports remote
wakeup. This configuration is a
part of the USB Configuration
Descriptor (bmAttributes bit5).

Maximum Power Consumption
(in 2mA units)

50 Set the maximum power
consumption of your device to
indicate the amount of bus
power required. This
configuration is 2mA units,
thus, the maximum 500 mA can
be specified. This configuration
is a part of the USB
Configuration Descriptor
(bMaxPower).

Supported Language Code 0x0409 Specify the Language ID Code.
For example, 0x0409 English -
United States. This
configuration is used for
Language ID Framework code
generation. See section "USBX
Language Framework
Configuration" for more
information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,687 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > Configuring the USBX Device Class CDC-ACM Module

Name of USBX String
Framework

NULL Specify the name of user
defined USBX String
Framework. This must be a
valid C symbol. Set NULL if the
String Descriptor is not used.
See section "USBX String
Framework Configuration" for
more information.

Total index number of USB
String Descriptors in USB String
Framework

0 Specify the total number of
index for String Descriptor. See
section "USBX String
Framework Configuration" for
more information.

Name of USBX Language
Framework

NULL Specify the name of user
defined USBX Language
Framework. This must be a
valid C symbol. If '0' is set to
the property "Total Number of
Language Support", this
configuration is ignored. See
section "USBX Language
Framework Configuration" for
more information.

Number of Languages to
support (US English is applied if
zero is set)

0 Specify the total number of
languages to support. See
section "USBX String
Framework Configuration" for
more information. If '0' is set
here, US English (0x0409) is
applied as the default
language.

Name of generated initialization
function

ux_device_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Interface Configuration CDC-ACM Instance

ISDE Property Value Description

Name g_usb_interface_desc_cdcacm_
0

Specify the name of USBX
Interface Descriptor for CDC-
ACM. It must be a valid C
symbol.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,688 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > Configuring the USBX Device Class CDC-ACM Module

Interface Number of
Communications Class interface

0x00 Specify the index number of
Communications Class
interface. This configuration is a
part of the USB Interface
Descriptor (bInterface). The
number must not be duplicated
with the Interface Number of
Data Class interface. Also must
not be duplicated with any
Interface Numbers if your USB
device consists of a USB
composite device.

Interrupt Transfer endpoint to
use for Communications Class

Endpoint 1-9

Default: Endpoint 3

Specify the Endpoint Number of
Interrupt Endpoint. It must not
be duplicated with ones for the
other Endpoints.

Polling period for Interrupt
Endpoint (in mS/125us units for
FS/HS)

0x0F Specify the Interval for polling
Endpoint transfers. This
configuration is valid for
Interrupt Endpoint and ignored
for Bulk Endpoints. Value is in
frame counts (1ms units for FS
mode and 125us units for HS
mode).

Interface Number of Data Class
interface

0x01 Specify the index number of
Data Class interface. This
configuration is a part of the
USB Interface Descriptor
(bInterface). The number must
not be duplicated with the
Interface Number of
Communications Class
interface. Also must not be
duplicated with any Interface
Numbers if your USB device
consists of a USB composite
device.

Bulk In Transfer endpoint to use
for Data Class

Endpoint 1-9

Default: Endpoint 1

Specify the Endpoint Number of
Bulk In Endpoint. It must not be
duplicated with ones for the
other Endpoints.

Bulk Out Transfer endpoint to
use for Data Class

Endpoint 1-9

Default: Endpoint 2

Specify the Endpoint Number of
Bulk Out Endpoint. It must not
be duplicated with ones for the
other Endpoints.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,689 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > Configuring the USBX Device Class CDC-ACM Module

Index of String Descriptor
Describing Communications
Class interface (Interface
Descriptor: Interface)

0x00 Specify the index number of
String Descriptor Describing
Communications Class
interface. This configuration is a
part of the USB Interface
Descriptor (iInterface). Set '0' if
do not have String information
for the interface.

Index of String Descriptor
Describing Data Class interface
(Interface Descriptor: Interface)

0x00 Specify the index number of
String Descriptor Describing
Data Class interface. This
configuration is a part of the
USB Interface Descriptor
(iInterface). Set '0' if do not
have String information for the
interface.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port DCD on sf_el_ux for USBFS

ISDE Property Value Description

Full Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
full-speed USB.

LDO Regulator (Only for S3 and
S1 part MCUs)

Enable, Disable

Default: Disable

Select the LDO regulator will be
enabled.

Name g_sf_el_ux_dcd_fs_0 Module name.

USB Controller Selection USBFS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port DCD on USBHS

ISDE Property Value Description

High Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
high speed USB.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,690 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > Configuring the USBX Device Class CDC-ACM Module

Name g_sf_el_ux_dcd_hs_0 Module name.

USB Controller Selection USBHS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX on ux Instance

ISDE Property Value Description

USBX Pool Memory Name g_ux_pool_memory Name must be a valid C
symbol.

USBX Pool Memory Size 18432 See section "Azure RTOS USBX
Memory Requirements" for the
required memory size for each
classes.

User Callback for Host Event
Notification (Only valid for USB
Host)

NULL Name must be a valid C
symbol. The name of User
defined USBX Host event
notification can be given to this
property.

Name of generated initialization
function

ux_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

USBX Device Class CDC-ACM Module Clock Configuration

The USB peripheral module uses the UCLK as its clock source; the UCLK should be configured for
48MHz operation. In the SSP configuration window, select the Clocks tab to view the clock-source
setting.

USBX Device Class CDC-ACM Module Pin Configuration

The USB peripheral module uses MCU pins to communicate with external devices. Select I/O pins and
configure to the external device requirements. The following table lists the pin selection method
within the SSP Configuration Window and the subsequent tables demonstrate the selection process
using USB pins as an example.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

USBFS and USBHS Pin Selection Sequence

Resource ISDE Tab Pin selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,691 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > Configuring the USBX Device Class CDC-ACM Module

USBFS Pins Select Peripherals >
Connectivity: USBFS> USBFS0

USBHS Pins Select Peripherals >
Connectivity: USBHS> USBHS0

Note
The selection sequence assumes USBFS0 or USBHS0 is the desired hardware target for the driver.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select device as the Operation
Mode

USBDP USBDP USBDP pin

USBDM USBDM USBDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN None VBUSEN pin

VBUS None, P407

Default: P407

VBUS pin

EXICEN None EXICEN pin

ID None ID Pin

VCCUSB VCCUSB VCCUSB pin

VSSUSB VSSUSB VSSUSB pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select Device as the Operation
Mode

USBHSDP USBHSDP USBHSDP pin

USBHSDM USBHSDM USBHSDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,692 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > Configuring the USBX Device Class CDC-ACM Module

VBUSEN PB00 VBUSEN pin

VBUS PB01 VBUS pin

EXICEN None EXICEN pin

ID None ID pin

USBHSRREF USBHSRREF USBHSRREF pin

AVCCUSBHS AVCCUSBHS AVCCUSBHS pin

AVSSUSBHS AVSSUSBHS AVSSUSBHS pin

PVSSUSBHS PVSSUSBHS PVSSUSBHS pin

VCCUSBHS VCCUSBHS VCCUSBHS pin

VSS1USBHS VSS1USBHS VSS1USBHS pin

VSS2USBHS VSS2USBHS VSS2USBHS pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.41.6 Using the USBX Device Class CDC-ACM Module in an Application

The configurator generates processing to create and register the USBX Device Class CDC-ACM
module; however, communication must be done after the device is connected to the host.

The typical steps in using the USBX Device Class CDC-ACM module in an application are:

1. Wait for the callback function registered in USBX CDC-ACM instance_activate Function Callback to
be called.

2. In the callback function, save the instance.

3. For received data reading, use the ux_device_class_cdc_acm_read API.

4. For sending data, use the ux_device_class_cdc_acm_write API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,693 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class CDC-ACM > Using the USBX Device Class CDC-ACM Module in an Application

Figure 531: Flow Diagram of a Typical USBX Device Class CDC-ACM Module Application

4.3.42 USBX Device Class HID

4.3.42.1 USBX Device Class HID Module Introduction

The USBXTM Device Class Human Interface Design (HID) module provides a high-level API for HID
applications and configures the USBX Device Class HID Source, USBX Host Configuration, USBX
Source and USBX Port HCD. The USBX Device Class HID module uses the USB peripheral on the
Synergy MCU.

Unsupported Features

USBX composite device class supports only CDC-CDC and CDC-MSC device class.

USBX Device Class HID Module Features

The USB Device Class HID module allows a USB host system to communicate with the device as a
keyboard device, a mouse device and other HID devices. This class is based on the USB standard
and is a subset of the HID standard. The USBX Device Class HID module includes the following key
features:

Support for USB high speed (USBHS) or full speed (USBFS)
Uses Receive and Transmit data-transfer drivers for improved performance
Provides high-level APIs for reading and writing

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,694 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > USBX Device Class HID Module Introduction

Figure 532: USBX Device Class HID Module Block Diagram

4.3.42.2 USBX Device Class HID Module APIs Overview

The USBX Device Class HID module defines APIs for sending and receiving HID events and reports. A
complete list of the available APIs, an example API call and a short description of each can be found
in the following table. A table of status return values follows the API summary table.

USBX Device Class HID Module Summary

Function Name Example API Call and Description

ux_device_class_hid_event_set ux_device_class_hid_event_set (hid, &hid_event);
This function is called when an application needs
to send a HID event to the host.

ux_device_class_hid_event_get ux_device_class_hid_event_get (hid, &
hid_event);
This function is called when an application needs
to receive a HID event from the host.

ux_device_class_hid_report_set ux_device_class_hid_report_set (hid,
descriptor_type, request_index, host_length);
This function is called when an application needs
to send a HID report to the host.

ux_device_class_hid_report_get ux_device_class_hid_report_get (hid,
descriptor_type, request_index, host_length);
This function is called when an application needs
to receive a HID report to the host.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,695 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > USBX Device Class HID Module APIs Overview

Status Return Values

Name Description

UX_SUCCESS The data transfer was completed.

UX_TRANSFER_TIMEOUT Transfer timeout, reading/writing not completed.

UX_MEMORY_INSUFFICIENT Not enough memory.

UX_HOST_CLASS_UNKNOWN Wrong class instance.

UX_FUNCTION_NOT_SUPPORTED Unknown IOCTL function.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.3.42.3 USBX Device Class HID Module Operational Overview

Initialization of USBX Resources

The USBX has its own memory manager. The memory needs to be allocated to the USBX before the
host or device side of the USBX is initialized. The USBX memory manager can accommodate systems
where memory can be cached.

Definition of USB Host Controllers

It is required to define at least one USB host controller for USBX to operate in host-mode. The
application-initialization file should contain this definition. SSP defines USB host controller when USB
host controller driver is added to thread stacks.

Definition of Device Classes

It is required to define one or more device classes(s) with the USBX. A USB class is required to drive
a USB device after the USB stack has configured the USB device. A USB class is very specific to the
device; one or more classes may be required to drive a USB device depending on the number of
interfaces contained in the USB device descriptors.

USB Class Binding

When the device is configured, the topology manager will let the class manager continue the device
discovery by looking at the device-interface descriptors. A device can have one or more interface
descriptors.

An interface represents a function in a device. For instance, a USB speaker has three interfaces, one
for audio streaming, one for audio control, and one to manage the various speaker buttons.

The class manager has two mechanisms to join the device interface(s) to one or more classes. It can
either use the combination of a PID/VID (product ID and vendor ID) found in the interface descriptor
or the combination of Class/Subclass/Protocol.

The PID/VID combination is valid for interfaces that cannot be driven by a generic class. The
Class/Subclass/Protocol combination is used by interfaces that belong to a USB-IF certified class such
as a printer, hub, storage, audio, or Human Interface Design (HID).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,696 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > USBX Device Class HID Module Operational Overview

The class manager contains a list of registered classes from the initialization of the USBX. The class
manager will call each class one-at-a-time until one class accepts to manage the interface for that
device; each class can only manage one interface. In the case of the USB audio speaker, the class
manager will call all the classes for each of the interfaces.

Once a class accepts an interface, a new instance of that class is created; the class manager will
then search for the default alternate setting for the interface. A device may have one or more
alternate settings for each interface. The alternate setting 0 will be the one used by default until a
class decides to change it.

For the default alternate setting, the class manager will mount all the endpoints contained in the
alternate setting. If the mounting of each endpoint is successful, the class manager will complete its
job by returning to the class that will finish the initialization of the interface.

USBX Device Class HID Module Important Operational Notes and Limitations

USBX Device Class HID Module Operational Notes

The USBX Device stack or USBX Host stack consumes RAM for the control block. The Synergy
Configuration tool allocates memory to the USBX memory pool statically in the auto-generate code
as shown in the following table. You need to set the appropriate memory size in bytes to the USBX
Pool Memory Size property of the USBX on ux component in the Synergy Configuration tool in section
"USBX on ux Configuration." If multiple classes are used, set the total memory size to the property.

Memory (RAM) Requirements for the USBX Memory Pool

USBX Class S1 Parts Other Parts

USBX Device HID
(ux_device_class_hid)

6.1KB + (Add the additional
memory as per Note*1).

12KB + (Add the additional
memory as per Note*1).

Note
*1: If maximum number of HID events queue is more than 16(USBX device class HID source module: Property >>
Common >> Maximum number of USBX device HID event queue) or HID event buffer length is more than
64(USBX device class HID source module: Property >> Common >> USBX Device HID Event length Buffer) in
the XML configurator. Add the additional memory to USBX memory pool as follows:

Additional memory calculation for USBX full speed and High speed made.
((Maximum number of USBX device HID event queue - 16) * 12) + ((Maximum
number of USBX device HID event queue * USBX Device HID Event length Buffer) -
1024) = Additional memory in bytes.

Note: If HID event buffer value is increased to large value, Application stack size and USBX thread
stack size(USBX Source >> Common >> Stack size for USBX threads) need to increase.

Note
The information shown in the table above is valid if compiled with default USBX configurations.
The memory size of the USBX Classes in the table above are of the pre-built libraries and the following
configuration was applied for the builds:

UX_THREAD_STACK_SIZE: 512 (bytes) for S1 parts; 2048 (bytes) for the other parts

The application gets the HID instance of the slave device from the global variable,
_ux_system_slave; sends and receives executed using this instance.
Use the Protocol code property of the USBX Interface Configuration HID Driver to determine

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,697 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > USBX Device Class HID Module Operational Overview

the operation of the actual device.

USBX Device Class HID Module Limitations

The module needs the interrupt of a USB Controller enabled.
The module uses the interrupt of a USB Controller. Set the appropriate interrupt-priority
level in the Synergy Configuration tool for proper operation.
The module uses the interrupt of a transfer module (implemented as DMAC or DTC) if it is
used. Set the appropriate priority level in the Synergy Configuration tool and the level has
to be higher than a USB Controller, otherwise it does not work.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

Note
Currently, DTC is not supported by the device side driver (only DMAC is supported).

4.3.42.4 Including the USBX Device Class HID Module in an Application

This section describes how to include the USBX Device Class HID Module in an application using the
SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the USBX Device Class HID Module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

USBX Device Class HID Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_ux_device_class_hid USBX
Device Class HID

Threads New Stack> X-Ware> USBX>
Device > Classes > HID > USBX
Device Class HID

When the USBX Device Class HID Module is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,698 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > Including the USBX Device Class HID Module in an Application

Figure 533: USBX Device Class HID Module Stack

4.3.42.5 Configuring the USBX Device Class HID Module

The USBX Device Class HID Module must be configured by the user for the desired operation. The
SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the USBX Device Class HID Module

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,699 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > Configuring the USBX Device Class HID Module

Name g_ux_device_class_hid Specify the name of USBX
Interface Descriptor for HID
Class. It must be a valid C
symbol.

USBX Device HID Entry
Function

ux_device_class_hid_entry Specify the name of a user
callback function to get an
event from HID Class. Name
must be a valid C symbol. Refer
to the USBX Stack User's
Manual "Chapter 5: USBX
Device Class
Considerations USB Device HID
Class" for more information
about the user callback
function.

USBX Device HID User Callback
Function

ux_hid_device_callback Specify the name of user entry
function for the USBX Device
HID Class module. Name must
be a valid C symbol. See the
USBX Stack User's Manual
"Chapter 5: USBX Device Class
Considerations USB Device HID
Class" for more information
about the user entry function.

USBX Device HID GetReport
Callback Function

NULL Specify the name of user entry
function for the USBX Device
HID Class module. Name must
be a valid C symbol. See the
USBX Stack User's Manual
"Chapter 5: USBX Device Class
Considerations USB Device HID
Class" for more information
about the user entry function.

USBX Device HID Instance
Activate Callback Function

NULL Specify the name of
instance_activate user callback
function for the USBX Device
HID Class module. Name must
be a valid C symbol. See the
USBX Stack User's Manual
"Chapter 5: USBX Device Class
Considerations USB Device HID
Class" for more information
about the instance_activate
callback function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,700 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > Configuring the USBX Device Class HID Module

USBX Device HID Instance
Deactivate Callback Function

NULL Specify the name of
instance_deactivate user
callback function for the USBX
Device HID Class module. Name
must be a valid C symbol. Refer
to the USBX Stack User's
Manual "Chapter 5: USBX
Device Class
Considerations USB Device HID
Class" for more information
about the instance_activate
callback function.

Multiple HID Report Support Enable, Disable

Default: Disable

Set Enable to support multiple
HID report. This configuration is
used to indicate which data
fields are represented in each
report structure.

Name of generated initialization
function

ux_device_class_hid_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the USBX Device Class HID Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the USBX Device Class HID Source

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,701 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > Configuring the USBX Device Class HID Module

USBX Device HID Event Buffer
Length

Value must be greater than or
equal to 32.
Default : 64

UX_DEVICE_CLASS_HID_EVENT_
BUFFER_LENGTH
Defines the size of Event Buffer
Length. if the event buffer
length value is more than 256.
Slave request control maximum
length value have to increase
more than Event buffer length
value. in USBX source module.
(USBX Source: Property >>
common >> Slave Request
Control Maximum Length).

Maximum number of USBX
Device HID Event queue.

Value must be greater than or
equal to 16.
Default: 16.

'UX_DEVICE_CLASS_HID_MAX_E
VENTS_QUEUE'
This value represents the
maximum number of hid event
queue, in the USBX Device hid
class driver.

Device HID Interrupt Out
Support

Enabled, Disabled

Default: Disabled

UX_DEVICE_CLASS_HID_INTERR
UPT_OUT_SUPPORT
When enabled, device HID
interrupt OUT transfer is
supported.

Show linkage warning Enabled, Disabled

Default: Enabled

Notification message for users
will be shown if "Enabled"
option is selected. This is just to
warn users possible linkage
errors by multiple symbol
definitions. Select "Disabled"
stops the notification message.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Device Configuration Instance

ISDE Property Value Description

Vendor ID 0x045B Specify Vendor ID assigned by
USB-IF. This configuration is a
part of the USB Device
Descriptor (idVendor).

Product ID 0x0000 Specify Product ID assigned by
manufacturer. This
configuration is a part of the
Device Descriptor (idProduct).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,702 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > Configuring the USBX Device Class HID Module

Device Release Number 0x0000 Specify Device Release Number
in binary-coded decimal. This
configuration is a part of the
USB Device Descriptor
(bcdDevice).

Index of Manufacturing String
Descriptor

0x00 Specify the Index of
Manufacturer String Descriptor
defined in the USBX String
Framework. This configuration
is a part of the USB Device
Descriptor (iManufacturer). Set
zero if String Descriptor is not
used. See section USBX-String-
Framework-Configuration for
more information.

Index of Product String
Descriptor

0x00 Specify the Index of Product
String Descriptor defined in the
USBX String Framework. This
configuration is a part of the
USB Device Descriptor
(iProduct). Set zero if String
Descriptor is not used. See
section "USBX String
Framework Configuration" for
more information.

Index of Serial Number String
Descriptor

0x00 Specify the Index of Serial
Number String Descriptor
defined in the USBX String
Framework. This configuration
is a part of the USB Device
Descriptor (iSerialNumber). Set
zero if the String Descriptor is
not used. See section "USBX
String Framework
Configuration" for more
information.

Class Code Communications(CDC), HID,
Mass Storage, Miscellaneous,
Vendor specific

Default: Communications(CDC)

Select the USB Device Class
Code. This configuration is a
part of the USB Configuration
Descriptor (bDeviceClass).

Index of String Descriptor
describing this configuration

0x00 Specify the Index of String
Descriptor describing this
configuration. This
configuration is a part of the
USB Configuration Descriptor
(iConfiguration). Set zero if
String Descriptor is not used.
See section "USBX String
Framework Configuration" for
more information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,703 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > Configuring the USBX Device Class HID Module

Size of USB Descriptor in bytes
for this configuration (Modify
this value only for Vendor-
specific Class, otherwise set
zero)

0x00 Specify the size of USB
Descriptor in bytes. Modify the
value for Vendor-specific Class,
otherwise you can set zero to
calculate the size automatically
in the auto-generated code
from Synergy Configuration
tool. This configuration is a part
of the USB Configuration
Descriptor (wTotalLength).

Number of Interfaces (Modify
this value only for Vendor-
specific Class, otherwise set
zero)

0x00 Specify the Number of
interfaces supported by this
configuration. Modify the value
for Vendor-specific Class,
otherwise you can set zero to
calculate the value
automatically in the auto-
generated code from Synergy
Configuration tool. This
configuration is a part of the
USB Configuration Descriptor
(bNumInterfaces).

Self-Powered Enable, Disable

Default: Enable

Enable this configuration if your
USB Device is a self- powered
device. This configuration is a
part of the USB Configuration
Descriptor (bmAttributes bit6).

Remote Wakeup Enable, Disable

Default: Disable

Enable this configuration if your
USB Device supports remote
wakeup. This configuration is a
part of the USB Configuration
Descriptor (bmAttributes bit5).

Maximum Power Consumption
(in 2mA units)

50 Set the maximum power
consumption of your device to
indicate the amount of bus
power required. This
configuration is 2mA units,
thus, the maximum 500 mA can
be specified. This configuration
is a part of the USB
Configuration Descriptor
(bMaxPower).

Supported Language Code 0x0409 Specify the Language ID Code.
For example, 0x0409 English -
United States. This
configuration is used for
Language ID Framework code
generation. See section "USBX
Language Framework
Configuration" for more
information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,704 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > Configuring the USBX Device Class HID Module

Name of USBX String
Framework

NULL Specify the name of user
defined USBX String
Framework. This must be a
valid C symbol. Set NULL if the
String Descriptor is not used.
See section "USBX String
Framework Configuration" for
more information.

Total index number of USB
String Descriptors in USB String
Framework

0 Specify the total number of
index for String Descriptor. See
section "USBX String
Framework Configuration" for
more information.

Name of USBX Language
Framework

NULL Specify the name of user
defined USBX Language
Framework. This must be a
valid C symbol. If '0' is set to
the property "Total Number of
Language Support", this
configuration is ignored. See
section "USBX Language
Framework Configuration" for
more information.

Number of Languages to
support (US English is applied if
zero is set)

0 Specify the total number of
languages to support. See
section "USBX String
Framework Configuration" for
more information. If '0' is set
here, US English (0x0409) is
applied as the default
language.

Name of generated initialization
function

ux_device_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Interface Configuration HID Instance

ISDE Property Value Description

Name g_usb_interface_descriptor_hid0 Specify the name of USBX
Interface Descriptor for CDC-
ACM. It must be a valid C
symbol.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,705 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > Configuring the USBX Device Class HID Module

Protocol code (None(0)
/Keyboard(1)
/Mouse(2)/Keyboard+Mouse(3))

0x00 Both the keyboard and mouse
interface will be available only
if Keyboard+Mouse(3) protocol
is selected. Select device class
as Device (0x00) in device
configuration when protocol
selected is (Keyboard+Mouse).

(Keyboard) Interface Number of
HID Class interface

0x00 Keyboard Interface will be
available for use when protocol
code selected is either
Keyboard(1) or
Keyboard+Mouse(3).

(Keyboard) Endpoint Number to
be used for Interrupt-In

Endpoint 1-9

Default: Endpoint 1

Specify the Endpoint Number of
Interrupt-In Endpoint. It must
not be duplicated with ones for
the other Endpoints.

(Keyboard) Maximum packet
size in bytes for Interrupt-In

0x8 Specify the maximum packet
size this endpoint is capable of
sending or receiving when this
configuration is selected.

Interval for polling Interrupt-In
EP for data transfers
(milliseconds)

0x8 Specify the Interval for polling
Endpoint transfers. This
configuration is valid for
Interrupt-In Endpoint. Value is
in frame counts (1ms units for
FS mode and 125us units for HS
mode).

(Keyboard) Interrupt-Out
Endpoint (Optional)

Enable, Disable

Default: Disable

This configuration is reserved
and currently not used.

Endpoint Number for Interrupt-
Out (Optional)

Endpoint 1-9

Default: Endpoint 3

This configuration is reserved
and currently not used.

(Keyboard) Maximum packet
size in bytes for Interrupt-Out
EP (Optional)

0x8 This configuration is reserved
and currently not used.

(Keyboard) Interval for polling
Interrupt-Out EP for data
transfers (milliseconds)
(Optional)

0x8 This configuration is reserved
and currently not used.

(Mouse) Interface Number of
HID Class interface

0x01 Mouse Interface will be
available for use when protocol
code selected is either
Mouse(2) or
Keyboard+Mouse(3).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,706 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > Configuring the USBX Device Class HID Module

(Mouse) Endpoint Number to be
used for Interrupt-In

Endpoint 1-9

Default: Endpoint 2

Specify the Endpoint Number of
Interrupt-In Endpoint. It must
not be duplicated with ones for
the other Endpoints.

(Mouse) Maximum packet size
in bytes for Interrupt-In

0x8 Specify the maximum packet
size this endpoint is capable of
sending or receiving when this
configuration is selected.

Interval for polling Interrupt-In
EP for data transfers
(milliseconds)

0x8 Specify the Interval for polling
Endpoint transfers. This
configuration is valid for
Interrupt-In Endpoint. Value is
in frame counts (1ms units for
FS mode and 125us units for HS
mode).

(Mouse) Interrupt-Out Endpoint
(Optional)

Enable, Disable

Default: Disable

This configuration is reserved
and currently not used.

Endpoint Number for Interrupt-
Out (Optional)

Endpoint 1-9

Default: Endpoint 4

This configuration is reserved
and currently not used.

(Mouse) Maximum packet size
in bytes for Interrupt-Out EP
(Optional)

0x8 This configuration is reserved
and currently not used.

(Mouse) Interval for polling
Interrupt-Out EP for data
transfers (milliseconds)
(Optional)

0x8 This configuration is reserved
and currently not used.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port DCD on sf_el_ux for USBFS

ISDE Property Value Description

Full Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
full-speed USB.

LDO Regulator (Only for S3 and
S1 part MCUs)

Enable, Disable

Default: Disable

Select the LDO regulator will be
enabled.

Name g_sf_el_ux_dcd_fs_0 Module name.

USB Controller Selection USBFS Select the USB controller.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,707 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > Configuring the USBX Device Class HID Module

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port DCD on USBHS

ISDE Property Value Description

High Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
high speed USB.

Name g_sf_el_ux_dcd_hs_0 Module name.

USB Controller Selection USBHS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX on ux Instance

ISDE Property Value Description

USBX Pool Memory Name g_ux_pool_memory Name must be a valid C
symbol.

USBX Pool Memory Size 18432 See section "Azure RTOS USBX
Memory Requirements" for the
required memory size for each
classes.

User Callback for Host Event
Notification (Only valid for USB
Host)

NULL Name must be a valid C
symbol. The name of User
defined USBX Host event
notification can be given to this
property.

User Callback for Device Event
Notification (Only valid for USB
Device)

NULL Name must be a valid C
symbol. The name of User
defined USBX Device event
notification can be given to this
property.

Name of generated initialization
function

ux_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,708 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > Configuring the USBX Device Class HID Module

USBX Device Class HID Module Clock Configuration

The USB peripheral module uses the UCLK as its clock source; the UCLK should be configured for
48MHz operation. In the SSP configuration window, select the Clocks tab to view the clock-source
setting.

USBX Device Class HID Module Pin Configuration

The USB peripheral module uses MCU pins to communicate with external devices. Select I/O pins and
configure to the external device requirements. The following table lists the pin selection method
within the SSP Configuration Window and the subsequent tables demonstrate the selection process
using USB pins as an example.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

USBFS and USBHS Pin Selection Sequence

Resource ISDE Tab Pin selection Sequence

USBFS Pins Select Peripherals >
Connectivity: USBFS> USBFS0

USBHS Pins Select Peripherals >
Connectivity: USBHS> USBHS0

Note
The selection sequence assumes USBFS0 or USBHS0 is the desired hardware target for the driver.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select device as the Operation
Mode

USBDP USBDP USBDP pin

USBDM USBDM USBDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN None VBUSEN pin

VBUS None, P407

Default: P407

VBUS pin

EXICEN None EXICEN pin

ID None ID Pin

VCCUSB VCCUSB VCCUSB pin

VSSUSB VSSUSB VSSUSB pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,709 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > Configuring the USBX Device Class HID Module

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select Device as the Operation
Mode

USBHSDP USBHSDP USBHSDP pin

USBHSDM USBHSDM USBHSDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN PB00 VBUSEN pin

VBUS PB01 VBUS pin

EXICEN None EXICEN pin

ID None ID pin

USBHSRREF USBHSRREF USBHSRREF pin

AVCCUSBHS AVCCUSBHS AVCCUSBHS pin

AVSSUSBHS AVSSUSBHS AVSSUSBHS pin

PVSSUSBHS PVSSUSBHS PVSSUSBHS pin

VCCUSBHS VCCUSBHS VCCUSBHS pin

VSS1USBHS VSS1USBHS VSS1USBHS pin

VSS2USBHS VSS2USBHS VSS2USBHS pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.42.6 Using the USBX Device Class HID Module in an Application

The configurator generates processing to create and register the USBX Device Class HID module;
however, communication must be done after the device is connected to the host.

The typical steps in using the USBX Device Class HID module in an application are:

1. Get the ux_system_slave slave device pointer

2. Wait until slave device's ux_slave_device_state is configured

3. For HID event sending, use the ux_device_class_hid_event_set API

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,710 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class HID > Using the USBX Device Class HID Module in an Application

4. For received HID event reading, use the ux_device_class_hid_event_get API

5. For HID report sending, use the ux_device_class_hid_report_set API

6. For received HID report reading, use the ux_device_class_hid_report_get API

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 534: Flow Diagram of a Typical USBX Device Class HID Module Application

4.3.43 USBX Device Class Mass Storage

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,711 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > USBX Device Class Mass Storage Introduction

4.3.43.1 USBX Device Class Mass Storage Introduction

The USBX&trade Device Class Mass Storage module provides a high-level API for USB mass storage
applications for USB Full Speed (USBFS) or USB High Speed (USBHS). The USBX Device Class Mass
Storage module uses the USB and data-transfer peripherals on the Synergy MCU.

USBX Device Class Mass Storage Module Features

ThreadX®-aware framework.
Storage Media Parameter Setup
Last LBA
Byte-per-sector
Type of storage media
Removable flag
USB Device Configuration (Device Configuration)
Vendor ID
Product ID
Device Release Number
Index of Serial Number String Descriptor
Supported USB Specification (DCD)
USBFS
USBHS
USB Device interrupts (DCD)

Figure 535: USBX Device Class Mass Storage Module Block Diagram

4.3.43.2 USBX Device Class Mass Storage Module APIs Overview

The USBX Device Class Mass Storage module automatically adds an initialization process; the user
application only needs to prepare the callback functions for media access. Unless the functionality of
the USBX Device Class Mass Storage module is required, there is no need to use it.

Note
For details on the USBX Device Stack, see the USBX Device Stack User's Manual.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,712 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > USBX Device Class Mass Storage Module Operational Overview

4.3.43.3 USBX Device Class Mass Storage Module Operational Overview

The USBX Device Class Mass Storage module automatically adds an initialization process. The
process initializes internal information with the given parameters and creates an internal thread for
processing the mass-storage class; this internal thread processes all USB messages.

USBX Device Class Mass Storage Module Important Operational Notes and Limitations

USBX Device Class Mass Storage Module Operational Notes

The USBX Device stack or USBX Host stack consumes RAM for the control block. The Synergy
Configuration tool allocates memory to the USBX memory pool statically in the auto-generate code
as shown in the following table. You need to set the appropriate memory size in bytes to the USBX
Pool Memory Size property of the USBX on ux component in the Synergy Configuration tool in section
"USBX on ux Configuration." If multiple classes are used, set the total memory size to the property.

Memory (RAM) Requirements for the USBX Memory Pool

USBX Class S1 Parts Other Parts

USBX Device Mass Storage
(ux_device_class_storage)

6.1KB 19KB

Note
The information shown in the table above is valid if compiled with default USBX configurations.
The memory size of the USBX Classes in the table above are of the pre-built libraries and the following
configuration was applied for the builds:

UX_THREAD_STACK_SIZE: 512(bytes) for S1 parts; 2048(bytes) for the other parts

The USBX device storage class supports multiple logical unit numbers (LUNs), making it
possible to create a storage device that acts simultaneously as a CD-ROM and flash disk.

USBX Device Class Mass Storage Module Limitations

This module does not support the complex device.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

4.3.43.4 Including the USBX Device Class Mass Storage Module in an Application

This section describes how to include the USBX Device Class Mass Storage module in an application
using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the USBX Device Class Mass Storage module to an application, simply add it to a thread using
the stacks selection sequence given in the following table.

USBX Device Class Mass Storage Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,713 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > Including the USBX Device Class Mass Storage Module in an Application

g_ux_device_class_storage
USBX Device Class Mass
Storage

Threads New Stack> X-Ware> USBX>
Device> Classes> Mass
Storage> USBX Device Class
Mass Storage

When the USBX Device Class Mass Storage module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 536: USBX Device Class Mass Storage Module Stack

4.3.43.5 Configuring the USBX Device Class Mass Storage Module

The USBX Device Class Mass Storage module must be configured by the user for the desired
operation. The SSP configuration window automatically identifies (by highlighting the block in red)
any required configuration selections, such as interrupts or operating modes, which must be
configured for lower-level modules for successful operation. Only properties that can be changed
without causing conflicts are available for modification. Other properties are locked and not available
for changes and are identified with a lock icon for the locked property in the Properties window in the
ISDE. This approach simplifies the configuration process and makes it much less error-prone than

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,714 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > Configuring the USBX Device Class Mass Storage Module

previous manual approaches to configuration. The available configuration settings and defaults for
all the user-accessible properties are given in the Properties tab within the SSP Configurator and are
shown in the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the USBX Device Class Mass Storage Module

ISDE Property Value Description

Name g_ux_device_class_storage Specify the name of USBX
Interface Descriptor for Mass
Storage Class. It must be a
valid C symbol.

Mass Storage Class Parameter
Setup

Auto (Simple Auto Setup if LUN
is 1), Manual (User Manual
Setup if LUN is greater than 1)

Default: Auto

Manual (User Manual Setup if
LUN is greater than 1).

Simple Auto Setup if LUN is 1.

User Setup Callback (Only valid
if Parameter Setup is Auto)

ux_device_class_storage_user_s
etup

Specify the name of user
callback function to setup the
storage parameter setup. This
parameter is only valid when
the configuration "Mass Storage
Class Parameter Setup" is
"Auto".

Last LBA of Storage Media
(Only valid if Parameter Setup
is Auto)

0 Specify the last LBA of storage
media device (the number of
sectors available in the media -
1). This parameter is only valid
when the configuration "Mass
Storage Class Parameter Setup"
is "Auto".

Bytes Per Sector of Storage
Media (Only valid if Parameter
Setup is Auto)

512 Specify the sector size of
storage media. It can take
multiple of 512 such as 512, 4K
bytes. This parameter is only
valid when the configuration
"Mass Storage Class Parameter
Setup" is "Auto".

Type of Storage Media (Only
valid if Parameter Setup is
Auto)

0 Specify the type of storage
media device. Typically, the
value takes following values.
Flash Drive (0), CD-ROM device
(5)
This parameter is only valid
when the configuration "Mass
Storage Class Parameter Setup"
is "Auto".

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,715 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > Configuring the USBX Device Class Mass Storage Module

Removable Flag of Storage
Media (Only valid if Parameter
Setup is Auto)

0x80 Specify the Removable Flag
value of Storage Media. This
parameter is only valid when
the configuration "Mass Storage
Class Parameter Setup" is
"Auto".

Media Read Function Callback
(Only valid if Parameter Setup
is Auto)

ux_device_msc_media_read Specify the C symbol name of
Media Read callback for the
USBX Device Mass Storage
Class. The function is to be
called back from the Class
library when read access to the
USB storage device is
requested from user
application. Refer USBX Stack
User's Manual "Chapter 5: USBX
Device Class
Considerations USB Device
Storage Class" for the function
definition.

Media Write Function Callback
(Only valid if Parameter Setup
is Auto)

ux_device_msc_media_write Specify the C symbol name of
Media Write callback for the
USBX Device Mass Storage
Class. The function is to be
called back from the Class
library when write access to the
USB storage device is
requested from user
application. Refer USBX Stack
User's Manual "Chapter 5: USBX
Device Class
Considerations USB Device
Storage Class" for the function
definition.

Media Status Function Callback
(Only valid if Parameter Setup
is Auto)

ux_device_msc_media_status Specify the C symbol name of
Media Status callback for the
USBX Device Mass Storage
Class. The function is to be
called back from the Class
library when status inquiry to
the USB storage device is
requested from user
application. Refer USBX Stack
User's Manual "Chapter 5: USBX
Device Class
Considerations USB Device
Storage Class" for the function
definition.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,716 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > Configuring the USBX Device Class Mass Storage Module

USBX Device Storage Instance
Activate Callback Function

NULL Specify the name of
instance_activate user callback
function for the USBX Device
Mass Storage Class module.
Name must be a valid C
symbol. See the USBX Stack
User's Manual "Chapter 5: USBX
Device Class Considerations
USB Device Storage Class" for
more information about the
instance_activate callback
function.

USBX Device Storage Instance
Deactivate Callback Function

NULL Specify the name of
instance_deactivate user
callback function for the USBX
Device Mass Storage Class
module. Name must be a valid
C symbol. Refer to the USBX
Stack User's Manual "Chapter 5:
USBX Device Class
Considerations USB Device
Storage Class" for more
information about the
instance_activate callback
function

Vendor ID Name NULL Specify the name of Vendor ID
for the USBX Device Mass
Storage Class module. Name
must be a valid C symbol.

Product ID Name NULL Specify the name of Product ID
for the USBX Device Mass
Storage Class module. Name
must be a valid C symbol.

Product Revision Number NULL Specify the number of Product
revision for the USBX Device
Mass Storage Class module.
Value must be a non-negative
integer.

Product Serial Number NULL Specify the number of Product
serial for the USBX Device Mass
Storage Class module. Value
must be a non-negative integer.

Name of generated initialization
function

ux_device_class_storage_init0 Name of generated initialization
function selection

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,717 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > Configuring the USBX Device Class Mass Storage Module

different default values and available configuration settings.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the USBX Device Class Mass Storage Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the USBX Device Class Mass Storage Source

ISDE Property Value Description

Maximum number of SCSI
logical units

Value must be greater than 0 or
empty

Default: 2

UX_MAX_SLAVE_LUN
This value represents the
maximum number of SCSI
logical units represented in the
device storage class driver.

Show linkage warning Enabled, Disabled

Default: Enabled

Notification message for users
will be shown if "Enabled"
option is selected. This is just to
warn users possible linkage
errors by multiple symbol
definitions. Select "Disabled"
stops the notification message.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Device Configuration Instance

ISDE Property Value Description

Vendor ID 0x045B Specify Vendor ID assigned by
USB-IF. This configuration is a
part of the USB Device
Descriptor (idVendor).

Product ID 0x0000 Specify Product ID assigned by
manufacturer. This
configuration is a part of the
Device Descriptor (idProduct).

Device Release Number 0x0000 Specify Device Release Number
in binary-coded decimal. This
configuration is a part of the
USB Device Descriptor
(bcdDevice).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,718 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > Configuring the USBX Device Class Mass Storage Module

Index of Manufacturing String
Descriptor

0x00 Specify the Index of
Manufacturer String Descriptor
defined in the USBX String
Framework. This configuration
is a part of the USB Device
Descriptor (iManufacturer). Set
zero if String Descriptor is not
used. See section USBX-String-
Framework-Configuration for
more information.

Index of Product String
Descriptor

0x00 Specify the Index of Product
String Descriptor defined in the
USBX String Framework. This
configuration is a part of the
USB Device Descriptor
(iProduct). Set zero if String
Descriptor is not used. See
section "USBX String
Framework Configuration" for
more information.

Index of Serial Number String
Descriptor

0x00 Specify the Index of Serial
Number String Descriptor
defined in the USBX String
Framework. This configuration
is a part of the USB Device
Descriptor (iSerialNumber). Set
zero if the String Descriptor is
not used. See section "USBX
String Framework
Configuration" for more
information.

Class Code Communications(CDC), HID,
Mass Storage, Miscellaneous,
Vendor specific

Default: Communications(CDC)

Select the USB Device Class
Code. This configuration is a
part of the USB Configuration
Descriptor (bDeviceClass).

Index of String Descriptor
describing this configuration

0x00 Specify the Index of String
Descriptor describing this
configuration. This
configuration is a part of the
USB Configuration Descriptor
(iConfiguration). Set zero if
String Descriptor is not used.
See section "USBX String
Framework Configuration" for
more information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,719 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > Configuring the USBX Device Class Mass Storage Module

Size of USB Descriptor in bytes
for this configuration (Modify
this value only for Vendor-
specific Class, otherwise set
zero)

0x00 Specify the size of USB
Descriptor in bytes. Modify the
value for Vendor-specific Class,
otherwise you can set zero to
calculate the size automatically
in the auto-generated code
from Synergy Configuration
tool. This configuration is a part
of the USB Configuration
Descriptor (wTotalLength).

Number of Interfaces (Modify
this value only for Vendor-
specific Class, otherwise set
zero)

0x00 Specify the Number of
interfaces supported by this
configuration. Modify the value
for Vendor-specific Class,
otherwise you can set zero to
calculate the value
automatically in the auto-
generated code from Synergy
Configuration tool. This
configuration is a part of the
USB Configuration Descriptor
(bNumInterfaces).

Self-Powered Enable, Disable

Default: Enable

Enable this configuration if your
USB Device is a self- powered
device. This configuration is a
part of the USB Configuration
Descriptor (bmAttributes bit6).

Remote Wakeup Enable, Disable

Default: Disable

Enable this configuration if your
USB Device supports remote
wakeup. This configuration is a
part of the USB Configuration
Descriptor (bmAttributes bit5).

Maximum Power Consumption
(in 2mA units)

50 Set the maximum power
consumption of your device to
indicate the amount of bus
power required. This
configuration is 2mA units,
thus, the maximum 500 mA can
be specified. This configuration
is a part of the USB
Configuration Descriptor
(bMaxPower).

Supported Language Code 0x0409 Specify the Language ID Code.
For example, 0x0409 English -
United States. This
configuration is used for
Language ID Framework code
generation. See section "USBX
Language Framework
Configuration" for more
information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,720 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > Configuring the USBX Device Class Mass Storage Module

Name of USBX String
Framework

NULL Specify the name of user
defined USBX String
Framework. This must be a
valid C symbol. Set NULL if the
String Descriptor is not used.
See section "USBX String
Framework Configuration" for
more information.

Total index number of USB
String Descriptors in USB String
Framework

0 Specify the total number of
index for String Descriptor. See
section "USBX String
Framework Configuration" for
more information.

Name of USBX Language
Framework

NULL Specify the name of user
defined USBX Language
Framework. This must be a
valid C symbol. If '0' is set to
the property "Total Number of
Language Support", this
configuration is ignored. See
section "USBX Language
Framework Configuration" for
more information.

Number of Languages to
support (US English is applied if
zero is set)

0 Specify the total number of
languages to support. See
section "USBX String
Framework Configuration" for
more information. If '0' is set
here, US English (0x0409) is
applied as the default
language.

Name of generated initialization
function

ux_device_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Interface Configuration Mass Storage Instance

ISDE Property Value Description

Name g_usb_interface_descriptor_stor
age_0

Specify the name of USBX
Interface Descriptor for CDC-
ACM. It must be a valid C
symbol.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,721 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > Configuring the USBX Device Class Mass Storage Module

Interface Number of Bulk Only
Data Interface

0x00 Specify the index number of
Bulk-Only Data interface. This
configuration is a part of the
USB Interface Descriptor
(bInterface). The number must
not be duplicated with any
other Interface Numbers if your
USB device consists of a USB
composite device.

Endpoint Number to be used for
Bulk Out Transfer

Endpoint 1-9

Default: Endpoint 1

Specify the Endpoint Number of
Bulk Out Endpoint. It must not
be duplicated with ones for the
other Endpoints.

Endpoint Number to be used for
Bulk In Transfer

Endpoint 1-9

Default: Endpoint 2

Specify the Endpoint Number of
Bulk In Endpoint. It must not be
duplicated with ones for the
other Endpoints.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port DCD on sf_el_ux for USBFS

ISDE Property Value Description

Full Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
full-speed USB.

LDO Regulator (Only for S3 and
S1 part MCUs)

Enable, Disable

Default: Disable

Select the LDO regulator will be
enabled.

Name g_sf_el_ux_dcd_fs_0 Module name.

USB Controller Selection USBFS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port DCD on USBHS

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,722 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > Configuring the USBX Device Class Mass Storage Module

High Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
high speed USB.

Name g_sf_el_ux_dcd_hs_0 Module name.

USB Controller Selection USBHS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX on ux Instance

ISDE Property Value Description

USBX Pool Memory Name g_ux_pool_memory Name must be a valid C
symbol.

USBX Pool Memory Size 18432 See section "Azure RTOS USBX
Memory Requirements" for the
required memory size for each
classes.

User Callback for Host Event
Notification (Only valid for USB
Host)

NULL Name must be a valid C
symbol. The name of User
defined USBX Host event
notification can be given to this
property.

Name of generated initialization
function

ux_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

USBX Device Class Mass Storage Module Clock Configuration

The USB peripheral module uses the UCLK as its clock source; the UCLK should be configured for
48MHz operation In the SSP configuration window, select the Clocks tab to view the clock-source
setting.

USBX Device Class Mass Storage Module Pin Configuration

The USB peripheral module uses MCU pins to communicate with external devices. Select I/O pins and
configure to the external device requirements. The following table lists the pin selection method
within the SSP Configuration Window and the subsequent tables demonstrate the selection process
using USB pins as an example.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,723 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > Configuring the USBX Device Class Mass Storage Module

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

USBFS and USBHS Pin Selection Sequence

Resource ISDE Tab Pin selection Sequence

USBFS Pins Select Peripherals >
Connectivity: USBFS> USBFS0

USBHS Pins Select Peripherals >
Connectivity: USBHS> USBHS0

Note
The selection sequence assumes USBFS0 or USBHS0 is the desired hardware target for the driver.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select device as the Operation
Mode

USBDP USBDP USBDP pin

USBDM USBDM USBDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN None VBUSEN pin

VBUS None, P407

Default: P407

VBUS pin

EXICEN None EXICEN pin

ID None ID Pin

VCCUSB VCCUSB VCCUSB pin

VSSUSB VSSUSB VSSUSB pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

USBHS Pin Configuration Settings

Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,724 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Device Class Mass Storage > Configuring the USBX Device Class Mass Storage Module

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select Device as the Operation
Mode

USBHSDP USBHSDP USBHSDP pin

USBHSDM USBHSDM USBHSDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN PB00 VBUSEN pin

VBUS PB01 VBUS pin

EXICEN None EXICEN pin

ID None ID pin

USBHSRREF USBHSRREF USBHSRREF pin

AVCCUSBHS AVCCUSBHS AVCCUSBHS pin

AVSSUSBHS AVSSUSBHS AVSSUSBHS pin

PVSSUSBHS PVSSUSBHS PVSSUSBHS pin

VCCUSBHS VCCUSBHS VCCUSBHS pin

VSS1USBHS VSS1USBHS VSS1USBHS pin

VSS2USBHS VSS2USBHS VSS2USBHS pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.43.6 Using the USBX Device Class Mass Storage Module in an Application

The USBX Device Class Mass Storage module does not need the usual initialization by an
application; the application simply prepares the three user callbacks that the USBX Device
Class Mass Storage module requires.
Following is the suggested sequence of API's to be called successfully in a sequential order
in an application for completely un-initializing USB Device class,

Figure 537: USBX Device Class Mass Storage Typical Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,725 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class CDC-ACM

4.3.44 USBX Host Class CDC-ACM

4.3.44.1 USBX Host Class CDC-ACM Module Introduction

The USBX Host Class CDC-ACM module provides a high-level API for USBX Host Class CDC-ACM
applications and configures the USBX Host Class CDC-ACM Source, USBX Host Configuration, USBX
Source, USBX Port HCD and a transfer driver. The USBX Host Class CDC-ACM module uses the
DMAC/DTC and USB Host Class peripherals on the Synergy MCU.

Note
Currently, DTC is not supported by the host side driver (only DMAC is supported).

USBX Host Class CDC-ACM Module Features

The CDC-ACM class uses a composite device framework to group interfaces (control and data). As a
result, care should be taken when defining the device descriptor. The USBX relies on the IAD
descriptor to know internally how to bind interfaces. The IAD descriptor should be declared before
the interfaces and contain the first interface of the CDC-ACM class and how many interfaces are
attached. The CDC-ACM class also uses a union functional descriptor which performs the same
function as the newer IAD descriptor. Although a union functional descriptor must be declared for
historical reasons and compatibility with the host side, it is not used by the USBX.

Figure 538: USBX Host Class CDC-ACM Module Block Diagram

4.3.44.2 USBX Host Class CDC-ACM Module APIs Overview

The USBX Host Class CDC-ACM Module defines APIs for reading, writing and ioctl. A complete list of

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,726 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class CDC-ACM > USBX Host Class CDC-ACM Module APIs Overview

the available APIs, an example API call and a short description of each can be found in the following
table. A table of status return values follows the API summary table.

USBX Host Class CDC-ACM Module Summary

Function Name Example API Call and Description

ux_host_class_cdc_acm_read status = ux_host_class_cdc_acm_read(cdc_acm,
data_pointer, requested_length,&actual_length);
This function reads from the cdc_acm interface.
The call is blocking and only returns when there
is either an error or when the transfer is
complete.

ux_host_class_cdc_acm_write status = ux_host_class_cdc_acm_write(cdc_acm,
data_pointer,requested_length,&actual_length);
This function writes to the cdc_acm interface.
The call is blocking and only returns when there
is either an error or when the transfer is
complete.

ux_host_class_cdc_acm_ioctl status = ux_host_class_cdc_acm_ioctl(cdc_acm,
ioctl_function, ¶meter_p);
This function performs a specific ioctl function to
the cdc_acm interface. The call is blocking and
only returns when there is either an error or
when the command is completed.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

UX_SUCCESS The data transfer was completed.

UX_TRANSFER_TIMEOUT Transfer timeout, reading/writing not completed.

UX_MEMORY_INSUFFICIENT Not enough memory.

UX_HOST_CLASS_UNKNOWN Wrong class instance.

UX_FUNCTION_NOT_SUPPORTED Unknown IOCTL function.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.3.44.3 USBX Host Class CDC-ACM Module Operational Overview

Initialization of USBX Resources

The USBX has its own memory manager. The memory needs to be allocated to the USBX before the
host or device side of the USBX is initialized. The USBX memory manager can accommodate systems

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,727 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class CDC-ACM > USBX Host Class CDC-ACM Module Operational Overview

where memory can be cached.

Definition of USB Host Controllers

It is required to define at least one USB host controller for USBX to operate in host-mode. The
application-initialization file should contain this definition. SSP defines USB host controller when USB
host controller driver is added to thread stacks.

Definition of Device Classes

It is required to define one or more device classes(s) with the USBX. A USB class is required to drive
a USB device after the USB stack has configured the USB device. A USB class is very specific to the
device; one or more classes may be required to drive a USB device depending on the number of
interfaces contained in the USB device descriptors.

USB Class Binding

When the device is configured, the topology manager will let the class manager continue the device
discovery by looking at the device-interface descriptors. A device can have one or more interface
descriptors.

An interface represents a function in a device. For instance, a USB speaker has three interfaces, one
for audio streaming, one for audio control, and one to manage the various speaker buttons.

The class manager has two mechanisms to join the device interface(s) to one or more classes. It can
either use the combination of a PID/VID (product ID and vendor ID) found in the interface descriptor
or the combination of Class/Subclass/Protocol.

The PID/VID combination is valid for interfaces that cannot be driven by a generic class. The
Class/Subclass/Protocol combination is used by interfaces that belong to a USB-IF certified class such
as a printer, hub, storage, audio, or Human Interface Design (HID).

The class manager contains a list of registered classes from the initialization of the USBX. The class
manager will call each class one-at-a-time until one class accepts to manage the interface for that
device; each class can only manage one interface. In the case of the USB audio speaker, the class
manager will call all the classes for each of the interfaces.

Once a class accepts an interface, a new instance of that class is created; the class manager will
then search for the default alternate setting for the interface. A device may have one or more
alternate settings for each interface. The alternate setting 0 will be the one used by default until a
class decides to change it.

For the default alternate setting, the class manager will mount all the endpoints contained in the
alternate setting. If the mounting of each endpoint is successful, the class manager will complete its
job by returning to the class that will finish the initialization of the interface.

USBX Host Class CDC-ACM Module Important Operational Notes and Limitations

USBX Host Class CDC-ACM Module Operational Notes

The USBX Device stack or USBX Host stack consumes RAM for the control block. The Synergy
Configuration tool allocates memory to the USBX memory pool statically in the auto-generate code
as shown in the following table. You need to set the appropriate memory size in bytes to the USBX
Pool Memory Size property of the USBX on ux component in the Synergy Configuration tool in section
"USBX on ux Configuration." If multiple classes are used, set the total memory size to the property.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,728 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class CDC-ACM > USBX Host Class CDC-ACM Module Operational Overview

Memory (RAM) Requirements for the USBX Memory Pool

USBX Class S1 Parts Other Parts

USBX Host CDC-ACM
(ux_host_class_cdc_acm)

N/A 30KB

Note
The information shown in the table above is valid if compiled with default USBX configurations.
The memory size of the USBX Classes in the table above are of the pre-built libraries and the following
configuration was applied for the builds:

UX_THREAD_STACK_SIZE: 512(bytes) for S1 parts; 2048(bytes) for the other parts

Use a class container for the USBX Host Class CDC-ACM obtained by auto-generated code to
get a CDC-ACM instance.
Poll the flag ux_host_class_cdc_acm_state in the instance and make sure the status is live.
Check if a DATA class interface is available in the CDC-ACM instance.
Set up the CDC-ACM reception if required.
Perform CDC-ACM communication with USB device.

USBX Host Class CDC-ACM Module Limitations

The module needs the interrupt of a USB Controller to be enabled.
See SSP Release Notes (sf_el_ux sections) for known limitations.
The module uses the interrupt of a USB Controller. Set the appropriate interrupt priority
level in Synergy Configuration tool. By default, it is disabled.
The module uses the interrupt of a Transfer module (implemented as DMAC or DTC) if it is
used. Set appropriate priority level in the Synergy Configuration tool. The level must be
higher than a USB Controller to work properly.
A zero length packet does not contain the received data, but the application must perform
the receive operation.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

Note
Currently, DTC is not supported by the host side driver (only DMAC is supported).

4.3.44.4 Including the USBX Host Class CDC-ACM Module in an Application

This section describes how to include the USBX Host Class CDC-ACM Module in an application using
the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the USBX Host Class CDC-ACM Module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

USBX Host Class CDC-ACM Module Selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,729 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class CDC-ACM > Including the USBX Host Class CDC-ACM Module in an Application

Resource ISDE Tab Stacks Selection Sequence

g_ux_device_class_cdc_acm0
USBX Host Class CDC-ACM

Threads New Stack> X-Ware> USBX>
Device> Classes > CDC-ACM >
USBX Host Class CDC-ACM

When the USBX Host Class CDC-ACM Module is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

Figure 539: USBX Host Class CDC-ACM Module Stack

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,730 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class CDC-ACM > Configuring the USBX Host Class CDC-ACM Module

4.3.44.5 Configuring the USBX Host Class CDC-ACM Module

The USBX Host Class CDC-ACM Module must be configured by the user for the desired operation. The
SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the USBX Host Class CDC-ACM Module

ISDE Property Value Description

Name g_ux_host_class_cdc_acm0 Specify the name of USBX Host
CDC-ACM Class module
instance. It must be a valid C
symbol.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the USBX Host Class CDC-ACM Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the USBX Host Class CDC-ACM Source

ISDE Property Value Description

Show linkage warning Enabled, Disabled

Default: Enabled

Notification message for users
will be shown if "Enabled"
option is selected. This is just to
warn users possible linkage
errors by multiple symbol
definitions. Select "Disabled"
stops the notification message.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,731 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class CDC-ACM > Configuring the USBX Host Class CDC-ACM Module

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Host Configuration Instance

ISDE Property Value Description

Name g_ux_host0 Specify the name of USBX Host
Configuration instance. It must
be a valid C symbol.

Name of generated initialization
function

ux_host_hid_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port HCD on sf_el_ux for USBFS

ISDE Property Value Description

Full Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
full-speed USB.

VBUSEN pin Signal Logic Active Low, Active High

Default: Active High

Select the VBUSEN pin signal
logic.

LDO Regulator (Only for S3 and
S1 part MCUs)

Enable, Disable

Default: Disable

Select the LDO regulator will be
enabled.

Name g_sf_el_ux_hcd_fs_0 Module name.

USB Controller Selection USBFS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port HCD on sf_el_ux for USBHS

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,732 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class CDC-ACM > Configuring the USBX Host Class CDC-ACM Module

High Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
high speed USB.

FIFO size for Bulk/Isochronous
Pipes

512, 1024, 1536, 2048 bytes

Default: 512 bytes

Select the FIFO size for bulk and
isochronous transfers.

Number of Isochronous Pipes
Reserved

0,1,2

Default: 0

Select the number of
isochronous pipes to reserve.

VBUSEN pin Signal Logic Active Low, Active High

Default: Active High

Select the VBUSEN pin signal
logic.

Enable High Speed Enable, Disable

Default: Enable

Select if high speed should be
enabled.

Name g_sf_el_ux_hcd_hs_0 Module name.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX on ux Instance

ISDE Property Value Description

USBX Pool Memory Name g_ux_pool_memory Name must be a valid C
symbol.

USBX Pool Memory Size 18432 See section "Azure RTOS USBX
Memory Requirements" for the
required memory size for each
classes.

User Callback for Host Event
Notification (Only valid for USB
Host)

NULL Name must be a valid C
symbol. The name of User
defined USBX Host event
notification can be given to this
property.

Name of generated initialization
function

ux_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,733 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class CDC-ACM > Configuring the USBX Host Class CDC-ACM Module

USBX Host Class CDC-ACM Module Clock Configuration

The USB peripheral module uses the UCLK as its clock source; the UCLK should be configured for
48MHz operation. In the SSP configuration window, select the Clocks tab to view the clock-source
setting.

USBX Host Class CDC-ACM Module Pin Configuration

The USB peripheral module uses MCU pins to communicate with external devices. Select I/O pins and
configure to the external device requirements. The following table lists the pin selection method
within the SSP Configuration Window and the subsequent tables demonstrate the selection process
using USB pins as an example.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

USBFS and USBHS Pin Selection Sequence

Resource ISDE Tab Pin selection Sequence

USBFS Pins Select Peripherals >
Connectivity: USBFS> USBFS0

USBHS Pins Select Peripherals >
Connectivity: USBHS> USBHS0

Note
The selection sequence assumes USBFS0 or USBHS0 is the desired hardware target for the driver.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select device as the Operation
Mode

USBDP USBDP USBDP pin

USBDM USBDM USBDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN None VBUSEN pin

VBUS None, P407

Default: P407

VBUS pin

EXICEN None EXICEN pin

ID None ID Pin

VCCUSB VCCUSB VCCUSB pin

VSSUSB VSSUSB VSSUSB pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,734 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class CDC-ACM > Configuring the USBX Host Class CDC-ACM Module

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select Device as the Operation
Mode

USBHSDP USBHSDP USBHSDP pin

USBHSDM USBHSDM USBHSDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN PB00 VBUSEN pin

VBUS PB01 VBUS pin

EXICEN None EXICEN pin

ID None ID pin

USBHSRREF USBHSRREF USBHSRREF pin

AVCCUSBHS AVCCUSBHS AVCCUSBHS pin

AVSSUSBHS AVSSUSBHS AVSSUSBHS pin

PVSSUSBHS PVSSUSBHS PVSSUSBHS pin

VCCUSBHS VCCUSBHS VCCUSBHS pin

VSS1USBHS VSS1USBHS VSS1USBHS pin

VSS2USBHS VSS2USBHS VSS2USBHS pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.44.6 Using the USBX Host Class CDC-ACM Module in an Application

The configurator generates processing to create and register the USBX Host Class CDC-ACM module;
however, communication must be done after the Host is connected to the host.

The typical steps in using the USBX Host Class CDC-ACM module in an application are:

1. Get the first instance of the connected device with ux_host_stack_class_instance_get API.

2. Wait for the device status to become live.

3. Check that the class of the device is CDC Data Class.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,735 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class CDC-ACM > Using the USBX Host Class CDC-ACM Module in an Application

4. If there is the next device, check the status again.

5. For received data reading, use the ux_host_class_cdc_acm_read API.

6. For data sending, use the ux_host_class_cdc_acm_write API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

Figure 540: Flow Diagram of a Typical USBX Host Class CDC-ACM Module Application

4.3.45 USBX Host Class HID

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,736 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HID > USBX Host Class HID Module Introduction

4.3.45.1 USBX Host Class HID Module Introduction

The USBX™ Host Class HID module provides a high-level API for human interface device (HID)
applications and configures the USBX Host Class HID Source, USBX Host Configuration, USBX Source
and USBX Port HCD. The USBX Host Class HID module uses the USB peripheral on the Synergy MCU.

USBX Host Class HID Module Features

The USBX Host Class Human Interface Device (HID) module supports the USBX HID class. It provides
the following features:

Supports HID report data transfers
Supports the following clients:

Keyboard
Mouse
Remote-Control

Figure 541: USBX Host Class HID Module Block Diagram

4.3.45.2 USBX Host Class HID Module APIs Overview

The USBX Host Class HID module defines APIs for registering callbacks, starting and stopping
periodic reports and reporting gets and sets. A complete list of the available APIs, an example API
call and a short description of each can be found in the following table. A table of status return
values follows the API summary table.

USBX Host Class HID Module Summary

Function Name Example API Call and Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,737 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HID > USBX Host Class HID Module APIs Overview

ux_host_class_hid_report_callback_register ux_host_class_hid_report_callback_register(hid,
&call_back);
This function is used to register a callback from
the HID class to the HID client when a report is
received.

ux_host_class_hid_periodic_report_start ux_host_class_hid_periodic_report_start(hid);
This function is used to start the periodic
(interrupt) endpoint for the instance of the HID
class that is bound to this HID client.

ux_host_class_hid_periodic_report_stop ux_host_class_hid_periodic_report_stop(hid);
This function is used to stop the periodic
(interrupt) endpoint for the instance of the HID
class that is bound to this HID client.

ux_host_class_hid_report_get ux_host_class_hid_report_get(hid,
&client_report);
This function is used to receive a report directly
from the device without relying on the periodic
endpoint.

ux_host_class_hid_report_set ux_host_class_hid_report_set(hid,
&client_report);
This function is used to send a report directly to
the device.

ux_host_class_hid_keyboard_key_get ux_host_class_hid_keyboard_key_get(keyboard_i
nstance, &keyboard_char, &keyboard_state);
This function is used to read the keyboard data
received from the device.

ux_host_class_hid_mouse_buttons_get ux_host_class_hid_mouse_buttons_get(&mouse_i
nstance, &mouse_buttons);
This function is used to read the mouse button
information received from the device.

ux_host_class_hid_mouse_position_get ux_host_class_hid_mouse_position_get(mouse_in
stance, &x_position, &y_position);
This function is used to read the position
information of the mouse received from the
device.

ux_host_class_hid_remote_control_usage_get ux_host_class_hid_remote_control_usage_get(re
mote_control_instance, &usage, &value);
This function is used to read the remote
controller information received from the device.

Note
For more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Status Return Values

Name Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,738 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HID > USBX Host Class HID Module APIs Overview

UX_SUCCESS The data transfer was completed.

UX_TRANSFER_TIMEOUT Transfer timeout, reading/writing not completed.

UX_MEMORY_INSUFFICIENT Not enough memory.

UX_HOST_CLASS_UNKNOWN Wrong class instance.

UX_FUNCTION_NOT_SUPPORTED Unknown IOCTL function.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.3.45.3 USBX Host Class HID Module Operational Overview

Initialization of USBX Resources

The USBX has its own memory manager. The memory needs to be allocated to the USBX before the
host or device side of the USBX is initialized. The USBX memory manager can accommodate systems
where memory can be cached.

Definition of USB Host Controllers

It is required to define at least one USB host controller for USBX to operate in host-mode. The
application-initialization file should contain this definition. SSP defines USB host controller when USB
host controller driver is added to thread stacks.

Definition of Device Classes

It is required to define one or more device classes(s) with the USBX. A USB class is required to drive
a USB device after the USB stack has configured the USB device. A USB class is very specific to the
device; one or more classes may be required to drive a USB device depending on the number of
interfaces contained in the USB device descriptors.

USB Class Binding

When the device is configured, the topology manager will let the class manager continue the device
discovery by looking at the device-interface descriptors. A device can have one or more interface
descriptors.

An interface represents a function in a device. For instance, a USB speaker has three interfaces, one
for audio streaming, one for audio control, and one to manage the various speaker buttons.

The class manager has two mechanisms to join the device interface(s) to one or more classes. It can
either use the combination of a PID/VID (product ID and vendor ID) found in the interface descriptor
or the combination of Class/Subclass/Protocol.

The PID/VID combination is valid for interfaces that cannot be driven by a generic class. The
Class/Subclass/Protocol combination is used by interfaces that belong to a USB-IF certified class such
as a printer, hub, storage, audio, or Human Interface Design (HID).

The class manager contains a list of registered classes from the initialization of the USBX. The class
manager will call each class one-at-a-time until one class accepts to manage the interface for that
device; each class can only manage one interface. In the case of the USB audio speaker, the class
manager will call all the classes for each of the interfaces.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,739 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HID > USBX Host Class HID Module Operational Overview

Once a class accepts an interface, a new instance of that class is created; the class manager will
then search for the default alternate setting for the interface. A device may have one or more
alternate settings for each interface. The alternate setting 0 will be the one used by default until a
class decides to change it.

For the default alternate setting, the class manager will mount all the endpoints contained in the
alternate setting. If the mounting of each endpoint is successful, the class manager will complete its
job by returning to the class that will finish the initialization of the interface.

USBX Host Class HID Module Important Operational Notes and Limitations

USBX Host Class HID Module Operational Notes

The USBX Device stack or USBX Host stack consumes RAM for the control block. The Synergy
Configuration tool allocates memory to the USBX memory pool statically in the auto-generate code
as shown in the following table. You need to set the appropriate memory size in bytes to the USBX
Pool Memory Size property of the USBX on ux component in the Synergy Configuration tool in section
"USBX on ux Configuration." If multiple classes are used, set the total memory size to the property.

Memory (RAM) Requirements for the USBX Memory Pool

USBX Class S1 Parts Other Parts

USBX Host HID
(ux_host_class_hid)

N/A HID Mouse: 38KB
HID Keyboard: 46KB

The memory size of the USBX Host HID as shown in the table above is with the following
configurations (default settings) being made. The size can be reduced if the Source module is used.

UX_HOST_CLASS_HID_DECOMPRESSION_BUFFER: 4096(bytes)
UX_HOST_CLASS_HID_USAGE: 1024(WORDs)

Note
The information shown in the table above is valid if compiled with default USBX configurations.
The memory size of the USBX Classes in the table above are of the pre-built libraries and the following
configuration was applied for the builds:

UX_THREAD_STACK_SIZE: 512(bytes) for S1 parts; 2048(bytes) for the other parts

By default, the module supports keyboard, mouse, and remote control clients.
Use a class container for the USBX Host Class HID that is obtained by auto-generated code
to get an HID instance.
Pole the flag, ux_host_class_hid_state, in the instance and ensure the status is live.
Check whether or not a client local instance is available in the HID instance.
Perform HID communication with the USB device.

USBX Host Class HID Module Limitations

The module uses the interrupt of the USB Controller, which needs to be enabled. For proper
operation, set the appropriate interrupt-priority level in the Synergy Configuration tool.
If transfer module is used, the module uses the interrupt (implemented as DMAC or DTC).
Set the priority level in the Synergy Configuration tool. The level has to be higher than a
USB Controller; otherwise, it does not work.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,740 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HID > USBX Host Class HID Module Operational Overview

Note
Currently, DTC is not supported by the host side driver (only DMAC is supported).

4.3.45.4 Including the USBX Host Class HID Module in an Application

This section describes how to include the USBX Host Class HID Module in an application using the
SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the USBX Host Class HID Module to an application, simply add it to a thread using the stacks
selection sequence given in the following table.

USBX Host Class HID Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_ux_host_class_hid0 USBX
Host Class HID

Threads New Stack> X-Ware> USBX>
Host > Classes > HID > USBX
Host Class HID

When the USBX Host Class HID Module is added to the thread stack as shown in the following figure,
the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,741 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HID > Including the USBX Host Class HID Module in an Application

Figure 542: USBX Host Class HID Module Stack

4.3.45.5 Configuring the USBX Host Class HID Module

The USBX Host Class HID Module must be configured by the user for the desired operation. The SSP
configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,742 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HID > Configuring the USBX Host Class HID Module

Configuration Settings for the USBX Host Class HID Module

ISDE Property Value Description

Name g_ux_host_class_hid0 Specify the name of USBX Host
Mass HID module instance. It
must be a valid C symbol.

HID Client - Keyboard Support Enable, Disable

Default: Enable

Set Enable to support USB
keyboard devices. This
configuration registers the
USBX HID Keyboard Client.

HID Client - Mouse Support Enable, Disable

Default: Enable

Set Enable to support USB
mouse devices. This
configuration registers the
USBX HID Mouse Client.

HID Client - Remote Control
Support

Enable, Disable

Default: Enable

Set Enable to support USB
remote control devices. This
configuration registers the
USBX Remote Control Client.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the USBX Host Class HID Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the USBX Host Class HID Source

ISDE Property Value Description

HID Keyboard Thread Priority Value must be greater than 0 or
empty

Default: 20

UX_THREAD_PRIORITY_KEYBOA
RD
Define the priority of the HID
keyboard thread.

Memory size for HID Report
Decompression

Value must be greater than 0 or
empty

Default: 4096

UX_HOST_CLASS_HID_DECOMP
RESSION_BUFFER
Define the memory size to build
a decompressed report

Number of Entries for HID Local
Usage Item Table

Value must be greater than 0 or
empty

Default: 1024

UX_HOST_CLASS_HID_USAGES
Define the size of HID local
usage item table. One item
entry consumes 4 bytes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,743 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HID > Configuring the USBX Host Class HID Module

Host HID Interrupt Out Support Enabled, Disabled

Default: Disabled

UX_HOST_CLASS_HID_INTERRU
PT_OUT_SUPPORT
When enabled, host HID
interrupt OUT transfer is
supported.

HID report transfer timeout Value must be greater than 0 or
empty

Default: 10000

UX_HOST_CLASS_HID_REPORT_
TRANSFER_TIMEOUT
When set, this represents the
HID report transfer timeout
value in millisecond.

Show linkage warning Enabled, Disabled

Default: Enabled

Notification message for users
will be shown if "Enabled"
option is selected. This is just to
warn users possible linkage
errors by multiple symbol
definitions. Select "Disabled"
stops the notification message.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Host Configuration Instance

ISDE Property Value Description

Name g_ux_host0 Specify the name of USBX Host
Configuration instance. It must
be a valid C symbol.

Name of generated initialization
function

ux_host_hid_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port HCD on sf_el_ux for USBFS

ISDE Property Value Description

Full Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
full-speed USB.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,744 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HID > Configuring the USBX Host Class HID Module

VBUSEN pin Signal Logic Active Low, Active High

Default: Active High

Select the VBUSEN pin signal
logic.

LDO Regulator (Only for S3 and
S1 part MCUs)

Enable, Disable

Default: Disable

Select the LDO regulator will be
enabled.

Name g_sf_el_ux_hcd_fs_0 Module name.

USB Controller Selection USBFS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port HCD on sf_el_ux for USBHS

ISDE Property Value Description

High Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
high speed USB.

FIFO size for Bulk/Isochronous
Pipes

512, 1024, 1536, 2048 bytes

Default: 512 bytes

Select the FIFO size for bulk and
isochronous transfers.

Number of Isochronous Pipes
Reserved

0,1,2

Default: 0

Select the number of
isochronous pipes to reserve.

VBUSEN pin Signal Logic Active Low, Active High

Default: Active High

Select the VBUSEN pin signal
logic.

Enable High Speed Enable, Disable

Default: Enable

Select if high speed should be
enabled.

Name g_sf_el_ux_hcd_hs_0 Module name.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX on ux Instance

ISDE Property Value Description

USBX Pool Memory Name g_ux_pool_memory Name must be a valid C
symbol.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,745 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HID > Configuring the USBX Host Class HID Module

USBX Pool Memory Size 18432 See section "Azure RTOS USBX
Memory Requirements" for the
required memory size for each
classes.

User Callback for Host Event
Notification (Only valid for USB
Host)

NULL Name must be a valid C
symbol. The name of User
defined USBX Host event
notification can be given to this
property.

Name of generated initialization
function

ux_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

USBX Host Class HID Module Clock Configuration

The USB peripheral module uses the UCLK as its clock source; the UCLK should be configured for
48MHz operation. In the SSP configuration window, select the Clocks tab to view the clock-source
setting.

USBX Host Class HID Module Pin Configuration

The USB peripheral module uses MCU pins to communicate with external devices. Select I/O pins and
configure to the external device requirements. The following table lists the pin selection method
within the SSP Configuration Window and the subsequent tables demonstrate the selection process
using USB pins as an example.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

USBFS and USBHS Pin Selection Sequence

Resource ISDE Tab Pin selection Sequence

USBFS Pins Select Peripherals >
Connectivity: USBFS> USBFS0

USBHS Pins Select Peripherals >
Connectivity: USBHS> USBHS0

Note
The selection sequence assumes USBFS0 or USBHS0 is the desired hardware target for the driver.

USBHS Pin Configuration Settings

Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,746 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HID > Configuring the USBX Host Class HID Module

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select device as the Operation
Mode

USBDP USBDP USBDP pin

USBDM USBDM USBDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN None VBUSEN pin

VBUS None, P407

Default: P407

VBUS pin

EXICEN None EXICEN pin

ID None ID Pin

VCCUSB VCCUSB VCCUSB pin

VSSUSB VSSUSB VSSUSB pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select Device as the Operation
Mode

USBHSDP USBHSDP USBHSDP pin

USBHSDM USBHSDM USBHSDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN PB00 VBUSEN pin

VBUS PB01 VBUS pin

EXICEN None EXICEN pin

ID None ID pin

USBHSRREF USBHSRREF USBHSRREF pin

AVCCUSBHS AVCCUSBHS AVCCUSBHS pin

AVSSUSBHS AVSSUSBHS AVSSUSBHS pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,747 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HID > Configuring the USBX Host Class HID Module

PVSSUSBHS PVSSUSBHS PVSSUSBHS pin

VCCUSBHS VCCUSBHS VCCUSBHS pin

VSS1USBHS VSS1USBHS VSS1USBHS pin

VSS2USBHS VSS2USBHS VSS2USBHS pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.45.6 Using the USBX Host Class HID Module in an Application

The configurator generates processing to create and register the USBX Host Class HID Module;
however, communication must be done after the Host is connected to the host.

The typical steps in using the USBX Host Class HID Module in an application are:

1. Get the first instance of the connected device with the ux_host_stack_class_instance_get API.

2. Wait for ux_success.

3. Wait for device status live.

4. Wait for client instance live.

5. If the Device is a keyboard.

6. Receive keyboard data using the ux_host_class_hid_keyboard_key_get API.

7. If the Device is a mouse.

8. Receive mouse data using the ux_host_class_hid_mouse_buttons_get API and
ux_host_class_hid_mouse_position_get API.

9. If the Device is a remote controller.

10. Receive remote controller data using the ux_host_class_hid_remote_control_usage_get API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,748 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HID > Using the USBX Host Class HID Module in an Application

Figure 543: Flow Diagram of a Typical USBX Host Class HID Module Application

4.3.46 USBX Host Class HUB

4.3.46.1 USBX Host Class Hub Module Introduction

The USBX™ Host Class Hub module provides a high-level API for USBX Host Class Hub applications
and configures the USBX Host Class Hub Source, USBX Host Configuration, USBX Source and USBX
Port Host Controller Device. The USBX Host Class Hub module uses the USB peripheral on the
Synergy MCU.

USBX Host Class Hub Module Features

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,749 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HUB > USBX Host Class Hub Module Introduction

Supports either a stand-alone hub or functions as part of a compound device such as a
keyboard or a monitor.
Supports either self-powered or bus-powered modes.
Bus-powered hubs have a maximum of four downstream ports.
Hubs can be cascaded.
Up to five hubs can be connected to one another.
Supports the connection of devices that are either self-powered or bus-powered using less
than 100 mA of power.

Figure 544: USBX Host Class Hub Module Block Diagram

4.3.46.2 USBX Host Class Hub Module APIs Overview

The USBX Host Class Hub Module does not have an API for the user application.

4.3.46.3 USBX Host Class Hub Module Operational Overview

Initialization of USBX Resources

The USBX has its own memory manager. The memory needs to be allocated to the USBX before the
host or device side of the USBX is initialized. The USBX memory manager can accommodate systems
where memory can be cached.

Definition of USB Host Controllers

It is required to define at least one USB host controller for USBX to operate in host-mode. The
application-initialization file should contain this definition. SSP defines USB host controller when USB
host controller driver is added to thread stacks.

Definition of Device Classes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,750 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HUB > USBX Host Class Hub Module Operational Overview

It is required to define one or more device classes(s) with the USBX. A USB class is required to drive
a USB device after the USB stack has configured the USB device. A USB class is very specific to the
device; one or more classes may be required to drive a USB device depending on the number of
interfaces contained in the USB device descriptors.

USB Class Binding

When the device is configured, the topology manager will let the class manager continue the device
discovery by looking at the device-interface descriptors. A device can have one or more interface
descriptors.

An interface represents a function in a device. For instance, a USB speaker has three interfaces, one
for audio streaming, one for audio control, and one to manage the various speaker buttons.

The class manager has two mechanisms to join the device interface(s) to one or more classes. It can
either use the combination of a PID/VID (product ID and vendor ID) found in the interface descriptor
or the combination of Class/Subclass/Protocol.

The PID/VID combination is valid for interfaces that cannot be driven by a generic class. The
Class/Subclass/Protocol combination is used by interfaces that belong to a USB-IF certified class such
as a printer, hub, storage, audio, or Human Interface Design (HID).

The class manager contains a list of registered classes from the initialization of the USBX. The class
manager will call each class one-at-a-time until one class accepts to manage the interface for that
device; each class can only manage one interface. In the case of the USB audio speaker, the class
manager will call all the classes for each of the interfaces.

Once a class accepts an interface, a new instance of that class is created; the class manager will
then search for the default alternate setting for the interface. A device may have one or more
alternate settings for each interface. The alternate setting 0 will be the one used by default until a
class decides to change it.

For the default alternate setting, the class manager will mount all the endpoints contained in the
alternate setting. If the mounting of each endpoint is successful, the class manager will complete its
job by returning to the class that will finish the initialization of the interface.

USBX Host Class Hub Module Important Operational Notes and Limitations

USBX Host Class Hub Module Operational Notes

The Hub class is registered by the auto-generated code. In the user application, no special operation
other than the registration of the Hub class is necessary.

USBX Host Class Hub Module Limitations

The module needs the interrupt of a USB Controller enabled.
The module uses the interrupt of a USB Controller. Set appropriate interrupt-priority level in
the Synergy Configuration tool for proper operation.
The module uses the interrupt of a transfer module (implemented as DMAC or DTC) if one is
implemented. Set the appropriate priority level in the Synergy Configuration tool. The
priority level must be higher than that of the USB Controller for proper operation.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,751 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HUB > USBX Host Class Hub Module Operational Overview

Note
Currently, DTC is not supported by the host side driver (only DMAC is supported).

4.3.46.4 Including the USBX Host Class Hub Module in an Application

This section describes how to include the USBX Host Class Hub Module in an application using the
SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the USBX Host Class Hub Module to an application, simply add it to a thread using the stacks
selection sequence given in the following table.

USBX Host Class Hub Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_ux_host_class_hub0 USBX
Host Class Hub

Threads New Stack> X-Ware> USBX>
Host > Classes > Hub > USBX
Host Class Hub

When the USBX Host Class Hub Module is added to the thread stack as shown in the following figure,
the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,752 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HUB > Including the USBX Host Class Hub Module in an Application

Figure 545: USBX Host Class Hub Module Stack

4.3.46.5 Configuring the USBX Host Class Hub Module

The USBX Host Class Hub Module must be configured by the user for the desired operation. The SSP
configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,753 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HUB > Configuring the USBX Host Class Hub Module

Configuration Settings for the USBX Host Class Hub Module

ISDE Property Value Description

No configurable properties

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the USBX Host Class Hub Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the USBX Host Class Hub Source

ISDE Property Value Description

Show linkage warning Enabled, Disabled

Default: Enabled

Notification message for users
will be shown if "Enabled"
option is selected. This is just to
warn users possible linkage
errors by multiple symbol
definitions. Select "Disabled"
stops the notification message.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Host Configuration Instance

ISDE Property Value Description

Name g_ux_host0 Specify the name of USBX Host
Configuration instance. It must
be a valid C symbol.

Name of generated initialization
function

ux_host_hid_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,754 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HUB > Configuring the USBX Host Class Hub Module

Configuration Settings for the USBX Port HCD on sf_el_ux for USBFS

ISDE Property Value Description

Full Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
full-speed USB.

VBUSEN pin Signal Logic Active Low, Active High

Default: Active High

Select the VBUSEN pin signal
logic.

LDO Regulator (Only for S3 and
S1 part MCUs)

Enable, Disable

Default: Disable

Select the LDO regulator will be
enabled.

Name g_sf_el_ux_hcd_fs_0 Module name.

USB Controller Selection USBFS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port HCD on sf_el_ux for USBHS

ISDE Property Value Description

High Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
high speed USB.

FIFO size for Bulk/Isochronous
Pipes

512, 1024, 1536, 2048 bytes

Default: 512 bytes

Select the FIFO size for bulk and
isochronous transfers.

Number of Isochronous Pipes
Reserved

0, 1, 2

Default: 0

Select the number of
isochronous pipes to reserve.

VBUSEN pin Signal Logic Active Low, Active High

Default: Active High

Select the VBUSEN pin signal
logic.

Enable High Speed Enable, Disable

Default: Enable

Select if high speed should be
enabled.

Name g_sf_el_ux_hcd_hs_0 Module name.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,755 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HUB > Configuring the USBX Host Class Hub Module

different default values and available configuration settings.

Configuration Settings for the USBX on ux Instance

ISDE Property Value Description

USBX Pool Memory Name g_ux_pool_memory Name must be a valid C
symbol.

USBX Pool Memory Size 18432 See section "Azure RTOS USBX
Memory Requirements" for the
required memory size for each
classes.

User Callback for Host Event
Notification (Only valid for USB
Host)

NULL Name must be a valid C
symbol. The name of User
defined USBX Host event
notification can be given to this
property.

Name of generated initialization
function

ux_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

USBX Host Class Hub Module Clock Configuration

The USB peripheral module uses the UCLK as its clock source; the UCLK should be configured for
48MHz operation. In the SSP configuration window, select the Clocks tab to view the clock-source
setting.

USBX Host Class Hub Module Pin Configuration

The USB peripheral module uses MCU pins to communicate with external devices. Select I/O pins and
configure to the external device requirements. The following table lists the pin selection method
within the SSP Configuration Window and the subsequent tables demonstrate the selection process
using USB pins as an example.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

USBFS and USBHS Pin Selection Sequence

Resource ISDE Tab Pin selection Sequence

USBFS Pins Select Peripherals >
Connectivity: USBFS> USBFS0

USBHS Pins Select Peripherals >
Connectivity: USBHS> USBHS0

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,756 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HUB > Configuring the USBX Host Class Hub Module

Note
The selection sequence assumes USBFS0 or USBHS0 is the desired hardware target for the driver.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select device as the Operation
Mode

USBDP USBDP USBDP pin

USBDM USBDM USBDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN None VBUSEN pin

VBUS None, P407

Default: P407

VBUS pin

EXICEN None EXICEN pin

ID None ID Pin

VCCUSB VCCUSB VCCUSB pin

VSSUSB VSSUSB VSSUSB pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select Device as the Operation
Mode

USBHSDP USBHSDP USBHSDP pin

USBHSDM USBHSDM USBHSDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN PB00 VBUSEN pin

VBUS PB01 VBUS pin

EXICEN None EXICEN pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,757 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class HUB > Configuring the USBX Host Class Hub Module

ID None ID pin

USBHSRREF USBHSRREF USBHSRREF pin

AVCCUSBHS AVCCUSBHS AVCCUSBHS pin

AVSSUSBHS AVSSUSBHS AVSSUSBHS pin

PVSSUSBHS PVSSUSBHS PVSSUSBHS pin

VCCUSBHS VCCUSBHS VCCUSBHS pin

VSS1USBHS VSS1USBHS VSS1USBHS pin

VSS2USBHS VSS2USBHS VSS2USBHS pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.46.6 Using the USBX Host Class Hub Module in an Application

An application typically does not use the Hub module by itself; other classes (CDC-ACM, Storage, HID
and so on.) are also used at the same time.

The configurator generates processing to register the USBX Host Class Hub module. Specify the
same module as USBX Host Configuration module registered in the class to be used at the same
time.

The following figure shows the stack when registered with the USBX Host Class Mass Storage module
at the same time:

Figure 546: Flow Diagram of a Typical USBX Host Class Hub Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,758 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Printer

4.3.47 USBX Host Class Printer

4.3.47.1 USBX Host Class Printer Module Introduction

The USBX™ Host Class Printer module provides a high-level API for USBX Host Class Printer module
applications and uses the USB and data-transfer peripherals on the Synergy MCU. A user defined
callback can be created to determine when the stack activates or deactivates the USB Printer class.

Unsupported Features

USBX host class PIMA is not supported in this version of SSP.

USBX Pictbridge is not supported in this version of SSP.

USBX Host Class Printer Module Features

The USB Host Class Printer module allows for a USB host-system to communicate with the Printer.
This class is based on the USB standard. The USBX Host Class Printer module includes the following
key features:

Support for USB Full Speed (USBFS) or USB High Speed (USBHS)
Receive and transmit data-transfer drivers for improved performance
High-level APIs for reading and writing

Figure 547: USBX Host Class Printer Module Block Diagram

4.3.47.2 USBX Host Class Printer Module APIs Overview

The USBX Host Class Printer Module defines APIs, which are used to interact with the Printer
interface. A complete list of the available APIs, an example API call and a short description of each
can be found in the following table. A table of status return values follows the API summary table.

USBX Host Class PRINTER Module Summary

Function Name Example API Call and Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,759 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Printer > USBX Host Class Printer Module APIs Overview

ux_host_class_printer_read UINT ux_host_class_printer_read
(UX_HOST_CLASS_PRINTER *printer, UCHAR
*data_pointer, ULONG requested_length, ULONG
*actual_length)
This function reads from the printer interface.
The call is blocking and only returns when there
is either an error or when the transfer is
complete. A read is allowed only on bi-
directional printers.

ux_host_class_printer_write UINT ux_host_class_printer_write
(UX_HOST_CLASS_PRINTER *printer,UCHAR
*data_pointer, ULONG requested_length,ULONG
*actual_length)
This function writes to the printer interface. The
call is blocking and only returns when there is
either an error or when the transfer is complete.

ux_host_class_printer_soft_reset UINT ux_host_class_printer_soft_reset
(UX_HOST_CLASS_PRINTER *printer)
This function performs a soft reset to the printer

ux_host_class_printer_status_get UINT ux_host_class_printer_status_get
(UX_HOST_CLASS_PRINTER *printer,ULONG
*printer_status)
This function obtains the printer status. The
printer status is similar to the LPT status (1284
standard).

_ux_host_class_printer_name_get UINT _ux_host_class_printer_name_get(UX_HOST
_CLASS_PRINTER *printer)
This function obtains the Device ID string.

Note
for more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Return Values

Name Description

UX_SUCCESS This operation was successful.

UX_FUNCTION_NOT_SUPPORTED Function not supported because the printer is
not bi-directional.

UX_TRANSFER_TIMEOUT Transfer timeout, reading or writing is
incomplete, or reset not completed.

UX_MEMORY_INSUFFICIENT Not enough memory to perform the operation.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

4.3.47.3 USBX Host Class Printer Module Operational Overview

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,760 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Printer > USBX Host Class Printer Module Operational Overview

The initialization of the Printer class expects some specific parameters as illustrated in the
application project associated with this module guide.

Printers have two different types of commands: those that transfer data and those that control the
USB interface or Printer interface. The host prints something on a printer by delivering data on the
Bulk OUT endpoint. This data is in the form of PostScript, HP PCL or any other PDL. This data may
also be encapsulated in a PCP, such as IEEE 1284.1, or something that is vendor-specific. In addition,
the data may also be simple text, or it may be a proprietary PDL. User application should take care
of converting data into printer supported formats. The printer can respond periodically on the Bulk IN
endpoint with status regarding the data it is receiving, or because of an asynchronous event. A
typical printed page takes the following sequence:

Figure 548: Printing a page

 The PDL data is sent to the device on the Bulk OUT pipe. If the device uses a PCP, then the PDL is
encapsulated in the PCP; the Bulk IN pipe is used for any responses, such as errors and printer status
as defined in the PCP. For a unidirectional interface, the status is retrieved by issuing a port status
command on the default pipe, and the status is returned on the default pipe.

USBX Host Class Printer Module Important Operational Notes and Limitations

USBX Host Class Printer Module Operational Notes

The USBX Host stack or USBX Host stack consumes RAM for the control block. The Synergy
Configuration tool allocates memory to the USBX memory pool statically in the auto-generate code
as shown in the following table. You need to set the appropriate memory size in bytes to the USBX
Pool Memory Size property of the USBX on ux component in the Synergy Configuration tool in section
"USBX on ux Configuration." If multiple classes are used, set the total memory size to the property.

Memory (RAM) Requirements for the USBX Memory Pool

USBX Class S1 Parts Other Parts

USBX HostPrinter(ux_Host_class
_printer)

N/A 27KB

Note
the information shown in the table above is valid if compiled with default USBX configurations.
the memory size of the USBX Classes in the table above are of the pre-built libraries and the following
configuration was applied for the builds:

UX_THREAD_STACK_SIZE: 2048 (bytes) for the other parts

USBX Host Class Printer Module Limitations

Refer to the most recent SSP Release Notes for any additional operational limitations for

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,761 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Printer > USBX Host Class Printer Module Operational Overview

this module.

Note
Currently, DTC is not supported by the host side driver (only DMAC is supported).

4.3.47.4 Including the USBX Host Class Printer Module in an Application

This section describes how to include the USBX Host Class Printer Module in an application using the
SSP configurator.

Note
it is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the USBX Host Class Printer Module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

USBXHost Class Printer Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_ux_Host_class_printer0 USBX
Host Class Printer

Threads New Stack> X-Ware>
USBX>Host> Classes >Printer>
USBX Host Class Printer

When the USBX Host Class Printer Module is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description includes Add in the text. Clicking on any Pink banded modules brings up the new icon
and displays possible choices.

Figure 549: USBX Host Class Printer Module Stack

4.3.47.5 Configuring the USBX Host Class Printer Module

The USBX Host Class Printer Module must be configured by the user for the desired operation. The
SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than manual

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,762 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Printer > Configuring the USBX Host Class Printer Module

approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the USBX Host Class Printer Module

ISDE Property Value Description

Name g_ux_Host_class_printer0 Specify the name of the USBX
Host Printer Class module
instance. It must be a valid C
symbol.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.
Most of the property settings for lower-level modules are intuitive and usually can be determined by inspection of
the associated properties window from the SSP configurator.

Configuration Settings for the USBX Host Class Printer Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the USBX Host Class Printer Source

ISDE Property Value Description

Show linkage warning Enabled, Disabled

Default: Enabled

Notification message for users
will be shown if "Enabled"
option is selected. This is just to
warn user's possible linkage
errors by multiple symbol
definitions. Select "Disabled"
stops the notification message.

Note
the example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Host Configuration Instance

ISDE Property Value Description

Name g_ux_host0 Specify the name of USBX Host
Configuration instance. It must
be a valid C symbol.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,763 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Printer > Configuring the USBX Host Class Printer Module

Name of generated initialization
function

ux_host_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable
Default: Enable

Auto initialization selection.

Note
the example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port HCD on sf_el_ux for USBFS

ISDE Property Value Description

Full Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
full-speed USB.

VBUSEN pin Signal Logic Active Low, Active High

Default: Active High

Select the VBUSEN pin signal
logic.

LDO Regulator (Only for S3 and
S1 part MCUs)

Enable, Disable

Default: Disable

Select the LDO regulator will be
enabled.

Name g_sf_el_ux_hcd_fs_0 Module name.

USB Controller Selection USBFS Select the USB controller.

Note
 the example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port HCD on sf_el_ux for USBHS

ISDE Property Value Description

High Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
high speed USB.

FIFO size for Bulk/Isochronous
Pipes

512, 1024, 1536, 2048 bytes

Default: 512 bytes

Select the FIFO size for bulk and
isochronous transfers.

Number of Isochronous Pipes
Reserved

0,1,2

Default: 0

Select the number of
isochronous pipes to reserve.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,764 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Printer > Configuring the USBX Host Class Printer Module

VBUSEN pin Signal Logic Active Low, Active High

Default: Active High

Select the VBUSEN pin signal
logic.

Enable High Speed Enable, Disable

Default: Enable

Select if high speed should be
enabled.

Name g_sf_el_ux_hcd_hs_0 Module name.

Note
the example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings

Configuration Settings for the USBX on ux Instance

ISDE Property Value Description

USBX Pool Memory Name g_ux_pool_memory Name must be a valid C
symbol.

USBX Pool Memory Size See section "Azure RTOS USBX
Memory Requirements" for the
required memory size for each
class.

User Callback for Host Event
Notification (Only valid for USB
Host)

NULL Name must be a valid C
symbol. The name of User
defined USBX Host event
notification can be given to this
property.

Name of generated initialization
function

ux_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
 the example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

USBX Host Class Printer Module Clock Configuration

The USB peripheral module uses the UCLK as its clock source; the UCLK should be configured for
48MHz operation. In the SSP configuration window, select the Clocks tab to view the clock-source
setting.

USBX Host Class Printer Module Pin Configuration

The USB peripheral module uses MCU pins to communicate with external Hosts. Select I/O pins and
configure to the external Host requirements. The following table lists the pin selection method within
the SSP Configuration Window, and the subsequent tables demonstrate the selection process using
USB pins as an example.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,765 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Printer > Configuring the USBX Host Class Printer Module

Note
the selected operation mode determines what peripheral signals available and what MCU pins are required.

USBFS and USBHS Pin Selection Sequence

Resource ISDE Tab Pin selection Sequence

USBFS Pins Select Peripherals >
Connectivity: USBFS> USBFS0

USBHS Pins Select Peripherals >
Connectivity: USBHS> USBHS0

Note
the selection sequence assumes USBFS0 or USBHS0 is the desired hardware target for the driver.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Host, Host,
OTG

Default: Custom

Select Host as the Operation
Mode

USBDP USBDP USBDP pin

USBDM USBDM USBDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN None VBUSEN pin

VBUS None, P407

Default: P407

VBUS pin

EXICEN None EXICEN pin

ID None ID Pin

VCCUSB VCCUSB VCCUSB pin

VSSUSB VSSUSB VSSUSB pin

Note
the example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

USBHS Pin Configuration Settings

Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,766 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Printer > Configuring the USBX Host Class Printer Module

Operation Mode Disabled, Custom, Host, Host,
OTG

Default: Custom

Select Host as the Operation
Mode

USBHSDP USBHSDP USBHSDP pin

USBHSDM USBHSDM USBHSDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN PB00 VBUSEN pin

VBUS PB01 VBUS pin

EXICEN None EXICEN pin

ID None ID pin

USBHSRREF USBHSRREF USBHSRREF pin

AVCCUSBHS AVCCUSBHS AVCCUSBHS pin

AVSSUSBHS AVSSUSBHS AVSSUSBHS pin

PVSSUSBHS PVSSUSBHS PVSSUSBHS pin

VCCUSBHS VCCUSBHS VCCUSBHS pin

VSS1USBHS VSS1USBHS VSS1USBHS pin

VSS2USBHS VSS2USBHS VSS2USBHS pin

Note
the example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.47.6 Using the USBX Host Class Printer Module in an Application

The configurator generates processing to create and register the USBX Host Class CDC-ACM module;
however, communication must be done after the Printer is connected to the host.

The typical steps in using the USBX Host Class Printer module in an application are:

1. Get the first instance of the connected device with the ux_host_class_instance_get API.
2. Wait until successful.
3. Wait for the device status to become live.
4. Check the status of the printer.
5. For data sending to the printer, use the ux_host_class_printer_write API.
6. For data receiving from printer, use the ux_host_class_printer_read API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,767 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Printer > Using the USBX Host Class Printer Module in an Application

4.3.48 USBX Host Class Mass Storage

4.3.48.1 USBX Host Class Mass Storage Module Introduction

The USBX™ Host Class Mass Storage module provides a high-level API for USBX Host Class Mass
Storage applications and uses the USB and data-transfer peripherals on the Synergy MCU.

USBX Host Class Mass Storage Module Features

Host controller for USB 2.0 with support for:
Root Hub
Power Management
Endpoints
Transfers

High-level APIs simplify storage operations
Supports optional data transfers using MCU hardware for improved efficiency

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,768 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Mass Storage > USBX Host Class Mass Storage Module Introduction

Figure 550: USBX Host Class Mass Storage Module Block Diagram

4.3.48.2 USBX Host Class Mass Storage Module APIs Overview

The USBX Host Class Mass Storage module does not have a separate API available for user
applications. When a USB media is connected, it is attached to the FileX® member included in the
USBX Host Class Mass Storage instance. The user application uses this FileX member to access files
on the USB media. For FileX APIs, refer to the FileX User Guide for the Renesas Synergy™ Platform
for more details.

4.3.48.3 USBX Host Class Mass Storage Module Operational Overview

Initialization of USBX Resources

The USBX has its own memory manager. The memory needs to be allocated to the USBX before the
host or device side of the USBX is initialized. The USBX memory manager can accommodate systems
where memory can be cached.

Definition of USB Host Controllers

It is required to define at least one USB host controller for USBX to operate in host-mode. The
application-initialization file should contain this definition. SSP defines USB host controller when USB
host controller driver is added to thread stacks.

Definition of Device Classes

It is required to define one or more device classes(s) with the USBX. A USB class is required to drive
a USB device after the USB stack has configured the USB device. A USB class is very specific to the
device; one or more classes may be required to drive a USB device depending on the number of
interfaces contained in the USB device descriptors.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,769 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Mass Storage > USBX Host Class Mass Storage Module Operational Overview

USB Class Binding

When the device is configured, the topology manager will let the class manager continue the device
discovery by looking at the device-interface descriptors. A device can have one or more interface
descriptors.

An interface represents a function in a device. For instance, a USB speaker has three interfaces, one
for audio streaming, one for audio control, and one to manage the various speaker buttons.

The class manager has two mechanisms to join the device interface(s) to one or more classes. It can
either use the combination of a PID/VID (product ID and vendor ID) found in the interface descriptor
or the combination of Class/Subclass/Protocol.

The PID/VID combination is valid for interfaces that cannot be driven by a generic class. The
Class/Subclass/Protocol combination is used by interfaces that belong to a USB-IF certified class such
as a printer, hub, storage, audio, or Human Interface Design (HID).

The class manager contains a list of registered classes from the initialization of the USBX. The class
manager will call each class one-at-a-time until one class accepts to manage the interface for that
device; each class can only manage one interface. In the case of the USB audio speaker, the class
manager will call all the classes for each of the interfaces.

Once a class accepts an interface, a new instance of that class is created; the class manager will
then search for the default alternate setting for the interface. A device may have one or more
alternate settings for each interface. The alternate setting 0 will be the one used by default until a
class decides to change it.

For the default alternate setting, the class manager will mount all the endpoints contained in the
alternate setting. If the mounting of each endpoint is successful, the class manager will complete its
job by returning to the class that will finish the initialization of the interface.

USBX Host Class Mass Storage Module Important Operational Notes and Limitations

USBX Host Class Mass Storage Module Operational Notes

The USBX Device stack or USBX Host stack consumes RAM for the control block. The Synergy
Configuration tool allocates memory to the USBX memory pool statically in the auto-generate code
as shown in the following table. You need to set the appropriate memory size in bytes to the USBX
Pool Memory Size property of the USBX on ux component in the Synergy Configuration tool in section
"USBX on ux Configuration." If multiple classes are used, set the total memory size to the property.

__Memory (RAM) Requirements for the USBX Memory Pool__

USBX Class S1 Parts Other Parts

USBX Host Mass Storage
(ux_host_class_storage)

N/A Pre-built library: 42KB
Source: 39KB + UX_HOST_CLAS
S_STORAGE_MEMORY_BUFFER_
SIZE + UX_HOST_CLASS_STORA
GE_THREAD_STACK_SIZE+ (Add
the additional memory as per
Note*1)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,770 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Mass Storage > USBX Host Class Mass Storage Module Operational Overview

Note
*1: If 'Maximum TDs' is exceeds more then 128 in (USBX Source module: USBX Source property >> Common >>
Maximum TDs) in the XML configurator, add the additional memory to the USBX memory pool as follows:

Note
(Maximum TDs - 128)*48 = Additional memory in Bytes.
The information shown in the table above is valid if compiled with default USBX configurations.
The memory size of the USBX Classes in the table above are of the pre-built libraries and the following
configuration was applied for the builds: UX_THREAD_STACK_SIZE: 512 (bytes) for S1 parts; 2048
(bytes) for the other parts
The memory size of the USBX Host Mass Storage is also shown with the case built with the Source
module because the size depends on the configuration
UX_HOST_CLASS_STORAGE_MEMORY_BUFFER_SIZE and would differ much from the pre-build
library's. Note that the size is with following configuration applied: UX_THREAD_STACK_SIZE: 2048
(bytes)USBX Host Class Mass Storage Module Operational Procedure

Use a class container for the USBX Host Class Mass Storage module obtained by auto-
generated code to get a mass storage instance.
Poll the flag ux_host_class_storage_state in and make sure the status is live.
Wait until the first media of the class container is attached.
Access the file on the media with the FileX API.

USBX Host Class Mass Storage Module Limitations

The module uses the interrupt of a USB controller; set the appropriate interrupt-priority
level in the Synergy Configuration tool to ensure proper operation.
The module uses the interrupt of a transfer module (implemented as DMAC or DTC); set the
appropriate priority level in the Synergy Configuration tool. The level must be higher than a
USB Controller to ensure proper operation.
USBX Host Class Mass storage module only supports the MBR partition type on the storage
device.
Refer to the most recent SSP Release Notes for any additional operational limitations for
this module.

Note
Currently, DTC is not supported by the host side driver (only DMAC is supported).

4.3.48.4 Including the USBX Host Class Mass Storage Module in an Application

This section describes how to include the USBX Host Class Mass Storage Module in an application
using the SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the USBX Host Class Mass Storage Module to an application, simply add it to a thread using
the stacks selection sequence given in the following table.

USBX Host Class Mass Storage Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,771 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Mass Storage > Including the USBX Host Class Mass Storage Module in an Application

g_ux_host_class_storage USBX
Host Class Mass Storage

Threads New Stack> X-Ware> USBX>
Device> Classes> Mass
Storage > USBX Host Class
Mass Storage

When the USBX Host Class Mass Storage Module is added to the thread stack as shown in the
following figure, the configurator automatically adds any needed lower‑level modules. Any modules
needing additional configuration information have the box text highlighted in Red. Modules with
a Gray band are individual modules that stand alone. Modules with a Blue band are shared or
common; they need only be added once and can be used by multiple stacks. Modules with a Pink
band can require the selection of lower-level modules; these are either optional or recommended.
(This is indicated in the block with the inclusion of this text.) If the addition of lower-level modules is
required, the module description include Add in the text. Clicking on any Pink banded modules brings
up the New icon and displays possible choices.

Figure 551: USBX Host Class Mass Storage Module Stack

4.3.48.5 Configuring the USBX Host Class Mass Storage Module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,772 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Mass Storage > Configuring the USBX Host Class Mass Storage Module

The USBX Host Class Mass Storage Module must be configured by the user for the desired operation.
The SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the USBX Host Class Mass Storage Module

ISDE Property Value Description

Name g_ux_host_class_storage0 Module name.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the USBX Host Class Mass Storage Lower-Level Modules

Only a small number of settings must be modified from the default for the IP layer and lower-level
drivers as indicated via the red text in the thread stack block. Notice that some of the configuration
properties must be set to a certain value for proper framework operation and are locked to prevent
user modification. The following table identifies all the settings within the properties section for the
module:

Configuration Settings for the USBX Host Class Mass Storage Source

ISDE Property Value Description

Use FileX Stub Enabled, Disabled

Default: Disabled

UX_NO_FILEX
Enable this option only in cases
where FileX is not available to
use.

Maximum number of SCSI
logical units

Value must be greater than 0 or
empty

Default: 1

UX_MAX_HOST_LUN
The value represents the
maximum number of SCSI
logical units represented in the
host storage class driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,773 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Mass Storage > Configuring the USBX Host Class Mass Storage Module

Maximum number of storage
media instance

Value must be greater than 0 or
empty

Default: 1

UX_HOST_CLASS_STORAGE_MA
X_MEDIA
The value represents the
maximum number of storage
media instances represented in
the host storage class driver.

Storage memory size in bytes
for FileX used for data transfer

Value must be greater than 512
or empty

Default: 1024

UX_HOST_CLASS_STORAGE_ME
MORY_BUFFER_SIZE
The value represents the block
of memory in bytes for FileX to
use when doing transfers. The
value can be changed to save
on memory space but should
not be smaller than the media
sector size. Because USB
devices are SCSI devices and
there is a great deal of
overhead when doing
read/writes, it is better to
increase it for higher data
throughput.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,774 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Mass Storage > Configuring the USBX Host Class Mass Storage Module

Maximum transfer size in bytes
in one BOT data-transport
phase

Value must be greater than 512
or empty

Default: 1024

UX_HOST_CLASS_STORAGE_MA
X_TRANSFER_SIZE
The value represents maximum
size of memory chunk in bytes
to send in one data-transport
phase in the Bulk-Only
Transport protocol. Large size
of data transfer request is split
into smaller chunks specified by
this configuration. It is better to
increase it for higher data
throughput.

Note: Sufficient numbers of TDs
are required, when user
changes this parameter for
large size(FS more than 8KB
and HS more the 64KB) of data
transfer.
Sufficient number of 'Maximum
TDs' needs to be specified in
USBX Source module(USBX
Source property >> Common
>> Maximum TDs).
- Maximum TDs for FS mode
(maximum data transfer size in
bytes /64 bytes = TDs +
additional TDs for SCSI wrapper
commands).
- Maximum TDs for HS mode
(maximum data transfer size in
bytes /512 bytes = TDs +
additional TDs for SCSI wrapper
commands).

Stack size for the Mass Storage
Class internal thread

Value must be greater than 512
or empty

Default: 1024

UX_HOST_CLASS_STORAGE_TH
READ_STACK_SIZE
The value represents the stack
size in bytes for Mass Storage
Class internal thread named
ux_storage_thread.

Timeout (in milliseconds) for a
BOT transfer request

Value must be greater than 0 or
empty

Default: 100000

UX_HOST_CLASS_STORAGE_TR
ANSFER_TIMEOUT_IN_MS
The value represents timeout
value in millisecond for a data
transfer request in Bulk-Only
Transport protocol.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,775 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Mass Storage > Configuring the USBX Host Class Mass Storage Module

Timeout (in milliseconds) for
the status from a command in
the Control/Bulk/Interrupt
transport

Value must be greater than 0 or
empty

Default: 30000

UX_HOST_CLASS_STORAGE_CBI
_STATUS_TIMEOUT_IN_MS
The value represents timeout
value in millisecond for the
status from a command, which
is returned by the interrupt
endpoint in the Control/Bulk/
Interrupt transport. The
transport is mainly used by
storage devices that have very
slow read/write commands.

Host storage class dependency
on
Filex

Enabled, Disabled

Default: Disabled

UX_HOST_CLASS_STORAGE_NO
_FILEX
If enabled, Filex dependency on
host storage class is removed.

Show linkage warning Enabled, Disabled

Default: Enabled

Notification message for users
will be shown if "Enabled"
option is selected. This is just to
warn users possible linkage
errors by multiple symbol
definitions. Select "Disabled"
stops the notification message.

Note
The example settings and defaults are for a project using the Synergy S7G2 MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Host Configuration Instance

ISDE Property Value Description

Name g_ux_host0 Specify the name of USBX Host
Configuration instance. It must
be a valid C symbol.

Name of generated initialization
function

ux_host_hid_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port HCD on sf_el_ux for USBFS

ISDE Property Value Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,776 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Mass Storage > Configuring the USBX Host Class Mass Storage Module

Full Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
full-speed USB.

VBUSEN pin Signal Logic Active Low, Active High

Default: Active High

Select the VBUSEN pin signal
logic.

LDO Regulator (Only for S3 and
S1 part MCUs)

Enable, Disable

Default: Disable

Select the LDO regulator will be
enabled.

Name g_sf_el_ux_hcd_fs_0 Module name.

USB Controller Selection USBFS Select the USB controller.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX Port HCD on sf_el_ux for USBHS

ISDE Property Value Description

High Speed Interrupt Priority Priority 0 (highest), Priority
1:14, Priority 15 (lowest - not
valid if using ThreadX),
Disabled

Default: Disabled

Select the interrupt priority for
high speed USB.

FIFO size for Bulk/Isochronous
Pipes

512, 1024, 1536, 2048 bytes

Default: 512 bytes

Select the FIFO size for bulk and
isochronous transfers.

Number of Isochronous Pipes
Reserved

0, 1, 2

Default: 0

Select the number of
isochronous pipes to reserve.

VBUSEN pin Signal Logic Active Low, Active High

Default: Active High

Select the VBUSEN pin signal
logic.

Enable High Speed Enable, Disable

Default: Enable

Select if high speed should be
enabled.

Name g_sf_el_ux_hcd_hs_0 Module name.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

Configuration Settings for the USBX on ux Instance

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,777 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Mass Storage > Configuring the USBX Host Class Mass Storage Module

ISDE Property Value Description

USBX Pool Memory Name g_ux_pool_memory Name must be a valid C
symbol.

USBX Pool Memory Size 18432 See section "Azure RTOS USBX
Memory Requirements" for the
required memory size for each
classes.

User Callback for Host Event
Notification (Only valid for USB
Host)

NULL Name must be a valid C
symbol. The name of User
defined USBX Host event
notification can be given to this
property.

Name of generated initialization
function

ux_common_init0 Name of generated initialization
function selection.

Auto Initialization Enable, Disable

Default: Enable

Auto initialization selection.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

USBX Host Class Mass Storage Module Clock Configuration

The USB peripheral module uses the UCLK as its clock source; the UCLK should be configured for
48MHz operation. In the SSP configuration window, select the Clocks tab to view the clock-source
setting.

USBX Host Class Mass Storage Module Pin Configuration

The USB peripheral module uses MCU pins to communicate with external devices. Select I/O pins and
configure to the external device requirements. The following table lists the pin selection method
within the SSP Configuration Window and the subsequent tables demonstrate the selection process
using USB pins as an example.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

USBFS and USBHS Pin Selection Sequence

Resource ISDE Tab Pin selection Sequence

USBFS Pins Select Peripherals >
Connectivity: USBFS> USBFS0

USBHS Pins Select Peripherals >
Connectivity: USBHS> USBHS0

Note
The selection sequence assumes USBFS0 or USBHS0 is the desired hardware target for the driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,778 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Mass Storage > Configuring the USBX Host Class Mass Storage Module

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG
Default: Custom

Select device as the Operation
Mode

USBDP USBDP USBDP pin

USBDM USBDM USBDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN None VBUSEN pin

VBUS None, P407
Default: P407

VBUS pin

EXICEN None EXICEN pin

ID None ID Pin

VCCUSB VCCUSB VCCUSB pin

VSSUSB VSSUSB VSSUSB pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG
Default: Custom

Select Device as the Operation
Mode

USBHSDP USBHSDP USBHSDP pin

USBHSDM USBHSDM USBHSDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN PB00 VBUSEN pin

VBUS PB01 VBUS pin

EXICEN None EXICEN pin

ID None ID pin

USBHSRREF USBHSRREF USBHSRREF pin

AVCCUSBHS AVCCUSBHS AVCCUSBHS pin

AVSSUSBHS AVSSUSBHS AVSSUSBHS pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,779 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Mass Storage > Configuring the USBX Host Class Mass Storage Module

PVSSUSBHS PVSSUSBHS PVSSUSBHS pin

VCCUSBHS VCCUSBHS VCCUSBHS pin

VSS1USBHS VSS1USBHS VSS1USBHS pin

VSS2USBHS VSS2USBHS VSS2USBHS pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

4.3.48.6 Using the USBX Host Class Mass Storage Module in an Application

The configurator generates processing to create and register the USBX Host Class Mass Storage
Module; however, communication must be done after the Host is connected to the host.

The typical steps in using the USBX Host Class Mass Storage Module in an application are:

1. Get the first instance of the connected device with the ux_host_stack_class_instance_get API.

2. Wait until successful.

3. Wait for the device status to become live.

4. Wait for media to be mounted.

5. Access the file on the media with the FileX API.

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,780 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Mass Storage > Using the USBX Host Class Mass Storage Module in an Application

Figure 552: Flow Diagram of a Typical USBX Host Class Mass Storage Module Application

4.3.49 USBX Host Class Video

4.3.49.1 USBX Host Class Video Module Introduction

The USBX™ Host Class Video module provides a high-level API for USBX Host Class Video
applications and configures the USBX Host Class Video Source, USBX Host Configuration, USBX

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,781 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Video > USBX Host Class Video Module Introduction

Source and USBX Port Host Controller Device. The USBX Host Class Video module uses the USB
peripheral on the Synergy MCU.

Unsupported Features

Multiple instances of the USB device class are not supported on two different physical interfaces.

USBX Host Class Video Module Features

Supports either a stand-alone hub or functions as part of a compound device such as a
keyboard or a monitor.
Supports either self-powered or bus-powered modes.
Bus-powered hubs have a maximum of four downstream ports.
Hubs can be cascaded.
Up to five hubs can be connected to one another.
Supports the connection of devices that are either self-powered or bus-powered using less
than 100 mA of power.

Figure 553: USBX Host Class Video Module Block Diagram

4.3.49.2 USBX Host Class Video Module APIs Overview

The USBX Host Class Video Module does not have an API for the user application.

4.3.49.3 USBX Host Class Video Module Operational Overview

Initialization of USBX Resources

The USBX has its own memory manager. The memory needs to be allocated to the USBX before the
host or device side of the USBX is initialized. The USBX memory manager can accommodate systems

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,782 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Video > USBX Host Class Video Module Operational Overview

where memory can be cached.

Definition of USB Host Controllers

It is required to define at least one USB host controller for USBX to operate in host-mode. The
application-initialization file should contain this definition. SSP defines USB host controller when USB
host controller driver is added to thread stacks.

Definition of Device Classes

It is required to define one or more device classes(s) with the USBX. A USB class is required to drive
a USB device after the USB stack has configured the USB device. A USB class is very specific to the
device; one or more classes may be required to drive a USB device depending on the number of
interfaces contained in the USB device descriptors.

USB Class Binding

When the device is configured, the topology manager will let the class manager continue the device
discovery by looking at the device-interface descriptors. A device can have one or more interface
descriptors.

An interface represents a function in a device. For instance, a USB speaker has three interfaces, one
for audio streaming, one for audio control, and one to manage the various speaker buttons.

The class manager has two mechanisms to join the device interface(s) to one or more classes. It can
either use the combination of a PID/VID (product ID and vendor ID) found in the interface descriptor
or the combination of Class/Subclass/Protocol.

The PID/VID combination is valid for interfaces that cannot be driven by a generic class. The
Class/Subclass/Protocol combination is used by interfaces that belong to a USB-IF certified class such
as a printer, hub, storage, audio, or Human Interface Design (HID).

The class manager contains a list of registered classes from the initialization of the USBX. The class
manager will call each class one-at-a-time until one class accepts to manage the interface for that
device; each class can only manage one interface. In the case of the USB audio speaker, the class
manager will call all the classes for each of the interfaces.

Once a class accepts an interface, a new instance of that class is created; the class manager will
then search for the default alternate setting for the interface. A device may have one or more
alternate settings for each interface. The alternate setting 0 will be the one used by default until a
class decides to change it.

For the default alternate setting, the class manager will mount all the endpoints contained in the
alternate setting. If the mounting of each endpoint is successful, the class manager will complete its
job by returning to the class that will finish the initialization of the interface.

USBX Host Class Video Module Important Operational Notes and Limitations

USBX Host Class Video Module Operational Notes

The USBX Device stack or USBX Host stack consumes RAM for the control block. The Synergy
Configuration tool allocates memory to the USBX memory pool statically in the auto-generate code
as shown in the following table. You need to set the appropriate memory size in bytes to the USBX
Pool Memory Size property of the USBX on ux component in the Synergy Configuration tool in section
"USBX on ux Configuration." If multiple classes are used, set the total memory size to the property.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,783 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Video > USBX Host Class Video Module Operational Overview

Memory (RAM) Requirements for the USBX Memory Pool

USBX Class S1 Parts Other Parts

USBX Host Video
(ux_host_class_video)

N/A 35KB

Note
The information shown in the table above is valid if compiled with default USBX configurations.
The memory size of the USBX Classes in the table above are of the pre-built libraries and the following
configuration was applied for the builds:UX_THREAD_STACK_SIZE: 512 (bytes) for S1 parts; 2048 (bytes) for
the other parts
The USBX Host Video memory pools size may differ according to the type of video device attached to the board.
There is no precise formula for memory size. A general idea on a typical USBX Video application is as follows:
(1) Device descriptor: The memory requirement for the device descriptor depends on the video camera in use.
Some USB cameras can take 2K memory size while simpler cameras require far less memory for its device
descriptors.
(2) End points: around 100 bytes for each end point. The number of end points depends on the device in use.
(Could be 5 or more.)
(3) Transfer request buffer: 100 each. The USB control takes one transfer request; the number of transfer requests
depends on the application.By default, the USBX video class creates 4 transfer requests.

USBX Host Class Video Module Limitations

To specify an Alt. setting in an interface in the UVC (USB video class) device, you may need to use
the USBX API ux_host_class_video_ioctl() instead of ux_host_class_video_start(), specifying
UX_HOST_CLASS_VIDEO_IOCTL_CHANNEL_START for the argument "ioctl_function". You also need to
specify the argument parameter with setting the member
.ux_host_class_video_parameter_channel_bandwidth_selection to match to the wMaxPacketSize of an
isochronous endpoint. For instance, if .ux_host_class_video_parameter_channel_bandwidth_selection
is set to 1024 for a UVC device with the device descriptor shown in the following figure, the IF1 Alt.1
will not be selected (since it requires high-bandwidth transfer). Instead, IF1 Alt.2 will be selected. For
limitations of isochronous transfers, see section "Logic USBX Synergy Port Framework Limitations."

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,784 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Video > USBX Host Class Video Module Operational Overview

Note
Currently, DTC is not supported by the host side driver (only DMAC is supported).

4.3.49.4 Including the USBX Host Class Video Module in an Application

This section describes how to include the USBX Host Class Video Module in an application using the
SSP configurator.

Note
It is assumed you are familiar with creating a project, adding threads, adding a stack to a thread and configuring a
block within the stack. If you are unfamiliar with any of these items, refer to the first few chapters of the SSP User's
Manual to learn how to manage each of these important steps in creating SSP-based applications.

To add the USBX Host Class Video Module to an application, simply add it to a thread using the
stacks selection sequence given in the following table.

USBX Host Class Video Module Selection Sequence

Resource ISDE Tab Stacks Selection Sequence

g_ux_host_class_video0 USBX
Host Class Video

Threads New Stack> X-Ware> USBX>
Host > Classes > Video > USBX
Host Class Video

When the USBX Host Class Video module is added to the thread stack as shown in the following
figure, the configurator automatically adds any needed lower‑level modules. Any modules needing
additional configuration information have the box text highlighted in Red. Modules with a Gray band
are individual modules that stand alone. Modules with a Blue band are shared or common; they need
only be added once and can be used by multiple stacks. Modules with a Pink band can require the
selection of lower-level modules; these are either optional or recommended. (This is indicated in the
block with the inclusion of this text.) If the addition of lower-level modules is required, the module
description include Add in the text. Clicking on any Pink banded modules brings up the New icon and
displays possible choices.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,785 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Video > Including the USBX Host Class Video Module in an Application

Figure 554: USBX Host Class Video Module Stack

4.3.49.5 Configuring the USBX Host Class Video Module

The USBX Host Class Video Module must be configured by the user for the desired operation. The
SSP configuration window automatically identifies (by highlighting the block in red) any required
configuration selections, such as interrupts or operating modes, which must be configured for lower-
level modules for successful operation. Only properties that can be changed without causing
conflicts are available for modification. Other properties are locked and not available for changes
and are identified with a lock icon for the locked property in the Properties window in the ISDE. This
approach simplifies the configuration process and makes it much less error-prone than previous
manual approaches to configuration. The available configuration settings and defaults for all the user-
accessible properties are given in the Properties tab within the SSP Configurator and are shown in
the following tables for easy reference.

Note
You may want to open your ISDE, create the module and explore the property settings in parallel with looking over
the following configuration table values. This helps to orient you and can be a useful hands-on approach to
learning the ins and outs of developing with SSP.

Configuration Settings for the USBX Host Class Video Module

ISDE Property Value Description

Class Instance Name g_ux_host_class_video0 Class instance name.

Note
The example settings and defaults are for a project using the S7G2 Synergy MCU Group. Other MCUs may have
different default values and available configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,786 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Video > Configuring the USBX Host Class Video Module

Note: Most of the property settings for lower-level modules are intuitive and usually can be
determined by inspection of the associated properties window from the SSP configurator.

Configuration Settings for the USBX Host Class Video Lower-Level Modules

The USBX Host Class Printer Module defines APIs, which are used to interact with the Printer
interface. A complete list of the available APIs, an example API call and a short description of each
can be found in the following table. A table of status return values follows the API summary table.

USBX Host Class PRINTER Module Summary

Function Name Example API Call and Description

ux_host_class_printer_read UINT ux_host_class_printer_read
(UX_HOST_CLASS_PRINTER *printer, UCHAR
*data_pointer, ULONG requested_length, ULONG
*actual_length)
This function reads from the printer interface.
The call is blocking and only returns when there
is either an error or when the transfer is
complete. A read is allowed only on bi-
directional printers.

ux_host_class_printer_write UINT ux_host_class_printer_write
(UX_HOST_CLASS_PRINTER *printer,UCHAR
*data_pointer, ULONG requested_length,ULONG
*actual_length)
This function writes to the printer interface. The
call is blocking and only returns when there is
either an error or when the transfer is complete.

ux_host_class_printer_soft_reset UINT ux_host_class_printer_soft_reset
(UX_HOST_CLASS_PRINTER *printer)
This function performs a soft reset to the printer

ux_host_class_printer_status_get UINT ux_host_class_printer_status_get
(UX_HOST_CLASS_PRINTER *printer,ULONG
*printer_status)
This function obtains the printer status. The
printer status is similar to the LPT status (1284
standard).

_ux_host_class_printer_name_get UINT _ux_host_class_printer_name_get(UX_HOST
_CLASS_PRINTER *printer)
This function obtains the Device ID string.

Note
for more complete descriptions of operation and definitions for the function data structures, typedefs, defines, API
data, API structures, and function variables, review the SSP User's Manual API References for the associated
module.

Return Values

Name Description

UX_SUCCESS This operation was successful.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,787 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Video > Configuring the USBX Host Class Video Module

UX_FUNCTION_NOT_SUPPORTED Function not supported because the printer is
not bi-directional.

UX_TRANSFER_TIMEOUT Transfer timeout, reading or writing is
incomplete, or reset not completed.

UX_MEMORY_INSUFFICIENT Not enough memory to perform the operation.

Note
Lower-level drivers may return common error codes. Refer to the SSP User's Manual API References for the
associated module for a definition of all relevant status return values.

USBX Host Class Video Module Clock Configuration

The USB peripheral module uses the UCLK as its clock source; the UCLK should be configured for
48MHz operation. In the SSP configuration window, select the Clocks tab to view the clock-source
setting.

USBX Host Class Video Module Pin Configuration

The USB peripheral module uses MCU pins to communicate with external devices. Select I/O pins and
configure to the external device requirements. The following table lists the pin selection method
within the SSP Configuration Window and the subsequent tables demonstrate the selection process
using USB pins as an example.

Note
The selected operation mode determines what peripheral signals available and what MCU pins are required.

USBFS and USBHS Pin Selection Sequence

Resource ISDE Tab Pin selection Sequence

USBFS Pins Select Peripherals >
Connectivity: USBFS> USBFS0

USBHS Pins Select Peripherals >
Connectivity: USBHS> USBHS0

Note
The selection sequence assumes USBFS0 or USBHS0 is the desired hardware target for the driver.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select device as the Operation
Mode

USBDP USBDP USBDP pin

USBDM USBDM USBDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,788 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Video > Configuring the USBX Host Class Video Module

VBUSEN None VBUSEN pin

VBUS None, P407

Default: P407

VBUS pin

EXICEN None EXICEN pin

ID None ID Pin

VCCUSB VCCUSB VCCUSB pin

VSSUSB VSSUSB VSSUSB pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

USBHS Pin Configuration Settings

Property Value Description

Operation Mode Disabled, Custom, Device, Host,
OTG

Default: Custom

Select Device as the Operation
Mode

USBHSDP USBHSDP USBHSDP pin

USBHSDM USBHSDM USBHSDM pin

OVRCURB None OVRCURB pin

OVRCURA None OVRCURA pin

VBUSEN PB00 VBUSEN pin

VBUS PB01 VBUS pin

EXICEN None EXICEN pin

ID None ID pin

USBHSRREF USBHSRREF USBHSRREF pin

AVCCUSBHS AVCCUSBHS AVCCUSBHS pin

AVSSUSBHS AVSSUSBHS AVSSUSBHS pin

PVSSUSBHS PVSSUSBHS PVSSUSBHS pin

VCCUSBHS VCCUSBHS VCCUSBHS pin

VSS1USBHS VSS1USBHS VSS1USBHS pin

VSS2USBHS VSS2USBHS VSS2USBHS pin

Note
The example settings are for a project using the S7G2 Synergy MCU and the SK-S7G2 Kit. Other Synergy MCUs
and other Synergy Kits may have different available pin configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,789 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Video > Using the USBX Host Class Video Module in an Application

4.3.49.6 Using the USBX Host Class Video Module in an Application

The configurator generates processing to create and register the USBX Host Class Video Module;
however, communication must be done after the Host is connected to the host.

The typical steps in using the USBX Host Class Video Module in an application are:

1. Wait until the device is inserted using the tx_event_flags_get API function

2. Set the camera parameters using the ux_host_class_video_frame_parameters_set API function

3. Set the user callback function using the ux_host_class_video_transfer_callback_set API function

4. Get the maximum memory buffer size using the ux_host_class_video_max_payload_get API
function

5. Start video transfer using the ux_host_class_video_start API function

6. Add a video buffer to the video device using the ux_host_class_video_transfer_buffer_add API
function

7. Wait for a received data frame using the tx_semiphore_get API function

8. Add the video buffer back using the ux_host_class_video_transfer_buffer_add API function

9. Stop the video transfer using the ux_host_class_video_stop API function

These common steps are illustrated in a typical operational flow diagram in the following figure:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,790 / 5,198

Synergy Software Package

User’s Manual
Module Overviews > Azure RTOS Modules > USBX Host Class Video > Using the USBX Host Class Video Module in an Application

Figure 555: Flow Diagram of a Typical USBX Host Class Video Module Application

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,791 / 5,198

Synergy Software Package

User’s Manual
API Reference

Chapter 5 API Reference
This section includes the SSP API Reference for the Framework and HAL level functions.

 ▼Renesas Synergy Software Package Reference

 ►Shared

 ►Framework Interfaces

 ►Framework Layer

 ►HAL Interfaces

 ►HAL Layer

 ▼Board Support Package Common BSP includes

 ►Supported MCUs Supported MCUs in this version of the BSP

 ►Common BSP Code Code common to all BSPs

5.1 Renesas Synergy Software Package Reference
Modules

Shared

Framework Interfaces

Framework Layer

HAL Interfaces

HAL Layer

Detailed Description

5.1.1 Shared
Renesas Synergy Software Package Reference

Modules

Common Error Codes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,792 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Shared

Detailed Description

Common code shared by SSP drivers

5.1.1.1 Common Error Codes
Renesas Synergy Software Package Reference » Shared

#define SSP_PARAMETER_NOT_USED(p) (void) ((p))

#define SSP_CPP_HEADER

enum ssp_err_t { ,
 SSP_ERR_ASSERTION = 1, SSP_ERR_INVALID_POINTER = 2,
SSP_ERR_INVALID_ARGUMENT = 3,
SSP_ERR_INVALID_CHANNEL = 4,
 SSP_ERR_INVALID_MODE = 5, SSP_ERR_UNSUPPORTED = 6,
SSP_ERR_NOT_OPEN = 7, SSP_ERR_IN_USE = 8,
 SSP_ERR_OUT_OF_MEMORY = 9, SSP_ERR_HW_LOCKED = 10,
SSP_ERR_IRQ_BSP_DISABLED = 11, SSP_ERR_OVERFLOW = 12,
 SSP_ERR_UNDERFLOW = 13, SSP_ERR_ALREADY_OPEN = 14,
SSP_ERR_APPROXIMATION = 15, SSP_ERR_CLAMPED = 16,
 SSP_ERR_INVALID_RATE = 17, SSP_ERR_ABORTED = 18,
SSP_ERR_NOT_ENABLED = 19, SSP_ERR_TIMEOUT = 20,
 SSP_ERR_INVALID_BLOCKS = 21, SSP_ERR_INVALID_ADDRESS
= 22, SSP_ERR_INVALID_SIZE = 23, SSP_ERR_WRITE_FAILED =
24,
 SSP_ERR_ERASE_FAILED = 25, SSP_ERR_INVALID_CALL = 26,
SSP_ERR_INVALID_HW_CONDITION = 27,
SSP_ERR_INVALID_FACTORY_FLASH = 28,
 SSP_ERR_INVALID_FMI_DATA = 29, SSP_ERR_INVALID_STATE
= 30, SSP_ERR_NOT_ERASED = 31,
SSP_ERR_SECTOR_RELEASE_FAILED = 32,
 SSP_ERR_INTERNAL = 100, SSP_ERR_WAIT_ABORTED = 101,
SSP_ERR_FRAMING = 200, SSP_ERR_BREAK_DETECT = 201,
 SSP_ERR_PARITY = 202, SSP_ERR_RXBUF_OVERFLOW = 203,
SSP_ERR_QUEUE_UNAVAILABLE = 204,
SSP_ERR_INSUFFICIENT_SPACE = 205,
 SSP_ERR_INSUFFICIENT_DATA = 206,
SSP_ERR_TRANSFER_ABORTED = 300, SSP_ERR_MODE_FAULT
= 301, SSP_ERR_READ_OVERFLOW = 302,
 SSP_ERR_SPI_PARITY = 303, SSP_ERR_OVERRUN = 304,
SSP_ERR_CLOCK_INACTIVE = 400, SSP_ERR_CLOCK_ACTIVE =
401,
 SSP_ERR_STABILIZED = 402, SSP_ERR_NOT_STABILIZED =
403, SSP_ERR_MAIN_OSC_INACTIVE = 404,
SSP_ERR_OSC_STOP_DET_ENABLED = 405,
 SSP_ERR_OSC_STOP_DETECTED = 406,
SSP_ERR_OSC_STOP_CLOCK_ACTIVE = 407,
SSP_ERR_CLKOUT_EXCEEDED = 408,
SSP_ERR_USB_MODULE_ENABLED = 409,
 SSP_ERR_HARDWARE_TIMEOUT = 410, SSP_ERR_PE_FAILURE

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,793 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Shared > Common Error Codes

= 500, SSP_ERR_CMD_LOCKED = 501, SSP_ERR_FCLK = 502,
 SSP_ERR_INVALID_LINKED_ADDRESS = 503,
SSP_ERR_INVALID_CAC_REF_CLOCK = 600,
SSP_ERR_CLOCK_GENERATION = 1000,
SSP_ERR_INVALID_TIMING_SETTING = 1001,
 SSP_ERR_INVALID_LAYER_SETTING = 1002,
SSP_ERR_INVALID_ALIGNMENT = 1003,
SSP_ERR_INVALID_GAMMA_SETTING = 1004,
SSP_ERR_INVALID_LAYER_FORMAT = 1005,
 SSP_ERR_INVALID_UPDATE_TIMING = 1006,
SSP_ERR_INVALID_CLUT_ACCESS = 1007,
SSP_ERR_INVALID_FADE_SETTING = 1008, SSP_ERR_JPEG_ERR
= 1100,
 SSP_ERR_JPEG_SOI_NOT_DETECTED = 1101,
SSP_ERR_JPEG_SOF1_TO_SOFF_DETECTED = 1102,
SSP_ERR_JPEG_UNSUPPORTED_PIXEL_FORMAT = 1103,
SSP_ERR_JPEG_SOF_ACCURACY_ERROR = 1104,
 SSP_ERR_JPEG_DQT_ACCURACY_ERROR = 1105,
SSP_ERR_JPEG_COMPONENT_ERROR1 = 1106,
SSP_ERR_JPEG_COMPONENT_ERROR2 = 1107,
SSP_ERR_JPEG_SOF0_DQT_DHT_NOT_DETECTED = 1108,
 SSP_ERR_JPEG_SOS_NOT_DETECTED = 1109,
SSP_ERR_JPEG_EOI_NOT_DETECTED = 1110,
SSP_ERR_JPEG_RESTART_INTERVAL_DATA_NUMBER_ERROR =
1111, SSP_ERR_JPEG_IMAGE_SIZE_ERROR = 1112,
 SSP_ERR_JPEG_LAST_MCU_DATA_NUMBER_ERROR = 1113,
SSP_ERR_JPEG_BLOCK_DATA_NUMBER_ERROR = 1114,
SSP_ERR_JPEG_BUFFERSIZE_NOT_ENOUGH = 1115,
SSP_ERR_JPEG_UNSUPPORTED_IMAGE_SIZE = 1116,
 SSP_ERR_CALIBRATE_FAILED = 1200,
SSP_ERR_IP_HARDWARE_NOT_PRESENT = 1400,
SSP_ERR_IP_UNIT_NOT_PRESENT = 1401,
SSP_ERR_IP_CHANNEL_NOT_PRESENT = 1402,
 SSP_ERR_NO_MORE_BUFFER = 2000,
SSP_ERR_ILLEGAL_BUFFER_ADDRESS = 2001,
SSP_ERR_INVALID_WORKBUFFER_SIZE = 2002,
SSP_ERR_INVALID_MSG_BUFFER_SIZE = 2003,
 SSP_ERR_TOO_MANY_BUFFERS = 2004,
SSP_ERR_NO_SUBSCRIBER_FOUND = 2005,
SSP_ERR_MESSAGE_QUEUE_EMPTY = 2006,
SSP_ERR_MESSAGE_QUEUE_FULL = 2007,
 SSP_ERR_ILLEGAL_SUBSCRIBER_LISTS = 2008,
SSP_ERR_BUFFER_RELEASED = 2009,
SSP_ERR_D2D_ERROR_INIT = 3000,
SSP_ERR_D2D_ERROR_DEINIT = 3001,
 SSP_ERR_D2D_ERROR_RENDERING = 3002,
SSP_ERR_D2D_ERROR_SIZE = 3003, SSP_ERR_QUEUE_FULL =
10000, SSP_ERR_QUEUE_EMPTY = 10001,
 SSP_ERR_CTSU_SC_OVERFLOW = 0x8010,
SSP_ERR_CTSU_RC_OVERFLOW = 0x8020,
SSP_ERR_CTSU_ICOMP = 0x8040,
SSP_ERR_CTSU_OFFSET_ADJUSTMENT_FAILED = 0x8080,
 SSP_ERR_CTSU_SAFETY_CHECK_FAILED = 0x8100,
SSP_ERR_CTSU_SCANNING = 0x8200,
SSP_ERR_CTSU_NOT_GET_DATA = 0x8201,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,794 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Shared > Common Error Codes

SSP_ERR_CTSU_INCOMPLETE_TUNING = 0x8202,
 SSP_ERR_CTSU_DIAG_NOT_YET = 6003,
SSP_ERR_CTSU_DIAG_LDO_OVER_VOLTAGE = 6004,
SSP_ERR_CTSU_DIAG_CCO_HIGH = 6005,
SSP_ERR_CTSU_DIAG_CCO_LOW = 6006,
 SSP_ERR_CTSU_DIAG_SSCG = 6007, SSP_ERR_CTSU_DIAG_DAC
= 6008, SSP_ERR_CARD_INIT_FAILED = 40000,
SSP_ERR_CARD_NOT_INSERTED = 40001,
 SSP_ERR_SDHI_FAILED = 40002, SSP_ERR_READ_FAILED =
40003, SSP_ERR_CARD_NOT_READY = 40004,
SSP_ERR_CARD_WRITE_PROTECTED = 40005,
 SSP_ERR_TRANSFER_BUSY = 40006,
SSP_ERR_MEDIA_FORMAT_FAILED = 50000,
SSP_ERR_MEDIA_OPEN_FAILED = 50001,
SSP_ERR_CAN_DATA_UNAVAILABLE = 60000,
 SSP_ERR_CAN_MODE_SWITCH_FAILED = 60001,
SSP_ERR_CAN_INIT_FAILED = 60002,
SSP_ERR_CAN_TRANSMIT_NOT_READY = 60003,
SSP_ERR_CAN_RECEIVE_MAILBOX = 60004,
 SSP_ERR_CAN_TRANSMIT_MAILBOX = 60005,
SSP_ERR_CAN_MESSAGE_LOST = 60006,
SSP_ERR_WIFI_CONFIG_FAILED = 70000,
SSP_ERR_WIFI_INIT_FAILED = 70001,
 SSP_ERR_WIFI_TRANSMIT_FAILED = 70002,
SSP_ERR_WIFI_INVALID_MODE = 70003, SSP_ERR_WIFI_FAILED
= 70004, SSP_ERR_WIFI_WPS_MULTIPLE_PB_SESSIONS =
70005,
 SSP_ERR_WIFI_WPS_M2D_RECEIVED = 70006,
SSP_ERR_WIFI_WPS_AUTHENTICATION_FAILED = 70007,
SSP_ERR_WIFI_WPS_CANCELLED = 70008,
SSP_ERR_WIFI_WPS_INVALID_PIN = 70009,
 SSP_ERR_CELLULAR_CONFIG_FAILED = 80000,
SSP_ERR_CELLULAR_INIT_FAILED = 80001,
SSP_ERR_CELLULAR_TRANSMIT_FAILED = 80002,
SSP_ERR_CELLULAR_FW_UPTODATE = 80003,
 SSP_ERR_CELLULAR_FW_UPGRADE_FAILED = 80004,
SSP_ERR_CELLULAR_FAILED = 80005,
SSP_ERR_CELLULAR_INVALID_STATE = 80006,
SSP_ERR_CELLULAR_REGISTRATION_FAILED = 80007,
 SSP_ERR_BLE_FAILED = 90001, SSP_ERR_BLE_INIT_FAILED =
90002, SSP_ERR_BLE_CONFIG_FAILED = 90003,
SSP_ERR_BLE_PRF_ALREADY_ENABLED = 90004,
 SSP_ERR_BLE_PRF_NOT_ENABLED = 90005,
SSP_ERR_CRYPTO_CONTINUE = 0x10000,
SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT = 0x10001,
SSP_ERR_CRYPTO_SCE_FAIL = 0x10002,
 SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX = 0x10003,
SSP_ERR_CRYPTO_SCE_RETRY = 0x10004,
SSP_ERR_CRYPTO_SCE_VERIFY_FAIL = 0x10005,
SSP_ERR_CRYPTO_SCE_ALREADY_OPEN = 0x10006,
 SSP_ERR_CRYPTO_NOT_OPEN = 0x10007,
SSP_ERR_CRYPTO_UNKNOWN = 0x10008,
SSP_ERR_CRYPTO_NULL_POINTER = 0x10009,
SSP_ERR_CRYPTO_NOT_IMPLEMENTED = 0x1000a,
 SSP_ERR_CRYPTO_RNG_INVALID_PARAM = 0x1000b,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,795 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Shared > Common Error Codes

SSP_ERR_CRYPTO_RNG_FATAL_ERROR = 0x1000c,
SSP_ERR_CRYPTO_INVALID_SIZE = 0x1000d,
SSP_ERR_CRYPTO_INVALID_STATE = 0x1000e,
 SSP_ERR_CRYPTO_ALREADY_OPEN = 0x1000f,
SSP_ERR_CRYPTO_INSTALL_KEY_FAILED = 0x10010,
SSP_ERR_CRYPTO_AUTHENTICATION_FAILED = 0x10011,
SSP_ERR_CRYPTO_COMMON_NOT_OPENED = 0x20000,
 SSP_ERR_CRYPTO_HAL_ERROR = 0x20001,
SSP_ERR_CRYPTO_KEY_BUF_NOT_ENOUGH = 0x20002,
SSP_ERR_CRYPTO_BUF_OVERFLOW = 0x20003,
SSP_ERR_CRYPTO_INVALID_OPERATION_MODE = 0x20004,
 SSP_ERR_MESSAGE_TOO_LONG = 0x20005,
SSP_ERR_RSA_DECRYPTION_ERROR = 0x20006
}

enum ssp_command_t {
 SSP_COMMAND_GET_SECTOR_COUNT =1,
SSP_COMMAND_GET_SECTOR_SIZE =2,
SSP_COMMAND_GET_BLOCK_SIZE =3,
SSP_COMMAND_CTRL_ERASE_SECTOR =4,
 SSP_COMMAND_GET_WRITE_PROTECTED =5,
SSP_COMMAND_SET_BLOCK_SIZE =6,
SSP_COMMAND_GET_SECTOR_RELEASE =7,
SSP_COMMAND_CTRL_SECTOR_RELEASE =8
}

Detailed Description

All SSP code at every layer shares these common error codes.

Macro Definition Documentation

◆ SSP_CPP_HEADER

#define SSP_CPP_HEADER

Determine if a C++ compiler is being used. If so, ensure that standard C is used to process the API
information.

◆ SSP_PARAMETER_NOT_USED

#define SSP_PARAMETER_NOT_USED (p) (void) ((p))

This macro is used to suppress compiler messages about a parameter not being used in a function.
The nice thing about using this implementation is that it does not take any extra RAM or ROM.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,796 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Shared > Common Error Codes

◆ ssp_command_t

enum ssp_command_t

ioctl commands.

◆ ssp_err_t

enum ssp_err_t

Common error codes

5.1.2 Framework Interfaces
Renesas Synergy Software Package Reference

Modules

ADC Periodic Framework Interface

 RTOS-integrated ADC Periodic Framework Interface.

Audio Framework Interface

 RTOS-integrated Audio Framework Interface.

Audio Playback Framework Interface

 RTOS-integrated Audio Playback Framework Interface.

Audio Recording Framework Interface

 RTOS-integrated Audio Recording Framework Interface.

SF BLE Framework Interface

 RTOS-integrated SF BLE Framework Interface.

SF BLE On-Board Profile Framework Interface

 RTOS-integrated SF BLE On-Board Profile Framework Interface.

SF BLE Alert Notification Profile Framework Interface

 RTOS-integrated SF BLE Alert Notification Profile Framework
Interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,797 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces

SF BLE Battery Service Profile Framework Interface

 RTOS-integrated SF BLE Battery Service Profile Framework Interface.

SF BLE Blood Pressure Profile Framework Interface

 RTOS-integrated SF BLE Blood Pressure Profile Framework Interface.

SF BLE Current Time Service Profile Framework Interface

 RTOS-integrated SF BLE Current Time Service Profile Framework
Interface.

SF BLE Find Me Profile Framework Interface

 RTOS-integrated SF BLE Find Me Profile Framework Interface.

SF BLE HID Over GATT Profile Framework Interface

 RTOS-integrated SF BLE HID Over GATT Profile Framework Interface.

SF BLE Heart Rate Profile Framework Interface

 RTOS-integrated SF BLE Heart Rate Profile Framework Interface.

SF BLE Health Thermometer Profile Framework Interface

 RTOS-integrated SF BLE Health Thermometer Profile Framework
Interface.

SF BLE Immediate Alert Profile Framework Interface

 RTOS-integrated SF BLE Immediate Alert Profile Framework
Interface.

SF BLE Next DST Change Service Profile Framework Interface

 RTOS-integrated SF BLE Next DST Change Service Profile Framework
Interface.

SF BLE Phone Alert Status Profile Framework Interface

 RTOS-integrated SF BLE Phone Alert Status Profile Framework
Interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,798 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces

SF BLE Proximity Profile Framework Interface

 RTOS-integrated SF BLE Proximity Profile Framework Interface.

SF BLE Reference Time Update Service Profile Framework Interface

 RTOS-integrated SF BLE Reference Time Update Service Profile
Framework Interface.

SF BLE Scan Parameters Service Profile Framework Interface

 RTOS-integrated SF BLE Scan Parameters Service Profile Framework
Interface.

SF BLE Time Information Profile Framework Interface

 RTOS-integrated SF BLE Time Information Profile Framework
Interface.

Block Media Framework Interface

 RTOS-integrated File system Interface to access Synergy block
media devices.

SF CELLULAR Framework Interface

 RTOS-integrated SF CELUULAR Framework Interface.

SF CELLULAR NSAL Framework Interface

 RTOS-integrated SF CELLULAR NSAL Framework Interface.

SF Socket CELLULAR Framework Interface

 RTOS-integrated SF Socket Cellular Framework Interface.

Communications Framework Interface

 RTOS-integrated communications Framework Interface.

Console Framework Interface

 RTOS-integrated Console Framework Interface.

SSP Crypto Framework Common Module Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,799 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces

 Interface definition for Synergy Crypto Framework module.

SSP Crypto Cipher Framework Interface

 Interface definition for Synergy Crypto Cipher Framework module.

SSP Crypto HASH Framework Interface

 Interface definition for Synergy Crypto HASH Framework module.

SSP Crypto Key Framework Interface

 Interface definition for Synergy Crypto Key Framework module.

SSP Crypto Key Installation Framework Interface

 Interface definition for Synergy Crypto Key Installation Framework
module.

SSP Crypto Signature Framework Interface

 Interface definition for Synergy Crypto Signature Framework module.

SSP Crypto TRNG Framework Interface

 Interface definition for Synergy Crypto TRNG Framework module.

GUIX Interface

 Interface definition for Adapting Microsoft GUIX for Synergy graphics
drivers.

External IRQ Framework Interface

 RTOS-integrated External IRQ Framework Interface.

I2C Framework

 RTOS-integrated I2C Framework Interface.

JPEG Decode Framework Interface

 RTOS-integrated JPEG Decode Framework Interface.

Memory interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,800 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces

 Interface for Memory API.

Messaging Framework Interface

 RTOS-integrated Messaging Framework Interface.

Power Profiles V2 Framework Interface

 Power Profiles Framework Interface.

SF Socket WIFI Framework Interface

 RTOS-integrated SF Socket WIFI Framework Interface.

SPI Framework Interface

 RTOS-integrated SPI Framework Interface.

Thread Monitor Framework Interface

 RTOS-integrated Framework Interface for monitoring of threads.

CTSU v2 Framework Interface

 CTSU v2 Framework Interface.

Touch chip Interface

 RTOS-integrated Touch chip Interface.

Touch Panel Framework Interface

 RTOS-integrated Touch Panel Framework Interface.

SF WIFI Framework Interface

 RTOS-integrated SF WIFI Framework Interface.

SF WIFI NSAL Interface

 RTOS-integrated SF WIFI NSAL Framework Interface.

SF WIFI On-Chip Stack Interface

 RTOS-integrated SF WIFI On-Chip Stack Interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,801 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces

SF WIFI QCA4010 Framework Interface

 RTOS-integrated SF WIFI QCA4010 Framework Interface.

SF WIFI QCA4010 On-Chip Interface

 RTOS-integrated SF Socket Wifi Framework Interface.

SF Socket WIFI Framework Interface

 RTOS-integrated SF Socket WIFI Framework Interface.

SF WIFI NSAL on NetX

 NetX NSAL interface implementation header file.

BLE Framework Interface on RL78G1D

 RTOS-integrated BLE Interface Framework example. Implementation
of RL78G1D BLE Driver. It implements the following interfaces:

Cellular Framework Example using Quectel CATM1 API

 SF_CELLULAR Framework API on Quectel CATM1.

BSD Socket over Quectel CATM1 on-chip stack API

 SF_CELLULAR Socket Framework API on Quectel CATM1.

Cellular Framework Example using RYZ014CATM1 API

 SF_CELLULAR Framework API on RYZ014CATM1.

SF CELLULAR Common Interface

 SF_Cellular Framework API Common Code.

BSD Socket over RYZ014CATM1 on-chip stack API

 SF_CELLULAR Socket Framework API on RYZ014CATM1.

Detailed Description

The Framework Interface provides common APIs for functional Framework Layer applications. The

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,802 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces

Framework Interfaces can be implemented by one or more Framework Layer drivers.

5.1.2.1 ADC Periodic Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated ADC Periodic Framework Interface. More...

Data Structures

struct sf_adc_periodic_callback_args_t

struct sf_adc_periodic_cfg_t

struct sf_adc_periodic_api_t

struct sf_adc_periodic_instance_t

Macros

#define SF_ADC_PERIODIC_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_adc_periodic_ctrl_t

Enumerations

enum sf_adc_periodic_event_t { SF_ADC_PERIODIC_EVENT_NEW_DATA }

Detailed Description

RTOS-integrated ADC Periodic Framework Interface.

Summary
This is a ThreadX aware generic Periodic ADC sampling framework intended to be used to sample the
ADC at periodic intervals, buffer the specified number of samples and then notify the application.
The driver will use hardware triggers to allow for time-synchronous sampling. After initial
configuration and the scan process is started, the framework uses a hardware timer to trigger an
ADC scan in one-shot mode. Each scan can consist of one or more channels. When each scan is
completed the ADC interrupt is intercepted by the DTC which moves the result of the scan into the
user buffer. Each scan is defined as a sampling iteration and the number of samples generated for
each scan will be equal to the number of channels if the channels are sequential eg: channels 1, 2, 3,
4. If the channels are not in sequence, eg: channels 1, 3, 4, 5, then the samples generated by each
scan will also include data from the unused channels in between. Thus the second example here will
result in 5 samples being stored to the user buffer each time even though only 4 channels have been
configured for usage.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,803 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > ADC Periodic Framework Interface

The user specifies the total number of sample iterations that need to occur before being notified.
When the specified number of sampling iterations have occurred and the data for each iteration has
been stored into the user buffer, the user is notified via the callback function with an index for the
valid data in the buffer and an event indicating that sampling for the specified number of iterations is
complete. Unless the user stops the scan process using the stop API call, the scan will continue to be
triggered by the timer and data will be written into the user buffer which is treated by the framework
as a circular buffer. For this reason, the buffer length must be at least twice the total number of
samples that will be generate after all the iterations are completed. In the second example, where
there are 5 samples generated for each iteration, if the sample count is set to 3, this will result in 15
samples being available in the buffer before the callback is called. Thus in this example, the buffer
length must be set to 30 or larger. The name and length of the buffer is specified via the framework
configuration structure.

Implemented by: ADC Interface

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

ADC Periodic Framework Interface description: ADC Periodic Framework

Macro Definition Documentation

◆ SF_ADC_PERIODIC_API_VERSION_MAJOR

#define SF_ADC_PERIODIC_API_VERSION_MAJOR (2U)

Version of the API defined in this file

Typedef Documentation

◆ sf_adc_periodic_ctrl_t

typedef void sf_adc_periodic_ctrl_t

ADC periodic framework control block. Allocate an instance specific control block to pass into the
ADC periodic framework API calls.

Implemented as

sf_adc_periodic_instance_ctrl_t

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,804 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > ADC Periodic Framework Interface

◆ sf_adc_periodic_event_t

enum sf_adc_periodic_event_t

Options for the callback events.

Enumerator

SF_ADC_PERIODIC_EVENT_NEW_DATA New data is available in the buffer.

 sf_adc_periodic_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » ADC Periodic Framework
Interface

#include <sf_adc_periodic_api.h>

Data Fields

sf_adc_periodic_event_t event

 Periodic ADC callback event.

uint32_t buffer_index

 Index to the buffer where the new data is stored.

void const * p_context

 Placeholder for user data.

adc_data_size_t * p_data_buffer

 Pointer to the buffer that will store the samples.

uint32_t num_new_samples

 Number of new samples in the data buffer.

Detailed Description

ADC callback arguments definitions

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,805 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > ADC Periodic Framework Interface > sf_adc_periodic_callback_args_t Struct Reference

The documentation for this struct was generated from the following file:

sf_adc_periodic_api.h

 sf_adc_periodic_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » ADC Periodic Framework
Interface

#include <sf_adc_periodic_api.h>

Data Fields

adc_instance_t const *const p_lower_lvl_adc

 Pointer to the ADC instance.

timer_instance_t const
*const

p_lower_lvl_timer

 Pointer to the Timer instance.

transfer_instance_t const
*const

p_lower_lvl_transfer

 Pointer to the Transfer instance.

adc_data_size_t * p_data_buffer

 Pointer to the buffer that will store the samples.

bool lower_level

 Used to check lower level driver (0 for ADC and 1 for SDADC)

uint32_t data_buffer_length

 Length of the data buffer that will store the samples.

uint32_t sample_count

 Samples per channel to be buffered before notifying the app.

elc_event_t scan_trigger

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,806 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > ADC Periodic Framework Interface > sf_adc_periodic_cfg_t Struct Reference

 The hardware trigger that starts the ADC scan.

void(* p_callback)(sf_adc_periodic_callback_args_t *p_args)

 Callback function.

void const * p_context

 Placeholder for user data.

void const * p_extend

 Extension parameter for hardware specific settings.

Detailed Description

Configuration for RTOS integrated ADC driver

The documentation for this struct was generated from the following file:

sf_adc_periodic_api.h

 sf_adc_periodic_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » ADC Periodic Framework
Interface

#include <sf_adc_periodic_api.h>

Data Fields

ssp_err_t(* open)(sf_adc_periodic_ctrl_t *const p_ctrl, sf_adc_periodic_cfg_t
const *const p_cfg)

ssp_err_t(* start)(sf_adc_periodic_ctrl_t *const p_ctrl)

ssp_err_t(* stop)(sf_adc_periodic_ctrl_t *const p_ctrl)

ssp_err_t(* close)(sf_adc_periodic_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,807 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > ADC Periodic Framework Interface > sf_adc_periodic_api_t Struct Reference

Detailed Description

Framework Periodic ADC API structure. Implementations will use the following API.

Field Documentation

◆ close

ssp_err_t(* sf_adc_periodic_api_t::close) (sf_adc_periodic_ctrl_t *const p_ctrl)

Releases channel mutex and closes channel at HAL layer.

Parameters
[in] p_ctrl Pointer to control block set

in SF_ADC_PERIODIC_Open.

◆ open

ssp_err_t(* sf_adc_periodic_api_t::open) (sf_adc_periodic_ctrl_t *const p_ctrl, sf_adc_periodic_cfg_t
const *const p_cfg)

Acquires mutex, then initializes driver at the HAL layer

Parameters
[in,out] p_ctrl Pointer to a structure

allocated by user. Elements
initialized here.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

◆ start

ssp_err_t(* sf_adc_periodic_api_t::start) (sf_adc_periodic_ctrl_t *const p_ctrl)

Starts the scan.

Warning
The driver will enable the ADC to be triggered via timer event; there will be a time delay
from the time this function is called to the time the hardware timer count expires and
triggers the scan.

Parameters
[in] p_ctrl Pointer to control block set

in SF_ADC_PERIODIC_Open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,808 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > ADC Periodic Framework Interface > sf_adc_periodic_api_t Struct Reference

◆ stop

ssp_err_t(* sf_adc_periodic_api_t::stop) (sf_adc_periodic_ctrl_t *const p_ctrl)

Stops the hardware trigger (timer) from triggering any more ADC scans.

Parameters
[in] p_ctrl Pointer to control block set

in SF_ADC_PERIODIC_Open.

◆ versionGet

ssp_err_t(* sf_adc_periodic_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

sf_adc_periodic_api.h

 sf_adc_periodic_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » ADC Periodic Framework
Interface

#include <sf_adc_periodic_api.h>

Data Fields

sf_adc_periodic_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_adc_periodic_cfg_t const
*

p_cfg

 Pointer to the configuration structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,809 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > ADC Periodic Framework Interface > sf_adc_periodic_instance_t Struct Reference

sf_adc_periodic_api_t const
*

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_adc_periodic_api.h

5.1.2.2 Audio Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated Audio Framework Interface. More...

Data Structures

struct sf_audio_playback_data_t

struct sf_audio_playback_common_cfg_t

struct sf_audio_playback_cfg_t

struct sf_audio_playback_api_t

struct sf_audio_playback_instance_t

Macros

#define SF_AUDIO_PLAYBACK_API_VERSION_MAJOR (2U)

#define SF_AUDIO_PLAYBACK_MESSAGE_WORDS
 ((sizeof(sf_message_payload_audio_t) + 3) / 4)

#define SF_AUDIO_PLAYBACK_MAX_VOLUME (255)

Typedefs

typedef void sf_audio_playback_common_ctrl_t

typedef void sf_audio_playback_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,810 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Framework Interface

Enumerations

enum sf_audio_playback_status_t {
SF_AUDIO_PLAYBACK_STATUS_STOPPED,
SF_AUDIO_PLAYBACK_STATUS_PAUSED,
SF_AUDIO_PLAYBACK_STATUS_PLAYING,
SF_AUDIO_PLAYBACK_STATUS_WAITING }

Detailed Description

RTOS-integrated Audio Framework Interface.

Summary
The Audio Interface is a ThreadX-aware Audio Framework Interface. The Interface is implemented by
the Audio Framework using the Timer driver, the Transfer driver, and a choice of the following
drivers for playback: DAC, PWM (to be implemented), or I2S (to be implemented).

Interfaces used:

Transfer Interface
DAC Interface
Timer Interface

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Audio Framework Interface description: Audio Playback Framework

Macro Definition Documentation

◆ SF_AUDIO_PLAYBACK_API_VERSION_MAJOR

#define SF_AUDIO_PLAYBACK_API_VERSION_MAJOR (2U)

Version of the API defined in this file

◆ SF_AUDIO_PLAYBACK_MAX_VOLUME

#define SF_AUDIO_PLAYBACK_MAX_VOLUME (255)

Macro defining the maximum volume.

◆ SF_AUDIO_PLAYBACK_MESSAGE_WORDS

#define SF_AUDIO_PLAYBACK_MESSAGE_WORDS ((sizeof(sf_message_payload_audio_t) + 3) / 4)

Audio playback message size in 4 byte words, rounded up.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,811 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Framework Interface

Typedef Documentation

◆ sf_audio_playback_common_ctrl_t

typedef void sf_audio_playback_common_ctrl_t

Audio playback common control block. Allocate an instance specific control block to pass to
sf_audio_playback_api_t::open in sf_audio_playback_cfg_t.

Implemented as

sf_audio_playback_common_instance_ctrl_t

◆ sf_audio_playback_ctrl_t

typedef void sf_audio_playback_ctrl_t

Audio playback framework control block. Allocate an instance specific control block to pass into the
audio playback framework API calls.

Implemented as

sf_audio_playback_instance_ctrl_t

Enumeration Type Documentation

◆ sf_audio_playback_status_t

enum sf_audio_playback_status_t

Audio playback status.

Enumerator

SF_AUDIO_PLAYBACK_STATUS_STOPPED Stream is available to be used.

SF_AUDIO_PLAYBACK_STATUS_PAUSED Stream is paused.

SF_AUDIO_PLAYBACK_STATUS_PLAYING Stream is playing data.

SF_AUDIO_PLAYBACK_STATUS_WAITING Stream is between packets, waiting for the
next data message.

 sf_audio_playback_data_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Audio Framework Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,812 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Framework Interface > sf_audio_playback_data_t Struct Reference

#include <sf_audio_playback_api.h>

Data Fields

sf_message_header_t header

 Required common members of messaging framework payloads.

sf_audio_playback_data_typ
e_t

type

 Data type. Must be uncompressed.

uint32_t size_bytes

 Size of data in bytes.

void const * p_data

 Pointer to data. Data start address must be 4-byte aligned.

UINT loop_timeout

bool stream_end

Detailed Description

Audio data for playback.

Field Documentation

◆ loop_timeout

UINT sf_audio_playback_data_t::loop_timeout

ThreadX timeout, select TX_NO_WAIT to play the entire buffer once, TX_WAIT_FOREVER to loop
until SF_AUDIO_PLAYBACK_Pause is called from another thread, or any timeout value from
(0x00000001 through 0xFFFFFFFE) in ThreadX tick counts to loop until the tick counts expire.

◆ stream_end

bool sf_audio_playback_data_t::stream_end

This releases ownership of the stream and allows other threads to post data. Set to true if not more
data will be sent as a part of this logical bitstream. Set to false if more packets are being prepared.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,813 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Framework Interface > sf_audio_playback_data_t Struct Reference

The documentation for this struct was generated from the following file:

sf_audio_playback_api.h

 sf_audio_playback_common_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Audio Framework Interface

#include <sf_audio_playback_api.h>

Data Fields

UINT priority

 Priority of the audio playback thread.

sf_audio_playback_hw_insta
nce_t const *

p_lower_lvl_hw

 Hardware instance.

sf_message_instance_t
const *

p_message

TX_QUEUE * p_queue

void const * p_extend

Detailed Description

Common configuration for RTOS integrated audio framework. Shared by all streams.

Field Documentation

◆ p_extend

void const* sf_audio_playback_common_cfg_t::p_extend

Implementation specific extension configuration.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,814 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Framework Interface > sf_audio_playback_common_cfg_t Struct Reference

◆ p_message

sf_message_instance_t const* sf_audio_playback_common_cfg_t::p_message

Pointer to messaging framework instance used to post audio messages.

◆ p_queue

TX_QUEUE* sf_audio_playback_common_cfg_t::p_queue

Pointer to the messaging framework queue specified for this audio stream. Must be subscribed to
the SF_MESSAGE_EVENT_CLASS_AUDIO event class.

The documentation for this struct was generated from the following file:

sf_audio_playback_api.h

 sf_audio_playback_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Audio Framework Interface

#include <sf_audio_playback_api.h>

Data Fields

void(* p_callback)(sf_message_callback_args_t *p_args)

sf_audio_playback_common_
ctrl_t *

p_common_ctrl

sf_audio_playback_common_
cfg_t const *

p_common_cfg

uint8_t class_instance

 Class instance used to identify the stream to the messaging
framework.

Detailed Description

Per stream configuration for RTOS integrated audio framework.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,815 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Framework Interface > sf_audio_playback_cfg_t Struct Reference

Field Documentation

◆ p_callback

void(* sf_audio_playback_cfg_t::p_callback) (sf_message_callback_args_t *p_args)

Callback called when playback of a buffer passed to sf_audio_playback_api_t::start is complete. Set
to NULL for no callback.

◆ p_common_cfg

sf_audio_playback_common_cfg_t const* sf_audio_playback_cfg_t::p_common_cfg

Pointer to common configurations shared by all streams using the same hardware.

◆ p_common_ctrl

sf_audio_playback_common_ctrl_t* sf_audio_playback_cfg_t::p_common_ctrl

Pointer to the hardware control block used by this stream.

The documentation for this struct was generated from the following file:

sf_audio_playback_api.h

 sf_audio_playback_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Audio Framework Interface

#include <sf_audio_playback_api.h>

Data Fields

ssp_err_t(* open)(sf_audio_playback_ctrl_t *const p_ctrl,
sf_audio_playback_cfg_t const *const p_cfg)

 Configure the audio framework by creating a thread for audio
playback and configuring HAL layer drivers used. This function must
be called before any other audio functions. More...

ssp_err_t(* close)(sf_audio_playback_ctrl_t *const p_ctrl)

 The close API handles cleans up internal driver data. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,816 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Framework Interface > sf_audio_playback_api_t Struct Reference

ssp_err_t(* start)(sf_audio_playback_ctrl_t *const p_ctrl,
sf_audio_playback_data_t *const p_data, UINT const timeout)

 Play audio. Currently only 16-bit mono PCM buffers are supported.
More...

ssp_err_t(* pause)(sf_audio_playback_ctrl_t *const p_ctrl)

 Pause audio playback. This stops the peripheral that triggers the
DMA/DTC transfer and posts a flag to notify
SF_AUDIO_PLAYBACK_Start() to pause any playback in progress.
More...

ssp_err_t(* stop)(sf_audio_playback_ctrl_t *const p_ctrl)

 Stop audio playback. Causes SF_AUDIO_PLAYBACK_Start() halt
playback and return. More...

ssp_err_t(* resume)(sf_audio_playback_ctrl_t *const p_ctrl)

 Resume audio playback. Posts a flag to notify
SF_AUDIO_PLAYBACK_Start() to restart the peripheral that triggers
the DMA/DTC transfer. More...

ssp_err_t(* volumeSet)(sf_audio_playback_ctrl_t *const p_ctrl, uint8_t const
volume)

 Set software volume control. Software volume control is applied
globally to all streams on the hardware. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Store version information in provided pointer. More...

Detailed Description

Audio playback API structure. Audio playback implementations use the following API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,817 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Framework Interface > sf_audio_playback_api_t Struct Reference

◆ close

ssp_err_t(* sf_audio_playback_api_t::close) (sf_audio_playback_ctrl_t *const p_ctrl)

The close API handles cleans up internal driver data.

Implemented as

SF_AUDIO_PLAYBACK_Close()
Parameters

[in] p_ctrl Pointer to device control
block initialized in Open call
for audio driver.

◆ open

ssp_err_t(* sf_audio_playback_api_t::open) (sf_audio_playback_ctrl_t *const p_ctrl,
sf_audio_playback_cfg_t const *const p_cfg)

Configure the audio framework by creating a thread for audio playback and configuring HAL layer
drivers used. This function must be called before any other audio functions.

Implemented as

SF_AUDIO_PLAYBACK_Open()
Parameters

[in,out] p_ctrl Pointer to a device structure
allocated by user. The
device control structure is
initialized in this function.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,818 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Framework Interface > sf_audio_playback_api_t Struct Reference

◆ pause

ssp_err_t(* sf_audio_playback_api_t::pause) (sf_audio_playback_ctrl_t *const p_ctrl)

Pause audio playback. This stops the peripheral that triggers the DMA/DTC transfer and posts a flag
to notify SF_AUDIO_PLAYBACK_Start() to pause any playback in progress.

Implemented as

SF_AUDIO_PLAYBACK_Pause()
Precondition

Call SF_AUDIO_PLAYBACK_Start() before using this function. Calling
SF_AUDIO_PLAYBACK_Pause() before SF_AUDIO_PLAYBACK_Start() has no effect and does
not return an error code.

Parameters
[in] p_ctrl Pointer to device control

block initialized in Open call
for audio driver.

◆ resume

ssp_err_t(* sf_audio_playback_api_t::resume) (sf_audio_playback_ctrl_t *const p_ctrl)

Resume audio playback. Posts a flag to notify SF_AUDIO_PLAYBACK_Start() to restart the peripheral
that triggers the DMA/DTC transfer.

Implemented as

SF_AUDIO_PLAYBACK_Resume()
Precondition

Call SF_AUDIO_PLAYBACK_Pause() before using this function. Calling
SF_AUDIO_PLAYBACK_Resume() before SF_AUDIO_PLAYBACK_Pause() has no effect and
does not return an error code.

Parameters
[in] p_ctrl Pointer to device control

block initialized in Open call
for audio driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,819 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Framework Interface > sf_audio_playback_api_t Struct Reference

◆ start

ssp_err_t(* sf_audio_playback_api_t::start) (sf_audio_playback_ctrl_t *const p_ctrl,
sf_audio_playback_data_t *const p_data, UINT const timeout)

Play audio. Currently only 16-bit mono PCM buffers are supported.

Implemented as

SF_AUDIO_PLAYBACK_Start()
Precondition

Call SF_MESSAGE_Open to configure the messaging framework control block and queues
with the parameters specified in sf_audio_playback_cfg_t::p_message and
sf_audio_playback_cfg_t::p_queue.

Parameters
[in,out] p_ctrl Pointer to device control

block initialized in Open call
for audio driver.

[in] p_data Pointer to data, description,
timeout values, and
synchronization options.

[in] timeout ThreadX timeout, represents
the maximum amount of
time to wait to post to the
audio queue. Options include
TX_NO_WAIT (0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
values from 0x00000001
through 0xFFFFFFFE in
ThreadX tick counts.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,820 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Framework Interface > sf_audio_playback_api_t Struct Reference

◆ stop

ssp_err_t(* sf_audio_playback_api_t::stop) (sf_audio_playback_ctrl_t *const p_ctrl)

Stop audio playback. Causes SF_AUDIO_PLAYBACK_Start() halt playback and return.

Implemented as

SF_AUDIO_PLAYBACK_Stop()
Precondition

Call SF_AUDIO_PLAYBACK_Start() before using this function. Calling
SF_AUDIO_PLAYBACK_Stop() before SF_AUDIO_PLAYBACK_Start() has no effect and does not
return an error code.

Parameters
[in] p_ctrl Pointer to device control

block initialized in Open call
for audio driver.

◆ versionGet

ssp_err_t(* sf_audio_playback_api_t::versionGet) (ssp_version_t *const p_version)

Store version information in provided pointer.

Implemented as

SF_AUDIO_PLAYBACK_VersionGet()
Parameters

[in] p_version Pointer to device control
block initialized in Open call
for UART driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,821 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Framework Interface > sf_audio_playback_api_t Struct Reference

◆ volumeSet

ssp_err_t(* sf_audio_playback_api_t::volumeSet) (sf_audio_playback_ctrl_t *const p_ctrl, uint8_t
const volume)

Set software volume control. Software volume control is applied globally to all streams on the
hardware.

Implemented as

SF_AUDIO_PLAYBACK_VolumeSet()
Warning

Software volume control reduces resolution and may require extra memory and processing
bandwidth.

Parameters
[in] p_ctrl Pointer to device control

block initialized in Open call
for audio driver.

[in] volume Volume level requested.
Valid range is from 0
(muted, which will stop
playback) to 255 (maximum
volume, default on open).

The documentation for this struct was generated from the following file:

sf_audio_playback_api.h

 sf_audio_playback_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Audio Framework Interface

#include <sf_audio_playback_api.h>

Data Fields

sf_audio_playback_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_audio_playback_cfg_t
const *

p_cfg

 Pointer to the configuration structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,822 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Framework Interface > sf_audio_playback_instance_t Struct Reference

sf_audio_playback_api_t
const *

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_audio_playback_api.h

5.1.2.3 Audio Playback Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated Audio Playback Framework Interface. More...

Data Structures

struct sf_audio_playback_data_type_t

struct sf_audio_playback_hw_callback_args_t

struct sf_audio_playback_hw_cfg_t

struct sf_audio_playback_hw_api_t

struct sf_audio_playback_hw_instance_t

Typedefs

typedef void sf_audio_playback_hw_ctrl_t

Enumerations

enum sf_audio_playback_hw_event_t {
SF_AUDIO_PLAYBACK_HW_EVENT_PLAYBACK_COMPLETE,
SF_AUDIO_PLAYBACK_HW_EVENT_ERROR }

Detailed Description

RTOS-integrated Audio Playback Framework Interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,823 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Playback Framework Interface

Summary
Audio playback driver to play buffers of audio data.

Implemented by: DAC Audio Playback Framework

Audio Framework Interface description: Audio Playback Framework

Typedef Documentation

◆ sf_audio_playback_hw_ctrl_t

typedef void sf_audio_playback_hw_ctrl_t

Audio playback hardware control block. Allocate an instance specific control block to pass into the
audio playback hardware API calls.

Implemented as

sf_audio_playback_hw_dac_instance_ctrl_t
sf_audio_playback_hw_i2s_instance_ctrl_t

Enumeration Type Documentation

◆ sf_audio_playback_hw_event_t

enum sf_audio_playback_hw_event_t

Callback event types.

Enumerator

SF_AUDIO_PLAYBACK_HW_EVENT_PLAYBACK_CO
MPLETE

Audio playback complete event.

SF_AUDIO_PLAYBACK_HW_EVENT_ERROR Audio playback error event.

 sf_audio_playback_data_type_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Audio Playback Framework
Interface

#include <sf_audio_playback_hw_api.h>

Data Fields

uint8_t scale_bits_max

 Maximum data resolution in bits.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,824 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Playback Framework Interface > sf_audio_playback_data_type_t Struct Reference

bool is_signed

 Set to 1 for signed samples, or 0 for unsigned samples.

Detailed Description

Audio data type.

The documentation for this struct was generated from the following file:

sf_audio_playback_hw_api.h

 sf_audio_playback_hw_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Audio Playback Framework
Interface

#include <sf_audio_playback_hw_api.h>

Data Fields

void * p_context

sf_audio_playback_hw_event
_t

event

 Event that triggered the callback.

Detailed Description

Callback function parameter data

Field Documentation

◆ p_context

void* sf_audio_playback_hw_callback_args_t::p_context

Placeholder for user data. Set in sf_audio_playback_hw_api_t::open function in
sf_audio_playback_hw_cfg_t.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,825 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Playback Framework Interface > sf_audio_playback_hw_callback_args_t Struct Reference

The documentation for this struct was generated from the following file:

sf_audio_playback_hw_api.h

 sf_audio_playback_hw_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Audio Playback Framework
Interface

#include <sf_audio_playback_hw_api.h>

Data Fields

void(* p_callback)(sf_audio_playback_hw_callback_args_t *p_args)

void * p_context

void const * p_extend

 Hardware dependent configuration.

Detailed Description

Audio playback driver configuration.

Field Documentation

◆ p_callback

void(* sf_audio_playback_hw_cfg_t::p_callback) (sf_audio_playback_hw_callback_args_t *p_args)

Callback called when play is complete. Set to NULL for no callback.

◆ p_context

void* sf_audio_playback_hw_cfg_t::p_context

Placeholder for user data. Passed to the user callback in sf_audio_playback_hw_callback_args_t.

The documentation for this struct was generated from the following file:

sf_audio_playback_hw_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,826 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Playback Framework Interface > sf_audio_playback_hw_api_t Struct Reference

 sf_audio_playback_hw_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Audio Playback Framework
Interface

#include <sf_audio_playback_hw_api.h>

Data Fields

ssp_err_t(* open)(sf_audio_playback_hw_ctrl_t *const p_ctrl,
sf_audio_playback_hw_cfg_t const *const p_cfg)

ssp_err_t(* start)(sf_audio_playback_hw_ctrl_t *const p_ctrl)

ssp_err_t(* stop)(sf_audio_playback_hw_ctrl_t *const p_ctrl)

ssp_err_t(* play)(sf_audio_playback_hw_ctrl_t *const p_ctrl, int16_t const *const
p_buffer, uint32_t length)

ssp_err_t(* dataTypeGet)(sf_audio_playback_hw_ctrl_t *const p_ctrl,
sf_audio_playback_data_type_t *const p_data_type)

ssp_err_t(* close)(sf_audio_playback_hw_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Audio playback API definition.

Field Documentation

◆ close

ssp_err_t(* sf_audio_playback_hw_api_t::close) (sf_audio_playback_hw_ctrl_t *const p_ctrl)

Close the audio driver.

Implemented as

SF_AUDIO_PLAYBACK_HW_DAC_Close()
Parameters

[in] p_ctrl Pointer to control block
initialized in
sf_audio_playback_hw_api_t:
:open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,827 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Playback Framework Interface > sf_audio_playback_hw_api_t Struct Reference

◆ dataTypeGet

ssp_err_t(* sf_audio_playback_hw_api_t::dataTypeGet) (sf_audio_playback_hw_ctrl_t *const p_ctrl,
sf_audio_playback_data_type_t *const p_data_type)

Stores expected data type in provided pointer p_data_type.

Implemented as

SF_AUDIO_PLAYBACK_HW_DAC_DataTypeGet()
Parameters

[in] p_ctrl Pointer to control block
initialized in
sf_audio_playback_hw_api_t:
:open.

[out] p_data_type Pointer to audio sample data
type required by hardware.

◆ open

ssp_err_t(* sf_audio_playback_hw_api_t::open) (sf_audio_playback_hw_ctrl_t *const p_ctrl,
sf_audio_playback_hw_cfg_t const *const p_cfg)

Open a device channel for read/write and control.

Implemented as

SF_AUDIO_PLAYBACK_HW_DAC_Open()
Parameters

[in,out] p_ctrl Pointer to memory allocated
for control block.

[in] p_cfg Pointer to the hardware
configurations.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,828 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Playback Framework Interface > sf_audio_playback_hw_api_t Struct Reference

◆ play

ssp_err_t(* sf_audio_playback_hw_api_t::play) (sf_audio_playback_hw_ctrl_t *const p_ctrl, int16_t
const *const p_buffer, uint32_t length)

Play audio buffer.

Implemented as

SF_AUDIO_PLAYBACK_HW_DAC_Play()
Parameters

[in] p_ctrl Pointer to control block
initialized in
sf_audio_playback_hw_api_t:
:open.

[in] p_buffer Pointer to buffer with PCM
samples to play. Data must
be scaled for audio playback
hardware.

[in] length Length of data in p_buffer.

◆ start

ssp_err_t(* sf_audio_playback_hw_api_t::start) (sf_audio_playback_hw_ctrl_t *const p_ctrl)

Start audio playback hardware.

Implemented as

SF_AUDIO_PLAYBACK_HW_DAC_Start()
Parameters

[in] p_ctrl Pointer to control block
initialized in
sf_audio_playback_hw_api_t:
:open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,829 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Playback Framework Interface > sf_audio_playback_hw_api_t Struct Reference

◆ stop

ssp_err_t(* sf_audio_playback_hw_api_t::stop) (sf_audio_playback_hw_ctrl_t *const p_ctrl)

Stop audio playback hardware.

Implemented as

SF_AUDIO_PLAYBACK_HW_DAC_Stop()
Parameters

[in] p_ctrl Pointer to control block
initialized in
sf_audio_playback_hw_api_t:
:open.

◆ versionGet

ssp_err_t(* sf_audio_playback_hw_api_t::versionGet) (ssp_version_t *const p_version)

Return the version of the driver.

Implemented as

SF_AUDIO_PLAYBACK_HW_DAC_VersionGet()
Parameters

[out] p_version Pointer to variable that will
be populated with version
information.

The documentation for this struct was generated from the following file:

sf_audio_playback_hw_api.h

 sf_audio_playback_hw_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Audio Playback Framework
Interface

#include <sf_audio_playback_hw_api.h>

Data Fields

sf_audio_playback_hw_ctrl_t p_ctrl

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,830 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Playback Framework Interface > sf_audio_playback_hw_instance_t Struct Reference

*

 Pointer to the control structure for this instance.

sf_audio_playback_hw_cfg_t
const *

p_cfg

 Pointer to the configuration structure for this instance.

sf_audio_playback_hw_api_t
const *

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_audio_playback_hw_api.h

5.1.2.4 Audio Recording Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated Audio Recording Framework Interface. More...

Data Structures

struct sf_audio_record_cfg_t

struct sf_audio_record_api_t

struct sf_audio_record_instance_t

Macros

#define SF_AUDIO_RECORD_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_audio_record_ctrl_t

Enumerations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,831 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Recording Framework Interface

enum sf_audio_record_channel_t { SF_AUDIO_RECORD_CHANNEL_MONO,
SF_AUDIO_RECORD_CHANNEL_STEREO }

enum sf_audio_record_data_size_t { SF_AUDIO_RECORD_DATA_SIZE_8BIT =
1, SF_AUDIO_RECORD_DATA_SIZE_16BIT = 2 }

enum sf_audio_record_event_t { SF_AUDIO_RECORD_EVENT_NEW_DATA }

Detailed Description

RTOS-integrated Audio Recording Framework Interface.

Summary
The Audio Record Interface is a ThreadX-aware Interface for Audio Recording. The Interface is
implemented by the ADC Audio recording Framework using the ADC periodic Framework driver for
recording. The interface is implemented by the I2S Audio recording Framework using the I2S driver
for recording.

Interfaces used:

ADC periodic Framework
I2S Interface

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Macro Definition Documentation

◆ SF_AUDIO_RECORD_API_VERSION_MAJOR

#define SF_AUDIO_RECORD_API_VERSION_MAJOR (2U)

Version of the API defined in this file

Typedef Documentation

◆ sf_audio_record_ctrl_t

typedef void sf_audio_record_ctrl_t

Audio record framework control block. Allocate an instance specific control block to pass into the
audio record framework API calls.

Implemented as

sf_audio_record_adc_instance_ctrl_t
sf_audio_record_i2s_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,832 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Recording Framework Interface

Enumeration Type Documentation

◆ sf_audio_record_channel_t

enum sf_audio_record_channel_t

Definition of audio recording mode.

Enumerator

SF_AUDIO_RECORD_CHANNEL_MONO Support Mono Channel.

SF_AUDIO_RECORD_CHANNEL_STEREO Support Stereo Channel.

◆ sf_audio_record_data_size_t

enum sf_audio_record_data_size_t

Definition of audio recording data sample size.

Enumerator

SF_AUDIO_RECORD_DATA_SIZE_8BIT data width in the sample is 8bit

SF_AUDIO_RECORD_DATA_SIZE_16BIT data width in the sample is 16bit

◆ sf_audio_record_event_t

enum sf_audio_record_event_t

Definition of events for audio recording.

Enumerator

SF_AUDIO_RECORD_EVENT_NEW_DATA New data is available in the buffer.

 sf_audio_record_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Audio Recording Framework
Interface

#include <sf_audio_record_api.h>

Data Fields

sf_audio_record_data_size_t capture_data_size

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,833 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Recording Framework Interface > sf_audio_record_cfg_t Struct Reference

 Size of data in the sample 8 or 16 bit.

uint32_t sampling_rate_hz

 Sampling rate for audio capture.

void * p_capture_data_buffer

uint32_t capture_data_buffer_size

uint32_t sample_count

void(* p_callback)(sf_audio_record_callback_args_t *p_args)

 Callback function.

void const * p_context

 Placeholder for user data.

void const * p_extend

Detailed Description

Configuration for audio recording framework

Field Documentation

◆ capture_data_buffer_size

uint32_t sf_audio_record_cfg_t::capture_data_buffer_size

total size of buffer configured by user to store samples

◆ p_capture_data_buffer

void* sf_audio_record_cfg_t::p_capture_data_buffer

Pointer to the buffer that will store the samples

◆ p_extend

void const* sf_audio_record_cfg_t::p_extend

Extension parameter for hardware specific settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,834 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Recording Framework Interface > sf_audio_record_cfg_t Struct Reference

◆ sample_count

uint32_t sf_audio_record_cfg_t::sample_count

Samples per channel to be buffered before notifying the user via callback

The documentation for this struct was generated from the following file:

sf_audio_record_api.h

 sf_audio_record_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Audio Recording Framework
Interface

#include <sf_audio_record_api.h>

Data Fields

ssp_err_t(* open)(sf_audio_record_ctrl_t *const p_ctrl, sf_audio_record_cfg_t
const *const p_cfg)

 Initializes audio recording framework. More...

ssp_err_t(* start)(sf_audio_record_ctrl_t *const p_ctrl)

 Starts audio recording. More...

ssp_err_t(* stop)(sf_audio_record_ctrl_t *const p_ctrl)

 Stops audio recording. More...

ssp_err_t(* infoGet)(sf_audio_record_ctrl_t *const p_ctrl, sf_audio_record_info_t
*p_info)

 Gets channel information(Mono/Stereo). More...

ssp_err_t(* close)(sf_audio_record_ctrl_t *const p_ctrl)

 Releases channel mutex and closes channel at HAL layer. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,835 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Recording Framework Interface > sf_audio_record_api_t Struct Reference

 Gets version and stores it in provided pointer p_version. More...

Detailed Description

Framework Audio Recording API structure. Implementations will use the following API.

Field Documentation

◆ close

ssp_err_t(* sf_audio_record_api_t::close) (sf_audio_record_ctrl_t *const p_ctrl)

Releases channel mutex and closes channel at HAL layer.

Implemented as

SF_AUDIO_RECORD_ADC_Close()
SF_AUDIO_RECORD_I2S_Close()

Parameters
[in] p_ctrl Pointer to control block.

◆ infoGet

ssp_err_t(* sf_audio_record_api_t::infoGet) (sf_audio_record_ctrl_t *const p_ctrl,
sf_audio_record_info_t *p_info)

Gets channel information(Mono/Stereo).

Implemented as

SF_AUDIO_RECORD_ADC_InfoGet()
SF_AUDIO_RECORD_I2S_InfoGet()

Parameters
[in] p_ctrl Pointer to control block.

[out] p_info Pointer to information block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,836 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Recording Framework Interface > sf_audio_record_api_t Struct Reference

◆ open

ssp_err_t(* sf_audio_record_api_t::open) (sf_audio_record_ctrl_t *const p_ctrl, sf_audio_record_cfg_t
const *const p_cfg)

Initializes audio recording framework.

Implemented as

SF_AUDIO_RECORD_ADC_Open()
SF_AUDIO_RECORD_I2S_Open()

Parameters
[in,out] p_ctrl Pointer to a structure

allocated by user. Elements
initialized here.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

◆ start

ssp_err_t(* sf_audio_record_api_t::start) (sf_audio_record_ctrl_t *const p_ctrl)

Starts audio recording.

Implemented as

SF_AUDIO_RECORD_ADC_Start()
SF_AUDIO_RECORD_I2S_Start()

Parameters
[in] p_ctrl Pointer to control block set

◆ stop

ssp_err_t(* sf_audio_record_api_t::stop) (sf_audio_record_ctrl_t *const p_ctrl)

Stops audio recording.

Implemented as

SF_AUDIO_RECORD_ADC_Stop()
SF_AUDIO_RECORD_I2S_Stop()

Parameters
[in] p_ctrl Pointer to control block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,837 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Recording Framework Interface > sf_audio_record_api_t Struct Reference

◆ versionGet

ssp_err_t(* sf_audio_record_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Implemented as

SF_AUDIO_RECORD_ADC_VersionGet()
SF_AUDIO_RECORD_I2S_VersionGet()

Parameters
[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

sf_audio_record_api.h

 sf_audio_record_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Audio Recording Framework
Interface

#include <sf_audio_record_api.h>

Data Fields

sf_audio_record_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_audio_record_cfg_t const
*

p_cfg

 Pointer to the configuration structure for this instance.

sf_audio_record_api_t const
*

p_api

 Pointer to the API structure for this instance.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,838 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Audio Recording Framework Interface > sf_audio_record_instance_t Struct Reference

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_audio_record_api.h

5.1.2.5 SF BLE Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Framework Interface. More...

Data Structures

struct sf_ble_addr_t

struct sf_ble_adv_data_t

struct sf_ble_event_info_t

struct sf_ble_sec_info_t

struct sf_ble_provisioning_t

struct sf_ble_scan_info_t

struct sf_ble_bonding_start_t

struct sf_ble_bonding_response_t

struct sf_ble_sm_tk_info_t

struct sf_ble_sm_tk_ind_t

struct sf_ble_addr_verify_ind_t

struct sf_ble_sm_key_ind_t

struct sf_ble_sm_enc_info_t

struct sf_ble_sec_enc_start_ind_t

struct sf_ble_scan_response_data_t

struct sf_ble_adv_info_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,839 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

struct sf_ble_scan_t

struct sf_ble_connection_t

struct sf_ble_disconnect_t

struct sf_ble_chipset_info_t

struct sf_ble_info_t

struct sf_ble_bonding_req_ind_t

struct sf_ble_connect_info_t

struct sf_ble_set_tx_pwr_info_t

struct sf_ble_uuid_t

struct sf_ble_svc_attribute_t

struct sf_ble_char_attribute_t

struct sf_ble_gatt_attr_event_t

struct sf_ble_service_discovery_rsp_t

struct sf_ble_service_discovery_req_t

struct sf_ble_char_discovery_req_t

struct sf_ble_char_discovery_rsp_t

struct sf_ble_char_desc_discovery_rsp_t

struct sf_ble_char_multiple_read_req_t

struct sf_ble_char_read_req_t

struct sf_ble_char_multiple_read_rsp_t

struct sf_ble_char_read_by_uuid_rsp_t

struct sf_ble_char_read_by_handle_rsp_t

union sf_ble_char_read_rsp_t

struct sf_ble_char_write_req_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,840 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

struct sf_ble_gatt_notif_ind_event_data_t

struct sf_ble_write_cmd_event_data_t

struct sf_ble_ctrl_t

struct sf_ble_cfg_t

struct sf_ble_api_t

struct sf_ble_instance_t

Macros

#define SF_BLE_API_VERSION_MAJOR (2U)

#define SF_BLE_API_VERSION_MINOR (0U)

#define SF_BLE_MAX_BLE_ADV_DATA_LEN (100U)

 BLE advertising data length.

#define SF_BLE_MAX_NAME_LEN (66U)

 Maximum length of name for BLE device.

#define SF_BLE_MAX_GAP_NAME_LEN (23U)

 Maximum length of GAP name.

#define SF_BLE_ADDR_LEN (6U)

 BLE address length.

#define SF_BLE_SEC_KEY_LEN (0x10U)

 BLE Security Key length.

#define SF_BLE_128BITS_UUID_LENGTH (16U)

 128 bit UUID length

#define SF_BLE_RAND_NUM_LENGTH (8U)

 Rand Number length.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,841 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

#define SF_BLE_TRUE (1U)

 Boolean True Condition.

#define SF_BLE_FALSE (0U)

 Boolean False Condition.

#define SF_BLE_MAX_MULTI_CHAR_READ_CNT (4U)

#define SF_BLE_MAX_CHAR_UUID_READ_CNT (10U)

#define SF_BLE_GATT_LEN_UNDEF (0xFF)

#define SF_BLE_ADV_DATA_LEN (0x1F)

#define SF_BLE_GATT_PRI_SERVICE (0x2800U)

#define SF_BLE_GATT_INCLUDE_SERVICE (0x2802U)

#define SF_BLE_GATT_CHAR_DECLARE (0x2803U)

#define SF_BLE_TX_POWER_CONNECTION_HANDLE (0xFFFFU)

Typedefs

typedef void(* sf_ble_callback_t) (sf_ble_event_info_t *ev)

typedef uint16_t sf_ble_conn_handle_t

Enumerations

enum sf_ble_event_t {
 SF_BLE_EVENT_NONE, SF_BLE_EVENT_BONDING_INDICATION,
SF_BLE_EVENT_CONNECTION_COMP,
SF_BLE_EVENT_DISCONNECT_COMP,
 SF_BLE_EVENT_SM_TK_REQ_IND, SF_BLE_EVENT_SM_KEY_IND,
SF_BLE_EVENT_SM_CHK_BD_ADDR_REQ,
SF_BLE_EVENT_SM_ENC_START_IND,
 SF_BLE_EVENT_GATT_NOTIFICATION,
SF_BLE_EVENT_GATT_INDICATION,
SF_BLE_EVENT_GATT_WRITE_CMD_INDICATION,
SF_BLE_EVENT_GATT_RESPONSE_TIMEOUT,
 SF_BLE_EVENT_GATT_ATTR_WRITE_REQ,
SF_BLE_EVENT_GATT_ATTR_READ_REQ,
SF_BLE_EVENT_GATT_ATTR_WRITE_COMPLETE,
SF_BLE_EVENT_GATT_ATTR_WRITE_CCCD_REQ,
 SF_BLE_EVENT_GATT_ATTR_WRITE_CCCD_COMPLETE
}

enum sf_ble_gap_role_t { SF_BLE_GAP_ROLE_MASTER,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,842 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

SF_BLE_GAP_ROLE_SLAVE, SF_BLE_GAP_ROLE_OBSERVER,
SF_BLE_GAP_ROLE_BROADCASTER }

enum sf_ble_addr_type_t { SF_BLE_ADDR_TYPE_PUBLIC,
SF_BLE_ADDR_TYPE_RANDOM }

enum sf_ble_scan_mode_t { SF_BLE_SCAN_MODE_PASSIVE,
SF_BLE_SCAN_MODE_ACTIVE }

enum sf_ble_bonding_mode_t { SF_BLE_BONDING_MODE_NONBONDABLE,
SF_BLE_BONDING_MODE_BONDABLE }

enum sf_ble_sec_mode_t {
 SF_BLE_SEC_MODE1_LVL1_NO_SEC,
SF_BLE_SEC_MODE1_LVL2_NOAUTH_PAIR_ENC,
SF_BLE_SEC_MODE1_LVL3_AUTH_PAIR_ENC,
SF_BLE_SEC_MODE1_LVL4_AUTHLE_PAIR_ENC,
 SF_BLE_SEC_MODE2_LVL1_NOAUTH_DATA_SIGNED,
SF_BLE_SEC_MODE2_LVL2_AUTH_DATA_SIGNED
}

enum sf_ble_disc_type_t { SF_BLE_DISC_TYPE_NON_DISCOVERABLE =
0x01, SF_BLE_DISC_TYPE_GENERAL_DISCOVERABLE = 0x02,
SF_BLE_DISC_TYPE_LIMITED_DISCOVERABLE = 0x04 }

enum sf_ble_conn_type_t { SF_BLE_CONN_TYPE_NON_CONNECTABLE,
SF_BLE_CONN_TYPE_UNDIRECTED_CONNECTABLE,
SF_BLE_CONN_TYPE_DIRECTED_CONNECTABLE }

enum sf_ble_adv_type_t {
 SF_BLE_ADV_TYPE_CONN_UNDIR,
SF_BLE_ADV_TYPE_CONN_DIR_HIGH_DUTY,
SF_BLE_ADV_TYPE_DISC_UNDIR,
SF_BLE_ADV_TYPE_NONCONN_UNDIR,
 SF_BLE_ADV_TYPE_CONN_DIR_LOW_DUTY
}

enum sf_ble_adv_filt_type_t { SF_BLE_ADV_FILT_TYPE_ALLOW_ALL,
SF_BLE_ADV_FILT_TYPE_ALLOW_SCAN_WLIST_CON_ANY,
SF_BLE_ADV_FILT_TYPE_ALLOW_SCAN_ANY_CON_WLIST,
SF_BLE_ADV_FILT_TYPE_ALLOW_WLIST_ONLY }

enum sf_ble_duplicate_filter_t { SF_BLE_DUPLICATE_FILTER_ENABLE,
SF_BLE_DUPLICATE_FILTER_DISABLE }

enum sf_ble_init_filt_type_t { SF_BLE_INIT_FILT_TYPE_IGNORE_WLIST,
SF_BLE_INIT_FILT_TYPE_USE_WLIST }

enum sf_ble_adv_chnl_map_t { SF_BLE_ADV_CHNL_37,
SF_BLE_ADV_CHNL_38, SF_BLE_ADV_CHNL_39,
SF_BLE_ADV_CHNL_ALL_CHANNELS }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,843 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

enum sf_ble_iocap_t {
 SF_BLE_IO_CAP_DISPLAY_ONLY, SF_BLE_IO_CAP_DISPLAY_YES_NO,
SF_BLE_IO_CAP_KB_ONLY, SF_BLE_IO_CAP_NO_INPUT_NO_OUTPUT,
 SF_BLE_IO_CAP_KB_DISPLAY
}

enum sf_ble_auth_type_t { SF_BLE_AUTH_TYPE_NONE,
SF_BLE_AUTH_TYPE_UNAUTHENTICATED_NO_MITM,
SF_BLE_AUTH_TYPE_AUTHENTICATED_MITM }

enum sf_ble_disconnect_reason_t {
SF_BLE_DISCONNECT_REASON_LOCAL_HOST,
SF_BLE_DISCONNECT_REASON_REMOTE_USER,
SF_BLE_DISCONNECT_REASON_ERR }

enum sf_ble_key_dist_t { SF_BLE_KEY_DIST_NONE = 0x00,
SF_BLE_KEY_DIST_ENCKEY = 0x01, SF_BLE_KEY_DIST_IDKEY = 0x02,
SF_BLE_KEY_DIST_SIGNKEY = 0x04 }

enum sf_ble_tx_pwr_state_t { SF_BLE_TX_PWR_STATE_NORMAL,
SF_BLE_TX_PWR_STATE_ADAPT_NEAR,
SF_BLE_TX_PWR_STATE_ADAPT_MIDDLE,
SF_BLE_TX_PWR_STATE_ADAPT_FAR }

enum sf_ble_char_property_t {
 SF_BLE_CHAR_PROPERTY_BCAST = 0x01U,
SF_BLE_CHAR_PROPERTY_RD = 0x02U,
SF_BLE_CHAR_PROPERTY_WR_NO_RESP = 0x04U,
SF_BLE_CHAR_PROPERTY_WR = 0x08U,
 SF_BLE_CHAR_PROPERTY_NTF = 0x10U,
SF_BLE_CHAR_PROPERTY_IND = 0x20U,
SF_BLE_CHAR_PROPERTY_AUTH = 0x40U,
SF_BLE_CHAR_PROPERTY_EXT_PROP = 0x80U
}

enum sf_ble_service_discovery_t {
SF_BLE_SERVICE_DISCOVERY_PRIMARY_ALL = 0x1,
SF_BLE_SERVICE_DISCOVERY_PRIMARY_UUID = 0x10,
SF_BLE_SERVICE_DISCOVERY_INCLUDED = 0x100 }

enum sf_ble_char_discovery_t { SF_BLE_CHAR_DISCOVERY_ALL = 0x1,
SF_BLE_CHAR_DISCOVERY_UUID = 0x10 }

enum sf_ble_uuid_length_t { SF_BLE_UUID_LENGTH_16BITS = 2,
SF_BLE_UUID_LENGTH_32BITS = 4, SF_BLE_UUID_LENGTH_128BITS =
16 }

enum sf_ble_char_read_t {
 SF_BLE_CHAR_READ_BY_HANDLE = 1,
SF_BLE_CHAR_READ_BY_UUID = 2,
SF_BLE_CHAR_READ_LONG_BY_HANDLE = 3,
SF_BLE_CHAR_DESC_READ_BY_HANDLE = 4,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,844 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

 SF_BLE_CHAR_DESC_READ_LONG_BY_HANDLE = 5,
SF_BLE_CHAR_READ_MULTIPLE_BY_HANDLES = 6
}

enum sf_ble_char_write_t {
 SF_BLE_CHAR_WRITE_NO_RESPONSE = 1, SF_BLE_CHAR_WRITE =
2, SF_BLE_CHAR_WRITE_LONG = 3, SF_BLE_CHAR_DESC_WRITE = 4,
 SF_BLE_CHAR_DESC_WRITE_LONG = 5
}

enum sf_ble_execute_write_t { SF_BLE_EXECUTE_WRITE_FALSE = 0,
SF_BLE_EXECUTE_WRITE_TRUE = 1 }

enum sf_ble_write_response_t { SF_BLE_WRITE_RESPONSE_NOT_REQUIRED
= 0, SF_BLE_WRITE_RESPONSE_REQUIRED = 1 }

enum sf_ble_attribute_error_code_t {
 SF_BLE_ATTRIBUTE_ERR_SUCCESS = 0x00,
SF_BLE_ATTRIBUTE_ERR_INVALID_HANDLE = 0x01,
SF_BLE_ATTRIBUTE_ERR_WRITE_NOT_PERMITTED = 0x03,
SF_BLE_ATTRIBUTE_ERR_INSUFF_AUTHEN = 0x05,
 SF_BLE_ATTRIBUTE_ERR_REQUEST_NOT_SUPPORTED = 0x06,
SF_BLE_ATTRIBUTE_ERR_INVALID_OFFSET = 0x07,
SF_BLE_ATTRIBUTE_ERR_INSUFF_AUTHOR = 0x08,
SF_BLE_ATTRIBUTE_ERR_ATTRIBUTE_NOT_FOUND = 0x0a,
 SF_BLE_ATTRIBUTE_ERR_ATTRIBUTE_NOT_LONG = 0x0b,
SF_BLE_ATTRIBUTE_ERR_INVALID_ATTRIBUTE_VAL_LEN = 0x0d,
SF_BLE_ATTRIBUTE_ERR_INSUFF_ENC = 0x0f,
SF_BLE_ATTRIBUTE_ERR_OUT_OF_RANGE = 0xFF
}

enum sf_ble_char_attr_permissions_t {
 SF_BLE_ATT_PERMISSIONS_ALLACCESS = 0x00u,
SF_BLE_ATT_PERMISSIONS_READ_AUTHENTICATION = 0x01u,
SF_BLE_ATT_PERMISSIONS_READ_ENCRYPTION = 0x02u,
SF_BLE_ATT_PERMISSIONS_READ_AUTHORIZATION = 0x04u,
 SF_BLE_ATT_PERMISSIONS_READ_FORBIDDEN = 0x08u,
SF_BLE_ATT_PERMISSIONS_WRITE_AUTHENTICATION = 0x10u,
SF_BLE_ATT_PERMISSIONS_WRITE_ENCRYPTION = 0x20u,
SF_BLE_ATT_PERMISSIONS_WRITE_AUTHORIZATION = 0x40u,
 SF_BLE_ATT_PERMISSIONS_WRITE_FORBIDDEN = 0x80u,
SF_BLE_ATT_PERMISSIONS_NOACCESS = 0x88u
}

enum sf_ble_adv_event_type_t {
 SF_BLE_ADV_EVENT_TYPE_CONN_UND_ADV,
SF_BLE_ADV_EVENT_TYPE_CONN_DIR_ADV,
SF_BLE_ADV_EVENT_TYPE_SCANNABLE_UND_ADV,
SF_BLE_ADV_EVENT_TYPE_NON_CONN_UND_ADV,
 SF_BLE_ADV_EVENT_TYPE_SCAN_RESPONSE
}

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,845 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

Detailed Description

RTOS-integrated SF BLE Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Framework.

Macro Definition Documentation

◆ SF_BLE_ADV_DATA_LEN

#define SF_BLE_ADV_DATA_LEN (0x1F)

BLE Advertising Data Length

◆ SF_BLE_API_VERSION_MAJOR

#define SF_BLE_API_VERSION_MAJOR (2U)

Major Version of the API defined in this file

◆ SF_BLE_API_VERSION_MINOR

#define SF_BLE_API_VERSION_MINOR (0U)

Minor Version of the API defined in this file

◆ SF_BLE_GATT_CHAR_DECLARE

#define SF_BLE_GATT_CHAR_DECLARE (0x2803U)

BLE GATT Declare Characteristics

◆ SF_BLE_GATT_INCLUDE_SERVICE

#define SF_BLE_GATT_INCLUDE_SERVICE (0x2802U)

BLE GATT Service type Included

◆ SF_BLE_GATT_LEN_UNDEF

#define SF_BLE_GATT_LEN_UNDEF (0xFF)

Variable length characteristic value which can not be defined

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,846 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

◆ SF_BLE_GATT_PRI_SERVICE

#define SF_BLE_GATT_PRI_SERVICE (0x2800U)

BLE GATT Service type Primary

◆ SF_BLE_MAX_CHAR_UUID_READ_CNT

#define SF_BLE_MAX_CHAR_UUID_READ_CNT (10U)

Maximum characteristics count in result of characteristic read by UUID

◆ SF_BLE_MAX_MULTI_CHAR_READ_CNT

#define SF_BLE_MAX_MULTI_CHAR_READ_CNT (4U)

Maximum characteristics count for multiple read

◆ SF_BLE_TX_POWER_CONNECTION_HANDLE

#define SF_BLE_TX_POWER_CONNECTION_HANDLE (0xFFFFU)

BLE connection handle value when TX power is set

Typedef Documentation

◆ sf_ble_callback_t

typedef void(* sf_ble_callback_t) (sf_ble_event_info_t *ev)

BLE Callback Type

◆ sf_ble_conn_handle_t

typedef uint16_t sf_ble_conn_handle_t

BLE Connection Handle

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,847 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

◆ sf_ble_addr_type_t

enum sf_ble_addr_type_t

BLE address type

Enumerator

SF_BLE_ADDR_TYPE_PUBLIC BLE address type public.

SF_BLE_ADDR_TYPE_RANDOM BLE address type random.

◆ sf_ble_adv_chnl_map_t

enum sf_ble_adv_chnl_map_t

BLE advertisement channel map

Enumerator

SF_BLE_ADV_CHNL_37 Enable channel 37 use.

SF_BLE_ADV_CHNL_38 Enable channel 38 use.

SF_BLE_ADV_CHNL_39 Enable channel 39 use.

SF_BLE_ADV_CHNL_ALL_CHANNELS all channels(37, 38 and 39) enabled

◆ sf_ble_adv_event_type_t

enum sf_ble_adv_event_type_t

BLE advertising event type

Enumerator

SF_BLE_ADV_EVENT_TYPE_CONN_UND_ADV Connectable undirected advertising.

SF_BLE_ADV_EVENT_TYPE_CONN_DIR_ADV Connectable directed advertising.

SF_BLE_ADV_EVENT_TYPE_SCANNABLE_UND_AD
V

Scannable undirected advertising.

SF_BLE_ADV_EVENT_TYPE_NON_CONN_UND_ADV

Non connectable undirected advertising.

SF_BLE_ADV_EVENT_TYPE_SCAN_RESPONSE Scan response.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,848 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

◆ sf_ble_adv_filt_type_t

enum sf_ble_adv_filt_type_t

BLE advertisement filter type

Enumerator

SF_BLE_ADV_FILT_TYPE_ALLOW_ALL Filter type allow all.

SF_BLE_ADV_FILT_TYPE_ALLOW_SCAN_WLIST_CO
N_ANY

Filter type scan only whitelist entries, connect
to any.

SF_BLE_ADV_FILT_TYPE_ALLOW_SCAN_ANY_CON
_WLIST

Filter type scan any, connect to whitelist
entries only.

SF_BLE_ADV_FILT_TYPE_ALLOW_WLIST_ONLY Filter type allow whitelist only for both scan
and connection.

◆ sf_ble_adv_type_t

enum sf_ble_adv_type_t

BLE advertisement type

Enumerator

SF_BLE_ADV_TYPE_CONN_UNDIR Connectable Undirected advertising.

SF_BLE_ADV_TYPE_CONN_DIR_HIGH_DUTY Connectable high duty cycle directed
advertising.

SF_BLE_ADV_TYPE_DISC_UNDIR Discoverable undirected advertising.

SF_BLE_ADV_TYPE_NONCONN_UNDIR Non-connectable undirected advertising.

SF_BLE_ADV_TYPE_CONN_DIR_LOW_DUTY Connectable low duty cycle directed
advertising.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,849 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

◆ sf_ble_attribute_error_code_t

enum sf_ble_attribute_error_code_t

BLE Attribute write response code

Enumerator

SF_BLE_ATTRIBUTE_ERR_SUCCESS Success.

SF_BLE_ATTRIBUTE_ERR_INVALID_HANDLE Invalid handle.

SF_BLE_ATTRIBUTE_ERR_WRITE_NOT_PERMITTE
D

Writing is not permitted.

SF_BLE_ATTRIBUTE_ERR_INSUFF_AUTHEN Authentication required for the request.

SF_BLE_ATTRIBUTE_ERR_REQUEST_NOT_SUPPOR
TED

Unsupported request.

SF_BLE_ATTRIBUTE_ERR_INVALID_OFFSET Invalid offset.

SF_BLE_ATTRIBUTE_ERR_INSUFF_AUTHOR Authorization required for the request.

SF_BLE_ATTRIBUTE_ERR_ATTRIBUTE_NOT_FOUN
D

The attribute could not be found.

SF_BLE_ATTRIBUTE_ERR_ATTRIBUTE_NOT_LONG The attribute is not long enough.

SF_BLE_ATTRIBUTE_ERR_INVALID_ATTRIBUTE_VA
L_LEN

Invalid attribute value size.

SF_BLE_ATTRIBUTE_ERR_INSUFF_ENC Encryption required for the request.

SF_BLE_ATTRIBUTE_ERR_OUT_OF_RANGE Out of Range.

◆ sf_ble_auth_type_t

enum sf_ble_auth_type_t

BLE security authorization requirement

Enumerator

SF_BLE_AUTH_TYPE_NONE No Security.

SF_BLE_AUTH_TYPE_UNAUTHENTICATED_NO_MIT
M

No MITM.

SF_BLE_AUTH_TYPE_AUTHENTICATED_MITM MITM Protected.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,850 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

◆ sf_ble_bonding_mode_t

enum sf_ble_bonding_mode_t

BLE bonding mode

Enumerator

SF_BLE_BONDING_MODE_NONBONDABLE BLE bonding not supported.

SF_BLE_BONDING_MODE_BONDABLE BLE bonding supported.

◆ sf_ble_char_attr_permissions_t

enum sf_ble_char_attr_permissions_t

BLE GATT Attribute characteristics permission

Enumerator

SF_BLE_ATT_PERMISSIONS_ALLACCESS Full access.

SF_BLE_ATT_PERMISSIONS_READ_AUTHENTICATI
ON

Read with authentication.

SF_BLE_ATT_PERMISSIONS_READ_ENCRYPTION Read with encryption.

SF_BLE_ATT_PERMISSIONS_READ_AUTHORIZATI
ON

Read with authorization.

SF_BLE_ATT_PERMISSIONS_READ_FORBIDDEN Read forbidden.

SF_BLE_ATT_PERMISSIONS_WRITE_AUTHENTICAT
ION

Write with authentication.

SF_BLE_ATT_PERMISSIONS_WRITE_ENCRYPTION Write with encryption.

SF_BLE_ATT_PERMISSIONS_WRITE_AUTHORIZATI
ON

Write with authorization.

SF_BLE_ATT_PERMISSIONS_WRITE_FORBIDDEN Write forbidden.

SF_BLE_ATT_PERMISSIONS_NOACCESS No access.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,851 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

◆ sf_ble_char_discovery_t

enum sf_ble_char_discovery_t

Characteristics discovery type

Enumerator

SF_BLE_CHAR_DISCOVERY_ALL Discover all characteristics.

SF_BLE_CHAR_DISCOVERY_UUID Discover characteristics by UUID.

◆ sf_ble_char_property_t

enum sf_ble_char_property_t

Characteristic property

Enumerator

SF_BLE_CHAR_PROPERTY_BCAST Permits broadcasts of the Characteristic Value.

SF_BLE_CHAR_PROPERTY_RD Permits reads of the Characteristic Value.

SF_BLE_CHAR_PROPERTY_WR_NO_RESP Permits writes of the Characteristic Value
without response.

SF_BLE_CHAR_PROPERTY_WR Permits writes of the Characteristic Value with
response.

SF_BLE_CHAR_PROPERTY_NTF Permits notifications of the Characteristic
Value without acknowledgment.

SF_BLE_CHAR_PROPERTY_IND Permits indications of a Characteristic Value
with acknowledgment.

SF_BLE_CHAR_PROPERTY_AUTH Permits signed writes to the Characteristic
Value.

SF_BLE_CHAR_PROPERTY_EXT_PROP Additional characteristic properties.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,852 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

◆ sf_ble_char_read_t

enum sf_ble_char_read_t

Characteristics read type

Enumerator

SF_BLE_CHAR_READ_BY_HANDLE Read single characteristic by handle.

SF_BLE_CHAR_READ_BY_UUID Read single characteristic by UUID.

SF_BLE_CHAR_READ_LONG_BY_HANDLE Read single long characteristic by handle.

SF_BLE_CHAR_DESC_READ_BY_HANDLE Read single characteristic descriptor by
handle.

SF_BLE_CHAR_DESC_READ_LONG_BY_HANDLE Read single long characteristic descriptor by
handle.

SF_BLE_CHAR_READ_MULTIPLE_BY_HANDLES Read multiple characteristics by handles.

◆ sf_ble_char_write_t

enum sf_ble_char_write_t

Characteristics write type

Enumerator

SF_BLE_CHAR_WRITE_NO_RESPONSE Write single characteristic with no response.

SF_BLE_CHAR_WRITE Write single characteristic with response.

SF_BLE_CHAR_WRITE_LONG Write single long characteristic with response.

SF_BLE_CHAR_DESC_WRITE Write single characteristic descriptor with
response.

SF_BLE_CHAR_DESC_WRITE_LONG Write single long characteristic descriptor with
response.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,853 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

◆ sf_ble_conn_type_t

enum sf_ble_conn_type_t

BLE connection type

Enumerator

SF_BLE_CONN_TYPE_NON_CONNECTABLE Connection type connection not allowed.

SF_BLE_CONN_TYPE_UNDIRECTED_CONNECTABL
E

Connection type undirected.

SF_BLE_CONN_TYPE_DIRECTED_CONNECTABLE Connection type directed.

◆ sf_ble_disc_type_t

enum sf_ble_disc_type_t

BLE discovery type

Enumerator

SF_BLE_DISC_TYPE_NON_DISCOVERABLE BLE non-discoverable.

SF_BLE_DISC_TYPE_GENERAL_DISCOVERABLE BLE discoverable.

SF_BLE_DISC_TYPE_LIMITED_DISCOVERABLE BLE limited discoverable.

◆ sf_ble_disconnect_reason_t

enum sf_ble_disconnect_reason_t

BLE security authorization requirement

Enumerator

SF_BLE_DISCONNECT_REASON_LOCAL_HOST Disconnected by local machine.

SF_BLE_DISCONNECT_REASON_REMOTE_USER Disconnected by remote device.

SF_BLE_DISCONNECT_REASON_ERR Error in Connection so disconnected.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,854 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

◆ sf_ble_duplicate_filter_t

enum sf_ble_duplicate_filter_t

BLE Duplicate Filter Configuration

Enumerator

SF_BLE_DUPLICATE_FILTER_ENABLE Enable Duplicate filter in Scan.

SF_BLE_DUPLICATE_FILTER_DISABLE Disbale Duplicate filter in Scan.

◆ sf_ble_event_t

enum sf_ble_event_t

BLE events

Enumerator

SF_BLE_EVENT_NONE BLE user event none.

SF_BLE_EVENT_BONDING_INDICATION BLE user event indicating reception of bonding
request.

SF_BLE_EVENT_CONNECTION_COMP BLE user event indicating connection
completion.

SF_BLE_EVENT_DISCONNECT_COMP BLE user event indicating disconnect.

SF_BLE_EVENT_SM_TK_REQ_IND BLE user event indicating request for
Temporary key.

SF_BLE_EVENT_SM_KEY_IND BLE user event indicating received key from
user.

SF_BLE_EVENT_SM_CHK_BD_ADDR_REQ BLE user event indicating validation of remote
address.

SF_BLE_EVENT_SM_ENC_START_IND BLE user event indicating encryption started.

SF_BLE_EVENT_GATT_NOTIFICATION BLE user event for Notification from peer.

SF_BLE_EVENT_GATT_INDICATION BLE user event for Indication from peer.

SF_BLE_EVENT_GATT_WRITE_CMD_INDICATION BLE user event for Write command from peer.

SF_BLE_EVENT_GATT_RESPONSE_TIMEOUT BLE user event for GATT operation timeout.

SF_BLE_EVENT_GATT_ATTR_WRITE_REQ BLE user event for Remote Write request on

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,855 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

user Attributes.

SF_BLE_EVENT_GATT_ATTR_READ_REQ BLE user event for Remote Read request on
user Attributes.

SF_BLE_EVENT_GATT_ATTR_WRITE_COMPLETE BLE user event Indicating Remote Write
complete for user Attributes.

SF_BLE_EVENT_GATT_ATTR_WRITE_CCCD_REQ BLE user event for Remote CCCD Write request
on user Attributes.

SF_BLE_EVENT_GATT_ATTR_WRITE_CCCD_COMP
LETE

BLE user event Indicating Remote CCCD Write
complete for user Attributes.

◆ sf_ble_execute_write_t

enum sf_ble_execute_write_t

Characteristic execute write flag

Enumerator

SF_BLE_EXECUTE_WRITE_FALSE Execute write false i.e. cancel write
operations.

SF_BLE_EXECUTE_WRITE_TRUE Execute write true i.e. execute write
operations.

◆ sf_ble_gap_role_t

enum sf_ble_gap_role_t

GAP role

Enumerator

SF_BLE_GAP_ROLE_MASTER GAP role master/central.

SF_BLE_GAP_ROLE_SLAVE GAP role slave/peripheral.

SF_BLE_GAP_ROLE_OBSERVER GAP role Observer.

SF_BLE_GAP_ROLE_BROADCASTER GAP role Broadcaster.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,856 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

◆ sf_ble_init_filt_type_t

enum sf_ble_init_filt_type_t

BLE initial filter type

Enumerator

SF_BLE_INIT_FILT_TYPE_IGNORE_WLIST Ignore whitelist.

SF_BLE_INIT_FILT_TYPE_USE_WLIST Use whitelist.

◆ sf_ble_iocap_t

enum sf_ble_iocap_t

BLE System IO Capabilities

Enumerator

SF_BLE_IO_CAP_DISPLAY_ONLY Display Only.

SF_BLE_IO_CAP_DISPLAY_YES_NO Display Yes No.

SF_BLE_IO_CAP_KB_ONLY Keyboard Only.

SF_BLE_IO_CAP_NO_INPUT_NO_OUTPUT No Input No Output.

SF_BLE_IO_CAP_KB_DISPLAY Keyboard Display.

◆ sf_ble_key_dist_t

enum sf_ble_key_dist_t

BLE security key distribution type

Enumerator

SF_BLE_KEY_DIST_NONE No Keys to distribute.

SF_BLE_KEY_DIST_ENCKEY Encryption key in distribution.

SF_BLE_KEY_DIST_IDKEY IRK (ID key)in distribution.

SF_BLE_KEY_DIST_SIGNKEY CSRK(Signature key) in distribution.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,857 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

◆ sf_ble_scan_mode_t

enum sf_ble_scan_mode_t

BLE scan mode

Enumerator

SF_BLE_SCAN_MODE_PASSIVE BLE scan mode passive.

SF_BLE_SCAN_MODE_ACTIVE BLE scan mode active.

◆ sf_ble_sec_mode_t

enum sf_ble_sec_mode_t

BLE security mode

Enumerator

SF_BLE_SEC_MODE1_LVL1_NO_SEC BLE no security.

SF_BLE_SEC_MODE1_LVL2_NOAUTH_PAIR_ENC BLE no authentication pairing encryption.

SF_BLE_SEC_MODE1_LVL3_AUTH_PAIR_ENC Authenticated pairing with encryption.

SF_BLE_SEC_MODE1_LVL4_AUTHLE_PAIR_ENC Authenticated LE Secure Connections pairing
with encryption.

SF_BLE_SEC_MODE2_LVL1_NOAUTH_DATA_SIGN
ED

Unauthenticated pairing with data signing.

SF_BLE_SEC_MODE2_LVL2_AUTH_DATA_SIGNED Authentication pairing with data signing.

◆ sf_ble_service_discovery_t

enum sf_ble_service_discovery_t

Service discovery type

Enumerator

SF_BLE_SERVICE_DISCOVERY_PRIMARY_ALL Discover all primary services.

SF_BLE_SERVICE_DISCOVERY_PRIMARY_UUID Discover primary service by UUID.

SF_BLE_SERVICE_DISCOVERY_INCLUDED Discover includes services.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,858 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface

◆ sf_ble_tx_pwr_state_t

enum sf_ble_tx_pwr_state_t

BLE Transmit power state

Enumerator

SF_BLE_TX_PWR_STATE_NORMAL Functionality disabled.

SF_BLE_TX_PWR_STATE_ADAPT_NEAR RF low-power mode.

SF_BLE_TX_PWR_STATE_ADAPT_MIDDLE RF normal mode.

SF_BLE_TX_PWR_STATE_ADAPT_FAR RF high-performance mode.

◆ sf_ble_uuid_length_t

enum sf_ble_uuid_length_t

UUID length

Enumerator

SF_BLE_UUID_LENGTH_16BITS 16 bit UUID

SF_BLE_UUID_LENGTH_32BITS 32 bit UUID

SF_BLE_UUID_LENGTH_128BITS 128 bit UUID

◆ sf_ble_write_response_t

enum sf_ble_write_response_t

Characteristic execute write flag

Enumerator

SF_BLE_WRITE_RESPONSE_NOT_REQUIRED Write response not required.

SF_BLE_WRITE_RESPONSE_REQUIRED Write response required.

 sf_ble_addr_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,859 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_addr_t Struct Reference

#include <sf_ble_api.h>

Data Fields

uint8_t addr [SF_BLE_ADDR_LEN]

 6-byte array address value

Detailed Description

BLE address

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_adv_data_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint8_t data [SF_BLE_ADV_DATA_LEN]

 Advertising data bytes array.

uint8_t adv_data_length

 Advertising data length.

Detailed Description

BLE Advertising data structure

The documentation for this struct was generated from the following file:

sf_ble_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,860 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_event_info_t Struct Reference

 sf_ble_event_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

void * p_data

 Data for BLE event.

uint16_t event

 Event type.

Detailed Description

BLE event info

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_sec_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_sec_mode_t sec_mode

 security mode

uint8_t id_key [SF_BLE_SEC_KEY_LEN]

 GAP Identity Resolving Security key.

uint8_t csrk_key [SF_BLE_SEC_KEY_LEN]

 GAP Connection Signature Resolving Security key.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,861 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_sec_info_t Struct Reference

uint8_t ltk_key [SF_BLE_SEC_KEY_LEN]

 GAP Connection Long term Security key.

uint8_t rand_num [SF_BLE_RAND_NUM_LENGTH]

 GAP Connection Random number for Long term Security key.

uint16_t ediv

 GAP Connection Encrypted Diversifier for Long term Security key.

Detailed Description

Security Related Configuration

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_provisioning_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint8_t gap_name [SF_BLE_MAX_GAP_NAME_LEN]

 GAP name.

uint8_t bcast_mode

 broadcast mode

sf_ble_bonding_mode_t bonding_mode

 bonding mode

sf_ble_sec_info_t sec_info

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,862 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_provisioning_t Struct Reference

 Security information.

sf_ble_gap_role_t gap_role

 GAP role (master/slave)

sf_ble_callback_t p_ble_callback

Detailed Description

BLE provisioning information

Field Documentation

◆ p_ble_callback

sf_ble_callback_t sf_ble_provisioning_t::p_ble_callback

GAP user event callback that runs in driver thread context. Application should make sure callback
logic is as minimal as possible without any blocking calls

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_scan_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint16_t total_scan_duration

 BLE total scan duration in milliseconds.

sf_ble_scan_mode_t scan_mode

 BLE scan mode.

sf_ble_disc_type_t discovery_type

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,863 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_scan_info_t Struct Reference

 Specifies discovery type, Used only in active scan.

sf_ble_addr_type_t address_type

 BLE address type.

sf_ble_adv_filt_type_t filt_policy

 Scan Filter policy.

sf_ble_duplicate_filter_t duplicate_filt

 Duplicate filter configuration.

Detailed Description

BLE scan information structure

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_bonding_start_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_iocap_t iocap

 IO capabilities.

uint8_t key_size

 Encryption key size.

sf_ble_key_dist_t ikey_dist

 Initiator key distribution.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,864 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_bonding_start_t Struct Reference

sf_ble_key_dist_t rkey_dist

 Responder key distribution.

Detailed Description

BLE Bonding Start information

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_bonding_response_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint8_t accept

 accept or reject bonding

sf_ble_iocap_t io_cap

 IO capabilities.

uint8_t max_key_size

 Max key size.

sf_ble_key_dist_t ikeys

 Initiator key distribution.

sf_ble_key_dist_t rkeys

 Responder key distribution.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,865 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_bonding_response_t Struct Reference

Bonding Response Parameter

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_sm_tk_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_conn_handle_t conhdl

 Connection handle.

uint8_t disp_en

 Whether to enable display.

Detailed Description

Security structures BLE Temporary Key information

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_sm_tk_ind_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_sm_tk_info_t tk_info

 input parameter,information to app about temporary key request

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,866 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_sm_tk_ind_t Struct Reference

uint8_t tk_req_status

 output parameter: request status, application has to set this in
callback event whether request is valid or not

uint8_t tk_key [SF_BLE_SEC_KEY_LEN]

 application has to set this in callback event temporary key for
encryption

Detailed Description

BLE Temporary Key indication

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_addr_verify_ind_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint8_t bd_addr [SF_BLE_ADDR_LEN]

 input parameter specifying bluetooth address of remote device

sf_ble_addr_type_t addr_type

 input parameter specifying Address type of remote BLE device

uint8_t accept_addr

 output parameter: application has to set this parameter in callback if
it accepts this address

Detailed Description

BLE Bluetooth address verification indication

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,867 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_addr_verify_ind_t Struct Reference

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_sm_key_ind_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint8_t conn_idx

 connection index

sf_ble_key_dist_t key_code

 type of security key

uint16_t ediv

 BLE Security EDIV.

uint8_t rand_num [SF_BLE_RAND_NUM_LENGTH]

 Random number for security.

uint8_t ltk_key [SF_BLE_SEC_KEY_LEN]

 BLE long term security key.

Detailed Description

BLE Received Key information

The documentation for this struct was generated from the following file:

sf_ble_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,868 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_sm_enc_info_t Struct Reference

 sf_ble_sm_enc_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_conn_handle_t conn_idx

 connection index

uint16_t ediv

 BLE Security EDIV.

uint8_t rand_num [SF_BLE_RAND_NUM_LENGTH]

 Random number for security.

uint8_t ltk_key [SF_BLE_SEC_KEY_LEN]

 BLE long term security key.

Detailed Description

BLE Start Encryption information

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_sec_enc_start_ind_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_conn_handle_t conhdl

 Connection handle of the remote device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,869 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_sec_enc_start_ind_t Struct Reference

uint8_t status

 Result of encryption start, 0 = SUCCESS else error.

uint8_t key_size

 Key Size.

sf_ble_auth_type_t auth_type

 Security properties.

uint8_t bonding_status

 Bonding Status, 0 = Unbonded, 1 = Bonded.

Detailed Description

Encryption Start Indication Event for user

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_scan_response_data_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint8_t scan_response_data [SF_BLE_ADV_DATA_LEN]

 Advertising data bytes array.

uint8_t scan_response_data_length

 Advertising data length.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,870 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_scan_response_data_t Struct Reference

Scan Response Data for advertising

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_adv_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_disc_type_t disc_mode

 Discovery mode.

sf_ble_conn_type_t conn_mode

 Connection mode.

sf_ble_adv_type_t adv_type

 Advertisement type.

uint16_t adv_intv_min

 Minimum interval for advertising.

uint16_t adv_intv_max

 Maximum interval for advertising.

sf_ble_addr_type_t own_addr_type

 Own address type.

sf_ble_addr_type_t direct_addr_type

 Direct connection address type.

uint8_t direct_bd_addr [SF_BLE_ADDR_LEN]

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,871 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_adv_info_t Struct Reference

 Direct connection BLE address.

sf_ble_adv_chnl_map_t adv_chnl_map

 Advertising channel map.

sf_ble_adv_filt_type_t adv_filt_policy

 Advertising filter policy.

sf_ble_scan_response_data_t scan_response_data

 Scan Response information, will be advertised only for active scan.

sf_ble_adv_data_t adv_data

 Advertising data.

Detailed Description

BLE advertisement information

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_scan_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_addr_type_t addr_type

 Address type of remote BLE device.

uint8_t bd_addr [SF_BLE_ADDR_LEN]

 Remote BLE address.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,872 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_scan_t Struct Reference

uint16_t data_len

 Scan data length.

uint8_t data [SF_BLE_MAX_BLE_ADV_DATA_LEN]

 Scan data.

int16_t rssi

 RSSI value.

sf_ble_adv_event_type_t event_type

 Advertising event type.

Detailed Description

BLE scan information

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_connection_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_init_filt_type_t init_filt_type

 Connection filter type.

sf_ble_addr_type_t addr_type

 BLE address type.

uint8_t bd_addr [SF_BLE_ADDR_LEN]

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,873 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_connection_t Struct Reference

 BLE address.

Detailed Description

BLE connection information

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_disconnect_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_disconnect_reason_t reason

 Disconnection reason.

uint8_t status

 Disconnect status if initiated by local host.

sf_ble_conn_handle_t conhdl

 Connection handle of the remote device.

Detailed Description

BLE Disconnect Event Information

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_chipset_info_t Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,874 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_chipset_info_t Struct Reference

Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint32_t version

 chipset version

uint8_t bd_addr [SF_BLE_ADDR_LEN]

 BLE address.

Detailed Description

BLE chipset information

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_chipset_info_t chipset

 Chipset information.

uint16_t rssi

 RSSI value.

Detailed Description

BLE module information

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,875 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_info_t Struct Reference

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_bonding_req_ind_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_addr_t bd_addr

 BLE address.

uint8_t index

 Connection index.

uint8_t auth_req

 Authentication request type.

uint8_t io_cap

 IO capability.

uint8_t oob_data_flg

 Indicating if OOB data is present.

uint8_t max_enc_size

 Maximum encryption key size.

uint8_t ikey_dist

 Type of key distributed by the initiator.

uint8_t rkey_dist

 Type of key distributed by the responder.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,876 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_bonding_req_ind_t Struct Reference

Detailed Description

BLE bonding request indication information

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_connect_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint8_t status

 Confirmation status.

uint8_t reserved

 Reserved.

sf_ble_conn_handle_t conhdl

 Connection handle.

uint8_t peer_addr_type

 Peer address type.

sf_ble_addr_t peer_addr

 Peer BT address.

uint8_t reserved2

 Reserved.

uint16_t con_interval

 Connection interval.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,877 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_connect_info_t Struct Reference

uint16_t con_latency

 Connection latency.

uint16_t sup_to

 Link supervision time-out.

uint8_t clk_accuracy

 Clock accuracy.

uint8_t reserved3

 Reserved.

Detailed Description

BLE connection information

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_set_tx_pwr_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

int8_t power_lvl

 TX power level in dBm.

sf_ble_tx_pwr_state_t state

 Operating state to set the transmit power level.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,878 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_set_tx_pwr_info_t Struct Reference

BLE set TX power information structure

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_uuid_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_uuid_length_t uuid_length

 Service UUID length.

uint16_t uuid16

 16 bit UUID

uint32_t uuid32

 32 bit UUID

uint8_t uuid128 [SF_BLE_128BITS_UUID_LENGTH]

 128 bit UUID

Detailed Description

Union holding either 16-bit/32-bit/128-bit UUID

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_svc_attribute_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,879 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_svc_attribute_t Struct Reference

#include <sf_ble_api.h>

Data Fields

uint16_t attr_handle

 Service Handle.

uint16_t attr_type

 Attribute type such as SF_BLE_GATT_PRI_SERVICE,
SF_BLE_GATT_INCLUDE_SERVICE.

uint16_t parent_svc_handle

 parent_svc_handle is service handle of parent service which is
already registered More...

uint8_t * p_attr_value

 Service UUID Pointer.

sf_ble_uuid_length_t attr_value_len

 UUID Length.

Detailed Description

BLE GATT Service Attributes

Field Documentation

◆ parent_svc_handle

uint16_t sf_ble_svc_attribute_t::parent_svc_handle

parent_svc_handle is service handle of parent service which is already registered

If service is included service,

The documentation for this struct was generated from the following file:

sf_ble_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,880 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_svc_attribute_t Struct Reference

 sf_ble_char_attribute_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_svc_attribute_t * p_service

 Service to which this characteristics belongs.

sf_ble_uuid_t attr_uuid

 UUID of characteristics value.

uint16_t attr_declare_handle

 Characteristics handle.

uint16_t attr_declare_type

 Characteristics declare type SF_BLE_GATT_CHAR_DECLARE.

uint16_t attr_value_handle

 Characteristics value handle.

sf_ble_char_attr_permissions
_t

attr_perm

 Characteristics permission.

sf_ble_char_property_t attr_properties

 Characteristics properties.

uint8_t * p_attr_value

 Characteristics value data.

uint8_t attr_value_len

 Characteristics value data length.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,881 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_char_attribute_t Struct Reference

Detailed Description

BLE GATT Characteristics Attributes

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_gatt_attr_event_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint16_t attr_handle

 Attribute handle for which event is generated.

uint16_t offset

 The offset at which the client is willing to write.

uint8_t const * p_value

 The value at which the client is willing to write.

uint16_t length

 The amount of bytes that the client is willing to write as from this
offset.

ssp_err_t response

 User will update this variable, Pass SSP_SUCCESS if user accepts the
remote request.

Detailed Description

BLE GATT Characteristics Remote Event data, passed in provision callback for GATT Custom profile

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,882 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_gatt_attr_event_t Struct Reference

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_service_discovery_rsp_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint16_t service_handle

 Service handle.

sf_ble_uuid_t uuid

 Service UUID.

uint16_t start_handle

 Start handle of sub-attributes handle range.

uint16_t end_handle

 End handle of sub-attributes handle range.

Detailed Description

Service discovery result

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_service_discovery_req_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,883 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_service_discovery_req_t Struct Reference

#include <sf_ble_api.h>

Data Fields

sf_ble_uuid_t uuid

 Service UUID.

uint16_t start_handle

 Discovery start handle.

uint16_t end_handle

 Discovery end handle.

sf_ble_service_discovery_t discovery_type

 Service discovery type.

Detailed Description

Service discovery request

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_char_discovery_req_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_uuid_t uuid

 Characteristic UUID.

uint16_t start_handle

 Discovery start handle.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,884 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_char_discovery_req_t Struct Reference

uint16_t end_handle

 Discovery end handle.

sf_ble_char_discovery_t discovery_type

 Characteristic discovery type.

Detailed Description

Characteristic discovery request

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_char_discovery_rsp_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint16_t char_handle

 Characteristic handle.

sf_ble_uuid_t uuid

 Characteristic UUID.

uint16_t value_handle

 Characteristic value handle.

sf_ble_char_property_t property

 Characteristic property.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,885 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_char_discovery_rsp_t Struct Reference

Characteristic discovery result

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_char_desc_discovery_rsp_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint16_t desc_handle

 Characteristic descriptor handle.

sf_ble_uuid_t uuid

 Characteristic descriptor UUID.

Detailed Description

Characteristic descriptor discovery result

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_char_multiple_read_req_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint16_t handles [SF_BLE_MAX_MULTI_CHAR_READ_CNT]

 Characteristic handles for multiple read.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,886 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_char_multiple_read_req_t Struct Reference

uint8_t expected_result_size [SF_BLE_MAX_MULTI_CHAR_READ_CNT]

 Expected result length in bytes.

Detailed Description

Multiple Characteristic descriptor read request

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_char_read_req_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_char_read_t char_read_type

 Characteristic read type.

uint16_t handle

 Characteristic value or descriptor handle.

sf_ble_uuid_t uuid

 Characteristic UUID.

uint16_t offset

 Offset for long Characteristic value.

sf_ble_char_multiple_read_re
q_t *

p_mul_read_req

 Pointer to multiple read Characteristic request.

uint16_t handles_cnt

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,887 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_char_read_req_t Struct Reference

 Characteristic handles count for multiple read.

Detailed Description

Read Characteristic request

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_char_multiple_read_rsp_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint8_t * p_data [SF_BLE_MAX_MULTI_CHAR_READ_CNT]

 Pointer to Characteristic value.

uint16_t data_len [SF_BLE_MAX_MULTI_CHAR_READ_CNT]

 Characteristic value length.

Detailed Description

Read multiple Characteristic response

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_char_read_by_uuid_rsp_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,888 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_char_read_by_uuid_rsp_t Struct Reference

#include <sf_ble_api.h>

Data Fields

uint16_t handle [SF_BLE_MAX_CHAR_UUID_READ_CNT]

 Characteristic handles.

uint8_t * p_data [SF_BLE_MAX_CHAR_UUID_READ_CNT]

 Pointer to Characteristic value.

uint16_t data_len [SF_BLE_MAX_CHAR_UUID_READ_CNT]

 Characteristic value length.

Detailed Description

Read Characteristic by UUID response

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_char_read_by_handle_rsp_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint8_t * p_data

 Pointer to Characteristic value.

uint16_t data_len

 Characteristic value length.

Detailed Description

Read Characteristic by handle response

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,889 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_char_read_by_handle_rsp_t Struct Reference

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_char_read_rsp_t Union Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

sf_ble_char_read_by_handle
_rsp_t *

p_char_read_by_handle_rsp

 Response for read Characteristic by handle.

sf_ble_char_read_by_uuid_rs
p_t *

p_char_read_by_uuid_rsp

 Response for read Characteristic by UUID.

sf_ble_char_multiple_read_rs
p_t *

p_char_multiple_read_rsp

 Response for read multiple Characteristics.

Detailed Description

Read Characteristic response

The documentation for this union was generated from the following file:

sf_ble_api.h

 sf_ble_char_write_req_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,890 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_char_write_req_t Struct Reference

Data Fields

sf_ble_char_write_t char_write_type

 Characteristic write type.

uint16_t handle

 Characteristic value or descriptor handle.

uint8_t * p_data

 Pointer to data.

uint16_t offset

 Offset for long Characteristic value.

uint16_t data_length

 Data length.

sf_ble_execute_write_t auto_execute

 Automatic execute write flag.

Detailed Description

Write Characteristic request

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_gatt_notif_ind_event_data_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint16_t handle

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,891 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_gatt_notif_ind_event_data_t Struct Reference

 Characteristic value or descriptor handle.

uint8_t * p_data

 Pointer to data.

uint16_t data_length

 Data length.

Detailed Description

Notification/Indication event data

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_write_cmd_event_data_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

uint16_t handle

 Characteristic value or descriptor handle.

uint16_t offset

 Offset for long Characteristic value.

sf_ble_write_response_t response_required

 Write response required or not.

uint8_t * p_data

 Pointer to data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,892 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_write_cmd_event_data_t Struct Reference

uint16_t data_length

 Data length.

Detailed Description

Write command event data

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

void * p_driver_handle

 Storage for information needed for each BLE device driver in the
system.

Detailed Description

BLE Framework control structure

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,893 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_cfg_t Struct Reference

Data Fields

uint8_t bd_addr [SF_BLE_ADDR_LEN]

 BLE address.

sf_ble_addr_type_t own_addr_type

 self address type

uint8_t max_slaves

 Maximum slaves allowed to be connected.

uint8_t update_bd_addr

 Set this to true to update bluetooth address during SF_BLE_Open.

uint16_t scan_interval

 BLE scan interval for receiving advertisement.

uint16_t scan_window

 Period of time during which advertising data is received at the scan
interval.

uint16_t disc_time

 Duration for which the device remain discoverable.

uint16_t con_interval

 Interval for transmitting and receiving data periodically after
connection establishment.

uint16_t slave_latency

 Period of time during which data is transmitted and received at the
connection interval.

uint16_t sup_timeout

 Link loss time-out.

void const * p_extend

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,894 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_cfg_t Struct Reference

 Instance specific configuration.

Detailed Description

BLE configuration information

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

#include <sf_ble_api.h>

Data Fields

ssp_err_t(* open)(sf_ble_ctrl_t *const p_ctrl, const sf_ble_cfg_t *p_cfg)

 Initializes the interface for data transfers. More...

ssp_err_t(* close)(sf_ble_ctrl_t *const p_ctrl)

 De-initialize the interface and may put it in low power mode or power
it off. Close the driver, disable the driver link, disable interrupt.
More...

ssp_err_t(* infoGet)(sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *p_handle,
sf_ble_info_t *p_ble_info)

 Get BLE module information like chipset information and RSSI value.
More...

ssp_err_t(* provisionGet)(sf_ble_ctrl_t *const p_ctrl, sf_ble_provisioning_t
*p_ble_provisioning)

 Reads the current BLE Provisioning information. More...

ssp_err_t(* provisionSet)(sf_ble_ctrl_t *const p_ctrl, const sf_ble_provisioning_t
*p_ble_provisioning)

 Provisions the BLE Driver and set bonding and security modes as
provisioned. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,895 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

ssp_err_t(* scan)(sf_ble_ctrl_t *const p_ctrl, sf_ble_scan_t *p_scan, uint8_t
*p_cnt, sf_ble_scan_info_t *p_scan_info)

 Scans for available BLE devices and return the list to the caller.
More...

ssp_err_t(* advertisementStart)(sf_ble_ctrl_t *const p_ctrl, sf_ble_adv_info_t
*const p_advt_info)

 Make the device discoverable by broadcasting device information to
remote devices. More...

ssp_err_t(* advertisementStop)(sf_ble_ctrl_t *const p_ctrl)

 Stop the device from being discoverable. More...

ssp_err_t(* whitelistAdd)(sf_ble_ctrl_t *const p_ctrl, const uint8_t *p_bd_addr)

 Add specified devices to whitelist. More...

ssp_err_t(* whitelistDel)(sf_ble_ctrl_t *const p_ctrl, const uint8_t *p_bd_addr)

 Remove specified devices from whitelist. More...

ssp_err_t(* bondingStart)(sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, const uint8_t *p_bd_addr, sf_ble_bonding_start_t
*p_bonding_start)

 Initiate bonding process with remote BLE device and exchange
security keys if enabled. More...

ssp_err_t(* bondingResponse)(sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, const uint8_t *p_bd_addr, sf_ble_bonding_response_t
*p_bonding_resp)

 Respond to the bonding request from the remote BLE device. Send
bonding response on reception of bonding indication. More...

ssp_err_t(* startEncryption)(sf_ble_ctrl_t *const p_ctrl, sf_ble_sm_enc_info_t
const *p_enc_info)

 Start encryption over a connection. More...

ssp_err_t(* connect)(sf_ble_ctrl_t *const p_ctrl, sf_ble_connection_t const *const
p_conn, sf_ble_conn_handle_t *p_handle)

 Connect to a remote BLE device. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,896 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

ssp_err_t(* listen)(sf_ble_ctrl_t *const p_ctrl)

 Listen for connection request from remote device. More...

ssp_err_t(* authorization)(sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle)

 Indicates that the specified remote device has been authorized by
user. More...

ssp_err_t(* disconnect)(sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle)

 Terminate connection with remote BLE device. More...

ssp_err_t(* setTxPower)(sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *const
p_handle, sf_ble_set_tx_pwr_info_t *p_tx_power_info)

 Sets the transmit power for the procedure specified by the
connection handle. More...

ssp_err_t(* gattAddCustomProfiles)(sf_ble_ctrl_t *const p_ctrl,
sf_ble_svc_attribute_t *p_svc_attr, uint32_t svc_attr_len,
sf_ble_char_attribute_t *p_char_attr, uint32_t char_attr_len)

 Add Custom Profile to GATT Database. More...

ssp_err_t(* gattServiceDiscovery)(sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_ble_service_discovery_req_t
const *const p_sf_ble_svc_dscv_req, sf_ble_service_discovery_rsp_t
*const p_sf_ble_svc_dscv_rsp, uint32_t *const p_rsp_cnt)

 Perform service discovery used by GATT client.Perform service
discovery on remote GATT server and get results. More...

ssp_err_t(* gattCharDiscovery)(sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, sf_ble_char_discovery_req_t const *const
p_sf_ble_char_dscv_req, sf_ble_char_discovery_rsp_t *const
p_sf_ble_char_dscv_rsp, uint32_t *const p_rsp_cnt)

 Perform characteristics discovery used by GATT client.Perform
characteristics discovery on remote GATT server and get results.
More...

ssp_err_t(* gattCharDescDiscovery)(sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, uint16_t start_handle, uint16_t
end_handle, sf_ble_char_desc_discovery_rsp_t *const
p_sf_ble_chardesc_dscv_rsp, uint32_t *const p_rsp_cnt)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,897 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

 Perform characteristics descriptor discovery used by GATT client.
More...

ssp_err_t(* gattCharRead)(sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, sf_ble_char_read_req_t const *const p_char_read_req,
sf_ble_char_read_rsp_t *const p_char_read_rsp)

 Perform read characteristic used by GATT client.Read characteristic
value from remote GATT server. More...

ssp_err_t(* gattCharWrite)(sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, sf_ble_char_write_req_t const *const p_char_write_req)

 Perform write characteristic used by GATT client.Write characteristic
value on remote GATT server. More...

ssp_err_t(* gattCharExecuteWrite)(sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_ble_execute_write_t
execute_flag)

 Perform execute write on all pending write operations, used by GATT
client.Execute or cancel all prepared writes of characteristics on
remote GATT server. More...

ssp_err_t(* gattCharWriteLocal)(sf_ble_ctrl_t *const p_ctrl, uint16_t char_handle,
uint16_t data_length, uint8_t *const p_data)

 Perform local characteristic write used by GATT server.Writes local
characteristic value on GATT server. More...

ssp_err_t(* gattSendNotify)(sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, uint16_t char_handle)

 Send notification to GATT client, used by GATT server. More...

ssp_err_t(* gattSendIndicate)(sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, uint16_t char_handle)

 Send indication to GATT client, used by GATT server.Send indication
to remote GATT client. More...

ssp_err_t(* gattWriteResponse)(sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, uint16_t handle, sf_ble_attribute_error_code_t error_code)

 Send response to write operation received by GATT client, used by
GATT server.Send response for write request received from remote
GATT client. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,898 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Gets version and stores it in provided pointer p_version. More...

Detailed Description

Framework API structure. Implementations will use the following API.

Field Documentation

◆ advertisementStart

ssp_err_t(* sf_ble_api_t::advertisementStart) (sf_ble_ctrl_t *const p_ctrl, sf_ble_adv_info_t *const
p_advt_info)

Make the device discoverable by broadcasting device information to remote devices.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[in] p_advt_info Pointer to advertisement
information structure

◆ advertisementStop

ssp_err_t(* sf_ble_api_t::advertisementStop) (sf_ble_ctrl_t *const p_ctrl)

Stop the device from being discoverable.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,899 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

◆ authorization

ssp_err_t(* sf_ble_api_t::authorization) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *p_handle)

Indicates that the specified remote device has been authorized by user.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[in] p_handle Pointer to connection
handle.

◆ bondingResponse

ssp_err_t(* sf_ble_api_t::bondingResponse) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, const uint8_t *p_bd_addr, sf_ble_bonding_response_t *p_bonding_resp)

Respond to the bonding request from the remote BLE device. Send bonding response on reception
of bonding indication.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[in] p_handle Pointer to connection handle

[in] p_bd_addr Pointer to BLE address

[in] p_bonding_resp Pointer to Bonding address

◆ bondingStart

ssp_err_t(* sf_ble_api_t::bondingStart) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *p_handle,
const uint8_t *p_bd_addr, sf_ble_bonding_start_t *p_bonding_start)

Initiate bonding process with remote BLE device and exchange security keys if enabled.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[in] p_handle Pointer to connection
handle.

[in] p_bd_addr Pointer to BLE address

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,900 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

◆ close

ssp_err_t(* sf_ble_api_t::close) (sf_ble_ctrl_t *const p_ctrl)

De-initialize the interface and may put it in low power mode or power it off. Close the driver,
disable the driver link, disable interrupt.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

◆ connect

ssp_err_t(* sf_ble_api_t::connect) (sf_ble_ctrl_t *const p_ctrl, sf_ble_connection_t const *const
p_conn, sf_ble_conn_handle_t *p_handle)

Connect to a remote BLE device.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[in] p_conn Pointer to connection
information

[out] p_handle Pointer to connection handle

◆ disconnect

ssp_err_t(* sf_ble_api_t::disconnect) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *p_handle)

Terminate connection with remote BLE device.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[in] p_handle Pointer to connection handle

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,901 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

◆ gattAddCustomProfiles

ssp_err_t(* sf_ble_api_t::gattAddCustomProfiles) (sf_ble_ctrl_t *const p_ctrl, sf_ble_svc_attribute_t
*p_svc_attr, uint32_t svc_attr_len, sf_ble_char_attribute_t *p_char_attr, uint32_t char_attr_len)

Add Custom Profile to GATT Database.

This function is called with list of service and characteristics which is to be added to GATT
database. Services and characteristics which were previously added will be removed and newly
passed services and characteristics will be added.

If services and characteristics were previously added and now those services and characteristics
are to be removed and no new services and characteristics are to be added , then call this API with
service and characteristics length as zero

Parameters
[in] p_ctrl Pointer to control structure

[in] p_svc_attr List of Services to add

[in] svc_attr_len No of elements in services
list

[in] p_char_attr List of Characteristics to add

[in] char_attr_len No of elements in
Characteristics list

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,902 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

◆ gattCharDescDiscovery

ssp_err_t(* sf_ble_api_t::gattCharDescDiscovery) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, uint16_t start_handle, uint16_t end_handle, sf_ble_char_desc_discovery_rsp_t *const
p_sf_ble_chardesc_dscv_rsp, uint32_t *const p_rsp_cnt)

Perform characteristics descriptor discovery used by GATT client.

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle Connection handle

[in] start_handle Start handle from set of
handle ranges to be used in
discovery

[in] end_handle End handle from set of
handle ranges to be used in
discovery

[out] p_sf_ble_chardesc_dscv_rsp Pointer to characteristics
descriptor discovery
response

[in,out] p_rsp_cnt Input Size specifying
maximum number of
characteristics descriptor
discovery results which can
be stored in response,
output specifying number of
characteristics descriptor
discovery results stored in
response

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,903 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

◆ gattCharDiscovery

ssp_err_t(* sf_ble_api_t::gattCharDiscovery) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, sf_ble_char_discovery_req_t const *const p_sf_ble_char_dscv_req,
sf_ble_char_discovery_rsp_t *const p_sf_ble_char_dscv_rsp, uint32_t *const p_rsp_cnt)

Perform characteristics discovery used by GATT client.Perform characteristics discovery on remote
GATT server and get results.

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle Connection handle

[in] p_sf_ble_char_dscv_req Pointer to characteristics
discovery request

[out] p_sf_ble_char_dscv_rsp Pointer to characteristics
discovery response

[in,out] p_rsp_cnt Input Size specifying
maximum number of
characteristics discovery
results which can be stored
in response, output
specifying number of
characteristics discovery
results stored in response

◆ gattCharExecuteWrite

ssp_err_t(* sf_ble_api_t::gattCharExecuteWrite) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, sf_ble_execute_write_t execute_flag)

Perform execute write on all pending write operations, used by GATT client.Execute or cancel all
prepared writes of characteristics on remote GATT server.

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle Connection handle

[in] execute_flag Flag specifying whether to
execute or cancel pending
writes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,904 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

◆ gattCharRead

ssp_err_t(* sf_ble_api_t::gattCharRead) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *p_handle,
sf_ble_char_read_req_t const *const p_char_read_req, sf_ble_char_read_rsp_t *const
p_char_read_rsp)

Perform read characteristic used by GATT client.Read characteristic value from remote GATT
server.

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle Connection handle

[in] p_char_read_req Pointer to characteristic read
request

[out] p_char_read_rsp Pointer to characteristic read
response

◆ gattCharWrite

ssp_err_t(* sf_ble_api_t::gattCharWrite) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *p_handle,
sf_ble_char_write_req_t const *const p_char_write_req)

Perform write characteristic used by GATT client.Write characteristic value on remote GATT server.

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle Connection handle

[in] p_char_write_req Pointer to characteristic
write request

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,905 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

◆ gattCharWriteLocal

ssp_err_t(* sf_ble_api_t::gattCharWriteLocal) (sf_ble_ctrl_t *const p_ctrl, uint16_t char_handle,
uint16_t data_length, uint8_t *const p_data)

Perform local characteristic write used by GATT server.Writes local characteristic value on GATT
server.

Parameters
[in] p_ctrl Pointer to control structure

[in] char_handle Characteristic handle

[in] data_length Length of data to write

[in] p_data Pointer to data

◆ gattSendIndicate

ssp_err_t(* sf_ble_api_t::gattSendIndicate) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, uint16_t char_handle)

Send indication to GATT client, used by GATT server.Send indication to remote GATT client.

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle Connection handle

[in] char_handle Characteristic handle whose
value will be indicated

◆ gattSendNotify

ssp_err_t(* sf_ble_api_t::gattSendNotify) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, uint16_t char_handle)

Send notification to GATT client, used by GATT server.

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle Connection handle

[in] char_handle Characteristic handle whose
value will be notified

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,906 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

◆ gattServiceDiscovery

ssp_err_t(* sf_ble_api_t::gattServiceDiscovery) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, sf_ble_service_discovery_req_t const *const p_sf_ble_svc_dscv_req,
sf_ble_service_discovery_rsp_t *const p_sf_ble_svc_dscv_rsp, uint32_t *const p_rsp_cnt)

Perform service discovery used by GATT client.Perform service discovery on remote GATT server
and get results.

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle Connection handle

[in] p_sf_ble_svc_dscv_req Pointer to service discovery
request

[out] p_sf_ble_svc_dscv_rsp Pointer to service discovery
response

[in,out] p_rsp_cnt Input Size specifying
maximum number of service
discovery results which can
be stored in response,
output specifying number of
service discovery results
stored in response

◆ gattWriteResponse

ssp_err_t(* sf_ble_api_t::gattWriteResponse) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, uint16_t handle, sf_ble_attribute_error_code_t error_code)

Send response to write operation received by GATT client, used by GATT server.Send response for
write request received from remote GATT client.

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle Connection handle

[in] handle Characteristic handle used
for write operation

[in] error_code Characteristic write
operation error code to be
sent in response

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,907 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

◆ infoGet

ssp_err_t(* sf_ble_api_t::infoGet) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *p_handle,
sf_ble_info_t *p_ble_info)

Get BLE module information like chipset information and RSSI value.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[in] p_handle Pointer to connection handle

[out] p_ble_info Pointer to module
information

◆ listen

ssp_err_t(* sf_ble_api_t::listen) (sf_ble_ctrl_t *const p_ctrl)

Listen for connection request from remote device.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

◆ open

ssp_err_t(* sf_ble_api_t::open) (sf_ble_ctrl_t *const p_ctrl, const sf_ble_cfg_t *p_cfg)

Initializes the interface for data transfers.

Initial driver configuration, enable the driver link, enable interrupts and make device ready for data
transfer.

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to BLE configuration
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,908 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

◆ provisionGet

ssp_err_t(* sf_ble_api_t::provisionGet) (sf_ble_ctrl_t *const p_ctrl, sf_ble_provisioning_t
*p_ble_provisioning)

Reads the current BLE Provisioning information.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[out] p_ble_provisioning current provisioning
information

◆ provisionSet

ssp_err_t(* sf_ble_api_t::provisionSet) (sf_ble_ctrl_t *const p_ctrl, const sf_ble_provisioning_t
*p_ble_provisioning)

Provisions the BLE Driver and set bonding and security modes as provisioned.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[in] p_ble_provisioning Pointer to BLE provisioning
structure

◆ scan

ssp_err_t(* sf_ble_api_t::scan) (sf_ble_ctrl_t *const p_ctrl, sf_ble_scan_t *p_scan, uint8_t *p_cnt,
sf_ble_scan_info_t *p_scan_info)

Scans for available BLE devices and return the list to the caller.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[out] p_scan Pointer to scan information
structure

[in,out] p_cnt Pointer to number of BLE
devices scanned

[in] p_scan_info Pointer to scan information
structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,909 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

◆ setTxPower

ssp_err_t(* sf_ble_api_t::setTxPower) (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *const
p_handle, sf_ble_set_tx_pwr_info_t *p_tx_power_info)

Sets the transmit power for the procedure specified by the connection handle.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[in] p_handle Pointer to connection
handle. If transmit power is
to be set before
advertisement or connecting
to remote device then pass
connection handle as SF_BLE
_TX_POWER_CONNECTION_H
ANDLE value else pass
connection handle of remote
device

[in] p_tx_power_info Pointer to TX power
information

◆ startEncryption

ssp_err_t(* sf_ble_api_t::startEncryption) (sf_ble_ctrl_t *const p_ctrl, sf_ble_sm_enc_info_t const
*p_enc_info)

Start encryption over a connection.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[in] p_enc_info information for starting
encryption

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,910 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_api_t Struct Reference

◆ versionGet

ssp_err_t(* sf_ble_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version pointer to memory location

to return version number

◆ whitelistAdd

ssp_err_t(* sf_ble_api_t::whitelistAdd) (sf_ble_ctrl_t *const p_ctrl, const uint8_t *p_bd_addr)

Add specified devices to whitelist.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[in] p_bd_addr Pointer to BLE address

◆ whitelistDel

ssp_err_t(* sf_ble_api_t::whitelistDel) (sf_ble_ctrl_t *const p_ctrl, const uint8_t *p_bd_addr)

Remove specified devices from whitelist.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

[in] p_bd_addr Pointer to BLE address

The documentation for this struct was generated from the following file:

sf_ble_api.h

 sf_ble_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Framework Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,911 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Framework Interface > sf_ble_instance_t Struct Reference

#include <sf_ble_api.h>

Data Fields

sf_ble_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_ble_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

sf_ble_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

BLE instance

The documentation for this struct was generated from the following file:

sf_ble_api.h

5.1.2.6 SF BLE On-Board Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE On-Board Profile Framework Interface. More...

Data Structures

struct sf_ble_onboard_profile_cccd_changed_t

struct sf_ble_attr_info_t

struct sf_ble_long_attr_info_t

struct sf_ble_onboard_profile_cfg_t

struct sf_ble_onboard_profile_ctrl_t

struct sf_ble_onboard_profile_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,912 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface

struct sf_ble_onboard_profile_instance_t

Macros

#define SF_BLE_ONBOARD_PROFILE_API_VERSION_MAJOR (2U)

#define SF_BLE_ONBOARD_PROFILE_API_VERSION_MINOR (0U)

#define SF_BLE_ATTM_MAX_VALUE (0x18)

Typedefs

typedef void(* sf_ble_profile_callback_t) (sf_ble_event_info_t *ev)

Enumerations

enum sf_onbp_t {
 SF_ONBP_ANS_SERVER, SF_ONBP_ANS_CLIENT,
SF_ONBP_BAS_SERVER, SF_ONBP_BPS_SERVER,
 SF_ONBP_BPS_CLIENT, SF_ONBP_CTS_SERVER,
SF_ONBP_DIS_SERVER, SF_ONBP_FMP_SERVER,
 SF_ONBP_FMP_CLIENT, SF_ONBP_HTP_SERVER,
SF_ONBP_HTP_CLIENT, SF_ONBP_HRS_SERVER,
 SF_ONBP_HRS_CLIENT, SF_ONBP_HID_SERVER,
SF_ONBP_HID_BHOST_CLIENT, SF_ONBP_HID_RHOST_CLIENT,
 SF_ONBP_IMA_SERVER, SF_ONBP_LLS_SERVER,
SF_ONBP_LLS_CLIENT, SF_ONBP_NDCS_SERVER,
 SF_ONBP_PAPS_SERVER, SF_ONBP_PAPS_CLIENT,
SF_ONBP_PXP_SERVER, SF_ONBP_PXP_CLIENT,
 SF_ONBP_RTUS_SERVER, SF_ONBP_SCPS_SERVER,
SF_ONBP_SCPS_CLIENT, SF_ONBP_TIP_SERVER,
 SF_ONBP_TIP_CLIENT, SF_ONBP_TXP_SERVER
}

enum sf_ble_prf_sec_t {
 SF_BLE_PRF_SEC_NONE = 0x01, SF_BLE_PRF_SEC_UNAUTH = 0x02,
SF_BLE_PRF_SEC_AUTH = 0x04, SF_BLE_PRF_SEC_AUTZ = 0x08,
 SF_BLE_PRF_SEC_ENC = 0x10
}

enum sf_ble_onbp_char_t {
 SF_BLE_ONBP_CHAR_HRP_HRCP,
SF_BLE_ONBP_CHAR_HRP_CCCD_NTF_HRMEAS,
SF_BLE_ONBP_CHAR_HRP_BSL,
SF_BLE_ONBP_CHAR_ANP_SUP_NEW_ALERT,
 SF_BLE_ONBP_CHAR_ANP_CCCD_NTF_NEW_ALERT,
SF_BLE_ONBP_CHAR_ANP_SUP_UNREAD_ALERT,
SF_BLE_ONBP_CHAR_ANP_CCCD_NTF_UNREAD_ALERT_STATUS,
SF_BLE_ONBP_CHAR_ANP_ALERT_NOTIFICATION_CTRL_POINT,
 SF_BLE_ONBP_CHAR_DIS_MANUF, SF_BLE_ONBP_CHAR_DIS_MODEL,
SF_BLE_ONBP_CHAR_DIS_SERNB, SF_BLE_ONBP_CHAR_DIS_HWREV,
 SF_BLE_ONBP_CHAR_DIS_FWREV, SF_BLE_ONBP_CHAR_DIS_SWREV,
SF_BLE_ONBP_CHAR_DIS_SYSID, SF_BLE_ONBP_CHAR_DIS_IEEE,
 SF_BLE_ONBP_CHAR_DIS_PNPID,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,913 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface

SF_BLE_ONBP_CHAR_IAS_ALERT_LEVEL,
SF_BLE_ONBP_CHAR_SCPS_CCCD_NTF_SCAN_REFRESH,
SF_BLE_ONBP_CHAR_SCPS_SCAN_INTERVAL_WINDOW,
 SF_BLE_ONBP_CHAR_CTS_CCCD_NTF_CURRENT_TIME,
SF_BLE_ONBP_CHAR_CTS_CCCD_NTF_CURRENT_TIME_VALUE,
SF_BLE_ONBP_CHAR_CTS_LOCAL_TIME_INFORMATION,
SF_BLE_ONBP_CHAR_CTS_REFERENCE_TIME_INFORMATION,
 SF_BLE_ONBP_CHAR_NDCS_TIME_WITH_DST,
SF_BLE_ONBP_CHAR_TIME_UPDATE_CONTROL_POINT,
SF_BLE_ONBP_CHAR_TIME_UPDATE_STATE,
SF_BLE_ONBP_CHAR_CCCD_NTF_CURRENT_TIME,
 SF_BLE_ONBP_CHAR_CCCD_NTF_BATTERY_LEVEL,
SF_BLE_ONBP_CHAR_PXPM_SET_ALERT,
SF_BLE_ONBP_CHAR_PXPM_GET_ALERT_LVL,
SF_BLE_ONBP_CHAR_PXPM_GET_TX_POWER_LVL,
 SF_BLE_ONBP_CHAR_HTP_TEMP_MEAS_IND,
SF_BLE_ONBP_CHAR_HTP_INTERM_TEMP_NTF,
SF_BLE_ONBP_CHAR_HTP_MEAS_INTV_IND,
SF_BLE_ONBP_CHAR_HTP_TEMP_TYPE,
 SF_BLE_ONBP_CHAR_HTP_MEAS_INTV,
SF_BLE_ONBP_CHAR_HTP_MEAS_INTV_RANGE,
SF_BLE_ONBP_CHAR_CCCD_NTF_REPORT_INPUT,
SF_BLE_ONBP_CHAR_CCCD_NTF_KB_INPUT_REPORT,
 SF_BLE_ONBP_CHAR_CCCD_NTF_KB_INPUT_REPORT_VALUE,
SF_BLE_ONBP_CHAR_CCCD_NTF_KB_OUTPUT_REPORT_VALUE,
SF_BLE_ONBP_CHAR_CCCD_NTF_MOUSE_INPUT_REPORT,
SF_BLE_ONBP_CHAR_CCCD_NTF_MOUSE_INPUT_REPORT_VALUE,
 SF_BLE_ONBP_CHAR_PROTOCOL_MODE,
SF_BLE_ONBP_CHAR_CONTROL_POINT,
SF_BLE_ONBP_CHAR_BLP_CCCD_NTF_INTERM_CUFPRS,
SF_BLE_ONBP_CHAR_BLP_CCCD_IND_BLDPRS_MEAS,
 SF_BLE_ONBP_CHAR_BLP_RD_BLS_BF,
SF_BLE_ONBP_CHAR_CCCD_NTF_ALERT_STATUS,
SF_BLE_ONBP_CHAR_CCCD_NTF_ALERT_STATUS_VALUE,
SF_BLE_ONBP_CHAR_CCCD_NTF_RINGER_SETTING,
 SF_BLE_ONBP_CHAR_CCCD_NTF_RINGER_SETTING_VALUE,
SF_BLE_ONBP_CHAR_RINGER_CONTROL_POINT
}

enum sf_ble_cccd_val_t { SF_BLE_CCCD_VAL_STOP_NTFIND,
SF_BLE_CCCD_VAL_START_NTF, SF_BLE_CCCD_VAL_START_IND }

Detailed Description

RTOS-integrated SF BLE On-Board Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE On-Board Profile Framework.

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,914 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface

◆ SF_BLE_ATTM_MAX_VALUE

#define SF_BLE_ATTM_MAX_VALUE (0x18)

GATT Attribute Length

◆ SF_BLE_ONBOARD_PROFILE_API_VERSION_MAJOR

#define SF_BLE_ONBOARD_PROFILE_API_VERSION_MAJOR (2U)

SSP BSP Include files Framework Include files Major Version of the API defined in this file

◆ SF_BLE_ONBOARD_PROFILE_API_VERSION_MINOR

#define SF_BLE_ONBOARD_PROFILE_API_VERSION_MINOR (0U)

Minor Version of the API defined in this file

Typedef Documentation

◆ sf_ble_profile_callback_t

typedef void(* sf_ble_profile_callback_t) (sf_ble_event_info_t *ev)

User callback type for profile

Enumeration Type Documentation

◆ sf_ble_cccd_val_t

enum sf_ble_cccd_val_t

Value for BLE CCCD Configuration

Enumerator

SF_BLE_CCCD_VAL_STOP_NTFIND Stop Notification Indication.

SF_BLE_CCCD_VAL_START_NTF Start Notification.

SF_BLE_CCCD_VAL_START_IND Start Indication.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,915 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface

◆ sf_ble_onbp_char_t

enum sf_ble_onbp_char_t

On-Board Profile GATT Characteristics Code

Enumerator

SF_BLE_ONBP_CHAR_HRP_HRCP Heart Rate Control Point Characteristics
(Property: Write), Refer
sf_ble_prf_hrp_api_hrcp_t.

Heart Rate Profile

SF_BLE_ONBP_CHAR_HRP_CCCD_NTF_HRMEAS Heart Rate Measurement CCCD Characteristics
(Property: NTF, Read, Write), Refer
sf_ble_hrp_api_hrmeas_t.

SF_BLE_ONBP_CHAR_HRP_BSL Heart Rate Body Sensor Location
Characteristics (Property: Read)

SF_BLE_ONBP_CHAR_ANP_SUP_NEW_ALERT Supported New Alert Category Characteristics
(Property: Read)

Alert Notification Profile

SF_BLE_ONBP_CHAR_ANP_CCCD_NTF_NEW_ALER
T

New Alert CCCD Characteristics (Property: NTF,
Read, Write), Refer
sf_ble_anp_api_new_alert_ntf_t.

SF_BLE_ONBP_CHAR_ANP_SUP_UNREAD_ALERT Supported Unread Alert Category
Characteristics (Property: Read)

SF_BLE_ONBP_CHAR_ANP_CCCD_NTF_UNREAD_A
LERT_STATUS

Unread Alert Status CCCD Characteristics
(Property: NTF, Read, Write), Refer
sf_ble_anp_api_unread_alert_ntf_t.

SF_BLE_ONBP_CHAR_ANP_ALERT_NOTIFICATION_
CTRL_POINT

Alert Notification Control Point (Property:
Write), Refer sf_ble_anp_ancp_t.

SF_BLE_ONBP_CHAR_DIS_MANUF Device Information Service Manufacturer Name
String (Property: Read)

Device Information Service Profile

SF_BLE_ONBP_CHAR_DIS_MODEL Device Information Service Model Number
String (Property: Read)

SF_BLE_ONBP_CHAR_DIS_SERNB Device Information Service Serial number
String (Property: Read)

SF_BLE_ONBP_CHAR_DIS_HWREV Device Information Service HW Revision String

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,916 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface

(Property: Read)

SF_BLE_ONBP_CHAR_DIS_FWREV Device Information Service Fw Revision String
(Property: Read)

SF_BLE_ONBP_CHAR_DIS_SWREV Device Information Service SW Revision String
(Property: Read)

SF_BLE_ONBP_CHAR_DIS_SYSID Device Information Service system ID
(Property: Read)

SF_BLE_ONBP_CHAR_DIS_IEEE Device Information Service IEEE Certification
(Property: Read)

SF_BLE_ONBP_CHAR_DIS_PNPID Device Information PNPID, Used in services like
HOGP (Property: Read)

SF_BLE_ONBP_CHAR_IAS_ALERT_LEVEL Alert Level (Property: Write), Refer
sf_ble_prf_ias_alert_type_t.

Immediate Alert Service Profile

SF_BLE_ONBP_CHAR_SCPS_CCCD_NTF_SCAN_RE
FRESH

Scan Refresh CCCD Characteristics (Property:
NTF, Read, Write), Refer
sf_ble_prf_scps_scan_refresh_t.

Scan Parameters Service Profile

SF_BLE_ONBP_CHAR_SCPS_SCAN_INTERVAL_WIN
DOW

Scan Interval Window (Property: Write), Refer
sf_ble_prf_scps_scan_intv_t.

SF_BLE_ONBP_CHAR_CTS_CCCD_NTF_CURRENT_
TIME

Current Time CCCD Characteristics (Property:
NTF, Read, Write), Refer
sf_ble_cts_curr_time_ntf_t.

Current Time Service Profile

SF_BLE_ONBP_CHAR_CTS_CCCD_NTF_CURRENT_
TIME_VALUE

Used to read data for current time through
read characteristics.

SF_BLE_ONBP_CHAR_CTS_LOCAL_TIME_INFORMA
TION

Local Time Information (Property: Read)

SF_BLE_ONBP_CHAR_CTS_REFERENCE_TIME_INF
ORMATION

Reference Time Information (Property: Read)

SF_BLE_ONBP_CHAR_NDCS_TIME_WITH_DST Time with DST (Property: Read)

Next DST Change Service Profile

SF_BLE_ONBP_CHAR_TIME_UPDATE_CONTROL_P
OINT

Time Update Control Point (Property: Write),
Refer sf_ble_prf_rtus_time_updt_state_t.

Reference Time Update Service Profile

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,917 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface

SF_BLE_ONBP_CHAR_TIME_UPDATE_STATE Time Update State (Property: Read)

SF_BLE_ONBP_CHAR_CCCD_NTF_CURRENT_TIME Current Time CCCD Characteristics (Property:
NTF, Read, Write), Refer
sf_ble_bas_battery_lvl_ntf_t.

Time Information Service Profile

SF_BLE_ONBP_CHAR_CCCD_NTF_BATTERY_LEVEL

Battery Level (Property: NTF, Read, Write),
Refer sf_ble_prf_bas_battery_lvl_t.

Battery Service Profile

SF_BLE_ONBP_CHAR_PXPM_SET_ALERT PXP Alert char.

Alert Level Service Profile

SF_BLE_ONBP_CHAR_PXPM_GET_ALERT_LVL PXP Get Alert Level.

SF_BLE_ONBP_CHAR_PXPM_GET_TX_POWER_LVL PXP Get TX Power Level.

SF_BLE_ONBP_CHAR_HTP_TEMP_MEAS_IND HTPC temp. measurement indication CCCD
Characteristics (Property: IND, Read, Write),
Refer.

Health Thermometer Profile

SF_BLE_ONBP_CHAR_HTP_INTERM_TEMP_NTF HTPC intermediate temp. notification CCCD
Characteristics (Property: NTF, Read, Write),
Refer.

SF_BLE_ONBP_CHAR_HTP_MEAS_INTV_IND HTPC temp. measurement interval indication
CCCD Characteristics (Property: IND, Read,
Write), Refer.

SF_BLE_ONBP_CHAR_HTP_TEMP_TYPE HTPC temp. temperature type(Property: Read)

SF_BLE_ONBP_CHAR_HTP_MEAS_INTV HTPC temp. measurement interval.

SF_BLE_ONBP_CHAR_HTP_MEAS_INTV_RANGE HTPC temp. measurement interval valid
range.

SF_BLE_ONBP_CHAR_CCCD_NTF_REPORT_INPUT Report Input CCCD Characteristics (Property:
NTF, Read, Write), Refer
sf_ble_prf_hid_report_desc_t.

HID Over GATT Service Profile

SF_BLE_ONBP_CHAR_CCCD_NTF_KB_INPUT_REPO
RT

Keyboard Input Report CCCD Characteristics
(Property: NTF, Read, Write), Refer
sf_ble_prf_hid_report_desc_t.

SF_BLE_ONBP_CHAR_CCCD_NTF_KB_INPUT_REPO

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,918 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface

RT_VALUE Used to read Keyboard Input record value
through read characteristics.

SF_BLE_ONBP_CHAR_CCCD_NTF_KB_OUTPUT_RE
PORT_VALUE

Used to read Keyboard Output record value
through read characteristics.

SF_BLE_ONBP_CHAR_CCCD_NTF_MOUSE_INPUT_
REPORT

Mouse Input Report CCCD Characteristics
(Property: NTF, Read, Write), Refer
sf_ble_prf_hid_report_desc_t.

SF_BLE_ONBP_CHAR_CCCD_NTF_MOUSE_INPUT_
REPORT_VALUE

Used to read Mouse Input record value through
read characteristics.

SF_BLE_ONBP_CHAR_PROTOCOL_MODE HID boot host protocol mode (Property: Read,
Write), Refer sf_ble_prf_hid_protocol_mode_t.

SF_BLE_ONBP_CHAR_CONTROL_POINT HID report host write control point (Property:
Read, Write), Refer
sf_ble_prf_hid_ctrl_point_val_t.

SF_BLE_ONBP_CHAR_BLP_CCCD_NTF_INTERM_CU
FPRS

Read Cuff Pressure measurement CCCD
Characteristics (Property: NTF, Read, Write),
Refer sf_ble_blp_meas_info_t.

Blood Pressure profile

SF_BLE_ONBP_CHAR_BLP_CCCD_IND_BLDPRS_ME
AS

Blood Pressure Measurement CCCD
Characteristics (Property: IND, Read, Write),
Refer sf_ble_blp_meas_info_t.

SF_BLE_ONBP_CHAR_BLP_RD_BLS_BF Read Blood Pressure Feature.

SF_BLE_ONBP_CHAR_CCCD_NTF_ALERT_STATUS Alert Status (Property: NTF, Read, Write), Refer
sf_ble_prf_alert_status.

Phone Alert Status Service Profile

SF_BLE_ONBP_CHAR_CCCD_NTF_ALERT_STATUS_
VALUE

Used to read Alert Status value through read
characteristics.

SF_BLE_ONBP_CHAR_CCCD_NTF_RINGER_SETTIN
G

Ringer Settings (Property: NTF, Read, Write),
Refer sf_ble_prf_ringer_setting_t.

SF_BLE_ONBP_CHAR_CCCD_NTF_RINGER_SETTIN
G_VALUE

Used to read Ringer Settings value through
read characteristics.

SF_BLE_ONBP_CHAR_RINGER_CONTROL_POINT PAPS Ringer control point write characteristics.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,919 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface

◆ sf_ble_prf_sec_t

enum sf_ble_prf_sec_t

BLE Profile Security type

Enumerator

SF_BLE_PRF_SEC_NONE No Security.

SF_BLE_PRF_SEC_UNAUTH Unauthenticated Pairing.

SF_BLE_PRF_SEC_AUTH Authenticated pairing.

SF_BLE_PRF_SEC_AUTZ Requires Authorized.

SF_BLE_PRF_SEC_ENC Encrypted communication.

◆ sf_onbp_t

enum sf_onbp_t

BLE On-Board Profile types

Enumerator

SF_ONBP_ANS_SERVER Alert Notification Service Server.

SF_ONBP_ANS_CLIENT Alert Notification Service Client.

SF_ONBP_BAS_SERVER Battery Service Server.

SF_ONBP_BPS_SERVER Blood Pressure Service Server.

SF_ONBP_BPS_CLIENT Blood Pressure Service Client.

SF_ONBP_CTS_SERVER Current Time Service Server.

SF_ONBP_DIS_SERVER Device Information Service Server.

SF_ONBP_FMP_SERVER Find Me Service Server.

SF_ONBP_FMP_CLIENT Find Me Service Client.

SF_ONBP_HTP_SERVER Health Thermometer Service Server.

SF_ONBP_HTP_CLIENT Health Thermometer Service Client.

SF_ONBP_HRS_SERVER Heart Rate Service Server.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,920 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface

SF_ONBP_HRS_CLIENT Heart Rate Service Client.

SF_ONBP_HID_SERVER HID Over GATT Service Server.

SF_ONBP_HID_BHOST_CLIENT HID Over GATT Boot Host Service Client.

SF_ONBP_HID_RHOST_CLIENT HID Over GATT Report Host Service Client.

SF_ONBP_IMA_SERVER Immediate Alert Service Server.

SF_ONBP_LLS_SERVER Link Loss Service Server.

SF_ONBP_LLS_CLIENT Link Loss Service Client.

SF_ONBP_NDCS_SERVER Next Daylight Savings Change Service Server.

SF_ONBP_PAPS_SERVER Phone Alert Service Server.

SF_ONBP_PAPS_CLIENT Phone Alert Service Client.

SF_ONBP_PXP_SERVER Proximity Service Server.

SF_ONBP_PXP_CLIENT Proximity Service Client.

SF_ONBP_RTUS_SERVER Reference Time Update Service Server.

SF_ONBP_SCPS_SERVER Scan Parameter Service Server.

SF_ONBP_SCPS_CLIENT Scan Parameter Service Client.

SF_ONBP_TIP_SERVER Time Information Service Server.

SF_ONBP_TIP_CLIENT Time Information Service Client.

SF_ONBP_TXP_SERVER Transmit Power Service Server.

 sf_ble_onboard_profile_cccd_changed_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE On-Board Profile
Framework Interface

#include <sf_ble_onboard_profile_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,921 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface > sf_ble_onboard_profile_cccd_changed_t Struct Reference

sf_ble_conn_handle_t conn_handle

 Connection handle.

sf_ble_onbp_char_t char_code

 CCCD type that has been changed by the remote node.

sf_ble_cccd_val_t cccd_val

 CCCD value.

uint8_t inst_idx

 Instance index, Applicable for HOGP.

Detailed Description

BLE Profile CCCD Changed indication data

The documentation for this struct was generated from the following file:

sf_ble_onboard_profile_api.h

 sf_ble_attr_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE On-Board Profile
Framework Interface

#include <sf_ble_onboard_profile_api.h>

Data Fields

uint8_t len

 data length

uint8_t data [SF_BLE_ATTM_MAX_VALUE]

 data

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,922 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface > sf_ble_attr_info_t Struct Reference

BLE Profile Read Char data

The documentation for this struct was generated from the following file:

sf_ble_onboard_profile_api.h

 sf_ble_long_attr_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE On-Board Profile
Framework Interface

#include <sf_ble_onboard_profile_api.h>

Data Fields

uint8_t val_len

 size of the value data

uint8_t reserved

 Reserved.

uint16_t attr_hdl

 Attribute handle.

uint8_t value [SF_BLE_ATTM_MAX_VALUE]

 actual value pairs

Detailed Description

BLE Profile Read Char data (Long type)

The documentation for this struct was generated from the following file:

sf_ble_onboard_profile_api.h

 sf_ble_onboard_profile_cfg_t Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,923 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface > sf_ble_onboard_profile_cfg_t Struct Reference

Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE On-Board Profile
Framework Interface

#include <sf_ble_onboard_profile_api.h>

Data Fields

sf_ble_instance_t const * p_low_lvl_ble

 Low level BLE Interface.

void * p_extend

 Extended configuration.

Detailed Description

BLE On-Board Profile configuration information

The documentation for this struct was generated from the following file:

sf_ble_onboard_profile_api.h

 sf_ble_onboard_profile_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE On-Board Profile
Framework Interface

#include <sf_ble_onboard_profile_api.h>

Data Fields

sf_ble_instance_t * p_low_lvl_ble

 Low level BLE Framework information needed by On-Board Profile.

Detailed Description

BLE On-Board Profile Framework control structure

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,924 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface > sf_ble_onboard_profile_ctrl_t Struct Reference

sf_ble_onboard_profile_api.h

 sf_ble_onboard_profile_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE On-Board Profile
Framework Interface

#include <sf_ble_onboard_profile_api.h>

Data Fields

ssp_err_t(* open)(sf_ble_onboard_profile_ctrl_t *const p_ctrl, const
sf_ble_onboard_profile_cfg_t *p_cfg)

 Initializes the interface for data transfers. More...

ssp_err_t(* close)(sf_ble_onboard_profile_ctrl_t *const p_ctrl)

 De-initialize the interface and may put it in low power mode or power
it off. Close the driver, disable the driver link, disable interrupt.
More...

ssp_err_t(* onbpEnable)(sf_ble_onboard_profile_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_onbp_t profile,
sf_ble_profile_callback_t p_prf_cb, sf_ble_prf_sec_t sec)

 Enable On-Board Profile Enables On-Board profile on given
connection handle with specified security type. Registers user
callback for the profile. More...

ssp_err_t(* onbpDisable)(sf_ble_onboard_profile_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_onbp_t profile)

 Disable On-Board Profile Disables On-Board profile on given
connection handle and unregisters user callback. More...

ssp_err_t(* onbpServerWriteData)(sf_ble_onboard_profile_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_onbp_t profile,
sf_ble_onbp_char_t characteristics, const void *p_data)

 Update Server Local Database Update Local GATT database of Profile
Server. More...

ssp_err_t(* onbpServerSendNotification)(sf_ble_onboard_profile_ctrl_t *const
p_ctrl, sf_ble_conn_handle_t *p_handle, sf_onbp_t profile,
sf_ble_onbp_char_t characteristics, const void *p_data)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,925 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface > sf_ble_onboard_profile_api_t Struct Reference

 Send notification from Server Sends Notification which will be data
specific to On-Board Profile to Client. More...

ssp_err_t(* onbpServerSendIndication)(sf_ble_onboard_profile_ctrl_t *const
p_ctrl, sf_ble_conn_handle_t *p_handle, sf_onbp_t profile,
sf_ble_onbp_char_t characteristics, const void *p_data)

 Send Indication from Server Sends Indication which contains profile
specific data to client. More...

ssp_err_t(* onbpClientWriteCCCD)(sf_ble_onboard_profile_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_onbp_t profile,
sf_ble_onbp_char_t cccd_char, sf_ble_cccd_val_t cccd_val)

 Writes CCCD configuration in Server This API writes CCCD
configuration of Server and which enables or disables notification or
indication from server. More...

ssp_err_t(* onbpClientWriteChar)(sf_ble_onboard_profile_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_onbp_t profile,
sf_ble_onbp_char_t characteristics, const void *p_data)

 Writes GATT characteristics with data passed Writes the GATT
characteristics in the Server with the data passed. More...

ssp_err_t(* onbpClientReadChar)(sf_ble_onboard_profile_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_onbp_t profile,
sf_ble_onbp_char_t characteristics)

 Reads GATT characteristics from Server Reads GATT characteristics
from the Server for the profile specified. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Gets version and stores it in provided pointer p_version. More...

Detailed Description

BLE Configuration, Control and API structures Framework API structure. Implementations will use the
following API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,926 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface > sf_ble_onboard_profile_api_t Struct Reference

◆ close

ssp_err_t(* sf_ble_onboard_profile_api_t::close) (sf_ble_onboard_profile_ctrl_t *const p_ctrl)

De-initialize the interface and may put it in low power mode or power it off. Close the driver,
disable the driver link, disable interrupt.

Parameters
[in] p_ctrl Pointer to the control block

for the BLE module.

◆ onbpClientReadChar

ssp_err_t(* sf_ble_onboard_profile_api_t::onbpClientReadChar) (sf_ble_onboard_profile_ctrl_t *const
p_ctrl, sf_ble_conn_handle_t *p_handle, sf_onbp_t profile, sf_ble_onbp_char_t characteristics)

Reads GATT characteristics from Server Reads GATT characteristics from the Server for the profile
specified.

Parameters
[in] p_ctrl Pointer to control structure

for BLE

[in] p_handle Pointer to connection handle

[in] profile Profile type

[in] characteristics Profile characteristics

◆ onbpClientWriteCCCD

ssp_err_t(* sf_ble_onboard_profile_api_t::onbpClientWriteCCCD) (sf_ble_onboard_profile_ctrl_t
*const p_ctrl, sf_ble_conn_handle_t *p_handle, sf_onbp_t profile, sf_ble_onbp_char_t cccd_char,
sf_ble_cccd_val_t cccd_val)

Writes CCCD configuration in Server This API writes CCCD configuration of Server and which
enables or disables notification or indication from server.

Parameters
[in] p_ctrl Pointer to control structure

for BLE

[in] p_handle Pointer to connection handle

[in] profile Parameter_Description

[in] cccd_char CCCD Code

[in] cccd_val Configuration data of CCCD

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,927 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface > sf_ble_onboard_profile_api_t Struct Reference

◆ onbpClientWriteChar

ssp_err_t(* sf_ble_onboard_profile_api_t::onbpClientWriteChar) (sf_ble_onboard_profile_ctrl_t *const
p_ctrl, sf_ble_conn_handle_t *p_handle, sf_onbp_t profile, sf_ble_onbp_char_t characteristics, const
void *p_data)

Writes GATT characteristics with data passed Writes the GATT characteristics in the Server with the
data passed.

Parameters
[in] p_ctrl Pointer to control structure

for BLE

[in] p_handle Pointer to connection handle

[in] profile Profile type

[in] characteristics GATT characteristics code

[in] p_data Pointer to data

◆ onbpDisable

ssp_err_t(* sf_ble_onboard_profile_api_t::onbpDisable) (sf_ble_onboard_profile_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_onbp_t profile)

Disable On-Board Profile Disables On-Board profile on given connection handle and unregisters user
callback.

Parameters
[in] p_ctrl Pointer to control structure

for BLE

[in] p_handle Pointer to connection handle

[in] profile Profile type to disable

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,928 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface > sf_ble_onboard_profile_api_t Struct Reference

◆ onbpEnable

ssp_err_t(* sf_ble_onboard_profile_api_t::onbpEnable) (sf_ble_onboard_profile_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_onbp_t profile, sf_ble_profile_callback_t p_prf_cb,
sf_ble_prf_sec_t sec)

Enable On-Board Profile Enables On-Board profile on given connection handle with specified
security type. Registers user callback for the profile.

Parameters
[in,out] p_ctrl Pointer to control structure

for BLE

[in] p_handle Pointer to connection handle

[in] profile Profile type to enable

[in] p_prf_cb User callback for Profile

[in] sec Security type for profile

◆ onbpServerSendIndication

ssp_err_t(* sf_ble_onboard_profile_api_t::onbpServerSendIndication) (sf_ble_onboard_profile_ctrl_t
*const p_ctrl, sf_ble_conn_handle_t *p_handle, sf_onbp_t profile, sf_ble_onbp_char_t characteristics,
const void *p_data)

Send Indication from Server Sends Indication which contains profile specific data to client.

Parameters
[in] p_ctrl Pointer to control structure

for BLE

[in] p_handle Pointer to connection handle

[in] profile Profile type

[in] characteristics Profile characteristics

[in] p_data Pointer to data

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,929 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface > sf_ble_onboard_profile_api_t Struct Reference

◆ onbpServerSendNotification

ssp_err_t(* sf_ble_onboard_profile_api_t::onbpServerSendNotification) (sf_ble_onboard_profile_ctrl_t
*const p_ctrl, sf_ble_conn_handle_t *p_handle, sf_onbp_t profile, sf_ble_onbp_char_t characteristics,
const void *p_data)

Send notification from Server Sends Notification which will be data specific to On-Board Profile to
Client.

Parameters
[in] p_ctrl Pointer to control structure

for BLE

[in] p_handle Pointer to connection handle

[in] profile Profile type

[in] characteristics Profile characteristics

[in] p_data Pointer to data

◆ onbpServerWriteData

ssp_err_t(* sf_ble_onboard_profile_api_t::onbpServerWriteData) (sf_ble_onboard_profile_ctrl_t
*const p_ctrl, sf_ble_conn_handle_t *p_handle, sf_onbp_t profile, sf_ble_onbp_char_t characteristics,
const void *p_data)

Update Server Local Database Update Local GATT database of Profile Server.

Parameters
[in] p_ctrl Pointer to control structure

for BLE

[in] p_handle Pointer to connection handle

[in] profile Profile type

[in] characteristics Profile characteristics

[in] p_data Pointer to data

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,930 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface > sf_ble_onboard_profile_api_t Struct Reference

◆ open

ssp_err_t(* sf_ble_onboard_profile_api_t::open) (sf_ble_onboard_profile_ctrl_t *const p_ctrl, const
sf_ble_onboard_profile_cfg_t *p_cfg)

Initializes the interface for data transfers.

Initial driver configuration, enable the driver link, enable interrupts and make device ready for data
transfer.

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to BLE configuration
structure.

◆ versionGet

ssp_err_t(* sf_ble_onboard_profile_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version pointer to memory location

to return version number

The documentation for this struct was generated from the following file:

sf_ble_onboard_profile_api.h

 sf_ble_onboard_profile_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE On-Board Profile
Framework Interface

#include <sf_ble_onboard_profile_api.h>

Data Fields

sf_ble_onboard_profile_ctrl_t
*

p_ctrl

 Pointer to the control structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,931 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE On-Board Profile Framework Interface > sf_ble_onboard_profile_instance_t Struct Reference

sf_ble_onboard_profile_cfg_t
const *

p_cfg

 Pointer to the configuration structure for this instance.

sf_ble_onboard_profile_api_t
const *

p_api

 Pointer to the API structure for this instance.

Detailed Description

Instance structure

The documentation for this struct was generated from the following file:

sf_ble_onboard_profile_api.h

5.1.2.7 SF BLE Alert Notification Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Alert Notification Profile Framework Interface. More...

Data Structures

struct sf_ble_anp_ancp_t

struct sf_ble_anp_ancp_change_t

struct sf_ble_anp_api_new_alert_t

struct sf_ble_anp_api_new_alert_ntf_t

struct sf_ble_anp_api_unread_alert_t

struct sf_ble_anp_api_unread_alert_ntf_t

Macros

#define SF_BLE_ANP_ALT_TEXT_MAX (18U)

Enumerations

enum sf_ble_prf_anpc_event_t { SF_BLE_PRF_ANPC_EVENT_NONE,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,932 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Alert Notification Profile Framework Interface

SF_BLE_PRF_ANPC_EVENT_NEW_ALT_NTF,
SF_BLE_PRF_ANPC_EVENT_UNREAD_ALT_NTF,
SF_BLE_PRF_ANPC_EVENT_READ_CHAR_RES }

enum sf_ble_prf_anps_event_t { SF_BLE_PRF_ANPS_EVENT_NONE,
SF_BLE_PRF_ANPS_EVENT_ALT_NF_CP_IND,
SF_BLE_PRF_ANPS_EVENT_CCCD_NTF_IND }

enum sf_ble_prf_anp_category_id {
 SF_BLE_PRF_ANP_CATEGORY_ID_SIMPLE_ALERT,
SF_BLE_PRF_ANP_CATEGORY_ID_EMAIL,
SF_BLE_PRF_ANP_CATEGORY_ID_NEWS,
SF_BLE_PRF_ANP_CATEGORY_ID_CALL,
 SF_BLE_PRF_ANP_CATEGORY_ID_MISSED_CALL,
SF_BLE_PRF_ANP_CATEGORY_ID_SMS_MMS,
SF_BLE_PRF_ANP_CATEGORY_ID_VOICE_MAIL,
SF_BLE_PRF_ANP_CATEGORY_ID_SCHEDULE,
 SF_BLE_PRF_ANP_CATEGORY_ID_HIGH_PRIORITY_ALERT,
SF_BLE_PRF_ANP_CATEGORY_ID_INSTANT_MESSAGE,
SF_BLE_PRF_ANP_CATEGORY_ID_ALL
}

enum sf_ble_prf_anp_cmd_id_t {
 SF_BLE_PRF_ANP_CMD_ID_NEW_ALERT_ENABLE,
SF_BLE_PRF_ANP_CMD_ID_UNREAD_ALERT_ENABLE,
SF_BLE_PRF_ANP_CMD_ID_NEW_ALERT_DISABLE,
SF_BLE_PRF_ANP_CMD_ID_UNREAD_ALERT_DISABLE,
 SF_BLE_PRF_ANP_CMD_ID_NEW_ALERT_NTF_REQ,
SF_BLE_PRF_ANP_CMD_ID_UNREAD_ALERT_NTF_REQ
}

Detailed Description

RTOS-integrated SF BLE Alert Notification Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Alert Notification Profile
Framework.

Macro Definition Documentation

◆ SF_BLE_ANP_ALT_TEXT_MAX

#define SF_BLE_ANP_ALT_TEXT_MAX (18U)

Buffer size of data for Alert Notification

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,933 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Alert Notification Profile Framework Interface

◆ sf_ble_prf_anp_category_id

enum sf_ble_prf_anp_category_id

Alert Notification Control Point Category ID

Enumerator

SF_BLE_PRF_ANP_CATEGORY_ID_SIMPLE_ALERT Simple Alert: General text alert or non-text
alert.

SF_BLE_PRF_ANP_CATEGORY_ID_EMAIL Email Alert.

SF_BLE_PRF_ANP_CATEGORY_ID_NEWS News feeds Alert.

SF_BLE_PRF_ANP_CATEGORY_ID_CALL Incoming Call Alert.

SF_BLE_PRF_ANP_CATEGORY_ID_MISSED_CALL Missed Call Alert.

SF_BLE_PRF_ANP_CATEGORY_ID_SMS_MMS SMS/MMS Message Alert.

SF_BLE_PRF_ANP_CATEGORY_ID_VOICE_MAIL Voice Mail Alert.

SF_BLE_PRF_ANP_CATEGORY_ID_SCHEDULE Alert occurred on calendar, planner.

SF_BLE_PRF_ANP_CATEGORY_ID_HIGH_PRIORITY
_ALERT

High Prioritized Alert.

SF_BLE_PRF_ANP_CATEGORY_ID_INSTANT_MESS
AGE

Incoming Instant Messages.

SF_BLE_PRF_ANP_CATEGORY_ID_ALL All Supported Categories.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,934 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Alert Notification Profile Framework Interface

◆ sf_ble_prf_anp_cmd_id_t

enum sf_ble_prf_anp_cmd_id_t

Alert Notification Control Point Command ID

Enumerator

SF_BLE_PRF_ANP_CMD_ID_NEW_ALERT_ENABLE Enable New Incoming Alert Notification.

SF_BLE_PRF_ANP_CMD_ID_UNREAD_ALERT_ENAB
LE

Enable Unread Category Status Notification.

SF_BLE_PRF_ANP_CMD_ID_NEW_ALERT_DISABLE Disable New Incoming Alert Notification.

SF_BLE_PRF_ANP_CMD_ID_UNREAD_ALERT_DISA
BLE

Disable Unread Category Status Notification.

SF_BLE_PRF_ANP_CMD_ID_NEW_ALERT_NTF_REQ

Notify New Incoming Alert immediately.

SF_BLE_PRF_ANP_CMD_ID_UNREAD_ALERT_NTF_
REQ

Notify Unread Category Status immediately.

◆ sf_ble_prf_anpc_event_t

enum sf_ble_prf_anpc_event_t

Profile Client user events

Enumerator

SF_BLE_PRF_ANPC_EVENT_NONE Event not supported.

SF_BLE_PRF_ANPC_EVENT_NEW_ALT_NTF New Alert Data received event, Refer
sf_ble_anp_api_new_alert_ntf_t.

SF_BLE_PRF_ANPC_EVENT_UNREAD_ALT_NTF Unread Alert Data received event, Refer
sf_ble_anp_api_unread_alert_ntf_t.

SF_BLE_PRF_ANPC_EVENT_READ_CHAR_RES Read Char Complete Event.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,935 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Alert Notification Profile Framework Interface

◆ sf_ble_prf_anps_event_t

enum sf_ble_prf_anps_event_t

Alert notification server profile user events

Enumerator

SF_BLE_PRF_ANPS_EVENT_NONE Event not supported.

SF_BLE_PRF_ANPS_EVENT_ALT_NF_CP_IND Alert Notification Control Point Changed
indication, Refer sf_ble_anp_ancp_change_t.

SF_BLE_PRF_ANPS_EVENT_CCCD_NTF_IND CCCD Notification Setting change event.

 sf_ble_anp_ancp_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Alert Notification
Profile Framework Interface

#include <sf_ble_prf_anp_api.h>

Data Fields

sf_ble_prf_anp_cmd_id_t command_id

 Command type.

sf_ble_prf_anp_category_id category_id

 Category on which to act.

Detailed Description

Write Characteristics data for Alert Notification Control Point

The documentation for this struct was generated from the following file:

sf_ble_prf_anp_api.h

 sf_ble_anp_ancp_change_t Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,936 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Alert Notification Profile Framework Interface > sf_ble_anp_ancp_change_t Struct Reference

Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Alert Notification
Profile Framework Interface

#include <sf_ble_prf_anp_api.h>

Data Fields

sf_ble_conn_handle_t conhdl

 Connection handle.

sf_ble_anp_ancp_t control_point_value

 Control point value.

Detailed Description

Alert Notification Control Point Change Indication for Sensor

The documentation for this struct was generated from the following file:

sf_ble_prf_anp_api.h

 sf_ble_anp_api_new_alert_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Alert Notification
Profile Framework Interface

#include <sf_ble_prf_anp_api.h>

Data Fields

sf_ble_prf_anp_category_id category_id

 Category ID.

uint8_t alert_num

 Number of New Alert.

uint8_t text_size

 Text Size.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,937 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Alert Notification Profile Framework Interface > sf_ble_anp_api_new_alert_t Struct Reference

uint8_t text [SF_BLE_ANP_ALT_TEXT_MAX]

 Actual Text.

Detailed Description

Notification Data for New Alert, also used for sending notification from server

The documentation for this struct was generated from the following file:

sf_ble_prf_anp_api.h

 sf_ble_anp_api_new_alert_ntf_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Alert Notification
Profile Framework Interface

#include <sf_ble_prf_anp_api.h>

Data Fields

sf_ble_conn_handle_t conhdl

 Connection handle.

sf_ble_anp_api_new_alert_t new_alert

 New Alert data.

Detailed Description

Notification Data received for New Alert

The documentation for this struct was generated from the following file:

sf_ble_prf_anp_api.h

 sf_ble_anp_api_unread_alert_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Alert Notification

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,938 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Alert Notification Profile Framework Interface > sf_ble_anp_api_unread_alert_t Struct Reference

Profile Framework Interface

#include <sf_ble_prf_anp_api.h>

Data Fields

sf_ble_prf_anp_category_id category_id

 Category ID.

uint8_t unread_count

 Number of Unread Alert.

Detailed Description

Notification Data for Unread Alert, also used for sending notification from server

The documentation for this struct was generated from the following file:

sf_ble_prf_anp_api.h

 sf_ble_anp_api_unread_alert_ntf_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Alert Notification
Profile Framework Interface

#include <sf_ble_prf_anp_api.h>

Data Fields

sf_ble_conn_handle_t conhdl

 Connection handle.

sf_ble_anp_api_unread_alert
_t

alert

 Unread Alert data.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,939 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Alert Notification Profile Framework Interface > sf_ble_anp_api_unread_alert_ntf_t Struct Reference

Notification Data received for Unread Alert

The documentation for this struct was generated from the following file:

sf_ble_prf_anp_api.h

5.1.2.8 SF BLE Battery Service Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Battery Service Profile Framework Interface. More...

Data Structures

struct sf_ble_bas_battery_lvl_ntf_t

Variables

SSP_HEADER typedef
uint8_t

sf_ble_prf_bas_battery_lvl_t

Detailed Description

RTOS-integrated SF BLE Battery Service Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Battery Service Profile Framework.

Variable Documentation

◆ sf_ble_prf_bas_battery_lvl_t

SSP_HEADER typedef uint8_t sf_ble_prf_bas_battery_lvl_t

Battery Level

 sf_ble_bas_battery_lvl_ntf_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Battery Service
Profile Framework Interface

#include <sf_ble_prf_bas_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,940 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Battery Service Profile Framework Interface > sf_ble_bas_battery_lvl_ntf_t Struct Reference

Data Fields

sf_ble_conn_handle_t conhdl

 Connection handle.

sf_ble_prf_bas_battery_lvl_t batt_lvl

 Battery Level.

Detailed Description

Control Point Change Indication for Sensor

The documentation for this struct was generated from the following file:

sf_ble_prf_bas_api.h

5.1.2.9 SF BLE Blood Pressure Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Blood Pressure Profile Framework Interface. More...

Data Structures

struct sf_ble_blp_meas_info_t

struct sf_ble_blp_meas_recv_data_t

Enumerations

enum sf_ble_prf_blpc_event_t { SF_BLE_PRF_BLPC_EVENT_NONE,
SF_BLE_PRF_BLPC_EVENT_MEAS_NTF_IND,
SF_BLE_PRF_BLPC_EVENT_WRITE_CHAR_RES,
SF_BLE_PRF_BLPC_EVENT_READ_CHAR_RES }

enum sf_ble_prf_blps_event_t { SF_BLE_PRF_BLPS_EVENT_NONE,
SF_BLE_PRF_BLPS_EVENT_NTFIND_IND }

Detailed Description

RTOS-integrated SF BLE Blood Pressure Profile Framework Interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,941 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Blood Pressure Profile Framework Interface

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Blood Pressure Profile Framework.

Enumeration Type Documentation

◆ sf_ble_prf_blpc_event_t

enum sf_ble_prf_blpc_event_t

Profile user client events

Enumerator

SF_BLE_PRF_BLPC_EVENT_NONE Event not supported.

SF_BLE_PRF_BLPC_EVENT_MEAS_NTF_IND BLE user event indicating BLPC profile
measurement notification.

SF_BLE_PRF_BLPC_EVENT_WRITE_CHAR_RES BLE user event indicating BLPC profile read
char response.

SF_BLE_PRF_BLPC_EVENT_READ_CHAR_RES BLE user event indicating BLPC write char
response.

◆ sf_ble_prf_blps_event_t

enum sf_ble_prf_blps_event_t

Profile user server events

Enumerator

SF_BLE_PRF_BLPS_EVENT_NONE Event not supported.

SF_BLE_PRF_BLPS_EVENT_NTFIND_IND BLE user event indicating notification
indication.

 sf_ble_blp_meas_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Blood Pressure
Profile Framework Interface

#include <sf_ble_prf_blp_api.h>

Data Fields

uint8_t flag_stable_meas

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,942 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Blood Pressure Profile Framework Interface > sf_ble_blp_meas_info_t Struct Reference

 Stable or intermediary type of measurements. Set to 0 if
intermediate measurement.

uint8_t flags

 flags

int16_t press_val1

 blood pressure value - Systolic or cuff pressure. Cuff pressure has to
be filled here

int16_t press_val2

 blood pressure value - Diastolic or subfield1

int16_t press_val3

 blood pressure value - MAP or subfield2

sf_ble_prf_cts_date_time_t stamp

 time stamp

int16_t rate

 pulse rate

uint8_t id

 user ID

uint8_t reserved

 Reserved.

uint16_t meas_sts

 measurement status

Detailed Description

Blood Pressure Measurements Info

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,943 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Blood Pressure Profile Framework Interface > sf_ble_blp_meas_info_t Struct Reference

The documentation for this struct was generated from the following file:

sf_ble_prf_blp_api.h

 sf_ble_blp_meas_recv_data_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Blood Pressure
Profile Framework Interface

#include <sf_ble_prf_blp_api.h>

Data Fields

uint16_t conhdl

 Connection handle.

sf_ble_onbp_char_t char_code

 Characteristic code.

sf_ble_blp_meas_info_t meas_info

 BLP measurement data.

Detailed Description

Blood Pressure Measurements Data Received from Server

The documentation for this struct was generated from the following file:

sf_ble_prf_blp_api.h

5.1.2.10 SF BLE Current Time Service Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Current Time Service Profile Framework Interface. More...

Data Structures

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,944 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Current Time Service Profile Framework Interface

struct sf_ble_prf_cts_date_time_t

struct sf_ble_prf_cts_curr_time_t

struct sf_ble_cts_local_time_t

struct sf_ble_cts_ref_time_t

struct sf_ble_cts_curr_time_ntf_t

Detailed Description

RTOS-integrated SF BLE Current Time Service Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Current Time Service Profile
Framework.

 sf_ble_prf_cts_date_time_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Current Time
Service Profile Framework Interface

#include <sf_ble_prf_cts_api.h>

Data Fields

uint16_t year

 Year value.

uint8_t month

 Month value.

uint8_t day

 Day value.

uint8_t hour

 Hour value.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,945 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Current Time Service Profile Framework Interface > sf_ble_prf_cts_date_time_t Struct Reference

uint8_t min

 Minute value.

uint8_t sec

 Second value.

uint8_t reserved

 Reserved.

Detailed Description

Current Time Service Date Time information

The documentation for this struct was generated from the following file:

sf_ble_prf_cts_api.h

 sf_ble_prf_cts_curr_time_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Current Time
Service Profile Framework Interface

#include <sf_ble_prf_cts_api.h>

Data Fields

sf_ble_prf_cts_date_time_t stamp

 Date time info.

uint8_t day_of_week

 Day of week.

uint8_t fractions256

 Fraction value.

uint8_t adjust_reason

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,946 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Current Time Service Profile Framework Interface > sf_ble_prf_cts_curr_time_t Struct Reference

 Adjust reason.

uint8_t reserved

 Reserved.

Detailed Description

Current time information with Date Time

The documentation for this struct was generated from the following file:

sf_ble_prf_cts_api.h

 sf_ble_cts_local_time_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Current Time
Service Profile Framework Interface

#include <sf_ble_prf_cts_api.h>

Data Fields

int8_t time_zone

 Time Zone.

uint8_t dst_offset

 DST Offset.

Detailed Description

Local Time Information structure

The documentation for this struct was generated from the following file:

sf_ble_prf_cts_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,947 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Current Time Service Profile Framework Interface > sf_ble_cts_ref_time_t Struct Reference

 sf_ble_cts_ref_time_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Current Time
Service Profile Framework Interface

#include <sf_ble_prf_cts_api.h>

Data Fields

uint8_t time_source

 Source of time.

uint8_t accuracy

 Estimated accuracy of time compared to original time source.

uint8_t days_since_update

 Days that passed since time was updated successfully from time
source.

uint8_t hours_since_update

 Time that passed since time was updated successfully from time
source.

Detailed Description

Reference Time Information structure

The documentation for this struct was generated from the following file:

sf_ble_prf_cts_api.h

 sf_ble_cts_curr_time_ntf_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Current Time
Service Profile Framework Interface

#include <sf_ble_prf_cts_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,948 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Current Time Service Profile Framework Interface > sf_ble_cts_curr_time_ntf_t Struct Reference

sf_ble_conn_handle_t conhdl

 Connection handle.

sf_ble_prf_cts_curr_time_t current_time

 heart rate measurement data

Detailed Description

Notification Data of Current Time received from server

The documentation for this struct was generated from the following file:

sf_ble_prf_cts_api.h

5.1.2.11 SF BLE Find Me Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Find Me Profile Framework Interface. More...

Enumerations

enum sf_ble_prf_fmpt_event_t { SF_BLE_PRF_FMPT_EVENT_NONE,
SF_BLE_PRF_FMPT_EVENT_ALERT_LVL_CHANGED }

Detailed Description

RTOS-integrated SF BLE Find Me Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Find Me Profile Framework.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,949 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Find Me Profile Framework Interface

◆ sf_ble_prf_fmpt_event_t

enum sf_ble_prf_fmpt_event_t

Profile Server user events

Enumerator

SF_BLE_PRF_FMPT_EVENT_NONE BLE event unsupported.

SF_BLE_PRF_FMPT_EVENT_ALERT_LVL_CHANGED

BLE user event Alert level changed from
locator, Refer sf_ble_ias_alert_lvl_change_t.

5.1.2.12 SF BLE HID Over GATT Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE HID Over GATT Profile Framework Interface. More...

Data Structures

union sf_ble_prf_value_t

struct sf_ble_prf_hid_report_desc_t

struct sf_ble_prf_hid_report_ind_t

struct sf_ble_prf_hid_change_event_t

struct sf_ble_prf_dis_pnpid_t

Macros

#define SF_BLE_PRF_HIDS_REPORT_MAX (32U)

Typedefs

typedef uint8_t sf_ble_prf_hid_protocol_mode_t

typedef uint8_t sf_ble_prf_hid_ctrl_point_val_t

Enumerations

enum sf_ble_prf_hidd_event_t {
 SF_BLE_PRF_HIDD_EVENT_NONE,
SF_BLE_PRF_HIDD_EVENT_REPORT_IND,
SF_BLE_PRF_HIDD_EVENT_CFG_IND,
SF_BLE_PRF_HIDD_EVENT_PROTO_MODE_CHG_EVT,
 SF_BLE_PRF_HIDD_EVENT_REPORT_EVT,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,950 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE HID Over GATT Profile Framework Interface

SF_BLE_PRF_HIDD_EVENT_CP_CHANGED_EVT
}

enum sf_ble_prf_hid_event_t {
 SF_BLE_PRF_HID_EVENT_NONE,
SF_BLE_HID_BHOST_EVENT_REPORT_NTF,
SF_BLE_HID_BHOST_EVENT_READ_CHAR_RESP,
SF_BLE_HID_RHOST_EVENT_REPORT_NTF,
 SF_BLE_HID_RHOST_EVENT_BATTERY_LVL_NTF,
SF_BLE_HID_RHOST_EVENT_READ_CHAR_RESP,
SF_BLE_HID_RHOST_EVENT_READ_LONG_CHAR_RESP
}

enum sf_ble_hidd_device_type_t { SF_BLE_HIDD_HID_DEVICE = 0x01,
SF_BLE_HIDD_BOOT_KEYBOARD, SF_BLE_HIDD_BOOT_MOUSE }

Detailed Description

RTOS-integrated SF BLE HID Over GATT Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE HID Over GATT Profile Framework.

Macro Definition Documentation

◆ SF_BLE_PRF_HIDS_REPORT_MAX

#define SF_BLE_PRF_HIDS_REPORT_MAX (32U)

Maximum Number of reports in HID

Typedef Documentation

◆ sf_ble_prf_hid_ctrl_point_val_t

typedef uint8_t sf_ble_prf_hid_ctrl_point_val_t

HID Control Point Characteristics

◆ sf_ble_prf_hid_protocol_mode_t

typedef uint8_t sf_ble_prf_hid_protocol_mode_t

Protocol Mode Characteristics

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,951 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE HID Over GATT Profile Framework Interface

◆ sf_ble_hidd_device_type_t

enum sf_ble_hidd_device_type_t

HID Device types

Enumerator

SF_BLE_HIDD_HID_DEVICE HID Device type.

SF_BLE_HIDD_BOOT_KEYBOARD Boot Keyboard type.

SF_BLE_HIDD_BOOT_MOUSE Boot Mouse type.

◆ sf_ble_prf_hid_event_t

enum sf_ble_prf_hid_event_t

Profile Client user events

Enumerator

SF_BLE_PRF_HID_EVENT_NONE Event not supported.

SF_BLE_HID_BHOST_EVENT_REPORT_NTF Report value received from HID device, Refer
sf_ble_prf_hid_report_ind_t.

HID BHOST

SF_BLE_HID_BHOST_EVENT_READ_CHAR_RESP read char response received from HID device

SF_BLE_HID_RHOST_EVENT_REPORT_NTF Report value received from HID device, Refer
sf_ble_prf_hid_report_ind_t.

HID RHOST

SF_BLE_HID_RHOST_EVENT_BATTERY_LVL_NTF Battery level received from HID device, Refer
sf_ble_bas_battery_lvl_ntf_t.

SF_BLE_HID_RHOST_EVENT_READ_CHAR_RESP Read char response received from HID device.

SF_BLE_HID_RHOST_EVENT_READ_LONG_CHAR_
RESP

Long char read response received from HID
device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,952 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE HID Over GATT Profile Framework Interface

◆ sf_ble_prf_hidd_event_t

enum sf_ble_prf_hidd_event_t

Profile Server user events

Enumerator

SF_BLE_PRF_HIDD_EVENT_NONE Event not supported.

SF_BLE_PRF_HIDD_EVENT_REPORT_IND Report value updated from Boot Host or Report
Host, Refer sf_ble_prf_hid_report_ind_t.

SF_BLE_PRF_HIDD_EVENT_CFG_IND CCCD change indication from Boot Host or
Report Host.

SF_BLE_PRF_HIDD_EVENT_PROTO_MODE_CHG_E
VT

protocol mode change event from Boot Host or
Report Host, Refer
sf_ble_prf_hid_change_event_t

SF_BLE_PRF_HIDD_EVENT_REPORT_EVT report value update event from Boot Host or
Report Host, Refer sf_ble_prf_hid_report_ind_t

SF_BLE_PRF_HIDD_EVENT_CP_CHANGED_EVT suspend event from Report Host, Refer
sf_ble_prf_hid_change_event_t

 sf_ble_prf_value_t Union Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE HID Over GATT
Profile Framework Interface

#include <sf_ble_prf_hid_api.h>

Data Fields

sf_ble_prf_hid_protocol_mod
e_t

protocol_mode_val

 Protocol Mode.

sf_ble_prf_hid_ctrl_point_val
_t

control_point_val

 HID Control Point.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,953 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE HID Over GATT Profile Framework Interface > sf_ble_prf_value_t Union Reference

Detailed Description

HID Profile value changed by the client

The documentation for this union was generated from the following file:

sf_ble_prf_hid_api.h

 sf_ble_prf_hid_report_desc_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE HID Over GATT
Profile Framework Interface

#include <sf_ble_prf_hid_api.h>

Data Fields

sf_ble_hidd_device_type_t device_type

 Device type.

uint8_t report_type

 Report type.

uint8_t value [SF_BLE_PRF_HIDS_REPORT_MAX]

 Report values.

uint16_t value_size

 Report size.

Detailed Description

HID Report structure

The documentation for this struct was generated from the following file:

sf_ble_prf_hid_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,954 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE HID Over GATT Profile Framework Interface > sf_ble_prf_hid_report_ind_t Struct Reference

 sf_ble_prf_hid_report_ind_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE HID Over GATT
Profile Framework Interface

#include <sf_ble_prf_hid_api.h>

Data Fields

uint16_t conhdl

 Connection handle.

uint8_t inst_idx

 Instance Index.

uint8_t reserved

 Reserved.

sf_ble_prf_hid_report_desc_t report

 Report received from either BHOST or RHOST.

Detailed Description

HID Report Indication structure

The documentation for this struct was generated from the following file:

sf_ble_prf_hid_api.h

 sf_ble_prf_hid_change_event_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE HID Over GATT
Profile Framework Interface

#include <sf_ble_prf_hid_api.h>

Data Fields

uint16_t conhdl

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,955 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE HID Over GATT Profile Framework Interface > sf_ble_prf_hid_change_event_t Struct Reference

 Connection handle.

uint8_t inst_idx

 Instance Index.

sf_ble_prf_value_t ble_prf_value

 HID Profile value changed by the client.

Detailed Description

HID Profile Values Change structure

The documentation for this struct was generated from the following file:

sf_ble_prf_hid_api.h

 sf_ble_prf_dis_pnpid_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE HID Over GATT
Profile Framework Interface

#include <sf_ble_prf_hid_api.h>

Data Fields

uint8_t vendorIdSource

 Vendor ID source.

uint16_t vendorId

 Vendor ID.

uint16_t productId

 Product ID.

uint16_t productVersion

 Version of Product.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,956 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE HID Over GATT Profile Framework Interface > sf_ble_prf_dis_pnpid_t Struct Reference

Detailed Description

Structure to set the current Device Information PnP Id characteristic value

The documentation for this struct was generated from the following file:

sf_ble_prf_hid_api.h

5.1.2.13 SF BLE Heart Rate Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Heart Rate Profile Framework Interface. More...

Data Structures

struct sf_ble_hrp_api_hrmeas_t

struct sf_ble_hrp_api_meas_ntf_t

struct sf_ble_hrp_cp_change_t

Macros

#define SF_BLE_PRF_HRP_API_RR_INTERVAL_BUFF_LEN (0x9U)

Typedefs

typedef uint16_t sf_ble_prf_hrp_api_hrcp_t

Enumerations

enum sf_ble_prf_hrpc_event_t { SF_BLE_PRF_HRPC_EVENT_NONE,
SF_BLE_PRF_HRPC_EVENT_MEAS_NTF,
SF_BLE_PRF_HRPC_EVENT_READ_CHAR_RES }

enum sf_ble_prf_hrps_event_t { SF_BLE_PRF_HRPS_EVENT_NONE,
SF_BLE_PRF_HRPS_EVENT_NTF_CHG_IND,
SF_BLE_PRF_HRPS_EVENT_HRCP_CHG_IND }

Detailed Description

RTOS-integrated SF BLE Heart Rate Profile Framework Interface.

Summary

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,957 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Heart Rate Profile Framework Interface

This SSP Interface provides access to the ThreadX-aware SF BLE Heart Rate Profile Framework.

Macro Definition Documentation

◆ SF_BLE_PRF_HRP_API_RR_INTERVAL_BUFF_LEN

#define SF_BLE_PRF_HRP_API_RR_INTERVAL_BUFF_LEN (0x9U)

Heart Rate RR Interval Buffer Length

Typedef Documentation

◆ sf_ble_prf_hrp_api_hrcp_t

typedef uint16_t sf_ble_prf_hrp_api_hrcp_t

Write Characteristics data for Heart Rate Control Point

Enumeration Type Documentation

◆ sf_ble_prf_hrpc_event_t

enum sf_ble_prf_hrpc_event_t

Profile Client user events

Enumerator

SF_BLE_PRF_HRPC_EVENT_NONE Event not supported.

SF_BLE_PRF_HRPC_EVENT_MEAS_NTF Heart Rate Measurement data received event,
Refer sf_ble_hrp_api_meas_ntf_t.

SF_BLE_PRF_HRPC_EVENT_READ_CHAR_RES Read Char Complete Event.

◆ sf_ble_prf_hrps_event_t

enum sf_ble_prf_hrps_event_t

Profile Server user events

Enumerator

SF_BLE_PRF_HRPS_EVENT_NONE Event not supported.

SF_BLE_PRF_HRPS_EVENT_NTF_CHG_IND CCCD Notification Setting Change Event.

SF_BLE_PRF_HRPS_EVENT_HRCP_CHG_IND Heart Rate Control Point Changed Event, Refer
sf_ble_hrp_cp_change_t.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,958 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Heart Rate Profile Framework Interface

 sf_ble_hrp_api_hrmeas_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Heart Rate Profile
Framework Interface

#include <sf_ble_prf_hrp_api.h>

Data Fields

uint8_t flags

 HRP bit Flags.

uint8_t rr_interval_num

 number of RR Interval

uint16_t heart_rate_measure

 Heart Rate measurement value.

uint16_t energy_expended

 Energy Expended in Kilo Joules from last time it was reset.

uint16_t rr_interval [SF_BLE_PRF_HRP_API_RR_INTERVAL_BUFF_LEN]

 RR interval(s)

Detailed Description

Notification Data for Heart Rate Measurement, also used for sending notification from server

The documentation for this struct was generated from the following file:

sf_ble_prf_hrp_api.h

 sf_ble_hrp_api_meas_ntf_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Heart Rate Profile
Framework Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,959 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Heart Rate Profile Framework Interface > sf_ble_hrp_api_meas_ntf_t Struct Reference

#include <sf_ble_prf_hrp_api.h>

Data Fields

sf_ble_conn_handle_t conhdl

 Connection handle.

sf_ble_hrp_api_hrmeas_t measurements_info

 heart rate measurement data

Detailed Description

Notification Data of Heart Rate measurement received from sensor

The documentation for this struct was generated from the following file:

sf_ble_prf_hrp_api.h

 sf_ble_hrp_cp_change_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Heart Rate Profile
Framework Interface

#include <sf_ble_prf_hrp_api.h>

Data Fields

sf_ble_conn_handle_t conhdl

 Connection handle.

sf_ble_prf_hrp_api_hrcp_t control_point_value

 Control point value.

Detailed Description

Control Point Change Indication for Sensor

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,960 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Heart Rate Profile Framework Interface > sf_ble_hrp_cp_change_t Struct Reference

sf_ble_prf_hrp_api.h

5.1.2.14 SF BLE Health Thermometer Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Health Thermometer Profile Framework Interface. More...

Data Structures

struct sf_ble_prf_htp_temp_info_t

struct sf_ble_prf_htp_temp_info_ind_t

struct st_sf_ble_prf_htp_meas_intv_val_t

Enumerations

enum sf_ble_event_prf_htpt_t { SF_BLE_EVENT_PRF_HTPT_NONE,
SF_BLE_EVENT_PRF_HTPT_MEAS_INTV_CHG_IND,
SF_BLE_EVENT_PRF_HTPT_CFG_IND }

enum sf_ble_event_prf_htpc_t { SF_BLE_EVENT_PRF_HTPC_NONE,
SF_BLE_EVENT_PRF_HTPC_TEMP_IND,
SF_BLE_EVENT_PRF_HTPC_MEAS_INTV_IND,
SF_BLE_PRF_HTPC_EVENT_READ_CHAR_RES }

enum sf_ble_prf_htp_meas_state_t {
SF_BLE_PRF_HTP_MEAS_STATE_IN_PROGRESS = 0,
SF_BLE_PRF_HTP_MEAS_STATE_COMPLETE }

enum sf_ble_prf_htp_temp_type_t {
 SF_BLE_PRF_HTP_TYPE_ARMPIT = 0, SF_BLE_PRF_HTP_TYPE_BODY,
SF_BLE_PRF_HTP_TYPE_EAR, SF_BLE_PRF_HTP_TYPE_FINGER,
 SF_BLE_PRF_HTP_TYPE_GASTROINTESTINAL,
SF_BLE_PRF_HTP_TYPE_MOUTH, SF_BLE_PRF_HTP_TYPE_RECTUM,
SF_BLE_PRF_HTP_TYPE_TOE,
 SF_BLE_PRF_HTP_TYPE_TYMPANUM
}

Detailed Description

RTOS-integrated SF BLE Health Thermometer Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Health Thermometer Profile

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,961 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Health Thermometer Profile Framework Interface

Framework.

Enumeration Type Documentation

◆ sf_ble_event_prf_htpc_t

enum sf_ble_event_prf_htpc_t

HTP Collector (client) user events

Enumerator

SF_BLE_EVENT_PRF_HTPC_NONE Event not supported.

SF_BLE_EVENT_PRF_HTPC_TEMP_IND BLE user event indicating HTPC profile
temperature value indication.

SF_BLE_EVENT_PRF_HTPC_MEAS_INTV_IND BLE user event indicating HTPC profile
measurement interval value indication.

SF_BLE_PRF_HTPC_EVENT_READ_CHAR_RES BLE user event for read char response.

◆ sf_ble_event_prf_htpt_t

enum sf_ble_event_prf_htpt_t

HTP thermometer (server) user events

Enumerator

SF_BLE_EVENT_PRF_HTPT_NONE Event not supported.

SF_BLE_EVENT_PRF_HTPT_MEAS_INTV_CHG_IND Thermometer measurement interval
characteristic change indication.

SF_BLE_EVENT_PRF_HTPT_CFG_IND BLE user event indicating HTPT profile CCCD
change indication.

◆ sf_ble_prf_htp_meas_state_t

enum sf_ble_prf_htp_meas_state_t

HTP Collector (client) user events

Enumerator

SF_BLE_PRF_HTP_MEAS_STATE_IN_PROGRESS Measurement in progress.

SF_BLE_PRF_HTP_MEAS_STATE_COMPLETE Measurement is complete.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,962 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Health Thermometer Profile Framework Interface

◆ sf_ble_prf_htp_temp_type_t

enum sf_ble_prf_htp_temp_type_t

HTP Temperature Types

Enumerator

SF_BLE_PRF_HTP_TYPE_ARMPIT Temperature type Armpit.

SF_BLE_PRF_HTP_TYPE_BODY Temperature type Body.

SF_BLE_PRF_HTP_TYPE_EAR Temperature type Ear.

SF_BLE_PRF_HTP_TYPE_FINGER Temperature type Finger.

SF_BLE_PRF_HTP_TYPE_GASTROINTESTINAL Temperature type Gastrointestinal.

SF_BLE_PRF_HTP_TYPE_MOUTH Temperature type Mouth.

SF_BLE_PRF_HTP_TYPE_RECTUM Temperature type Rectum.

SF_BLE_PRF_HTP_TYPE_TOE Temperature type Toe.

SF_BLE_PRF_HTP_TYPE_TYMPANUM Temperature type Tympanum.

 sf_ble_prf_htp_temp_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Health Thermometer
Profile Framework Interface

#include <sf_ble_prf_htp_api.h>

Data Fields

uint8_t flag_stable_meas

 Stable or intermediary type of temperature.

uint8_t flags

 flags

int32_t temp_val

 temp value

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,963 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Health Thermometer Profile Framework Interface > sf_ble_prf_htp_temp_info_t Struct Reference

sf_ble_prf_cts_date_time_t stamp

 time stamp

sf_ble_prf_htp_temp_type_t type

 type

uint8_t reserved

 Reserved.

Detailed Description

Health Thermometer Info

The documentation for this struct was generated from the following file:

sf_ble_prf_htp_api.h

 sf_ble_prf_htp_temp_info_ind_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Health Thermometer
Profile Framework Interface

#include <sf_ble_prf_htp_api.h>

Data Fields

uint16_t conhdl

 Connection handle.

sf_ble_prf_htp_temp_info_t temp_info

 Thermometer info.

Detailed Description

Thermometer Information Indication

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,964 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Health Thermometer Profile Framework Interface > sf_ble_prf_htp_temp_info_ind_t Struct Reference

The documentation for this struct was generated from the following file:

sf_ble_prf_htp_api.h

 st_sf_ble_prf_htp_meas_intv_val_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Health Thermometer
Profile Framework Interface

#include <sf_ble_prf_htp_api.h>

Data Fields

uint16_t conhdl

 Connection handle.

uint16_t intv

 Interval value.

Detailed Description

Measurement Interval value

The documentation for this struct was generated from the following file:

sf_ble_prf_htp_api.h

5.1.2.15 SF BLE Immediate Alert Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Immediate Alert Profile Framework Interface. More...

Data Structures

struct sb_ble_prf_ias_set_alert_t

struct sf_ble_prf_ias_alert_lvl_change_t

Enumerations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,965 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Immediate Alert Profile Framework Interface

enum sf_ble_prf_ias_alert_type_t { SF_BLE_PRF_ALERT_TYPE_NONE,
SF_BLE_PRF_ALERT_TYPE_MILD, SF_BLE_PRF_ALERT_TYPE_HIGH }

enum sf_ble_prf_ias_svc_code_t { SF_BLE_SVC_SET_LK_LOSS_ALERT =
0x00, SF_BLE_SVC_SET_IMMDT_ALERT }

Detailed Description

RTOS-integrated SF BLE Immediate Alert Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Immediate Alert Profile Framework.

Enumeration Type Documentation

◆ sf_ble_prf_ias_alert_type_t

enum sf_ble_prf_ias_alert_type_t

Alert Level Values

Enumerator

SF_BLE_PRF_ALERT_TYPE_NONE No Alert.

SF_BLE_PRF_ALERT_TYPE_MILD Mild Alert.

SF_BLE_PRF_ALERT_TYPE_HIGH High Alert.

◆ sf_ble_prf_ias_svc_code_t

enum sf_ble_prf_ias_svc_code_t

SVC codes

Enumerator

SF_BLE_SVC_SET_LK_LOSS_ALERT Code for LLS Alert Level Char.

SF_BLE_SVC_SET_IMMDT_ALERT Code for IAS Alert Level Char.

 sb_ble_prf_ias_set_alert_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Immediate Alert
Profile Framework Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,966 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Immediate Alert Profile Framework Interface > sb_ble_prf_ias_set_alert_t Struct Reference

#include <sf_ble_prf_ias_api.h>

Data Fields

sf_ble_prf_ias_svc_code_t svc_code

 SVC code.

sf_ble_prf_ias_alert_type_t lvl

 Alert level.

Detailed Description

Alert level and type

The documentation for this struct was generated from the following file:

sf_ble_prf_ias_api.h

 sf_ble_prf_ias_alert_lvl_change_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Immediate Alert
Profile Framework Interface

#include <sf_ble_prf_ias_api.h>

Data Fields

sf_ble_conn_handle_t conhdl

 Connection handle.

sf_ble_prf_ias_alert_type_t alert_lvl

 Control point value.

Detailed Description

Alert Level Change Indication for Server

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,967 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Immediate Alert Profile Framework Interface > sf_ble_prf_ias_alert_lvl_change_t Struct Reference

sf_ble_prf_ias_api.h

5.1.2.16 SF BLE Next DST Change Service Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Next DST Change Service Profile Framework Interface. More...

Data Structures

struct sf_ble_prf_ndcs_time_dst_t

Detailed Description

RTOS-integrated SF BLE Next DST Change Service Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Next DST Change Service Profile
Framework.

 sf_ble_prf_ndcs_time_dst_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Next DST Change
Service Profile Framework Interface

#include <sf_ble_prf_ndcs_api.h>

Data Fields

sf_ble_prf_cts_date_time_t stamp

 Current time stamp.

uint8_t dst_offset

 DST Offset.

uint8_t reserved

 Reserved.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,968 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Next DST Change Service Profile Framework Interface > sf_ble_prf_ndcs_time_dst_t Struct Reference

Detailed Description

Next Time with DST Information structure

The documentation for this struct was generated from the following file:

sf_ble_prf_ndcs_api.h

5.1.2.17 SF BLE Phone Alert Status Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Phone Alert Status Profile Framework Interface. More...

Data Structures

struct sf_ble_prf_ringer_cp_change_t

struct sf_ble_prf_ringer_setting_ntf_t

struct sf_ble_prf_alert_status_ntf_t

Typedefs

typedef uint8_t sf_ble_prf_alert_status

Enumerations

enum sf_ble_prf_papsc_event_t { SF_BLE_PRF_PAPSC_EVENT_NONE,
SF_BLE_PRF_PAPSC_EVENT_READ_CHAR_RES,
SF_BLE_PRF_PAPSC_EVENT_RINGER_SETTING_IND,
SF_BLE_PRF_PAPSC_EVENT_ALERT_STATUS_RES }

enum sf_ble_prf_papss_event_t { SF_BLE_PRF_PAPSS_EVENT_NONE,
SF_BLE_PRF_PAPSS_EVENT_RINGER_CP_IND,
SF_BLE_PRF_PAPSS_EVENT_CFG_NTF_IND }

enum sf_ble_prf_ringer_cp_t { SF_BLE_PRF_RINGER_CP_SILENT_MODE =
0x01, SF_BLE_PRF_RINGER_CP_MUTE_ONCE,
SF_BLE_PRF_RINGER_CP_CANCEL_SILENT_MODE }

enum sf_ble_prf_ringer_setting_t { SF_BLE_PRF_RINGER_SETTING_SILENT,
SF_BLE_PRF_RINGER_SETTING_NORMAL }

enum sf_ble_prf_alert_setting_t { SF_BLE_PRF_ALERT_NONE,
SF_BLE_PRF_ALERT_RINGER, SF_BLE_PRF_ALERT_VIBRATOR,
SF_BLE_PRF_ALERT_DISPLAY }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,969 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Phone Alert Status Profile Framework Interface

Detailed Description

RTOS-integrated SF BLE Phone Alert Status Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Phone Alert Status Profile
Framework.

Typedef Documentation

◆ sf_ble_prf_alert_status

typedef uint8_t sf_ble_prf_alert_status

PASP Alert Status

Enumeration Type Documentation

◆ sf_ble_prf_alert_setting_t

enum sf_ble_prf_alert_setting_t

PASP Alert status

Enumerator

SF_BLE_PRF_ALERT_NONE No active alert.

SF_BLE_PRF_ALERT_RINGER Ringer State is active.

SF_BLE_PRF_ALERT_VIBRATOR Vibrate State is active.

SF_BLE_PRF_ALERT_DISPLAY Display Alert Status State is active.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,970 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Phone Alert Status Profile Framework Interface

◆ sf_ble_prf_papsc_event_t

enum sf_ble_prf_papsc_event_t

Profile Client user events

Enumerator

SF_BLE_PRF_PAPSC_EVENT_NONE Event not supported.

SF_BLE_PRF_PAPSC_EVENT_READ_CHAR_RES BLE user event indicating PAPS target alert
indication received from locator.

SF_BLE_PRF_PAPSC_EVENT_RINGER_SETTING_IN
D

BLE user event indicating PAPS ringer setting
indication, Refer sf_ble_prf_ringer_setting_ntf_t
.

SF_BLE_PRF_PAPSC_EVENT_ALERT_STATUS_RES BLE user event indicating PAPS alert status
response, Refer sf_ble_prf_alert_status_ntf_t.

◆ sf_ble_prf_papss_event_t

enum sf_ble_prf_papss_event_t

Profile Server user events

Enumerator

SF_BLE_PRF_PAPSS_EVENT_NONE Event not supported.

SF_BLE_PRF_PAPSS_EVENT_RINGER_CP_IND BLE user event indicating ringer control point
indication, Refer sf_ble_prf_ringer_cp_change_t
.

SF_BLE_PRF_PAPSS_EVENT_CFG_NTF_IND BLE user event indicating notification
indication.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,971 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Phone Alert Status Profile Framework Interface

◆ sf_ble_prf_ringer_cp_t

enum sf_ble_prf_ringer_cp_t

Ringer Control Point value

Enumerator

SF_BLE_PRF_RINGER_CP_SILENT_MODE Silent Mode.

SF_BLE_PRF_RINGER_CP_MUTE_ONCE Mute Once.

SF_BLE_PRF_RINGER_CP_CANCEL_SILENT_MODE Cancel Silent Mode.

◆ sf_ble_prf_ringer_setting_t

enum sf_ble_prf_ringer_setting_t

Ringer Setting Value

Enumerator

SF_BLE_PRF_RINGER_SETTING_SILENT Ringer Silent.

SF_BLE_PRF_RINGER_SETTING_NORMAL Ringer Normal.

 sf_ble_prf_ringer_cp_change_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Phone Alert Status
Profile Framework Interface

#include <sf_ble_prf_paps_api.h>

Data Fields

sf_ble_conn_handle_t conhdl

 Connection handle.

sf_ble_prf_ringer_cp_t ringer_cp

 Ringer control point value.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,972 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Phone Alert Status Profile Framework Interface > sf_ble_prf_ringer_cp_change_t Struct Reference

Ringer Control Point value changed indication

The documentation for this struct was generated from the following file:

sf_ble_prf_paps_api.h

 sf_ble_prf_ringer_setting_ntf_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Phone Alert Status
Profile Framework Interface

#include <sf_ble_prf_paps_api.h>

Data Fields

sf_ble_conn_handle_t conhdl

 Connection handle.

sf_ble_prf_ringer_setting_t ringer_setting

 Ringer control point value.

Detailed Description

Ringer Setting notification received data

The documentation for this struct was generated from the following file:

sf_ble_prf_paps_api.h

 sf_ble_prf_alert_status_ntf_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Phone Alert Status
Profile Framework Interface

#include <sf_ble_prf_paps_api.h>

Data Fields

sf_ble_conn_handle_t conhdl

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,973 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Phone Alert Status Profile Framework Interface > sf_ble_prf_alert_status_ntf_t Struct Reference

 Connection handle.

sf_ble_prf_alert_status alert_status

 Ringer control point value.

Detailed Description

Alert Status notification received data

The documentation for this struct was generated from the following file:

sf_ble_prf_paps_api.h

5.1.2.18 SF BLE Proximity Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Proximity Profile Framework Interface. More...

Enumerations

enum sf_ble_prf_pxpr_event_t { SF_BLE_PRF_PXPR_EVENT_NONE,
SF_BLE_PRF_PXPR_EVENT_ALT_IND,
SF_BLE_PRF_PXPR_EVENT_CMD_DISALLOWED_IND }

enum sf_ble_prf_pxpm_event_t { SF_BLE_PRF_PXPM_EVENT_NONE,
SF_BLE_PRF_PXPM_EVENT_READ_CHAR_RESP,
SF_BLE_PRF_PXPM_EVENT_CMD_DISALLOWED_IND,
SF_BLE_PRF_PXPM_EVENT_ERROR_IND }

Detailed Description

RTOS-integrated SF BLE Proximity Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Proximity Profile Framework.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,974 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Proximity Profile Framework Interface

◆ sf_ble_prf_pxpm_event_t

enum sf_ble_prf_pxpm_event_t

PXP monitor (client) user events

Enumerator

SF_BLE_PRF_PXPM_EVENT_NONE unsupported event

SF_BLE_PRF_PXPM_EVENT_READ_CHAR_RESP BLE user event indicating PXPR profile alert
indication.

SF_BLE_PRF_PXPM_EVENT_CMD_DISALLOWED_IN
D

command disallowed error received

SF_BLE_PRF_PXPM_EVENT_ERROR_IND error received for command issued

◆ sf_ble_prf_pxpr_event_t

enum sf_ble_prf_pxpr_event_t

PXP reporter (server) user events

Enumerator

SF_BLE_PRF_PXPR_EVENT_NONE unsupported event

SF_BLE_PRF_PXPR_EVENT_ALT_IND BLE user event indicating PXPR profile alert
indication.

SF_BLE_PRF_PXPR_EVENT_CMD_DISALLOWED_IN
D

command disallowed error received

5.1.2.19 SF BLE Reference Time Update Service Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Reference Time Update Service Profile Framework Interface. More...

Data Structures

struct sf_ble_prf_rtus_time_updt_state_t

struct sf_ble_tip_cp_change_t

Variables

SSP_HEADER typedef sf_ble_prf_tip_time_ctrl_point_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,975 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Reference Time Update Service Profile Framework Interface

uint8_t

Detailed Description

RTOS-integrated SF BLE Reference Time Update Service Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Reference Time Update Service
Profile Framework.

Variable Documentation

◆ sf_ble_prf_tip_time_ctrl_point_t

SSP_HEADER typedef uint8_t sf_ble_prf_tip_time_ctrl_point_t

Time Update Control point

 sf_ble_prf_rtus_time_updt_state_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Reference Time
Update Service Profile Framework Interface

#include <sf_ble_prf_rtus_api.h>

Data Fields

uint8_t current_state

 Current state of Reference time.

uint8_t update_result

 Result of update.

Detailed Description

Reference Time Update State structure

The documentation for this struct was generated from the following file:

sf_ble_prf_rtus_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,976 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Reference Time Update Service Profile Framework Interface > sf_ble_tip_cp_change_t Struct Reference

 sf_ble_tip_cp_change_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Reference Time
Update Service Profile Framework Interface

#include <sf_ble_prf_rtus_api.h>

Data Fields

sf_ble_conn_handle_t conhdl

 Connection handle.

sf_ble_prf_tip_time_ctrl_poin
t_t

control_point_value

 Time Update Control point value.

Detailed Description

Time Update Control Point Change Indication for Server

The documentation for this struct was generated from the following file:

sf_ble_prf_rtus_api.h

5.1.2.20 SF BLE Scan Parameters Service Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Scan Parameters Service Profile Framework Interface. More...

Data Structures

struct sf_ble_prf_scps_scan_intv_t

struct sf_ble_scps_scan_intv_change_t

Typedefs

typedef uint8_t sf_ble_prf_scps_scan_refresh_t

Enumerations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,977 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Scan Parameters Service Profile Framework Interface

enum sf_ble_prf_scps_event_t { SF_BLE_PRF_SCPS_EVENT_NONE,
SF_BLE_PRF_SCPS_EVENT_INDNTF_IND,
SF_BLE_PRF_SCPS_EVENT_CHG_EVT }

Detailed Description

RTOS-integrated SF BLE Scan Parameters Service Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Scan Parameters Service Profile
Framework.

Typedef Documentation

◆ sf_ble_prf_scps_scan_refresh_t

typedef uint8_t sf_ble_prf_scps_scan_refresh_t

Scan Refresh Data value

Enumeration Type Documentation

◆ sf_ble_prf_scps_event_t

enum sf_ble_prf_scps_event_t

Profile Server user events

Enumerator

SF_BLE_PRF_SCPS_EVENT_NONE Event not supported.

SF_BLE_PRF_SCPS_EVENT_INDNTF_IND BLE Notification Setting Change Indication.

SF_BLE_PRF_SCPS_EVENT_CHG_EVT BLE Scan Interval Changed Indication, Refer
sf_ble_scps_scan_intv_change_t.

 sf_ble_prf_scps_scan_intv_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Scan Parameters
Service Profile Framework Interface

#include <sf_ble_prf_scps_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,978 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Scan Parameters Service Profile Framework Interface > sf_ble_prf_scps_scan_intv_t Struct Reference

uint16_t le_scan_interval

 scan interval value

uint16_t le_scan_window

 scan window value

Detailed Description

Scan interval window characteristic data

The documentation for this struct was generated from the following file:

sf_ble_prf_scps_api.h

 sf_ble_scps_scan_intv_change_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Scan Parameters
Service Profile Framework Interface

#include <sf_ble_prf_scps_api.h>

Data Fields

sf_ble_conn_handle_t conhdl

 Connection handle.

sf_ble_prf_scps_scan_intv_t scan_interval_window_val

 Scan Interval window.

Detailed Description

Scan interval window Change Indication for Sensor

The documentation for this struct was generated from the following file:

sf_ble_prf_scps_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,979 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Time Information Profile Framework Interface

5.1.2.21 SF BLE Time Information Profile Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF BLE Time Information Profile Framework Interface. More...

Data Structures

union sf_ble_prf_tip_write_data_t

Enumerations

enum sf_ble_prf_tipc_event_t { SF_BLE_PRF_TIPC_EVENT_NONE,
SF_BLE_PRF_TIPC_EVENT_READ_CHAR_RES,
SF_BLE_PRF_TIPC_EVENT_CURR_TIME_NTF }

enum sf_ble_prf_tips_event_t { SF_BLE_PRF_TIPS_EVENT_NONE,
SF_BLE_PRF_TIPS_EVENT_NTF_IND, SF_BLE_PRF_TIPS_EVENT_CP_IND
}

Detailed Description

RTOS-integrated SF BLE Time Information Profile Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF BLE Time Information Profile
Framework.

Enumeration Type Documentation

◆ sf_ble_prf_tipc_event_t

enum sf_ble_prf_tipc_event_t

Time Profile Client events

Enumerator

SF_BLE_PRF_TIPC_EVENT_NONE Event not supported.

SF_BLE_PRF_TIPC_EVENT_READ_CHAR_RES Read Char Complete Event.

SF_BLE_PRF_TIPC_EVENT_CURR_TIME_NTF Current Time information received, Refer
sf_ble_cts_curr_time_ntf_t.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,980 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Time Information Profile Framework Interface

◆ sf_ble_prf_tips_event_t

enum sf_ble_prf_tips_event_t

Time Profile Server events

Enumerator

SF_BLE_PRF_TIPS_EVENT_NONE Event not supported.

SF_BLE_PRF_TIPS_EVENT_NTF_IND CCCD Notification Received event.

SF_BLE_PRF_TIPS_EVENT_CP_IND Time Update control point changed, Refer
sf_ble_prf_tip_time_ctrl_point_t.

 sf_ble_prf_tip_write_data_t Union Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF BLE Time Information
Profile Framework Interface

#include <sf_ble_prf_tip_api.h>

Data Fields

sf_ble_prf_cts_curr_time_t current_time

 Current Time Information.

sf_ble_cts_local_time_t local_time

 Local Time Information.

sf_ble_cts_ref_time_t ref_time

 Reference Time Information.

sf_ble_prf_ndcs_time_dst_t next_dst

 Next DST Information.

sf_ble_prf_rtus_time_updt_st
ate_t

update_state

 Update Status Information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,981 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF BLE Time Information Profile Framework Interface > sf_ble_prf_tip_write_data_t Union Reference

Detailed Description

Write Local Database Information

The documentation for this union was generated from the following file:

sf_ble_prf_tip_api.h

5.1.2.22 Block Media Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated File system Interface to access Synergy block media devices. More...

Data Structures

struct sf_block_media_cfg_t

struct sf_block_media_api_t

struct sf_block_media_instance_t

Typedefs

typedef void sf_block_media_ctrl_t

Detailed Description

RTOS-integrated File system Interface to access Synergy block media devices.

The interface provides an adaption layer from the FileX I/O to block media devices.

Summary
Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

See also FileX Interface description: FileX on Block Media

Typedef Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,982 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Block Media Framework Interface

◆ sf_block_media_ctrl_t

typedef void sf_block_media_ctrl_t

Block media framework control block. Allocate an instance specific control block to pass into the
block media framework API calls.

Implemented as

sf_block_media_sdmmc_instance_ctrl_t
sf_block_media_ram_instance_ctrl_t
sf_block_media_qspi_instance_ctrl_t
sf_block_media_levelx_nor_instance_ctrl_t

 sf_block_media_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Block Media Framework
Interface

#include <sf_block_media_api.h>

Data Fields

uint32_t block_size

 Block size in bytes.

void const * p_extend

 Instance dependent configuration.

Detailed Description

Interface Configuration

The documentation for this struct was generated from the following file:

sf_block_media_api.h

 sf_block_media_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Block Media Framework
Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,983 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Block Media Framework Interface > sf_block_media_api_t Struct Reference

#include <sf_block_media_api.h>

Data Fields

ssp_err_t(* open)(sf_block_media_ctrl_t *p_ctrl, sf_block_media_cfg_t const
*const p_cfg)

ssp_err_t(* read)(sf_block_media_ctrl_t *p_ctrl, uint8_t *const p_dest, uint32_t
const start_sector, uint32_t const sector_count)

ssp_err_t(* write)(sf_block_media_ctrl_t *p_ctrl, uint8_t const *const p_src,
uint32_t const start_sector, uint32_t const sector_count)

ssp_err_t(* ioctl)(sf_block_media_ctrl_t *p_ctrl, ssp_command_t const command,
void *p_data)

ssp_err_t(* close)(sf_block_media_ctrl_t *p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Shared Interface definition for Block Media

Field Documentation

◆ close

ssp_err_t(* sf_block_media_api_t::close) (sf_block_media_ctrl_t *p_ctrl)

Close the open media channel.

Implemented as

SF_Block_Media_SDMMC_Close()
SF_BLOCK_MEDIA_RAM_Close()
SF_BLOCK_MEDIA_QSPI_Close()
SF_BLOCK_MEDIA_LX_NOR_Close()

Parameters
[in] p_cfg Pointer to the media

configuration structure for a
channel.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,984 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Block Media Framework Interface > sf_block_media_api_t Struct Reference

◆ ioctl

ssp_err_t(* sf_block_media_api_t::ioctl) (sf_block_media_ctrl_t *p_ctrl, ssp_command_t const
command, void *p_data)

Send control commands to and receives the status from the media port.

Implemented as

SF_Block_Media_SDMMC_Control()
SF_BLOCK_MEDIA_RAM_Control()
SF_BLOCK_MEDIA_QSPI_Control()
SF_BLOCK_MEDIA_LX_NOR_Control()

Parameters
[in] p_cfg Pointer to the media

configuration structure for a
channel.

[in] command Command to execute.

[in,out] p_data Void pointer to data in or
out.

◆ open

ssp_err_t(* sf_block_media_api_t::open) (sf_block_media_ctrl_t *p_ctrl, sf_block_media_cfg_t const
*const p_cfg)

Open a device channel for read/write and control.

Implemented as

SF_Block_Media_SDMMC_Open()
SF_BLOCK_MEDIA_RAM_Open()
SF_BLOCK_MEDIA_QSPI_Open()
SF_BLOCK_MEDIA_LX_NOR_Open()

Parameters
[in] p_cfg Pointer to the media

configuration structure for a
channel.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,985 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Block Media Framework Interface > sf_block_media_api_t Struct Reference

◆ read

ssp_err_t(* sf_block_media_api_t::read) (sf_block_media_ctrl_t *p_ctrl, uint8_t *const p_dest,
uint32_t const start_sector, uint32_t const sector_count)

Read data from a media channel.

Implemented as

SF_Block_Media_SDMMC_Read()
SF_BLOCK_MEDIA_RAM_Read()
SF_BLOCK_MEDIA_QSPI_Read()
SF_BLOCK_MEDIA_LX_NOR_Read()

Parameters
[in] p_cfg Pointer to the media

configuration structure for a
channel.

[in] p_dest Destination address to read
data out.

[in] start_sector Beginning sector address to
read.

[in] sector_count Number of sectors to read.

◆ versionGet

ssp_err_t(* sf_block_media_api_t::versionGet) (ssp_version_t *const p_version)

Return the version of the driver.

Implemented as

SF_Block_Media_SDMMC_VersionGet()
SF_BLOCK_MEDIA_RAM_VersionGet()
SF_BLOCK_MEDIA_QSPI_VersionGet()
SF_BLOCK_MEDIA_LX_NOR_VersionGet()

Parameters
[in] p_cfg Pointer to the media

configuration structure for a
channel.

[out] p_version Memory address to return
version information to.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,986 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Block Media Framework Interface > sf_block_media_api_t Struct Reference

◆ write

ssp_err_t(* sf_block_media_api_t::write) (sf_block_media_ctrl_t *p_ctrl, uint8_t const *const p_src,
uint32_t const start_sector, uint32_t const sector_count)

Write data to a media channel.

Implemented as

SF_Block_Media_SDMMC_Write()
SF_BLOCK_MEDIA_RAM_Write()
SF_BLOCK_MEDIA_QSPI_Write()
SF_BLOCK_MEDIA_LX_NOR_Write()

Parameters
[in] p_cfg Pointer to the media

configuration structure for a
channel.

[in] p_src Source address of data for
writing.

[in] start_sector Beginning sector address to
write to.

[in] sector_count Number of sectors to write.

The documentation for this struct was generated from the following file:

sf_block_media_api.h

 sf_block_media_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Block Media Framework
Interface

#include <sf_block_media_api.h>

Data Fields

sf_block_media_ctrl_t * p_ctrl

 Block media pointer to device driver control structure.

sf_block_media_cfg_t const
*

p_cfg

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,987 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Block Media Framework Interface > sf_block_media_instance_t Struct Reference

 Block media pointer to device driver configuration structure.

sf_block_media_api_t const
*

p_api

 Block media pointer to device driver api structure.

Detailed Description

Interface Instance

The documentation for this struct was generated from the following file:

sf_block_media_api.h

5.1.2.23 SF CELLULAR Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF CELUULAR Framework Interface. More...

Data Structures

struct sf_cellular_provisioning_t

struct sf_cellular_cmd_resp_t

struct sf_cellular_ctrl_t

struct sf_cellular_stats_t

struct sf_cellular_info_t

struct sf_cellular_network_status_t

struct sf_cellular_command_parameters_info_t

struct sf_cellular_callback_args_t

struct sf_cellular_op_t

struct sf_cellular_at_cmd_set_t

struct sf_cellular_sim_pin_info_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,988 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface

struct sf_cellular_cfg_t

struct sf_cellular_api_t

struct sf_cellular_instance_t

Macros

#define SF_CELLULAR_API_VERSION_MAJOR (2U)

#define SF_CELLULAR_API_VERSION_MINOR (0U)

#define SF_CELLULAR_ACESS_TECH_NAME_LEN (64U)

 Maximum length for Access Technology name.

#define SF_CELLULAR_MAX_OPERATOR_NAME_LEN (32U)

 Maximum length for Operator name.

#define SF_CELLULAR_MAX_PREFFERED_OPERATOR_COUNT (5U)

 Maximum number of preferred operator.

#define SF_CELLULAR_IMEI_LEN (32U)

 Maximum length of IMEI number.

#define SF_CELLULAR_FWVERSION_LEN (32U)

 Maximum length of Firmware Version.

#define SF_CELLULAR_MAX_STRING_LEN (32U)

 Maximum string length.

#define SF_CELLULAR_CHIPSET_LEN (16U)

 Maximum length of Chipset info.

#define SF_CELLULAR_MFG_NAME_LEN (16U)

 Maximum length of manufacturer.

#define SF_CELLULAR_CID_LEN (16U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,989 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface

 Maximum length of CID.

#define SF_CELLULAR_IMSI_LEN (24U)

 Maximum length of IMSI.

#define SF_CELLULAR_IP_ADDR_LEN (128U)

 Maximum lenfth of IP address.

#define SF_CELLULAR_TRUE (1U)

#define SF_CELLULAR_FALSE (0U)

Enumerations

enum sf_cellular_op_select_mode_t {
SF_CELLULAR_OP_SELECT_MODE_AUTO = 0,
SF_CELLULAR_OP_SELECT_MODE_MANUAL = 1,
SF_CELLULAR_OP_SELECT_MODE_DEREGISTER = 2,
SF_CELLULAR_OP_SELECT_MODE_MANUAL_FALLBACK = 4 }

enum sf_cellular_network_reg_status_t {

SF_CELLULAR_NETWORK_REG_STATUS_NOT_REGISTERED_NO_SEARC
H = 0,
SF_CELLULAR_NETWORK_REG_STATUS_REGISTERED_HOME_NETWOR
K = 1,
SF_CELLULAR_NETWORK_REG_STATUS_NOT_REGISTERED_SEARCHIN
G = 2,
SF_CELLULAR_NETWORK_REG_STATUS_REGISTRATION_DENIED = 3,
 SF_CELLULAR_NETWORK_REG_STATUS_UNKNOWN = 4,
SF_CELLULAR_NETWORK_REG_STATUS_REGISTERED_ROAMING = 5
}

enum sf_cellular_timezone_update_mode_t {
SF_CELLULAR_TIMEZONE_UPDATE_AUTO_DISABLE,
SF_CELLULAR_TIMEZONE_UPDATE_AUTO_ENABLE }

enum sf_cellular_event_t { SF_CELLULAR_EVENT_RX,
SF_CELLULAR_EVENT_PROVISIONSET }

enum sf_cellular_reset_type_t { SF_CELLULAR_RESET_TYPE_SOFT,
SF_CELLULAR_RESET_TYPE_HARD }

enum sf_cellular_airplane_mode_t { SF_CELLULAR_AIRPLANE_MODE_OFF,
SF_CELLULAR_AIRPLANE_MODE_ON }

enum sf_cellular_pdp_type_t { SF_CELLULAR_PDP_TYPE_IP,
SF_CELLULAR_PDP_TYPE_PPP, SF_CELLULAR_PDP_TYPE_IPV6,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,990 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface

SF_CELLULAR_PDP_TYPE_IPV4V6 }

enum sf_cellular_op_name_format_t {
SF_CELLULAR_OP_NAME_FORMAT_LONG,
SF_CELLULAR_OP_NAME_FORMAT_SHORT,
SF_CELLULAR_OP_NAME_FORMAT_NUMERIC }

enum sf_cellular_auth_type_t { SF_CELLULAR_AUTH_TYPE_NONE,
SF_CELLULAR_AUTH_TYPE_PAP, SF_CELLULAR_AUTH_TYPE_CHAP }

enum sf_cellular_at_cmd_index_t {
 SF_CELLULAR_AT_CMD_INDEX_AT = 0,
SF_CELLULAR_AT_CMD_INDEX_ATZ0,
SF_CELLULAR_AT_CMD_INDEX_AT_CREG_SET_0,
SF_CELLULAR_AT_CMD_INDEX_AT_CMEE_SET_0,
 SF_CELLULAR_AT_CMD_INDEX_AT_ECHO,
SF_CELLULAR_AT_CMD_INDEX_AT_SAVE,
SF_CELLULAR_AT_CMD_INDEX_AT_ENTER_CPIN,
SF_CELLULAR_AT_CMD_INDEX_AT_CPIN_SET,
 SF_CELLULAR_AT_CMD_INDEX_AT_CGDCONT_SET,
SF_CELLULAR_AT_CMD_INDEX_AT_CPOL_SET,
SF_CELLULAR_AT_CMD_INDEX_AT_COPS_GET,
SF_CELLULAR_AT_CMD_INDEX_AT_AIRPLANE_OFF,
 SF_CELLULAR_AT_CMD_INDEX_AT_AIRPLANE_ON,
SF_CELLULAR_AT_CMD_INDEX_AT_CONTEXT_ACTIVE,
SF_CELLULAR_AT_CMD_INDEX_AT_CONTEXT_DEACTIVE,
SF_CELLULAR_AT_CMD_INDEX_AT_CGDATA_ACTIVE,
 SF_CELLULAR_AT_CMD_INDEX_AT_CGDATA_DEACTIVE,
SF_CELLULAR_AT_CMD_INDEX_AT_CSQ_GET,
SF_CELLULAR_AT_CMD_INDEX_AT_VER_GET,
SF_CELLULAR_AT_CMD_INDEX_AT_CHIPSET_GET,
 SF_CELLULAR_AT_CMD_INDEX_AT_IMEI_GET,
SF_CELLULAR_AT_CMD_INDEX_AT_MANF_NAME_GET,
SF_CELLULAR_AT_CMD_INDEX_AT_SIMID_GET,
SF_CELLULAR_AT_CMD_INDEX_AT_NET_TYPE_STATUS_GET,
 SF_CELLULAR_AT_CMD_INDEX_AT_NET_STATUS_GET,
SF_CELLULAR_AT_CMD_INDEX_AT_DETACH,
SF_CELLULAR_AT_CMD_INDEX_AT_LOCK_SIM,
SF_CELLULAR_AT_CMD_INDEX_AT_UNLOCK_SIM,
 SF_CELLULAR_AT_CMD_INDEX_AT_ENTER_DATA_MODE,
SF_CELLULAR_AT_CMD_INDEX_AT_EXIT_DATA_MODE,
SF_CELLULAR_AT_CMD_INDEX_AT_USERNAME_SET,
SF_CELLULAR_AT_CMD_INDEX_AT_PASSWORD_SET,
 SF_CELLULAR_AT_CMD_INDEX_AT_AUTH_TYPE_SET,
SF_CELLULAR_AT_CMD_INDEX_AT_AUTO_TIME_UPDATE_ENABLE_SET,
SF_CELLULAR_AT_CMD_INDEX_AT_AUTO_TIME_UPDATE_DISABLE_SET
, SF_CELLULAR_AT_CMD_INDEX_AT_EMPTY_APN_SET,
 SF_CELLULAR_AT_CMD_INDEX_AT_GET_IP_ADDR,
SF_CELLULAR_AT_CMD_INDEX_AT_NWSCANSEQ_SET,
SF_CELLULAR_AT_CMD_INDEX_AT_NWSCANMODE_SET,
SF_CELLULAR_AT_CMD_INDEX_AT_IOTOPMODE_SET,
 SF_CELLULAR_AT_CMD_INDEX_AT_SWITCH_BACK_TO_DATA_MODE,
SF_CELLULAR_AT_CMD_INDEX_AT_GET_IMSI,
SF_CELLULAR_AT_CMD_INDEX_AT_IPR_SET,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,991 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface

SF_CELLULAR_AT_CMD_INDEX_AT_BAUD_CHECK,
 SF_CELLULAR_AT_CMD_INDEX_AT_SIM_EFFECT_SET
}

enum sf_cellular_config_at_cmd_index_t {
 SF_CELLULAR_CONFIG_AT_CMD_INDEX_AT_CREG,
SF_CELLULAR_CONFIG_AT_CMD_INDEX_AT_CEREG,
SF_CELLULAR_CONFIG_AT_CMD_INDEX_AT_COPS_AUTO_SET,
SF_CELLULAR_CONFIG_AT_CMD_INDEX_AT_COPS_MANUAL_SET,
 SF_CELLULAR_CONFIG_AT_CMD_INDEX_AT_CPIN_STATUS_GET
}

enum sf_cellular_sim_status_t { SF_CELLULAR_SIM_STATUS_READY,
SF_CELLULAR_SIM_STATUS_PIN_REQUIRED,
SF_CELLULAR_SIM_STATUS_PIN_PUK_REQUIRED }

enum sf_cellular_log_buffer_type_t {
SF_CELLULAR_LOG_BUFFER_TYPE_COMMAND,
SF_CELLULAR_LOG_BUFFER_TYPE_RESPONSE_RECEIVED,
SF_CELLULAR_LOG_BUFFER_TYPE_RESPONSE_RECEIVED_WITH_TIME
OUT }

Detailed Description

RTOS-integrated SF CELUULAR Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF CELLULAR Framework.

Macro Definition Documentation

◆ SF_CELLULAR_API_VERSION_MAJOR

#define SF_CELLULAR_API_VERSION_MAJOR (2U)

Major Version of the API defined in this file

◆ SF_CELLULAR_API_VERSION_MINOR

#define SF_CELLULAR_API_VERSION_MINOR (0U)

Minor Version of the API defined in this file

◆ SF_CELLULAR_FALSE

#define SF_CELLULAR_FALSE (0U)

Logical Value FALSE for Cellular

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,992 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface

◆ SF_CELLULAR_TRUE

#define SF_CELLULAR_TRUE (1U)

Logical Value TRUE for Cellular

Enumeration Type Documentation

◆ sf_cellular_airplane_mode_t

enum sf_cellular_airplane_mode_t

Airplane mode

Enumerator

SF_CELLULAR_AIRPLANE_MODE_OFF Airplane mode disabled.

SF_CELLULAR_AIRPLANE_MODE_ON Airplane mode enabled.

◆ sf_cellular_at_cmd_index_t

enum sf_cellular_at_cmd_index_t

Enumeration for AT command index

Enumerator

SF_CELLULAR_AT_CMD_INDEX_AT Index for Command AT.

SF_CELLULAR_AT_CMD_INDEX_ATZ0 Index for Command ATZ0.

SF_CELLULAR_AT_CMD_INDEX_AT_CREG_SET_0 Index for Command to set AT+CREG.

SF_CELLULAR_AT_CMD_INDEX_AT_CMEE_SET_0 Index for Command to set AT+CMEE.

SF_CELLULAR_AT_CMD_INDEX_AT_ECHO Index for Command ATE.

SF_CELLULAR_AT_CMD_INDEX_AT_SAVE Index for Command AT&W.

SF_CELLULAR_AT_CMD_INDEX_AT_ENTER_CPIN Index for Command to unlock SIM.

SF_CELLULAR_AT_CMD_INDEX_AT_CPIN_SET Index for Command to set SIM PIN.

SF_CELLULAR_AT_CMD_INDEX_AT_CGDCONT_SE
T

Index for Command to set AT+CGDCOND.

SF_CELLULAR_AT_CMD_INDEX_AT_CPOL_SET Index for Command to set AT+CPOL.

SF_CELLULAR_AT_CMD_INDEX_AT_COPS_GET

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,993 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface

Index for Command to get current operator
details.

SF_CELLULAR_AT_CMD_INDEX_AT_AIRPLANE_OFF

Index for Command to set Airplane mode OFF.

SF_CELLULAR_AT_CMD_INDEX_AT_AIRPLANE_ON Index for Command to set Airplane mode ON.

SF_CELLULAR_AT_CMD_INDEX_AT_CONTEXT_ACT
IVE

Index for Command to activate context.

SF_CELLULAR_AT_CMD_INDEX_AT_CONTEXT_DE
ACTIVE

Index for Command to deactivate context.

SF_CELLULAR_AT_CMD_INDEX_AT_CGDATA_ACTI
VE

Index for Command to activate Data mode.

SF_CELLULAR_AT_CMD_INDEX_AT_CGDATA_DEA
CTIVE

Index for Command to deactivate Data mode.

SF_CELLULAR_AT_CMD_INDEX_AT_CSQ_GET Index for Command to get signal quality.

SF_CELLULAR_AT_CMD_INDEX_AT_VER_GET Index for Command to get Modem stack
Version.

SF_CELLULAR_AT_CMD_INDEX_AT_CHIPSET_GET Index for Command to get chipset details.

SF_CELLULAR_AT_CMD_INDEX_AT_IMEI_GET Index for Command to get IMEI number.

SF_CELLULAR_AT_CMD_INDEX_AT_MANF_NAME_
GET

Index for Command to get manufacturer
name.

SF_CELLULAR_AT_CMD_INDEX_AT_SIMID_GET Index for Command to get SIM Card ID.

SF_CELLULAR_AT_CMD_INDEX_AT_NET_TYPE_ST
ATUS_GET

Index for Command to get network type
information.

SF_CELLULAR_AT_CMD_INDEX_AT_NET_STATUS_
GET

Index for Command to get network status
information.

SF_CELLULAR_AT_CMD_INDEX_AT_DETACH Index for Command to detach the MT.

SF_CELLULAR_AT_CMD_INDEX_AT_LOCK_SIM Index for Command to lock SIM card.

SF_CELLULAR_AT_CMD_INDEX_AT_UNLOCK_SIM Index for Command to unlock SIM card.

SF_CELLULAR_AT_CMD_INDEX_AT_ENTER_DATA_
MODE

Index for Command to enter data mode.

SF_CELLULAR_AT_CMD_INDEX_AT_EXIT_DATA_M
ODE

Index for Command to exit data mode.

SF_CELLULAR_AT_CMD_INDEX_AT_USERNAME_S
ET

Index for Command to set username.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,994 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface

SF_CELLULAR_AT_CMD_INDEX_AT_PASSWORD_S
ET

Index for Command to set password.

SF_CELLULAR_AT_CMD_INDEX_AT_AUTH_TYPE_S
ET

Index for Command to set authorisation type.

SF_CELLULAR_AT_CMD_INDEX_AT_AUTO_TIME_U
PDATE_ENABLE_SET

Index for Command to enable auto time
update.

SF_CELLULAR_AT_CMD_INDEX_AT_AUTO_TIME_U
PDATE_DISABLE_SET

Index for Command to disable auto time
update.

SF_CELLULAR_AT_CMD_INDEX_AT_EMPTY_APN_S
ET

Index for Command to set empty APN.

SF_CELLULAR_AT_CMD_INDEX_AT_GET_IP_ADDR Index for Command to get IP address.

SF_CELLULAR_AT_CMD_INDEX_AT_NWSCANSEQ_
SET

Index for Command to set network fallback
sequence.

SF_CELLULAR_AT_CMD_INDEX_AT_NWSCANMOD
E_SET

Index for Command to set network scan mode.

SF_CELLULAR_AT_CMD_INDEX_AT_IOTOPMODE_S
ET

Index for Command to Configure Network
Category to be Searched under LTE.

SF_CELLULAR_AT_CMD_INDEX_AT_SWITCH_BACK
_TO_DATA_MODE

Index for Command to switch back to Data
mode.

SF_CELLULAR_AT_CMD_INDEX_AT_GET_IMSI Index for Command to get IMSI ID.

SF_CELLULAR_AT_CMD_INDEX_AT_IPR_SET Index for Command to set baud rate of
modem.

SF_CELLULAR_AT_CMD_INDEX_AT_BAUD_CHECK Index for Command to check whether modem
is responding after baud update.

SF_CELLULAR_AT_CMD_INDEX_AT_SIM_EFFECT_S
ET

Index for Command to set SIM priority effect.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,995 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface

◆ sf_cellular_auth_type_t

enum sf_cellular_auth_type_t

Cellular authentication type

Enumerator

SF_CELLULAR_AUTH_TYPE_NONE No authentication.

SF_CELLULAR_AUTH_TYPE_PAP PAP.

SF_CELLULAR_AUTH_TYPE_CHAP CHAP.

◆ sf_cellular_config_at_cmd_index_t

enum sf_cellular_config_at_cmd_index_t

Enumeration for configurable AT command index

Enumerator

SF_CELLULAR_CONFIG_AT_CMD_INDEX_AT_CREG

Index for Command AT+CREG.

SF_CELLULAR_CONFIG_AT_CMD_INDEX_AT_CERE
G

Index for Command AT+CEREG.

SF_CELLULAR_CONFIG_AT_CMD_INDEX_AT_COPS
_AUTO_SET

Index for Command to set AUTO AT+COPS.

SF_CELLULAR_CONFIG_AT_CMD_INDEX_AT_COPS
_MANUAL_SET

Index for Command to set Manual AT+COPS.

SF_CELLULAR_CONFIG_AT_CMD_INDEX_AT_CPIN_
STATUS_GET

Index for Command to get status of SIM lock.

◆ sf_cellular_event_t

enum sf_cellular_event_t

Cellular Framework event codes

Enumerator

SF_CELLULAR_EVENT_RX Packet received event.

SF_CELLULAR_EVENT_PROVISIONSET Provisioning Set event.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,996 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface

◆ sf_cellular_log_buffer_type_t

enum sf_cellular_log_buffer_type_t

Command Buffer type specifies the type of data in debug log buffer

Enumerator

SF_CELLULAR_LOG_BUFFER_TYPE_COMMAND Data in logging buffer is an AT command.

SF_CELLULAR_LOG_BUFFER_TYPE_RESPONSE_RE
CEIVED

Data in logging buffer is complete response
received from modem.

SF_CELLULAR_LOG_BUFFER_TYPE_RESPONSE_RE
CEIVED_WITH_TIMEOUT

Data in logging buffer is response received
from modem with timeout.

◆ sf_cellular_network_reg_status_t

enum sf_cellular_network_reg_status_t

Cellular Network Registration Status

Enumerator

SF_CELLULAR_NETWORK_REG_STATUS_NOT_REG
ISTERED_NO_SEARCH

not registered, MT is not currently searching a
new operator to register to

SF_CELLULAR_NETWORK_REG_STATUS_REGISTE
RED_HOME_NETWORK

registered, home network

SF_CELLULAR_NETWORK_REG_STATUS_NOT_REG
ISTERED_SEARCHING

not registered, but MT is currently searching a
new operator to register to

SF_CELLULAR_NETWORK_REG_STATUS_REGISTR
ATION_DENIED

registration denied

SF_CELLULAR_NETWORK_REG_STATUS_UNKNOW
N

registration status unknown

SF_CELLULAR_NETWORK_REG_STATUS_REGISTE
RED_ROAMING

Registered, roaming.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,997 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface

◆ sf_cellular_op_name_format_t

enum sf_cellular_op_name_format_t

Cellular operator name format

Enumerator

SF_CELLULAR_OP_NAME_FORMAT_LONG Long alphanumeric.

SF_CELLULAR_OP_NAME_FORMAT_SHORT Short alphanumeric.

SF_CELLULAR_OP_NAME_FORMAT_NUMERIC Numeric.

◆ sf_cellular_op_select_mode_t

enum sf_cellular_op_select_mode_t

Operator selection mode

Enumerator

SF_CELLULAR_OP_SELECT_MODE_AUTO Automatic Operator selection.

SF_CELLULAR_OP_SELECT_MODE_MANUAL Manual Operator selection.

SF_CELLULAR_OP_SELECT_MODE_DEREGISTER De-register from the network.

SF_CELLULAR_OP_SELECT_MODE_MANUAL_FALL
BACK

Manual with fallback to automatic.

◆ sf_cellular_pdp_type_t

enum sf_cellular_pdp_type_t

PDP type

Enumerator

SF_CELLULAR_PDP_TYPE_IP Internet protocol.

SF_CELLULAR_PDP_TYPE_PPP Point to point protocol.

SF_CELLULAR_PDP_TYPE_IPV6 Internet protocol, version 6.

SF_CELLULAR_PDP_TYPE_IPV4V6 Virtual introduced to handle dual stack UE
capability.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,998 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface

◆ sf_cellular_reset_type_t

enum sf_cellular_reset_type_t

Cellular Module reset type

Enumerator

SF_CELLULAR_RESET_TYPE_SOFT Soft reset module using AT command.

SF_CELLULAR_RESET_TYPE_HARD Hard reset module by toggling Reset Pin.

◆ sf_cellular_sim_status_t

enum sf_cellular_sim_status_t

Enumeration for SIM lock status

Enumerator

SF_CELLULAR_SIM_STATUS_READY SIM in Cellular modem is not pending for any
password.

SF_CELLULAR_SIM_STATUS_PIN_REQUIRED SIM in Cellular modem is lock and waiting for
(U)SIM PIN to be given.

SF_CELLULAR_SIM_STATUS_PIN_PUK_REQUIRED SIM in Cellular modem is lock and waiting for
(U)SIM PIN and PUK to be given.

◆ sf_cellular_timezone_update_mode_t

enum sf_cellular_timezone_update_mode_t

Timezone update mode

Enumerator

SF_CELLULAR_TIMEZONE_UPDATE_AUTO_DISABL
E

Disable automatic time zone update.

SF_CELLULAR_TIMEZONE_UPDATE_AUTO_ENABL
E

Enable automatic time zone update.

 sf_cellular_provisioning_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 1,999 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_provisioning_t Struct Reference

#include <sf_cellular_api.h>

Data Fields

uint8_t apn [SF_CELLULAR_MAX_STRING_LEN]

 Access Point Name.

sf_cellular_auth_type_t auth_type

 Authentication type: PAP/CHAP.

uint8_t username [SF_CELLULAR_MAX_STRING_LEN]

 User name used for authentication.

uint8_t password [SF_CELLULAR_MAX_STRING_LEN]

 Password used for authentication.

sf_cellular_airplane_mode_t airplane_mode

 Airplane mode.

uint8_t context_id

 Context ID to be used for connection.

sf_cellular_pdp_type_t pdp_type

 PDP Type for Context.

Detailed Description

Cellular Provisioning information structure

The documentation for this struct was generated from the following file:

sf_cellular_api.h

 sf_cellular_cmd_resp_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,000 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_cmd_resp_t Struct Reference

#include <sf_cellular_api.h>

Data Fields

uint8_t * p_buff

uint32_t buff_len

Detailed Description

Modem Command/Response structure used to send Custom AT command and to receive response
for the same

Field Documentation

◆ buff_len

uint32_t sf_cellular_cmd_resp_t::buff_len

AT command/Response buffer length. In case of Response this is both in and out parameter. Input
is the length of buffer pointed by p_buff and output is number of bytes of response copied by
framework. In case of command it is length of command in p_buff

◆ p_buff

uint8_t* sf_cellular_cmd_resp_t::p_buff

AT command/Response buffer. In case of AT command it is input buffer in which user should pass
custom command to be sent. In case of Response it is output buffer in which framework will fill the
response

The documentation for this struct was generated from the following file:

sf_cellular_api.h

 sf_cellular_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

#include <sf_cellular_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,001 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_ctrl_t Struct Reference

Data Fields

void * p_driver_handle

 Stores information required by underlying Cellular device driver.

Detailed Description

Cellular Framework control structure

The documentation for this struct was generated from the following file:

sf_cellular_api.h

 sf_cellular_stats_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

#include <sf_cellular_api.h>

Data Fields

uint32_t rx_bytes

 Bytes received successfully.

uint32_t tx_bytes

 Bytes transmitted successfully.

uint32_t rx_err

 Bytes receive errors.

uint32_t tx_err

 Bytes transmit errors.

Detailed Description

The statistic and error counters for this instance

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,002 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_stats_t Struct Reference

The documentation for this struct was generated from the following file:

sf_cellular_api.h

 sf_cellular_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

#include <sf_cellular_api.h>

Data Fields

uint8_t mfg_name [SF_CELLULAR_MFG_NAME_LEN]

 Manufacturer name.

uint8_t chipset [SF_CELLULAR_CHIPSET_LEN]

 Pointer to string showing Cellular chipset/driver information.

uint8_t fw_version [SF_CELLULAR_FWVERSION_LEN]

 Cellular firmware version.

uint8_t imei [SF_CELLULAR_IMEI_LEN]

 IMEI number.

uint16_t rssi

 Received signal strength indication.

uint16_t ber

 Bit rate error.

uint8_t ip_addr [SF_CELLULAR_IP_ADDR_LEN]

 IP address.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,003 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_info_t Struct Reference

Cellular Driver Information

The documentation for this struct was generated from the following file:

sf_cellular_api.h

 sf_cellular_network_status_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

#include <sf_cellular_api.h>

Data Fields

uint16_t country_code

 Country code.

uint32_t operator_code

 Operator code.

int16_t rssi

 RSSI.

uint8_t cid [SF_CELLULAR_CID_LEN]

 Cell ID.

uint8_t imsi [SF_CELLULAR_IMSI_LEN]

 IMSI.

uint8_t op_name [SF_CELLULAR_MAX_OPERATOR_NAME_LEN]

 Operator name.

uint8_t access_tech_name [SF_CELLULAR_ACESS_TECH_NAME_LEN]

 Access Technology name.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,004 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_network_status_t Struct Reference

uint8_t service_domain

 Service Domain.

uint8_t active_band

 Active Band.

sf_cellular_network_reg_stat
us_t

reg_status

 Cellular network registration status.

Detailed Description

Network Status information

The documentation for this struct was generated from the following file:

sf_cellular_api.h

 sf_cellular_command_parameters_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

#include <sf_cellular_api.h>

Data Fields

uint8_t retry_count

 Count for which AT command will be retried.

uint16_t retry_delay

 Delay between AT command retry.

sf_cellular_config_at_cmd_in
dex_t

cmd_index

 configurable AT command index

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,005 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_command_parameters_info_t Struct Reference

Detailed Description

Callback Structure to configure AT command parameters from user

The documentation for this struct was generated from the following file:

sf_cellular_api.h

 sf_cellular_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

#include <sf_cellular_api.h>

Data Fields

sf_cellular_event_t event

 Event Code.

uint8_t * p_data

 Pointer to received data.

uint32_t length

 Receive Data Length.

void const * p_context

 Context Provided to user during callback.

Detailed Description

Callback structure for Cellular driver to get the data receive notification

The documentation for this struct was generated from the following file:

sf_cellular_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,006 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_op_t Struct Reference

 sf_cellular_op_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

#include <sf_cellular_api.h>

Data Fields

sf_cellular_op_name_format_
t

op_name_format

 Cellular operator name format.

uint8_t op_name [SF_CELLULAR_MAX_OPERATOR_NAME_LEN]

 Cellular operator name.

Detailed Description

Preferred operator selection structure

The documentation for this struct was generated from the following file:

sf_cellular_api.h

 sf_cellular_at_cmd_set_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

#include <sf_cellular_api.h>

Data Fields

uint8_t * p_cmd

 AT Command.

uint8_t * p_success_resp

 Success response string.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,007 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_at_cmd_set_t Struct Reference

uint16_t max_resp_length

 Maximum length of expected response.

uint32_t resp_wait_time

 AT command response wait time in milliseconds.

uint8_t retry

 Retry count.

uint16_t retry_delay

 Delay between AT command retry.

Detailed Description

Structure defining AT commands parameters

The documentation for this struct was generated from the following file:

sf_cellular_api.h

 sf_cellular_sim_pin_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

#include <sf_cellular_api.h>

Data Fields

sf_cellular_sim_status_t sim_status

uint8_t * p_sim_pin

 SIM Pin is used to unlock the SIM if the SIM is locked for SIM PIN.

uint8_t * p_sim_puk

 SIM PUK is used to unlock the SIM if the SIM is locked for SIM PUK.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,008 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_sim_pin_info_t Struct Reference

Detailed Description

Callback Structure to read SIM Pin and PUK from user

Field Documentation

◆ sim_status

sf_cellular_sim_status_t sf_cellular_sim_pin_info_t::sim_status

SIM Pin type expected from user to enter, in case of PUK type, user has to fill SIM Pin and PUK both
pins

The documentation for this struct was generated from the following file:

sf_cellular_api.h

 sf_cellular_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

#include <sf_cellular_api.h>

Data Fields

sf_cellular_op_select_mode_t op_select_mode

 Cellular Operator selection mode.

sf_cellular_op_t op

 Cellular operator. Valid when operator selection mode is manual.

uint16_t num_pref_ops

 Number of preferred operators in the pref_ops array.

sf_cellular_op_t pref_ops [SF_CELLULAR_MAX_PREFFERED_OPERATOR_COUNT]

 Array of structures describing preferred operators.

sf_cellular_timezone_update tz_upd_mode

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,009 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_cfg_t Struct Reference

_mode_t

 TimeZone update mode policy.

uint8_t * p_sim_pin

 SIM Pin.

uint8_t * p_puk_pin

 PUK Pin.

ssp_err_t(* p_prov_callback)(sf_cellular_callback_args_t *p_args)

void(* p_recv_callback)(sf_cellular_callback_args_t *p_args)

ssp_err_t(* p_read_sim_pin_info_callback)(sf_cellular_sim_pin_info_t *p_args)

ssp_err_t(* p_cmd_param_callback)(sf_cellular_command_parameters_info_t
**p_args, uint8_t *p_at_cmd_num)

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 Instance specific configuration.

sf_cellular_at_cmd_set_t
const *

p_cmd_set

 Instance specific command set.

sf_cellular_at_cmd_set_t * p_modifiable_cmd_set

 Instance specific modifiable command set.

Detailed Description

Define the Cellular configuration parameters

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,010 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_cfg_t Struct Reference

◆ p_cmd_param_callback

ssp_err_t(* sf_cellular_cfg_t::p_cmd_param_callback) (sf_cellular_command_parameters_info_t
**p_args, uint8_t *p_at_cmd_num)

Pointer to callback function to configure AT command parameters like retry delay and retry count
at runtime

◆ p_prov_callback

ssp_err_t(* sf_cellular_cfg_t::p_prov_callback) (sf_cellular_callback_args_t *p_args)

Pointer to provisioning callback function, used in NSAL

◆ p_read_sim_pin_info_callback

ssp_err_t(* sf_cellular_cfg_t::p_read_sim_pin_info_callback) (sf_cellular_sim_pin_info_t *p_args)

Pointer to callback function to configure the SIM properties at runtime

◆ p_recv_callback

void(* sf_cellular_cfg_t::p_recv_callback) (sf_cellular_callback_args_t *p_args)

This is the receive callback function used by NetX which will take a data packet from the Cellular
module and hand it over to NetX for further processing.

The documentation for this struct was generated from the following file:

sf_cellular_api.h

 sf_cellular_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

#include <sf_cellular_api.h>

Data Fields

ssp_err_t(* open)(sf_cellular_ctrl_t *p_ctrl, sf_cellular_cfg_t const *const p_cfg)

 Initializes and enables the Cellular module. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,011 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_api_t Struct Reference

ssp_err_t(* close)(sf_cellular_ctrl_t *const p_ctrl)

 Disables the Cellular module. More...

ssp_err_t(* provisioningGet)(sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_provisioning_t *const p_cellular_provisioning)

 Pointer to function to Get the Cellular module provisioning
information. More...

ssp_err_t(* provisioningSet)(sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_provisioning_t const *const p_cellular_provisioning)

 Pointer to function to Set the Cellular module's provisioning
information. More...

ssp_err_t(* infoGet)(sf_cellular_ctrl_t *const p_ctrl, sf_cellular_info_t *const
p_cellular_info)

 Reads the Cellular module's information. More...

ssp_err_t(* statisticsGet)(sf_cellular_ctrl_t *const p_ctrl, sf_cellular_stats_t
*const p_cellular_device_stats)

 Returns statistics information of Cellular module. More...

ssp_err_t(* transmit)(sf_cellular_ctrl_t *const p_ctrl, uint8_t *const p_buf,
uint32_t length)

 Passes packet buffer to PPP stack for transmission. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Gets version and stores it in provided pointer p_version. More...

ssp_err_t(* networkConnect)(sf_cellular_ctrl_t *const p_ctrl)

 Initiates the Data connection. More...

ssp_err_t(* networkDisconnect)(sf_cellular_ctrl_t *const p_ctrl)

 Terminates the Data connection. More...

ssp_err_t(* networkStatusGet)(sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_network_status_t *p_network_status)

 Get Network Status information. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,012 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_api_t Struct Reference

ssp_err_t(* simPinSet)(sf_cellular_ctrl_t *const p_ctrl, uint8_t *const p_old_pin,
uint8_t *const p_new_pin)

 Set SIM Pin. More...

ssp_err_t(* simLock)(sf_cellular_ctrl_t *const p_ctrl, uint8_t *const p_pin)

 Locks SIM. More...

ssp_err_t(* simUnlock)(sf_cellular_ctrl_t *const p_ctrl, uint8_t *const p_pin)

 Unlocks SIM. More...

ssp_err_t(* simIDGet)(sf_cellular_ctrl_t *const p_ctrl, uint8_t *p_sim_id)

 Gets the SIM ID. More...

ssp_err_t(* commandSend)(sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_cmd_resp_t *const p_input_at_command,
sf_cellular_cmd_resp_t *const p_output, uint32_t const timeout)

 Send AT command directly to Cellular Modem. More...

ssp_err_t(* fotaCheck)(sf_cellular_ctrl_t *const p_ctrl, void *p_fotacheck)

 Checks for Available Firmware upgrade. More...

ssp_err_t(* fotaStart)(sf_cellular_ctrl_t *const p_ctrl, void *p_fotastart)

 Starts the Firmware upgrade. More...

ssp_err_t(* fotaStop)(sf_cellular_ctrl_t *const p_ctrl, void *p_fotastop)

 Stops the Firmware upgrade. More...

ssp_err_t(* reset)(sf_cellular_ctrl_t *const p_ctrl, sf_cellular_reset_type_t
reset_type)

 Reset cellular module. This reset() API will only work when module is
opened. More...

Detailed Description

Cellular Framework API structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,013 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_api_t Struct Reference

Field Documentation

◆ close

ssp_err_t(* sf_cellular_api_t::close) (sf_cellular_ctrl_t *const p_ctrl)

Disables the Cellular module.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module. .

◆ commandSend

ssp_err_t(* sf_cellular_api_t::commandSend) (sf_cellular_ctrl_t *const p_ctrl, sf_cellular_cmd_resp_t
*const p_input_at_command, sf_cellular_cmd_resp_t *const p_output, uint32_t const timeout)

Send AT command directly to Cellular Modem.

This API will send AT command provided by user to the Cellular Modem and will collect the
response from the Modem and will send it back to the user. If Modem is in Data Mode when this API
is called then Framework will first switch Modem to Command Mode, then send the AT command
and collect the response and then switches the Modem back to Data Mode.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[in] p_input_at_command Pointer to structure which
contains Modem command
to send

[in,out] p_output Pointer to buffer in which
response will be sent to
user, Also user will pass the
size of the buffer which is
pointed by p_output

[in] timeout Timeout for which
framework will wait for
response

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,014 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_api_t Struct Reference

◆ fotaCheck

ssp_err_t(* sf_cellular_api_t::fotaCheck) (sf_cellular_ctrl_t *const p_ctrl, void *p_fotacheck)

Checks for Available Firmware upgrade.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[in] p_fotacheck Pointer to fota check specific
data structure

◆ fotaStart

ssp_err_t(* sf_cellular_api_t::fotaStart) (sf_cellular_ctrl_t *const p_ctrl, void *p_fotastart)

Starts the Firmware upgrade.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[in] p_fotastart Pointer to fota start specific
data structure

◆ fotaStop

ssp_err_t(* sf_cellular_api_t::fotaStop) (sf_cellular_ctrl_t *const p_ctrl, void *p_fotastop)

Stops the Firmware upgrade.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[in] p_fotastop Pointer to fota stop specific
data structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,015 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_api_t Struct Reference

◆ infoGet

ssp_err_t(* sf_cellular_api_t::infoGet) (sf_cellular_ctrl_t *const p_ctrl, sf_cellular_info_t *const
p_cellular_info)

Reads the Cellular module's information.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[out] p_cellular_info Pointer to Cellular info
structure.

◆ networkConnect

ssp_err_t(* sf_cellular_api_t::networkConnect) (sf_cellular_ctrl_t *const p_ctrl)

Initiates the Data connection.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

◆ networkDisconnect

ssp_err_t(* sf_cellular_api_t::networkDisconnect) (sf_cellular_ctrl_t *const p_ctrl)

Terminates the Data connection.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,016 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_api_t Struct Reference

◆ networkStatusGet

ssp_err_t(* sf_cellular_api_t::networkStatusGet) (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_network_status_t *p_network_status)

Get Network Status information.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[out] p_network_status Pointer to Network Status
structure

◆ open

ssp_err_t(* sf_cellular_api_t::open) (sf_cellular_ctrl_t *p_ctrl, sf_cellular_cfg_t const *const p_cfg)

Initializes and enables the Cellular module.

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to Cellular
configuration structure.

◆ provisioningGet

ssp_err_t(* sf_cellular_api_t::provisioningGet) (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_provisioning_t *const p_cellular_provisioning)

Pointer to function to Get the Cellular module provisioning information.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[out] p_cellular_provisioning Pointer to Cellular
provisioning structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,017 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_api_t Struct Reference

◆ provisioningSet

ssp_err_t(* sf_cellular_api_t::provisioningSet) (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_provisioning_t const *const p_cellular_provisioning)

Pointer to function to Set the Cellular module's provisioning information.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[in] p_cellular_provisioning Pointer to Cellular
provisioning structure.

◆ reset

ssp_err_t(* sf_cellular_api_t::reset) (sf_cellular_ctrl_t *const p_ctrl, sf_cellular_reset_type_t
reset_type)

Reset cellular module. This reset() API will only work when module is opened.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[in] reset_type Reset type

◆ simIDGet

ssp_err_t(* sf_cellular_api_t::simIDGet) (sf_cellular_ctrl_t *const p_ctrl, uint8_t *p_sim_id)

Gets the SIM ID.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[out] p_sim_id SIM ID

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,018 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_api_t Struct Reference

◆ simLock

ssp_err_t(* sf_cellular_api_t::simLock) (sf_cellular_ctrl_t *const p_ctrl, uint8_t *const p_pin)

Locks SIM.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[in] p_pin PIN number to lock the SIM

◆ simPinSet

ssp_err_t(* sf_cellular_api_t::simPinSet) (sf_cellular_ctrl_t *const p_ctrl, uint8_t *const p_old_pin,
uint8_t *const p_new_pin)

Set SIM Pin.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[in] p_old_pin Pointer to char array
containing current 4 digit
pin.

[in] p_new_pin Pointer to char array
containing new 4 digit pin.

◆ simUnlock

ssp_err_t(* sf_cellular_api_t::simUnlock) (sf_cellular_ctrl_t *const p_ctrl, uint8_t *const p_pin)

Unlocks SIM.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[in] p_pin PIN number to unlock the
SIM

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,019 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_api_t Struct Reference

◆ statisticsGet

ssp_err_t(* sf_cellular_api_t::statisticsGet) (sf_cellular_ctrl_t *const p_ctrl, sf_cellular_stats_t *const
p_cellular_device_stats)

Returns statistics information of Cellular module.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[out] p_cellular_device_stats Pointer to Cellular statistics
information structure.

◆ transmit

ssp_err_t(* sf_cellular_api_t::transmit) (sf_cellular_ctrl_t *const p_ctrl, uint8_t *const p_buf, uint32_t
length)

Passes packet buffer to PPP stack for transmission.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[in] p_buf Pointer to packet buffer to
transmit

[in] length Length of packet buffer

◆ versionGet

ssp_err_t(* sf_cellular_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version pointer to memory location

to return version number

The documentation for this struct was generated from the following file:

sf_cellular_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,020 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Framework Interface > sf_cellular_instance_t Struct Reference

 sf_cellular_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR Framework
Interface

#include <sf_cellular_api.h>

Data Fields

sf_cellular_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_cellular_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

sf_cellular_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_cellular_api.h

5.1.2.24 SF CELLULAR NSAL Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF CELLULAR NSAL Framework Interface. More...

Data Structures

struct sf_cellular_nsal_cfg_t

Functions

ssp_err_t sf_cellular_deinit (NX_IP_DRIVER *driver_req_ptr,
sf_cellular_instance_t const *p_cellular_instance,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,021 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR NSAL Framework Interface

sf_cellular_nsal_cfg_t *p_cellular_nsal_cfg)

 De-initialize the Cellular NSAL, deletes PPP interface, disconnect the
network and close cellular framework. More...

Detailed Description

RTOS-integrated SF CELLULAR NSAL Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF CELLULAR NSAL Framework.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,022 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR NSAL Framework Interface

◆ sf_cellular_deinit()

ssp_err_t sf_cellular_deinit (NX_IP_DRIVER * p_driver_req_ptr, sf_cellular_instance_t const *
p_cellular_instance, sf_cellular_nsal_cfg_t * p_cellular_nsal_cfg)

De-initialize the Cellular NSAL, deletes PPP interface, disconnect the network and close cellular
framework.

Function Prototypes

Parameters
[in] p_driver_req_ptr Pointer to NetX IP driver

[in] p_cellular_instance Pointer to Cellular
Framework instance

[in] p_cellular_nsal_cfg Pointer to Cellular NSAL
configuration structure

Return values
SSP_SUCCESS Successfully de-initialized the cellular NSAL

connection

SSP_ERR_CELLULAR_FAILED Failed to de-init Cellular Framework or
terminate the network connection

SSP_ERR_NOT_OPEN Cellular driver is not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Wait for the PPP Link down event, LCP Terminate ACK should have been received

Disconnect Network

Close Cellular Driver

Return an error to NetX.

 sf_cellular_nsal_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF CELLULAR NSAL
Framework Interface

#include <sf_cellular_nsal_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,023 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR NSAL Framework Interface > sf_cellular_nsal_cfg_t Struct Reference

uint8_t * p_ppp_stack

 PPP Stack.

uint32_t ppp_stack_size

 PPP Stack size.

UINT priority

 PPP Thread Priority.

NX_PPP * p_ppp

 NetX PPP Interface.

NX_IP * p_ip

 NetX IP Interface.

NX_PACKET_POOL * p_ppp_packet_pool

 NetX Packet pool for internal.

void(* p_ppp_invalid_packet_cb)(NX_PACKET *p_packet_ptr)

 Callback handler for Invalid packet.

void(* p_ppp_send_byte)(UCHAR byte)

 PPP Send byte callback function.

void(* p_link_down_cb)(NX_PPP *p_ppp_ptr)

 PPP Link down notification callback. More...

void(* p_link_up_cb)(NX_PPP *p_ppp_ptr)

 PPP Link up notification callback.

sf_cellular_auth_type_t auth_type

 Authentication Type.

UINT(* p_chap_get_challenge_cb)(CHAR *p_rand_value, CHAR *p_id, CHAR

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,024 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR NSAL Framework Interface > sf_cellular_nsal_cfg_t Struct Reference

*p_name)

 Get challenge notification callback. More...

UINT(* p_chap_get_responder_cb)(CHAR *p_system, CHAR *p_name, CHAR
*p_secret)

 Get Responder notification callback.

UINT(* p_chap_get_verify_cb)(CHAR *p_system, CHAR *p_name, CHAR
*p_secret)

 Get Chap verification callback.

UINT(* p_pap_generate_login)(CHAR *p_name, CHAR *p_password)

 PAP Authentication generate login callback. More...

UINT(* p_pap_verify_login)(CHAR *p_name, CHAR *p_password)

 PAP authentication verification callback.

uint32_t local_ip

 Local IP Address.

uint32_t peer_ip

 Peer IP Address.

void const * p_extend

 Instance specific configuration.

Detailed Description

Define the NSAL configuration parameters

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,025 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR NSAL Framework Interface > sf_cellular_nsal_cfg_t Struct Reference

◆ p_chap_get_challenge_cb

UINT(* sf_cellular_nsal_cfg_t::p_chap_get_challenge_cb) (CHAR *p_rand_value, CHAR *p_id, CHAR
*p_name)

Get challenge notification callback.

CHAP Callback Function

◆ p_link_down_cb

void(* sf_cellular_nsal_cfg_t::p_link_down_cb) (NX_PPP *p_ppp_ptr)

PPP Link down notification callback.

Link Notification callback function

◆ p_pap_generate_login

UINT(* sf_cellular_nsal_cfg_t::p_pap_generate_login) (CHAR *p_name, CHAR *p_password)

PAP Authentication generate login callback.

PAP Callback Function

The documentation for this struct was generated from the following file:

sf_cellular_nsal_api.h

5.1.2.25 SF Socket CELLULAR Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF Socket Cellular Framework Interface. More...

Data Structures

struct in_addr

struct sockaddr

struct sockaddr_in

struct sf_cellular_socket_ctrl_t

struct sf_cellular_socket_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,026 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

struct sf_cellular_socket_api_t

struct sf_cellular_socket_instance_t

Macros

#define SF_CELLULAR_SOCKET_API_VERSION_MAJOR (2U)

#define SF_CELLULAR_SOCKET_API_VERSION_MINOR (0U)

#define SF_CELLULAR_SOCKET_NO_OF_BIT_IN_BYTE (8U)

Typedefs

typedef int32_t socklen_t

Functions

int socket (int domain, int type, int protocol)

 This creates socket for communication. More...

int close (int sockfd)

 This closes socket. More...

int bind (int sockfd, const struct sockaddr *p_local_sock_addr, socklen_t
addrlen)

 This binds socket to IP address. More...

int listen (int sockfd, int backlog)

 This listens for connection on socket. More...

int connect (int sockfd, const struct sockaddr *p_serv_addr, socklen_t
addrlen)

 This connects with remote socket(stream socket). More...

int accept (int sockfd, struct sockaddr *p_cliaddr, socklen_t *p_addrlen)

 This accepts connection from remote socket. More...

ssize_t send (int sockfd, const void *p_buf, size_t length, int flags)

 This sends data over STREAM socket. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,027 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

ssize_t recv (int sockfd, void *p_buf, size_t length, int flags)

 This receives data over STREAM socket. More...

ssize_t sendto (int sockfd, const void *p_buf, size_t length, int flags, const
struct sockaddr *p_dest_addr, socklen_t addrlen)

 This sends data over DGRAM socket. More...

ssize_t recvfrom (int sockfd, void *p_buf, size_t length, int flags, struct
sockaddr *p_src_addr, socklen_t *p_addrlen)

 This receives data over DGRAM socket. More...

int setsockopt (int sockfd, int level, int optname, const void *p_optval,
socklen_t optlen)

 This updates socket specific options. Quectel CATM1 supports
following socket options SO_SNDBUF: Transmission packet size
TCP_MAX_RETRIES: Maximum Number of retransmission
TCP_MAX_RTO: Maximum interval time of TCP retransmission. More...

int getsockopt (int sockfd, int level, int optname, void *p_optval,
socklen_t *p_optlen)

 This reads socket specific options. Quectel CATM1 supports following
socket options SO_SNDBUF: Transmission packet size
TCP_MAX_RETRIES: Maximum Number of retransmission
TCP_MAX_RTO: Maximum interval time of TCP retransmission. More...

int select (int nfds, fd_set *p_readfds, fd_set *p_writefds, fd_set
*p_exceptfds, struct timeval *p_timeout)

 This waits for any activity on socket. More...

Detailed Description

RTOS-integrated SF Socket Cellular Framework Interface.

Summary
This SSP Interface provides access OnChip stack BSD Socket API.

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,028 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

◆ SF_CELLULAR_SOCKET_API_VERSION_MAJOR

#define SF_CELLULAR_SOCKET_API_VERSION_MAJOR (2U)

SF Cellular Socket APIs Major Version

◆ SF_CELLULAR_SOCKET_API_VERSION_MINOR

#define SF_CELLULAR_SOCKET_API_VERSION_MINOR (0U)

SF Cellular Socket APIs Minor Version

◆ SF_CELLULAR_SOCKET_NO_OF_BIT_IN_BYTE

#define SF_CELLULAR_SOCKET_NO_OF_BIT_IN_BYTE (8U)

SF Cellular Number of Bits in a Byte

Typedef Documentation

◆ socklen_t

typedef int32_t socklen_t

Socket address Length

Function Documentation

◆ accept()

int accept (int sockfd, struct sockaddr * p_cliaddr, socklen_t * p_addrlen)

This accepts connection from remote socket.

Accept connection request from remote.

Parameters
[in] sockfd Local socket

[out] p_cliaddr Pointer to remote socket
address which trying to
connect

[out] p_addrlen Pointer to address length of
client socket address

Implements accept This function accepts connection from remote socket. This API is used only with
socket type STREAM. The call is blocked if no connection is present or the socket is blocking.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,029 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

Parameters
[in] sockfd Socket File Descriptor

[out] p_cliaddr Remote machine Network
address

[out] p_addrlen Size of Socket address
structure

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error accepting
the connection

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Connection is received successfully.

Implements accept This function accepts connection from remote socket. This API is used only with
socket type STREAM. The call is blocked if no connection is present or the socket is blocking.

Parameters
[in] sockfd Socket File Descriptor

[out] p_cliaddr Remote machine Network
address (Can be NULL)

[out] p_addrlen Size of Socket address
structure(Can be NULL)

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error accepting the connection or invalid
input parameters

Returns
Otherwise Connection is received successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,030 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

◆ bind()

int bind (int sockfd, const struct sockaddr * p_local_sock_addr, socklen_t addrlen)

This binds socket to IP address.

Bind socket to interface which is identified by IP address

Parameters
[in] sockfd Local socket

[in] p_local_sock_addr Pointer to local socket
address

[in] addrlen Size of sock address
structure

Implements bind This function binds socket to given IP address and port.

Parameters
sockfd Socket file descriptor

p_local_sock_addr Socket address structure

addrlen Size of Socket address structure

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Binding socket failed

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket is bound successfully.

Implements bind This function binds socket to given IP address and port.

Parameters
sockfd Socket file descriptor

p_local_sock_addr Socket address structure

addrlen Size of Socket address structure

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Binding socket failed or invalid input
parameters

Returns
Otherwise Socket is bound successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,031 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

◆ close()

int close (int sockfd)

This closes socket.

API which closes socket

Parameters
[in] sockfd Local socket

Implements close Close opened socket

Parameters
[in] sockfd Socket file descriptor

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Closing socket
failed

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket is closed successfully.

Implements close Close opened socket

Parameters
[in] sockfd Socket file descriptor

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Closing socket failed or invalid input
parameters

Returns
Otherwise Socket is closed successfully.

◆ connect()

int connect (int sockfd, const struct sockaddr * p_serv_addr, socklen_t addrlen)

This connects with remote socket(stream socket).

Establish TCP connection with remote socket

Parameters
[in] sockfd Local socket

[in] p_serv_addr Pointer to remote socket
address

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,032 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

[in] addrlen Size of sock address
structure

Implements connect This function connects local socket with remote socket. The call is blocked
until a connection is established or error is returned.

Parameters
[in] sockfd Socket File Descriptor

[in] p_serv_addr Remote machine Network
address

[in] addrlen Size of Socket address
structure

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error occurred.

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket is connected successfully.

Implements connect This function connects local socket with remote socket. The call is blocked
until a connection is established or error is returned.

Parameters
[in] sockfd Socket File Descriptor

[in] p_serv_addr Remote machine Network
address

[in] addrlen Size of Socket address
structure

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error occurred or invalid input parameters

Returns
Otherwise Socket is connected successfully.

◆ getsockopt()

int getsockopt (int sockfd, int level, int optname, void * p_optval, socklen_t * p_optlen)

This reads socket specific options. Quectel CATM1 supports following socket options SO_SNDBUF:
Transmission packet size TCP_MAX_RETRIES: Maximum Number of retransmission TCP_MAX_RTO:
Maximum interval time of TCP retransmission.

Get Socket options.

Parameters

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,033 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

[in] sockfd Local socket

[in] level Sockets API level

[in] optname Option to be get

[out] p_optval Option value to be get

[in] p_optlen Length of option value

Implements getsockopt This gets options for an existing socket.

Parameters
[in] sockfd Socket file descriptor

[in] level Level

[in] optname Socket option name

[out] p_optval Socket option value

[out] p_optlen Size of Socket option

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error reading
socket option

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket option read successfully.

This reads socket specific options. Quectel CATM1 supports following socket options SO_SNDBUF:
Transmission packet size TCP_MAX_RETRIES: Maximum Number of retransmission TCP_MAX_RTO:
Maximum interval time of TCP retransmission.

Implements getsockopt This gets options for an existing socket.

Parameters
[in] sockfd Socket file descriptor

[in] level Level

[in] optname Socket option name

[out] p_optval Socket option value

[out] p_optlen Size of Socket option

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error reading socket option or invalid socket
descriptor

Returns
Otherwise Socket option read successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,034 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

◆ listen()

int listen (int sockfd, int backlog)

This listens for connection on socket.

Listen for tcp connection. Set socket in listen mode for tcp connection.

Parameters
[in] sockfd Local socket

[in] backlog Max number of connection
queue.

Implements listen This function listen for connection on socket.

Parameters
[in] sockfd Socket File Descriptor

[in] backlog number of maximum
connection can be accepted

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Failed to set socket in Listen mode

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Set socket in Listen mode successfully.

Implements listen This function listen for connection on socket.

Parameters
[in] sockfd Socket File Descriptor

[in] backlog number of maximum
connection can be accepted

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Failed to set socket in Listen mode or invalid
input parameters

Returns
Otherwise Set socket in Listen mode successfully.

◆ recv()

ssize_t recv (int sockfd, void * p_buf, size_t length, int flags)

This receives data over STREAM socket.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,035 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

Receive data from remote socket.

Parameters
[in] sockfd Local socket

[out] p_buf Pointer to data buffer where
data will be received

[in] length Maximum length of data
which can be received

[in] flags Socket flags

Implements receive This function receives data on a stream socket in connected state. If no packet
is available, the socket is blocked until it is set to non-blocking. The application must provide a
valid buffer to receive the payload. If the buffer length is smaller than the available payload, the
API will do a partial copy, and hold on the rest of the payload for a subsequent call to the API.

Parameters
[in] sockfd Socket File Descriptor

[out] p_buf Buffer to read data

[in] length Data length

[in] flags Socket flag

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Failed to receive
data.

Returns
Otherwise Number of Data bytes received successfully.

Implements receive This function receives data on a stream socket in connected state. If no packet
is available, the socket is blocked until it is set to non-blocking. The application must provide a
valid buffer to receive the payload. If the buffer length is smaller than the available payload, the
API will do a partial copy, and hold on the rest of the payload for a subsequent call to the API.

Parameters
[in] sockfd Socket File Descriptor

[out] p_buf Buffer to read data

[out] length Data length

[in] flags Socket flag

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Failed to receive data or invalid input
parameters

Returns
Otherwise Data received successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,036 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

◆ recvfrom()

ssize_t recvfrom (int sockfd, void * p_buf, size_t length, int flags, struct sockaddr * p_src_addr,
socklen_t * p_addrlen)

This receives data over DGRAM socket.

Receive data from remote socket.

Parameters
[in] sockfd Local socket

[out] p_buf Pointer to data buffer where
data will be received

[in] length Maximum length of data
which can be received

[in] flags Socket flag

[out] p_src_addr Pointer to remote socket
address which has sent data

[out] p_addrlen Length of socket address
structure

Implements recvfrom This function receives data on a dgram socket. If no packet is available, the
socket is blocked until it is set to non-blocking. The application must provide a valid buffer to
receive the payload. If the buffer length is smaller than the available payload, the API will do a
partial copy, and hold on the rest of the payload for a subsequent call to the API.

Parameters
[in] sockfd Socket file descriptor

[out] p_buf Data buffer pointer to read
data

[in] length Length of data to read

[in] flags Flags

[in] p_src_addr Remote machine network
address

[in] p_addrlen Size of Remote machine
network

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error receiving
data

Returns
Otherwise Numbers of data bytes received successfully.

Implements recvfrom This function receives data on a dgram socket. If no packet is available, the
socket is blocked until it is set to non-blocking. The application must provide a valid buffer to

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,037 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

receive the payload. If the buffer length is smaller than the available payload, the API will do a
partial copy, and hold on the rest of the payload for a subsequent call to the API.

Parameters
[in] sockfd Socket file descriptor

[out] p_buf Data buffer pointer to read
data

[in] length Length of data to read

[in] flags Flags

[in] p_src_addr Remote machine network
address (Can be NULL)

[in] p_addrlen Size of Remote machine
network (Can be NULL)

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error receiving data or invalid input
parameters

Returns
Otherwise Numbers of data bytes received successfully.

◆ select()

int select (int nfds, fd_set * p_readfds, fd_set * p_writefds, fd_set * p_exceptfds, struct timeval *
p_timeout)

This waits for any activity on socket.

Wait on a given socket for specified amount of time. In case of any activity e.g. arrival of packet it
comes out of wait.

Parameters
[in] nfds Max fd

[in] p_readfds Pointer to fd_set to check
whether data is available for
read

[in] p_writefds Pointer to fd_set to check
whether data is available for
write

[in] p_exceptfds Pointer to fd_set to check
whether exceptional
condition occurred

[in] p_timeout Wait time in milliseconds

Implements select Allow an application thread to block on a given socket handle for a specified
time period. This API checks for any activity on specified socket, for example arrival of a packet at

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,038 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

the receive queue.

Parameters
[in] nfds Number of socket fds in to

check

[in] p_readfds Read socket fd set

[in] p_writefds Write socket fd set. If no
descriptor is to be tested for
writing, p_writefds should be
NULL

[in] p_exceptfds Exceptional socket fd set. If
no descriptor is to be tested
for exceptions, p_exceptfds
should be NULL

[in] p_timeout Timeout

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Timeout occurred, no activity.

Returns
Otherwise Activity detected(Packet available).

Implements select Allow an application thread to block on a given socket handle for a specified
time period. This API checks for any activity on specified socket, for example arrival of a packet at
the receive queue.

Parameters
[in] nfds Number of socket fds in to

check

[in] p_readfds Read socket fd set

[in] p_writefds Write socket fd set - API
does not used this
parameter

[in] p_exceptfds Exceptional socket fd set -
API does not used this
parameter

[in] p_timeout Timeout

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Timeout occurred, no activity or invalid
socket descriptor

Returns
Otherwise Activity detected(Packet available).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,039 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

◆ send()

ssize_t send (int sockfd, const void * p_buf, size_t length, int flags)

This sends data over STREAM socket.

Send data to remote socket.

Parameters
[in] sockfd Local socket

[in] p_buf Pointer to data buffer

[in] length Data buffer length

[in] flags Socket flags

Implements send This function sends data on a stream socket in connected state.

Parameters
[in] sockfd Socket File Descriptor

[in] p_buf Buffer data to send

[in] length Data length

[in] flags Socket flag

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Failed to send
data.

Returns
Otherwise Number of Data bytes sent successfully.

Implements send This function sends data on a stream socket in connected state.

Parameters
[in] sockfd Socket File Descriptor

[in] p_buf Buffer data to send

[in] length Data length

[in] flags Socket flag

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Failed to send data or invalid input
parameters

Returns
Otherwise Data sent successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,040 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

◆ sendto()

ssize_t sendto (int sockfd, const void * p_buf, size_t length, int flags, const struct sockaddr *
p_dest_addr, socklen_t addrlen)

This sends data over DGRAM socket.

Send data to remote socket.

Parameters
[in] sockfd Local socket

[in] p_buf Pointer to data buffer to sent

[in] length Data buffer length

[in] flags Socket flag

[in] p_dest_addr Pointer to remote socket
address where to send data

[in] addrlen Length of socket address
structure

Implements sendto This function sends data to remote.

Parameters
[in] sockfd Socket File Descriptor

[in] p_buf Buffer data pointer

[in] length Length of data

[in] flags Flag

[in] p_dest_addr Address of remote UDP
server

[in] addrlen Size of Network address
structure

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error Sending
data.

Returns
Otherwise Numbers of bytes sent successfully.

Implements sendto This function sends data to remote.

Parameters
[in] sockfd Socket File Descriptor

[in] p_buf Buffer data pointer

[in] length Length of data

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,041 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

[in] flags Flag

[in] p_dest_addr Address of remote UDP
server

[in] addrlen Size of Network address
structure

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error Sending data or invalid input
parameters

Returns
Otherwise Numbers of bytes sent successfully.

◆ setsockopt()

int setsockopt (int sockfd, int level, int optname, const void * p_optval, socklen_t optlen)

This updates socket specific options. Quectel CATM1 supports following socket options SO_SNDBUF:
Transmission packet size TCP_MAX_RETRIES: Maximum Number of retransmission TCP_MAX_RTO:
Maximum interval time of TCP retransmission.

Set Socket options.

Parameters
[in] sockfd Local socket

[in] level Sockets API level

[in] optname Option to be set

[in] p_optval Option value to be set

[in] optlen Length of option value

Implements setsockopt This sets options for an existing socket.

Parameters
[in] sockfd Socket file descriptor

[in] level Level

[in] optname Socket option name

[in] p_optval Socket option value

[in] optlen Size of Socket option

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error setting
socket option

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket option set successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,042 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

This updates socket specific options. Quectel CATM1 supports following socket options SO_SNDBUF:
Transmission packet size TCP_MAX_RETRIES: Maximum Number of retransmission TCP_MAX_RTO:
Maximum interval time of TCP retransmission.

Implements setsockopt This sets options for an existing socket.

Parameters
[in] sockfd Socket file descriptor

[in] level Level

[in] optname Socket option name

[in] p_optval Socket option value

[in] optlen Size of Socket option

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error setting socket option or invalid socket
descriptor

Returns
Otherwise Socket option set successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,043 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface

◆ socket()

int socket (int domain, int type, int protocol)

This creates socket for communication.

API which creates socket

Parameters
[in] domain Socket family

[in] type Socket type

[in] protocol Protocol type

Implements socket Creates socket with given parameters.

Parameters
[in] domain Network Domain

[in] type Socket type

[in] protocol Protocol type

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Socket creation failed

Returns
Otherwise Socket descriptor of newly created socket

Implements socket Creates socket with given parameters.

Parameters
[in] domain Network Domain

[in] type Socket type

[in] protocol Protocol type

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Socket creation failed

Returns
Otherwise Socket created successfully

 sockaddr_in Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket CELLULAR

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,044 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface > sockaddr_in Struct Reference

Framework InterfaceRenesas Synergy Software Package Reference » Framework Interfaces » | SF
Socket WIFI Framework InterfaceRenesas Synergy Software Package Reference » Framework
Interfaces » | SF Socket WIFI Framework Interface

#include <sf_wifi_qca4010_socket_api.h>

Data Fields

uint16_t sin_family

 Internet Protocol (AF_INET)

uint16_t sin_port

 Address port (16 bits)

struct in_addr sin_addr

 Internet address (32 bits)

int8_t sin_zero [8]

 Not used. More...

Detailed Description

Socket address, Internet style.

Field Documentation

◆ sin_zero

CHAR sockaddr_in::sin_zero

Not used.

Not used structure member.

The documentation for this struct was generated from the following files:

sf_cellular_socket_api.h
sf_socket_api.h
sf_wifi_qca4010_socket_api.h
nx_bsd.h
nxd_bsd.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,045 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface > sockaddr_in Struct Reference

 sf_cellular_socket_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket CELLULAR
Framework Interface

#include <sf_cellular_socket_api.h>

Data Fields

sf_cellular_instance_t * p_lower_lvl_cellular

 low level cellular interface

Detailed Description

Socket Interface control structure

The documentation for this struct was generated from the following file:

sf_cellular_socket_api.h

 sf_cellular_socket_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket CELLULAR
Framework Interface

#include <sf_cellular_socket_api.h>

Data Fields

sf_cellular_instance_t * p_lower_lvl_cellular

 Pointer to SF on-chip stack instance.

void * p_extend

 Extended configuration.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,046 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface > sf_cellular_socket_cfg_t Struct Reference

Socket Interface configuration structure

The documentation for this struct was generated from the following file:

sf_cellular_socket_api.h

 sf_cellular_socket_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket CELLULAR
Framework Interface

#include <sf_cellular_socket_api.h>

Data Fields

ssp_err_t(* open)(sf_cellular_socket_ctrl_t *p_ctrl, sf_cellular_socket_cfg_t const
*const p_cfg)

 Pointer to function which initializes the network interface for data
transfers Initial driver configuration, enable the driver link, enable
interrupts and make device ready for data transfer. More...

ssp_err_t(* close)(sf_cellular_socket_ctrl_t *const p_ctrl)

 Pointer to function which un-initialize the network interface and may
put it in low power mode or power it off. Close the driver, disable the
driver link, disable interrupt. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Gets version and stores it in provided pointer p_version. More...

ssp_err_t(* ping)(sf_cellular_socket_ctrl_t *const p_ctrl, ULONG *p_ip_addr,
uint32_t count, uint32_t interval_ms)

Detailed Description

Socket Interface API

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,047 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface > sf_cellular_socket_api_t Struct Reference

◆ close

ssp_err_t(* sf_cellular_socket_api_t::close) (sf_cellular_socket_ctrl_t *const p_ctrl)

Pointer to function which un-initialize the network interface and may put it in low power mode or
power it off. Close the driver, disable the driver link, disable interrupt.

Parameters
[in,out] p_ctrl Pointer to the control block

for the Cellular module
Socket interface.

◆ open

ssp_err_t(* sf_cellular_socket_api_t::open) (sf_cellular_socket_ctrl_t *p_ctrl, sf_cellular_socket_cfg_t
const *const p_cfg)

Pointer to function which initializes the network interface for data transfers Initial driver
configuration, enable the driver link, enable interrupts and make device ready for data transfer.

Parameters
[in,out] p_ctrl Pointer to the control block

for the Cellular module
Socket interface.

[in] p_cfg Pointer to Cellular Socket
interface configuration
structure.

◆ ping

ssp_err_t(* sf_cellular_socket_api_t::ping) (sf_cellular_socket_ctrl_t *const p_ctrl, ULONG *p_ip_addr,
uint32_t count, uint32_t interval_ms)

Pointer to a function which is used to ping the IP address.

Parameters
[in] p_ctrl Pointer to the control block

[in] p_ip_addr Pointer to IP address to ping

[in] count Number of ping attempts

[in] interval_ms Interval between ping
attempts

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,048 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface > sf_cellular_socket_api_t Struct Reference

◆ versionGet

ssp_err_t(* sf_cellular_socket_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version Pointer to SSP Version

structure

The documentation for this struct was generated from the following file:

sf_cellular_socket_api.h

 sf_cellular_socket_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket CELLULAR
Framework Interface

#include <sf_cellular_socket_api.h>

Data Fields

sf_cellular_socket_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_cellular_socket_cfg_t
const *

p_cfg

 Pointer to the configuration structure for this instance.

sf_cellular_socket_api_t
const *

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,049 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket CELLULAR Framework Interface > sf_cellular_socket_instance_t Struct Reference

The documentation for this struct was generated from the following file:

sf_cellular_socket_api.h

5.1.2.26 Communications Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated communications Framework Interface. More...

Data Structures

struct sf_comms_callback_args_t

struct sf_comms_cfg_t

struct sf_comms_api_t

struct sf_comms_instance_t

Macros

#define SF_COMMS_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_comms_ctrl_t

Enumerations

enum sf_comms_lock_t { SF_COMMS_LOCK_TX = 0, SF_COMMS_LOCK_RX,
SF_COMMS_LOCK_ALL }

enum sf_comms_event_t { SF_COMMS_DISCONNECT_EVENT }

Detailed Description

RTOS-integrated communications Framework Interface.

Implemented by:

UART Framework Instance - UART implementation
USB Communication Framework V2 - USBX CDC ACM device implementation
Telnet Communication Framework on sf_comms_telnet - NetX telnet server with shared IP
Instance implementation

Related SSP architecture topics:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,050 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Communications Framework Interface

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

See also Framework Communications Interface description: UART Communications Framework

Macro Definition Documentation

◆ SF_COMMS_API_VERSION_MAJOR

#define SF_COMMS_API_VERSION_MAJOR (2U)

Version of the API defined in this file

Typedef Documentation

◆ sf_comms_ctrl_t

typedef void sf_comms_ctrl_t

Communications framework control block. Allocate an instance specific control block to pass into
the communications framework API calls.

Implemented as

sf_console_instance_ctrl_t

Enumeration Type Documentation

◆ sf_comms_event_t

enum sf_comms_event_t

Options for the callback events.

Note
Only applies for SF_COMMS_TELNET.

Enumerator

SF_COMMS_DISCONNECT_EVENT Disconnected the client.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,051 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Communications Framework Interface

◆ sf_comms_lock_t

enum sf_comms_lock_t

Communications locks

Enumerator

SF_COMMS_LOCK_TX Lock Transmit.

SF_COMMS_LOCK_RX Lock Receive.

SF_COMMS_LOCK_ALL Lock Transmit and Receive.

 sf_comms_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Communications
Framework Interface

#include <sf_comms_api.h>

Data Fields

sf_comms_event_t event

 SF_COMMS callback event.

Detailed Description

sf_comms callback arguments definitions.

Note
Only applies for SF_COMMS_TELNET.

The documentation for this struct was generated from the following file:

sf_comms_api.h

 sf_comms_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Communications
Framework Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,052 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Communications Framework Interface > sf_comms_cfg_t Struct Reference

#include <sf_comms_api.h>

Data Fields

void const * p_extend

 Pointer to lower level communications control structure.

Detailed Description

Configuration for RTOS integrated communications driver

The documentation for this struct was generated from the following file:

sf_comms_api.h

 sf_comms_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Communications
Framework Interface

#include <sf_comms_api.h>

Data Fields

ssp_err_t(* open)(sf_comms_ctrl_t *const p_ctrl, sf_comms_cfg_t const *const
p_cfg)

ssp_err_t(* close)(sf_comms_ctrl_t *const p_ctrl)

ssp_err_t(* read)(sf_comms_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes, UINT const timeout)

ssp_err_t(* write)(sf_comms_ctrl_t *const p_ctrl, uint8_t const *const p_src,
uint32_t const bytes, UINT const timeout)

ssp_err_t(* lock)(sf_comms_ctrl_t *const p_ctrl, sf_comms_lock_t lock_type, UINT
timeout)

ssp_err_t(* unlock)(sf_comms_ctrl_t *const p_ctrl, sf_comms_lock_t lock_type)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,053 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Communications Framework Interface > sf_comms_api_t Struct Reference

Framework communications API structure. Implementations will use the following API.

Field Documentation

◆ close

ssp_err_t(* sf_comms_api_t::close) (sf_comms_ctrl_t *const p_ctrl)

Clean up communications driver.

Parameters
[in] p_ctrl Pointer to device control

block initialized in Open call
for communications driver.

◆ lock

ssp_err_t(* sf_comms_api_t::lock) (sf_comms_ctrl_t *const p_ctrl, sf_comms_lock_t lock_type, UINT
timeout)

Lock the communications driver. Reserve exclusive access to the communications driver.

Parameters
[in] p_ctrl Pointer to device control

block initialized in Open call
for communications driver.

[in] lock_type Locking type, transmission
channel or reception channel

[in] timeout ThreadX timeout. Options
include TX_NO_WAIT
(0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,054 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Communications Framework Interface > sf_comms_api_t Struct Reference

◆ open

ssp_err_t(* sf_comms_api_t::open) (sf_comms_ctrl_t *const p_ctrl, sf_comms_cfg_t const *const
p_cfg)

Initialize communications driver.

Parameters
[in,out] p_ctrl Pointer to a control structure

allocated by user. The
control structure is initialized
in this function.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

◆ read

ssp_err_t(* sf_comms_api_t::read) (sf_comms_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes, UINT const timeout)

Read data from communications driver. This call will return after the number of bytes requested is
read or if a timeout occurs while waiting for access to the driver.

Parameters
[in] p_ctrl Pointer to device control

block initialized in Open call
for communications driver.

[in] p_dest Destination address to read
data out

[in] bytes Read data length

[in] timeout ThreadX timeout. Options
include TX_NO_WAIT
(0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,055 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Communications Framework Interface > sf_comms_api_t Struct Reference

◆ unlock

ssp_err_t(* sf_comms_api_t::unlock) (sf_comms_ctrl_t *const p_ctrl, sf_comms_lock_t lock_type)

Unlock the communications driver. Release exclusive access to the communications driver.

Parameters
[in] p_ctrl Pointer to device control

block initialized in Open call
for communications driver.

[in] lock_type Locking type, transmission
channel or reception channel

◆ versionGet

ssp_err_t(* sf_comms_api_t::versionGet) (ssp_version_t *const p_version)

Store the driver version in the provided p_version.

Parameters
[in] p_ctrl Pointer to device control

block initialized in Open call
for communications driver.

[in] p_version Pointer to memory version to
be stored.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,056 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Communications Framework Interface > sf_comms_api_t Struct Reference

◆ write

ssp_err_t(* sf_comms_api_t::write) (sf_comms_ctrl_t *const p_ctrl, uint8_t const *const p_src,
uint32_t const bytes, UINT const timeout)

Write data to communications driver. This call will return after all bytes are written or if a timeout
occurs while waiting for access to the driver.

Parameters
[in] p_ctrl Pointer to device control

block initialized in Open call
for communications driver.

[in] p_src Source address to read data
out from

[in] bytes Write data length

[in] timeout ThreadX timeout. Options
include TX_NO_WAIT
(0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

The documentation for this struct was generated from the following file:

sf_comms_api.h

 sf_comms_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Communications
Framework Interface

#include <sf_comms_api.h>

Data Fields

sf_comms_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_comms_cfg_t const * p_cfg

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,057 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Communications Framework Interface > sf_comms_instance_t Struct Reference

 Pointer to the configuration structure for this instance.

sf_comms_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_comms_api.h

5.1.2.27 Console Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated Console Framework Interface. More...

Data Structures

struct sf_console_callback_args_t

struct sf_console_command_t

struct sf_console_menu_t

struct sf_console_cfg_t

struct sf_console_api_t

struct sf_console_instance_t

Macros

#define SF_CONSOLE_API_VERSION_MAJOR (2U)

#define SF_CONSOLE_HELP_COMMAND ((uint8_t *) "?")

#define SF_CONSOLE_MENU_PREVIOUS_COMMAND ((uint8_t *) "^")

#define SF_CONSOLE_ROOT_MENU_COMMAND ((uint8_t *) "~")

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,058 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Console Framework Interface

#define SF_CONSOLE_CALLBACK_NEXT_FUNCTION ((void(*)(
sf_console_callback_args_t * p_args)) 0x70000000)

Typedefs

typedef void sf_console_ctrl_t

typedef
sf_console_callback_args_t

sf_console_cb_args_t

Detailed Description

RTOS-integrated Console Framework Interface.

Summary
This module is a ThreadX-aware Console Framework.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

See also Console Interface description Console Framework

Macro Definition Documentation

◆ SF_CONSOLE_API_VERSION_MAJOR

#define SF_CONSOLE_API_VERSION_MAJOR (2U)

Version of the API defined in this file

◆ SF_CONSOLE_CALLBACK_NEXT_FUNCTION

#define SF_CONSOLE_CALLBACK_NEXT_FUNCTION ((void(*)(sf_console_callback_args_t * p_args))
0x70000000)

Use this macro to access the next menu layer from this command.

◆ SF_CONSOLE_HELP_COMMAND

#define SF_CONSOLE_HELP_COMMAND ((uint8_t *) "?")

Command to print each command and help in menu

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,059 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Console Framework Interface

◆ SF_CONSOLE_MENU_PREVIOUS_COMMAND

#define SF_CONSOLE_MENU_PREVIOUS_COMMAND ((uint8_t *) "^")

Previous command

◆ SF_CONSOLE_ROOT_MENU_COMMAND

#define SF_CONSOLE_ROOT_MENU_COMMAND ((uint8_t *) "~")

Root menu command

Typedef Documentation

◆ sf_console_cb_args_t

typedef sf_console_callback_args_t sf_console_cb_args_t

DEPRECATED definition, please use sf_console_callback_args_t instead.

◆ sf_console_ctrl_t

typedef void sf_console_ctrl_t

Console framework control block. Allocate an instance specific control block to pass into the
console framework API calls.

Implemented as

sf_console_instance_ctrl_t

 sf_console_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Console Framework
Interface

#include <sf_console_api.h>

Data Fields

sf_console_ctrl_t * p_ctrl

 Pointer to console that received the command that caused this
callback.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,060 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Console Framework Interface > sf_console_callback_args_t Struct Reference

uint8_t const * p_remaining_string

 String remaining after parsing command.

uint8_t const * context

 Pointer to user provided data.

uint32_t bytes

 The number of bytes remaining in the input string.

Detailed Description

Console callback arguments

The documentation for this struct was generated from the following file:

sf_console_api.h

 sf_console_command_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Console Framework
Interface

#include <sf_console_api.h>

Data Fields

uint8_t * command

 Command string.

uint8_t * help

 Description of command.

void(* callback)(sf_console_callback_args_t *p_args)

 Callback to call when command is selected.

void const * context

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,061 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Console Framework Interface > sf_console_command_t Struct Reference

 User provided context passed into callback.

Detailed Description

Console command structure, used to create a console menu with associated callbacks.

The documentation for this struct was generated from the following file:

sf_console_api.h

 sf_console_menu_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Console Framework
Interface

#include <sf_console_api.h>

Data Fields

struct st_sf_console_menu
const *

menu_prev

 Previous menu.

uint8_t const * menu_name

 Menu name, used as a prompt.

uint32_t num_commands

 Number of commands in this menu.

sf_console_command_t
const *

command_list

 Pointer to an array of commands of length num_commands.

Detailed Description

Console menu structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,062 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Console Framework Interface > sf_console_menu_t Struct Reference

The documentation for this struct was generated from the following file:

sf_console_api.h

 sf_console_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Console Framework
Interface

#include <sf_console_api.h>

Data Fields

sf_comms_instance_t const
*

p_comms

 Pointer to communications driver instance.

sf_console_menu_t const * p_initial_menu

 First menu to print during Open.

bool echo

 Whether to echo input commands to transmitter.

bool autostart

 If true, prompt will occur with p_initial_menu after initialization.

Detailed Description

Configuration for RTOS integrated console framework.

The documentation for this struct was generated from the following file:

sf_console_api.h

 sf_console_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Console Framework
Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,063 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Console Framework Interface > sf_console_api_t Struct Reference

#include <sf_console_api.h>

Data Fields

ssp_err_t(* open)(sf_console_ctrl_t *const p_ctrl, sf_console_cfg_t const *const
p_cfg)

 This function configures the console. This function must be called
before any other console functions. More...

ssp_err_t(* close)(sf_console_ctrl_t *const p_ctrl)

 The close API handles cleans up internal driver data. More...

ssp_err_t(* prompt)(sf_console_ctrl_t *const p_ctrl, sf_console_menu_t const
*const p_menu, UINT const timeout)

 Prints prompt string from menu, waits for input, parses input based
on menu, and calls callback function if a command is identified.
More...

ssp_err_t(* parse)(sf_console_ctrl_t *const p_ctrl, sf_console_menu_t const
*const p_cmd_list, uint8_t const *const p_input, uint32_t const bytes)

 Looks for input string in menu, and calls callback function if found.
More...

ssp_err_t(* read)(sf_console_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes, uint32_t const timeout)

 Reads data into the destination byte by byte and echos input to the
console. Backspace, delete, and left/right arrow keys supported.
Read completes when a line ending CR, CR+LF, or CR+NULL is
received, or when the input exceeds the number of bytes input. If
the buffer overflows SF_CONSOLE_MAX_INPUT_LENGTH, read will
return an error code. More...

ssp_err_t(* write)(sf_console_ctrl_t *const p_ctrl, uint8_t const *const p_src,
uint32_t const timeout)

 The write API gets mutex object and handles UART data transmission
at UART HAL layer. gets event flag to synchronize to completion of
data transfer. More...

ssp_err_t(* argumentFind)(uint8_t const *const p_arg, uint8_t const *const
p_str, int32_t *const p_index, int32_t *const p_data)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,064 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Console Framework Interface > sf_console_api_t Struct Reference

 Finds a command line argument in an input string and returns the
index of the character immediately following the argument and any
string numbers converted to integers. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Stores version information in provided pointer. More...

Detailed Description

Console framework API structure. Console implementations will use the following API.

Field Documentation

◆ argumentFind

ssp_err_t(* sf_console_api_t::argumentFind) (uint8_t const *const p_arg, uint8_t const *const p_str,
int32_t *const p_index, int32_t *const p_data)

Finds a command line argument in an input string and returns the index of the character
immediately following the argument and any string numbers converted to integers.

Implemented as

SF_CONSOLE_ArgumentFind()
Parameters

[in] p_arg Pointer to argument to find.

[in] p_src Pointer to source string to
find the argument in.

[out] p_index Pointer to location to store
index. Set to -1 if argument
is not found in input string.
Pass NULL if index is not
requested.

[out] p_data Pointer to location to store
data following the argument.
Set to -1 if argument is not
found in input string. Pass
NULL if data is not
requested.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,065 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Console Framework Interface > sf_console_api_t Struct Reference

◆ close

ssp_err_t(* sf_console_api_t::close) (sf_console_ctrl_t *const p_ctrl)

The close API handles cleans up internal driver data.

Implemented as

SF_CONSOLE_Close()
Parameters

[in] p_ctrl Pointer to device control
block initialized in Open call
for UART driver.

◆ open

ssp_err_t(* sf_console_api_t::open) (sf_console_ctrl_t *const p_ctrl, sf_console_cfg_t const *const
p_cfg)

This function configures the console. This function must be called before any other console
functions.

Implemented as

SF_CONSOLE_Open()
Parameters

[in,out] p_ctrl Pointer to a device structure
allocated by user. The
device control structure is
initialized in this function.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,066 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Console Framework Interface > sf_console_api_t Struct Reference

◆ parse

ssp_err_t(* sf_console_api_t::parse) (sf_console_ctrl_t *const p_ctrl, sf_console_menu_t const *const
p_cmd_list, uint8_t const *const p_input, uint32_t const bytes)

Looks for input string in menu, and calls callback function if found.

Implemented as

SF_CONSOLE_Parse()
Parameters

[in] p_ctrl Pointer to device control
block initialized in Open call
for UART driver.

[in] p_cmd_list Pointer to a menu of valid
input commands for this
prompt

[in] p_input Pointer to a null terminated
string to search for in the
command list

[in] bytes Length of the input string.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,067 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Console Framework Interface > sf_console_api_t Struct Reference

◆ prompt

ssp_err_t(* sf_console_api_t::prompt) (sf_console_ctrl_t *const p_ctrl, sf_console_menu_t const
*const p_menu, UINT const timeout)

Prints prompt string from menu, waits for input, parses input based on menu, and calls callback
function if a command is identified.

Implemented as

SF_CONSOLE_Prompt()
Parameters

[in] p_ctrl Pointer to device control
block initialized in Open call
for UART driver.

[in] p_menu Set to NULL to stay on
current menu maintained by
the console framework. To
change menus, pass a
pointer to the new menu.

[in] timeout ThreadX timeout. Options
include TX_NO_WAIT
(0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,068 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Console Framework Interface > sf_console_api_t Struct Reference

◆ read

ssp_err_t(* sf_console_api_t::read) (sf_console_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const bytes, uint32_t const timeout)

Reads data into the destination byte by byte and echos input to the console. Backspace, delete,
and left/right arrow keys supported. Read completes when a line ending CR, CR+LF, or CR+NULL is
received, or when the input exceeds the number of bytes input. If the buffer overflows
SF_CONSOLE_MAX_INPUT_LENGTH, read will return an error code.

Implemented as

SF_CONSOLE_Read()
Parameters

[in] p_ctrl Pointer to device control
block initialized in Open call
for UART driver.

[in] p_dest Destination address to read
data out

[in] bytes Read data length

[in] timeout ThreadX timeout. Options
include TX_NO_WAIT
(0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

◆ versionGet

ssp_err_t(* sf_console_api_t::versionGet) (ssp_version_t *const p_version)

Stores version information in provided pointer.

Implemented as

SF_CONSOLE_VersionGet()
Parameters

[out] p_version Code and API version used
stored here.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,069 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Console Framework Interface > sf_console_api_t Struct Reference

◆ write

ssp_err_t(* sf_console_api_t::write) (sf_console_ctrl_t *const p_ctrl, uint8_t const *const p_src,
uint32_t const timeout)

The write API gets mutex object and handles UART data transmission at UART HAL layer. gets
event flag to synchronize to completion of data transfer.

Implemented as

SF_CONSOLE_Write()
Parameters

[in] p_ctrl Pointer to device control
block initialized in Open call
for UART driver.

[in] p_src Pointer to a NULL terminated
string. Length must be less
than SF_CONSOLE_MAX_WRI
TE_LENGTH.

[in] timeout ThreadX timeout. Options
include TX_NO_WAIT
(0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

The documentation for this struct was generated from the following file:

sf_console_api.h

 sf_console_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Console Framework
Interface

#include <sf_console_api.h>

Data Fields

sf_console_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,070 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Console Framework Interface > sf_console_instance_t Struct Reference

sf_console_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

sf_console_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_console_api.h

5.1.2.28 SSP Crypto Framework Common Module Interface
Renesas Synergy Software Package Reference » Framework Interfaces

Interface definition for Synergy Crypto Framework module. More...

Data Structures

struct sf_crypto_data_handle_t

struct sf_crypto_callback_args_t

struct sf_crypto_cfg_t

struct sf_crypto_api_t

struct sf_crypto_instance_t

Macros

#define SF_CRYPTO_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_crypto_ctrl_t

Enumerations

enum sf_crypto_key_type_t {

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,071 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Framework Common Module Interface

 SF_CRYPTO_KEY_TYPE_RSA_PLAIN_TEXT,
SF_CRYPTO_KEY_TYPE_RSA_CRT_PLAIN_TEXT,
SF_CRYPTO_KEY_TYPE_RSA_WRAPPED,
SF_CRYPTO_KEY_TYPE_AES_WRAPPED,
 SF_CRYPTO_KEY_TYPE_AES_PLAIN_TEXT,
SF_CRYPTO_KEY_TYPE_ECC_PLAIN_TEXT,
SF_CRYPTO_KEY_TYPE_ECC_WRAPPED,
SF_CRYPTO_KEY_TYPE_ENCRYPTED_RSA_PRIVATE_KEY,
 SF_CRYPTO_KEY_TYPE_ENCRYPTED_AES_KEY,
SF_CRYPTO_KEY_TYPE_ENCRYPTED_ECC_PRIVATE_KEY
}

enum sf_crypto_key_size_t {
 SF_CRYPTO_KEY_SIZE_RSA_1024, SF_CRYPTO_KEY_SIZE_RSA_2048,
SF_CRYPTO_KEY_SIZE_AES_128, SF_CRYPTO_KEY_SIZE_AES_XTS_128,
 SF_CRYPTO_KEY_SIZE_AES_192, SF_CRYPTO_KEY_SIZE_AES_256,
SF_CRYPTO_KEY_SIZE_AES_XTS_256, SF_CRYPTO_KEY_SIZE_ECC_192,
 SF_CRYPTO_KEY_SIZE_ECC_224, SF_CRYPTO_KEY_SIZE_ECC_256,
SF_CRYPTO_KEY_SIZE_ECC_384
}

enum sf_crypto_state_t { SF_CRYPTO_CLOSED, SF_CRYPTO_OPENED }

enum sf_crypto_event_t { SF_CRYPTO_EVENT_PROCEDURE_DONE,
SF_CRYPTO_EVENT_ERROR }

enum sf_crypto_close_option_t { SF_CRYPTO_CLOSE_OPTION_DEFAULT,
SF_CRYPTO_CLOSE_OPTION_FORCE_CLOSE }

Detailed Description

Interface definition for Synergy Crypto Framework module.

Summary
This is the Interface of SF_CRYPTO Framework module.

Crypto Common Framework Interface description: Crypto Framework

Macro Definition Documentation

◆ SF_CRYPTO_API_VERSION_MAJOR

#define SF_CRYPTO_API_VERSION_MAJOR (2U)

The API version of SSP Crypto Framework Common Module

Typedef Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,072 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Framework Common Module Interface

◆ sf_crypto_ctrl_t

typedef void sf_crypto_ctrl_t

SSP Crypto Framework Common Module control block. Allocate an instance specific control block to
pass into the SSP Crypto Framework Common Module API calls.

Implemented as

sf_crypto_instance_ctrl_t

Enumeration Type Documentation

◆ sf_crypto_close_option_t

enum sf_crypto_close_option_t

SF_CRYPTO Close option. The module executes close operation if any SF_CRYPTO_XXX modules
have already closed if SF_CRYPTO_CLOSE_OPTION_DEFAULT option is specified. The module
performs close operation regardless of any SF_CRYPTO_XXX module status if
SF_CRYPTO_CLOSE_OPTION_FORCE_CLOSE is specified.

Enumerator

SF_CRYPTO_CLOSE_OPTION_DEFAULT Close the module if no any SF_CRYPTO_XXX
modules opened.

SF_CRYPTO_CLOSE_OPTION_FORCE_CLOSE Close the module regardless of
SF_CRYPTO_XXX modules status.

◆ sf_crypto_event_t

enum sf_crypto_event_t

Event code for the SSP Crypto Framework Common Module. This event code is all reserved for the
future use.

Enumerator

SF_CRYPTO_EVENT_PROCEDURE_DONE Crypto hardware procedure done.

SF_CRYPTO_EVENT_ERROR Error occurred.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,073 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Framework Common Module Interface

◆ sf_crypto_key_size_t

enum sf_crypto_key_size_t

Supported key sizes

Enumerator

SF_CRYPTO_KEY_SIZE_RSA_1024 RSA 1024-bit key.

SF_CRYPTO_KEY_SIZE_RSA_2048 RSA 2048-bit key.

SF_CRYPTO_KEY_SIZE_AES_128 AES 128-bit key for CBC, CTR, ECB, GCM
chaining modes.

SF_CRYPTO_KEY_SIZE_AES_XTS_128 AES 128-bit key for XTS chaining mode only.

SF_CRYPTO_KEY_SIZE_AES_192 AES 192-bit key for CBC, CTR, ECB, GCM
chaining modes.

SF_CRYPTO_KEY_SIZE_AES_256 AES 256-bit key for CBC, CTR, ECB, GCM
chaining modes.

SF_CRYPTO_KEY_SIZE_AES_XTS_256 AES 256-bit key for XTS chaining mode only.

SF_CRYPTO_KEY_SIZE_ECC_192 ECC 192-bit key.

SF_CRYPTO_KEY_SIZE_ECC_224 ECC 224-bit key.

SF_CRYPTO_KEY_SIZE_ECC_256 ECC 256-bit key.

SF_CRYPTO_KEY_SIZE_ECC_384 ECC 384-bit key.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,074 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Framework Common Module Interface

◆ sf_crypto_key_type_t

enum sf_crypto_key_type_t

Supported key types

Enumerator

SF_CRYPTO_KEY_TYPE_RSA_PLAIN_TEXT RSA Key pair in standard format and plain
text.

SF_CRYPTO_KEY_TYPE_RSA_CRT_PLAIN_TEXT RSA Key pair in CRT format and plain text.

SF_CRYPTO_KEY_TYPE_RSA_WRAPPED RSA Key pair public key in plain text and
wrapped standard format private key.

SF_CRYPTO_KEY_TYPE_AES_WRAPPED Wrapped AES key.

SF_CRYPTO_KEY_TYPE_AES_PLAIN_TEXT AES Plain text key.

SF_CRYPTO_KEY_TYPE_ECC_PLAIN_TEXT ECC Key pair in standard format and plain
text.

SF_CRYPTO_KEY_TYPE_ECC_WRAPPED ECC Key pair public key in plain text and
wrapped standard format private key.

SF_CRYPTO_KEY_TYPE_ENCRYPTED_RSA_PRIVAT
E_KEY

RSA private key in encrypted format for
installation.

SF_CRYPTO_KEY_TYPE_ENCRYPTED_AES_KEY AES key in encrypted format for installation.

SF_CRYPTO_KEY_TYPE_ENCRYPTED_ECC_PRIVAT
E_KEY

ECC private key in encrypted format for
installation.

◆ sf_crypto_state_t

enum sf_crypto_state_t

State codes for the SSP Crypto Framework Common Module

Enumerator

SF_CRYPTO_CLOSED The module is closed.

SF_CRYPTO_OPENED The module is opened.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,075 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Framework Common Module Interface > sf_crypto_data_handle_t Struct Reference

 sf_crypto_data_handle_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Framework
Common Module Interface

#include <sf_crypto_api.h>

Data Fields

uint8_t * p_data

 Pointer to data.

uint32_t data_length

 The length of data pointed by p_data.

Detailed Description

A structure to handle data among Crypto Framework modules

The documentation for this struct was generated from the following file:

sf_crypto_api.h

 sf_crypto_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Framework
Common Module Interface

#include <sf_crypto_api.h>

Data Fields

sf_crypto_event_t event

 Event code of the low level hardware.

ssp_err_t error

 Error code if SF_CRYPTO_EVENT_ERROR.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,076 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Framework Common Module Interface > sf_crypto_callback_args_t Struct Reference

Callback arguments for the SSP Crypto Framework Common Module

The documentation for this struct was generated from the following file:

sf_crypto_api.h

 sf_crypto_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Framework
Common Module Interface

#include <sf_crypto_api.h>

Data Fields

uint32_t wait_option

 Wait option for RTOS service calls.

crypto_instance_t * p_lower_lvl_crypto

 Pointer to a low-level Crypto engine HAL driver instance.

void const * p_extend

 Extension parameter for hardware specific settings.

void const * p_context

 Placeholder for user data.

void * p_memory_pool

 Byte pool address.

uint32_t memory_pool_size

 Byte pool size.

sf_crypto_close_option_t close_option

 Close option.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,077 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Framework Common Module Interface > sf_crypto_cfg_t Struct Reference

Detailed Description

Configuration structure for the SSP Crypto Framework Common Module

The documentation for this struct was generated from the following file:

sf_crypto_api.h

 sf_crypto_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Framework
Common Module Interface

#include <sf_crypto_api.h>

Data Fields

ssp_err_t(* open)(sf_crypto_ctrl_t *const p_ctrl, sf_crypto_cfg_t const *const
p_cfg)

ssp_err_t(* close)(sf_crypto_ctrl_t *const p_ctrl)

ssp_err_t(* lock)(sf_crypto_ctrl_t *const p_ctrl)

ssp_err_t(* unlock)(sf_crypto_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

ssp_err_t(* statusGet)(sf_crypto_ctrl_t *const p_ctrl, sf_crypto_state_t *p_status)

Detailed Description

Shared Interface definition for the SSP Crypto Framework Common Module

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,078 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Framework Common Module Interface > sf_crypto_api_t Struct Reference

◆ close

ssp_err_t(* sf_crypto_api_t::close) (sf_crypto_ctrl_t *const p_ctrl)

Close SSP Crypto Framework Common Module. This function is to be called only once when the the
Crypto services are no longer required.

Implemented as

SF_CRYPTO_Close()
Parameters

[in,out] p_ctrl Pointer to a Crypto
framework control block.

◆ lock

ssp_err_t(* sf_crypto_api_t::lock) (sf_crypto_ctrl_t *const p_ctrl)

Lock shared resources for Cryptography operations. This function is typically called by Crypto
Framework modules (SF_CRYPTO_XXX) to protect shared software resources provided in Crypto
Framework Common module or shared crypto hardware engine. Once lock() is called by a thread,
any Crypto Framework services called by the other thread will be blocked until unlock() is called.
The lock and unlock operations are managed by Crypto Framework modules so users do not need
to call this function in typical use-cases. However, if this function is called by a user thread, users
must be aware that any cryptography operations by the other threads will be locked out until
unlock() is called by the thread which called lock().

Implemented as

SF_CRYPTO_Lock()
Parameters

[in,out] p_ctrl Pointer to a Crypto
framework control block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,079 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Framework Common Module Interface > sf_crypto_api_t Struct Reference

◆ open

ssp_err_t(* sf_crypto_api_t::open) (sf_crypto_ctrl_t *const p_ctrl, sf_crypto_cfg_t const *const p_cfg)

Open SSP Crypto Framework Common Module. This function is to be called only once to initialize
the Crypto services.

Implemented as

SF_CRYPTO_Open()
Parameters

[in,out] p_ctrl Pointer to a Crypto
framework control block.
Must be declared by user.

[in] p_cfg Pointer to a Crypto
framework configuration
structure. All elements of
this structure must be set by
user.

◆ statusGet

ssp_err_t(* sf_crypto_api_t::statusGet) (sf_crypto_ctrl_t *const p_ctrl, sf_crypto_state_t *p_status)

Get status of SSP Crypto Framework Common Module.

Implemented as

SF_CRYPTO_StatusGet()
Parameters

[in] p_ctrl Pointer to a Crypto
framework control block.

[out] p_status Memory location to store
module status.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,080 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Framework Common Module Interface > sf_crypto_api_t Struct Reference

◆ unlock

ssp_err_t(* sf_crypto_api_t::unlock) (sf_crypto_ctrl_t *const p_ctrl)

Unlock shared resources for Cryptography operations. This function is typically called by Crypto
Framework modules (SF_CRYPTO_XXX) to allow any other threads to access to shared software
resources provided in Crypto Framework Common module or shared crypto hardware engine. This
function must be called by a thread which called lock(). The lock and unlock operations are
managed by Crypto Framework modules so users do not need to call this function in typical use-
cases. However, this function must be called by a user thread if the thread has ever called lock().

Implemented as

SF_CRYPTO_Unlock()
Parameters

[in,out] p_ctrl Pointer to a Crypto
framework control block.

◆ versionGet

ssp_err_t(* sf_crypto_api_t::versionGet) (ssp_version_t *const p_version)

Get version of SSP Crypto Framework Common Module.

Implemented as

SF_CRYPTO_VersionGet()
Parameters

[out] p_version Pointer to the memory to
store the version
information.

The documentation for this struct was generated from the following file:

sf_crypto_api.h

 sf_crypto_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Framework
Common Module Interface

#include <sf_crypto_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,081 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Framework Common Module Interface > sf_crypto_instance_t Struct Reference

Data Fields

sf_crypto_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_crypto_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

sf_crypto_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_crypto_api.h

5.1.2.29 SSP Crypto Cipher Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

Interface definition for Synergy Crypto Cipher Framework module. More...

Data Structures

struct sf_crypto_cipher_aes_init_params_t

struct sf_crypto_cipher_rsa_init_params_t

struct sf_crypto_cipher_cfg_t

struct sf_crypto_cipher_api_t

struct sf_crypto_cipher_instance_t

Typedefs

typedef void sf_crypto_cipher_algorithm_init_params_t

typedef void sf_crypto_cipher_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,082 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Cipher Framework Interface

Enumerations

enum sf_crypto_cipher_mode_t {
 SF_CRYPTO_CIPHER_MODE_ECB, SF_CRYPTO_CIPHER_MODE_CBC,
SF_CRYPTO_CIPHER_MODE_CTR, SF_CRYPTO_CIPHER_MODE_XTS,
 SF_CRYPTO_CIPHER_MODE_GCM
}

enum sf_crypto_cipher_op_mode_t {
SF_CRYPTO_CIPHER_OP_MODE_ENCRYPT,
SF_CRYPTO_CIPHER_OP_MODE_DECRYPT }

enum sf_crypto_cipher_padding_scheme_t {
SF_CRYPTO_CIPHER_PADDING_SCHEME_NO_PADDING,
SF_CRYPTO_CIPHER_PADDING_SCHEME_PKCS7,
SF_CRYPTO_CIPHER_PADDING_SCHEME_PKCS1_1_5 }

Detailed Description

Interface definition for Synergy Crypto Cipher Framework module.

Summary
This is a ThreadX aware Interface of SF_CRYPTO_CIPHER Framework module which provides
encryption and decryption operations for AES and RSA algorithms.

Crypto Cipher Framework Interface description: Crypto Framework

Typedef Documentation

◆ sf_crypto_cipher_algorithm_init_params_t

typedef void sf_crypto_cipher_algorithm_init_params_t

Algorithm specific parameters. Allocate an algorithm specific block to pass into the cipherInit API
call.

Implemented as

sf_crypto_cipher_aes_init_params_t for AES
sf_crypto_cipher_rsa_init_params_t for RSA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,083 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Cipher Framework Interface

◆ sf_crypto_cipher_ctrl_t

typedef void sf_crypto_cipher_ctrl_t

SSP Crypto Cipher framework control block. Allocate an instance specific control block to pass into
the SSP Crypto framework Cipher API calls.

Implemented as

sf_crypto_cipher_instance_ctrl_t

Enumeration Type Documentation

◆ sf_crypto_cipher_mode_t

enum sf_crypto_cipher_mode_t

AES modes for the SSP Crypto Cipher Framework

Enumerator

SF_CRYPTO_CIPHER_MODE_ECB Electronic Code Book chaining mode, default
for RSA.

SF_CRYPTO_CIPHER_MODE_CBC Cipher Block Chaining.

SF_CRYPTO_CIPHER_MODE_CTR Counter Mode.

SF_CRYPTO_CIPHER_MODE_XTS XEX-based tweaked-codebook mode with
ciphertext stealing.

SF_CRYPTO_CIPHER_MODE_GCM Galois Counter Mode.

◆ sf_crypto_cipher_op_mode_t

enum sf_crypto_cipher_op_mode_t

Operating mode for Cipher APIs

Enumerator

SF_CRYPTO_CIPHER_OP_MODE_ENCRYPT The operating mode is set to encryption.

SF_CRYPTO_CIPHER_OP_MODE_DECRYPT The operating mode is set to decryption.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,084 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Cipher Framework Interface

◆ sf_crypto_cipher_padding_scheme_t

enum sf_crypto_cipher_padding_scheme_t

Padding mode to be used for Cipher operation - encrypting/ decrypting input data

Enumerator

SF_CRYPTO_CIPHER_PADDING_SCHEME_NO_PAD
DING

No padding scheme.

SF_CRYPTO_CIPHER_PADDING_SCHEME_PKCS7 PKCS#7 padding scheme - applicable only for
AES operations.

SF_CRYPTO_CIPHER_PADDING_SCHEME_PKCS1_1
_5

PKCS#1 v1.5 padding scheme - applicable only
for RSA operations.

 sf_crypto_cipher_aes_init_params_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Cipher
Framework Interface

#include <sf_crypto_cipher_api.h>

Data Fields

sf_crypto_data_handle_t * p_iv

 pointer to IV for the AES operation.

sf_crypto_data_handle_t * p_auth_tag

Detailed Description

AES Algorithm specific parameters for cipher operations

Field Documentation

◆ p_auth_tag

sf_crypto_data_handle_t* sf_crypto_cipher_aes_init_params_t::p_auth_tag

Pointer to the GCM Authentication Tag. Only tag length of
SF_CRYPTO_CIPHER_AES_GCM_TAG_LENGTH_16_BYTES is supported.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,085 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Cipher Framework Interface > sf_crypto_cipher_aes_init_params_t Struct Reference

The documentation for this struct was generated from the following file:

sf_crypto_cipher_api.h

 sf_crypto_cipher_rsa_init_params_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Cipher
Framework Interface

#include <sf_crypto_cipher_api.h>

Detailed Description

RSA Algorithm specific parameters for cipher operations

The documentation for this struct was generated from the following file:

sf_crypto_cipher_api.h

 sf_crypto_cipher_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Cipher
Framework Interface

#include <sf_crypto_cipher_api.h>

Data Fields

sf_crypto_key_type_t key_type

 Key type for cipher operation.

sf_crypto_key_size_t key_size

 Key size for cipher operation.

sf_crypto_cipher_mode_t cipher_chaining_mode

 Chaining mode specified for the cipher operation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,086 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Cipher Framework Interface > sf_crypto_cipher_cfg_t Struct Reference

sf_crypto_instance_t * p_lower_lvl_crypto_common

 Pointer to a Crypto Framework common instance.

sf_crypto_trng_instance_t * p_lower_lvl_crypto_trng

 Pointer to a Crypto Framework TRNG instance.

void const * p_extend

 Future extension for hardware specific settings.

Detailed Description

Configuration structure for the SSP Crypto Cipher framework Cipher chaining mode for RSA
operations is not applicable and can be set to ECB

The documentation for this struct was generated from the following file:

sf_crypto_cipher_api.h

 sf_crypto_cipher_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Cipher
Framework Interface

#include <sf_crypto_cipher_api.h>

Data Fields

ssp_err_t(* open)(sf_crypto_cipher_ctrl_t *const p_ctrl, sf_crypto_cipher_cfg_t
const *const p_cfg)

 Opens SSP Crypto Cipher framework. This function initializes a
control block of the framework module based on the configuration
parameters such as the key type, key size and chaining mode. The
module allows users to have multiple instances with different control
blocks, if required. More...

ssp_err_t(* cipherInit)(sf_crypto_cipher_ctrl_t *const p_ctrl,
sf_crypto_cipher_op_mode_t cipher_operation_mode, sf_crypto_key_t
const *const p_key, sf_crypto_cipher_algorithm_init_params_t *const
p_algorithm_specific_params)

 Initializes a cipher operation. Must be called after open() or

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,087 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Cipher Framework Interface > sf_crypto_cipher_api_t Struct Reference

cipherFinal() is called, to initialize a new cipher operation. Unless a
different key type or key size or chaining mode is used, users do not
need to close the module for a new cipher operation but can call this
function to restart another cipher operation. More...

ssp_err_t(* cipherUpdate)(sf_crypto_cipher_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_data_in,
sf_crypto_data_handle_t *const p_data_out)

 Encrypts / decrypts input data and writes it to the output buffer. Can
be called multiple times for additional blocks of data. If input length
is 0 this method does nothing. There may be 0 to (input
length+block size - 1) bytes of data for AES operations. For RSA
operation there will be no output until cipherFinal() is called. RSA
Encryption is only supported with the RSA Public Key. RSA
Decryption is only supported with the RSA Private Key. More...

ssp_err_t(* cipherFinal)(sf_crypto_cipher_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_data_in,
sf_crypto_data_handle_t *const p_data_out)

 Encrypts/decrypts all/last block of data and writes to the output
buffer. Once cipherFinal() is called, no additional call of
cipherUpdate() is allowed but cipherInit() can be called to initialize a
new cipher operation unless another key type / key size/chaining
mode is needed. In such a case a call to close() and open() is
required. For AES operations, the number of bytes output into output
data buffer may be larger or smaller than input length or even 0.
RSA Encryption is only supported with the RSA Public Key. RSA
Decryption is only supported with the RSA Private Key. More...

ssp_err_t(* cipherAadUpdate)(sf_crypto_cipher_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_aad)

 Updates AAD (Additional Authenticated Data) for AES GCM operation.
Can be called multiple times for additional blocks of data. This is
ONLY to provide AAD for AES GCM operation. Not applicable to any
other algorithms or modes. This has to be called prior to processing
any plain text / cipher text data. In other words, before any call to
cipherUpdate() or cipherFinal() is made. More...

ssp_err_t(* close)(sf_crypto_cipher_ctrl_t *const p_ctrl)

 Closes SSP Crypto Cipher framework. This function resets a control
block of the framework module and allows users to re-configure the
module differently. For instance, users can close the module and re-
open it with different key type or key size or chaining mode /
algorithm for a new cipher operation. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,088 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Cipher Framework Interface > sf_crypto_cipher_api_t Struct Reference

 Get version of SSP Crypto Cipher framework. More...

Detailed Description

Shared Interface definition for the SSP Crypto Cipher framework module

Field Documentation

◆ cipherAadUpdate

ssp_err_t(* sf_crypto_cipher_api_t::cipherAadUpdate) (sf_crypto_cipher_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_aad)

Updates AAD (Additional Authenticated Data) for AES GCM operation. Can be called multiple times
for additional blocks of data. This is ONLY to provide AAD for AES GCM operation. Not applicable to
any other algorithms or modes. This has to be called prior to processing any plain text / cipher text
data. In other words, before any call to cipherUpdate() or cipherFinal() is made.

Implemented as

SF_CRYPTO_CIPHER_CipherAadUpdate()
Parameters

[in] p_ctrl Pointer to Crypto Cipher
Framework control block
structure.

[in] p_aad Pointer to an input data
buffer containing AAD and
the AAD length.

Note
Data buffer must be WORD aligned.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,089 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Cipher Framework Interface > sf_crypto_cipher_api_t Struct Reference

◆ cipherFinal

ssp_err_t(* sf_crypto_cipher_api_t::cipherFinal) (sf_crypto_cipher_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_data_in, sf_crypto_data_handle_t *const p_data_out)

Encrypts/decrypts all/last block of data and writes to the output buffer. Once cipherFinal() is called,
no additional call of cipherUpdate() is allowed but cipherInit() can be called to initialize a new
cipher operation unless another key type / key size/chaining mode is needed. In such a case a call
to close() and open() is required. For AES operations, the number of bytes output into output data
buffer may be larger or smaller than input length or even 0. RSA Encryption is only supported with
the RSA Public Key. RSA Decryption is only supported with the RSA Private Key.

Implemented as

SF_CRYPTO_CIPHER_CipherFinal()
Parameters

[in,out] p_ctrl Pointer to Crypto Cipher
Framework control block
structure.

[in] p_data_in Pointer to an input data
buffer and the input data
length.

[in,out] p_data_out Pointer to the output data
buffer and the buffer size on
input. If there is data to be
output, buffer is filled and
the length is updated.

Note
Data buffers must be WORD aligned.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,090 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Cipher Framework Interface > sf_crypto_cipher_api_t Struct Reference

◆ cipherInit

ssp_err_t(* sf_crypto_cipher_api_t::cipherInit) (sf_crypto_cipher_ctrl_t *const p_ctrl,
sf_crypto_cipher_op_mode_t cipher_operation_mode, sf_crypto_key_t const *const p_key,
sf_crypto_cipher_algorithm_init_params_t *const p_algorithm_specific_params)

Initializes a cipher operation. Must be called after open() or cipherFinal() is called, to initialize a new
cipher operation. Unless a different key type or key size or chaining mode is used, users do not
need to close the module for a new cipher operation but can call this function to restart another
cipher operation.

Implemented as

SF_CRYPTO_CIPHER_CipherInit()
Parameters

[in,out] p_ctrl Pointer to Crypto Cipher
Framework control block
structure.

[in] cipher_operation_mode Specifies encrypt or decrypt
operation.

[in] p_key The key to be used for the
cipher operation.

[in] p_algorithm_specific_params Algorithm specific
parameters. Allocate and fill
parameters specific to the
algorithm for the key type
configured at open().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,091 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Cipher Framework Interface > sf_crypto_cipher_api_t Struct Reference

◆ cipherUpdate

ssp_err_t(* sf_crypto_cipher_api_t::cipherUpdate) (sf_crypto_cipher_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_data_in, sf_crypto_data_handle_t *const p_data_out)

Encrypts / decrypts input data and writes it to the output buffer. Can be called multiple times for
additional blocks of data. If input length is 0 this method does nothing. There may be 0 to (input
length+block size - 1) bytes of data for AES operations. For RSA operation there will be no output
until cipherFinal() is called. RSA Encryption is only supported with the RSA Public Key. RSA
Decryption is only supported with the RSA Private Key.

Implemented as

SF_CRYPTO_CIPHER_CipherUpdate()
Parameters

[in,out] p_ctrl Pointer to Crypto Cipher
Framework control block
structure.

[in] p_data_in Pointer to an input data
buffer and the input data
length.

[in,out] p_data_out Pointer to an output data
buffer and the buffer size on
input. If there is data to be
output, buffer is filled and
the length is updated.

Note
Data buffers must be WORD aligned.

◆ close

ssp_err_t(* sf_crypto_cipher_api_t::close) (sf_crypto_cipher_ctrl_t *const p_ctrl)

Closes SSP Crypto Cipher framework. This function resets a control block of the framework module
and allows users to re-configure the module differently. For instance, users can close the module
and re-open it with different key type or key size or chaining mode / algorithm for a new cipher
operation.

Implemented as

SF_CRYPTO_CIPHER_Close()
Parameters

[in,out] p_ctrl Pointer to Crypto Cipher
Framework control block
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,092 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Cipher Framework Interface > sf_crypto_cipher_api_t Struct Reference

◆ open

ssp_err_t(* sf_crypto_cipher_api_t::open) (sf_crypto_cipher_ctrl_t *const p_ctrl,
sf_crypto_cipher_cfg_t const *const p_cfg)

Opens SSP Crypto Cipher framework. This function initializes a control block of the framework
module based on the configuration parameters such as the key type, key size and chaining mode.
The module allows users to have multiple instances with different control blocks, if required.

Implemented as

SF_CRYPTO_CIPHER_Open()
Parameters

[in,out] p_ctrl Pointer to Crypto Cipher
Framework control block
structure. Caller only needs
to allocate
sf_crypto_cipher_instance_ct
rl_t and not fill any
parameters.

[in] p_cfg Pointer to
sf_crypto_cipher_cfg_t
configuration structure. All
elements of this structure
must be filled by caller.

◆ versionGet

ssp_err_t(* sf_crypto_cipher_api_t::versionGet) (ssp_version_t *const p_version)

Get version of SSP Crypto Cipher framework.

Implemented as

SF_CRYPTO_CIPHER_VersionGet()
Parameters

[in] p_version Pointer to the memory to
store the module version.

The documentation for this struct was generated from the following file:

sf_crypto_cipher_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,093 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Cipher Framework Interface > sf_crypto_cipher_instance_t Struct Reference

 sf_crypto_cipher_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Cipher
Framework Interface

#include <sf_crypto_cipher_api.h>

Data Fields

sf_crypto_cipher_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_crypto_cipher_cfg_t const
*

p_cfg

 Pointer to the configuration structure for this instance.

sf_crypto_cipher_api_t const
*

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_crypto_cipher_api.h

5.1.2.30 SSP Crypto HASH Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

Interface definition for Synergy Crypto HASH Framework module. More...

Data Structures

struct sf_crypto_hash_context_t

struct sf_crypto_hash_callback_args_t

struct sf_crypto_hash_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,094 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto HASH Framework Interface

struct sf_crypto_hash_api_t

struct sf_crypto_hash_instance_t

Macros

#define SF_CRYPTO_HASH_API_VERSION_MAJOR (2U)

#define SF_CRYPTO_HASH_MESSAGE_DIGEST_SIZE_MD5 (16U)

 Message Digest size for SHA1. More...

#define SF_CRYPTO_HASH_MESSAGE_DIGEST_SIZE_SHA1 (20U)

 Message Digest size for SHA1.

#define SF_CRYPTO_HASH_MESSAGE_DIGEST_SIZE_SHA224 (28U)

 Message Digest size for SHA224.

#define SF_CRYPTO_HASH_MESSAGE_DIGEST_SIZE_SHA256 (32U)

 Message Digest size for SHA256.

Typedefs

typedef void sf_crypto_hash_ctrl_t

Enumerations

enum sf_crypto_hash_state_t { SF_CRYPTO_HASH_CLOSED,
SF_CRYPTO_HASH_OPENED, SF_CRYPTO_HASH_DIGEST_INITIALIZED,
SF_CRYPTO_HASH_DIGEST_UPDATED }

enum sf_crypto_hash_type_t { SF_CRYPTO_HASH_ALGORITHM_MD5,
SF_CRYPTO_HASH_ALGORITHM_SHA1,
SF_CRYPTO_HASH_ALGORITHM_SHA224,
SF_CRYPTO_HASH_ALGORITHM_SHA256 }

Detailed Description

Interface definition for Synergy Crypto HASH Framework module.

Summary
This is the Interface of SF_CRYPTO_HASH Framework module.

Crypto HASH Framework Interface description: Crypto Framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,095 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto HASH Framework Interface

Macro Definition Documentation

◆ SF_CRYPTO_HASH_API_VERSION_MAJOR

#define SF_CRYPTO_HASH_API_VERSION_MAJOR (2U)

The API version of SSP Crypto HASH Framework

◆ SF_CRYPTO_HASH_MESSAGE_DIGEST_SIZE_MD5

#define SF_CRYPTO_HASH_MESSAGE_DIGEST_SIZE_MD5 (16U)

Message Digest size for SHA1.

Message Digest size for each HASH algorithm in bytes

Typedef Documentation

◆ sf_crypto_hash_ctrl_t

typedef void sf_crypto_hash_ctrl_t

SSP Crypto framework control block. Allocate an instance specific control block to pass into the SSP
Crypto framework API calls.

Implemented as

sf_crypto_instance_ctrl_t

Enumeration Type Documentation

◆ sf_crypto_hash_state_t

enum sf_crypto_hash_state_t

State codes for the SSP SSP Crypto HASH Framework

Enumerator

SF_CRYPTO_HASH_CLOSED The module is closed.

SF_CRYPTO_HASH_OPENED The module is opened. The initial message
digest is not yet generated.

SF_CRYPTO_HASH_DIGEST_INITIALIZED Message digest is initialized.

SF_CRYPTO_HASH_DIGEST_UPDATED Message digest is updated.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,096 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto HASH Framework Interface

◆ sf_crypto_hash_type_t

enum sf_crypto_hash_type_t

HASH algorithm types for the SSP SSP Crypto HASH Framework

Enumerator

SF_CRYPTO_HASH_ALGORITHM_MD5 MD5 algorithm type.

SF_CRYPTO_HASH_ALGORITHM_SHA1 SHA-1 algorithm type.

SF_CRYPTO_HASH_ALGORITHM_SHA224 SHA-224 algorithm type.

SF_CRYPTO_HASH_ALGORITHM_SHA256 SHA-256 algorithm type.

 sf_crypto_hash_context_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto HASH
Framework Interface

#include <sf_crypto_hash_api.h>

Data Fields

uint8_t * p_message_digest

 Intermediate digest stored buffer - WORD aligned.

uint8_t * p_message_digest_org

 Originally allocated buffer - may not be WORD aligned.

uint8_t * p_message_buffer

 Intermediate message data stored buffer - - WORD aligned.

uint8_t * p_message_buffer_org

 IOriginally allocated buffer - may not be WORD aligned.

uint64_t message_bytes

 Number of bytes from user data processed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,097 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto HASH Framework Interface > sf_crypto_hash_context_t Struct Reference

uint32_t message_bytes_buffered

 Number of bytes buffered in the message data stored buffer.

Detailed Description

HASH internal context structure for a message digest

The documentation for this struct was generated from the following file:

sf_crypto_hash_api.h

 sf_crypto_hash_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto HASH
Framework Interface

#include <sf_crypto_hash_api.h>

Data Fields

ssp_err_t error

 Error code if SF_CRYPTO_EVENT_ERROR.

Detailed Description

Callback arguments for the SSP Crypto HASH framework

The documentation for this struct was generated from the following file:

sf_crypto_hash_api.h

 sf_crypto_hash_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto HASH
Framework Interface

#include <sf_crypto_hash_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,098 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto HASH Framework Interface > sf_crypto_hash_cfg_t Struct Reference

Data Fields

sf_crypto_hash_type_t hash_type

 HASH algorithm type.

sf_crypto_instance_t * p_lower_lvl_crypto_common

 Pointer to a Crypto Framework common instance.

hash_instance_t * p_lower_lvl_instance

 pointer to HASH lower-level module instance

void * p_extend

 Pointer to an optional configuration for Crypto HAL module.

Detailed Description

Configuration structure for the SSP SSP Crypto HASH framework

The documentation for this struct was generated from the following file:

sf_crypto_hash_api.h

 sf_crypto_hash_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto HASH
Framework Interface

#include <sf_crypto_hash_api.h>

Data Fields

ssp_err_t(* open)(sf_crypto_hash_ctrl_t *const p_ctrl, sf_crypto_hash_cfg_t const
*const p_cfg)

ssp_err_t(* close)(sf_crypto_hash_ctrl_t *const p_ctrl)

ssp_err_t(* hashInit)(sf_crypto_hash_ctrl_t *const p_ctrl)

ssp_err_t(* hashUpdate)(sf_crypto_hash_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_data_in)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,099 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto HASH Framework Interface > sf_crypto_hash_api_t Struct Reference

ssp_err_t(* hashFinal)(sf_crypto_hash_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t *const p_msg_digest, uint32_t *p_size)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Shared Interface definition for the SSP SSP Crypto framework

Field Documentation

◆ close

ssp_err_t(* sf_crypto_hash_api_t::close) (sf_crypto_hash_ctrl_t *const p_ctrl)

Closes SSP Crypto HASH framework. This function de-initializes a control block of the framework
module and allow users to re-configure the module differently. For instance, users can close the
module and re-open it with different HASH algorithm for a new digest operation.

Implemented as

SF_CRYPTO_HASH_Close()
Parameters

[in,out] p_ctrl Pointer to Crypto HASH
Framework control block
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,100 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto HASH Framework Interface > sf_crypto_hash_api_t Struct Reference

◆ hashFinal

ssp_err_t(* sf_crypto_hash_api_t::hashFinal) (sf_crypto_hash_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t *const p_msg_digest, uint32_t *p_size)

Hashes the last block of data and returns a message digest in the output buffer. Once hashFinal() is
called, no additional call of hashUpdate() is allowed but hashInit() can be called to initialize a new
digest operation unless the other HASH algorithm type needed. If the other HASH algorithm is
required for a new digest operation, call close() and open(). This is a blocking call.

Implemented as

SF_CRYPTO_HASH_MessageDigestUpdate()
Parameters

[in] p_ctrl Pointer to Crypto HASH
Framework control block
structure.

[in,out] p_msg_digest Pointer to an output data
buffer and the buffer size.
Message digest will be
generated in the buffer.
Data buffer must be aligned
to word alignment and the
size must be sufficient to
store the message digest.

[out] p_size Pointer to the 32-bit memory
space to store the size of
message digest.

◆ hashInit

ssp_err_t(* sf_crypto_hash_api_t::hashInit) (sf_crypto_hash_ctrl_t *const p_ctrl)

Initializes a message digest operation. Must be called once open() or hashFinal() is called to
initialize a new digest operation. Unless a different HASH type is used, users do not need to close
the module for a new digest operation but can call this function to restart another digest operation.
This is a blocking call.

Implemented as

SF_CRYPTO_HASH_MessageDigestInit()
Parameters

[in] p_ctrl Pointer to Crypto HASH
Framework control block
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,101 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto HASH Framework Interface > sf_crypto_hash_api_t Struct Reference

◆ hashUpdate

ssp_err_t(* sf_crypto_hash_api_t::hashUpdate) (sf_crypto_hash_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_data_in)

Hashes input data and saves it in an internal context buffer. Can be called multiple times for
additional blocks of data. This is a blocking call.

Implemented as

SF_CRYPTO_HASH_MessageDigestUpdate()
Parameters

[in] p_ctrl Pointer to Crypto HASH
Framework control block
structure.

[in] p_data_in Pointer to an input data
buffer and the data length.

◆ open

ssp_err_t(* sf_crypto_hash_api_t::open) (sf_crypto_hash_ctrl_t *const p_ctrl, sf_crypto_hash_cfg_t
const *const p_cfg)

Opens SSP Crypto HASH framework. This function initializes a control block of the framework
module based on the configuration parameters such as the HASH algorithm type. The module
allows users to have multiple instances with different control blocks, if required.

Implemented as

SF_CRYPTO_HASH_Open()
Parameters

[in,out] p_ctrl Pointer to Crypto HASH
Framework control block
structure.

[in] p_cfg Pointer to
sf_crypto_hash_cfg_t
configuration structure. All
elements of this structure
must be set by user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,102 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto HASH Framework Interface > sf_crypto_hash_api_t Struct Reference

◆ versionGet

ssp_err_t(* sf_crypto_hash_api_t::versionGet) (ssp_version_t *const p_version)

Get version of SSP Crypto HASH framework.

Implemented as

SF_CRYPTO_HASH_VersionGet()
Parameters

[in] p_version Pointer to the memory to
store the module version.

The documentation for this struct was generated from the following file:

sf_crypto_hash_api.h

 sf_crypto_hash_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto HASH
Framework Interface

#include <sf_crypto_hash_api.h>

Data Fields

sf_crypto_hash_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_crypto_hash_cfg_t * p_cfg

 Pointer to the configuration structure for this instance.

sf_crypto_hash_api_t const
*

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,103 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto HASH Framework Interface > sf_crypto_hash_instance_t Struct Reference

The documentation for this struct was generated from the following file:

sf_crypto_hash_api.h

5.1.2.31 SSP Crypto Key Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

Interface definition for Synergy Crypto Key Framework module. More...

Data Structures

struct sf_crypto_key_cfg_t

struct sf_crypto_key_api_t

struct sf_crypto_key_instance_t

Macros

#define SF_CRYPTO_KEY_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_crypto_key_ctrl_t

Enumerations

enum sf_crypto_key_state_t { SF_CRYPTO_KEY_CLOSED = 0,
SF_CRYPTO_KEY_OPENED = 0x4F50454EU }

Detailed Description

Interface definition for Synergy Crypto Key Framework module.

Summary
This is the Interface of SF_CRYPTO_KEY Framework module. The Key framework module is a ThreadX
aware Key Framework Interface which provides key generation services. This sits between the user
application and HAL layer.

Crypto Key Framework Interface description: Crypto Framework

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,104 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Framework Interface

◆ SF_CRYPTO_KEY_API_VERSION_MAJOR

#define SF_CRYPTO_KEY_API_VERSION_MAJOR (2U)

The API version of SSP Crypto Framework

Typedef Documentation

◆ sf_crypto_key_ctrl_t

typedef void sf_crypto_key_ctrl_t

SSP Crypto framework control block. Allocate an instance specific control block to pass into the SSP
Crypto framework API calls.

Implemented as

sf_crypto_instance_ctrl_t

Enumeration Type Documentation

◆ sf_crypto_key_state_t

enum sf_crypto_key_state_t

State codes for the SSP Crypto Key framework module. Once the module is opened successfully,
then the state is transition to OPENED state. After Key operations, the Key framework module must
be closed with CLOSED state.

Enumerator

SF_CRYPTO_KEY_CLOSED The Key module is closed.

SF_CRYPTO_KEY_OPENED The Key module is opened The code means
'OPEN'.

 sf_crypto_key_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Key Framework
Interface

#include <sf_crypto_key_api.h>

Data Fields

sf_crypto_key_type_t key_type

 Key type to be generated.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,105 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Framework Interface > sf_crypto_key_cfg_t Struct Reference

sf_crypto_key_size_t key_size

 Key size to be generated.

sf_crypto_data_handle_t domain_params

sf_crypto_data_handle_t generator_point

sf_crypto_instance_t * p_lower_lvl_crypto_common

 Pointer to a Crypto Framework common instance.

void const * p_extend

 Extension parameter for hardware specific settings (Future purpose).

Detailed Description

Configuration structure for the SSP SSP Crypto Key framework

Field Documentation

◆ domain_params

sf_crypto_data_handle_t sf_crypto_key_cfg_t::domain_params

Pointer to domain parameters for the requested key type. Structure contains the domain data in
the order a||b||p||n for ECC as defined in FIPS186-3 and data length. Length of the data to be in
bytes. Should set to NULL for RSA and AES.

◆ generator_point

sf_crypto_data_handle_t sf_crypto_key_cfg_t::generator_point

Pointer to the generator base point of curve in the order Gx||Gy for ECC (where Gx and Gy are x
and y coordinates respectively) and data length. Length of the data to be in bytes. This parameter
applies only for ECC. For others (AES and RSA), this is UNUSED. Should set to NULL for RSA and
AES.

The documentation for this struct was generated from the following file:

sf_crypto_key_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,106 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Framework Interface > sf_crypto_key_api_t Struct Reference

 sf_crypto_key_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Key Framework
Interface

#include <sf_crypto_key_api.h>

Data Fields

ssp_err_t(* open)(sf_crypto_key_ctrl_t *const p_ctrl, sf_crypto_key_cfg_t const
*const p_cfg)

ssp_err_t(* close)(sf_crypto_key_ctrl_t *const p_ctrl)

ssp_err_t(* keyGenerate)(sf_crypto_key_ctrl_t *const p_ctrl, sf_crypto_key_t
*const p_secret_key, sf_crypto_key_t *const p_public_key)

ssp_err_t(* EcdhSharedSecretCompute)(sf_crypto_key_ctrl_t *const p_ctrl,
sf_crypto_key_t *const p_local_secret_key, sf_crypto_key_t *const
p_remote_public_key, sf_crypto_key_t *const p_shared_secret)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Shared Interface definition for the SSP SSP Crypto framework

Field Documentation

◆ close

ssp_err_t(* sf_crypto_key_api_t::close) (sf_crypto_key_ctrl_t *const p_ctrl)

Close SSP Crypto Key framework.

Implemented as

SF_CRYPTO_KEY_Close()
Parameters

[in,out] p_ctrl Pointer to Crypto Key
Framework control block
structure.

◆ EcdhSharedSecretCompute

ssp_err_t(* sf_crypto_key_api_t::EcdhSharedSecretCompute) (sf_crypto_key_ctrl_t *const p_ctrl,
sf_crypto_key_t *const p_local_secret_key, sf_crypto_key_t *const p_remote_public_key,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,107 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Framework Interface > sf_crypto_key_api_t Struct Reference

sf_crypto_key_t *const p_shared_secret)

Perform scalar multiplication for ECC algorithms only. This is a blocking call.

Implemented as

SF_CRYPTO_KEY_EcdhSharedSecretCompute
Parameters

[in] p_ctrl Pointer to Crypto Key
Framework control block
structure.

[in] p_local_secret_key Pointer to a secret key
structure. The pointer to the
secret key and it's length in
bytes, are to be populated
on input. Refer to
r_ecc_api.h for ECC key
sizes. p_secret_key should
be WORD aligned. The
memory allocation to store
the secret key is user's
responsibility.

[in] p_remote_public_key pointer to a point on the
curve data. The pointer to
the point on curve data and
its length in bytes, are to be
populated on input. Refer to
r_ecc_api.h for ECC point on
curve sizes.
p_point_on_curve should be
WORD aligned. The memory
allocation to store the point
on curve data is user's
responsibility.

[in,out] p_shared_secret The pointer to the buffer and
it's length in bytes, are to be
populated on input. On
success the resultant point
on curve data and it's length
in bytes, are returned. Refer
to r_ecc_api.h for ECC public
key sizes. p_resultant_vector
should be WORD aligned.
The memory allocation to
store the resultant point on
curve data is user's
responsibility.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,108 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Framework Interface > sf_crypto_key_api_t Struct Reference

◆ keyGenerate

ssp_err_t(* sf_crypto_key_api_t::keyGenerate) (sf_crypto_key_ctrl_t *const p_ctrl, sf_crypto_key_t
*const p_secret_key, sf_crypto_key_t *const p_public_key)

Generate a key. This is a blocking call.

Implemented as

SF_CRYPTO_KEY_Generate()
Parameters

[in] p_ctrl Pointer to Crypto Key
Framework control block
structure.

[in,out] p_secret_key Pointer to a secret key
structure. The pointer to the
buffer and it's length in
bytes, are to be populated
on input. On success the key
and it's length in bytes, are
returned. Refer to
r_rsa_api.h for RSA secret
key sizes. Refer to
r_aes_api.h for AES key
sizes. Refer to r_ecc_api.h
for ECC key sizes.
p_secret_key should be
WORD aligned. The memory
allocation to store the secret
key is user's responsibility.

[in,out] p_public_key Pointer to a public key
structure. The pointer to the
buffer and it's length in
bytes, are to be populated
on input. On success the key
and it's length in bytes, are
returned. Refer to
r_rsa_api.h for RSA public
key sizes. Refer to
r_ecc_api.h for ECC public
key sizes. Should set to
NULL for AES. p_public_key
should be WORD aligned.
The memory allocation to
store the public key is user's
responsibility.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,109 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Framework Interface > sf_crypto_key_api_t Struct Reference

◆ open

ssp_err_t(* sf_crypto_key_api_t::open) (sf_crypto_key_ctrl_t *const p_ctrl, sf_crypto_key_cfg_t const
*const p_cfg)

Open SSP Crypto Key framework for subsequent call / Key generation.

Implemented as

SF_CRYPTO_KEY_Open()
Parameters

[in,out] p_ctrl Pointer to Crypto Key
Framework control block
structure.

[in] p_cfg Pointer to
sf_crypto_key_cfg_t
configuration structure. All
elements of this structure
must be set by user.

◆ versionGet

ssp_err_t(* sf_crypto_key_api_t::versionGet) (ssp_version_t *const p_version)

Get version of SSP Crypto Key framework.

Implemented as

SF_CRYPTO_KEY_VersionGet()
Parameters

[out] p_version Pointer to the memory to
store the module version.

The documentation for this struct was generated from the following file:

sf_crypto_key_api.h

 sf_crypto_key_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Key Framework
Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,110 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Framework Interface > sf_crypto_key_instance_t Struct Reference

#include <sf_crypto_key_api.h>

Data Fields

sf_crypto_key_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_crypto_key_cfg_t * p_cfg

 Pointer to the configuration structure for this instance.

sf_crypto_key_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_crypto_key_api.h

5.1.2.32 SSP Crypto Key Installation Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

Interface definition for Synergy Crypto Key Installation Framework module. More...

Data Structures

struct sf_crypto_key_installation_cfg_t

struct sf_crypto_key_installation_api_t

struct sf_crypto_key_installation_instance_t

Macros

#define SF_CRYPTO_KEY_INSTALLATION_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_crypto_key_installation_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,111 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Installation Framework Interface

Enumerations

enum sf_crypto_key_installation_state_t {
SF_CRYPTO_KEY_INSTALLATION_CLOSED = 0,
SF_CRYPTO_KEY_INSTALLATION_OPENED = 1 }

enum sf_crypto_key_installation_shared_index_t {
 SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_0,
SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_1,
SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_2,
SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_3,
 SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_4,
SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_5,
SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_6,
SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_7,
 SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_8,
SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_9,
SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_A,
SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_B,
 SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_C,
SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_D,
SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_E,
SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_F
}

Detailed Description

Interface definition for Synergy Crypto Key Installation Framework module.

Summary
This is the Interface of SF_CRYPTO_KEY_INSTALLATION Framework module. The Key Installation
framework module is a ThreadX aware Framework Interface which provides key installation services.
This sits between the user application and HAL layer.

Crypto Key Installation Framework Interface description: Crypto Framework

Macro Definition Documentation

◆ SF_CRYPTO_KEY_INSTALLATION_API_VERSION_MAJOR

#define SF_CRYPTO_KEY_INSTALLATION_API_VERSION_MAJOR (2U)

The API version of SSP Crypto Key Installation Framework

Typedef Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,112 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Installation Framework Interface

◆ sf_crypto_key_installation_ctrl_t

typedef void sf_crypto_key_installation_ctrl_t

SSP Crypto Key installation framework control block. Allocate an instance specific control block to
pass into the SSP Crypto Key Installation framework API calls.

Implemented as

sf_crypto_key_installation_ctrl_t

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,113 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Installation Framework Interface

◆ sf_crypto_key_installation_shared_index_t

enum sf_crypto_key_installation_shared_index_t

Supported shared key index values

Enumerator

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
0

Shared Key Index 0.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
1

Shared Key Index 1.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
2

Shared Key Index 2.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
3

Shared Key Index 3.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
4

Shared Key Index 4.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
5

Shared Key Index 5.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
6

Shared Key Index 6.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
7

Shared Key Index 7.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
8

Shared Key Index 8.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
9

Shared Key Index 9.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
A

Shared Key Index 10.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
B

Shared Key Index 11.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
C

Shared Key Index 12.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
D

Shared Key Index 13.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
E

Shared Key Index 14.

SF_CRYPTO_KEY_INSTALLATION_SHARED_INDEX_
F

Shared Key Index 15.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,114 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Installation Framework Interface

◆ sf_crypto_key_installation_state_t

enum sf_crypto_key_installation_state_t

State codes for the SSP Crypto Key installation framework module. Once the module is opened
successfully, then the state is transition to OPENED state. After Key Installation operations, the Key
installation framework module must be closed with CLOSED state.

Enumerator

SF_CRYPTO_KEY_INSTALLATION_CLOSED The Key Installation module is closed.

SF_CRYPTO_KEY_INSTALLATION_OPENED The Key Installation module is opened.

 sf_crypto_key_installation_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Key Installation
Framework Interface

#include <sf_crypto_key_installation_api.h>

Data Fields

sf_crypto_key_type_t key_type

 Type of key to be installed.

sf_crypto_key_size_t key_size

 Size of key to be installed.

sf_crypto_instance_t * p_lower_lvl_common

 Pointer to a Crypto Framework common instance.

key_installation_instance_t
*

p_lower_lvl_instance

 Pointer to Crypto Key Install HAL instance.

void const * p_extend

 Extension parameter for hardware specific settings (Future purpose).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,115 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Installation Framework Interface > sf_crypto_key_installation_cfg_t Struct Reference

Detailed Description

Configuration structure for the SSP SSP Crypto Key Installation framework

The documentation for this struct was generated from the following file:

sf_crypto_key_installation_api.h

 sf_crypto_key_installation_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Key Installation
Framework Interface

#include <sf_crypto_key_installation_api.h>

Data Fields

ssp_err_t(* open)(sf_crypto_key_installation_ctrl_t *const p_ctrl,
sf_crypto_key_installation_cfg_t const *const p_cfg)

ssp_err_t(* close)(sf_crypto_key_installation_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

ssp_err_t(* keyInstall)(sf_crypto_key_installation_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_user_key_rsa_modulus,
sf_crypto_data_handle_t const *const p_user_key_input,
sf_crypto_key_installation_shared_index_t const shared_index_input,
sf_crypto_data_handle_t const *const p_session_key_input, uint32_t
const *const p_iv_input, sf_crypto_data_handle_t *const
p_key_data_out)

Detailed Description

Shared Interface definition for the SSP Crypto Key Installation Interface framework

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,116 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Installation Framework Interface > sf_crypto_key_installation_api_t Struct Reference

◆ close

ssp_err_t(* sf_crypto_key_installation_api_t::close) (sf_crypto_key_installation_ctrl_t *const p_ctrl)

Close SSP Crypto Key Installation framework.

Implemented as

SF_CRYPTO_KEY_INSTALLATION_Close()
Parameters

[in,out] p_ctrl Pointer to Crypto Key
Installation Framework
control block structure.

◆ keyInstall

ssp_err_t(* sf_crypto_key_installation_api_t::keyInstall) (sf_crypto_key_installation_ctrl_t *const
p_ctrl, sf_crypto_data_handle_t const *const p_user_key_rsa_modulus, sf_crypto_data_handle_t
const *const p_user_key_input, sf_crypto_key_installation_shared_index_t const
shared_index_input, sf_crypto_data_handle_t const *const p_session_key_input, uint32_t const
*const p_iv_input, sf_crypto_data_handle_t *const p_key_data_out)

Install a key from the user's encrypted key, a shared index, session key, and an IV generated using
a scheme designed to maintain plaintext source key isolation. This returns a wrapped key
(sometimes called a key index) that can be used in other crypto APIs in place of the associated
plaintext key (stored offline).

Implemented as

SF_CRYPTO_KEY_INSTALLATION_KeyInstall()
Parameters

[in] p_ctrl Pointer to Crypto Key
Installation Framework
control block structure.
Caller should not modify any
elements of this structure at
any time.

[in] p_user_key_rsa_modulus Pointer to
sf_crypto_key_handle_t
structure which includes a
pointer to the WORD aligned
buffer which holds the RSA
modulus portion of the
encrypted user RSA private
key and the modulus length.
This is only applicable when
a RSA standard key is being
installed. To be set to NULL
otherwise.

[in] p_user_key_input Pointer to

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,117 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Installation Framework Interface > sf_crypto_key_installation_api_t Struct Reference

sf_crypto_key_handle_t
structure which includes a
pointer to the WORD aligned
buffer which holds the
encrypted user key and
length. This is the key to be
installed in encrypted
format.

[in] shared_index_input An enumerated type that
reflects the shared key index
returned by the DLM
Service, accompanied by the
session key that follows.

[in] p_session_key_input Pointer to
sf_crypto_key_handle_t
structure which includes a
pointer to the WORD aligned
buffer which holds the
session key and length
returned by the DLM
Service, accompanied by the
shared index key, above.

[in] p_iv_input Pointer to the 128-bit IV
array used to encrypt
p_user_key_input.

[in,out] p_key_data_out Pointer to
sf_crypto_key_handle_t
structure which includes a
pointer to the WORD aligned
buffer to hold the wrapped
key and the buffer length.
This is the wrapped key
returned after key
installation.

Note
It is the user's responsibility to ensure all the above input/output buffers are WORD aligned.
Caller must assign appropriate length to data_length field for all buffers before calling this API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,118 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Installation Framework Interface > sf_crypto_key_installation_api_t Struct Reference

◆ open

ssp_err_t(* sf_crypto_key_installation_api_t::open) (sf_crypto_key_installation_ctrl_t *const p_ctrl,
sf_crypto_key_installation_cfg_t const *const p_cfg)

Open SSP Crypto Key Installation framework for subsequent call / Key installation.

Implemented as

SF_CRYPTO_KEY_INSTALLATION_Open()
Parameters

[in,out] p_ctrl Pointer to Crypto Key
Installation Framework
control block structure.

[in] p_cfg Pointer to
sf_crypto_key_installation_cf
g_t configuration structure.
All elements of this structure
must be set by user.

◆ versionGet

ssp_err_t(* sf_crypto_key_installation_api_t::versionGet) (ssp_version_t *const p_version)

Get version of SSP Crypto Key Installation framework.

Implemented as

SF_CRYPTO_KEY_INSTALLATION_VersionGet()
Parameters

[out] p_version Pointer to the memory to
store the module version.

The documentation for this struct was generated from the following file:

sf_crypto_key_installation_api.h

 sf_crypto_key_installation_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Key Installation
Framework Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,119 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Key Installation Framework Interface > sf_crypto_key_installation_instance_t Struct Reference

#include <sf_crypto_key_installation_api.h>

Data Fields

sf_crypto_key_installation_ct
rl_t *

p_ctrl

 Pointer to the control structure for this instance.

sf_crypto_key_installation_cf
g_t *

p_cfg

 Pointer to the configuration structure for this instance.

sf_crypto_key_installation_a
pi_t const *

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_crypto_key_installation_api.h

5.1.2.33 SSP Crypto Signature Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

Interface definition for Synergy Crypto Signature Framework module. More...

Data Structures

struct sf_crypto_signature_rsa_specific_params_t

struct sf_crypto_signature_cfg_t

struct sf_crypto_signature_api_t

struct sf_crypto_signature_instance_t

Macros

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,120 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Signature Framework Interface

#define SF_CRYPTO_SIGNATURE_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_crypto_signature_algorithm_init_params_t

typedef void sf_crypto_signature_ctrl_t

Enumerations

enum sf_crypto_signature_mode_t { SF_CRYPTO_SIGNATURE_MODE_SIGN,
SF_CRYPTO_SIGNATURE_MODE_VERIFY }

enum sf_crypto_signature_message_operation_t {
SF_CRYPTO_SIGNATURE_MESSAGE_OPERATION_NONE,
SF_CRYPTO_SIGNATURE_MESSAGE_OPERATION_RSA_SHA1_PKCS1_1_
5,
SF_CRYPTO_SIGNATURE_MESSAGE_OPERATION_RSA_SHA224_PKCS1
_1_5,
SF_CRYPTO_SIGNATURE_MESSAGE_OPERATION_RSA_SHA256_PKCS1
_1_5 }

Detailed Description

Interface definition for Synergy Crypto Signature Framework module.

Summary
The Signature framework module is a ThreadX aware module which provides sign and sign-verify
services. They Key type and Key size provided in the configuration parameter determine the
cryptography algorithm type and uses the appropriate Driver API interface to provide requested
functionality. User can change the operation mode (Sign / Verify), message format and key data
input multiple times after opening this module using the Open API. There is no need to close the
module using Close API and then re-open the module if the intent is to just change operation mode,
message format and/or key data input parameters.

Crypto Signature Framework Interface description: Crypto Framework

Macro Definition Documentation

◆ SF_CRYPTO_SIGNATURE_API_VERSION_MAJOR

#define SF_CRYPTO_SIGNATURE_API_VERSION_MAJOR (2U)

The API version of SSP Crypto Signature Framework

Typedef Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,121 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Signature Framework Interface

◆ sf_crypto_signature_algorithm_init_params_t

typedef void sf_crypto_signature_algorithm_init_params_t

Algorithm specific parameters. Allocate an algorithm specific block to pass into the contextInit API
call.

Implemented as

sf_crypto_signature_rsa_specific_params_t for RSA

◆ sf_crypto_signature_ctrl_t

typedef void sf_crypto_signature_ctrl_t

SSP Crypto Signature framework control block. Allocate an instance specific control block to pass
into the SSP Crypto Signature framework API calls.

Implemented as

sf_crypto_signature_instance_ctrl_t

Enumeration Type Documentation

◆ sf_crypto_signature_message_operation_t

enum sf_crypto_signature_message_operation_t

Signature message operation

Enumerator

SF_CRYPTO_SIGNATURE_MESSAGE_OPERATION_
NONE

Input message is pre-formatted using
appropriate format. Sign/verify operation is
performed on the input message.

SF_CRYPTO_SIGNATURE_MESSAGE_OPERATION_
RSA_SHA1_PKCS1_1_5

Generates a 20-byte (SHA-1) digest and
signs/verifies the digest using RSASSA-PKCS1
v1.5 padding scheme.

SF_CRYPTO_SIGNATURE_MESSAGE_OPERATION_
RSA_SHA224_PKCS1_1_5

Generates a 28-byte (SHA-224) digest and
signs/verifies the digest using RSASSA-PKCS1
v1.5 padding scheme.

SF_CRYPTO_SIGNATURE_MESSAGE_OPERATION_
RSA_SHA256_PKCS1_1_5

Generates a 32-byte (SHA-256) digest and
signs/verifies the digest using RSASSA-PKCS1
v1.5 padding scheme.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,122 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Signature Framework Interface

◆ sf_crypto_signature_mode_t

enum sf_crypto_signature_mode_t

Signature mode, sign or verify

Enumerator

SF_CRYPTO_SIGNATURE_MODE_SIGN Perform Sign Operation.

SF_CRYPTO_SIGNATURE_MODE_VERIFY Perform Verify Operation.

 sf_crypto_signature_rsa_specific_params_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Signature
Framework Interface

#include <sf_crypto_signature_api.h>

Data Fields

sf_crypto_signature_messag
e_operation_t

message_format

Detailed Description

RSA Algorithm specific parameters for signature operations

Field Documentation

◆ message_format

sf_crypto_signature_message_operation_t
sf_crypto_signature_rsa_specific_params_t::message_format

Message format enumeration option.

The documentation for this struct was generated from the following file:

sf_crypto_signature_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,123 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Signature Framework Interface > sf_crypto_signature_cfg_t Struct Reference

 sf_crypto_signature_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Signature
Framework Interface

#include <sf_crypto_signature_api.h>

Data Fields

sf_crypto_key_type_t key_type

sf_crypto_key_size_t key_size

sf_crypto_hash_instance_t * p_lower_lvl_sf_crypto_hash

sf_crypto_instance_t * p_lower_lvl_crypto_common

void const * p_extend

Detailed Description

Configuration structure for the SSP Crypto Signature framework

Field Documentation

◆ key_size

sf_crypto_key_size_t sf_crypto_signature_cfg_t::key_size

Key Size.

◆ key_type

sf_crypto_key_type_t sf_crypto_signature_cfg_t::key_type

Key Type.

◆ p_extend

void const* sf_crypto_signature_cfg_t::p_extend

Extension parameter for hardware specific settings (Future purpose).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,124 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Signature Framework Interface > sf_crypto_signature_cfg_t Struct Reference

◆ p_lower_lvl_crypto_common

sf_crypto_instance_t* sf_crypto_signature_cfg_t::p_lower_lvl_crypto_common

Pointer to a Crypto Framework common instance.

◆ p_lower_lvl_sf_crypto_hash

sf_crypto_hash_instance_t* sf_crypto_signature_cfg_t::p_lower_lvl_sf_crypto_hash

Pointer to Hash framework instance.

The documentation for this struct was generated from the following file:

sf_crypto_signature_api.h

 sf_crypto_signature_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Signature
Framework Interface

#include <sf_crypto_signature_api.h>

Data Fields

ssp_err_t(* open)(sf_crypto_signature_ctrl_t *const p_ctrl,
sf_crypto_signature_cfg_t const *const p_cfg)

ssp_err_t(* close)(sf_crypto_signature_ctrl_t *const p_ctrl)

ssp_err_t(* contextInit)(sf_crypto_signature_ctrl_t *const p_ctrl,
sf_crypto_signature_mode_t operation_mode,
sf_crypto_signature_algorithm_init_params_t *const
p_algorithm_specific_params, sf_crypto_key_t const *const p_key)

ssp_err_t(* signUpdate)(sf_crypto_signature_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_message)

ssp_err_t(* verifyUpdate)(sf_crypto_signature_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_message)

ssp_err_t(* signFinal)(sf_crypto_signature_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_message,
sf_crypto_data_handle_t *const p_dest)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,125 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Signature Framework Interface > sf_crypto_signature_api_t Struct Reference

ssp_err_t(* verifyFinal)(sf_crypto_signature_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_signature,
sf_crypto_data_handle_t const *const p_message)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Shared Interface definition for the SSP Crypto Signature framework

Field Documentation

◆ close

ssp_err_t(* sf_crypto_signature_api_t::close) (sf_crypto_signature_ctrl_t *const p_ctrl)

Close SSP Crypto Signature framework module. This API will free any memory allocated when the
signature framework module was opened.

Implemented as

SF_CRYPTO_SIGNATURE_Close()
Parameters

[in,out] p_ctrl Pointer to Crypto Signature
Framework control block
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,126 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Signature Framework Interface > sf_crypto_signature_api_t Struct Reference

◆ contextInit

ssp_err_t(* sf_crypto_signature_api_t::contextInit) (sf_crypto_signature_ctrl_t *const p_ctrl,
sf_crypto_signature_mode_t operation_mode, sf_crypto_signature_algorithm_init_params_t *const
p_algorithm_specific_params, sf_crypto_key_t const *const p_key)

Perform Signature Module Context Initialization operation. This API initializes the signature module
by setting operating mode, the message padding scheme and appropriate key for subsequent calls
to signUpdate, verifyUpdate, signFinal and verifyFinal APIs. This API can be called only after this
module has be opened using the open API. This API can be called after signFinal or verifyFinal API
to initialize context for a new operation. This API sets up the internal context for sign/verify
operation.

Implemented as

SF_CRYPTO_SIGNATURE_ContextInit()
Parameters

[in] p_ctrl Pointer to Crypto Signature
Framework control block
structure.

[in] operation_mode Selects Sign or Verify
Operation enumeration.

[in] p_algorithm_specific_params Algorithm specific
parameters.

[in] p_key Pointer to a private key for
Sign operation OR Pointer to
a public key for Verify
operation.

Note
p_key should be WORD aligned.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,127 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Signature Framework Interface > sf_crypto_signature_api_t Struct Reference

◆ open

ssp_err_t(* sf_crypto_signature_api_t::open) (sf_crypto_signature_ctrl_t *const p_ctrl,
sf_crypto_signature_cfg_t const *const p_cfg)

Open SSP Crypto Signature framework. This function sets up a control block of the framework
module based on the configuration parameters such as the key type, key size and domain
parameters. The module allows users to have multiple instances with different control blocks, if
required. This API will allocate memory internally according to the cryptography algorithm selected
through key_type and key_size parameters.

Implemented as

SF_CRYPTO_SIGNATURE_Open()
Parameters

[in,out] p_ctrl Pointer to Crypto Signature
Framework control block
structure.

[in] p_cfg Pointer to
sf_crypto_signature_cfg_t
configuration structure. All
elements of this structure
must be set by user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,128 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Signature Framework Interface > sf_crypto_signature_api_t Struct Reference

◆ signFinal

ssp_err_t(* sf_crypto_signature_api_t::signFinal) (sf_crypto_signature_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_message, sf_crypto_data_handle_t *const p_dest)

Perform Signature Module Signature-Final Operation. Call to this API generates signature and writes
it to p_dest. p_message can be the pointer to last block of input message to be signed or can be
passed as NULL if all of the input is passed through one or more signUpdate API call(s).

Implemented as

SF_CRYPTO_SIGNATURE_SignFinal()
Parameters

[in] p_ctrl Pointer to Crypto Signature
Framework control block
structure.

[in] p_message Pointer to data handle
containing last block of data
and its length. If there is no
more data to be passed this
param can be set to NULL.

[in,out] p_dest Pointer to data handle
containing pointer to a
buffer for storing signature.
The data_length of this
handle must be populated
with the buffer length. Upon
successful return this
data_length will be updated
with the number of bytes
written to this buffer.

Note
p_message should be WORD aligned.
p_dest should be WORD aligned.
p_message can be set to NULL.
In case SF_CRYPTO_SIGNATURE_NO_PADDING is chosen as the padding scheme ensure p_message is a valid
message digest in appropriate format.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,129 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Signature Framework Interface > sf_crypto_signature_api_t Struct Reference

◆ signUpdate

ssp_err_t(* sf_crypto_signature_api_t::signUpdate) (sf_crypto_signature_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_message)

Perform Signature Module Signature-Update operation. This API can be called multiple times to
accumulate the message to be signed. This API can be used when the input message to be signed
is not available all at once in a byte array.

Implemented as

SF_CRYPTO_SIGNATURE_SignUpdate()
Parameters

[in] p_ctrl Pointer to Crypto Signature
Framework control block
structure.

[in] p_message Pointer to input message to
be signed.

Note
p_message should be WORD aligned.
In case SF_CRYPTO_SIGNATURE_NO_PADDING is chosen as the padding scheme ensure p_message is a valid
message digest in appropriate format.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,130 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Signature Framework Interface > sf_crypto_signature_api_t Struct Reference

◆ verifyFinal

ssp_err_t(* sf_crypto_signature_api_t::verifyFinal) (sf_crypto_signature_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_signature, sf_crypto_data_handle_t const *const
p_message)

Perform Signature Module Signature-Verification-Final Operation. Call to this API performs signature
verification operation. p_message can be the pointer to last block of message or can be passed as
NULL if all of the message whose signature is to be verified is passed through one or more
verifyUpdate API call(s).

Implemented as

SF_CRYPTO_SIGNATURE_VerifyFinal()
Parameters

[in] p_ctrl Pointer to Crypto Signature
Framework control block
structure.

[in] p_signature Pointer to Signature buffer to
be verified.

[in] p_message Pointer to last block of
message whose signature is
being verified. If there is no
more data to be passed this
param can be set to NULL.

Note
p_message should be WORD aligned.
p_message can be set to NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,131 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Signature Framework Interface > sf_crypto_signature_api_t Struct Reference

◆ verifyUpdate

ssp_err_t(* sf_crypto_signature_api_t::verifyUpdate) (sf_crypto_signature_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_message)

Perform Signature Module Signature-Verification-Update operation. This API can be called multiple
times to accumulate the message whose signature is to be verified. This API can be used when the
input message to be verified against a signature is not available all at once in a byte array.

Implemented as

SF_CRYPTO_SIGNATURE_VerifyUpdate()
Parameters

[in] p_ctrl Pointer to Crypto Signature
Framework control block
structure.

[in] p_message Pointer to message whose
signature is to be verified.

Note
p_message should be WORD aligned.

◆ versionGet

ssp_err_t(* sf_crypto_signature_api_t::versionGet) (ssp_version_t *const p_version)

Get version of SSP Crypto Signature framework.

Implemented as

SF_CRYPTO_SIGNATURE_VersionGet()
Parameters

[out] p_version Pointer to the memory to
store the module version.

The documentation for this struct was generated from the following file:

sf_crypto_signature_api.h

 sf_crypto_signature_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto Signature
Framework Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,132 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto Signature Framework Interface > sf_crypto_signature_instance_t Struct Reference

#include <sf_crypto_signature_api.h>

Data Fields

sf_crypto_signature_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_crypto_signature_cfg_t * p_cfg

 Pointer to the configuration structure for this instance.

sf_crypto_signature_api_t
const *

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_crypto_signature_api.h

5.1.2.34 SSP Crypto TRNG Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

Interface definition for Synergy Crypto TRNG Framework module. More...

Data Structures

struct sf_crypto_trng_cfg_t

struct sf_crypto_trng_api_t

struct sf_crypto_trng_instance_t

Macros

#define SF_CRYPTO_TRNG_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_crypto_trng_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,133 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto TRNG Framework Interface

Enumerations

enum sf_crypto_trng_state_t { SF_CRYPTO_TRNG_CLOSED = 0,
SF_CRYPTO_TRNG_OPENED = 1 }

Detailed Description

Interface definition for Synergy Crypto TRNG Framework module.

Summary
This is the Interface of SF_CRYPTO_TRNG Framework module.

Crypto TRNG Framework Interface description: Crypto Framework

Macro Definition Documentation

◆ SF_CRYPTO_TRNG_API_VERSION_MAJOR

#define SF_CRYPTO_TRNG_API_VERSION_MAJOR (2U)

The API version of SSP Crypto Framework

Typedef Documentation

◆ sf_crypto_trng_ctrl_t

typedef void sf_crypto_trng_ctrl_t

SSP Crypto TRNG framework control block.

Implemented as

sf_crypto_trng_ctrl_t

Enumeration Type Documentation

◆ sf_crypto_trng_state_t

enum sf_crypto_trng_state_t

State codes for the SSP Crypto TRNG framework

Enumerator

SF_CRYPTO_TRNG_CLOSED Crypto TRNG Framework Module is closed.

SF_CRYPTO_TRNG_OPENED Crypto TRNG Framework Module is opened.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,134 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto TRNG Framework Interface

 sf_crypto_trng_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto TRNG
Framework Interface

#include <sf_crypto_trng_api.h>

Data Fields

sf_crypto_instance_t * p_lower_lvl_common

 Pointer to a Crypto Framework common instance.

trng_instance_t * p_lower_lvl_instance

 Pointer to Crypto TRNG HAL instance.

void * p_extend

 Pointer to an optional configuration for HW specific settings.

Detailed Description

Configuration structure for the SSP Crypto TRNG framework

The documentation for this struct was generated from the following file:

sf_crypto_trng_api.h

 sf_crypto_trng_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto TRNG
Framework Interface

#include <sf_crypto_trng_api.h>

Data Fields

ssp_err_t(* open)(sf_crypto_trng_ctrl_t *const p_ctrl, sf_crypto_trng_cfg_t const
*const p_cfg)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,135 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto TRNG Framework Interface > sf_crypto_trng_api_t Struct Reference

ssp_err_t(* close)(sf_crypto_trng_ctrl_t *const p_ctrl)

ssp_err_t(* randomNumberGenerate)(sf_crypto_trng_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t *const p_random_number_buff)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Shared Interface definition for the SSP Crypto framework

Field Documentation

◆ close

ssp_err_t(* sf_crypto_trng_api_t::close) (sf_crypto_trng_ctrl_t *const p_ctrl)

Close SSP Crypto TRNG framework. This API should be called once TRNG services are no longer
needed.

Implemented as

SF_CRYPTO_TRNG_Close()
Parameters

[in,out] p_ctrl_api Pointer to Crypto TRNG
Framework control block
structure.

◆ open

ssp_err_t(* sf_crypto_trng_api_t::open) (sf_crypto_trng_ctrl_t *const p_ctrl, sf_crypto_trng_cfg_t
const *const p_cfg)

Open SSP Crypto TRNG framework for true random number generation.

Implemented as

SF_CRYPTO_TRNG_Open()
Parameters

[in,out] p_ctrl_api Pointer to Crypto TRNG
Framework control block
structure.

[in] p_cfg Pointer to
sf_crypto_trng_cfg_t
configuration structure. All
elements of this structure
must be set by user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,136 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto TRNG Framework Interface > sf_crypto_trng_api_t Struct Reference

◆ randomNumberGenerate

ssp_err_t(* sf_crypto_trng_api_t::randomNumberGenerate) (sf_crypto_trng_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t *const p_random_number_buff)

Generate a True Random Number of specified size

Implemented as

SF_CRYPTO_TRNG_RandomNumberGenerate()
Parameters

[in] p_ctrl_api Pointer to Crypto TRNG
Framework control block
structure.

[in,out] p_random_number_buff Pointer to
sf_crypto_data_handle_t
structure storing pointer to
buffer and its size where
true random number will be
returned.

Note
Size value specified under p_random_number_buff must be specified in Bytes.
Size value specified under p_random_number_buff must not be 0 Bytes. Its minimum value is 1.
Pointer to data buffer specified under p_random_number_buff must not be NULL.
Data buffer must be WORD aligned. The memory allocation to store the true random number is user's
responsibility.

◆ versionGet

ssp_err_t(* sf_crypto_trng_api_t::versionGet) (ssp_version_t *const p_version)

Get version of SSP Crypto TRNG Framework Module.

Implemented as

SF_CRYPTO_TRNG_VersionGet()
Parameters

[out] p_version Pointer to the memory to
store the module version.

The documentation for this struct was generated from the following file:

sf_crypto_trng_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,137 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SSP Crypto TRNG Framework Interface > sf_crypto_trng_instance_t Struct Reference

 sf_crypto_trng_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SSP Crypto TRNG
Framework Interface

#include <sf_crypto_trng_api.h>

Data Fields

sf_crypto_trng_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_crypto_trng_cfg_t * p_cfg

 Pointer to the configuration structure for this instance.

sf_crypto_trng_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_crypto_trng_api.h

5.1.2.35 GUIX Interface
Renesas Synergy Software Package Reference » Framework Interfaces

Interface definition for Adapting Microsoft GUIX for Synergy graphics drivers. More...

Data Structures

struct sf_el_gx_callback_args_t

struct sf_el_gx_cfg_t

struct sf_el_gx_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,138 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > GUIX Interface

struct sf_el_gx_instance_t

Macros

#define SF_EL_GX_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_el_gx_ctrl_t

Enumerations

enum sf_el_gx_state_t

enum sf_el_gx_device_t { SF_EL_GX_DEVICE_NONE = 0,
SF_EL_GX_DEVICE_DISPLAY = 1, SF_EL_GX_DEVICE_DRW = 2,
SF_EL_GX_DEVICE_JPEG = 3 }

enum sf_el_gx_event_t { SF_EL_GX_EVENT_ERROR = 1,
SF_EL_GX_EVENT_DISPLAY_VSYNC = 2,
SF_EL_GX_EVENT_UNDERFLOW = 3 }

Detailed Description

Interface definition for Adapting Microsoft GUIX for Synergy graphics drivers.

Summary
This is the Interface of SF_EL_GX Framework module which ties Synergy graphics device drivers to
GUIX. The interface provides following driver adaptation for GUIX:

DISPLAY driver for displaying image on LCD(e.g. GLCDC)
Dave/2d driver for image rendering by 2DG engine
JPEG driver for the image rendering by JPEG engine
Software image rendering with no hardware acceleration

Implemented by: GUIX Synergy Port

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

GUIX Interface description: GUIX Port

Macro Definition Documentation

◆ SF_EL_GX_API_VERSION_MAJOR

#define SF_EL_GX_API_VERSION_MAJOR (2U)

The API version of GUIX integrated driver framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,139 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > GUIX Interface

Typedef Documentation

◆ sf_el_gx_ctrl_t

typedef void sf_el_gx_ctrl_t

GUIX adaptation framework control block. Allocate an instance specific control block to pass into
the GUIX adaptation framework API calls.

Implemented as

sf_el_gx_instance_ctrl_t

Enumeration Type Documentation

◆ sf_el_gx_device_t

enum sf_el_gx_device_t

Low level device code for the GUIX

Enumerator

SF_EL_GX_DEVICE_NONE Non hardware.

SF_EL_GX_DEVICE_DISPLAY Display device.

SF_EL_GX_DEVICE_DRW 2D Graphics Engine

SF_EL_GX_DEVICE_JPEG JPEG Decoder.

◆ sf_el_gx_event_t

enum sf_el_gx_event_t

Display event codes

Enumerator

SF_EL_GX_EVENT_ERROR Low level driver error occurs.

SF_EL_GX_EVENT_DISPLAY_VSYNC Display interface VSYNC.

SF_EL_GX_EVENT_UNDERFLOW Display interface underflow.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,140 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > GUIX Interface

◆ sf_el_gx_state_t

enum sf_el_gx_state_t

State codes for the SSP GUIX adaptation framework

 sf_el_gx_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » GUIX Interface

#include <sf_el_gx_api.h>

Data Fields

sf_el_gx_device_t device

 Device code.

sf_el_gx_event_t event

 Event code of the low level hardware.

uint32_t error

 Error code if SF_EL_GX_EVENT_ERROR.

Detailed Description

Callback arguments for the SSP GUIX adaptation framework

The documentation for this struct was generated from the following file:

sf_el_gx_api.h

 sf_el_gx_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » GUIX Interface

#include <sf_el_gx_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,141 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > GUIX Interface > sf_el_gx_cfg_t Struct Reference

Data Fields

display_instance_t * p_display_instance

 Pointer to a display instance.

display_runtime_cfg_t * p_display_runtime_cfg

 Pointer to a runtime display configuration.

display_frame_layer_t inherit_frame_layer

 Configured Inherit Screen Layer.

void * p_canvas

 Pointer to a canvas(reserved)

void * p_framebuffer_a

 Pointer to a frame buffer(A)

void * p_framebuffer_b

 Pointer to a frame buffer(B)

void(* p_callback)(sf_el_gx_callback_args_t *p_args)

 Pointer to callback function.

void * p_context

 Pointer to a context.

void * p_jpegbuffer

 Pointer to a JPEG work buffer.

uint32_t jpegbuffer_size

 Size of a JPEG work buffer.

void * p_sf_jpeg_decode_instance

 Pointer to a JPEG framework instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,142 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > GUIX Interface > sf_el_gx_cfg_t Struct Reference

_Bool dave2d_buffer_cache_enabled

 D/AVE 2D buffer cache enabled/disabled.

Detailed Description

Configuration structure for the SSP GUIX adaptation framework

The documentation for this struct was generated from the following file:

sf_el_gx_api.h

 sf_el_gx_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » GUIX Interface

#include <sf_el_gx_api.h>

Data Fields

ssp_err_t(* open)(sf_el_gx_ctrl_t *const p_ctrl, sf_el_gx_cfg_t const *const p_cfg)

ssp_err_t(* close)(sf_el_gx_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *p_version)

UINT(* setup)(GX_DISPLAY *p_display)

ssp_err_t(* canvasInit)(sf_el_gx_ctrl_t *const p_ctrl, GX_WINDOW_ROOT
*p_window_root)

Detailed Description

Shared Interface definition for the SSP GUIX adaptation framework

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,143 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > GUIX Interface > sf_el_gx_api_t Struct Reference

◆ canvasInit

ssp_err_t(* sf_el_gx_api_t::canvasInit) (sf_el_gx_ctrl_t *const p_ctrl, GX_WINDOW_ROOT
*p_window_root)

Canvas initialization. Set the memory address of the initial canvas.

Implemented as

SF_EL_GX_CanvasInit()
Parameters

[in,out] p_ctrl Pointer to SF_EL_GX control
block structure.

[in] p_window_root Pointer to GUIX root window
context.

◆ close

ssp_err_t(* sf_el_gx_api_t::close) (sf_el_gx_ctrl_t *const p_ctrl)

Close SSP GUIX adaptation framework.

Implemented as

SF_EL_GX_Close()
Parameters

[in,out] p_ctrl Pointer to SF_EL_GX control
block structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,144 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > GUIX Interface > sf_el_gx_api_t Struct Reference

◆ open

ssp_err_t(* sf_el_gx_api_t::open) (sf_el_gx_ctrl_t *const p_ctrl, sf_el_gx_cfg_t const *const p_cfg)

Open SSP GUIX adaptation framework.

Implemented as

SF_EL_GX_Open()
Parameters

[in,out] p_ctrl Pointer to SF_EL_GX control
block structure. Must be
declared by user. Value set
here.

[in] p_cfg Pointer to SF_EL_GX
configuration structure. All
elements of this structure
must be set by user.

◆ setup

UINT(* sf_el_gx_api_t::setup) (GX_DISPLAY *p_display)

Microsoft GUIX Driver setup entry.

Implemented as

SF_EL_GX_Setup()
Parameters

[in] p_display Pointer to GUIX display
driver setup function.

◆ versionGet

ssp_err_t(* sf_el_gx_api_t::versionGet) (ssp_version_t *p_version)

Get version.

Implemented as

SF_EL_GX_VersionGet()
Parameters

[in] p_version Pointer to the memory to
store the version
information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,145 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > GUIX Interface > sf_el_gx_api_t Struct Reference

The documentation for this struct was generated from the following file:

sf_el_gx_api.h

 sf_el_gx_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » GUIX Interface

#include <sf_el_gx_api.h>

Data Fields

sf_el_gx_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_el_gx_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

sf_el_gx_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_el_gx_api.h

5.1.2.36 External IRQ Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated External IRQ Framework Interface. More...

Data Structures

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,146 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > External IRQ Framework Interface

struct sf_external_irq_cfg_t

struct sf_external_irq_api_t

struct sf_external_irq_instance_t

Typedefs

typedef void sf_external_irq_ctrl_t

Enumerations

enum sf_external_irq_event_t { SF_EXTERNAL_IRQ_EVENT_NONE,
SF_EXTERNAL_IRQ_EVENT_SEMAPHORE_PUT }

Detailed Description

RTOS-integrated External IRQ Framework Interface.

Summary
This module is a ThreadX-aware external IRQ Framework Interface for external inputs such as
switches or other binary signals. The Interface is implemented by External IRQ Framework.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

External IRQ Framework Interface description: External IRQ Framework

Typedef Documentation

◆ sf_external_irq_ctrl_t

typedef void sf_external_irq_ctrl_t

External interrupt control block. Allocate an instance specific control block to pass into the external
interrupt framework API calls.

Implemented as

sf_external_irq_instance_ctrl_t

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,147 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > External IRQ Framework Interface

◆ sf_external_irq_event_t

enum sf_external_irq_event_t

Options for what should happen when the external interrupt expires.

Enumerator

SF_EXTERNAL_IRQ_EVENT_NONE Nothing happens during expiration. Can be
used for data transfer.

SF_EXTERNAL_IRQ_EVENT_SEMAPHORE_PUT Posts to internal semaphore. Select this if
using SF_EXTERNAL_IRQ_Wait.

 sf_external_irq_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » External IRQ Framework
Interface

#include <sf_external_irq_api.h>

Data Fields

external_irq_instance_t
const *

p_lower_lvl_irq

sf_external_irq_event_t event

 Select what happens when the external IRQ is triggered.

Detailed Description

Configuration for RTOS integrated external interrupt driver

Field Documentation

◆ p_lower_lvl_irq

external_irq_instance_t const* sf_external_irq_cfg_t::p_lower_lvl_irq

All info needed to work with lower layer

The documentation for this struct was generated from the following file:

sf_external_irq_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,148 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > External IRQ Framework Interface > sf_external_irq_cfg_t Struct Reference

 sf_external_irq_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » External IRQ Framework
Interface

#include <sf_external_irq_api.h>

Data Fields

ssp_err_t(* open)(sf_external_irq_ctrl_t *const p_ctrl, sf_external_irq_cfg_t const
*const p_cfg)

ssp_err_t(* wait)(sf_external_irq_ctrl_t *const p_ctrl, ULONG const timeout)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

ssp_err_t(* close)(sf_external_irq_ctrl_t *const p_ctrl)

Detailed Description

External IRQ framework API structure. External IRQ implementations use the following API.

Field Documentation

◆ close

ssp_err_t(* sf_external_irq_api_t::close) (sf_external_irq_ctrl_t *const p_ctrl)

Close channel at HAL layer and release the RTOS services.

Implemented as

SF_EXTERNAL_IRQ_Close()
Parameters

[in] p_ctrl Pointer to device control
block initialized in Open call
for this external interrupt.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,149 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > External IRQ Framework Interface > sf_external_irq_api_t Struct Reference

◆ open

ssp_err_t(* sf_external_irq_api_t::open) (sf_external_irq_ctrl_t *const p_ctrl, sf_external_irq_cfg_t
const *const p_cfg)

Create the semaphore, then handle driver initialization at the HAL layer.

Implemented as

SF_EXTERNAL_IRQ_Open()
Parameters

[in,out] p_ctrl Pointer to a structure
allocated by user. The
device control structure is
initialized in this function.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

◆ versionGet

ssp_err_t(* sf_external_irq_api_t::versionGet) (ssp_version_t *const p_version)

Get version and store it in provided pointer p_version.

Implemented as

SF_EXTERNAL_IRQ_VersionGet()
Parameters

[out] p_version Code and API version used
stored here.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,150 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > External IRQ Framework Interface > sf_external_irq_api_t Struct Reference

◆ wait

ssp_err_t(* sf_external_irq_api_t::wait) (sf_external_irq_ctrl_t *const p_ctrl, ULONG const timeout)

Wait for the next external interrupt expiration, then return.

Precondition
Call SF_EXTERNAL_IRQ_Open to configure the external IRQ before using this function.
During SF_EXTERNAL_IRQ_Open, set sf_external_irq_cfg_t::sf_external_irq_event_t to
SF_EXTERNAL_IRQ_EVENT_SEMAPHORE_PUT.

Implemented as

SF_EXTERNAL_IRQ_Wait()
Parameters

[in] p_ctrl Handle set in
SF_EXTERNAL_IRQ_Open.

[in] timeout ThreadX timeout. Select
TX_NO_WAIT, a value in
system clock counts
between 1 and 0xFFFFFFFF,
or TX_WAIT_FOREVER.

The documentation for this struct was generated from the following file:

sf_external_irq_api.h

 sf_external_irq_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » External IRQ Framework
Interface

#include <sf_external_irq_api.h>

Data Fields

sf_external_irq_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_external_irq_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,151 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > External IRQ Framework Interface > sf_external_irq_instance_t Struct Reference

sf_external_irq_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_external_irq_api.h

5.1.2.37 I2C Framework
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated I2C Framework Interface. More...

Data Structures

struct sf_i2c_bus_t

struct sf_i2c_cfg_t

struct sf_i2c_api_t

struct sf_i2c_instance_t

Macros

#define SF_I2C_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_i2c_ctrl_t

Enumerations

enum sf_i2c_dev_state_t { SF_I2C_DEV_STATE_CLOSED = 0,
SF_I2C_DEV_STATE_OPENED }

Detailed Description

RTOS-integrated I2C Framework Interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,152 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > I2C Framework

Summary
This is a ThreadX-aware I2C interface. It can be implemented by several hardware peripherals at the
HAL layer through the I2C interface I2C Interface.

The connection to the HAL layer is established by passing in a driver structure in SF_I2C_Open().

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

SPI Framework Interface description: I2C Framework

Macro Definition Documentation

◆ SF_I2C_API_VERSION_MAJOR

#define SF_I2C_API_VERSION_MAJOR (2U)

Includes driver interface.

Typedef Documentation

◆ sf_i2c_ctrl_t

typedef void sf_i2c_ctrl_t

I2C framework control block. Allocate an instance specific control block to pass into the I2C
framework API calls.

Implemented as

sf_i2c_instance_ctrl_t

Enumeration Type Documentation

◆ sf_i2c_dev_state_t

enum sf_i2c_dev_state_t

SF I2C device state

Enumerator

SF_I2C_DEV_STATE_CLOSED I2C device is closed.

SF_I2C_DEV_STATE_OPENED I2C device is opened.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,153 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > I2C Framework > sf_i2c_bus_t Struct Reference

 sf_i2c_bus_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » I2C Framework

#include <sf_i2c_api.h>

Data Fields

uint8_t channel

 Channel.

TX_MUTEX * p_lock_mutex

 Lock mutex handle for this channel.

TX_MUTEX device_count_mutex

 Device count mutex handle for this device.

TX_EVENT_FLAGS_GROUP * p_sync_eventflag

 Pointer to the event flag object for I2C data transfer.

sf_i2c_ctrl_t ** pp_curr_ctrl

 Current device using the bus (by switching the address)

uint8_t * p_bus_name

 User-supplied name to identify the bus. Useful for debugging.

i2c_api_master_t const * p_lower_lvl_api

 Pointer to I2C HAL interface to be used in the framework.

uint8_t device_count

 Number of devices on the bus; initialize to 0.

sf_i2c_ctrl_t ** pp_curr_bus_ctrl

 Device configured on the bus (low level configuration)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,154 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > I2C Framework > sf_i2c_bus_t Struct Reference

Detailed Description

Data structure defining a I2C bus.

The documentation for this struct was generated from the following file:

sf_i2c_api.h

 sf_i2c_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » I2C Framework

#include <sf_i2c_api.h>

Data Fields

sf_i2c_bus_t * p_bus

 Bus used by the device.

i2c_cfg_t const * p_lower_lvl_cfg

 Pointer to I2C HAL configuration.

Detailed Description

Configuration for Framework I2C driver

The documentation for this struct was generated from the following file:

sf_i2c_api.h

 sf_i2c_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » I2C Framework

#include <sf_i2c_api.h>

Data Fields

ssp_err_t(* open)(sf_i2c_ctrl_t *p_ctrl, sf_i2c_cfg_t const *const p_cfg)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,155 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > I2C Framework > sf_i2c_api_t Struct Reference

 Open a designated I2C device on a bus. More...

ssp_err_t(* read)(sf_i2c_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const
bytes, bool const restart, uint32_t const timeout)

 Receive data from I2C device. More...

ssp_err_t(* write)(sf_i2c_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t const
bytes, bool const restart, uint32_t const timeout)

 Transmit data to I2C device. More...

ssp_err_t(* reset)(sf_i2c_ctrl_t *const p_ctrl, uint32_t const timeout)

 Abort any in-progress transfer and force the I2C peripheral into a
ready state. More...

ssp_err_t(* close)(sf_i2c_ctrl_t *const p_ctrl)

 Disable the I2C device designated by the control handle. Close the
RTOS services used by the bus if no devices are connected to the
bus. More...

ssp_err_t(* lock)(sf_i2c_ctrl_t *const p_ctrl)

 Lock the bus for a device. Locking allows devices to reserve a bus to
themselves for a given period of time (i.e. between lock and unlock).
This allows devices to complete several reads and writes on the bus
without interrupt, which is required in some instances. More...

ssp_err_t(* unlock)(sf_i2c_ctrl_t *const p_ctrl)

 Unlock the bus from a particular device and make it available for
other devices. This allows other devices to use bus for reads and
writes on the bus. More...

ssp_err_t(* version)(ssp_version_t *const p_version)

 Get I2C framework version. More...

ssp_err_t(* lockWait)(sf_i2c_ctrl_t *const p_ctrl, uint32_t const timeout)

 Lock the I2C bus for a device. Locking reserves exclusive access to
the I2C driver. Here a wait option is provided to the user. This allows
devices to complete several reads and writes on the bus without
interrupt, which is required in some instances. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,156 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > I2C Framework > sf_i2c_api_t Struct Reference

Detailed Description

Shared Interface definition for I2C Framework

Field Documentation

◆ close

ssp_err_t(* sf_i2c_api_t::close) (sf_i2c_ctrl_t *const p_ctrl)

Disable the I2C device designated by the control handle. Close the RTOS services used by the bus if
no devices are connected to the bus.

Implemented as

SF_I2C_Close()
Parameters

[in] p_ctrl Control handle for I2C
framework driver context for
a device

◆ lock

ssp_err_t(* sf_i2c_api_t::lock) (sf_i2c_ctrl_t *const p_ctrl)

Lock the bus for a device. Locking allows devices to reserve a bus to themselves for a given period
of time (i.e. between lock and unlock). This allows devices to complete several reads and writes on
the bus without interrupt, which is required in some instances.

Implemented as

SF_I2C_Lock()
Parameters

[in] p_ctrl Control handle for I2C
framework driver context for
a device

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,157 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > I2C Framework > sf_i2c_api_t Struct Reference

◆ lockWait

ssp_err_t(* sf_i2c_api_t::lockWait) (sf_i2c_ctrl_t *const p_ctrl, uint32_t const timeout)

Lock the I2C bus for a device. Locking reserves exclusive access to the I2C driver. Here a wait
option is provided to the user. This allows devices to complete several reads and writes on the bus
without interrupt, which is required in some instances.

Implemented as

SF_I2C_LockWait()
Parameters

[in] p_ctrl Control handle for I2C
framework driver context for
a device

[in] timeout ThreadX timeout. Options
include TX_NO_WAIT
(0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

◆ open

ssp_err_t(* sf_i2c_api_t::open) (sf_i2c_ctrl_t *p_ctrl, sf_i2c_cfg_t const *const p_cfg)

Open a designated I2C device on a bus.

Implemented as

SF_I2C_Open()
Parameters

[out] p_ctrl Control handle for I2C
framework driver context for
a device (Value returns from
this function). This value
must be cleared by user.

[in] p_cfg I2C configuration includes
I2C bus and low level
configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,158 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > I2C Framework > sf_i2c_api_t Struct Reference

◆ read

ssp_err_t(* sf_i2c_api_t::read) (sf_i2c_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const
bytes, bool const restart, uint32_t const timeout)

Receive data from I2C device.

Implemented as

SF_I2C_Read()
Parameters

[in] p_ctrl Pointer to previously opened
I2C SF control structure.

[in] p_dest Pointer to location to store
read data.

[in] bytes Number of bytes to read.

[in] restart Indicates whether the restart
condition should be issued
after reading.

[in] timeout ThreadX timeout. Options
include TX_NO_WAIT
(0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,159 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > I2C Framework > sf_i2c_api_t Struct Reference

◆ reset

ssp_err_t(* sf_i2c_api_t::reset) (sf_i2c_ctrl_t *const p_ctrl, uint32_t const timeout)

Abort any in-progress transfer and force the I2C peripheral into a ready state.

Implemented as

SF_I2C_Reset()
This function safely terminates any in-progress I2C transfer with the device. If a transfer is aborted,
the user is be notified via callback with an abort event. Since the callback is optional, this function
also returns a specific error code in this situation.

Parameters
[in] p_ctrl Pointer to device control

block initialized in Open call
for I2C driver.

[in] timeout ThreadX timeout. Options
include TX_NO_WAIT
(0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

◆ unlock

ssp_err_t(* sf_i2c_api_t::unlock) (sf_i2c_ctrl_t *const p_ctrl)

Unlock the bus from a particular device and make it available for other devices. This allows other
devices to use bus for reads and writes on the bus.

Implemented as

SF_I2C_Unlock()
Parameters

[in] p_ctrl Control handle for I2C
framework driver context for
a device

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,160 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > I2C Framework > sf_i2c_api_t Struct Reference

◆ version

ssp_err_t(* sf_i2c_api_t::version) (ssp_version_t *const p_version)

Get I2C framework version.

Implemented as

SF_I2C_VersionGet()
Parameters

[in] p_ctrl Handle for I2C framework
control block for a device

◆ write

ssp_err_t(* sf_i2c_api_t::write) (sf_i2c_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t const bytes,
bool const restart, uint32_t const timeout)

Transmit data to I2C device.

Implemented as

SF_I2C_Write()
Parameters

[in] p_ctrl Pointer to previously opened
I2C control structure.

[in] p_src Pointer to location to get
write data.

[in] bytes Number of bytes to write.

[in] restart Indicates whether the restart
condition should be issued
after writing.

[in] timeout ThreadX timeout. Options
include TX_NO_WAIT
(0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

The documentation for this struct was generated from the following file:

sf_i2c_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,161 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > I2C Framework > sf_i2c_api_t Struct Reference

 sf_i2c_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » I2C Framework

#include <sf_i2c_api.h>

Data Fields

sf_i2c_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_i2c_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

sf_i2c_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_i2c_api.h

5.1.2.38 JPEG Decode Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated JPEG Decode Framework Interface. More...

Data Structures

struct sf_jpeg_decode_cfg_t

struct sf_jpeg_decode_api_t

struct sf_jpeg_decode_instance_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,162 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > JPEG Decode Framework Interface

Macros

#define SF_JPEG_DECODE_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_jpeg_decode_ctrl_t

Detailed Description

RTOS-integrated JPEG Decode Framework Interface.

Summary
This is a ThreadX aware generic JPEG decoding framework for run-time JPEG decode applications. It
can be implemented by either hardware or software. For Synergy parts, the interface is implemented
by the on-chip JPEG decoding engine. The connection to the HAL layer is established by passing in a
driver structure in SF_JPEG_Decode_Open.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Framework JPEG Decode Interface description: JPEG Decode Framework

Macro Definition Documentation

◆ SF_JPEG_DECODE_API_VERSION_MAJOR

#define SF_JPEG_DECODE_API_VERSION_MAJOR (2U)

Version of the API defined in this file

Typedef Documentation

◆ sf_jpeg_decode_ctrl_t

typedef void sf_jpeg_decode_ctrl_t

JPEG decode framework control block. Allocate an instance specific control block to pass into the
JPEG decode framework API calls.

Implemented as

sf_jpeg_decode_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,163 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > JPEG Decode Framework Interface > sf_jpeg_decode_cfg_t Struct Reference

 sf_jpeg_decode_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » JPEG Decode Framework
Interface

#include <sf_jpeg_decode_api.h>

Data Fields

jpeg_decode_instance_t
const *

p_lower_lvl_jpeg_decode

Detailed Description

Configuration for RTOS integrated JPEG driver

Field Documentation

◆ p_lower_lvl_jpeg_decode

jpeg_decode_instance_t const* sf_jpeg_decode_cfg_t::p_lower_lvl_jpeg_decode

Pointer to a driver structure that implements this interface. Pre-configured driver structures are
located in r_jpeg_decode.c and extern'ed in r_jpeg_decode.h.

The documentation for this struct was generated from the following file:

sf_jpeg_decode_api.h

 sf_jpeg_decode_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » JPEG Decode Framework
Interface

#include <sf_jpeg_decode_api.h>

Data Fields

ssp_err_t(* open)(sf_jpeg_decode_ctrl_t *const p_ctrl, sf_jpeg_decode_cfg_t
const *const p_cfg)

ssp_err_t(* inputBufferSet)(sf_jpeg_decode_ctrl_t *const p_ctrl, void *const
p_buffer, uint32_t const buffer_size)

ssp_err_t(* outputBufferSet)(sf_jpeg_decode_ctrl_t *const p_ctrl, void *p_buffer,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,164 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > JPEG Decode Framework Interface > sf_jpeg_decode_api_t Struct Reference

uint32_t buffer_size)

ssp_err_t(* linesDecodedGet)(sf_jpeg_decode_ctrl_t *const p_ctrl, uint32_t
*const p_lines)

ssp_err_t(* horizontalStrideSet)(sf_jpeg_decode_ctrl_t *const p_ctrl, uint32_t
horizontal_stride)

ssp_err_t(* imageSubsampleSet)(sf_jpeg_decode_ctrl_t *const p_ctrl,
jpeg_decode_subsample_t horizontal_subsample,
jpeg_decode_subsample_t vertical_subsample)

ssp_err_t(* wait)(sf_jpeg_decode_ctrl_t *const p_ctrl, jpeg_decode_status_t
*const p_status, uint32_t timeout)

ssp_err_t(* statusGet)(sf_jpeg_decode_ctrl_t *const p_ctrl, jpeg_decode_status_t
*const p_status)

ssp_err_t(* imageSizeGet)(sf_jpeg_decode_ctrl_t *const p_ctrl, uint16_t
*p_horizontal_size, uint16_t *p_vertical_size)

ssp_err_t(* pixelFormatGet)(sf_jpeg_decode_ctrl_t *const p_ctrl,
jpeg_decode_color_space_t *const p_color_space)

ssp_err_t(* close)(sf_jpeg_decode_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

JPEG Decode API structure. Implementations will use the following API.

Field Documentation

◆ close

ssp_err_t(* sf_jpeg_decode_api_t::close) (sf_jpeg_decode_ctrl_t *const p_ctrl)

Closes JPEG codec device. Un-finished codec operation is interrupted, and output data are
discarded.

Parameters
[in] p_ctrl Pointer to the control block

set in
SF_JPEG_Decode_Open().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,165 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > JPEG Decode Framework Interface > sf_jpeg_decode_api_t Struct Reference

◆ horizontalStrideSet

ssp_err_t(* sf_jpeg_decode_api_t::horizontalStrideSet) (sf_jpeg_decode_ctrl_t *const p_ctrl, uint32_t
horizontal_stride)

Configure the horizontal stride value.

Parameters
[in] p_ctrl Pointer to the control block

initialized in
SF_JPEG_Decode_Open().

[out] horizontal_stride Set the horizontal stride
value, in pixels

◆ imageSizeGet

ssp_err_t(* sf_jpeg_decode_api_t::imageSizeGet) (sf_jpeg_decode_ctrl_t *const p_ctrl, uint16_t
*p_horizontal_size, uint16_t *p_vertical_size)

Obtain the size of the image. This function is only useful for decoding a JPEG image.

Parameters
[in] p_ctrl Pointer to the control block

initialized in
SF_JPEG_Decode_Open().

[out] p_horizontal_size Width of the image, in pixels

[out] p_vertical_size Height of the image, in
pixels

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,166 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > JPEG Decode Framework Interface > sf_jpeg_decode_api_t Struct Reference

◆ imageSubsampleSet

ssp_err_t(* sf_jpeg_decode_api_t::imageSubsampleSet) (sf_jpeg_decode_ctrl_t *const p_ctrl,
jpeg_decode_subsample_t horizontal_subsample, jpeg_decode_subsample_t vertical_subsample)

Configure the horizontal and vertical subsample values. This allows an application to reduce the
size of the decoded image.

Parameters
[in] p_ctrl Pointer to the control block

initialized in
SF_JPEG_Decode_Open().

[in] horizontal_subsample Set the horizontal subsample
value

[in] vertical_subsample Set the vertical subsample
value

◆ inputBufferSet

ssp_err_t(* sf_jpeg_decode_api_t::inputBufferSet) (sf_jpeg_decode_ctrl_t *const p_ctrl, void *const
p_buffer, uint32_t const buffer_size)

Feed data into JPEG codec module.

Parameters
[in] p_ctrl Pointer to the control block

initialized in
SF_JPEG_Decode_Open().

[in] p_buffer Buffer contains data to be
processed by the JPEG codec
module. The buffer starting
address must be 8-byte
aligned

[in] buffer_size Size of the data buffer, must
be multiple of 8 bytes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,167 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > JPEG Decode Framework Interface > sf_jpeg_decode_api_t Struct Reference

◆ linesDecodedGet

ssp_err_t(* sf_jpeg_decode_api_t::linesDecodedGet) (sf_jpeg_decode_ctrl_t *const p_ctrl, uint32_t
*const p_lines)

Obtain number of lines JPEG codec decoded.

Parameters
[in] p_ctrl Pointer to the control block

initialized in
SF_JPEG_Decode_Open().

[out] p_lines Number of lines decoded
into the output buffer.

◆ open

ssp_err_t(* sf_jpeg_decode_api_t::open) (sf_jpeg_decode_ctrl_t *const p_ctrl, sf_jpeg_decode_cfg_t
const *const p_cfg)

Acquire mutex, then handle driver initialization at the HAL layer. This function releases mutex
before it returns to the caller.

Parameters
[in,out] p_ctrl Pointer to a structure

allocated by user. Elements
initialized here.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,168 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > JPEG Decode Framework Interface > sf_jpeg_decode_api_t Struct Reference

◆ outputBufferSet

ssp_err_t(* sf_jpeg_decode_api_t::outputBufferSet) (sf_jpeg_decode_ctrl_t *const p_ctrl, void
*p_buffer, uint32_t buffer_size)

Read processed data from JPEG codec module.

Parameters
[in] p_ctrl Pointer to the control block

initialized in
SF_JPEG_Decode_Open().

[in] p_buffer User-supplied buffer space
to hold output from JPEG
codec module. The buffer
starting address must be
8-byte aligned

[in] buffer_size Size of the output data
buffer

◆ pixelFormatGet

ssp_err_t(* sf_jpeg_decode_api_t::pixelFormatGet) (sf_jpeg_decode_ctrl_t *const p_ctrl,
jpeg_decode_color_space_t *const p_color_space)

Obtain the pixel format of the image. This function is only useful for decoding a JPEG image.

Parameters
[in] p_ctrl Pointer to the control block

initialized in
SF_JPEG_Decode_Open().

[out] p_color_space Color space of the image

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,169 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > JPEG Decode Framework Interface > sf_jpeg_decode_api_t Struct Reference

◆ statusGet

ssp_err_t(* sf_jpeg_decode_api_t::statusGet) (sf_jpeg_decode_ctrl_t *const p_ctrl,
jpeg_decode_status_t *const p_status)

Obtain JPEG codec status

Parameters
[in] p_ctrl Pointer to the control block

initialized in
SF_JPEG_Decode_Open().

[out] p_status Status of current JPEG codec
module

◆ versionGet

ssp_err_t(* sf_jpeg_decode_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version Code and API version used.

◆ wait

ssp_err_t(* sf_jpeg_decode_api_t::wait) (sf_jpeg_decode_ctrl_t *const p_ctrl, jpeg_decode_status_t
*const p_status, uint32_t timeout)

Wait for current JPEG codec operation to finish

Parameters
[in] p_ctrl Pointer to the control block

initialized in
SF_JPEG_Decode_Open().

[out] p_status Status of current JPEG codec
module

[out] timeout Amount of time (in ThreadX
ticks) to wait

The documentation for this struct was generated from the following file:

sf_jpeg_decode_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,170 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > JPEG Decode Framework Interface > sf_jpeg_decode_api_t Struct Reference

 sf_jpeg_decode_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » JPEG Decode Framework
Interface

#include <sf_jpeg_decode_api.h>

Data Fields

sf_jpeg_decode_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_jpeg_decode_cfg_t const
*

p_cfg

 Pointer to the configuration structure for this instance.

sf_jpeg_decode_api_t const
*

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_jpeg_decode_api.h

5.1.2.39 Memory interface
Renesas Synergy Software Package Reference » Framework Interfaces

Interface for Memory API. More...

Data Structures

struct sf_memory_region_info_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,171 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Memory interface

struct sf_memory_info_t

struct sf_memory_cfg_t

struct sf_memory_api_t

struct sf_memory_instance_t

Macros

#define SF_MEMORY_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_memory_ctrl_t

Detailed Description

Interface for Memory API.

Summary
The Memory interface supports the following features.

Read from any memory
Erase memory
Write to Memory
Retrieve device specific information

Implemented by: Memory framework

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Memory Interface description: Memory Framework on sf_memory_qspi_nor

Macro Definition Documentation

◆ SF_MEMORY_API_VERSION_MAJOR

#define SF_MEMORY_API_VERSION_MAJOR (2U)

Register definitions, common services and error codes.

Typedef Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,172 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Memory interface

◆ sf_memory_ctrl_t

typedef void sf_memory_ctrl_t

SF Memory API framework control block. Allocate an instance specific control block to pass into the
framework API calls.

Implemented as

sf_memory_qspi_nor_instance_ctrl_t

 sf_memory_region_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Memory interface

#include <sf_memory_api.h>

Data Fields

uint32_t memory_start_address

 Start address of this memory region.

uint32_t memory_end_address

 End address of this memory region.

uint32_t minimum_erase_size

 Specify the minimum erase size of the memory type.

uint32_t minimum_write_size

 Specify the minimum write size of the memory type.

Detailed Description

Representation of a memory layout

The documentation for this struct was generated from the following file:

sf_memory_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,173 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Memory interface > sf_memory_info_t Struct Reference

 sf_memory_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Memory interface

#include <sf_memory_api.h>

Data Fields

uint32_t number_of_regions

 Number of memory regions supported by this memory type.

sf_memory_region_info_t * p_regions_info

 Memory region specific information.

Detailed Description

Memory information supported by the instance

The documentation for this struct was generated from the following file:

sf_memory_api.h

 sf_memory_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Memory interface

#include <sf_memory_api.h>

Data Fields

void const * p_extend

 Extension parameter for hardware specific settings.

Detailed Description

User configuration structure, used in open function

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,174 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Memory interface > sf_memory_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

sf_memory_api.h

 sf_memory_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Memory interface

#include <sf_memory_api.h>

Data Fields

ssp_err_t(* open)(sf_memory_ctrl_t *const p_api_ctrl, sf_memory_cfg_t const
*const p_cfg)

ssp_err_t(* read)(sf_memory_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest_address, uint32_t const memory_address, uint32_t const
num_bytes)

ssp_err_t(* write)(sf_memory_ctrl_t *const p_api_ctrl, uint8_t *const
p_src_address, uint32_t const memory_address, uint32_t const
num_bytes)

ssp_err_t(* flush)(sf_memory_ctrl_t *const p_api_ctrl)

ssp_err_t(* erase)(sf_memory_ctrl_t *const p_api_ctrl, uint32_t const
memory_address, uint32_t const num_bytes)

ssp_err_t(* infoGet)(sf_memory_ctrl_t *const p_api_ctrl, sf_memory_info_t
*const p_info)

ssp_err_t(* close)(sf_memory_ctrl_t *const p_api_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

SF_MEMORY functions implemented at the Framework layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,175 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Memory interface > sf_memory_api_t Struct Reference

◆ close

ssp_err_t(* sf_memory_api_t::close) (sf_memory_ctrl_t *const p_api_ctrl)

Closes the module.

Implemented as

SF_MEMORY_QSPI_NOR_Close
Parameters

[in] p_api_ctrl Control block set in
sf_memory_api_t::open call.

◆ erase

ssp_err_t(* sf_memory_api_t::erase) (sf_memory_ctrl_t *const p_api_ctrl, uint32_t const
memory_address, uint32_t const num_bytes)

Erases the specified number of bytes from the memory device.

Implemented as

SF_MEMORY_QSPI_NOR_Erase
Parameters

[in] p_api_ctrl Control block set in
sf_memory_api_t::open call.

[in] memory_address Address to start the erase
process at.

[in] num_bytes Number of bytes of data to
erase.

◆ flush

ssp_err_t(* sf_memory_api_t::flush) (sf_memory_ctrl_t *const p_api_ctrl)

Performs any buffered pending writes. This function MUST be called by the application after the
final write is called to complete any pending writes.

Implemented as

SF_MEMORY_QSPI_NOR_Flush
Parameters

[in] p_api_ctrl Control block set in
sf_memory_api_t::open call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,176 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Memory interface > sf_memory_api_t Struct Reference

◆ infoGet

ssp_err_t(* sf_memory_api_t::infoGet) (sf_memory_ctrl_t *const p_api_ctrl, sf_memory_info_t *const
p_info)

Returns information about the memory implementation.

Implemented as

SF_MEMORY_QSPI_NOR_InfoGet
Parameters

[in] p_api_ctrl Control block set in
sf_memory_api_t::open call.

[out] p_info Pointer to information
structure. All elements of
this structure will be set by
the function.

◆ open

ssp_err_t(* sf_memory_api_t::open) (sf_memory_ctrl_t *const p_api_ctrl, sf_memory_cfg_t const
*const p_cfg)

Initialize Memory framework.

Implemented as

SF_MEMORY_QSPI_NOR_Open
Parameters

[in] p_api_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_config Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,177 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Memory interface > sf_memory_api_t Struct Reference

◆ read

ssp_err_t(* sf_memory_api_t::read) (sf_memory_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest_address, uint32_t const memory_address, uint32_t const num_bytes)

Reads data from the specified memory device address to the location specified by the caller.

Implemented as

SF_MEMORY_QSPI_NOR_Read
Parameters

[in] p_api_ctrl Control block set in
sf_memory_api_t::open call.

[in] p_dest_address Destination to read the data
into.

[in] memory_address Address to read the data
from.

[in] num_bytes Number of bytes of data to
read.

◆ versionGet

ssp_err_t(* sf_memory_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Implemented as

SF_MEMORY_QSPI_NOR_VersionGet
Parameters

[out] p_version Code and API version used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,178 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Memory interface > sf_memory_api_t Struct Reference

◆ write

ssp_err_t(* sf_memory_api_t::write) (sf_memory_ctrl_t *const p_api_ctrl, uint8_t *const
p_src_address, uint32_t const memory_address, uint32_t const num_bytes)

Writes the specified number of data bytes to the specified device memory address.

Implemented as

SF_MEMORY_QSPI_NOR_Write
Parameters

[in] p_api_ctrl Control block set in
sf_memory_api_t::open call.

[in] p_src_address Address to read the data to
be written.

[in] memory_address Address to write the data to.

[in] num_bytes Number of bytes of data to
write.

The documentation for this struct was generated from the following file:

sf_memory_api.h

 sf_memory_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Memory interface

#include <sf_memory_api.h>

Data Fields

sf_memory_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_memory_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

sf_memory_api_t const * p_api

 Pointer to the API structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,179 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Memory interface > sf_memory_instance_t Struct Reference

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_memory_api.h

5.1.2.40 Messaging Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated Messaging Framework Interface. More...

Data Structures

struct sf_message_header_t

struct sf_message_instance_range_t

struct sf_message_subscriber_t

struct sf_message_subscriber_list_t

struct sf_message_callback_args_t

struct sf_message_post_err_t

struct sf_message_buffer_ctrl_t

 Buffer control block structure. More...

struct sf_message_cfg_t

struct sf_message_acquire_cfg_t

struct sf_message_post_cfg_t

struct sf_message_api_t

struct sf_message_instance_t

Macros

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,180 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface

#define SF_MESSAGE_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_message_ctrl_t

Enumerations

enum sf_message_state_t { SF_MESSAGE_STATE_CLOSED = 0,
SF_MESSAGE_STATE_OPENED }

enum sf_message_callback_event_t { SF_MESSAGE_CALLBACK_EVENT_ACK
= 0, SF_MESSAGE_CALLBACK_EVENT_NAK }

enum sf_message_priority_t { SF_MESSAGE_PRIORITY_NORMAL = 0,
SF_MESSAGE_PRIORITY_HIGH }

enum sf_message_release_option_t {
SF_MESSAGE_RELEASE_OPTION_NONE = 0,
SF_MESSAGE_RELEASE_OPTION_FORCED_RELEASE = 1,
SF_MESSAGE_RELEASE_OPTION_ACK = 2,
SF_MESSAGE_RELEASE_OPTION_NAK = 4 }

Detailed Description

RTOS-integrated Messaging Framework Interface.

Summary
This module is a ThreadX-aware Messaging Framework. This Interface is implemented by Messaging
Framework.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Messaging Interface description: Messaging Framework

Macro Definition Documentation

◆ SF_MESSAGE_API_VERSION_MAJOR

#define SF_MESSAGE_API_VERSION_MAJOR (2U)

Version of the API defined in this file

Typedef Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,181 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface

◆ sf_message_ctrl_t

typedef void sf_message_ctrl_t

Message framework control block. Allocate an instance specific control block to pass into the
message framework API calls.

Implemented as

sf_message_instance_ctrl_t

Enumeration Type Documentation

◆ sf_message_callback_event_t

enum sf_message_callback_event_t

Messaging callback response

Enumerator

SF_MESSAGE_CALLBACK_EVENT_ACK ACK response.

SF_MESSAGE_CALLBACK_EVENT_NAK NAK response.

◆ sf_message_priority_t

enum sf_message_priority_t

Messaging framework state

Enumerator

SF_MESSAGE_PRIORITY_NORMAL Gives a message to be sent normal priority.

SF_MESSAGE_PRIORITY_HIGH Gives a message to be sent higher priority
than previous ones.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,182 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface

◆ sf_message_release_option_t

enum sf_message_release_option_t

Messaging option

Enumerator

SF_MESSAGE_RELEASE_OPTION_NONE No option.

SF_MESSAGE_RELEASE_OPTION_FORCED_RELEA
SE

Buffer forced release option.

SF_MESSAGE_RELEASE_OPTION_ACK ACK response (note if both ACK and NAK are
set at same time, NAK.

SF_MESSAGE_RELEASE_OPTION_NAK NAK response.

◆ sf_message_state_t

enum sf_message_state_t

Messaging framework state

Enumerator

SF_MESSAGE_STATE_CLOSED Messaging framework is closed.

SF_MESSAGE_STATE_OPENED Messaging framework is opened.

 sf_message_header_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Messaging Framework
Interface

#include <sf_message_api.h>

Detailed Description

Message header definition

The documentation for this struct was generated from the following file:

sf_message_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,183 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface > sf_message_instance_range_t Struct Reference

 sf_message_instance_range_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Messaging Framework
Interface

#include <sf_message_api.h>

Data Fields

uint8_t start

 Start of the event class instance range.

uint8_t end

 End of the event class instance range.

Detailed Description

Subscriber lists definitions

The documentation for this struct was generated from the following file:

sf_message_api.h

 sf_message_subscriber_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Messaging Framework
Interface

#include <sf_message_api.h>

Data Fields

TX_QUEUE * p_queue

 Pointer to the message queue for subscriber thread.

sf_message_instance_range
_t

instance_range

 Range of the event class instance to receive message.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,184 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface > sf_message_subscriber_t Struct Reference

Detailed Description

Message subscriber

The documentation for this struct was generated from the following file:

sf_message_api.h

 sf_message_subscriber_list_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Messaging Framework
Interface

#include <sf_message_api.h>

Data Fields

sf_message_event_class_t event_class

 Event class code.

uint16_t number_of_nodes

 Number of nodes in the subscriber group.

sf_message_subscriber_t ** pp_subscriber_group

 Subscriber group for the event class.

Detailed Description

Message subscriber list

The documentation for this struct was generated from the following file:

sf_message_api.h

 sf_message_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Messaging Framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,185 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface > sf_message_callback_args_t Struct Reference

Interface

#include <sf_message_api.h>

Data Fields

sf_message_callback_event_
t

event

 Event code.

void const * p_context

 Context provided to user during callback.

Detailed Description

Message framework callback parameters

The documentation for this struct was generated from the following file:

sf_message_api.h

 sf_message_post_err_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Messaging Framework
Interface

#include <sf_message_api.h>

Data Fields

TX_QUEUE * p_queue

 Queue.

Detailed Description

Post error information structure

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,186 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface > sf_message_post_err_t Struct Reference

sf_message_api.h

 sf_message_buffer_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Messaging Framework
Interface

Buffer control block structure. More...

#include <sf_message_api.h>

Data Structures

struct st_buffer_ctrl_flag

Data Fields

void(* p_callback)(sf_message_callback_args_t *)

 Optional user callback function.

void const * p_context

 Context provided to user during callback.

Detailed Description

Buffer control block structure.

The documentation for this struct was generated from the following file:

sf_message_api.h

 sf_message_buffer_ctrl_t::st_buffer_ctrl_flag Struct Reference

#include <sf_message_api.h>

Data Fields

uint32_t semaphore: 16

 Counting semaphore to prevent a buffer from being released.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,187 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface > sf_message_buffer_ctrl_t Struct Reference > sf_message_buffer_ctrl_t::st_buffer_ctrl_flag Struct Reference

uint32_t buffer_keep: 1

 Buffer keep request.

uint32_t nak_response: 1

 NAK (ORed logic for multiple subscribers)

uint32_t reserved: 5

 Reserved bits.

uint32_t in_use: 1

 Buffer in-use.

Detailed Description

Flags

The documentation for this struct was generated from the following file:

sf_message_api.h

 sf_message_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Messaging Framework
Interface

#include <sf_message_api.h>

Data Fields

void * p_work_memory_start

 Start address of the memory area.

uint32_t work_memory_size_bytes

 Size of working memory area in bytes.

uint32_t buffer_size

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,188 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface > sf_message_cfg_t Struct Reference

 Bytes of the message block.

sf_message_subscriber_list_t
**

pp_subscriber_lists

 Pointer array to the subscriber lists.

uint8_t * p_block_pool_name

 Pointer to the block pool name.

Detailed Description

Messaging framework configuration structure definition

The documentation for this struct was generated from the following file:

sf_message_api.h

 sf_message_acquire_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Messaging Framework
Interface

#include <sf_message_api.h>

Data Fields

bool buffer_keep

 Buffer keep option.

Detailed Description

Messaging framework Post API function configuration structure definition

The documentation for this struct was generated from the following file:

sf_message_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,189 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface > sf_message_post_cfg_t Struct Reference

 sf_message_post_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Messaging Framework
Interface

#include <sf_message_api.h>

Data Fields

sf_message_priority_t priority

 Message priority.

void(* p_callback)(sf_message_callback_args_t *)

 User callback function.

void const * p_context

 Context provided to user during callback.

Detailed Description

Messaging framework Acquire API function configuration structure definition

The documentation for this struct was generated from the following file:

sf_message_api.h

 sf_message_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Messaging Framework
Interface

#include <sf_message_api.h>

Data Fields

ssp_err_t(* open)(sf_message_ctrl_t *const p_ctrl, sf_message_cfg_t const
*const p_cfg)

ssp_err_t(* close)(sf_message_ctrl_t *const p_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,190 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface > sf_message_api_t Struct Reference

ssp_err_t(* bufferAcquire)(sf_message_ctrl_t const *const p_ctrl,
sf_message_header_t **pp_buffer, sf_message_acquire_cfg_t const
*const p_acquire_cfg, uint32_t const wait_option)

ssp_err_t(* bufferRelease)(sf_message_ctrl_t *const p_ctrl,
sf_message_header_t *const p_buffer, sf_message_release_option_t
const option)

ssp_err_t(* post)(sf_message_ctrl_t *const p_ctrl, sf_message_header_t const
*const p_buffer, sf_message_post_cfg_t const *const p_post_cfg,
sf_message_post_err_t *const p_post_err, uint32_t const wait_option)

ssp_err_t(* pend)(sf_message_ctrl_t const *const p_ctrl, TX_QUEUE const *const
p_queue, sf_message_header_t **pp_buffer, uint32_t const
wait_option)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Messaging Framework API structure. Implementations will use the following API.

Field Documentation

◆ bufferAcquire

ssp_err_t(* sf_message_api_t::bufferAcquire) (sf_message_ctrl_t const *const p_ctrl,
sf_message_header_t **pp_buffer, sf_message_acquire_cfg_t const *const p_acquire_cfg, uint32_t
const wait_option)

Acquire buffer for message passing from the block.

Implemented as

SF_MESSAGE_BufferAcquire()
Parameters

[in] p_ctrl Pointer to the messaging
control block

[in,out] pp_buffer Pointer to the pointer to the
allocated buffer memory

[in] p_acquire_cfg Pointer to the buffer
acquisition configuration

[in] wait_option Wait option (TX_NO_WAIT,
TX_WAIT_FOREVER or
numerical values)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,191 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface > sf_message_api_t Struct Reference

◆ bufferRelease

ssp_err_t(* sf_message_api_t::bufferRelease) (sf_message_ctrl_t *const p_ctrl, sf_message_header_t
*const p_buffer, sf_message_release_option_t const option)

Release buffer obtained from SF_MESSAGE_BufferAcquire().

Implemented as

SF_MESSAGE_BufferRelease()
Parameters

[in] p_ctrl Pointer to the messaging
control block

[in] p_buffer Pointer to the buffer
allocated by
SF_MESSAGE_BufferAcquire(
)

[in] option Buffer release option (SF_ME
SSAGE_RELEASE_OPTION_N
ONE, SF_MESSAGE_RELEASE
_OPTION_ACK, SF_MESSAGE_
RELEASE_OPTION_NAK, SF_M
ESSAGE_RELEASE_OPTION_F
ORCED_RELEASE)

◆ close

ssp_err_t(* sf_message_api_t::close) (sf_message_ctrl_t *const p_ctrl)

Finalize message framework.

Implemented as

SF_MESSAGE_Close()
Parameters

[in,out] p_ctrl Pointer to the messaging
control block

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,192 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface > sf_message_api_t Struct Reference

◆ open

ssp_err_t(* sf_message_api_t::open) (sf_message_ctrl_t *const p_ctrl, sf_message_cfg_t const
*const p_cfg)

Initialize message framework. Initiate the messaging framework control block, configure the work
memory corresponding to the configuration parameters.

Implemented as

SF_MESSAGE_Open()
Parameters

[in,out] p_ctrl Pointer to the messaging
control block

[in] p_cfg Pointer to configuration
structure

◆ pend

ssp_err_t(* sf_message_api_t::pend) (sf_message_ctrl_t const *const p_ctrl, TX_QUEUE const *const
p_queue, sf_message_header_t **pp_buffer, uint32_t const wait_option)

Pend message.

Implemented as

SF_MESSAGE_Pend()
Parameters

[in] p_ctrl Pointer to the messaging
control block

[in] p_queue Pointer to a threadX
message queue object

[in,out] pp_buffer Pointer to the pointer to the
buffer where message is
stored.

[in] wait_option Wait option (TX_NO_WAIT,
TX_WAIT_FOREVER or
numerical values)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,193 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface > sf_message_api_t Struct Reference

◆ post

ssp_err_t(* sf_message_api_t::post) (sf_message_ctrl_t *const p_ctrl, sf_message_header_t const
*const p_buffer, sf_message_post_cfg_t const *const p_post_cfg, sf_message_post_err_t *const
p_post_err, uint32_t const wait_option)

Post message to the subscribers.

Implemented as

SF_MESSAGE_Post()
Parameters

[in] p_ctrl Pointer to the messaging
control block

[in] p_buffer Pointer to the buffer
allocated by
SF_MESSAGE_BufferAcquire(
)

[in] p_post_cfg Pointer to the message post
configuration

[in] wait_option Wait option (TX_NO_WAIT,
TX_WAIT_FOREVER or
numerical values)

◆ versionGet

ssp_err_t(* sf_message_api_t::versionGet) (ssp_version_t *const p_version)

Get the version of the messaging framework.

Implemented as

SF_MESSAGE_VersionGet()
Parameters

[in] p_version Pointer to the memory
where to store the version
number

The documentation for this struct was generated from the following file:

sf_message_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,194 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Messaging Framework Interface > sf_message_instance_t Struct Reference

 sf_message_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Messaging Framework
Interface

#include <sf_message_api.h>

Data Fields

sf_message_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_message_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

sf_message_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_message_api.h

5.1.2.41 Power Profiles V2 Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

Power Profiles Framework Interface. More...

Data Structures

struct sf_power_profiles_v2_callback_args_t

struct sf_power_profiles_v2_ctrl_t

struct sf_power_profiles_v2_cfg_t

struct sf_power_profiles_v2_run_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,195 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Power Profiles V2 Framework Interface

struct sf_power_profiles_v2_low_power_cfg_t

struct sf_power_profiles_v2_api_t

struct sf_power_profiles_v2_instance_t

Macros

#define SF_POWER_PROFILES_V2_API_VERSION_MAJOR (3U)

Enumerations

enum sf_power_profiles_v2_event_t {
SF_POWER_PROFILES_V2_EVENT_PRE_LOW_POWER,
SF_POWER_PROFILES_V2_EVENT_POST_LOW_POWER }

Detailed Description

Power Profiles Framework Interface.

Summary
This framework allows an application to apply power profiles at runtime. There are 2 types of
profiles: Run and Low Power. Applying a Run profile will change things like the system clock and
IOPORT settings. The MCU will continue to run during this process and will not be put into a low
power mode. Applying a Low Power profile will put the MCU into a low power mode. Which low power
mode is used is specified by the LPMv2 instance used. IOPORT settings can also be specified which
will be applied before entering the low power mode and after waking up.

The Deep Software Standby low power mode, available on some MCUs, will reset the MCU when the
woken up. In this case the callback will not be called and the IOPORT configuration will not be
applied after waking up.

This framework can be used with, or without, an RTOS.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Macro Definition Documentation

◆ SF_POWER_PROFILES_V2_API_VERSION_MAJOR

#define SF_POWER_PROFILES_V2_API_VERSION_MAJOR (3U)

Version of the API defined in this file

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,196 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Power Profiles V2 Framework Interface

◆ sf_power_profiles_v2_event_t

enum sf_power_profiles_v2_event_t

Options for the callback events.

Enumerator

SF_POWER_PROFILES_V2_EVENT_PRE_LOW_POW
ER

Callback just before entering low power mode.

SF_POWER_PROFILES_V2_EVENT_POST_LOW_PO
WER

Callback just after exiting the low power
mode.

 sf_power_profiles_v2_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Power Profiles V2
Framework Interface

#include <sf_power_profiles_v2_api.h>

Data Fields

sf_power_profiles_v2_event_
t

event

 Power profiles callback event.

void * p_context

 Placeholder for user data.

Detailed Description

Power profiles callback arguments definitions

The documentation for this struct was generated from the following file:

sf_power_profiles_v2_api.h

 sf_power_profiles_v2_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Power Profiles V2
Framework Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,197 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Power Profiles V2 Framework Interface > sf_power_profiles_v2_ctrl_t Struct Reference

#include <sf_power_profiles_v2_api.h>

Data Fields

uint32_t open

 Used by driver to check if pointer to control block is valid.

Detailed Description

Common control block. DO NOT INITIALIZE. Initialization occurs when SF_POWER_PROFILES_V2_Open
is called

The documentation for this struct was generated from the following file:

sf_power_profiles_v2_api.h

 sf_power_profiles_v2_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Power Profiles V2
Framework Interface

#include <sf_power_profiles_v2_api.h>

Data Fields

void const * p_extend

Detailed Description

Initialization configuration

Field Documentation

◆ p_extend

void const* sf_power_profiles_v2_cfg_t::p_extend

Pointer to additional settings (not currently in use)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,198 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Power Profiles V2 Framework Interface > sf_power_profiles_v2_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

sf_power_profiles_v2_api.h

 sf_power_profiles_v2_run_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Power Profiles V2
Framework Interface

#include <sf_power_profiles_v2_api.h>

Data Fields

ioport_cfg_t const * p_ioport_pin_tbl

cgc_clocks_cfg_t const * p_clock_cfg

void const * p_extend

Detailed Description

Run profile configuration

Field Documentation

◆ p_clock_cfg

cgc_clocks_cfg_t const* sf_power_profiles_v2_run_cfg_t::p_clock_cfg

Pointer to a CGC configuration

◆ p_extend

void const* sf_power_profiles_v2_run_cfg_t::p_extend

Pointer to additional settings

◆ p_ioport_pin_tbl

ioport_cfg_t const* sf_power_profiles_v2_run_cfg_t::p_ioport_pin_tbl

Pointer to IOPORT settings

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,199 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Power Profiles V2 Framework Interface > sf_power_profiles_v2_run_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

sf_power_profiles_v2_api.h

 sf_power_profiles_v2_low_power_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Power Profiles V2
Framework Interface

#include <sf_power_profiles_v2_api.h>

Data Fields

ioport_cfg_t const * p_ioport_pin_tbl_exit

ioport_cfg_t const * p_ioport_pin_tbl_enter

lpmv2_instance_t const * p_lower_lvl_lpm

void(* p_callback)(sf_power_profiles_v2_callback_args_t *p_args)

void * p_context

void const * p_extend

Detailed Description

Low Power profile configuration

Field Documentation

◆ p_callback

void(* sf_power_profiles_v2_low_power_cfg_t::p_callback) (sf_power_profiles_v2_callback_args_t
*p_args)

Callback function

◆ p_context

void* sf_power_profiles_v2_low_power_cfg_t::p_context

Placeholder for user data

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,200 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Power Profiles V2 Framework Interface > sf_power_profiles_v2_low_power_cfg_t Struct Reference

◆ p_extend

void const* sf_power_profiles_v2_low_power_cfg_t::p_extend

Pointer to additional settings

◆ p_ioport_pin_tbl_enter

ioport_cfg_t const* sf_power_profiles_v2_low_power_cfg_t::p_ioport_pin_tbl_enter

Pointer to IOPORT settings to apply before entering low power mode

◆ p_ioport_pin_tbl_exit

ioport_cfg_t const* sf_power_profiles_v2_low_power_cfg_t::p_ioport_pin_tbl_exit

Pointer to IOPORT settings to apply after exiting the low power mode

◆ p_lower_lvl_lpm

lpmv2_instance_t const* sf_power_profiles_v2_low_power_cfg_t::p_lower_lvl_lpm

Pointer to an LPMv2 instance

The documentation for this struct was generated from the following file:

sf_power_profiles_v2_api.h

 sf_power_profiles_v2_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Power Profiles V2
Framework Interface

#include <sf_power_profiles_v2_api.h>

Data Fields

ssp_err_t(* open)(sf_power_profiles_v2_ctrl_t *const p_ctrl,
sf_power_profiles_v2_cfg_t const *const p_cfg)

ssp_err_t(* runApply)(sf_power_profiles_v2_ctrl_t *const p_ctrl,
sf_power_profiles_v2_run_cfg_t const *const p_cfg)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,201 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Power Profiles V2 Framework Interface > sf_power_profiles_v2_api_t Struct Reference

ssp_err_t(* lowPowerApply)(sf_power_profiles_v2_ctrl_t *const p_ctrl,
sf_power_profiles_v2_low_power_cfg_t const *const p_cfg)

ssp_err_t(* close)(sf_power_profiles_v2_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Framework Power Profiles v2 API structure. Implementations will use the following API.

Field Documentation

◆ close

ssp_err_t(* sf_power_profiles_v2_api_t::close) (sf_power_profiles_v2_ctrl_t *const p_ctrl)

Closes the framework.

Implemented as

SF_POWER_PROFILES_V2_Close()
Parameters

[in] p_ctrl Pointer to control block set
in
SF_POWER_PROFILES_V2_Op
en.

◆ lowPowerApply

ssp_err_t(* sf_power_profiles_v2_api_t::lowPowerApply) (sf_power_profiles_v2_ctrl_t *const p_ctrl,
sf_power_profiles_v2_low_power_cfg_t const *const p_cfg)

Applies a Low Power profile.

Implemented as

SF_POWER_PROFILES_V2_LowPowerApply()
Parameters

[in] p_ctrl Pointer to control block set
in
SF_POWER_PROFILES_V2_Op
en.

[in] p_cfg Pointer to configuration
structure. Elements of the
structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,202 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Power Profiles V2 Framework Interface > sf_power_profiles_v2_api_t Struct Reference

◆ open

ssp_err_t(* sf_power_profiles_v2_api_t::open) (sf_power_profiles_v2_ctrl_t *const p_ctrl,
sf_power_profiles_v2_cfg_t const *const p_cfg)

Initializes the framework.

Implemented as

SF_POWER_PROFILES_V2_Open()
Parameters

[in,out] p_ctrl Pointer to a structure
allocated by user. Elements
initialized here.

[in] p_cfg Pointer to configuration
structure. Elements of the
structure must be set by
user.

◆ runApply

ssp_err_t(* sf_power_profiles_v2_api_t::runApply) (sf_power_profiles_v2_ctrl_t *const p_ctrl,
sf_power_profiles_v2_run_cfg_t const *const p_cfg)

Applies a Run profile.

Implemented as

SF_POWER_PROFILES_V2_RunApply()
Parameters

[in] p_ctrl Pointer to control block set
in
SF_POWER_PROFILES_V2_Op
en.

[in] p_cfg Pointer to configuration
structure. Elements of the
structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,203 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Power Profiles V2 Framework Interface > sf_power_profiles_v2_api_t Struct Reference

◆ versionGet

ssp_err_t(* sf_power_profiles_v2_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Implemented as

SF_POWER_PROFILES_V2_VersionGet()
Parameters

[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

sf_power_profiles_v2_api.h

 sf_power_profiles_v2_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Power Profiles V2
Framework Interface

#include <sf_power_profiles_v2_api.h>

Data Fields

sf_power_profiles_v2_ctrl_t
*

p_ctrl

 Pointer to the control structure for this instance.

sf_power_profiles_v2_cfg_t
const *

p_cfg

 Pointer to the configuration structure for this instance.

sf_power_profiles_v2_api_t
const *

p_api

 Pointer to the API structure for this instance.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,204 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Power Profiles V2 Framework Interface > sf_power_profiles_v2_instance_t Struct Reference

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_power_profiles_v2_api.h

5.1.2.42 SF Socket WIFI Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF Socket WIFI Framework Interface. More...

Data Structures

struct in_addr

struct sockaddr

struct sockaddr_in

struct sf_socket_ctrl_t

struct sf_socket_cfg_t

struct sf_socket_api_t

struct sf_socket_instance_t

Macros

#define SF_SOCKET_WIFI_API_VER_MAJOR (2U)

#define SF_SOCKET_WIFI_API_VER_MINOR (0U)

#define SF_SOCKET_WIFI_NO_OF_BIT_IN_BYTE (8U)

Typedefs

typedef int32_t socklen_t

Functions

int socket (int domain, int type, int protocol)

 This creates socket for communication. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,205 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

int close (int sockfd)

 This closes socket. More...

int bind (int sockfd, const struct sockaddr *p_local_sock_addr, socklen_t
addrlen)

 This binds socket to IP address. More...

int listen (int sockfd, int backlog)

 This listens for connection on socket. More...

int connect (int sockfd, const struct sockaddr *p_serv_addr, socklen_t
addrlen)

 This connects with remote socket(stream socket). More...

int accept (int sockfd, struct sockaddr *p_cliaddr, socklen_t *p_addrlen)

 This accepts connection from remote socket. More...

ssize_t send (int sockfd, const void *p_buf, size_t length, int flags)

 This sends data over STREAM socket. More...

ssize_t recv (int sockfd, void *p_buf, size_t length, int flags)

 This receives data over STREAM socket. More...

ssize_t sendto (int sockfd, const void *p_buf, size_t length, int flags, const
struct sockaddr *p_dest_addr, socklen_t addrlen)

 This sends data over DGRAM socket. More...

ssize_t recvfrom (int sockfd, void *p_buf, size_t length, int flags, struct
sockaddr *p_src_addr, socklen_t *p_addrlen)

 This receives data over DGRAM socket. More...

int setsockopt (int sockfd, int level, int optname, const void *p_optval,
socklen_t optlen)

 This updates socket specific options. Quectel CATM1 supports
following socket options SO_SNDBUF: Transmission packet size
TCP_MAX_RETRIES: Maximum Number of retransmission
TCP_MAX_RTO: Maximum interval time of TCP retransmission. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,206 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

int getsockopt (int sockfd, int level, int optname, void *p_optval,
socklen_t *p_optlen)

 This reads socket specific options. Quectel CATM1 supports following
socket options SO_SNDBUF: Transmission packet size
TCP_MAX_RETRIES: Maximum Number of retransmission
TCP_MAX_RTO: Maximum interval time of TCP retransmission. More...

int select (int nfds, fd_set *p_readfds, fd_set *p_writefds, fd_set
*p_exceptfds, struct timeval *p_timeout)

 This waits for any activity on socket. More...

Detailed Description

RTOS-integrated SF Socket WIFI Framework Interface.

Summary
This SSP Interface provides access OnChip stack BSD Socket API.

Macro Definition Documentation

◆ SF_SOCKET_WIFI_API_VER_MAJOR

#define SF_SOCKET_WIFI_API_VER_MAJOR (2U)

Major Version of the API defined in this file

◆ SF_SOCKET_WIFI_API_VER_MINOR

#define SF_SOCKET_WIFI_API_VER_MINOR (0U)

Minor Version of the API defined in this file

◆ SF_SOCKET_WIFI_NO_OF_BIT_IN_BYTE

#define SF_SOCKET_WIFI_NO_OF_BIT_IN_BYTE (8U)

SF WiFi Socket Number of Bits in a Byte

Typedef Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,207 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

◆ socklen_t

typedef int32_t socklen_t

Socket Structure Length

Function Documentation

◆ accept()

int accept (int sockfd, struct sockaddr * p_cliaddr, socklen_t * p_addrlen)

This accepts connection from remote socket.

Accept connection request from remote.

Parameters
[in] sockfd Local socket

[out] p_cliaddr Pointer to remote socket
address which trying to
connect

[out] p_addrlen Pointer to address length of
client socket address

Implements accept This function accepts connection from remote socket. This API is used only with
socket type STREAM. The call is blocked if no connection is present or the socket is blocking.

Parameters
[in] sockfd Socket File Descriptor

[out] p_cliaddr Remote machine Network
address

[out] p_addrlen Size of Socket address
structure

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error accepting
the connection

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Connection is received successfully.

Implements accept This function accepts connection from remote socket. This API is used only with
socket type STREAM. The call is blocked if no connection is present or the socket is blocking.

Parameters
[in] sockfd Socket File Descriptor

[out] p_cliaddr Remote machine Network

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,208 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

address (Can be NULL)

[out] p_addrlen Size of Socket address
structure(Can be NULL)

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error accepting the connection or invalid
input parameters

Returns
Otherwise Connection is received successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,209 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

◆ bind()

int bind (int sockfd, const struct sockaddr * p_local_sock_addr, socklen_t addrlen)

This binds socket to IP address.

Bind socket to interface which is identified by IP address

Parameters
[in] sockfd Local socket

[in] p_local_sock_addr Pointer to local socket
address

[in] addrlen Size of sock address
structure

Implements bind This function binds socket to given IP address and port.

Parameters
sockfd Socket file descriptor

p_local_sock_addr Socket address structure

addrlen Size of Socket address structure

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Binding socket failed

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket is bound successfully.

Implements bind This function binds socket to given IP address and port.

Parameters
sockfd Socket file descriptor

p_local_sock_addr Socket address structure

addrlen Size of Socket address structure

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Binding socket failed or invalid input
parameters

Returns
Otherwise Socket is bound successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,210 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

◆ close()

int close (int sockfd)

This closes socket.

API which closes socket

Parameters
[in] sockfd Local socket

Implements close Close opened socket

Parameters
[in] sockfd Socket file descriptor

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Closing socket
failed

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket is closed successfully.

Implements close Close opened socket

Parameters
[in] sockfd Socket file descriptor

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Closing socket failed or invalid input
parameters

Returns
Otherwise Socket is closed successfully.

◆ connect()

int connect (int sockfd, const struct sockaddr * p_serv_addr, socklen_t addrlen)

This connects with remote socket(stream socket).

Establish TCP connection with remote socket

Parameters
[in] sockfd Local socket

[in] p_serv_addr Pointer to remote socket
address

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,211 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

[in] addrlen Size of sock address
structure

Implements connect This function connects local socket with remote socket. The call is blocked
until a connection is established or error is returned.

Parameters
[in] sockfd Socket File Descriptor

[in] p_serv_addr Remote machine Network
address

[in] addrlen Size of Socket address
structure

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error occurred.

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket is connected successfully.

Implements connect This function connects local socket with remote socket. The call is blocked
until a connection is established or error is returned.

Parameters
[in] sockfd Socket File Descriptor

[in] p_serv_addr Remote machine Network
address

[in] addrlen Size of Socket address
structure

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error occurred or invalid input parameters

Returns
Otherwise Socket is connected successfully.

◆ getsockopt()

int getsockopt (int sockfd, int level, int optname, void * p_optval, socklen_t * p_optlen)

This reads socket specific options. Quectel CATM1 supports following socket options SO_SNDBUF:
Transmission packet size TCP_MAX_RETRIES: Maximum Number of retransmission TCP_MAX_RTO:
Maximum interval time of TCP retransmission.

Get Socket options.

Parameters

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,212 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

[in] sockfd Local socket

[in] level Sockets API level

[in] optname Option to be get

[out] p_optval Option value to be get

[in] p_optlen Length of option value

Implements getsockopt This gets options for an existing socket.

Parameters
[in] sockfd Socket file descriptor

[in] level Level

[in] optname Socket option name

[out] p_optval Socket option value

[out] p_optlen Size of Socket option

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error reading
socket option

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket option read successfully.

This reads socket specific options. Quectel CATM1 supports following socket options SO_SNDBUF:
Transmission packet size TCP_MAX_RETRIES: Maximum Number of retransmission TCP_MAX_RTO:
Maximum interval time of TCP retransmission.

Implements getsockopt This gets options for an existing socket.

Parameters
[in] sockfd Socket file descriptor

[in] level Level

[in] optname Socket option name

[out] p_optval Socket option value

[out] p_optlen Size of Socket option

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error reading socket option or invalid socket
descriptor

Returns
Otherwise Socket option read successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,213 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

◆ listen()

int listen (int sockfd, int backlog)

This listens for connection on socket.

Listen for tcp connection. Set socket in listen mode for tcp connection.

Parameters
[in] sockfd Local socket

[in] backlog Max number of connection
queue.

Implements listen This function listen for connection on socket.

Parameters
[in] sockfd Socket File Descriptor

[in] backlog number of maximum
connection can be accepted

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Failed to set socket in Listen mode

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Set socket in Listen mode successfully.

Implements listen This function listen for connection on socket.

Parameters
[in] sockfd Socket File Descriptor

[in] backlog number of maximum
connection can be accepted

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Failed to set socket in Listen mode or invalid
input parameters

Returns
Otherwise Set socket in Listen mode successfully.

◆ recv()

ssize_t recv (int sockfd, void * p_buf, size_t length, int flags)

This receives data over STREAM socket.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,214 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

Receive data from remote socket.

Parameters
[in] sockfd Local socket

[out] p_buf Pointer to data buffer where
data will be received

[in] length Maximum length of data
which can be received

[in] flags Socket flags

Implements receive This function receives data on a stream socket in connected state. If no packet
is available, the socket is blocked until it is set to non-blocking. The application must provide a
valid buffer to receive the payload. If the buffer length is smaller than the available payload, the
API will do a partial copy, and hold on the rest of the payload for a subsequent call to the API.

Parameters
[in] sockfd Socket File Descriptor

[out] p_buf Buffer to read data

[in] length Data length

[in] flags Socket flag

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Failed to receive
data.

Returns
Otherwise Number of Data bytes received successfully.

Implements receive This function receives data on a stream socket in connected state. If no packet
is available, the socket is blocked until it is set to non-blocking. The application must provide a
valid buffer to receive the payload. If the buffer length is smaller than the available payload, the
API will do a partial copy, and hold on the rest of the payload for a subsequent call to the API.

Parameters
[in] sockfd Socket File Descriptor

[out] p_buf Buffer to read data

[out] length Data length

[in] flags Socket flag

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Failed to receive data or invalid input
parameters

Returns
Otherwise Data received successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,215 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

◆ recvfrom()

ssize_t recvfrom (int sockfd, void * p_buf, size_t length, int flags, struct sockaddr * p_src_addr,
socklen_t * p_addrlen)

This receives data over DGRAM socket.

Receive data from remote socket.

Parameters
[in] sockfd Local socket

[out] p_buf Pointer to data buffer where
data will be received

[in] length Maximum length of data
which can be received

[in] flags Socket flag

[out] p_src_addr Pointer to remote socket
address which has sent data

[out] p_addrlen Length of socket address
structure

Implements recvfrom This function receives data on a dgram socket. If no packet is available, the
socket is blocked until it is set to non-blocking. The application must provide a valid buffer to
receive the payload. If the buffer length is smaller than the available payload, the API will do a
partial copy, and hold on the rest of the payload for a subsequent call to the API.

Parameters
[in] sockfd Socket file descriptor

[out] p_buf Data buffer pointer to read
data

[in] length Length of data to read

[in] flags Flags

[in] p_src_addr Remote machine network
address

[in] p_addrlen Size of Remote machine
network

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error receiving
data

Returns
Otherwise Numbers of data bytes received successfully.

Implements recvfrom This function receives data on a dgram socket. If no packet is available, the
socket is blocked until it is set to non-blocking. The application must provide a valid buffer to

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,216 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

receive the payload. If the buffer length is smaller than the available payload, the API will do a
partial copy, and hold on the rest of the payload for a subsequent call to the API.

Parameters
[in] sockfd Socket file descriptor

[out] p_buf Data buffer pointer to read
data

[in] length Length of data to read

[in] flags Flags

[in] p_src_addr Remote machine network
address (Can be NULL)

[in] p_addrlen Size of Remote machine
network (Can be NULL)

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error receiving data or invalid input
parameters

Returns
Otherwise Numbers of data bytes received successfully.

◆ select()

int select (int nfds, fd_set * p_readfds, fd_set * p_writefds, fd_set * p_exceptfds, struct timeval *
p_timeout)

This waits for any activity on socket.

Wait on a given socket for specified amount of time. In case of any activity e.g. arrival of packet it
comes out of wait.

Parameters
[in] nfds Max fd

[in] p_readfds Pointer to fd_set to check
whether data is available for
read

[in] p_writefds Pointer to fd_set to check
whether data is available for
write

[in] p_exceptfds Pointer to fd_set to check
whether exceptional
condition occurred

[in] p_timeout Wait time in milliseconds

Implements select Allow an application thread to block on a given socket handle for a specified
time period. This API checks for any activity on specified socket, for example arrival of a packet at

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,217 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

the receive queue.

Parameters
[in] nfds Number of socket fds in to

check

[in] p_readfds Read socket fd set

[in] p_writefds Write socket fd set. If no
descriptor is to be tested for
writing, p_writefds should be
NULL

[in] p_exceptfds Exceptional socket fd set. If
no descriptor is to be tested
for exceptions, p_exceptfds
should be NULL

[in] p_timeout Timeout

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Timeout occurred, no activity.

Returns
Otherwise Activity detected(Packet available).

Implements select Allow an application thread to block on a given socket handle for a specified
time period. This API checks for any activity on specified socket, for example arrival of a packet at
the receive queue.

Parameters
[in] nfds Number of socket fds in to

check

[in] p_readfds Read socket fd set

[in] p_writefds Write socket fd set - API
does not used this
parameter

[in] p_exceptfds Exceptional socket fd set -
API does not used this
parameter

[in] p_timeout Timeout

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Timeout occurred, no activity or invalid
socket descriptor

Returns
Otherwise Activity detected(Packet available).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,218 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

◆ send()

ssize_t send (int sockfd, const void * p_buf, size_t length, int flags)

This sends data over STREAM socket.

Send data to remote socket.

Parameters
[in] sockfd Local socket

[in] p_buf Pointer to data buffer

[in] length Data buffer length

[in] flags Socket flags

Implements send This function sends data on a stream socket in connected state.

Parameters
[in] sockfd Socket File Descriptor

[in] p_buf Buffer data to send

[in] length Data length

[in] flags Socket flag

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Failed to send
data.

Returns
Otherwise Number of Data bytes sent successfully.

Implements send This function sends data on a stream socket in connected state.

Parameters
[in] sockfd Socket File Descriptor

[in] p_buf Buffer data to send

[in] length Data length

[in] flags Socket flag

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Failed to send data or invalid input
parameters

Returns
Otherwise Data sent successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,219 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

◆ sendto()

ssize_t sendto (int sockfd, const void * p_buf, size_t length, int flags, const struct sockaddr *
p_dest_addr, socklen_t addrlen)

This sends data over DGRAM socket.

Send data to remote socket.

Parameters
[in] sockfd Local socket

[in] p_buf Pointer to data buffer to sent

[in] length Data buffer length

[in] flags Socket flag

[in] p_dest_addr Pointer to remote socket
address where to send data

[in] addrlen Length of socket address
structure

Implements sendto This function sends data to remote.

Parameters
[in] sockfd Socket File Descriptor

[in] p_buf Buffer data pointer

[in] length Length of data

[in] flags Flag

[in] p_dest_addr Address of remote UDP
server

[in] addrlen Size of Network address
structure

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error Sending
data.

Returns
Otherwise Numbers of bytes sent successfully.

Implements sendto This function sends data to remote.

Parameters
[in] sockfd Socket File Descriptor

[in] p_buf Buffer data pointer

[in] length Length of data

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,220 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

[in] flags Flag

[in] p_dest_addr Address of remote UDP
server

[in] addrlen Size of Network address
structure

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error Sending data or invalid input
parameters

Returns
Otherwise Numbers of bytes sent successfully.

◆ setsockopt()

int setsockopt (int sockfd, int level, int optname, const void * p_optval, socklen_t optlen)

This updates socket specific options. Quectel CATM1 supports following socket options SO_SNDBUF:
Transmission packet size TCP_MAX_RETRIES: Maximum Number of retransmission TCP_MAX_RTO:
Maximum interval time of TCP retransmission.

Set Socket options.

Parameters
[in] sockfd Local socket

[in] level Sockets API level

[in] optname Option to be set

[in] p_optval Option value to be set

[in] optlen Length of option value

Implements setsockopt This sets options for an existing socket.

Parameters
[in] sockfd Socket file descriptor

[in] level Level

[in] optname Socket option name

[in] p_optval Socket option value

[in] optlen Size of Socket option

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error setting
socket option

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket option set successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,221 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

This updates socket specific options. Quectel CATM1 supports following socket options SO_SNDBUF:
Transmission packet size TCP_MAX_RETRIES: Maximum Number of retransmission TCP_MAX_RTO:
Maximum interval time of TCP retransmission.

Implements setsockopt This sets options for an existing socket.

Parameters
[in] sockfd Socket file descriptor

[in] level Level

[in] optname Socket option name

[in] p_optval Socket option value

[in] optlen Size of Socket option

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error setting socket option or invalid socket
descriptor

Returns
Otherwise Socket option set successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,222 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

◆ socket()

int socket (int domain, int type, int protocol)

This creates socket for communication.

API which creates socket

Parameters
[in] domain Socket family

[in] type Socket type

[in] protocol Protocol type

Implements socket Creates socket with given parameters.

Parameters
[in] domain Network Domain

[in] type Socket type

[in] protocol Protocol type

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Socket creation failed

Returns
Otherwise Socket descriptor of newly created socket

Implements socket Creates socket with given parameters.

Parameters
[in] domain Network Domain

[in] type Socket type

[in] protocol Protocol type

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Socket creation failed

Returns
Otherwise Socket created successfully

 in_addr Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket CELLULAR

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,223 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface > in_addr Struct Reference

Framework InterfaceRenesas Synergy Software Package Reference » Framework Interfaces » | SF
Socket WIFI Framework InterfaceRenesas Synergy Software Package Reference » Framework
Interfaces » | SF Socket WIFI Framework Interface

#include <sf_wifi_qca4010_socket_api.h>

Data Fields

unsigned long s_addr

 load with inet_aton() More...

Detailed Description

IP address used by sockaddr

Socket Internet Address structure

Field Documentation

◆ s_addr

ULONG in_addr::s_addr

load with inet_aton()

Load with inet_aton()

The documentation for this struct was generated from the following files:

sf_cellular_socket_api.h
sf_socket_api.h
sf_wifi_qca4010_socket_api.h
nx_bsd.h
nxd_bsd.h

 sockaddr Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket CELLULAR
Framework InterfaceRenesas Synergy Software Package Reference » Framework Interfaces » | SF
Socket WIFI Framework InterfaceRenesas Synergy Software Package Reference » Framework
Interfaces » | SF Socket WIFI Framework Interface

#include <sf_wifi_qca4010_socket_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,224 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface > sockaddr Struct Reference

Data Fields

short sin_family

 Address family.

unsigned short sin_port

 Port number.

struct in_addr sin_addr

 IP Address.

char sin_zero [8]

 zero this if you want to More...

Detailed Description

Socket Address information

Socket Internet Address structure with port and family

Field Documentation

◆ sin_zero

char sockaddr::sin_zero

zero this if you want to

Zero this if you want to.

The documentation for this struct was generated from the following files:

sf_cellular_socket_api.h
sf_socket_api.h
sf_wifi_qca4010_socket_api.h
nx_bsd.h
nxd_bsd.h

 sf_socket_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket WIFI Framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,225 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface > sf_socket_ctrl_t Struct Reference

Interface

#include <sf_socket_api.h>

Data Fields

sf_wifi_onchip_stack_instanc
e_t *

p_lower_lvl_onchip_wifi

 low level wifi interface

Detailed Description

Socket Interface control structure

The documentation for this struct was generated from the following file:

sf_socket_api.h

 sf_socket_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket WIFI Framework
Interface

#include <sf_socket_api.h>

Data Fields

sf_wifi_onchip_stack_instanc
e_t *

p_lower_lvl_onchip_wifi

 Pointer to SF on-chip stack instance.

void * p_extend

 Extended configuration.

Detailed Description

Socket Interface configuration structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,226 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface > sf_socket_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

sf_socket_api.h

 sf_socket_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket WIFI Framework
Interface

#include <sf_socket_api.h>

Data Fields

ssp_err_t(* open)(sf_socket_ctrl_t *p_ctrl, sf_socket_cfg_t const *const p_cfg)

 Pointer to function which initializes the network interface for data
transfers Initial driver configuration, enable the driver link, enable
interrupts and make device ready for data transfer. More...

ssp_err_t(* close)(sf_socket_ctrl_t *const p_ctrl)

 Pointer to function which un-initialize the network interface and may
put it in low power mode or power it off. Close the driver, disable the
driver link, disable interrupt. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Gets version and stores it in provided pointer p_version. More...

Detailed Description

Socket Interface API

Field Documentation

◆ close

ssp_err_t(* sf_socket_api_t::close) (sf_socket_ctrl_t *const p_ctrl)

Pointer to function which un-initialize the network interface and may put it in low power mode or
power it off. Close the driver, disable the driver link, disable interrupt.

Parameters
[in,out] p_ctrl Pointer to the control block

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,227 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface > sf_socket_api_t Struct Reference

◆ open

ssp_err_t(* sf_socket_api_t::open) (sf_socket_ctrl_t *p_ctrl, sf_socket_cfg_t const *const p_cfg)

Pointer to function which initializes the network interface for data transfers Initial driver
configuration, enable the driver link, enable interrupts and make device ready for data transfer.

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to configuration
structure.

◆ versionGet

ssp_err_t(* sf_socket_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version pointer to memory location

to return version number

The documentation for this struct was generated from the following file:

sf_socket_api.h

 sf_socket_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket WIFI Framework
Interface

#include <sf_socket_api.h>

Data Fields

sf_socket_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_socket_cfg_t const * p_cfg

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,228 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface > sf_socket_instance_t Struct Reference

 Pointer to the configuration structure for this instance.

sf_socket_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_socket_api.h

5.1.2.43 SPI Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SPI Framework Interface. More...

Data Structures

struct sf_spi_bus_t

struct sf_spi_cfg_t

struct sf_spi_api_t

struct sf_spi_instance_t

Typedefs

typedef void sf_spi_ctrl_t

Enumerations

enum sf_spi_dev_state_t { SF_SPI_DEV_STATE_CLOSED = 0,
SF_SPI_DEV_STATE_OPENED }

Detailed Description

RTOS-integrated SPI Framework Interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,229 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SPI Framework Interface

Summary
This SSP Interface provides access to the ThreadX-aware SPI Framework. The Interface is
implemented by the SPI Framework.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

SPI Framework Interface description: SPI Framework

Typedef Documentation

◆ sf_spi_ctrl_t

typedef void sf_spi_ctrl_t

SPI framework control block. Allocate an instance specific control block to pass into the SPI
framework API calls.

Implemented as

sf_spi_instance_ctrl_t

Enumeration Type Documentation

◆ sf_spi_dev_state_t

enum sf_spi_dev_state_t

SF SPI device state

Enumerator

SF_SPI_DEV_STATE_CLOSED SPI device is closed.

SF_SPI_DEV_STATE_OPENED SPI device is opened.

 sf_spi_bus_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SPI Framework Interface

#include <sf_spi_api.h>

Data Fields

uint8_t channel

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,230 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SPI Framework Interface > sf_spi_bus_t Struct Reference

 Channel.

uint32_t freq_hz_min

 Bus min frequency supported.

TX_MUTEX * p_lock_mutex

 Lock mutex handle for this channel.

TX_MUTEX device_count_mutex

 Device count mutex handle for this device.

TX_EVENT_FLAGS_GROUP * p_sync_eventflag

 Pointer to the event flag object for SPI data transfer.

sf_spi_ctrl_t ** pp_curr_ctrl

 Current device using the bus.

uint8_t * p_bus_name

 peripheral name SCI_SPI/RSPI

spi_api_t const * p_lower_lvl_api

 Pointer to SPI HAL interface to be used in the framework.

uint8_t device_count

 Number of devices on the bus, initialize to 0.

Detailed Description

Data structure defining an SPI bus.

The documentation for this struct was generated from the following file:

sf_spi_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,231 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SPI Framework Interface > sf_spi_cfg_t Struct Reference

 sf_spi_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SPI Framework Interface

#include <sf_spi_api.h>

Data Fields

sf_spi_bus_t * p_bus

 Bus used by the device.

ioport_port_pin_t chip_select

 Chip select for this device.

ioport_level_t chip_select_level_active

 Polarity of CS, active High or Low.

spi_cfg_t const * p_lower_lvl_cfg

 Pointer to SPI HAL configuration.

Detailed Description

Configuration for Framework SPI driver.

The documentation for this struct was generated from the following file:

sf_spi_api.h

 sf_spi_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SPI Framework Interface

#include <sf_spi_api.h>

Data Fields

ssp_err_t(* open)(sf_spi_ctrl_t *p_ctrl, sf_spi_cfg_t const *const p_cfg)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,232 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SPI Framework Interface > sf_spi_api_t Struct Reference

 Open a designated SPI device on a bus. More...

ssp_err_t(* read)(sf_spi_ctrl_t *const p_ctrl, void *const p_dest, uint32_t const
length, spi_bit_width_t const bit_width, uint32_t const timeout)

 Receive data from SPI device. More...

ssp_err_t(* write)(sf_spi_ctrl_t *const p_ctrl, void *const p_src, uint32_t const
length, spi_bit_width_t const bit_width, uint32_t const timeout)

 Transmit data to SPI device. More...

ssp_err_t(* writeRead)(sf_spi_ctrl_t *const p_ctrl, void *const p_src, void *const
p_dest, uint32_t const length, spi_bit_width_t const bit_width,
uint32_t const timeout)

 Simultaneously transmit data to an SPI device while receiving data
from an SPI device (full duplex). More...

ssp_err_t(* close)(sf_spi_ctrl_t *const p_ctrl)

 Disable the SPI device designated by the control handle and close
the RTOS services used by the bus if no devices are connected to the
bus. This function removes power to the SPI channel designated by
the handle and disables the associated interrupts. More...

ssp_err_t(* lock)(sf_spi_ctrl_t *const p_ctrl)

 Lock the bus for a device. The locking allows devices to reserve a
bus to themselves for a given period of time (i.e. between lock and
unlock). This allows devices to complete several reads and writes on
the bus without interrupt. More...

ssp_err_t(* lockWait)(sf_spi_ctrl_t *const p_ctrl, uint32_t const timeout)

 Lock the bus for a device. The locking allows devices to reserve a
bus to themselves for a given period of time (i.e. between lock and
unlock). This allows devices to complete several reads and writes on
the bus without interrupt. The wait option allows thread to wait for
the specified timeout when acquiring the bus mutex. More...

ssp_err_t(* unlock)(sf_spi_ctrl_t *const p_ctrl)

 Unlock the bus for a particular device and make the bus usable for
other devices. More...

ssp_err_t(* version)(ssp_version_t *const p_version)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,233 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SPI Framework Interface > sf_spi_api_t Struct Reference

 Get the version information of the underlying driver. More...

Detailed Description

Definition of the SPI framework interface.

Field Documentation

◆ close

ssp_err_t(* sf_spi_api_t::close) (sf_spi_ctrl_t *const p_ctrl)

Disable the SPI device designated by the control handle and close the RTOS services used by the
bus if no devices are connected to the bus. This function removes power to the SPI channel
designated by the handle and disables the associated interrupts.

Parameters
[in] p_ctrl Pointer to the control block

for the device.

◆ lock

ssp_err_t(* sf_spi_api_t::lock) (sf_spi_ctrl_t *const p_ctrl)

Lock the bus for a device. The locking allows devices to reserve a bus to themselves for a given
period of time (i.e. between lock and unlock). This allows devices to complete several reads and
writes on the bus without interrupt.

Parameters
[in] p_ctrl Pointer to the control block

for the device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,234 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SPI Framework Interface > sf_spi_api_t Struct Reference

◆ lockWait

ssp_err_t(* sf_spi_api_t::lockWait) (sf_spi_ctrl_t *const p_ctrl, uint32_t const timeout)

Lock the bus for a device. The locking allows devices to reserve a bus to themselves for a given
period of time (i.e. between lock and unlock). This allows devices to complete several reads and
writes on the bus without interrupt. The wait option allows thread to wait for the specified timeout
when acquiring the bus mutex.

Implemented as

SF_SPI_LockWait()
Parameters

[in] p_ctrl Pointer to the control block
for the device.

[in] timeout ThreadX timeout. Options
include TX_NO_WAIT
(0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

◆ open

ssp_err_t(* sf_spi_api_t::open) (sf_spi_ctrl_t *p_ctrl, sf_spi_cfg_t const *const p_cfg)

Open a designated SPI device on a bus.

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to SPI Framework
configuration structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,235 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SPI Framework Interface > sf_spi_api_t Struct Reference

◆ read

ssp_err_t(* sf_spi_api_t::read) (sf_spi_ctrl_t *const p_ctrl, void *const p_dest, uint32_t const length,
spi_bit_width_t const bit_width, uint32_t const timeout)

Receive data from SPI device.

Precondition
Call sf_spi_api_t::open to configure the SPI device before using this function.

Parameters
[in] p_ctrl Pointer to the control block

for the device.

[out] p_dest Pointer to destination buffer
into which data will be
copied that is received from
a SPI device. It is the
responsibility of the caller to
ensure that adequate space
is available to hold the
requested data count.

[in] length Indicates the number of
units of data to be
transferred (unit size
specified by the bit_width).

[in] bit_width Indicates data bit width to
be transferred.

[in] timeout Timeout. Options include
TX_NO_WAIT (0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

◆ unlock

ssp_err_t(* sf_spi_api_t::unlock) (sf_spi_ctrl_t *const p_ctrl)

Unlock the bus for a particular device and make the bus usable for other devices.

Parameters
[in] p_ctrl Pointer to the control block

for the device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,236 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SPI Framework Interface > sf_spi_api_t Struct Reference

◆ version

ssp_err_t(* sf_spi_api_t::version) (ssp_version_t *const p_version)

Get the version information of the underlying driver.

Parameters
[out] p_version pointer to memory location

to return version number

◆ write

ssp_err_t(* sf_spi_api_t::write) (sf_spi_ctrl_t *const p_ctrl, void *const p_src, uint32_t const length,
spi_bit_width_t const bit_width, uint32_t const timeout)

Transmit data to SPI device.

Precondition
Call sf_spi_api_t::open to configure the SPI device before using this function.

Parameters
[in] p_ctrl Pointer to the control block

for the device.

[in] p_src Pointer to a source data
buffer from which data will
be transmitted to a SPI
device.
The argument must not be
NULL.

[in] length Indicates the number of
units of data to be
transferred (unit size
specified by the bit_width).

[in] bit_width Indicates data bit width to
be transferred.

[in] timeout Timeout. Options include
TX_NO_WAIT (0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,237 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SPI Framework Interface > sf_spi_api_t Struct Reference

◆ writeRead

ssp_err_t(* sf_spi_api_t::writeRead) (sf_spi_ctrl_t *const p_ctrl, void *const p_src, void *const p_dest,
uint32_t const length, spi_bit_width_t const bit_width, uint32_t const timeout)

Simultaneously transmit data to an SPI device while receiving data from an SPI device (full
duplex).

The writeread API gets mutex object, handles SPI data transmission at SPI HAL layer and receive
data from the SPI HAL layer. The API uses the event flag wait to synchronize to completion of data
transfer .

Precondition
Call sf_spi_api_t::open to configure the SPI before using this function.

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

[in] p_src Pointer to a source data
buffer from which data will
be transmitted to a SPI
device.
The argument must not be
NULL.

[out] p_dest Pointer to destination buffer
into which data will be
copied that is received from
a SPI device. It is the
responsibility of the caller to
ensure that adequate space
is available to hold the
requested data count.

[in] length Indicates the number of
units of data to be
transferred (unit size
specified by the bit_width).

[in] bit_width Indicates data bit width to
be transferred.

[in] timeout Timeout. Options include
TX_NO_WAIT (0x00000000),
TX_WAIT_FOREVER
(0xFFFFFFFF), and timeout
value (0x00000001 through
0xFFFFFFFE) in ThreadX tick
counts.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,238 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SPI Framework Interface > sf_spi_api_t Struct Reference

The documentation for this struct was generated from the following file:

sf_spi_api.h

 sf_spi_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SPI Framework Interface

#include <sf_spi_api.h>

Data Fields

sf_spi_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_spi_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

sf_spi_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_spi_api.h

5.1.2.44 Thread Monitor Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated Framework Interface for monitoring of threads. More...

Data Structures

struct sf_thread_monitor_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,239 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Thread Monitor Framework Interface

struct sf_thread_monitor_thread_counter_t

struct sf_thread_monitor_counter_min_max_t

struct sf_thread_monitor_api_t

struct sf_thread_monitor_instance_t

Macros

#define SF_THREAD_MONITOR_API_VERSION_MAJOR (2U)

Typedefs

typedef void sf_thread_monitor_ctrl_t

Detailed Description

RTOS-integrated Framework Interface for monitoring of threads.

Any misbehaving threads cause a reset of the device. Both the WDT and IWDT HAL modules are
supported by this framework module.

Summary
This is a ThreadX aware Watchdog Timer Thread Monitor Framework for monitoring threads in an
application in which threads are executing at an expected rate. Threads to be monitored register
themselves through SF_THREAD_MONITOR_ThreadRegister() and increment a count by calling
SF_THREAD_MONITOR_CountIncrement() each time they execute. Each monitored thread also
provides expected maximum and minimum count values for normal execution.

The Thread Monitor runs periodically and checks the count value of each monitored thread. If the
count value falls outside of the expected range of values, the Watchdog Timer is allowed to reset the
device. If all thread counts are within their expected ranges, then the Watchdog Timer is refreshed.

The WDT and IWDT modules are supported by the Thread Monitor.

The Framework Layer can be used to protect the entire software project. This is achieved through a
high priority thread (Framework Layer) which runs periodically within the refresh permitted window
of the Watchdog Timer selected (IWDT is safest as has its own clock source and is started
automatically after reset). This thread monitors the state of every other thread in the system. If any
of these threads are not running as expected, then the Watchdog Timer is not refreshed and is not
allowed to reset the system. If the threads are running as expected, then the Watchdog Timer is
refreshed.

Monitoring the other threads is achieved as follows: Each monitored thread increments a count
variable each time it runs. The Thread Monitor thread checks the count variable of each thread to
make sure it is within an expected range. If any of the variables are out of range a reset is allowed.
Otherwise all variables are cleared to zero and the watchdog is refreshed. A profiling mode is used to
establish the expected ranges.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,240 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Thread Monitor Framework Interface

This approach is described in the following article:

Jack Ganssle, "Great Watchdog Timers for Embedded Systems," www.ganssle.com/watchdogs.htm

This method requires the instrumenting of each thread to increment its count variable, but this is
little overhead for the massive gain in protection.

Interface used: WDT Interface

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Thread Monitor Interface description: Thread Monitor Framework

Macro Definition Documentation

◆ SF_THREAD_MONITOR_API_VERSION_MAJOR

#define SF_THREAD_MONITOR_API_VERSION_MAJOR (2U)

Version of the API defined in this file

Typedef Documentation

◆ sf_thread_monitor_ctrl_t

typedef void sf_thread_monitor_ctrl_t

Thread monitor control block. Allocate an instance specific control block to pass into the thread
monitor API calls.

Implemented as

sf_thread_monitor_instance_ctrl_t

 sf_thread_monitor_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Thread Monitor Framework
Interface

#include <sf_thread_monitor_api.h>

Data Fields

wdt_instance_t const * p_lower_lvl_wdt

 Pointer to lower level watchdog instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,241 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Thread Monitor Framework Interface > sf_thread_monitor_cfg_t Struct Reference

bool profiling_mode_enabled

 Enables or disables profiling mode.

UINT priority

 Priority of thread monitor thread.

Detailed Description

Configuration for RTOS Thread Monitor driver

The documentation for this struct was generated from the following file:

sf_thread_monitor_api.h

 sf_thread_monitor_thread_counter_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Thread Monitor Framework
Interface

#include <sf_thread_monitor_api.h>

Data Fields

uint32_t current_count

 Current count value for a thread.

uint32_t minimum_count

uint32_t maximum_count

bool active

TX_THREAD * p_thread

 Pointer to thread for this counter data.

Detailed Description

Counter block for each monitored thread.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,242 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Thread Monitor Framework Interface > sf_thread_monitor_thread_counter_t Struct Reference

Field Documentation

◆ active

bool sf_thread_monitor_thread_counter_t::active

Indicates to the monitoring thread whether this count data is currently active. When a thread is
registered this value will be set to false as the count is likely to be a partial count and so should not
be monitored. This value will be set to true by the thread monitor thread when it clears all counts
to zero.

◆ maximum_count

uint32_t sf_thread_monitor_thread_counter_t::maximum_count

Maximum expected count value. If the current count is more than this value the watchdog will
reset

◆ minimum_count

uint32_t sf_thread_monitor_thread_counter_t::minimum_count

Minimum expected count value. If the current count is less than this value the watchdog will reset.

The documentation for this struct was generated from the following file:

sf_thread_monitor_api.h

 sf_thread_monitor_counter_min_max_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Thread Monitor Framework
Interface

#include <sf_thread_monitor_api.h>

Data Fields

uint32_t minimum_count

uint32_t maximum_count

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,243 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Thread Monitor Framework Interface > sf_thread_monitor_counter_min_max_t Struct Reference

Counter block for each monitored thread.

Field Documentation

◆ maximum_count

uint32_t sf_thread_monitor_counter_min_max_t::maximum_count

Maximum expected count value. If the current count is more than this value the watchdog will
reset

◆ minimum_count

uint32_t sf_thread_monitor_counter_min_max_t::minimum_count

Minimum expected count value. If the current count is less than this value the watchdog will reset.

The documentation for this struct was generated from the following file:

sf_thread_monitor_api.h

 sf_thread_monitor_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Thread Monitor Framework
Interface

#include <sf_thread_monitor_api.h>

Data Fields

ssp_err_t(* open)(sf_thread_monitor_ctrl_t *const p_ctrl,
sf_thread_monitor_cfg_t const *const p_cfg)

 Configures the WDT or IWDT module. From the configuration data
the timeout period of the WDT/IWDT is determined and a thread
created monitoring registered threads. More...

ssp_err_t(* close)(sf_thread_monitor_ctrl_t *const p_ctrl)

 Suspends the thread monitoring thread. Watchdog peripheral no
longer refreshed. More...

ssp_err_t(* threadRegister)(sf_thread_monitor_ctrl_t *const p_ctrl,
sf_thread_monitor_counter_min_max_t const *p_counter_min_max)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,244 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Thread Monitor Framework Interface > sf_thread_monitor_api_t Struct Reference

 Registers a thread for monitoring. More...

ssp_err_t(* threadUnregister)(sf_thread_monitor_ctrl_t *const p_ctrl)

 Removes a thread from being monitored. More...

ssp_err_t(* countIncrement)(sf_thread_monitor_ctrl_t *const p_ctrl)

 Safely increments a monitored thread's count value. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Get version and store it in provided pointer p_version. More...

Detailed Description

Thread monitor API structure. Thread Monitor implementations use the following API.

Field Documentation

◆ close

ssp_err_t(* sf_thread_monitor_api_t::close) (sf_thread_monitor_ctrl_t *const p_ctrl)

Suspends the thread monitoring thread. Watchdog peripheral no longer refreshed.

Implemented as

SF_THREAD_MONITOR_Close()
Parameters

[in,out] p_ctrl Control structure set in
SF_THREAD_MONITOR_Open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,245 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Thread Monitor Framework Interface > sf_thread_monitor_api_t Struct Reference

◆ countIncrement

ssp_err_t(* sf_thread_monitor_api_t::countIncrement) (sf_thread_monitor_ctrl_t *const p_ctrl)

Safely increments a monitored thread's count value.

Implemented as

SF_THREAD_MONITOR_CountIncrement()
Parameters

[in,out] p_ctrl Control structure set in
SF_THREAD_MONITOR_Open.

◆ open

ssp_err_t(* sf_thread_monitor_api_t::open) (sf_thread_monitor_ctrl_t *const p_ctrl,
sf_thread_monitor_cfg_t const *const p_cfg)

Configures the WDT or IWDT module. From the configuration data the timeout period of the
WDT/IWDT is determined and a thread created monitoring registered threads.

Implemented as

SF_THREAD_MONITOR_Open()
Parameters

[in,out] p_ctrl Pointer to a structure
allocated by user. Elements
initialized here.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,246 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Thread Monitor Framework Interface > sf_thread_monitor_api_t Struct Reference

◆ threadRegister

ssp_err_t(* sf_thread_monitor_api_t::threadRegister) (sf_thread_monitor_ctrl_t *const p_ctrl,
sf_thread_monitor_counter_min_max_t const *p_counter_min_max)

Registers a thread for monitoring.

Implemented as

SF_THREAD_MONITOR_ThreadRegister()
Parameters

[in,out] p_ctrl Control structure set in
SF_THREAD_MONITOR_Open.

[in] p_counter_min_max Pointer to structure
containing min and max
values for thread to be
registered values.

◆ threadUnregister

ssp_err_t(* sf_thread_monitor_api_t::threadUnregister) (sf_thread_monitor_ctrl_t *const p_ctrl)

Removes a thread from being monitored.

Implemented as

SF_THREAD_MONITOR_ThreadUnregister()
Parameters

[in,out] p_ctrl Control structure set in
SF_THREAD_MONITOR_Open.

◆ versionGet

ssp_err_t(* sf_thread_monitor_api_t::versionGet) (ssp_version_t *const p_version)

Get version and store it in provided pointer p_version.

Implemented as

SF_THREAD_MONITOR_VersionGet()
Parameters

[in,out] p_version Pointer to structure storing
API and code versions.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,247 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Thread Monitor Framework Interface > sf_thread_monitor_api_t Struct Reference

The documentation for this struct was generated from the following file:

sf_thread_monitor_api.h

 sf_thread_monitor_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Thread Monitor Framework
Interface

#include <sf_thread_monitor_api.h>

Data Fields

sf_thread_monitor_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_thread_monitor_cfg_t
const *

p_cfg

 Pointer to the configuration structure for this instance.

sf_thread_monitor_api_t
const *

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_thread_monitor_api.h

5.1.2.45 CTSU v2 Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

CTSU v2 Framework Interface. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,248 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > CTSU v2 Framework Interface

Data Structures

struct sf_touch_ctsu_button_cfg_t

struct sf_touch_ctsu_slider_cfg_t

struct sf_touch_ctsu_wheel_cfg_t

struct sf_touch_ctsu_cfg_t

struct sf_touch_ctsu_api_t

struct sf_touch_ctsu_instance_t

Typedefs

typedef void sf_touch_ctsu_ctrl_t

typedef struct
st_ctsu_callback_args

sf_touch_ctsu_callback_args_t

Detailed Description

CTSU v2 Framework Interface.

Summary
Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

CTSU v2 Framework Interface description: Capacitive Touch v2 Framework

Typedef Documentation

◆ sf_touch_ctsu_callback_args_t

typedef struct st_ctsu_callback_args sf_touch_ctsu_callback_args_t

Callback function parameter data

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,249 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > CTSU v2 Framework Interface

◆ sf_touch_ctsu_ctrl_t

typedef void sf_touch_ctsu_ctrl_t

Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

sf_touch_ctsu_instance_ctrl_t

 sf_touch_ctsu_button_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » CTSU v2 Framework
Interface

#include <sf_touch_ctsuv2_api.h>

Data Fields

uint8_t elem_index

 Element number used by this button.

uint16_t threshold

 Touch/non-touch judgment threshold.

uint16_t hysteresis

 Threshold hysteresis for chattering prevention.

Detailed Description

Configuration of each button

The documentation for this struct was generated from the following file:

sf_touch_ctsuv2_api.h

 sf_touch_ctsu_slider_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » CTSU v2 Framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,250 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > CTSU v2 Framework Interface > sf_touch_ctsu_slider_cfg_t Struct Reference

Interface

#include <sf_touch_ctsuv2_api.h>

Data Fields

uint8_t const * p_elem_index

 Element number array used by this slider.

uint8_t num_elements

 Number of elements used by this slider.

uint16_t threshold

 Position calculation start threshold value.

Detailed Description

Configuration of each slider

The documentation for this struct was generated from the following file:

sf_touch_ctsuv2_api.h

 sf_touch_ctsu_wheel_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » CTSU v2 Framework
Interface

#include <sf_touch_ctsuv2_api.h>

Data Fields

uint8_t const * p_elem_index

 Element number array used by this wheel.

uint8_t num_elements

 Number of elements used by this wheel.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,251 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > CTSU v2 Framework Interface > sf_touch_ctsu_wheel_cfg_t Struct Reference

uint16_t threshold

 Position calculation start threshold value.

Detailed Description

Configuration of each wheel

The documentation for this struct was generated from the following file:

sf_touch_ctsuv2_api.h

 sf_touch_ctsu_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » CTSU v2 Framework
Interface

#include <sf_touch_ctsuv2_api.h>

Data Fields

sf_touch_ctsu_button_cfg_t
const *

p_buttons

 Pointer to array of button configuration.

sf_touch_ctsu_slider_cfg_t
const *

p_sliders

 Pointer to array of slider configuration.

sf_touch_ctsu_wheel_cfg_t
const *

p_wheels

 Pointer to array of wheel configuration.

uint8_t num_buttons

 Number of buttons.

uint8_t num_sliders

 Number of sliders.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,252 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > CTSU v2 Framework Interface > sf_touch_ctsu_cfg_t Struct Reference

uint8_t num_wheels

 Number of wheels.

uint8_t on_freq

 The cumulative number of determinations of ON.

uint8_t off_freq

 The cumulative number of determinations of OFF.

uint16_t drift_freq

 Base value drift frequency. [0 : no use].

uint16_t cancel_freq

 Maximum continuous ON. [0 : no use].

uint8_t number

 Configuration number for QE monitor.

ctsu_instance_t const * p_ctsu_instance

 Pointer to CTSU instance.

void * p_uart_instance

 Pointer to UART instance.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 Pointer to extended configuration by instance of interface.

Detailed Description

User configuration structure, used in open function

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,253 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > CTSU v2 Framework Interface > sf_touch_ctsu_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

sf_touch_ctsuv2_api.h

 sf_touch_ctsu_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » CTSU v2 Framework
Interface

#include <sf_touch_ctsuv2_api.h>

Data Fields

ssp_err_t(* open)(sf_touch_ctsu_ctrl_t *const p_ctrl, sf_touch_ctsu_cfg_t const
*const p_cfg)

ssp_err_t(* scanStart)(sf_touch_ctsu_ctrl_t *const p_ctrl)

ssp_err_t(* dataGet)(sf_touch_ctsu_ctrl_t *const p_ctrl, uint64_t
*p_button_status, uint16_t *p_slider_position, uint16_t
*p_wheel_position)

ssp_err_t(* callbackSet)(sf_touch_ctsu_ctrl_t *const p_api_ctrl,
void(*p_callback)(sf_touch_ctsu_callback_args_t *), void const *const
p_context, sf_touch_ctsu_callback_args_t *const p_callback_memory)

ssp_err_t(* close)(sf_touch_ctsu_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_data)

Detailed Description

Functions implemented at the HAL layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,254 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > CTSU v2 Framework Interface > sf_touch_ctsu_api_t Struct Reference

◆ callbackSet

ssp_err_t(* sf_touch_ctsu_api_t::callbackSet) (sf_touch_ctsu_ctrl_t *const p_api_ctrl,
void(*p_callback)(sf_touch_ctsu_callback_args_t *), void const *const p_context,
sf_touch_ctsu_callback_args_t *const p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

SF_TOUCH_CTSU_CallbackSet()
Parameters

[in] p_ctrl Pointer to the CTSU control
block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

ssp_err_t(* sf_touch_ctsu_api_t::close) (sf_touch_ctsu_ctrl_t *const p_ctrl)

Close driver.

Implemented as

SF_TOUCH_CTSU_Close()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,255 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > CTSU v2 Framework Interface > sf_touch_ctsu_api_t Struct Reference

◆ dataGet

ssp_err_t(* sf_touch_ctsu_api_t::dataGet) (sf_touch_ctsu_ctrl_t *const p_ctrl, uint64_t
*p_button_status, uint16_t *p_slider_position, uint16_t *p_wheel_position)

Data get.

Implemented as

SF_TOUCH_CTSU_DataGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_button_status Pointer to get data bitmap.

[out] p_slider_position Pointer to get data array.

[out] p_wheel_position Pointer to get data array.

◆ open

ssp_err_t(* sf_touch_ctsu_api_t::open) (sf_touch_ctsu_ctrl_t *const p_ctrl, sf_touch_ctsu_cfg_t const
*const p_cfg)

Open driver.

Implemented as

SF_TOUCH_CTSU_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ scanStart

ssp_err_t(* sf_touch_ctsu_api_t::scanStart) (sf_touch_ctsu_ctrl_t *const p_ctrl)

Scan start.

Implemented as

SF_TOUCH_CTSU_ScanStart()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,256 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > CTSU v2 Framework Interface > sf_touch_ctsu_api_t Struct Reference

◆ versionGet

ssp_err_t(* sf_touch_ctsu_api_t::versionGet) (ssp_version_t *const p_data)

Return the version of the driver.

Implemented as

SF_TOUCH_CTSU_VersionGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_data Memory address to return
version information to.

The documentation for this struct was generated from the following file:

sf_touch_ctsuv2_api.h

 sf_touch_ctsu_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » CTSU v2 Framework
Interface

#include <sf_touch_ctsuv2_api.h>

Data Fields

sf_touch_ctsu_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_touch_ctsu_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

sf_touch_ctsu_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,257 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > CTSU v2 Framework Interface > sf_touch_ctsu_instance_t Struct Reference

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_touch_ctsuv2_api.h

5.1.2.46 Touch chip Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated Touch chip Interface. More...

Data Structures

struct sf_touch_panel_chip_cfg_t

struct sf_touch_panel_chip_api_t

struct sf_touch_panel_chip_instance_t

Typedefs

typedef void sf_touch_panel_chip_ctrl_t

Detailed Description

RTOS-integrated Touch chip Interface.

Summary
This module is a ThreadX-aware Touch chip interface which gets the data from the touch chip. This
Interface is implemented by Touch Panel V2 Framework.

Interfaces used:

Touch Panel Framework Interface

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Touch Panel chip Framework Interface description: Touch Panel V2 Framework

Typedef Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,258 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch chip Interface

◆ sf_touch_panel_chip_ctrl_t

typedef void sf_touch_panel_chip_ctrl_t

Touch panel chip framework control block. Allocate an instance specific control block to pass into
the touch panel chip framework API calls.

Implemented as

sf_touch_panel_chip_sx8654_instance_ctrl_t
sf_touch_panel_chip_ft5x06_instance_ctrl_t

 sf_touch_panel_chip_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Touch chip Interface

#include <sf_touch_panel_chip_api.h>

Detailed Description

Configuration for RTOS integrated touch driver.

The documentation for this struct was generated from the following file:

sf_touch_panel_chip_api.h

 sf_touch_panel_chip_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Touch chip Interface

#include <sf_touch_panel_chip_api.h>

Data Fields

ssp_err_t(* open)(sf_touch_panel_chip_ctrl_t *const p_ctrl,
sf_touch_panel_chip_cfg_t const *const p_cfg)

 Initializes the touch chip. More...

ssp_err_t(* payloadGet)(sf_touch_panel_chip_ctrl_t *const p_ctrl,
sf_touch_panel_v2_payload_t *p_payload)

 Reads the touch chip and fills in the touch payload data. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,259 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch chip Interface > sf_touch_panel_chip_api_t Struct Reference

ssp_err_t(* reset)(sf_touch_panel_chip_ctrl_t *const p_ctrl)

 Resets the touch chip. More...

ssp_err_t(* close)(sf_touch_panel_chip_ctrl_t *const p_ctrl)

 Close the touch chip. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Gets the chip version and stores it in provided pointer p_version.
More...

Detailed Description

Touch panel chip API structure. Touch panel chip implementations use the following API.

Field Documentation

◆ close

ssp_err_t(* sf_touch_panel_chip_api_t::close) (sf_touch_panel_chip_ctrl_t *const p_ctrl)

Close the touch chip.

Parameters
[in,out] p_ctrl Pointer to a structure

allocated by user. This
control structure is initialized
in this function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,260 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch chip Interface > sf_touch_panel_chip_api_t Struct Reference

◆ open

ssp_err_t(* sf_touch_panel_chip_api_t::open) (sf_touch_panel_chip_ctrl_t *const p_ctrl,
sf_touch_panel_chip_cfg_t const *const p_cfg)

Initializes the touch chip.

Parameters
[in,out] p_ctrl Pointer to a structure

allocated by user. This
control structure is initialized
in this function.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

◆ payloadGet

ssp_err_t(* sf_touch_panel_chip_api_t::payloadGet) (sf_touch_panel_chip_ctrl_t *const p_ctrl,
sf_touch_panel_v2_payload_t *p_payload)

Reads the touch chip and fills in the touch payload data.

Parameters
[in,out] p_ctrl Pointer to a structure

allocated by user. This
control structure is initialized
in this function.

[out] p_payload Pointer to the payload data
structure. Touch data
provided should be
processed to logical pixel
values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,261 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch chip Interface > sf_touch_panel_chip_api_t Struct Reference

◆ reset

ssp_err_t(* sf_touch_panel_chip_api_t::reset) (sf_touch_panel_chip_ctrl_t *const p_ctrl)

Resets the touch chip.

Parameters
[in,out] p_ctrl Pointer to a structure

allocated by user. This
control structure is initialized
in this function.

◆ versionGet

ssp_err_t(* sf_touch_panel_chip_api_t::versionGet) (ssp_version_t *const p_version)

Gets the chip version and stores it in provided pointer p_version.

Parameters
[out] p_version Code and API version used

are stored here.

The documentation for this struct was generated from the following file:

sf_touch_panel_chip_api.h

 sf_touch_panel_chip_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Touch chip Interface

#include <sf_touch_panel_chip_api.h>

Data Fields

sf_touch_panel_chip_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_touch_panel_chip_cfg_t
const *

p_cfg

 Pointer to the configuration structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,262 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch chip Interface > sf_touch_panel_chip_instance_t Struct Reference

sf_touch_panel_chip_api_t
const *

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_touch_panel_chip_api.h

5.1.2.47 Touch Panel Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated Touch Panel Framework Interface. More...

Data Structures

struct sf_touch_panel_v2_payload_t

struct sf_touchpanel_v2_callback_args_t

struct sf_touch_panel_v2_cfg_t

struct sf_touch_panel_v2_calibrate_t

struct sf_touch_panel_v2_calibrate_factors_t

struct sf_touch_panel_v2_api_t

struct sf_touch_panel_v2_instance_t

Typedefs

typedef void sf_touch_panel_v2_ctrl_t

Enumerations

enum sf_touch_panel_v2_event_t {
 SF_TOUCH_PANEL_V2_EVENT_INVALID,
SF_TOUCH_PANEL_V2_EVENT_HOLD,
SF_TOUCH_PANEL_V2_EVENT_MOVE,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,263 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch Panel Framework Interface

SF_TOUCH_PANEL_V2_EVENT_DOWN,
 SF_TOUCH_PANEL_V2_EVENT_UP,
SF_TOUCH_PANEL_V2_EVENT_NONE
}

Detailed Description

RTOS-integrated Touch Panel Framework Interface.

Summary
This module is a ThreadX-aware Touch Panel V2 Framework which scans for touch events and posts
them to the user callback. This Interface is implemented by Touch Panel V2 Framework.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Touch Panel V2 Framework Interface description: Touch Panel V2 Framework

Typedef Documentation

◆ sf_touch_panel_v2_ctrl_t

typedef void sf_touch_panel_v2_ctrl_t

Touch panel framework control block. Allocate an instance specific control block to pass into the
touch panel framework API calls.

Implemented as

sf_touch_panel_v2_instance_ctrl_t

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,264 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch Panel Framework Interface

◆ sf_touch_panel_v2_event_t

enum sf_touch_panel_v2_event_t

Touch event list.

Enumerator

SF_TOUCH_PANEL_V2_EVENT_INVALID Invalid touch data.

SF_TOUCH_PANEL_V2_EVENT_HOLD Touch has not moved since last touch event.

SF_TOUCH_PANEL_V2_EVENT_MOVE Touch has moved since last touch event.

SF_TOUCH_PANEL_V2_EVENT_DOWN New touch event reported.

SF_TOUCH_PANEL_V2_EVENT_UP Touch released.

SF_TOUCH_PANEL_V2_EVENT_NONE No valid touch event happened.

 sf_touch_panel_v2_payload_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Touch Panel Framework
Interface

#include <sf_touch_panel_v2_api.h>

Data Fields

int16_t x

 X coordinate.

int16_t y

 Y coordinate.

sf_touch_panel_v2_event_t event_type

 Touch event type.

Detailed Description

Touch data payload

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,265 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch Panel Framework Interface > sf_touch_panel_v2_payload_t Struct Reference

The documentation for this struct was generated from the following file:

sf_touch_panel_v2_api.h

 sf_touchpanel_v2_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Touch Panel Framework
Interface

#include <sf_touch_panel_v2_api.h>

Data Fields

sf_touch_panel_v2_payload_
t

payload

 Touch data and event provided to the user during callback.

void const * p_context

 Context provided to user during callback.

Detailed Description

User callback

The documentation for this struct was generated from the following file:

sf_touch_panel_v2_api.h

 sf_touch_panel_v2_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Touch Panel Framework
Interface

#include <sf_touch_panel_v2_api.h>

Data Fields

uint16_t hsize_pixels

 Horizontal size of screen in pixels.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,266 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch Panel Framework Interface > sf_touch_panel_v2_cfg_t Struct Reference

uint16_t vsize_pixels

 Vertical size of screen in pixels.

UINT priority

 Priority of the touch panel thread.

uint16_t update_hz

uint16_t rotation_angle

 Touch coordinate rotation angle(0/90/180/270)

void const * p_extend

void const * p_context

 User defined context passed into callback function.

Detailed Description

Configuration for RTOS integrated touch panel framework.

Field Documentation

◆ p_extend

void const* sf_touch_panel_v2_cfg_t::p_extend

Pointer to hardware specific extension.

◆ update_hz

uint16_t sf_touch_panel_v2_cfg_t::update_hz

The frequency to report repeat (SF_TOUCH_PANEL_V2_EVENT_DOWN or
SF_TOUCH_PANEL_V2_EVENT_HOLD) touch events in Hertz.

Note
This will be converted to RTOS ticks in the driver and rounded up to the nearest integer value of RTOS ticks.

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,267 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch Panel Framework Interface > sf_touch_panel_v2_cfg_t Struct Reference

sf_touch_panel_v2_api.h

 sf_touch_panel_v2_calibrate_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Touch Panel Framework
Interface

#include <sf_touch_panel_v2_api.h>

Data Fields

int32_t x

 Expected x coordinate.

int32_t y

 Expected y coordinate.

void const * p_extend

Detailed Description

Calibration data passed to SF_TOUCH_PANEL_V2_Calibrate.

Field Documentation

◆ p_extend

void const* sf_touch_panel_v2_calibrate_t::p_extend

Pointer to hardware specific extension.

The documentation for this struct was generated from the following file:

sf_touch_panel_v2_api.h

 sf_touch_panel_v2_calibrate_factors_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Touch Panel Framework
Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,268 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch Panel Framework Interface > sf_touch_panel_v2_calibrate_factors_t Struct Reference

#include <sf_touch_panel_v2_api.h>

Detailed Description

Calibration factors calculated in order to calibrate the touch data.

The documentation for this struct was generated from the following file:

sf_touch_panel_v2_api.h

 sf_touch_panel_v2_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Touch Panel Framework
Interface

#include <sf_touch_panel_v2_api.h>

Data Fields

ssp_err_t(* open)(sf_touch_panel_v2_ctrl_t *const p_ctrl,
sf_touch_panel_v2_cfg_t const *const p_cfg)

 Create required RTOS objects, call lower level module for hardware
specific initialization, and create a thread to post touch data to user
application. More...

ssp_err_t(* calibrate)(sf_touch_panel_v2_ctrl_t *const p_ctrl,
sf_touch_panel_v2_calibrate_t const *const p_display,
sf_touch_panel_v2_calibrate_t const *const p_touchscreen, ULONG
const timeout)

 Begin calibration routine based on provided expected and actual
coordinates. More...

ssp_err_t(* start)(sf_touch_panel_v2_ctrl_t *const p_ctrl)

 Start scanning for touch events. More...

ssp_err_t(* touchDataGet)(sf_touch_panel_v2_ctrl_t *const p_ctrl,
sf_touch_panel_v2_payload_t *p_payload, ULONG const timeout)

 Reads the touch data and fills in the touch payload data. More...

ssp_err_t(* stop)(sf_touch_panel_v2_ctrl_t *const p_ctrl)

 Stop scanning for touch events. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,269 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch Panel Framework Interface > sf_touch_panel_v2_api_t Struct Reference

ssp_err_t(* reset)(sf_touch_panel_v2_ctrl_t *const p_ctrl)

 Reset touch chip if reset pin is provided. More...

ssp_err_t(* close)(sf_touch_panel_v2_ctrl_t *const p_ctrl)

 Terminate touch thread and close channel at HAL layer. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Gets version and stores it in provided pointer p_version. More...

Detailed Description

Touch panel V2 API structure. Touch panel V2 implementations use the following API.

Field Documentation

◆ calibrate

ssp_err_t(* sf_touch_panel_v2_api_t::calibrate) (sf_touch_panel_v2_ctrl_t *const p_ctrl,
sf_touch_panel_v2_calibrate_t const *const p_display, sf_touch_panel_v2_calibrate_t const *const
p_touchscreen, ULONG const timeout)

Begin calibration routine based on provided expected and actual coordinates.

Implemented as

SF_TOUCH_PANEL_V2_Calibrate()
Parameters

[in] p_ctrl Handle set in
sf_touch_panel_v2_api_t::ope
n.

[in] p_display Expected coordinates of the
display.

[in] p_touchscreen Actual coordinates obtained
from the touch driver.

[in] timeout ThreadX timeout. Select
TX_NO_WAIT, a value in
system clock counts
between 1 and 0xFFFFFFFF,
or TX_WAIT_FOREVER.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,270 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch Panel Framework Interface > sf_touch_panel_v2_api_t Struct Reference

◆ close

ssp_err_t(* sf_touch_panel_v2_api_t::close) (sf_touch_panel_v2_ctrl_t *const p_ctrl)

Terminate touch thread and close channel at HAL layer.

Implemented as

SF_TOUCH_PANEL_V2_Close()
Parameters

[in] p_ctrl Handle set in
sf_touch_panel_v2_api_t::ope
n.

◆ open

ssp_err_t(* sf_touch_panel_v2_api_t::open) (sf_touch_panel_v2_ctrl_t *const p_ctrl,
sf_touch_panel_v2_cfg_t const *const p_cfg)

Create required RTOS objects, call lower level module for hardware specific initialization, and
create a thread to post touch data to user application.

Implemented as

SF_TOUCH_PANEL_V2_Open()
Parameters

[in,out] p_ctrl Pointer to a structure
allocated by user. This
control structure is initialized
in this function.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,271 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch Panel Framework Interface > sf_touch_panel_v2_api_t Struct Reference

◆ reset

ssp_err_t(* sf_touch_panel_v2_api_t::reset) (sf_touch_panel_v2_ctrl_t *const p_ctrl)

Reset touch chip if reset pin is provided.

Implemented as

SF_TOUCH_PANEL_V2_Reset()
Note

This does not include calibration. Use sf_touch_panel_v2_api_t::calibrate from the application after this function
if calibration is required after reset.

Parameters
[in] p_ctrl Handle set in

sf_touch_panel_v2_api_t::ope
n.

◆ start

ssp_err_t(* sf_touch_panel_v2_api_t::start) (sf_touch_panel_v2_ctrl_t *const p_ctrl)

Start scanning for touch events.

Implemented as

SF_TOUCH_PANEL_V2_Start()
Parameters

[in] p_ctrl Handle set in
sf_touch_panel_v2_api_t::ope
n.

◆ stop

ssp_err_t(* sf_touch_panel_v2_api_t::stop) (sf_touch_panel_v2_ctrl_t *const p_ctrl)

Stop scanning for touch events.

Implemented as

SF_TOUCH_PANEL_V2_Stop()
Parameters

[in] p_ctrl Handle set in
sf_touch_panel_v2_api_t::ope
n.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,272 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch Panel Framework Interface > sf_touch_panel_v2_api_t Struct Reference

◆ touchDataGet

ssp_err_t(* sf_touch_panel_v2_api_t::touchDataGet) (sf_touch_panel_v2_ctrl_t *const p_ctrl,
sf_touch_panel_v2_payload_t *p_payload, ULONG const timeout)

Reads the touch data and fills in the touch payload data.

Implemented as

SF_TOUCH_PANEL_V2_TouchDataGet()
Parameters

[in,out] p_ctrl Pointer to a structure
allocated by user. This
control structure is initialized
in this function.

[out] p_payload Pointer to the payload to
data structure. Touch data
provided should be
processed to logical pixel
values.

[in] timeout ThreadX timeout. Select
TX_NO_WAIT, a value in
system clock counts
between 1 and 0xFFFFFFFF,
or TX_WAIT_FOREVER.

◆ versionGet

ssp_err_t(* sf_touch_panel_v2_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Implemented as

SF_TOUCH_PANEL_V2_VersionGet()
Parameters

[out] p_version Code and API version used
stored here.

The documentation for this struct was generated from the following file:

sf_touch_panel_v2_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,273 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Touch Panel Framework Interface > sf_touch_panel_v2_instance_t Struct Reference

 sf_touch_panel_v2_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » Touch Panel Framework
Interface

#include <sf_touch_panel_v2_api.h>

Data Fields

sf_touch_panel_v2_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_touch_panel_v2_cfg_t
const *

p_cfg

 Pointer to the configuration structure for this instance.

sf_touch_panel_v2_api_t
const *

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_touch_panel_v2_api.h

5.1.2.48 SF WIFI Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF WIFI Framework Interface. More...

Data Structures

struct sf_wifi_ip_addr_t

struct sf_wifi_info_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,274 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface

struct sf_wifi_callback_args_t

struct sf_wifi_provisioning_t

struct sf_wifi_cfg_t

struct sf_wifi_stats_t

struct sf_wifi_scan_t

struct sf_wifi_wps_t

struct sf_wifi_ctrl_t

struct sf_wifi_api_t

struct sf_wifi_instance_t

Macros

#define SF_WIFI_API_VERSION_MAJOR (2U)

#define SF_WIFI_API_VERSION_MINOR (0U)

#define SF_WIFI_SSID_LENGTH (32U)

 WiFi SSID length.

#define SF_WIFI_SECURITY_KEY_LENGTH (128U)

 WiFi Security Key length.

#define SF_WIFI_MAC_ADDR_LENGTH (6U)

 WiFi MAC address length.

#define SF_WIFI_WPS_PIN_LENGTH (8U)

 WiFi WPS Pin length.

#define SF_WIFI_TRUE (1U)

 Boolean True condition.

#define SF_WIFI_FALSE (0U)

 Boolean False condition.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,275 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface

#define SF_WIFI_NULL_BYTE ((uint8_t)'\0')

 NULL Byte.

#define SF_WIFI_SIZE_FOR_NULL_BYTE (1U)

 Size in byte for NULL.

#define SF_WIFI_IPV4_ADDRESS(a, b, c, d)

Enumerations

enum sf_wifi_ip_addr_version_t { SF_WIFI_IP_ADDR_VERSION_4,
SF_WIFI_IP_ADDR_VERSION_6 }

enum sf_wifi_interface_mode_t { SF_WIFI_INTERFACE_MODE_AP,
SF_WIFI_INTERFACE_MODE_CLIENT }

enum sf_wifi_wep_key_format_t { SF_WIFI_WEP_KEY_FORMAT_ASCII,
SF_WIFI_WEP_KEY_FORMAT_HEX }

enum sf_wifi_security_type_t { SF_WIFI_SECURITY_TYPE_OPEN,
SF_WIFI_SECURITY_TYPE_WEP, SF_WIFI_SECURITY_TYPE_WPA,
SF_WIFI_SECURITY_TYPE_WPA2 }

enum sf_wifi_encryption_type_t {
 SF_WIFI_ENCRYPTION_TYPE_AUTO, SF_WIFI_ENCRYPTION_TYPE_TKIP
, SF_WIFI_ENCRYPTION_TYPE_CCMP, SF_WIFI_ENCRYPTION_TYPE_WEP
,
 SF_WIFI_ENCRYPTION_TYPE_NONE
}

enum sf_wifi_bss_type_t { SF_WIFI_BSS_TYPE_INFRASTRUCTURE = 0,
SF_WIFI_BSS_TYPE_ADHOC = 1, SF_WIFI_BSS_TYPE_ANY = 2,
SF_WIFI_BSS_TYPE_UNKNOWN = -1 }

enum sf_wifi_interface_hw_mode_t { SF_WIFI_INTERFACE_HW_MODE_11A,
SF_WIFI_INTERFACE_HW_MODE_11B,
SF_WIFI_INTERFACE_HW_MODE_11G,
SF_WIFI_INTERFACE_HW_MODE_11N }

enum sf_wifi_rts_t { SF_WIFI_RTS_DISABLE, SF_WIFI_RTS_ENABLE }

enum sf_wifi_preamble_t { SF_WIFI_PREAMBLE_SHORT,
SF_WIFI_PREAMBLE_LONG }

enum sf_wifi_wmm_t { SF_WIFI_WMM_DISABLE, SF_WIFI_WMM_ENABLE }

enum sf_wifi_high_throughput_t { SF_WIFI_HIGH_THROUGHPUT_DISABLE,
SF_WIFI_HIGH_THROUGHPUT_ENABLE }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,276 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface

enum sf_wifi_ssid_broadcast_t { SF_WIFI_SSID_BROADCAST_DISABLE,
SF_WIFI_SSID_BROADCAST_ENABLE }

enum sf_wifi_wds_t { SF_WIFI_WDS_DISABLE, SF_WIFI_WDS_ENABLE }

enum sf_wifi_mandatory_high_throughput_t {
SF_WIFI_MANDATORY_HIGH_THROUGHPUT_DISABLE,
SF_WIFI_MANDATORY_HIGH_THROUGHPUT_ENABLE }

enum sf_wifi_auto_negotiation_t { SF_WIFI_AUTO_NEGOTIATION_DISABLE,
SF_WIFI_AUTO_NEGOTIATION_ENABLE }

enum sf_wifi_access_control_t { SF_WIFI_ACCESS_CONTROL_DISABLE,
SF_WIFI_ACCESS_CONTROL_DENY,
SF_WIFI_ACCESS_CONTROL_ALLOW }

enum sf_wifi_wps_mode_t { SF_WIFI_WPS_MODE_PUSHBUTTON,
SF_WIFI_WPS_MODE_PIN }

enum sf_wifi_event_t {
 SF_WIFI_EVENT_RX = (1 << 0), SF_WIFI_EVENT_AP_CONNECT = (1
<< 1), SF_WIFI_EVENT_AP_DISCONNECT = (1 << 2),
SF_WIFI_EVENT_CLIENT_CONNECT = (1 << 3),
 SF_WIFI_EVENT_CLIENT_DISCONNECT = (1 << 4)
}

Detailed Description

RTOS-integrated SF WIFI Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF WIFI Framework.

Macro Definition Documentation

◆ SF_WIFI_API_VERSION_MAJOR

#define SF_WIFI_API_VERSION_MAJOR (2U)

Major Version of the API defined in this file

◆ SF_WIFI_API_VERSION_MINOR

#define SF_WIFI_API_VERSION_MINOR (0U)

Minor Version of the API defined in this file

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,277 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface

◆ SF_WIFI_IPV4_ADDRESS

#define SF_WIFI_IPV4_ADDRESS (a, b, c, d)

((((uint32_t) a) << (24U)) | (((uint32_t) b) << (16U)) | \

 (((uint32_t) c) << (8U)) | ((uint32_t) d))

IP Address Generation Macro

Enumeration Type Documentation

◆ sf_wifi_access_control_t

enum sf_wifi_access_control_t

WiFi Framework AccessContol mode

Enumerator

SF_WIFI_ACCESS_CONTROL_DISABLE Disable MAC address matching.

SF_WIFI_ACCESS_CONTROL_DENY Deny association to stations on the MAC list.

SF_WIFI_ACCESS_CONTROL_ALLOW Allow association to stations on the MAC list.

◆ sf_wifi_auto_negotiation_t

enum sf_wifi_auto_negotiation_t

WiFi Auto Negotiation flag

Enumerator

SF_WIFI_AUTO_NEGOTIATION_DISABLE Auto negotiation disable.

SF_WIFI_AUTO_NEGOTIATION_ENABLE Auto negotiation enable.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,278 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface

◆ sf_wifi_bss_type_t

enum sf_wifi_bss_type_t

WiFi BSS type

Enumerator

SF_WIFI_BSS_TYPE_INFRASTRUCTURE Infrastructure network.

SF_WIFI_BSS_TYPE_ADHOC 802.11 ad-hoc IBSS network

SF_WIFI_BSS_TYPE_ANY Either infrastructure or ad-hoc network.

SF_WIFI_BSS_TYPE_UNKNOWN BSS type is unknown.

◆ sf_wifi_encryption_type_t

enum sf_wifi_encryption_type_t

WiFi Encryption type

Enumerator

SF_WIFI_ENCRYPTION_TYPE_AUTO Automatic selection of encryption protocol.

SF_WIFI_ENCRYPTION_TYPE_TKIP Temporal Key Integrity Protocol. Used by WPA.

SF_WIFI_ENCRYPTION_TYPE_CCMP CTR mode with CBC-MAC Protocol. Used by
WPA2.

SF_WIFI_ENCRYPTION_TYPE_WEP WEP mode. Used by WEP.

SF_WIFI_ENCRYPTION_TYPE_NONE No Encryption. Used by Open Security type.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,279 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface

◆ sf_wifi_event_t

enum sf_wifi_event_t

WiFi Framework event codes

Enumerator

SF_WIFI_EVENT_RX Packet received event.

SF_WIFI_EVENT_AP_CONNECT Device Associated Successfully with AP.

SF_WIFI_EVENT_AP_DISCONNECT Device Disconnected with AP.

SF_WIFI_EVENT_CLIENT_CONNECT Client Associated Successfully with device AP.

SF_WIFI_EVENT_CLIENT_DISCONNECT Client Disconnected from device AP.

◆ sf_wifi_high_throughput_t

enum sf_wifi_high_throughput_t

WiFi High Throughput flag

Enumerator

SF_WIFI_HIGH_THROUGHPUT_DISABLE Disable high throughput mode.

SF_WIFI_HIGH_THROUGHPUT_ENABLE Enable high throughput mode. Also requires
WMM to be enabled.

◆ sf_wifi_interface_hw_mode_t

enum sf_wifi_interface_hw_mode_t

WiFi Hardware mode

Enumerator

SF_WIFI_INTERFACE_HW_MODE_11A 802.11a

SF_WIFI_INTERFACE_HW_MODE_11B 802.11b

SF_WIFI_INTERFACE_HW_MODE_11G 802.11g

SF_WIFI_INTERFACE_HW_MODE_11N 802.11n

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,280 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface

◆ sf_wifi_interface_mode_t

enum sf_wifi_interface_mode_t

WiFi Interface mode

Enumerator

SF_WIFI_INTERFACE_MODE_AP Access Point mode.

SF_WIFI_INTERFACE_MODE_CLIENT Station Mode.

◆ sf_wifi_ip_addr_version_t

enum sf_wifi_ip_addr_version_t

IP address version

Enumerator

SF_WIFI_IP_ADDR_VERSION_4 IPv4 address.

SF_WIFI_IP_ADDR_VERSION_6 IPv6 address.

◆ sf_wifi_mandatory_high_throughput_t

enum sf_wifi_mandatory_high_throughput_t

WiFi Mandatory High Throughput flag

Enumerator

SF_WIFI_MANDATORY_HIGH_THROUGHPUT_DISA
BLE

Disable Mandatory HT requirement.

SF_WIFI_MANDATORY_HIGH_THROUGHPUT_ENAB
LE

Enable mandatory HT requirement.

◆ sf_wifi_preamble_t

enum sf_wifi_preamble_t

WiFi Preamble type

Enumerator

SF_WIFI_PREAMBLE_SHORT Use short preamble.

SF_WIFI_PREAMBLE_LONG Use long preamble.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,281 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface

◆ sf_wifi_rts_t

enum sf_wifi_rts_t

WiFi RTS flag

Enumerator

SF_WIFI_RTS_DISABLE Disable RTS/CTS handshake.

SF_WIFI_RTS_ENABLE Enable RTS/CTS handshake.

◆ sf_wifi_security_type_t

enum sf_wifi_security_type_t

WiFi Security type

Enumerator

SF_WIFI_SECURITY_TYPE_OPEN Open. No encryption used.

SF_WIFI_SECURITY_TYPE_WEP 128-bit WEP OPEN ASCII

SF_WIFI_SECURITY_TYPE_WPA WiFi Protected Access.

SF_WIFI_SECURITY_TYPE_WPA2 WiFi Protected Access v2.

◆ sf_wifi_ssid_broadcast_t

enum sf_wifi_ssid_broadcast_t

WiFi SSID Broadcast flag

Enumerator

SF_WIFI_SSID_BROADCAST_DISABLE Disable SSID Broadcast.

SF_WIFI_SSID_BROADCAST_ENABLE Enable SSID Broadcast.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,282 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface

◆ sf_wifi_wds_t

enum sf_wifi_wds_t

WiFi WDS Flasg

Enumerator

SF_WIFI_WDS_DISABLE Disable WDS.

SF_WIFI_WDS_ENABLE Enable WDS.

◆ sf_wifi_wep_key_format_t

enum sf_wifi_wep_key_format_t

WiFi WEP Key Format

Enumerator

SF_WIFI_WEP_KEY_FORMAT_ASCII WEP Key in ASCII.

SF_WIFI_WEP_KEY_FORMAT_HEX WEP Key in Hex.

◆ sf_wifi_wmm_t

enum sf_wifi_wmm_t

WiFi WMM flag

Enumerator

SF_WIFI_WMM_DISABLE Disable WMM.

SF_WIFI_WMM_ENABLE Enable WMM.

◆ sf_wifi_wps_mode_t

enum sf_wifi_wps_mode_t

WiFi WPS mode

Enumerator

SF_WIFI_WPS_MODE_PUSHBUTTON WPS Push button method.

SF_WIFI_WPS_MODE_PIN WPS pin method.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,283 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_ip_addr_t Struct Reference

 sf_wifi_ip_addr_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI Framework
Interface

#include <sf_wifi_api.h>

Data Fields

sf_wifi_ip_addr_version_t version

 IP Address Version : v4 or v6.

union {

} addr

 IP address.

Detailed Description

IP address information

The documentation for this struct was generated from the following file:

sf_wifi_api.h

 sf_wifi_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI Framework
Interface

#include <sf_wifi_api.h>

Data Fields

uint8_t * p_chipset

 Pointer to sting showing WiFi chipset/driver information.

uint16_t rssi

 Received signal strength indication.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,284 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_info_t Struct Reference

uint16_t noise_level

 Signal to noise ratio.

uint16_t link_quality

 Signal strength / quality.

Detailed Description

Configuration about underlying device driver.

The documentation for this struct was generated from the following file:

sf_wifi_api.h

 sf_wifi_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI Framework
Interface

#include <sf_wifi_api.h>

Data Fields

sf_wifi_event_t event

 Event code.

uint8_t * p_data

 Packet data.

uint32_t length

 Packet Data length.

uint8_t mac_addr [SF_WIFI_MAC_ADDR_LENGTH]

 Client station MAC address.

void const * p_context

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,285 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_callback_args_t Struct Reference

 Context provided to user during callback.

Detailed Description

WiFi framework callback parameter definition

The documentation for this struct was generated from the following file:

sf_wifi_api.h

 sf_wifi_provisioning_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI Framework
Interface

#include <sf_wifi_api.h>

Data Fields

sf_wifi_interface_mode_t mode

 Select AP or Client mode.

uint8_t channel

 RF Channel number.

uint8_t ssid [SF_WIFI_SSID_LENGTH+1]

 SSID.

sf_wifi_security_type_t security

 Security type.

sf_wifi_encryption_type_t encryption

 Encryption type.

uint8_t key [SF_WIFI_SECURITY_KEY_LENGTH]

 Pre-shared key.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,286 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_provisioning_t Struct Reference

void(* p_callback)(sf_wifi_callback_args_t *p_args)

 Pointer to Connection status notification callback function.

Detailed Description

WiFi Provisioning parameters

The documentation for this struct was generated from the following file:

sf_wifi_api.h

 sf_wifi_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI Framework
Interface

#include <sf_wifi_api.h>

Data Fields

uint8_t mac_addr [6]

 MAC address of WiFi Device.

sf_wifi_interface_hw_mode_t hw_mode

 Modulation type: 11a/b/g/n.

uint8_t tx_power

 Sets transmit power in dBm.

sf_wifi_rts_t rts

 RTS/CTS handshake flag.

uint16_t fragmentation

 Fragmentation threshold.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,287 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_cfg_t Struct Reference

uint8_t dtim

 Delivery traffic indication message interval.

sf_wifi_high_throughput_t high_throughput

 High-throughput mode. Only valid for 802.11n.

sf_wifi_preamble_t preamble

 Preamble type.

sf_wifi_wmm_t wmm

 WiFi Multimedia Mode flag. If enabled, also requires.

uint8_t max_stations

 Maximum permitted stations. Valid in AP mode only.

sf_wifi_ssid_broadcast_t ssid_broadcast

 SSID broadcast flag. Valid in AP mode only.

sf_wifi_access_control_t access_control

 Mode of access control MAC list.

uint32_t beacon

 Beacon interval. Valid in AP mode only.

uint32_t station_inactivity_timeout

 Station inactivity timeout value. Valid in AP mode only.

sf_wifi_wds_t wds

 WDS flag. Valid in AP mode only.

void * p_buffer_pool_rx

 Pointer to Network stack Rx buffer pool.

sf_wifi_mandatory_high_thro req_high_throughput

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,288 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_cfg_t Struct Reference

ughput_t

 Only allow HT mode. Valid in AP mode only.

void(* p_callback)(sf_wifi_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 Instance specific configuration.

Detailed Description

Define the WiFi configuration parameters

The documentation for this struct was generated from the following file:

sf_wifi_api.h

 sf_wifi_stats_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI Framework
Interface

#include <sf_wifi_api.h>

Data Fields

uint32_t rx_pkts

 Packets received successfully.

uint32_t tx_pkts

 Packets transmitted successfully.

uint32_t tx_err

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,289 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_stats_t Struct Reference

 Transmit errors.

Detailed Description

Define the statistic and error counters for this IP instance.

The documentation for this struct was generated from the following file:

sf_wifi_api.h

 sf_wifi_scan_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI Framework
Interface

#include <sf_wifi_api.h>

Data Fields

sf_wifi_interface_hw_mode_t hw_mode

 Hardware mode 802.11a/b/g/n.

uint8_t rssi

 Signal Strength.

uint8_t ssid [SF_WIFI_SSID_LENGTH+1]

 SSID name.

uint8_t bssid [SF_WIFI_MAC_ADDR_LENGTH]

 Basic Service Set Identification (i.e. MAC address of Access Point)

uint8_t channel

 Radio channel that the AP beacon was received on.

sf_wifi_security_type_t security

 Security type.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,290 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_scan_t Struct Reference

sf_wifi_encryption_type_t encryption

 Encryption type.

sf_wifi_bss_type_t bss_type

 Network type.

Detailed Description

Define the structure to store the SSID scan information

The documentation for this struct was generated from the following file:

sf_wifi_api.h

 sf_wifi_wps_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI Framework
Interface

#include <sf_wifi_api.h>

Data Fields

sf_wifi_wps_mode_t wps_mode

 WPS method Push-button or Pin.

uint8_t wps_key [SF_WIFI_WPS_PIN_LENGTH+SF_WIFI_SIZE_FOR_NULL_BYTE]

uint8_t timeout_seconds

 WPS timeout value in seconds.

void(* p_callback)(sf_wifi_callback_args_t *p_args)

Detailed Description

Define the structure for WiFi WPS Control

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,291 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_wps_t Struct Reference

Field Documentation

◆ p_callback

void(* sf_wifi_wps_t::p_callback) (sf_wifi_callback_args_t *p_args)

Pointer to callback function to be called on changed in client's connection status with AP or client
connected/disconnected

◆ wps_key

uint8_t sf_wifi_wps_t::wps_key[SF_WIFI_WPS_PIN_LENGTH+SF_WIFI_SIZE_FOR_NULL_BYTE]

WPS pin. Used only with WPS pin method, PIN should be NULL terminated

The documentation for this struct was generated from the following file:

sf_wifi_api.h

 sf_wifi_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI Framework
Interface

#include <sf_wifi_api.h>

Data Fields

void * p_driver_handle

Detailed Description

WiFi Framework control structure

Field Documentation

◆ p_driver_handle

void* sf_wifi_ctrl_t::p_driver_handle

Storage for information needed for each WiFi device driver in the system.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,292 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_ctrl_t Struct Reference

The documentation for this struct was generated from the following file:

sf_wifi_api.h

 sf_wifi_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI Framework
Interface

#include <sf_wifi_api.h>

Data Fields

ssp_err_t(* open)(sf_wifi_ctrl_t *p_ctrl, sf_wifi_cfg_t const *const p_cfg)

 Initializes the network interface for data transfers. More...

ssp_err_t(* close)(sf_wifi_ctrl_t *const p_ctrl)

 De-initialize the network interface and may put it in low power mode
or power it off. Close the driver, disable the driver link, disable
interrupt. More...

ssp_err_t(* multicastListAdd)(sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const
p_mac_addr)

 Add the given MAC address to the multicast filter list. More...

ssp_err_t(* multicastListDelete)(sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const
p_mac_addr)

ssp_err_t(* statisticsGet)(sf_wifi_ctrl_t *const p_ctrl, sf_wifi_stats_t *const
p_wifi_device_stats)

 Get the interface statistics. More...

ssp_err_t(* transmit)(sf_wifi_ctrl_t *const p_ctrl, uint8_t *const p_buf, uint32_t
length)

 Transmit data packet. More...

ssp_err_t(* provisioningSet)(sf_wifi_ctrl_t *const p_ctrl, sf_wifi_provisioning_t
const *const p_wifi_provisioning)

 Set WiFi module provisioning which will configure the module in AP
or Client mode. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,293 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_api_t Struct Reference

ssp_err_t(* provisioningGet)(sf_wifi_ctrl_t *const p_ctrl, sf_wifi_provisioning_t
*const p_wifi_provisioning)

 Get the provisioning information of WiFi module. More...

ssp_err_t(* infoGet)(sf_wifi_ctrl_t *const p_ctrl, sf_wifi_info_t *const p_wifi_info)

 Get WiFi module information. More...

ssp_err_t(* scan)(sf_wifi_ctrl_t *const p_ctrl, sf_wifi_scan_t *const p_scan,
uint8_t *const p_cnt)

 Scan for WiFi SSIDs. More...

ssp_err_t(* ACLAdd)(sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const p_mac)

 Adds a MAC address to the Access Control List. Valid in AP mode
only. More...

ssp_err_t(* ACLDelete)(sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const p_mac)

 Deletes a MAC address from Access Control List. Valid in AP mode
only. More...

ssp_err_t(* macAddressGet)(sf_wifi_ctrl_t *const p_ctrl, uint8_t *const p_mac)

 Get WiFi module MAC address. More...

ssp_err_t(* macAddressSet)(sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const
p_mac)

 Set WiFi module MAC address. More...

ssp_err_t(* wpsStart)(sf_wifi_ctrl_t *const p_ctrl, sf_wifi_wps_t const *const
p_wps)

 Start WiFi WPS. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Gets version and stores it in provided pointer p_version. More...

Detailed Description

Framework API structure. Implementations will use the following API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,294 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_api_t Struct Reference

Field Documentation

◆ ACLAdd

ssp_err_t(* sf_wifi_api_t::ACLAdd) (sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const p_mac)

Adds a MAC address to the Access Control List. Valid in AP mode only.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[in] p_mac Pointer to MAC address

◆ ACLDelete

ssp_err_t(* sf_wifi_api_t::ACLDelete) (sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const p_mac)

Deletes a MAC address from Access Control List. Valid in AP mode only.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[in] p_mac Pointer to MAC address

◆ close

ssp_err_t(* sf_wifi_api_t::close) (sf_wifi_ctrl_t *const p_ctrl)

De-initialize the network interface and may put it in low power mode or power it off. Close the
driver, disable the driver link, disable interrupt.

Parameters
[in,out] p_ctrl Pointer to the control block

for the WiFi module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,295 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_api_t Struct Reference

◆ infoGet

ssp_err_t(* sf_wifi_api_t::infoGet) (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_info_t *const p_wifi_info)

Get WiFi module information.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[out] p_wifi_info Pointer to WiFi module
information structure

◆ macAddressGet

ssp_err_t(* sf_wifi_api_t::macAddressGet) (sf_wifi_ctrl_t *const p_ctrl, uint8_t *const p_mac)

Get WiFi module MAC address.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[out] p_mac Pointer to MAC address

◆ macAddressSet

ssp_err_t(* sf_wifi_api_t::macAddressSet) (sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const p_mac)

Set WiFi module MAC address.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[in] p_mac Pointer to MAC address

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,296 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_api_t Struct Reference

◆ multicastListAdd

ssp_err_t(* sf_wifi_api_t::multicastListAdd) (sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const
p_mac_addr)

Add the given MAC address to the multicast filter list.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[in] p_mac_addr Pointer to the Mac address.

◆ multicastListDelete

ssp_err_t(* sf_wifi_api_t::multicastListDelete) (sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const
p_mac_addr)

Delete the given MAC address from the multicast filter list.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[in] p_mac_addr Pointer to the Mac address.

◆ open

ssp_err_t(* sf_wifi_api_t::open) (sf_wifi_ctrl_t *p_ctrl, sf_wifi_cfg_t const *const p_cfg)

Initializes the network interface for data transfers.

Initial driver configuration, enable the driver link, enable interrupts and make device ready for data
transfer.

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to WiFi configuration
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,297 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_api_t Struct Reference

◆ provisioningGet

ssp_err_t(* sf_wifi_api_t::provisioningGet) (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_provisioning_t *const
p_wifi_provisioning)

Get the provisioning information of WiFi module.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[out] p_wifi_provisioning Pointer to WiFi provisioning
structure

◆ provisioningSet

ssp_err_t(* sf_wifi_api_t::provisioningSet) (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_provisioning_t const
*const p_wifi_provisioning)

Set WiFi module provisioning which will configure the module in AP or Client mode.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[in] p_wifi_provisioning Pointer to WiFi provisioning
structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,298 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_api_t Struct Reference

◆ scan

ssp_err_t(* sf_wifi_api_t::scan) (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_scan_t *const p_scan, uint8_t
*const p_cnt)

Scan for WiFi SSIDs.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[out] p_scan Pointer to structure which
will hold scan result. It is the
responsibility of the caller to
ensure that adequate space
is available to hold scan
results.

[in,out] p_cnt Pointer to variable,
specifying maximum number
of SSID's to scan and will be
updated to number of actual
SSIDs scanned by device

◆ statisticsGet

ssp_err_t(* sf_wifi_api_t::statisticsGet) (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_stats_t *const
p_wifi_device_stats)

Get the interface statistics.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[out] p_wifi_device_stats Pointer to the WiFi module
data statistics.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,299 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_api_t Struct Reference

◆ transmit

ssp_err_t(* sf_wifi_api_t::transmit) (sf_wifi_ctrl_t *const p_ctrl, uint8_t *const p_buf, uint32_t length)

Transmit data packet.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[in] p_buf Pointer to transmit buffer

[in] length Transmit buffer length

◆ versionGet

ssp_err_t(* sf_wifi_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version pointer to memory location

to return version number

◆ wpsStart

ssp_err_t(* sf_wifi_api_t::wpsStart) (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_wps_t const *const p_wps)

Start WiFi WPS.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[in] p_wps Pointer to WiFi WPS
configuration

The documentation for this struct was generated from the following file:

sf_wifi_api.h

 sf_wifi_instance_t Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,300 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI Framework Interface > sf_wifi_instance_t Struct Reference

Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI Framework
Interface

#include <sf_wifi_api.h>

Data Fields

sf_wifi_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_wifi_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

sf_wifi_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_wifi_api.h

5.1.2.49 SF WIFI NSAL Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF WIFI NSAL Framework Interface. More...

Data Structures

struct sf_wifi_nsal_cfg_t

struct sf_wifi_nsal_callback_args_t

Enumerations

enum sf_wifi_nsal_zero_copy_t { SF_WIFI_NSAL_ZERO_COPY_DISABLE,
SF_WIFI_NSAL_ZERO_COPY_ENABLE }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,301 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI NSAL Interface

Detailed Description

RTOS-integrated SF WIFI NSAL Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF WIFI NSAL Framework.

Enumeration Type Documentation

◆ sf_wifi_nsal_zero_copy_t

enum sf_wifi_nsal_zero_copy_t

Zero Copy Configuration Enumeration

Enumerator

SF_WIFI_NSAL_ZERO_COPY_DISABLE Zero copy is disabled.

SF_WIFI_NSAL_ZERO_COPY_ENABLE Zero copy is enabled.

 sf_wifi_nsal_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI NSAL Interface

#include <sf_wifi_nsal_api.h>

Data Fields

sf_wifi_nsal_zero_copy_t tx_zero_copy

 Transmit path zero copy support.

sf_wifi_nsal_zero_copy_t rx_zero_copy

 Receive path zero copy support.

uint8_t * p_tx_packet_buffer

 Pointer to Tx buffer used to consolidate data from chained NetX
packets.

Detailed Description

Define the NSAL configuration parameters

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,302 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI NSAL Interface > sf_wifi_nsal_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

sf_wifi_nsal_api.h

 sf_wifi_nsal_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI NSAL Interface

#include <sf_wifi_nsal_api.h>

Data Fields

NX_INTERFACE * p_interface

 Pointer to NetX interface.

NX_IP * p_ip

 Pointer to NetX IP.

sf_wifi_nsal_cfg_t * p_wifi_nsal_cfg

 pointer to NSAL configuration

Detailed Description

Define the NSAL callback arguments

The documentation for this struct was generated from the following file:

sf_wifi_nsal_api.h

5.1.2.50 SF WIFI On-Chip Stack Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF WIFI On-Chip Stack Interface. More...

Data Structures

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,303 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI On-Chip Stack Interface

struct sf_wifi_onchip_stack_ip_cfg_t

struct sf_wifi_onchip_stack_cfg_t

struct sf_wifi_onchip_stack_ctrl_t

struct sf_wifi_onchip_stack_api_t

struct sf_wifi_onchip_stack_instance_t

Macros

#define SF_WIFI_ONCHIP_STACK_API_VER_MAJOR (2U)

#define SF_WIFI_ONCHIP_STACK_API_VER_MINOR (0U)

Enumerations

enum sf_wifi_onchip_stack_ip_addr_mode_t { SF_WIFI_IP_ADDR_GET,
SF_WIFI_IP_ADDR_STATIC, SF_WIFI_IP_ADDR_DHCP }

Detailed Description

RTOS-integrated SF WIFI On-Chip Stack Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF WIFI Framework.

Macro Definition Documentation

◆ SF_WIFI_ONCHIP_STACK_API_VER_MAJOR

#define SF_WIFI_ONCHIP_STACK_API_VER_MAJOR (2U)

Major Version of the API defined in this file

◆ SF_WIFI_ONCHIP_STACK_API_VER_MINOR

#define SF_WIFI_ONCHIP_STACK_API_VER_MINOR (0U)

Minor Version of the API defined in this file

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,304 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI On-Chip Stack Interface

◆ sf_wifi_onchip_stack_ip_addr_mode_t

enum sf_wifi_onchip_stack_ip_addr_mode_t

IP addressing modes

Enumerator

SF_WIFI_IP_ADDR_GET Read the IP address assigned to interface.

SF_WIFI_IP_ADDR_STATIC Statically configure the IP address.

SF_WIFI_IP_ADDR_DHCP Get the IP address from DHCP server, dynamic
assignment.

 sf_wifi_onchip_stack_ip_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI On-Chip Stack
Interface

#include <sf_wifi_onchip_stack_api.h>

Data Fields

sf_wifi_onchip_stack_ip_addr
_mode_t

ip_addr_mode

 Addressing mode.

sf_wifi_ip_addr_t ip_addr

 Interface IP address.

sf_wifi_ip_addr_t netmask

 Interface netmask.

sf_wifi_ip_addr_t gateway

 Interface Gateway.

Detailed Description

Define IP Interface configuration information

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,305 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI On-Chip Stack Interface > sf_wifi_onchip_stack_ip_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

sf_wifi_onchip_stack_api.h

 sf_wifi_onchip_stack_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI On-Chip Stack
Interface

#include <sf_wifi_onchip_stack_api.h>

Data Fields

sf_wifi_instance_t const * p_lower_lvl_wifi

 Pointer to SF WiFi instance.

void * p_extend

 Extended configuration.

Detailed Description

Define the WiFi configuration parameters

The documentation for this struct was generated from the following file:

sf_wifi_onchip_stack_api.h

 sf_wifi_onchip_stack_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI On-Chip Stack
Interface

#include <sf_wifi_onchip_stack_api.h>

Data Fields

sf_wifi_instance_t * p_lower_lvl_wifi

 Pointer to SF WiFi instance. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,306 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI On-Chip Stack Interface > sf_wifi_onchip_stack_ctrl_t Struct Reference

Detailed Description

WiFi Framework control structure

Field Documentation

◆ p_lower_lvl_wifi

sf_wifi_instance_t* sf_wifi_onchip_stack_ctrl_t::p_lower_lvl_wifi

Pointer to SF WiFi instance.

Storage for information needed for each WiFi device driver in the system.

The documentation for this struct was generated from the following file:

sf_wifi_onchip_stack_api.h

 sf_wifi_onchip_stack_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI On-Chip Stack
Interface

#include <sf_wifi_onchip_stack_api.h>

Data Fields

ssp_err_t(* open)(sf_wifi_onchip_stack_ctrl_t *p_ctrl, sf_wifi_onchip_stack_cfg_t
const *const p_cfg)

 Pointer to function which initializes the network interface for data
transfers. More...

ssp_err_t(* close)(sf_wifi_onchip_stack_ctrl_t *const p_ctrl)

 Pointer to function which un-initialize the network interface and may
put it in low power mode or power it off. Close the driver, disable the
driver link, disable interrupt. More...

ssp_err_t(* ipAddressCfg)(sf_wifi_onchip_stack_ctrl_t *const p_ctrl,
sf_wifi_onchip_stack_ip_cfg_t *const p_cfg)

 Configures IP address of the interface. More...

ssp_err_t(* dhcpServerStart)(sf_wifi_onchip_stack_ctrl_t *const p_ctrl,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,307 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI On-Chip Stack Interface > sf_wifi_onchip_stack_api_t Struct Reference

sf_wifi_ip_addr_t const *const p_start_ip, sf_wifi_ip_addr_t const
*const p_end_ip)

 Starts DHCP server on the interface. More...

ssp_err_t(* dhcpServerStop)(sf_wifi_onchip_stack_ctrl_t *const p_ctrl)

 Stop DHCP server on the interface. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Gets version and stores it in provided pointer p_version. More...

Detailed Description

Framework API structure. Implementations will use the following API.

Field Documentation

◆ close

ssp_err_t(* sf_wifi_onchip_stack_api_t::close) (sf_wifi_onchip_stack_ctrl_t *const p_ctrl)

Pointer to function which un-initialize the network interface and may put it in low power mode or
power it off. Close the driver, disable the driver link, disable interrupt.

Parameters
[in,out] p_ctrl Pointer to the control block

◆ dhcpServerStart

ssp_err_t(* sf_wifi_onchip_stack_api_t::dhcpServerStart) (sf_wifi_onchip_stack_ctrl_t *const p_ctrl,
sf_wifi_ip_addr_t const *const p_start_ip, sf_wifi_ip_addr_t const *const p_end_ip)

Starts DHCP server on the interface.

Parameters
[in] p_ctrl Pointer to the control block

[in] p_start_ip Pointer to start IP address

[in] p_end_ip Pointer to end IP address

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,308 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI On-Chip Stack Interface > sf_wifi_onchip_stack_api_t Struct Reference

◆ dhcpServerStop

ssp_err_t(* sf_wifi_onchip_stack_api_t::dhcpServerStop) (sf_wifi_onchip_stack_ctrl_t *const p_ctrl)

Stop DHCP server on the interface.

Parameters
[in] p_ctrl Pointer to the control block

◆ ipAddressCfg

ssp_err_t(* sf_wifi_onchip_stack_api_t::ipAddressCfg) (sf_wifi_onchip_stack_ctrl_t *const p_ctrl,
sf_wifi_onchip_stack_ip_cfg_t *const p_cfg)

Configures IP address of the interface.

Parameters
[in] p_ctrl Pointer to the control block

[in,out] p_cfg Pointer to IP configuration
structure.

◆ open

ssp_err_t(* sf_wifi_onchip_stack_api_t::open) (sf_wifi_onchip_stack_ctrl_t *p_ctrl,
sf_wifi_onchip_stack_cfg_t const *const p_cfg)

Pointer to function which initializes the network interface for data transfers.

Initial driver configuration, enable the driver link, enable interrupts and make device ready for data
transfer.

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to configuration
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,309 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI On-Chip Stack Interface > sf_wifi_onchip_stack_api_t Struct Reference

◆ versionGet

ssp_err_t(* sf_wifi_onchip_stack_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version pointer to memory location

to return version number

The documentation for this struct was generated from the following file:

sf_wifi_onchip_stack_api.h

 sf_wifi_onchip_stack_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI On-Chip Stack
Interface

#include <sf_wifi_onchip_stack_api.h>

Data Fields

sf_wifi_onchip_stack_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_wifi_onchip_stack_cfg_t
const *

p_cfg

 Pointer to the configuration structure for this instance.

sf_wifi_onchip_stack_api_t
const *

p_api

 Pointer to the API structure for this instance.

Detailed Description

SF WiFi On Chip Stack Instance structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,310 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI On-Chip Stack Interface > sf_wifi_onchip_stack_instance_t Struct Reference

The documentation for this struct was generated from the following file:

sf_wifi_onchip_stack_api.h

5.1.2.51 SF WIFI QCA4010 Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF WIFI QCA4010 Framework Interface. More...

Data Structures

struct sf_wifi_qca4010_status_t

struct sf_wifi_qca4010_at_cmd_set_t

struct sf_wifi_qca4010_cmd_resp_t

struct sf_wifi_qca4010_cfg_t

struct sf_wifi_qca4010_provisioning_t

struct sf_wifi_qca4010_scan_t

struct sf_wifi_qca4010_uart_extend_cfg_t

struct sf_wifi_qca4010_queue_cfg_t

struct sf_wifi_qca4010_extended_cfg_t

struct sf_wifi_qca4010_ctrl_t

struct sf_wifi_qca4010_api_t

struct sf_wifi_qca4010_instance_t

Macros

#define SF_WIFI_QCA4010_API_VERSION_MAJOR (2U)

#define SF_WIFI_QCA4010_API_VERSION_MINOR (0U)

#define SF_WIFI_QCA4010_SSID_LENGTH (32U)

 WiFi SSID length.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,311 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface

#define SF_WIFI_QCA4010_BSSID_LENGTH (6U)

 WiFi BSSID length.

#define SF_WIFI_QCA4010_SECURITY_KEY_LENGTH (128U)

 WiFi Security Key length.

#define SF_WIFI_QCA4010_MUTEX_GET_TIMEOUT_TICKS (200U)

 Default timeout for getting mutex.

#define MAC_ADDRESS_LEN (18U)

#define PHY_MODE_LEN (6U)

#define ACCESS_MODE_LEN (10U)

#define POWER_MODE_LEN (10U)

Enumerations

enum sf_wifi_qca4010_at_cmd_index_t {
 SF_WIFI_QCA4010_AT_CMD_INDEX_AT = 0,
SF_WIFI_QCA4010_AT_CMD_INDEX_ATZ0,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_BAUD_CHECK,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_BAUD_SET,
 SF_WIFI_QCA4010_AT_CMD_INDEX_AT_SAVE,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_ECHO,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_SET_HARDWARE_MODE,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_RESULT_CODE_FROMAT,

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_UART_TRANSMISSION_FLOW_
CONTROL_QUERY,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_UART_TRANSMISSION_FLOW_
CONTROL,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_ESCAPE_GUARD_TIME,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_BUFFER_SIZE,
 SF_WIFI_QCA4010_AT_CMD_INDEX_AT_DISCONNECT_AP,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_BUFFER_TIMEOUT,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_SCAN_SSID,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_INITIATE_AP_MODE,
 SF_WIFI_QCA4010_AT_CMD_INDEX_AT_CONNECT_OPEN_AP,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_CONNECT_WPA_AP,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_ASSIGN_AP_CHANNEL,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_INITIATE_OPEN_AP,
 SF_WIFI_QCA4010_AT_CMD_INDEX_AT_INITIATE_WPA_AP,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_ASSIGN_WEP_KEY,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_INITIATE_WEP_AP,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_CONNECT_WEP_AP,
 SF_WIFI_QCA4010_AT_CMD_INDEX_AT_WIFI_STATUS,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_DISCONNECT_ACCESS_POINT,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,312 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_INIT_SECOND_UART,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_CHANGE_UART_ASSIGNMENT,

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_CHANGE_UART_ASSIGNMENT_
IN_CLOSE,
SF_WIFI_QCA4010_AT_CMD_INDEX_AT_SWITCH_BACK_TO_DATA_MOD
E, SF_WIFI_QCA4010_AT_CMD_INDEX_AT_EXIT_DATA_MODE
}

enum sf_wifi_qca4010_interface_hw_mode_t {
SF_WIFI_QCA4010_INTERFACE_HW_MODE_11B,
SF_WIFI_QCA4010_INTERFACE_HW_MODE_11G,
SF_WIFI_QCA4010_INTERFACE_HW_MODE_11N }

enum sf_wifi_qca4010_reset_type_t { SF_WIFI_QCA4010_RESET_TYPE_SOFT
, SF_WIFI_QCA4010_RESET_TYPE_HARD }

enum sf_wifi_qca4010_interface_mode_t {
SF_WIFI_QCA4010_INTERFACE_MODE_AP,
SF_WIFI_QCA4010_INTERFACE_MODE_CLIENT }

enum sf_wifi_qca4010_security_type_t {
SF_WIFI_QCA4010_SECURITY_TYPE_OPEN = 0,
SF_WIFI_QCA4010_SECURITY_TYPE_WEP,
SF_WIFI_QCA4010_SECURITY_TYPE_WPA,
SF_WIFI_QCA4010_SECURITY_TYPE_WPA2 }

enum sf_wifi_qca4010_encryption_type_t {
SF_WIFI_QCA4010_ENCRYPTION_TYPE_TKIP = 0,
SF_WIFI_QCA4010_ENCRYPTION_TYPE_CCMP }

Detailed Description

RTOS-integrated SF WIFI QCA4010 Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF WIFI QCA4010 Framework.

Macro Definition Documentation

◆ ACCESS_MODE_LEN

#define ACCESS_MODE_LEN (10U)

Mode len

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,313 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface

◆ MAC_ADDRESS_LEN

#define MAC_ADDRESS_LEN (18U)

Mac address len

◆ PHY_MODE_LEN

#define PHY_MODE_LEN (6U)

phy mode len

◆ POWER_MODE_LEN

#define POWER_MODE_LEN (10U)

power mode len

◆ SF_WIFI_QCA4010_API_VERSION_MAJOR

#define SF_WIFI_QCA4010_API_VERSION_MAJOR (2U)

Major Version of the API defined in this file

◆ SF_WIFI_QCA4010_API_VERSION_MINOR

#define SF_WIFI_QCA4010_API_VERSION_MINOR (0U)

Minor Version of the API defined in this file

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,314 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface

◆ sf_wifi_qca4010_at_cmd_index_t

enum sf_wifi_qca4010_at_cmd_index_t

Enumeration for AT command index

Enumerator

SF_WIFI_QCA4010_AT_CMD_INDEX_AT Index for Command AT.

SF_WIFI_QCA4010_AT_CMD_INDEX_ATZ0 Index for Command ATZ0.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_BAUD_CH
ECK

Index for Command to check whether modem
is responding after baud update.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_BAUD_SE
T

Index for Command to set baud rate of wifi.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_SAVE Index for Command AT&W.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_ECHO Index for Command ATE0.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_SET_HAR
DWARE_MODE

Index for Command ATWPHYMODE.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_RESULT_C
ODE_FROMAT

Index for Command ATV.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_UART_TR
ANSMISSION_FLOW_CONTROL_QUERY

Index for Command ATS108?

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_UART_TR
ANSMISSION_FLOW_CONTROL

Index for Command ATS108=1.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_ESCAPE_
GUARD_TIME

Index for Command ATS12=1.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_BUFFER_S
IZE

Index for Command Set buffer size for socket
receive (ATBSIZE)

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_DISCONN
ECT_AP

Index for Command disconnect from currently
connected Access Point.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_BUFFER_T
IMEOUT

Index for Command to the system wait to send
UART-received data to network.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_SCAN_SSI
D

Index for Command to the scan available ssid.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_INITIATE_
AP_MODE

Index for Command to initiate AP mode.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_CONNECT
_OPEN_AP

Index for Command to the connect open AP.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_CONNECT
_WPA_AP

Index for Command to the connect to WPA-

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,315 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface

configured Access Point.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_ASSIGN_A
P_CHANNEL

Index for Command to assign channel to AP.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_INITIATE_
OPEN_AP

Index for Command to initiate Open AP.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_INITIATE_
WPA_AP

Index for Command to initiate WPA/WPA2 AP.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_ASSIGN_
WEP_KEY

Index for Command to assign WEP key.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_INITIATE_
WEP_AP

Index for Command to initiate WEP AP.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_CONNECT
_WEP_AP

Index for Command to connect to WEP AP.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_WIFI_STA
TUS

Index for Command to the get wifi status.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_DISCONN
ECT_ACCESS_POINT

Index for Command to disconnect current
access point.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_INIT_SEC
OND_UART

Index for Command to init second uart.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_CHANGE_
UART_ASSIGNMENT

Change UART assignments for command and
data.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_CHANGE_
UART_ASSIGNMENT_IN_CLOSE

Change UART assignments for command and
data in close if num_uart = 2.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_SWITCH_
BACK_TO_DATA_MODE

Index for Command to switch to data mode.

SF_WIFI_QCA4010_AT_CMD_INDEX_AT_EXIT_DAT
A_MODE

Index for Command to switch to command
mode.

◆ sf_wifi_qca4010_encryption_type_t

enum sf_wifi_qca4010_encryption_type_t

WiFi Encryption type

Enumerator

SF_WIFI_QCA4010_ENCRYPTION_TYPE_TKIP Temporal Key Integrity Protocol.

SF_WIFI_QCA4010_ENCRYPTION_TYPE_CCMP CTR mode with CBC-MAC Protocol.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,316 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface

◆ sf_wifi_qca4010_interface_hw_mode_t

enum sf_wifi_qca4010_interface_hw_mode_t

WiFi Hardware mode

Enumerator

SF_WIFI_QCA4010_INTERFACE_HW_MODE_11B 802.11b

SF_WIFI_QCA4010_INTERFACE_HW_MODE_11G 802.11g

SF_WIFI_QCA4010_INTERFACE_HW_MODE_11N 802.11n

◆ sf_wifi_qca4010_interface_mode_t

enum sf_wifi_qca4010_interface_mode_t

WiFi Interface mode

Enumerator

SF_WIFI_QCA4010_INTERFACE_MODE_AP Access Point mode.

SF_WIFI_QCA4010_INTERFACE_MODE_CLIENT Station Mode.

◆ sf_wifi_qca4010_reset_type_t

enum sf_wifi_qca4010_reset_type_t

Wifi Module reset type

Enumerator

SF_WIFI_QCA4010_RESET_TYPE_SOFT Soft reset module using AT command.

SF_WIFI_QCA4010_RESET_TYPE_HARD Hard reset module by toggling Reset Pin.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,317 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface

◆ sf_wifi_qca4010_security_type_t

enum sf_wifi_qca4010_security_type_t

WiFi Security type

Enumerator

SF_WIFI_QCA4010_SECURITY_TYPE_OPEN Open. No encryption used.

SF_WIFI_QCA4010_SECURITY_TYPE_WEP 10 or 26 digit hexadecimal string

SF_WIFI_QCA4010_SECURITY_TYPE_WPA WiFi Protected Access.

SF_WIFI_QCA4010_SECURITY_TYPE_WPA2 WiFi Protected Access v2.

 sf_wifi_qca4010_status_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010
Framework Interface

#include <sf_wifi_qca4010_api.h>

Data Fields

uint8_t ssid [SF_WIFI_QCA4010_SSID_LENGTH]

 SSID.

uint8_t phy_mode [PHY_MODE_LEN]

 Phy mode.

uint8_t mac_addr [MAC_ADDRESS_LEN]

 Mac addr.

uint8_t mode [ACCESS_MODE_LEN]

 Mode.

uint8_t channel [MAX_CHANNEL_LENGTH]

 Channel.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,318 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface > sf_wifi_qca4010_status_t Struct Reference

Detailed Description

Network Status information

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_api.h

 sf_wifi_qca4010_at_cmd_set_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010
Framework Interface

#include <sf_wifi_qca4010_api.h>

Data Fields

uint8_t * p_cmd

 AT Command.

uint8_t * p_success_resp

 Success response string.

uint16_t max_resp_length

 Maximum length of expected response.

uint32_t resp_wait_time

 AT command response wait time in milliseconds.

uint16_t retry_delay

 Delay between AT command retry.

Detailed Description

Structure defining AT commands parameters

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,319 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface > sf_wifi_qca4010_at_cmd_set_t Struct Reference

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_api.h

 sf_wifi_qca4010_cmd_resp_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010
Framework Interface

#include <sf_wifi_qca4010_api.h>

Data Fields

uint8_t * p_buff

uint32_t buff_len

Detailed Description

Modem Command/Response structure used to send Custom AT command and to receive response
for the same

Field Documentation

◆ buff_len

uint32_t sf_wifi_qca4010_cmd_resp_t::buff_len

AT command/Response buffer length. In case of Response this is both in and out parameter. Input
is the length of buffer pointed by p_buff and output is number of bytes of response copied by
framework. In case of command it is length of command in p_buff

◆ p_buff

uint8_t* sf_wifi_qca4010_cmd_resp_t::p_buff

AT command/Response buffer. In case of AT command it is input buffer in which user should pass
custom command to be sent. In case of Response it is output buffer in which framework will fill the
response

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,320 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface > sf_wifi_qca4010_cmd_resp_t Struct Reference

 sf_wifi_qca4010_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010
Framework Interface

#include <sf_wifi_qca4010_api.h>

Data Fields

sf_wifi_qca4010_interface_h
w_mode_t

hw_mode

 Modulation type: 11b/g/n.

const uart_instance_t * p_uart_instances
[SF_WIFI_QCA4010_CFG_MAX_NUMBER_UART_PORTS]

 SCI UART instances.

const uint32_t num_uarts

 Number of UART interfaces to use.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 Instance specific configuration.

sf_wifi_qca4010_at_cmd_set
_t const *

p_cmd_set

 Instance specific command set.

Detailed Description

Define the WiFi configuration parameters

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,321 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface > sf_wifi_qca4010_cfg_t Struct Reference

 sf_wifi_qca4010_provisioning_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010
Framework Interface

#include <sf_wifi_qca4010_api.h>

Data Fields

sf_wifi_qca4010_interface_m
ode_t

mode

 Select AP or Client mode.

uint8_t channel

 RF Channel number.

uint8_t ssid [SF_WIFI_QCA4010_SSID_LENGTH+1]

 SSID.

sf_wifi_qca4010_security_ty
pe_t

security

 Security type.

sf_wifi_qca4010_encryption_
type_t

encryption

 Encryption type.

uint8_t key [SF_WIFI_QCA4010_SECURITY_KEY_LENGTH]

 Pre-shared key.

uint8_t index

 WEP Key index, value ranges between 1 to 4.

Detailed Description

WiFi Provisioning parameters

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,322 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface > sf_wifi_qca4010_provisioning_t Struct Reference

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_api.h

 sf_wifi_qca4010_scan_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010
Framework Interface

#include <sf_wifi_qca4010_api.h>

Data Fields

uint8_t ssid [SF_WIFI_QCA4010_SSID_LENGTH]

 SSID name.

uint8_t bssid [MAC_ADDRESS_LEN]

 Basic Service Set Identification (i.e. MAC address of Access Point)

uint8_t channel [MAX_CHANNEL_LENGTH]

 Radio channel that the AP beacon was received on.

uint8_t security

 Security type.

Detailed Description

Define the structure to store the SSID scan information

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_api.h

 sf_wifi_qca4010_uart_extend_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010
Framework Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,323 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface > sf_wifi_qca4010_uart_extend_cfg_t Struct Reference

#include <sf_wifi_qca4010_api.h>

Data Fields

uart_instance_t const * p_r_uart_instance

 Lower level HAL driver instance.

Detailed Description

UART configuration

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_api.h

 sf_wifi_qca4010_queue_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010
Framework Interface

#include <sf_wifi_qca4010_api.h>

Data Fields

uint32_t * p_queue_buffer

 Queue buffer.

uint32_t queue_size

 Queue Size.

uint8_t ok_check_index

 Variable to store index for data checking success string response.

uint8_t error_check_index

 Variable to store index for data checking error string response.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,324 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface > sf_wifi_qca4010_queue_cfg_t Struct Reference

TX_QUEUE * p_cmd_queue_ptr

 Queue.

Detailed Description

Queue configuration

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_api.h

 sf_wifi_qca4010_extended_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010
Framework Interface

#include <sf_wifi_qca4010_api.h>

Data Fields

sf_wifi_qca4010_queue_cfg_t
*

p_queue_cfg

 Queue configuration.

TX_EVENT_FLAGS_GROUP * p_eventflag [2]

 Pointer to the event flag object for UART data transfer.

ioport_port_pin_t pin_reset

 Port pin used for resetting wifi module.

ioport_level_t reset_level

 Module reset level.

void * p_module_extended_cfg

 Instance specific module configuration.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,325 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface > sf_wifi_qca4010_extended_cfg_t Struct Reference

Detailed Description

SF wifi framework extended configuration

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_api.h

 sf_wifi_qca4010_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010
Framework Interface

#include <sf_wifi_qca4010_api.h>

Data Fields

void * p_driver_handle

Detailed Description

WiFi Framework control structure

Field Documentation

◆ p_driver_handle

void* sf_wifi_qca4010_ctrl_t::p_driver_handle

Storage for information needed for each WiFi device driver in the system.

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_api.h

 sf_wifi_qca4010_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010
Framework Interface

#include <sf_wifi_qca4010_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,326 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface > sf_wifi_qca4010_api_t Struct Reference

Data Fields

ssp_err_t(* open)(sf_wifi_qca4010_ctrl_t *p_ctrl, sf_wifi_qca4010_cfg_t const
*const p_cfg)

 Initializes the network interface for data transfers. More...

ssp_err_t(* close)(sf_wifi_qca4010_ctrl_t *const p_ctrl)

 De-initialize the network interface and may put it in low power mode
or power it off. Close the driver, disable the driver link, disable
interrupt. More...

ssp_err_t(* provisioningSet)(sf_wifi_qca4010_ctrl_t *const p_ctrl,
sf_wifi_qca4010_provisioning_t const *const p_wifi_provisioning)

 Set WiFi module provisioning which will configure the module in AP
or Client mode. More...

ssp_err_t(* wifiStatusGet)(sf_wifi_qca4010_ctrl_t *const p_ctrl,
sf_wifi_qca4010_status_t *const p_wifi_status)

 Get WiFi module information. More...

ssp_err_t(* scan)(sf_wifi_qca4010_ctrl_t *const p_ctrl, sf_wifi_qca4010_scan_t
*const p_scan, uint8_t count)

 Scan for WiFi SSIDs. More...

ssp_err_t(* CommandSend)(sf_wifi_qca4010_ctrl_t *const p_ctrl,
sf_wifi_qca4010_cmd_resp_t *const p_input_at_command,
sf_wifi_qca4010_cmd_resp_t *const p_output, uint32_t const timeout)

 Send AT command given by user. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Gets version and stores it in provided pointer p_version. More...

Detailed Description

Framework API structure. Implementations will use the following API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,327 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface > sf_wifi_qca4010_api_t Struct Reference

◆ close

ssp_err_t(* sf_wifi_qca4010_api_t::close) (sf_wifi_qca4010_ctrl_t *const p_ctrl)

De-initialize the network interface and may put it in low power mode or power it off. Close the
driver, disable the driver link, disable interrupt.

Parameters
[in,out] p_ctrl Pointer to the control block

for the WiFi module.

◆ CommandSend

ssp_err_t(* sf_wifi_qca4010_api_t::CommandSend) (sf_wifi_qca4010_ctrl_t *const p_ctrl,
sf_wifi_qca4010_cmd_resp_t *const p_input_at_command, sf_wifi_qca4010_cmd_resp_t *const
p_output, uint32_t const timeout)

Send AT command given by user.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[in] p_input_at_command Pointer to structure which
contains Modem command
to send

[in,out] p_output Pointer to buffer in which
response will be sent to
user, Also user will pass the
size of the buffer which is
pointed by p_output

[in] timeout Timeout for which
framework will wait for
response in milliseconds

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,328 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface > sf_wifi_qca4010_api_t Struct Reference

◆ open

ssp_err_t(* sf_wifi_qca4010_api_t::open) (sf_wifi_qca4010_ctrl_t *p_ctrl, sf_wifi_qca4010_cfg_t const
*const p_cfg)

Initializes the network interface for data transfers.

Initial driver configuration, enable the driver link, enable interrupts and make device ready for data
transfer.

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to WiFi configuration
structure.

◆ provisioningSet

ssp_err_t(* sf_wifi_qca4010_api_t::provisioningSet) (sf_wifi_qca4010_ctrl_t *const p_ctrl,
sf_wifi_qca4010_provisioning_t const *const p_wifi_provisioning)

Set WiFi module provisioning which will configure the module in AP or Client mode.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[in] p_wifi_provisioning Pointer to WiFi provisioning
structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,329 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface > sf_wifi_qca4010_api_t Struct Reference

◆ scan

ssp_err_t(* sf_wifi_qca4010_api_t::scan) (sf_wifi_qca4010_ctrl_t *const p_ctrl,
sf_wifi_qca4010_scan_t *const p_scan, uint8_t count)

Scan for WiFi SSIDs.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[out] p_scan Pointer to structure which
will hold scan result. It is the
responsibility of the caller to
ensure that adequate space
is available to hold scan
results.

[in,out] count Variable specifying
maximum number of SSID's
to scan and will be updated
to number of actual SSIDs
scanned by device

◆ versionGet

ssp_err_t(* sf_wifi_qca4010_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version pointer to memory location

to return version number

◆ wifiStatusGet

ssp_err_t(* sf_wifi_qca4010_api_t::wifiStatusGet) (sf_wifi_qca4010_ctrl_t *const p_ctrl,
sf_wifi_qca4010_status_t *const p_wifi_status)

Get WiFi module information.

Parameters
[in] p_ctrl Pointer to the control block

for the WiFi module.

[out] p_wifi_info Pointer to WiFi module
information structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,330 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 Framework Interface > sf_wifi_qca4010_api_t Struct Reference

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_api.h

 sf_wifi_qca4010_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010
Framework Interface

#include <sf_wifi_qca4010_api.h>

Data Fields

sf_wifi_qca4010_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_wifi_qca4010_cfg_t const
*

p_cfg

 Pointer to the configuration structure for this instance.

sf_wifi_qca4010_api_t const
*

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_api.h

5.1.2.52 SF WIFI QCA4010 On-Chip Interface
Renesas Synergy Software Package Reference » Framework Interfaces

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,331 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 On-Chip Interface

RTOS-integrated SF Socket Wifi Framework Interface. More...

Data Structures

struct sf_wifi_qca4010_ip_addr_t

struct sf_wifi_qca4010_onchip_stack_ip_cfg_t

struct sf_wifi_qca4010_onchip_stack_ctrl_t

struct sf_wifi_qca4010_onchip_stack_cfg_t

struct sf_wifi_qca4010_onchip_stack_api_t

struct sf_wifi_qca4010_onchip_stack_instance_t

Macros

#define SF_WIFI_QCA4010_ONCHIP_API_VERSION_MAJOR (2U)

#define SF_WIFI_QCA4010_ONCHIP_API_VERSION_MINOR (0U)

#define IP_ADDRESS(a, b, c, d) ((((ULONG)a) << 24) | (((ULONG)b) << 16) |
(((ULONG)c) << 8) | ((ULONG)d))

Enumerations

enum sf_wifi_qca4010_onchip_at_cmd_index_t {
 SF_WIFI_QCA4010_ONCHIP_AT_CMD_INDEX_ENABLE_DHCP = 0,
SF_WIFI_QCA4010_ONCHIP_AT_CMD_INDEX_GET_IP_ADDRESS,
SF_WIFI_QCA4010_ONCHIP_AT_CMD_INDEX_STATIC_IP_ADDRESS,
SF_WIFI_QCA4010_ONCHIP_AT_CMD_INDEX_PING_IP_ADDRESS,
 SF_WIFI_QCA4010_ONCHIP_AT_CMD_INDEX_START_DHCP_SERVER,
SF_WIFI_QCA4010_ONCHIP_AT_CMD_INDEX_STOP_DHCP_SERVER
}

enum sf_wifi_qca4010_onchip_stack_ip_addr_mode_t {
SF_WIFI_QCA4010_IP_ADDR_MODE_STATIC,
SF_WIFI_QCA4010_IP_ADDR_MODE_DHCP }

enum sf_wifi_qca4010_ip_addr_version_t {
SF_WIFI_QCA4010_IP_ADDR_VERSION_4,
SF_WIFI_QCA4010_IP_ADDR_VERSION_6 }

Detailed Description

RTOS-integrated SF Socket Wifi Framework Interface.

Summary
This SSP Interface provides access to the ThreadX-aware SF WIFI QCA4010 Framework.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,332 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 On-Chip Interface

Macro Definition Documentation

◆ IP_ADDRESS

#define IP_ADDRESS (a, b, c, d) ((((ULONG)a) << 24) | (((ULONG)b) << 16) | (((ULONG)c) << 8) |
((ULONG)d))

IP Address Generation Macro

◆ SF_WIFI_QCA4010_ONCHIP_API_VERSION_MAJOR

#define SF_WIFI_QCA4010_ONCHIP_API_VERSION_MAJOR (2U)

SF wifi onchip APIs Major Version

◆ SF_WIFI_QCA4010_ONCHIP_API_VERSION_MINOR

#define SF_WIFI_QCA4010_ONCHIP_API_VERSION_MINOR (0U)

SF wifi onchip APIs Minor Version

Enumeration Type Documentation

◆ sf_wifi_qca4010_ip_addr_version_t

enum sf_wifi_qca4010_ip_addr_version_t

IP address version

Enumerator

SF_WIFI_QCA4010_IP_ADDR_VERSION_4 IPv4 address.

SF_WIFI_QCA4010_IP_ADDR_VERSION_6 IPv6 address.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,333 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 On-Chip Interface

◆ sf_wifi_qca4010_onchip_at_cmd_index_t

enum sf_wifi_qca4010_onchip_at_cmd_index_t

Enumeration for AT command index

Enumerator

SF_WIFI_QCA4010_ONCHIP_AT_CMD_INDEX_ENA
BLE_DHCP

Index for Command to enable DHCP.

SF_WIFI_QCA4010_ONCHIP_AT_CMD_INDEX_GET
_IP_ADDRESS

Index for Command to IP address get.

SF_WIFI_QCA4010_ONCHIP_AT_CMD_INDEX_STA
TIC_IP_ADDRESS

Index for command to static ip address get.

SF_WIFI_QCA4010_ONCHIP_AT_CMD_INDEX_PING
_IP_ADDRESS

Index for command to static ip address get.

SF_WIFI_QCA4010_ONCHIP_AT_CMD_INDEX_STA
RT_DHCP_SERVER

Index for Command to start DHCP server.

SF_WIFI_QCA4010_ONCHIP_AT_CMD_INDEX_STO
P_DHCP_SERVER

Index for Command to stop DHCP server.

◆ sf_wifi_qca4010_onchip_stack_ip_addr_mode_t

enum sf_wifi_qca4010_onchip_stack_ip_addr_mode_t

IP addressing modes

Enumerator

SF_WIFI_QCA4010_IP_ADDR_MODE_STATIC Statically configure the IP address.

SF_WIFI_QCA4010_IP_ADDR_MODE_DHCP Get the IP address from DHCP server, dynamic
assignment.

 sf_wifi_qca4010_ip_addr_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010 On-Chip
Interface

#include <sf_wifi_qca4010_onchip_stack_api.h>

Data Fields

sf_wifi_qca4010_ip_addr_ver
sion_t

version

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,334 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 On-Chip Interface > sf_wifi_qca4010_ip_addr_t Struct Reference

 IP Address Version : v4 or v6.

union {

} addr

 IP address.

Detailed Description

IP address information

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_onchip_stack_api.h

 sf_wifi_qca4010_onchip_stack_ip_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010 On-Chip
Interface

#include <sf_wifi_qca4010_onchip_stack_api.h>

Data Fields

sf_wifi_qca4010_onchip_stac
k_ip_addr_mode_t

ip_addr_mode

 Addressing mode.

sf_wifi_qca4010_ip_addr_t ip_addr

 Interface IP address.

sf_wifi_qca4010_ip_addr_t netmask

 Interface netmask.

sf_wifi_qca4010_ip_addr_t gateway

 Interface Gateway.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,335 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 On-Chip Interface > sf_wifi_qca4010_onchip_stack_ip_cfg_t Struct Reference

Detailed Description

Define IP Interface configuration information

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_onchip_stack_api.h

 sf_wifi_qca4010_onchip_stack_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010 On-Chip
Interface

#include <sf_wifi_qca4010_onchip_stack_api.h>

Data Fields

sf_wifi_qca4010_instance_t
*

p_lower_lvl_wifi_qca4010

 Pointer to SF on-chip stack instance. More...

Detailed Description

Socket Interface control structure

Field Documentation

◆ p_lower_lvl_wifi_qca4010

sf_wifi_qca4010_instance_t* sf_wifi_qca4010_onchip_stack_ctrl_t::p_lower_lvl_wifi_qca4010

Pointer to SF on-chip stack instance.

Storage for information needed for each WiFi device driver in the system.

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_onchip_stack_api.h

 sf_wifi_qca4010_onchip_stack_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010 On-Chip

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,336 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 On-Chip Interface > sf_wifi_qca4010_onchip_stack_cfg_t Struct Reference

Interface

#include <sf_wifi_qca4010_onchip_stack_api.h>

Data Fields

sf_wifi_qca4010_instance_t
*

p_lower_lvl_wifi_qca4010

 Pointer to SF on-chip stack instance.

Detailed Description

Socket Interface configuration structure

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_onchip_stack_api.h

 sf_wifi_qca4010_onchip_stack_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010 On-Chip
Interface

#include <sf_wifi_qca4010_onchip_stack_api.h>

Data Fields

ssp_err_t(* open)(sf_wifi_qca4010_onchip_stack_ctrl_t *p_ctrl,
sf_wifi_qca4010_onchip_stack_cfg_t const *const p_cfg)

ssp_err_t(* close)(sf_wifi_qca4010_onchip_stack_ctrl_t *const p_ctrl)

ssp_err_t(* ipAddressCfg)(sf_wifi_qca4010_onchip_stack_ctrl_t *const p_ctrl,
sf_wifi_qca4010_onchip_stack_ip_cfg_t *const p_ip_cfg)

ssp_err_t(* ping)(sf_wifi_qca4010_onchip_stack_ctrl_t *const p_ctrl, ULONG
*p_ip_addr, uint32_t count, uint32_t interval_ms)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

ssp_err_t(* dhcpServerStart)(sf_wifi_qca4010_onchip_stack_ctrl_t *const p_ctrl,
ULONG *p_start_ip, ULONG *p_end_ip)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,337 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 On-Chip Interface > sf_wifi_qca4010_onchip_stack_api_t Struct Reference

ssp_err_t(* dhcpServerStop)(sf_wifi_qca4010_onchip_stack_ctrl_t *const p_ctrl,
ULONG *p_start_ip, ULONG *p_end_ip)

Detailed Description

Framework API structure. Implementations will use the following API.

Field Documentation

◆ close

ssp_err_t(* sf_wifi_qca4010_onchip_stack_api_t::close) (sf_wifi_qca4010_onchip_stack_ctrl_t *const
p_ctrl)

Pointer to function which un-initialize the network interface and may put it in low power mode or
power it off. Close the driver, disable the driver link, disable interrupt.

Parameters
[in,out] p_ctrl Pointer to the control block

◆ dhcpServerStart

ssp_err_t(* sf_wifi_qca4010_onchip_stack_api_t::dhcpServerStart)
(sf_wifi_qca4010_onchip_stack_ctrl_t *const p_ctrl, ULONG *p_start_ip, ULONG *p_end_ip)

Starts DHCP server

Parameters
[in] p_ctrl Pointer to the control block

[in] p_start_ip Pointer to Start IP address

[in] p_end_ip Pointer to End IP address

◆ dhcpServerStop

ssp_err_t(* sf_wifi_qca4010_onchip_stack_api_t::dhcpServerStop)
(sf_wifi_qca4010_onchip_stack_ctrl_t *const p_ctrl, ULONG *p_start_ip, ULONG *p_end_ip)

Stops DHCP server

Parameters
[in] p_ctrl Pointer to the control block

[in] p_start_ip Pointer to Start IP address

[in] p_end_ip Pointer to End IP address

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,338 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 On-Chip Interface > sf_wifi_qca4010_onchip_stack_api_t Struct Reference

◆ ipAddressCfg

ssp_err_t(* sf_wifi_qca4010_onchip_stack_api_t::ipAddressCfg) (sf_wifi_qca4010_onchip_stack_ctrl_t
*const p_ctrl, sf_wifi_qca4010_onchip_stack_ip_cfg_t *const p_ip_cfg)

Configures IP address of the interface.

Parameters
[in] p_ctrl Pointer to the control block

[in,out] p_ip_cfg Pointer to IP configuration
structure.

◆ open

ssp_err_t(* sf_wifi_qca4010_onchip_stack_api_t::open) (sf_wifi_qca4010_onchip_stack_ctrl_t *p_ctrl,
sf_wifi_qca4010_onchip_stack_cfg_t const *const p_cfg)

Pointer to function which initializes the network interface for data transfers

Initial driver configuration, enable the driver link, enable interrupts and make device ready for data
transfer.

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to configuration
structure.

◆ ping

ssp_err_t(* sf_wifi_qca4010_onchip_stack_api_t::ping) (sf_wifi_qca4010_onchip_stack_ctrl_t *const
p_ctrl, ULONG *p_ip_addr, uint32_t count, uint32_t interval_ms)

Configures IP address of the interface.

Parameters
[in] p_ctrl Pointer to the control block

[in] p_ip_addr Pointer to IP address to ping

[in] count Number of ping attempts

[in] interval_ms Timeout in milliseconds

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,339 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 On-Chip Interface > sf_wifi_qca4010_onchip_stack_api_t Struct Reference

◆ versionGet

ssp_err_t(* sf_wifi_qca4010_onchip_stack_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version pointer to memory location

to return version number

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_onchip_stack_api.h

 sf_wifi_qca4010_onchip_stack_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF WIFI QCA4010 On-Chip
Interface

#include <sf_wifi_qca4010_onchip_stack_api.h>

Data Fields

sf_wifi_qca4010_onchip_stac
k_ctrl_t *

p_ctrl

 Pointer to the control structure for this instance.

sf_wifi_qca4010_onchip_stac
k_cfg_t const *

p_cfg

 Pointer to the configuration structure for this instance.

sf_wifi_qca4010_onchip_stac
k_api_t const *

p_api

 Pointer to the API structure for this instance.

Detailed Description

SF WiFi On Chip Stack Instance structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,340 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI QCA4010 On-Chip Interface > sf_wifi_qca4010_onchip_stack_instance_t Struct Reference

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_onchip_stack_api.h

5.1.2.53 SF Socket WIFI Framework Interface
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated SF Socket WIFI Framework Interface. More...

Data Structures

struct in_addr

struct sockaddr

struct sockaddr_in

struct ulpgn_socket_t

struct sf_wifi_qca4010_socket_ctrl_t

struct sf_wifi_qca4010_socket_cfg_t

struct sf_wifi_qca4010_socket_api_t

struct sf_wifi_qca4010_socket_instance_t

Macros

#define SF_WIFI_QCA4010_SOCKET_API_VERSION_MAJOR (2U)

#define SF_WIFI_QCA4010_SOCKET_API_VERSION_MINOR (0U)

Typedefs

typedef int32_t socklen_t

Enumerations

enum sf_wifi_qca4010_socket_at_cmd_index_t {
 SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_SOCKET_INDEX = 0,
SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_SOCKET_CREATE,
SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_TCP_SERVER,
SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_TCP_CLIENT,
 SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_UDP_SERVER,
SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_UDP_CLIENT,
SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_EXIT_TRANSPARENT_MO
DE,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,341 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_CLOSE_NETWORK_SOCK
ET,
 SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_UDP_DATA_SEND,
SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_SWITCH_TO_DATA_MOD
E
}

enum sf_wifi_socket_type_t {
 SOCK_STREAM = 0, SOCK_DGRAM, SOCK_STREAM = 1,
SOCK_DGRAM,
 SOCK_RAW
}

enum sf_wifi_qca4010_socket_type_t {
 SF_WIFI_QCA4010_SOCKET_TYPE_INVALID,
SF_WIFI_QCA4010_SOCKET_TYPE_TCP_SERVER,
SF_WIFI_QCA4010_SOCKET_TYPE_UDP_SERVER,
SF_WIFI_QCA4010_SOCKET_TYPE_TCP_CLIENT,
 SF_WIFI_QCA4010_SOCKET_TYPE_UDP_CLIENT
}

Detailed Description

RTOS-integrated SF Socket WIFI Framework Interface.

Summary
This SSP Interface provides access OnChip stack Socket API.

Macro Definition Documentation

◆ SF_WIFI_QCA4010_SOCKET_API_VERSION_MAJOR

#define SF_WIFI_QCA4010_SOCKET_API_VERSION_MAJOR (2U)

Major Version of the API defined in this file

◆ SF_WIFI_QCA4010_SOCKET_API_VERSION_MINOR

#define SF_WIFI_QCA4010_SOCKET_API_VERSION_MINOR (0U)

Minor Version of the API defined in this file

Typedef Documentation

◆ socklen_t

typedef int32_t socklen_t

Socket address Length

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,342 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

Enumeration Type Documentation

◆ sf_wifi_qca4010_socket_at_cmd_index_t

enum sf_wifi_qca4010_socket_at_cmd_index_t

Socket specific AT command enumeration

Enumerator

SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_SOC
KET_INDEX

Socket index.

SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_SOC
KET_CREATE

Socket create.

SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_TCP
_SERVER

TCP server.

SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_TCP
_CLIENT

TCP client.

SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_UDP
_SERVER

UDP server.

SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_UDP
_CLIENT

UDP client.

SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_EXIT
_TRANSPARENT_MODE

Exit from transparent mode.

SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_CLO
SE_NETWORK_SOCKET

Close network socket.

SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_UDP
_DATA_SEND

Send data to UDP client.

SF_WIFI_QCA4010_SOCKET_AT_CMD_INDEX_SWI
TCH_TO_DATA_MODE

Switch to data mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,343 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface

◆ sf_wifi_qca4010_socket_type_t

enum sf_wifi_qca4010_socket_type_t

Enumeration for socket type

Enumerator

SF_WIFI_QCA4010_SOCKET_TYPE_INVALID Invalid socket type.

SF_WIFI_QCA4010_SOCKET_TYPE_TCP_SERVER Data stream socket.

SF_WIFI_QCA4010_SOCKET_TYPE_UDP_SERVER Datagram socket.

SF_WIFI_QCA4010_SOCKET_TYPE_TCP_CLIENT Data stream socket.

SF_WIFI_QCA4010_SOCKET_TYPE_UDP_CLIENT Datagram socket.

◆ sf_wifi_socket_type_t

enum sf_wifi_socket_type_t

Type of Socket

Enumerator

SOCK_STREAM TCP Socket.

SOCK_DGRAM UDP Socket.

SOCK_STREAM TCP Socket.

SOCK_DGRAM UDP Socket.

SOCK_RAW RAW Socket.

 ulpgn_socket_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket WIFI Framework
Interface

#include <sf_wifi_qca4010_socket_api.h>

Data Fields

uint32_t socket_create_flag

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,344 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface > ulpgn_socket_t Struct Reference

 Current socket status.

uint8_t socket_recv_buff
[SF_WIFI_QCA4010_SOCKET_RECEIVE_BUFFER_SIZE]

 Number of queue handler. More...

Detailed Description

Silex ULPGN Wifi internal socket instance structure

Field Documentation

◆ socket_recv_buff

uint8_t ulpgn_socket_t::socket_recv_buff[SF_WIFI_QCA4010_SOCKET_RECEIVE_BUFFER_SIZE]

Number of queue handler.

Socket receive buffer used by byte queue

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_socket_api.h

 sf_wifi_qca4010_socket_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket WIFI Framework
Interface

#include <sf_wifi_qca4010_socket_api.h>

Data Fields

ulpgn_socket_t sockets [NUMBER_OF_SOCKET_INSTANCES]

 Internal socket instances.

sf_wifi_qca4010_onchip_stac
k_instance_t *

p_lower_lvl_onchip_wifi_qca4010

 low level wifi interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,345 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface > sf_wifi_qca4010_socket_ctrl_t Struct Reference

Detailed Description

Socket Interface control structure

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_socket_api.h

 sf_wifi_qca4010_socket_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket WIFI Framework
Interface

#include <sf_wifi_qca4010_socket_api.h>

Data Fields

sf_wifi_qca4010_onchip_stac
k_instance_t *

p_lower_lvl_onchip_wifi_qca4010

 Pointer to SF on-chip stack instance.

void * p_extend

 Extended configuration.

Detailed Description

Socket Interface configuration structure

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_socket_api.h

 sf_wifi_qca4010_socket_api_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket WIFI Framework
Interface

#include <sf_wifi_qca4010_socket_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,346 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface > sf_wifi_qca4010_socket_api_t Struct Reference

Data Fields

ssp_err_t(* open)(sf_wifi_qca4010_socket_ctrl_t *p_ctrl,
sf_wifi_qca4010_socket_cfg_t const *const p_cfg)

 Open lower level driver. More...

ssp_err_t(* close)(sf_wifi_qca4010_socket_ctrl_t *const p_ctrl)

 Close lower level driver. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 Gets version and stores it in provided pointer p_version. More...

ssp_err_t(* socketCreate)(sf_wifi_qca4010_socket_ctrl_t *p_ctrl, uint8_t
socket_no, sf_wifi_socket_type_t type, uint8_t ipversion)

 Create a socket. More...

ssp_err_t(* socketConnect)(sf_wifi_qca4010_socket_ctrl_t *p_ctrl, uint8_t
socket_no, const struct sockaddr *p_serv_addr, socklen_t addrlen)

 Connect to socket. More...

ssp_err_t(* socketDisconnect)(sf_wifi_qca4010_socket_ctrl_t *p_ctrl, uint8_t
socket_no)

 Disconnect socket. More...

ssp_err_t(* socketSend)(sf_wifi_qca4010_socket_ctrl_t *p_ctrl, uint8_t
socket_no, const uint8_t *p_data, uint32_t length, uint32_t
timeout_ms)

 Send data to connected socket. More...

ssp_err_t(* socketRecv)(sf_wifi_qca4010_socket_ctrl_t *p_ctrl, uint8_t socket_no,
uint8_t *const p_data, uint32_t length, uint32_t timeout_ms)

 Receive data from connected socket. More...

ssp_err_t(* socketStatusGet)(sf_wifi_qca4010_socket_ctrl_t *p_ctrl, uint8_t
socket_no, uint32_t *p_socket_status)

 Get Socket status. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,347 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface > sf_wifi_qca4010_socket_api_t Struct Reference

Detailed Description

Socket Interface API

Field Documentation

◆ close

ssp_err_t(* sf_wifi_qca4010_socket_api_t::close) (sf_wifi_qca4010_socket_ctrl_t *const p_ctrl)

Close lower level driver.

Parameters
[in,out] p_ctrl Pointer to the control block

◆ open

ssp_err_t(* sf_wifi_qca4010_socket_api_t::open) (sf_wifi_qca4010_socket_ctrl_t *p_ctrl,
sf_wifi_qca4010_socket_cfg_t const *const p_cfg)

Open lower level driver.

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to configuration
structure.

◆ socketConnect

ssp_err_t(* sf_wifi_qca4010_socket_api_t::socketConnect) (sf_wifi_qca4010_socket_ctrl_t *p_ctrl,
uint8_t socket_no, const struct sockaddr *p_serv_addr, socklen_t addrlen)

Connect to socket.

Parameters
[in] p_ctrl pointer to control block

[in] socket_no Socket ID number

[in] p_serv_addr IP address to connect

[in] addrlen Size of socket address
structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,348 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface > sf_wifi_qca4010_socket_api_t Struct Reference

◆ socketCreate

ssp_err_t(* sf_wifi_qca4010_socket_api_t::socketCreate) (sf_wifi_qca4010_socket_ctrl_t *p_ctrl,
uint8_t socket_no, sf_wifi_socket_type_t type, uint8_t ipversion)

Create a socket.

Parameters
[in] p_ctrl pointer to control block

[in] socket_no Socket ID number

[in] type TCP/UDP socket

[in] ipversion Protocol version

◆ socketDisconnect

ssp_err_t(* sf_wifi_qca4010_socket_api_t::socketDisconnect) (sf_wifi_qca4010_socket_ctrl_t *p_ctrl,
uint8_t socket_no)

Disconnect socket.

Parameters
[in] p_ctrl pointer to control block

[in] socket_no Socket ID number

◆ socketRecv

ssp_err_t(* sf_wifi_qca4010_socket_api_t::socketRecv) (sf_wifi_qca4010_socket_ctrl_t *p_ctrl,
uint8_t socket_no, uint8_t *const p_data, uint32_t length, uint32_t timeout_ms)

Receive data from connected socket.

Parameters
[in] p_ctrl pointer to control block

[in] socket_no Socket ID number

[out] p_data Data Receive buffer

[in] length Data length to be received

[in] timeout_ms timeout in milliseconds

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,349 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface > sf_wifi_qca4010_socket_api_t Struct Reference

◆ socketSend

ssp_err_t(* sf_wifi_qca4010_socket_api_t::socketSend) (sf_wifi_qca4010_socket_ctrl_t *p_ctrl,
uint8_t socket_no, const uint8_t *p_data, uint32_t length, uint32_t timeout_ms)

Send data to connected socket.

Parameters
[in] p_ctrl pointer to control block

[in] socket_no Socket ID number

[in] p_data send buffer

[in] length Data length to be sent

[in] timeout_ms timeout in milliseconds

◆ socketStatusGet

ssp_err_t(* sf_wifi_qca4010_socket_api_t::socketStatusGet) (sf_wifi_qca4010_socket_ctrl_t *p_ctrl,
uint8_t socket_no, uint32_t *p_socket_status)

Get Socket status.

Parameters
[in] p_ctrl pointer to control block

[in] socket_no Socket ID number

[out] p_socket_status Pointer to an integer to hold
the socket return status

◆ versionGet

ssp_err_t(* sf_wifi_qca4010_socket_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version pointer to memory location

to return version number

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_socket_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,350 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF Socket WIFI Framework Interface > sf_wifi_qca4010_socket_api_t Struct Reference

 sf_wifi_qca4010_socket_instance_t Struct Reference
Renesas Synergy Software Package Reference » Framework Interfaces » SF Socket WIFI Framework
Interface

#include <sf_wifi_qca4010_socket_api.h>

Data Fields

sf_wifi_qca4010_socket_ctrl_
t *

p_ctrl

 Pointer to the control structure for this instance.

sf_wifi_qca4010_socket_cfg_
t const *

p_cfg

 Pointer to the configuration structure for this instance.

sf_wifi_qca4010_socket_api_
t const *

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_wifi_qca4010_socket_api.h

5.1.2.54 SF WIFI NSAL on NetX
Renesas Synergy Software Package Reference » Framework Interfaces

NetX NSAL interface implementation header file. More...

Functions

ssp_err_t nsal_netx_driver (NX_IP_DRIVER *driver, sf_wifi_instance_t const

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,351 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF WIFI NSAL on NetX

*p_wifi_instance, sf_wifi_nsal_cfg_t *p_wifi_nsal_cfg)

 This is NetX interface driver function. More...

Detailed Description

NetX NSAL interface implementation header file.

Summary
This SSP Interface provides access to the ThreadX-aware SF WIFI NSAL NX Framework.

Function Documentation

◆ nsal_netx_driver()

ssp_err_t nsal_netx_driver (NX_IP_DRIVER * p_driver, sf_wifi_instance_t const * p_wifi_instance,
sf_wifi_nsal_cfg_t * p_wifi_nsal_cfg)

This is NetX interface driver function.

NSAL NetX Driver Entry function

Parameters
[in] p_driver NetX IP driver pointer.

[in] p_wifi_instance WiFi Instance.

[in] p_wifi_nsal_cfg NSAL configuration.

Return values
SSP_ERR_ASSERTION WiFi Frameowrk Instance pointer or NSAL

configuration pointer is NULL

SSP_SUCCESS No NULL arguments passed and NetX driver
invoked successfully

Check if the link is up

5.1.2.55 BLE Framework Interface on RL78G1D
Renesas Synergy Software Package Reference » Framework Interfaces

RTOS-integrated BLE Interface Framework example. Implementation of RL78G1D BLE Driver. It
implements the following interfaces: More...

Modules

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,352 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

BLE Alert Notification Profile Interface Framework on RL78G1D

 RTOS-integrated BLE Alert Notification Profile Framework example.
Implementation of RL78G1D BLE Alert Notification Profile Interface
Driver. It implements the following interfaces:

BLE Blood Pressure Profile Interface Framework on RL78G1D

 RTOS-integrated BLE Blood Pressure Profile Framework example.
Implementation of RL78G1D BLE Blood Pressure Profile Interface
Driver. It implements the following interfaces:

BLE Find Me Profile Interface Framework on RL78G1D

 RTOS-integrated BLE Find Me Profile Framework example.
Implementation of RL78G1D BLE Find Me Profile Interface Driver. It
implements the following interfaces:

BLE HID Over GATT Profile Interface Framework on RL78G1D

 RTOS-integrated BLE HID Over GATT Profile Framework example.
Implementation of RL78G1D BLE HID Over GATT Profile Interface
Driver. It implements the following interfaces:

BLE Heart Rate Profile Interface Framework on RL78G1D

 RTOS-integrated BLE Heart Rate Profile Framework example.
Implementation of RL78G1D BLE Heart Rate Profile Interface Driver.
It implements the following interfaces:

BLE Health Thermometer Profile Interface Framework on RL78G1D

 RTOS-integrated BLE Health Thermometer Profile Framework
example. Implementation of RL78G1D BLE Health Thermometer
Profile Interface Driver. It implements the following interfaces:

BLE On-Board Profile Framework Interface on RL78G1D

 RTOS-integrated BLE On-Board Profile Framework example.
Implementation of RL78G1D BLE On-Board Profile Interface Driver. It
implements the following interfaces:

BLE Phone Alert Status Profile Interface Framework on RL78G1D

 RTOS-integrated BLE Phone Alert Status Profile Framework example.
Implementation of RL78G1D BLE Phone Alert Status Profile Interface
Driver. It implements the following interfaces:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,353 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

BLE Proximity Profile Interface Framework on RL78G1D

 RTOS-integrated BLE Proximity Profile Framework example.
Implementation of RL78G1D BLE Proximity Profile Interface Driver. It
implements the following interfaces:

BLE Scan Parameters Service Profile Interface Framework on
RL78G1D

 RTOS-integrated BLE Scan Parameters Service Profile Framework
example. Implementation of RL78G1D BLE Scan Parameters Service
Profile Interface Driver. It implements the following interfaces:

BLE Time Information Profile Interface Framework on RL78G1D

 RTOS-integrated BLE Time Information Profile Framework example.
Implementation of RL78G1D BLE Time Information Profile Interface
Driver. It implements the following interfaces:

Functions

ssp_err_t ble_rl78g1d_open (sf_ble_ctrl_t *const p_ctrl, sf_ble_cfg_t const
*const p_cfg, sf_ble_rl78g1d_driver_t *p_driver_data)

 Initializes RL78G1D Module as per user configuration, updates the
control structure with instance specific information. More...

uint8_t sf_rble_exit_status (void)

 Returns status whether RL78G1D driver thread should exit or
continue. More...

void copy_driver_data (sf_ble_rl78g1d_driver_t *p_driver_data,
sf_ble_cfg_t const *p_cfg, sf_ble_provisioning_t const *p_prov)

 Copies user provisioning information or configuration in driver buffer
for later use. More...

ssp_err_t close_rl78g1d (sf_ble_ctrl_t *const p_ctrl)

 Un-Initialize BLE Module, stop RBLE Thread, release thread resources
which are in use. More...

ssp_err_t rl78g1d_set_provision (sf_ble_provisioning_t const *p_prov)

 Configures the BLE Module as per user provided Provisioning
configuration. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,354 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

ssp_err_t rl78g1d_read_rssi (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
*p_handle, uint16_t *p_rssi)

 Read RSSI information of the connection handle passed. More...

ssp_err_t rl78g1d_start_scan (sf_ble_rl78g1d_driver_t *p_driver_data,
sf_ble_scan_t *p_scan, uint8_t *p_cnt, sf_ble_scan_info_t
*p_scan_info)

 Starts scanning of available BLE devices and returns the list of
available BLE devices. More...

ssp_err_t rl78g1d_broadcast_enable (sf_ble_rl78g1d_driver_t *p_driver_data,
sf_ble_adv_info_t const *p_adv_info)

 Enables the advertisement of BLE Module so that other devices can
find it. More...

ssp_err_t rl78g1d_broadcast_disable (void)

 Disable advertisement of BLE Module so that it does not get
discovered. More...

ssp_err_t rl78g1d_add_to_white_list (uint8_t const *p_bd_addr)

 Adds the BLE device address to white list so that it gets scanned by
the Module. More...

ssp_err_t rl78g1d_del_from_white_list (uint8_t const *p_bd_addr)

 Deletes BLE device address from white list, so that it does not get
discovered. More...

ssp_err_t rl78g1d_get_info (sf_ble_ctrl_t *const p_ctrl, sf_ble_chipset_info_t
*p_chipset)

 Gets the BLE module information and put that information in user
buffer. More...

ssp_err_t ble_rl78g1d_connect (sf_ble_ctrl_t *const p_ctrl, sf_ble_connection_t
const *const p_conn, sf_ble_conn_handle_t *p_handle,
sf_ble_rl78g1d_driver_t *p_driver_data)

 Connect to a remote BLE device using the information provided by
user. More...

ssp_err_t rl78g1d_disconnect (sf_ble_conn_handle_t *p_handle)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,355 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

 Initiates Disconnection procedure from remote BLE device. More...

ssp_err_t rl78g1d_set_tx_power (sf_ble_conn_handle_t *const p_handle,
sf_ble_set_tx_pwr_info_t *p_tx_power_info)

 Sets the transmit power for the procedure specified by the
connection handle. More...

ssp_err_t rl78g1d_bonding (sf_ble_rl78g1d_driver_t *p_driver_data, uint8_t
const *p_bd_addr, sf_ble_bonding_start_t *p_bonding_start)

 Initiates bonding procedure with Remote BLE device with
configuration provided by user. More...

ssp_err_t rl78g1d_start_encryption (sf_ble_sm_enc_info_t const *p_enc_info)

 Starts encryption over the BLE link using information received during
Bonding procedure. More...

ssp_err_t rl78g1d_bonding_resp (sf_ble_conn_handle_t *p_handle,
sf_ble_rl78g1d_driver_t *p_driver_data, sf_ble_bonding_response_t
*p_bonding_resp)

 Responds to bonding request from remote device with the security
information provided by user. More...

ssp_err_t rl78g1d_authorization (sf_ble_conn_handle_t *p_handle)

 Indicates that the specified remote device has been authorized by
user. More...

void rl78g1d_gatt_event_callback (RBLE_GATT_EVENT *p_event)

 GATT Event callback. More...

ssp_err_t rl78g1d_enable_gatt (void)

 Enable the GATT in RBLE stack. More...

ssp_err_t rl78g1d_gatt_service_discovery (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_ble_service_discovery_req_t
const *const p_sf_ble_svc_dscv_req, sf_ble_service_discovery_rsp_t
*const p_sf_ble_svc_dscv_rsp, uint32_t *const p_rsp_cnt)

 GATT Service discovery. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,356 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

ssp_err_t rl78g1d_gatt_char_discovery (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_ble_char_discovery_req_t const
*const p_sf_ble_char_dscv_req, sf_ble_char_discovery_rsp_t *const
p_sf_ble_char_dscv_rsp, uint32_t *const p_rsp_cnt)

 Perform characteristics discovery used by GATT client. More...

ssp_err_t rl78g1d_gatt_char_desc_discovery (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, uint16_t start_handle, uint16_t
end_handle, sf_ble_char_desc_discovery_rsp_t *const
p_sf_ble_chardesc_dscv_rsp, uint32_t *const p_rsp_cnt)

 Perform characteristics descriptor discovery used by GATT client.
More...

ssp_err_t rl78g1d_gatt_char_read (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_ble_char_read_req_t const *const
p_char_read_req, sf_ble_char_read_rsp_t *const p_char_read_rsp)

 Perform read characteristic used by GATT client. More...

ssp_err_t rl78g1d_gatt_char_write (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_ble_char_write_req_t const *const
p_char_write_req)

 Perform write characteristic used by GATT client. More...

ssp_err_t rl78g1d_gatt_char_execute_write (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_ble_execute_write_t
execute_flag)

 Perform execute write on all pending write operations, used by GATT
client. More...

ssp_err_t rl78g1d_gatt_char_write_local (sf_ble_ctrl_t *const p_ctrl, uint16_t
char_handle, uint16_t data_length, uint8_t *const p_data)

 Perform local characteristic write used by GATT server. More...

ssp_err_t rl78g1d_gatt_send_notify (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, uint16_t char_handle)

 Send notification to GATT client, used by GATT server. More...

ssp_err_t rl78g1d_gatt_send_indicate (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, uint16_t char_handle)

 Send indication to GATT client, used by GATT server. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,357 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

ssp_err_t rl78g1d_gatt_write_response (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, uint16_t handle,
sf_ble_attribute_error_code_t error_code)

 Send response to write operation received by GATT client, used by
GATT server. More...

Detailed Description

RTOS-integrated BLE Interface Framework example. Implementation of RL78G1D BLE Driver. It
implements the following interfaces:

SF_BLE Framework Interface API on RL78G1D.

SF BLE Framework Interface

Function Documentation

◆ ble_rl78g1d_connect()

ssp_err_t ble_rl78g1d_connect (sf_ble_ctrl_t *const p_ctrl, sf_ble_connection_t const *const
p_conn, sf_ble_conn_handle_t * p_handle, sf_ble_rl78g1d_driver_t * p_driver_data)

Connect to a remote BLE device using the information provided by user.

Parameters
[in] p_ctrl Pointer to control structure

which contains driver
information

[in] p_conn Pointer to connection
information

[out] p_handle Pointer to connection handle

[in] p_driver_data Pointer to driver data where
data is to be copied

Return values
SSP_SUCCESS Connect success

SSP_ERR_BLE_FAILED Failed to connect

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_TIMEOUT BLE event timeout

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,358 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ ble_rl78g1d_open()

ssp_err_t ble_rl78g1d_open (sf_ble_ctrl_t *const p_ctrl, sf_ble_cfg_t const *const p_cfg,
sf_ble_rl78g1d_driver_t * p_driver_data)

Initializes RL78G1D Module as per user configuration, updates the control structure with instance
specific information.

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to BLE configuration
structure

[in] p_driver_data Pointer to driver data where
data is to be copied

Return values
SSP_SUCCESS Module initialization successful

SSP_ERR_BLE_FAILED Failed to initialize

SSP_ERR_ALREADY_OPEN Device is already open

SSP_ERR_IN_USE Module in use

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_INTERNAL GATT Initialization failure

Copying user configuration to driver buffer for later use

◆ close_rl78g1d()

ssp_err_t close_rl78g1d (sf_ble_ctrl_t *const p_ctrl)

Un-Initialize BLE Module, stop RBLE Thread, release thread resources which are in use.

Closes and Stops communication with RL78G1D BLE chip

Parameters
[in] p_ctrl Pointer to control structure

which contains driver related
information

Return values
SSP_SUCCESS Suspend the driver functionality.

SSP_ERR_BLE_FAILED Close failure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,359 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ copy_driver_data()

void copy_driver_data (sf_ble_rl78g1d_driver_t * p_driver_data, sf_ble_cfg_t const * p_cfg,
sf_ble_provisioning_t const * p_prov)

Copies user provisioning information or configuration in driver buffer for later use.

Copies the value of BLE configuration and provisioning information into the driver buffer.

Parameters
[in] p_driver_data Pointer to driver data where

data is to be copied

[in] p_cfg User pointer configuration
which is to be copied to
driver buffer

[in] p_prov Pointer BLE provisioning
data

Returns
None

◆ rl78g1d_add_to_white_list()

ssp_err_t rl78g1d_add_to_white_list (uint8_t const * p_bd_addr)

Adds the BLE device address to white list so that it gets scanned by the Module.

Bluetooth address of peer device is added to the whiteList of Module

Parameters
[in] p_bd_addr Pointer to bluetooth address

to be added to white list

Return values
SSP_SUCCESS Whitelist add success

SSP_ERR_BLE_FAILED Failed to add in white list

SSP_ERR_TIMEOUT BLE event timeout

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,360 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_authorization()

ssp_err_t rl78g1d_authorization (sf_ble_conn_handle_t * p_handle)

Indicates that the specified remote device has been authorized by user.

Parameters
[in] p_handle Pointer to BLE handle

Return values
SSP_SUCCESS Authorization success

SSP_ERR_BLE_FAILED Authorization Failed

Pointer to BLE connection handle

◆ rl78g1d_bonding()

ssp_err_t rl78g1d_bonding (sf_ble_rl78g1d_driver_t * p_driver_data, uint8_t const * p_bd_addr,
sf_ble_bonding_start_t * p_bonding_start)

Initiates bonding procedure with Remote BLE device with configuration provided by user.

Starts the bonding procedure with peer device

Parameters
[in] p_driver_data Pointer to private driver data

structure

[in] p_bd_addr Pointer to ble device address
from which bonding is to be
started

[in] p_bonding_start Pointer to Bonding Start
information structure

Return values
SSP_SUCCESS Bonding start success

SSP_ERR_BLE_FAILED Bonding start failure

SSP_ERR_TIMEOUT BLE event timeout

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,361 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_bonding_resp()

ssp_err_t rl78g1d_bonding_resp (sf_ble_conn_handle_t * p_handle, sf_ble_rl78g1d_driver_t *
p_driver_data, sf_ble_bonding_response_t * p_bonding_resp)

Responds to bonding request from remote device with the security information provided by user.

Parameters
[in] p_handle Pointer to BLE handle

[in] p_driver_data Pointer to driver data which
contains chip related
information

[in] p_bonding_resp Bonding Response structure

Return values
SSP_SUCCESS Bonding response success

SSP_ERR_BLE_FAILED Failed getting bonding response

SSP_ERR_TIMEOUT BLE event timeout

Pointer to BLE connection handle

◆ rl78g1d_broadcast_disable()

ssp_err_t rl78g1d_broadcast_disable (void)

Disable advertisement of BLE Module so that it does not get discovered.

Disable advertisement of BLE Module.

Return values
SSP_SUCCESS Stop the broadcast of device successfully

SSP_ERR_BLE_FAILED Failed to broadcast disable

SSP_ERR_TIMEOUT BLE event timeout

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,362 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_broadcast_enable()

ssp_err_t rl78g1d_broadcast_enable (sf_ble_rl78g1d_driver_t * p_driver_data, sf_ble_adv_info_t
const * p_adv_info)

Enables the advertisement of BLE Module so that other devices can find it.

Starts advertisement of BLE Module.

Parameters
[in] p_driver_data Driver data which contains

chip related information

[in] p_adv_info Pointer to user supplied
broadcast configuration

Return values
SSP_SUCCESS Start the broadcast of device successfully

SSP_ERR_BLE_FAILED Failed to broadcast enable

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_INVALID_MODE Invalid arguments/parameters

Advertisement Data length

Advertisement Data

◆ rl78g1d_del_from_white_list()

ssp_err_t rl78g1d_del_from_white_list (uint8_t const * p_bd_addr)

Deletes BLE device address from white list, so that it does not get discovered.

Bluetooth address of peer device is deleted from the whiteList of Module

Parameters
[in] p_bd_addr Pointer to BLE address to be

removed from white list

Return values
SSP_SUCCESS Whitelist delete success

SSP_ERR_BLE_FAILED Failed to delete from white list

SSP_ERR_TIMEOUT BLE event timeout

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,363 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_disconnect()

ssp_err_t rl78g1d_disconnect (sf_ble_conn_handle_t * p_handle)

Initiates Disconnection procedure from remote BLE device.

BLE device is disconnected from the peer device

Parameters
[in] p_handle Pointer to BLE handle

Return values
SSP_SUCCESS Disconnect success

SSP_ERR_BLE_FAILED Disconnect failed

SSP_ERR_TIMEOUT BLE event timeout

Pointer to BLE connection handle

◆ rl78g1d_enable_gatt()

ssp_err_t rl78g1d_enable_gatt (void)

Enable the GATT in RBLE stack.

Return values
SSP_SUCCESS Enable the gatt successfully

SSP_ERR_INTERNAL Failed to enable the gatt

Create semaphore for rble operation complete

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,364 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_gatt_char_desc_discovery()

ssp_err_t rl78g1d_gatt_char_desc_discovery (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *
p_handle, uint16_t start_handle, uint16_t end_handle, sf_ble_char_desc_discovery_rsp_t *const
p_sf_ble_chardesc_dscv_rsp, uint32_t *const p_rsp_cnt)

Perform characteristics descriptor discovery used by GATT client.

Perform Characteristic descriptor discovery of remote BLE device and pass all discovered
characteristics descriptor to user

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle pointer to Connection handle

[in] start_handle Start handle from set of
handle ranges to be used in
discovery

[in] end_handle End handle from set of
handle ranges to be used in
discovery

[out] p_sf_ble_chardesc_dscv_rsp Pointer to characteristics
descriptor discovery
response

[in,out] p_rsp_cnt Input Size specifying
maximum number of
characteristics descriptor
discovery results which can
be stored in response,
output specifying number of
characteristics descriptor
discovery results stored in
response

Return values
SSP_SUCCESS Characteristics descriptor discovery

successful

SSP_ERR_BLE_FAILED Characteristics descriptor discovery failed

Pointer to BLE connection handle

Connection handle

API call

Wait for discovery to complete

Update response count

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,365 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_gatt_char_discovery()

ssp_err_t rl78g1d_gatt_char_discovery (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *
p_handle, sf_ble_char_discovery_req_t const *const p_sf_ble_char_dscv_req,
sf_ble_char_discovery_rsp_t *const p_sf_ble_char_dscv_rsp, uint32_t *const p_rsp_cnt)

Perform characteristics discovery used by GATT client.

Perform Characteristic discovery of remote BLE device and pass all discovered characteristics to
user

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle Pointer to Connection handle

[in] p_sf_ble_char_dscv_req Pointer to characteristics
discovery request

[out] p_sf_ble_char_dscv_rsp Pointer to characteristics
discovery response

[in,out] p_rsp_cnt Input Size specifying
maximum number of
characteristics discovery
results which can be stored
in response, output
specifying number of
characteristics discovery
results stored in response

Return values
SSP_SUCCESS Characteristics discovery successful

SSP_ERR_BLE_FAILED Characteristics discovery failed

SSP_ERR_NOT_OPEN Device Not Opened

Pointer to BLE connection handle

Connection handle

API call

Wait for discovery to complete

Update response count

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,366 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_gatt_char_execute_write()

ssp_err_t rl78g1d_gatt_char_execute_write (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *
p_handle, sf_ble_execute_write_t execute_flag)

Perform execute write on all pending write operations, used by GATT client.

This API writes any characteristics handle which are pending in previous write

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle pointer to Connection handle

[in] execute_flag Flag specifying whether to
execute or cancel pending
writes

Return values
SSP_SUCCESS Execute write successful

SSP_ERR_BLE_FAILED Execute write failed

Pointer to BLE connection handle

Connection handle

API Call

Wait for execute write to complete

◆ rl78g1d_gatt_char_read()

ssp_err_t rl78g1d_gatt_char_read (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t * p_handle,
sf_ble_char_read_req_t const *const p_char_read_req, sf_ble_char_read_rsp_t *const
p_char_read_rsp)

Perform read characteristic used by GATT client.

GATT client reads the characteristics value of specific characteristics handle of the connected peer
device

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle pointer to Connection handle

[in] p_char_read_req Pointer to characteristic read
request

[out] p_char_read_rsp Pointer to characteristic read
response

Return values

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,367 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

SSP_SUCCESS Characteristic read successful

SSP_ERR_BLE_FAILED Characteristic read failed

Characteristic handle

Characteristic handle size

Characteristic handle count

Characteristic UUID length

Characteristic UUID

Characteristic UUID length

Characteristic UUID

Characteristic UUID count

Characteristic value offset

Characteristic handle

Characteristic handle size

Characteristic handle count

Characteristic descriptor handle

Characteristic descriptor handle size

Characteristic descriptor handle count

Characteristic descriptor value offset

Characteristic descriptor handle

Characteristic descriptor handle size

Characteristic descriptor handle count

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,368 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_gatt_char_write()

ssp_err_t rl78g1d_gatt_char_write (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t * p_handle,
sf_ble_char_write_req_t const *const p_char_write_req)

Perform write characteristic used by GATT client.

Write GATT characteristics data in characteristics handle of remote BLE device

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle pointer to Connection handle

[in] p_char_write_req Pointer to characteristic
write request

Return values
SSP_SUCCESS Characteristic write successful

SSP_ERR_BLE_FAILED Characteristic write failed

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,369 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_gatt_char_write_local()

ssp_err_t rl78g1d_gatt_char_write_local (sf_ble_ctrl_t *const p_ctrl, uint16_t char_handle, uint16_t
data_length, uint8_t *const p_data)

Perform local characteristic write used by GATT server.

Update local GATT database with user provided data.

Parameters
[in] p_ctrl Pointer to control structure

[in] char_handle Characteristic handle

[in] data_length Length of data to write

[in] p_data Pointer to data

Return values
SSP_SUCCESS Local characteristic write successful

SSP_ERR_BLE_FAILED Local characteristic write failed

Characteristic value handle

Characteristic value length

Characteristic value

API Call

Wait for local write to complete

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,370 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_gatt_event_callback()

void rl78g1d_gatt_event_callback (RBLE_GATT_EVENT * p_event)

GATT Event callback.

Parameters
[in] p_event Event details

Return values
None

All Primary service discovery with 16 bit UUID complete

All Primary service discovery with 128 bit UUID complete

Primary service discovery by UUID complete

Included service discovery complete

All characteristics discovery with 16 bit UUID complete

All characteristics discovery with 128 bit UUID complete

Characteristics discovery by UUID (16 bit) complete

Characteristics discovery by UUID (128 bit) complete

Switch case is broken into different functions in order to reduce the cyclomatic complexity (<=10)
of the function

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,371 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_gatt_send_indicate()

ssp_err_t rl78g1d_gatt_send_indicate (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t * p_handle,
uint16_t char_handle)

Send indication to GATT client, used by GATT server.

Send the data of CCCD indication to remote GATT client.

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle Pointer to Connection handle

[in] char_handle Characteristic handle whose
value will be indicated

Return values
SSP_SUCCESS Send Indication successful

SSP_ERR_BLE_FAILED Send Indication failed

Connection handle

Characteristic handle

API Call

Wait for indication send to complete

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,372 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_gatt_send_notify()

ssp_err_t rl78g1d_gatt_send_notify (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t * p_handle,
uint16_t char_handle)

Send notification to GATT client, used by GATT server.

Send the data of CCCD notification to remote GATT client.

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle pointer to Connection handle

[in] char_handle Characteristic handle whose
value will be notified

Return values
SSP_SUCCESS Send notification successful

SSP_ERR_BLE_FAILED Send notification failed

Pointer to BLE connection handle

Connection handle

Characteristic handle

API Call

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,373 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_gatt_service_discovery()

ssp_err_t rl78g1d_gatt_service_discovery (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *
p_handle, sf_ble_service_discovery_req_t const *const p_sf_ble_svc_dscv_req,
sf_ble_service_discovery_rsp_t *const p_sf_ble_svc_dscv_rsp, uint32_t *const p_rsp_cnt)

GATT Service discovery.

Perform GATT service discovery of remote BLE device and pass all discovered Services to user

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle pointer to Connection handle

[in] p_sf_ble_svc_dscv_req Pointer to service discovery
request

[out] p_sf_ble_svc_dscv_rsp Pointer to service discovery
response

[in] p_rsp_cnt Input Size specifying
maximum number of service
discovery results which can
be stored in response,
output specifying number of
service discovery results
stored in response

Return values
SSP_SUCCESS Service discovery successful

SSP_ERR_BLE_FAILED Service discovery failed

SSP_ERR_NOT_OPEN Device Not Opened

Pointer to BLE connection handle

Connection handle

API call

Wait for discovery to complete

Update response count

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,374 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_gatt_write_response()

ssp_err_t rl78g1d_gatt_write_response (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *
p_handle, uint16_t handle, sf_ble_attribute_error_code_t error_code)

Send response to write operation received by GATT client, used by GATT server.

Parameters
[in] p_ctrl Pointer to control structure

[in] p_handle Pointer to Connection handle

[in] handle Characteristic handle used
for write operation

[in] error_code Characteristic write
operation error code to be
sent in response

Return values
SSP_SUCCESS Send write response successful

SSP_ERR_BLE_FAILED Send write response failed

Pointer to BLE connection handle

Connection handle

Characteristic handle

API Call

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,375 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_get_info()

ssp_err_t rl78g1d_get_info (sf_ble_ctrl_t *const p_ctrl, sf_ble_chipset_info_t * p_chipset)

Gets the BLE module information and put that information in user buffer.

Reads information from RL78G1D device and updates user buffer

Parameters
[in] p_ctrl Pointer to control structure

which contains driver
information

[in] p_chipset Pointer to user buffer which
will be filled with BLE
information

Return values
SSP_SUCCESS Successfully get the BLE information

SSP_ERR_BLE_FAILED Failed to get information from chipset

SSP_ERR_TIMEOUT BLE event timeout

◆ rl78g1d_read_rssi()

ssp_err_t rl78g1d_read_rssi (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t * p_handle, uint16_t
* p_rssi)

Read RSSI information of the connection handle passed.

Reads the RSSI information of BLE module for the connection handle passed

Parameters
[in] p_ctrl Pointer to control structure

which contains driver
information

[in] p_handle Pointer to BLE handle

[in] p_rssi Pointer to user buffer in
which rssi is read

Return values
SSP_SUCCESS Successfully read rssi

SSP_ERR_BLE_FAILED Failed to read rssi value

SSP_ERR_TIMEOUT BLE event timeout

Pointer to BLE connection handle

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,376 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_set_provision()

ssp_err_t rl78g1d_set_provision (sf_ble_provisioning_t const * p_prov)

Configures the BLE Module as per user provided Provisioning configuration.

Sets bonding and security modes as provisioned.

Parameters
[in] p_prov Pointer to user provisioning

information

Return values
SSP_SUCCESS Successfully provisioned the device.

SSP_ERR_BLE_FAILED Failed to set provision

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_UNSUPPORTED Unsupported feature

Bonding mode

Variable to store temporary Bonding mode

◆ rl78g1d_set_tx_power()

ssp_err_t rl78g1d_set_tx_power (sf_ble_conn_handle_t *const p_handle, sf_ble_set_tx_pwr_info_t *
p_tx_power_info)

Sets the transmit power for the procedure specified by the connection handle.

Parameters
[in] p_handle Pointer to BLE handle

[in] p_tx_power_info Pointer to TX power
information

Return values
SSP_SUCCESS TX power set successfully

SSP_ERR_BLE_FAILED TX power set failed

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_INVALID_ARGUMENT Invalid transmit power level parameter not
supported by device

Pointer to BLE connection handle

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,377 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_start_encryption()

ssp_err_t rl78g1d_start_encryption (sf_ble_sm_enc_info_t const * p_enc_info)

Starts encryption over the BLE link using information received during Bonding procedure.

Parameters
[in] p_enc_info BLE Start Encryption

information

Return values
SSP_SUCCESS Successfully when encryption start over the

BLE link

SSP_ERR_BLE_FAILED Failed to start encryption

SSP_ERR_TIMEOUT BLE event timeout

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,378 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D

◆ rl78g1d_start_scan()

ssp_err_t rl78g1d_start_scan (sf_ble_rl78g1d_driver_t * p_driver_data, sf_ble_scan_t * p_scan,
uint8_t * p_cnt, sf_ble_scan_info_t * p_scan_info)

Starts scanning of available BLE devices and returns the list of available BLE devices.

Starts Scanning of BLE devices either in Passive or Active mode with user provided scan
configuration

Parameters
[in] p_driver_data Pointer to driver data where

data is to be copied

[in,out] p_scan Pointer to user supplied scan
buffer

[in,out] p_cnt Pointer to count variable
which is to be updated with
number of BLE devices
scanned

[in] p_scan_info Pointer to scan information
structure

Return values
SSP_SUCCESS Successful scan of available BLE devices

SSP_ERR_BLE_FAILED Failed to scan

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_INVALID_MODE Invalid arguments/parameters

In order to start observation or to start passive scan go for observation procedure. Passive scan is
only supported through observation procedure

◆ sf_rble_exit_status()

uint8_t sf_rble_exit_status (void)

Returns status whether RL78G1D driver thread should exit or continue.

Return values
SF_BLE_TRUE RBLE Thread should exit

SF_BLE_FALSE RBLE Thread should continue execution

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,379 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D > BLE Alert Notification Profile Interface Framework on RL78G1D

 BLE Alert Notification Profile Interface Framework on RL78G1D
Renesas Synergy Software Package Reference » Framework Interfaces » BLE Framework Interface on
RL78G1D

RTOS-integrated BLE Alert Notification Profile Framework example. Implementation of RL78G1D BLE
Alert Notification Profile Interface Driver. It implements the following interfaces: More...

RTOS-integrated BLE Alert Notification Profile Framework example. Implementation of RL78G1D BLE
Alert Notification Profile Interface Driver. It implements the following interfaces:

SF BLE Alert Notification Profile Framework Interface

 BLE Blood Pressure Profile Interface Framework on RL78G1D
Renesas Synergy Software Package Reference » Framework Interfaces » BLE Framework Interface on
RL78G1D

RTOS-integrated BLE Blood Pressure Profile Framework example. Implementation of RL78G1D BLE
Blood Pressure Profile Interface Driver. It implements the following interfaces: More...

RTOS-integrated BLE Blood Pressure Profile Framework example. Implementation of RL78G1D BLE
Blood Pressure Profile Interface Driver. It implements the following interfaces:

SF BLE Blood Pressure Profile Framework Interface

 BLE Find Me Profile Interface Framework on RL78G1D
Renesas Synergy Software Package Reference » Framework Interfaces » BLE Framework Interface on
RL78G1D

RTOS-integrated BLE Find Me Profile Framework example. Implementation of RL78G1D BLE Find Me
Profile Interface Driver. It implements the following interfaces: More...

RTOS-integrated BLE Find Me Profile Framework example. Implementation of RL78G1D BLE Find Me
Profile Interface Driver. It implements the following interfaces:

SF BLE Find Me Profile Framework Interface

 BLE HID Over GATT Profile Interface Framework on RL78G1D
Renesas Synergy Software Package Reference » Framework Interfaces » BLE Framework Interface on
RL78G1D

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,380 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D > BLE HID Over GATT Profile Interface Framework on RL78G1D

RTOS-integrated BLE HID Over GATT Profile Framework example. Implementation of RL78G1D BLE
HID Over GATT Profile Interface Driver. It implements the following interfaces: More...

RTOS-integrated BLE HID Over GATT Profile Framework example. Implementation of RL78G1D BLE
HID Over GATT Profile Interface Driver. It implements the following interfaces:

SF BLE HID Over GATT Profile Framework Interface

 BLE Heart Rate Profile Interface Framework on RL78G1D
Renesas Synergy Software Package Reference » Framework Interfaces » BLE Framework Interface on
RL78G1D

RTOS-integrated BLE Heart Rate Profile Framework example. Implementation of RL78G1D BLE Heart
Rate Profile Interface Driver. It implements the following interfaces: More...

RTOS-integrated BLE Heart Rate Profile Framework example. Implementation of RL78G1D BLE Heart
Rate Profile Interface Driver. It implements the following interfaces:

SF BLE Heart Rate Profile Framework Interface

 BLE Health Thermometer Profile Interface Framework on RL78G1D
Renesas Synergy Software Package Reference » Framework Interfaces » BLE Framework Interface on
RL78G1D

RTOS-integrated BLE Health Thermometer Profile Framework example. Implementation of RL78G1D
BLE Health Thermometer Profile Interface Driver. It implements the following interfaces: More...

RTOS-integrated BLE Health Thermometer Profile Framework example. Implementation of RL78G1D
BLE Health Thermometer Profile Interface Driver. It implements the following interfaces:

SF BLE Health Thermometer Profile Framework Interface

 BLE On-Board Profile Framework Interface on RL78G1D
Renesas Synergy Software Package Reference » Framework Interfaces » BLE Framework Interface on
RL78G1D

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,381 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D > BLE On-Board Profile Framework Interface on RL78G1D

RTOS-integrated BLE On-Board Profile Framework example. Implementation of RL78G1D BLE On-
Board Profile Interface Driver. It implements the following interfaces: More...

RTOS-integrated BLE On-Board Profile Framework example. Implementation of RL78G1D BLE On-
Board Profile Interface Driver. It implements the following interfaces:

SF BLE On-Board Profile Framework Interface

 BLE Phone Alert Status Profile Interface Framework on RL78G1D
Renesas Synergy Software Package Reference » Framework Interfaces » BLE Framework Interface on
RL78G1D

RTOS-integrated BLE Phone Alert Status Profile Framework example. Implementation of RL78G1D
BLE Phone Alert Status Profile Interface Driver. It implements the following interfaces: More...

RTOS-integrated BLE Phone Alert Status Profile Framework example. Implementation of RL78G1D
BLE Phone Alert Status Profile Interface Driver. It implements the following interfaces:

SF BLE Phone Alert Status Profile Framework Interface

 BLE Proximity Profile Interface Framework on RL78G1D
Renesas Synergy Software Package Reference » Framework Interfaces » BLE Framework Interface on
RL78G1D

RTOS-integrated BLE Proximity Profile Framework example. Implementation of RL78G1D BLE
Proximity Profile Interface Driver. It implements the following interfaces: More...

RTOS-integrated BLE Proximity Profile Framework example. Implementation of RL78G1D BLE
Proximity Profile Interface Driver. It implements the following interfaces:

SF BLE Proximity Profile Framework Interface

 BLE Scan Parameters Service Profile Interface Framework on RL78G1D
Renesas Synergy Software Package Reference » Framework Interfaces » BLE Framework Interface on
RL78G1D

RTOS-integrated BLE Scan Parameters Service Profile Framework example. Implementation of
RL78G1D BLE Scan Parameters Service Profile Interface Driver. It implements the following
interfaces: More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,382 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BLE Framework Interface on RL78G1D > BLE Scan Parameters Service Profile Interface Framework on RL78G1D

RTOS-integrated BLE Scan Parameters Service Profile Framework example. Implementation of
RL78G1D BLE Scan Parameters Service Profile Interface Driver. It implements the following
interfaces:

SF BLE Scan Parameters Service Profile Framework Interface

 BLE Time Information Profile Interface Framework on RL78G1D
Renesas Synergy Software Package Reference » Framework Interfaces » BLE Framework Interface on
RL78G1D

RTOS-integrated BLE Time Information Profile Framework example. Implementation of RL78G1D BLE
Time Information Profile Interface Driver. It implements the following interfaces: More...

RTOS-integrated BLE Time Information Profile Framework example. Implementation of RL78G1D BLE
Time Information Profile Interface Driver. It implements the following interfaces:

SF BLE Time Information Profile Framework Interface

5.1.2.56 Cellular Framework Example using Quectel CATM1 API
Renesas Synergy Software Package Reference » Framework Interfaces

SF_CELLULAR Framework API on Quectel CATM1. More...

Functions

ssp_err_t SF_CELLULAR_QCTLCATM1_Open (sf_cellular_ctrl_t *p_ctrl,
sf_cellular_cfg_t const *const p_cfg)

 Initialize Cellular Quectel CATM1 Cellular driver. More...

ssp_err_t SF_CELLULAR_QCTLCATM1_Close (sf_cellular_ctrl_t *const p_ctrl)

 Stop Cellular QuecTel CATM1 driver functionality. More...

ssp_err_t SF_CELLULAR_QCTLCATM1_ProvisioningSet (sf_cellular_ctrl_t *const
p_ctrl, sf_cellular_provisioning_t const *const p_cellular_provisioning)

 Sets the provisioning information. More...

ssp_err_t SF_CELLULAR_QCTLCATM1_NetworkStatusGet (sf_cellular_ctrl_t
*const p_ctrl, sf_cellular_network_status_t *p_network_status)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,383 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using Quectel CATM1 API

 Get Network Status information. More...

ssp_err_t SF_CELLULAR_QCTLCATM1_InfoGet (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_info_t *const p_cellular_info)

 Get Cellular module information. More...

ssp_err_t SF_CELLULAR_QCTLCATM1_VersionGet (ssp_version_t *const
p_version)

 Get driver version based on compile time macros. More...

ssp_err_t SF_CELLULAR_QCTLCATM1_Reset (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_reset_type_t reset_type)

 Reset the module. More...

ssp_err_t sf_cellular_qctlcatm1_config_set (sf_cellular_ctrl_t *p_ctrl,
sf_cellular_cfg_t const *p_cfg)

 Set Cellular device interface configuration. More...

ssp_err_t sf_cellular_qctlcatm1_get_imsi (sf_cellular_instance_cfg_t
*p_celr_instance, uint8_t *p_imsi)

 Read IMSI ID. More...

Detailed Description

SF_CELLULAR Framework API on Quectel CATM1.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,384 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using Quectel CATM1 API

◆ SF_CELLULAR_QCTLCATM1_Close()

ssp_err_t SF_CELLULAR_QCTLCATM1_Close (sf_cellular_ctrl_t *const p_ctrl)

Stop Cellular QuecTel CATM1 driver functionality.

Implements sf_cellular_api_t::close This function deactivates the PDP context and de-initializes the
lower level interface

Parameters
[in] p_ctrl Cellular control block

Return values
SSP_SUCCESS Cellular Driver stop successfully.

SSP_ERR_NOT_OPEN Device is not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Driver un-initialization failed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

close module

Set module open flag and delete mutex

Delete is used in close API where all resources are released, hence no need to check the return
code

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,385 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using Quectel CATM1 API

◆ sf_cellular_qctlcatm1_config_set()

ssp_err_t sf_cellular_qctlcatm1_config_set (sf_cellular_ctrl_t * p_ctrl, sf_cellular_cfg_t const *
p_cfg)

Set Cellular device interface configuration.

Parameters
[in] p_ctrl Pointer to cellular control

block

[in] p_cfg Pointer to Cellular
configuration

Return values
SSP_SUCCESS Success

SSP_ERR_CELLULAR_CONFIG_FAILED Failed Cellular configuration

SSP_ERR_CELLULAR_INIT_FAILED Failed due to invalid response received from
modem

Local configuration variable

Set Preferred Operators List

Set Cellular operator select mode, in case of manual set operator details

Set cellular SIM priority effect. Due to the unavailability of SIM priority effect command in all the
BG96 firmwares do not check the return value of this API

set cellular network fallback sequence

Set TimeZone update mode policy

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,386 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using Quectel CATM1 API

◆ sf_cellular_qctlcatm1_get_imsi()

ssp_err_t sf_cellular_qctlcatm1_get_imsi (sf_cellular_instance_cfg_t * p_celr_instance, uint8_t *
p_imsi)

Read IMSI ID.

Parameters
[in] p_celr_instance Pointer to cellular instance

[out] p_imsi IMSI ID

Return values
SSP_SUCCESS Read IMSI successfully

SSP_ERR_CELLULAR_FAILED Reading IMSI failed

AT Command used AT+CIMI - Read IMSI

Get response wait time in ticks

Send command to read IMEI number

Expected bytes of successful response

Clear response buffer

Read command response

Ignore first 2 bytes of resp_buff which contains newline ascii character

Reset result value

Delay for next try

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,387 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using Quectel CATM1 API

◆ SF_CELLULAR_QCTLCATM1_InfoGet()

ssp_err_t SF_CELLULAR_QCTLCATM1_InfoGet (sf_cellular_ctrl_t *const p_ctrl, sf_cellular_info_t
*const p_cellular_info)

Get Cellular module information.

Implements sf_cellular_api_t::infoGet Get Cellular module information like chipset/driver
information, RSSI, noise level, link quality

Parameters
[in] p_ctrl Cellular control block

[in] p_cellular_info Cellular information
structure

Return values
SSP_SUCCESS Successfully get the Cellular information

SSP_ERR_NOT_OPEN Driver not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Failed reading Cellular information

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,388 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using Quectel CATM1 API

◆ SF_CELLULAR_QCTLCATM1_NetworkStatusGet()

ssp_err_t SF_CELLULAR_QCTLCATM1_NetworkStatusGet (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_network_status_t * p_network_status)

Get Network Status information.

Implements sf_cellular_api_t::networkStatusGet

Parameters
[in] p_ctrl Cellular control block

[out] p_network_status Cellular network structure

Return values
SSP_SUCCESS Successfully read the Network status

information

SSP_ERR_NOT_OPEN Cellular driver is not opened

SSP_ERR_CELLULAR_FAILED Failed reading Network Status information.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,389 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using Quectel CATM1 API

◆ SF_CELLULAR_QCTLCATM1_Open()

ssp_err_t SF_CELLULAR_QCTLCATM1_Open (sf_cellular_ctrl_t * p_ctrl, sf_cellular_cfg_t const
*const p_cfg)

Initialize Cellular Quectel CATM1 Cellular driver.

Implements sf_cellular_api_t::open Initializes driver and configures module with given parameters
and saves this configuration.

Parameters
[out] p_ctrl Cellular control block

[in] p_cfg Cellular configuration
structure

Return values
SSP_SUCCESS Driver initialization successfully.

SSP_ERR_ALREADY_OPEN Cellular QuecTel CATM1 Driver is already
opened.

SSP_ERR_CELLULAR_CONFIG_FAILED Cellular QuecTel CATM1 module
Configuration failed

SSP_ERR_CELLULAR_INIT_FAILED Cellular QuecTel CATM1 module
initialization failed

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Driver initialization failed

SSP_ERR_IN_USE Device already in use

Create Mutex for Synchronization

Get Mutex Lock

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,390 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using Quectel CATM1 API

◆ SF_CELLULAR_QCTLCATM1_ProvisioningSet()

ssp_err_t SF_CELLULAR_QCTLCATM1_ProvisioningSet (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_provisioning_t const *const p_cellular_provisioning)

Sets the provisioning information.

Implements sf_cellular_api_t::provisioningSet Sets Cellular's provisioning information

Parameters
[in] p_ctrl Cellular control block

[in] p_cellular_provisioning Cellular provisioning
structure

Return values
SSP_SUCCESS Successfully set the provisioning

information.

SSP_ERR_NOT_OPEN Device not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Provisioning configuration failed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

Set AirPlane Mode on

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,391 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using Quectel CATM1 API

◆ SF_CELLULAR_QCTLCATM1_Reset()

ssp_err_t SF_CELLULAR_QCTLCATM1_Reset (sf_cellular_ctrl_t *const p_ctrl, sf_cellular_reset_type_t
 reset_type)

Reset the module.

Implements sf_cellular_api_t::reset This function reset the module as per the reset type

Parameters
[in] p_ctrl Cellular control block

[in] reset_type Type of reset

Return values
SSP_SUCCESS Cellular Driver stop successfully.

SSP_ERR_NOT_OPEN Device is not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Driver un-initialization failed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

SSP_ERR_CELLULAR_INIT_FAILED Failed due to invalid response received from
modem

Get Mutex

Reset module

Check whether SIM Pin is required

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,392 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using Quectel CATM1 API

◆ SF_CELLULAR_QCTLCATM1_VersionGet()

ssp_err_t SF_CELLULAR_QCTLCATM1_VersionGet (ssp_version_t *const p_version)

Get driver version based on compile time macros.

Implements sf_cellular_api_t::versionGet.

Parameters
[out] p_version Common version structure

Return values
SSP_SUCCESS Success.

SSP_ERR_ASSERTION The parameter p_version is NULL.

5.1.2.57 BSD Socket over Quectel CATM1 on-chip stack API
Renesas Synergy Software Package Reference » Framework Interfaces

SF_CELLULAR Socket Framework API on Quectel CATM1. More...

Functions

ssp_err_t SF_CELLULAR_QCTLCATM1_SOCKET_Open (sf_cellular_socket_ctrl_t
*p_ctrl, sf_cellular_socket_cfg_t const *const p_cfg)

 Open the Cellular Device driver to use the Socket Layer on Cellular
Driver On-Chip stack. More...

ssp_err_t SF_CELLULAR_QCTLCATM1_SOCKET_Close (sf_cellular_socket_ctrl_t
*const p_ctrl)

 Close the Cellular Device driver. More...

ssp_err_t SF_CELLULAR_QCTLCATM1_SOCKET_PING (sf_cellular_socket_ctrl_t
*const p_ctrl, ULONG *p_ip_address, uint32_t count, uint32_t
interval_ms)

int socket (int domain, int type, int protocol)

 This creates socket for communication. More...

int close (int sockfd)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,393 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

 This closes socket. More...

int bind (int sockfd, const struct sockaddr *p_local_sock_addr, socklen_t
addrlen)

 This binds socket to IP address. More...

int listen (int sockfd, int backlog)

 This listens for connection on socket. More...

int connect (int sockfd, const struct sockaddr *p_serv_addr, socklen_t
addrlen)

 This connects with remote socket(stream socket). More...

int accept (int sockfd, struct sockaddr *p_cliaddr, socklen_t *p_addrlen)

 This accepts connection from remote socket. More...

ssize_t send (int sockfd, const void *p_buf, size_t length, int flags)

 This sends data over STREAM socket. More...

ssize_t recv (int sockfd, void *p_buf, size_t length, int flags)

 This receives data over STREAM socket. More...

ssize_t sendto (int sockfd, const void *p_buf, size_t length, int flags, const
struct sockaddr *p_dest_addr, socklen_t addrlen)

 This sends data over DGRAM socket. More...

ssize_t recvfrom (int sockfd, void *p_buf, size_t length, int flags, struct
sockaddr *p_src_addr, socklen_t *p_addrlen)

 This receives data over DGRAM socket. More...

int setsockopt (int sockfd, int level, int optname, const void *p_optval,
socklen_t optlen)

 This updates socket specific options. Quectel CATM1 supports
following socket options SO_SNDBUF: Transmission packet size
TCP_MAX_RETRIES: Maximum Number of retransmission
TCP_MAX_RTO: Maximum interval time of TCP retransmission. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,394 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

int getsockopt (int sockfd, int level, int optname, void *p_optval,
socklen_t *p_optlen)

 This reads socket specific options. Quectel CATM1 supports following
socket options SO_SNDBUF: Transmission packet size
TCP_MAX_RETRIES: Maximum Number of retransmission
TCP_MAX_RTO: Maximum interval time of TCP retransmission. More...

int select (int nfds, fd_set *p_readfds, fd_set *p_writefds, fd_set
*p_exceptfds, struct timeval *p_timeout)

 This waits for any activity on socket. More...

ssp_err_t SF_CELLULAR_QCTLCATM1_SOCKET_VersionGet (ssp_version_t
*const p_version)

 This function gets the version information of the underlying driver.
More...

Detailed Description

SF_CELLULAR Socket Framework API on Quectel CATM1.

Function Documentation

◆ accept()

int accept (int sockfd, struct sockaddr * p_cliaddr, socklen_t * p_addrlen)

This accepts connection from remote socket.

Implements accept This function accepts connection from remote socket. This API is used only with
socket type STREAM. The call is blocked if no connection is present or the socket is blocking.

Parameters
[in] sockfd Socket File Descriptor

[out] p_cliaddr Remote machine Network
address

[out] p_addrlen Size of Socket address
structure

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error accepting
the connection

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Connection is received successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,395 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

◆ bind()

int bind (int sockfd, const struct sockaddr * p_local_sock_addr, socklen_t addrlen)

This binds socket to IP address.

Implements bind This function binds socket to given IP address and port.

Parameters
sockfd Socket file descriptor

p_local_sock_addr Socket address structure

addrlen Size of Socket address structure

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Binding socket failed

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket is bound successfully.

◆ close()

int close (int sockfd)

This closes socket.

Implements close Close opened socket

Parameters
[in] sockfd Socket file descriptor

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Closing socket
failed

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket is closed successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,396 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

◆ connect()

int connect (int sockfd, const struct sockaddr * p_serv_addr, socklen_t addrlen)

This connects with remote socket(stream socket).

Implements connect This function connects local socket with remote socket. The call is blocked
until a connection is established or error is returned.

Parameters
[in] sockfd Socket File Descriptor

[in] p_serv_addr Remote machine Network
address

[in] addrlen Size of Socket address
structure

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error occurred.

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket is connected successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,397 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

◆ getsockopt()

int getsockopt (int sockfd, int level, int optname, void * p_optval, socklen_t * p_optlen)

This reads socket specific options. Quectel CATM1 supports following socket options SO_SNDBUF:
Transmission packet size TCP_MAX_RETRIES: Maximum Number of retransmission TCP_MAX_RTO:
Maximum interval time of TCP retransmission.

Implements getsockopt This gets options for an existing socket.

Parameters
[in] sockfd Socket file descriptor

[in] level Level

[in] optname Socket option name

[out] p_optval Socket option value

[out] p_optlen Size of Socket option

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error reading
socket option

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket option read successfully.

◆ listen()

int listen (int sockfd, int backlog)

This listens for connection on socket.

Implements listen This function listen for connection on socket.

Parameters
[in] sockfd Socket File Descriptor

[in] backlog number of maximum
connection can be accepted

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Failed to set socket in Listen mode

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Set socket in Listen mode successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,398 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

◆ recv()

ssize_t recv (int sockfd, void * p_buf, size_t length, int flags)

This receives data over STREAM socket.

Implements receive This function receives data on a stream socket in connected state. If no packet
is available, the socket is blocked until it is set to non-blocking. The application must provide a
valid buffer to receive the payload. If the buffer length is smaller than the available payload, the
API will do a partial copy, and hold on the rest of the payload for a subsequent call to the API.

Parameters
[in] sockfd Socket File Descriptor

[out] p_buf Buffer to read data

[in] length Data length

[in] flags Socket flag

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Failed to receive
data.

Returns
Otherwise Number of Data bytes received successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,399 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

◆ recvfrom()

ssize_t recvfrom (int sockfd, void * p_buf, size_t length, int flags, struct sockaddr * p_src_addr,
socklen_t * p_addrlen)

This receives data over DGRAM socket.

Implements recvfrom This function receives data on a dgram socket. If no packet is available, the
socket is blocked until it is set to non-blocking. The application must provide a valid buffer to
receive the payload. If the buffer length is smaller than the available payload, the API will do a
partial copy, and hold on the rest of the payload for a subsequent call to the API.

Parameters
[in] sockfd Socket file descriptor

[out] p_buf Data buffer pointer to read
data

[in] length Length of data to read

[in] flags Flags

[in] p_src_addr Remote machine network
address

[in] p_addrlen Size of Remote machine
network

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error receiving
data

Returns
Otherwise Numbers of data bytes received successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,400 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

◆ select()

int select (int nfds, fd_set * p_readfds, fd_set * p_writefds, fd_set * p_exceptfds, struct timeval *
p_timeout)

This waits for any activity on socket.

Implements select Allow an application thread to block on a given socket handle for a specified
time period. This API checks for any activity on specified socket, for example arrival of a packet at
the receive queue.

Parameters
[in] nfds Number of socket fds in to

check

[in] p_readfds Read socket fd set

[in] p_writefds Write socket fd set. If no
descriptor is to be tested for
writing, p_writefds should be
NULL

[in] p_exceptfds Exceptional socket fd set. If
no descriptor is to be tested
for exceptions, p_exceptfds
should be NULL

[in] p_timeout Timeout

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Timeout occurred, no activity.

Returns
Otherwise Activity detected(Packet available).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,401 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

◆ send()

ssize_t send (int sockfd, const void * p_buf, size_t length, int flags)

This sends data over STREAM socket.

Implements send This function sends data on a stream socket in connected state.

Parameters
[in] sockfd Socket File Descriptor

[in] p_buf Buffer data to send

[in] length Data length

[in] flags Socket flag

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Failed to send
data.

Returns
Otherwise Number of Data bytes sent successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,402 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

◆ sendto()

ssize_t sendto (int sockfd, const void * p_buf, size_t length, int flags, const struct sockaddr *
p_dest_addr, socklen_t addrlen)

This sends data over DGRAM socket.

Implements sendto This function sends data to remote.

Parameters
[in] sockfd Socket File Descriptor

[in] p_buf Buffer data pointer

[in] length Length of data

[in] flags Flag

[in] p_dest_addr Address of remote UDP
server

[in] addrlen Size of Network address
structure

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error Sending
data.

Returns
Otherwise Numbers of bytes sent successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,403 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

◆ setsockopt()

int setsockopt (int sockfd, int level, int optname, const void * p_optval, socklen_t optlen)

This updates socket specific options. Quectel CATM1 supports following socket options SO_SNDBUF:
Transmission packet size TCP_MAX_RETRIES: Maximum Number of retransmission TCP_MAX_RTO:
Maximum interval time of TCP retransmission.

Implements setsockopt This sets options for an existing socket.

Parameters
[in] sockfd Socket file descriptor

[in] level Level

[in] optname Socket option name

[in] p_optval Socket option value

[in] optlen Size of Socket option

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Invalid input arguments OR Error setting
socket option

SF_CELLULAR_QCTLCATM1_SOCKET_SUCCE
SS

Socket option set successfully.

◆ SF_CELLULAR_QCTLCATM1_SOCKET_Close()

ssp_err_t SF_CELLULAR_QCTLCATM1_SOCKET_Close (sf_cellular_socket_ctrl_t *const p_ctrl)

Close the Cellular Device driver.

Implements sf_cellular_socket_api_t::close Calls the low level Cellular device driver's Close API to
close the cellular Driver.

Return values
SSP_SUCCESS Cellular Driver stop successfully.

SSP_ERR_NOT_OPEN Device is not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Driver un-initialization failed

SSP_ERR_IN_USE Device already in use

SF Cellular instance variable

SF Cellular API structure variable

SF Cellular Stack control block structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,404 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

◆ SF_CELLULAR_QCTLCATM1_SOCKET_Open()

ssp_err_t SF_CELLULAR_QCTLCATM1_SOCKET_Open (sf_cellular_socket_ctrl_t * p_ctrl,
sf_cellular_socket_cfg_t const *const p_cfg)

Open the Cellular Device driver to use the Socket Layer on Cellular Driver On-Chip stack.

Implements sf_cellular_socket_api_t::open Calls the low level Cellular device driver's Open API to
Initialize the Cellular Device Driver, for using Socket Layer on On-Chip stack.

Return values
SSP_SUCCESS Driver initialization successfully.

SSP_ERR_ALREADY_OPEN Cellular Quectel CATM1 Driver is already
opened.

SSP_ERR_CELLULAR_CONFIG_FAILED Cellular Quectel CATM1 module
Configuration failed

SSP_ERR_CELLULAR_INIT_FAILED Cellular Quectel CATM1 module initialization
failed

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Driver initialization failed

SSP_ERR_IN_USE Device already in use

SF Cellular instance variable

SF Cellular API structure variable

SF Cellular configuration structure variable

SF Cellular Stack control block structure

Initialize Cellular Modem

Initialize Socket Interface global variable , if module open successfully or already open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,405 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

◆ SF_CELLULAR_QCTLCATM1_SOCKET_PING()

ssp_err_t SF_CELLULAR_QCTLCATM1_SOCKET_PING (sf_cellular_socket_ctrl_t *const p_ctrl, ULONG
* p_ip_address, uint32_t count, uint32_t interval_ms)

Ping an IP address on the network.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_ip_address Pointer to IP address.

[in] count Number of ping attempts.

[in] interval_ms Interval between ping
attempts.

Return values
SSP_ERR_UNSUPPORTED Functionality not supported

◆ SF_CELLULAR_QCTLCATM1_SOCKET_VersionGet()

ssp_err_t SF_CELLULAR_QCTLCATM1_SOCKET_VersionGet (ssp_version_t *const p_version)

This function gets the version information of the underlying driver.

Implements sf_cellular_socket_api_t::versionGet

Parameters
[out] p_version Driver version information

Return values
SSP_ERR_ASSERTION Argument NULL is passed

SSP_SUCCESS Successfully read version information

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,406 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over Quectel CATM1 on-chip stack API

◆ socket()

int socket (int domain, int type, int protocol)

This creates socket for communication.

Implements socket Creates socket with given parameters.

Parameters
[in] domain Network Domain

[in] type Socket type

[in] protocol Protocol type

Return values
SF_CELLULAR_QCTLCATM1_SOCKET_INVALI
D_FD

Socket creation failed

Returns
Otherwise Socket descriptor of newly created socket

5.1.2.58 Cellular Framework Example using RYZ014CATM1 API
Renesas Synergy Software Package Reference » Framework Interfaces

SF_CELLULAR Framework API on RYZ014CATM1. More...

Functions

ssp_err_t SF_CELLULAR_RYZ014CATM1_Open (sf_cellular_ctrl_t *p_ctrl,
sf_cellular_cfg_t const *const p_cfg)

 Initialize Cellular RYZ014 CATM1 Cellular driver. More...

ssp_err_t SF_CELLULAR_RYZ014CATM1_Close (sf_cellular_ctrl_t *const p_ctrl)

 Stop Cellular RYZ014 CATM1 driver functionality. More...

ssp_err_t SF_CELLULAR_RYZ014CATM1_ProvisioningSet (sf_cellular_ctrl_t
*const p_ctrl, sf_cellular_provisioning_t const *const
p_cellular_provisioning)

 Sets the provisioning information. More...

ssp_err_t SF_CELLULAR_RYZ014CATM1_InfoGet (sf_cellular_ctrl_t *const p_ctrl,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,407 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using RYZ014CATM1 API

sf_cellular_info_t *const p_cellular_info)

 Get Cellular module information. More...

ssp_err_t SF_CELLULAR_RYZ014CATM1_VersionGet (ssp_version_t *const
p_version)

 Get driver version based on compile time macros. More...

ssp_err_t SF_CELLULAR_RYZ014CATM1_Reset (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_reset_type_t reset_type)

 Reset the module. More...

ssp_err_t SF_CELLULAR_RYZ014CATM1_NetworkStatusGet (sf_cellular_ctrl_t
*const p_ctrl, sf_cellular_network_status_t *p_network_status)

 Get Network Status information. More...

ssp_err_t sf_cellular_ryz014catm1_config_set (sf_cellular_ctrl_t *p_ctrl,
sf_cellular_cfg_t const *p_cfg)

 Set Cellular device interface configuration. More...

ssp_err_t sf_cellular_ryz014catm1_set_pdp_context_state
(sf_cellular_instance_cfg_t *p_celr_instance, uint8_t cid, uint8_t
activate)

 Activate/Deactivate the PDP context. More...

ssp_err_t sf_cellular_ryz014catm1_get_imsi (sf_cellular_instance_cfg_t
*p_celr_instance, uint8_t *p_imsi)

 Read IMSI ID. More...

Detailed Description

SF_CELLULAR Framework API on RYZ014CATM1.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,408 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using RYZ014CATM1 API

◆ SF_CELLULAR_RYZ014CATM1_Close()

ssp_err_t SF_CELLULAR_RYZ014CATM1_Close (sf_cellular_ctrl_t *const p_ctrl)

Stop Cellular RYZ014 CATM1 driver functionality.

Implements sf_cellular_api_t::close This function deactivates the PDP context and de-initializes the
lower level interface

Parameters
[in] p_ctrl Cellular control block

Return values
SSP_SUCCESS Cellular Driver stop successfully.

SSP_ERR_NOT_OPEN Device is not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Driver un-initialization failed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

close module

Set module open flag and delete mutex

Delete is used in close API where all resources are released, hence no need to check the return
code

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,409 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using RYZ014CATM1 API

◆ sf_cellular_ryz014catm1_config_set()

ssp_err_t sf_cellular_ryz014catm1_config_set (sf_cellular_ctrl_t * p_ctrl, sf_cellular_cfg_t const *
p_cfg)

Set Cellular device interface configuration.

Parameters
[in] p_ctrl Pointer to cellular control

block

[in] p_cfg Pointer to Cellular
configuration

Return values
SSP_SUCCESS Success

SSP_ERR_CELLULAR_CONFIG_FAILED Failed Cellular configuration

SSP_ERR_CELLULAR_INIT_FAILED Failed due to invalid response received from
modem

Set Preferred Operators List

Set Cellular operator select mode, in case of manual set operator details

Set TimeZone update mode policy

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,410 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using RYZ014CATM1 API

◆ sf_cellular_ryz014catm1_get_imsi()

ssp_err_t sf_cellular_ryz014catm1_get_imsi (sf_cellular_instance_cfg_t * p_celr_instance, uint8_t *
p_imsi)

Read IMSI ID.

Parameters
[in] p_celr_instance Pointer to cellular instance

[out] p_imsi IMSI ID

Return values
SSP_SUCCESS Read IMSI successfully

SSP_ERR_CELLULAR_FAILED Reading IMSI failed

AT Command used AT+CIMI - Read IMSI

Get response wait time in ticks

Send command to read IMEI number

Expected bytes of successful response

Clear response buffer

Read command response

Ignore first 2 bytes of resp_buff which contains newline ascii character

Reset result value

Delay for next try

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,411 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using RYZ014CATM1 API

◆ SF_CELLULAR_RYZ014CATM1_InfoGet()

ssp_err_t SF_CELLULAR_RYZ014CATM1_InfoGet (sf_cellular_ctrl_t *const p_ctrl, sf_cellular_info_t
*const p_cellular_info)

Get Cellular module information.

Implements sf_cellular_api_t::infoGet Get Cellular module information like chipset/driver
information, RSSI, noise level, link quality

Parameters
[in] p_ctrl Cellular control block

[in] p_cellular_info Cellular information
structure

Return values
SSP_SUCCESS Successfully get the Cellular information

SSP_ERR_NOT_OPEN Driver not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Failed reading Cellular information

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,412 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using RYZ014CATM1 API

◆ SF_CELLULAR_RYZ014CATM1_NetworkStatusGet()

ssp_err_t SF_CELLULAR_RYZ014CATM1_NetworkStatusGet (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_network_status_t * p_network_status)

Get Network Status information.

Implements sf_cellular_api_t::networkStatusGet

Parameters
[in] p_ctrl Cellular control block

[out] p_network_status Cellular network structure

Return values
SSP_SUCCESS Successfully read the Network status

information

SSP_ERR_NOT_OPEN Cellular driver is not opened

SSP_ERR_CELLULAR_FAILED Failed reading Network Status information.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,413 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using RYZ014CATM1 API

◆ SF_CELLULAR_RYZ014CATM1_Open()

ssp_err_t SF_CELLULAR_RYZ014CATM1_Open (sf_cellular_ctrl_t * p_ctrl, sf_cellular_cfg_t const
*const p_cfg)

Initialize Cellular RYZ014 CATM1 Cellular driver.

Implements sf_cellular_api_t::open Initializes driver and configures module with given parameters
and saves this configuration.

Parameters
[out] p_ctrl Cellular control block

[in] p_cfg Cellular configuration
structure

Return values
SSP_SUCCESS Driver initialization successfully.

SSP_ERR_ALREADY_OPEN Cellular RYZ014 CATM1 Driver is already
opened.

SSP_ERR_CELLULAR_CONFIG_FAILED Cellular RYZ014 CATM1 module
Configuration failed

SSP_ERR_CELLULAR_INIT_FAILED Cellular RYZ014 CATM1 module initialization
failed

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Driver initialization failed

SSP_ERR_IN_USE Device already in use

Create Mutex for Synchronization

Get Mutex Lock

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,414 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using RYZ014CATM1 API

◆ SF_CELLULAR_RYZ014CATM1_ProvisioningSet()

ssp_err_t SF_CELLULAR_RYZ014CATM1_ProvisioningSet (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_provisioning_t const *const p_cellular_provisioning)

Sets the provisioning information.

Implements sf_cellular_api_t::provisioningSet Sets Cellular's provisioning information

Parameters
[in] p_ctrl Cellular control block

[in] p_cellular_provisioning Cellular provisioning
structure

Return values
SSP_SUCCESS Successfully set the provisioning

information.

SSP_ERR_NOT_OPEN Device not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Provisioning configuration failed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

Set AirPlane Mode on

Set provisioning

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,415 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using RYZ014CATM1 API

◆ SF_CELLULAR_RYZ014CATM1_Reset()

ssp_err_t SF_CELLULAR_RYZ014CATM1_Reset (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_reset_type_t reset_type)

Reset the module.

Implements sf_cellular_api_t::reset This function reset the module as per the reset type

Parameters
[in] p_ctrl Cellular control block

[in] reset_type Type of reset

Return values
SSP_SUCCESS Cellular Driver stop successfully.

SSP_ERR_NOT_OPEN Device is not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Driver un-initialization failed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

SSP_ERR_CELLULAR_INIT_FAILED Failed due to invalid response received from
modem

Get Mutex

Reset module

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,416 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using RYZ014CATM1 API

◆ sf_cellular_ryz014catm1_set_pdp_context_state()

ssp_err_t sf_cellular_ryz014catm1_set_pdp_context_state (sf_cellular_instance_cfg_t *
p_celr_instance, uint8_t cid, uint8_t activate)

Activate/Deactivate the PDP context.

Parameters
[in] p_celr_instance Pointer to Cellular Instance

configuration

[in] cid Content ID

[in] activate Context status to be set

Return values
SSP_SUCCESS Successfully activate/deactivate the PDP

context

SSP_ERR_CELLULAR_FAILED Failed to activate/deactivate the PDP
context

AT Command used AT+CGACT=socket,1 - To activate the context AT+CGACT=socket,0 - To
deactivate the context AT+CGACT=Socket_context,activate or deactivate

Create socket context activation command

Expected bytes of successful response

Create context activation command

Expected bytes of successful response

Store data in string format

numbers of bytes to send

Send command

Get response wait time in ticks

Read response

Check whether expected response present or not

< In case of activation

< In case of de-activation

Delay for next retry

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,417 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > Cellular Framework Example using RYZ014CATM1 API

◆ SF_CELLULAR_RYZ014CATM1_VersionGet()

ssp_err_t SF_CELLULAR_RYZ014CATM1_VersionGet (ssp_version_t *const p_version)

Get driver version based on compile time macros.

Implements sf_cellular_api_t::versionGet.

Parameters
[out] p_version Common version structure

Return values
SSP_SUCCESS Success.

SSP_ERR_ASSERTION The parameter p_version is NULL.

5.1.2.59 SF CELLULAR Common Interface
Renesas Synergy Software Package Reference » Framework Interfaces

SF_Cellular Framework API Common Code. More...

Functions

ssp_err_t SF_CELLULAR_COMMON_Open (sf_cellular_ctrl_t *p_ctrl,
sf_cellular_cfg_t const *const p_cfg)

 Initialize Cellular driver. More...

ssp_err_t SF_CELLULAR_COMMON_Close (sf_cellular_ctrl_t *const p_ctrl)

 Stop Cellular driver functionality. More...

ssp_err_t SF_CELLULAR_COMMON_InfoGet (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_info_t *const p_cellular_info)

 Get Cellular module information. More...

ssp_err_t SF_CELLULAR_COMMON_StatisticsGet (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_stats_t *const p_cellular_device_stats)

 Get the interface statistics. More...

ssp_err_t SF_CELLULAR_COMMON_Transmit (sf_cellular_ctrl_t *const p_ctrl,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,418 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

uint8_t *const p_buf, uint32_t length)

 Passes packet buffer to PPP stack for transmission. More...

ssp_err_t SF_CELLULAR_COMMON_ProvisioningGet (sf_cellular_ctrl_t *const
p_ctrl, sf_cellular_provisioning_t *const p_cellular_provisioning)

 Reads the provisioning information. More...

ssp_err_t SF_CELLULAR_COMMON_ProvisioningSet (sf_cellular_ctrl_t *const
p_ctrl, sf_cellular_provisioning_t const *const p_cellular_provisioning)

 Sets the provisioning information. More...

ssp_err_t SF_CELLULAR_COMMON_NetworkConnect (sf_cellular_ctrl_t *const
p_ctrl)

 Establishes the Data connection. More...

ssp_err_t SF_CELLULAR_COMMON_NetworkConnectWithCGDATA
(sf_cellular_ctrl_t *const p_ctrl)

 Establishes the Data connection using AT+CGDATA command.
Limitation: This API activates only one PDP Context Id even though
AT+CGDATA command actually supports activation of multiple
Context Ids in single command. More...

ssp_err_t SF_CELLULAR_COMMON_NetworkDisconnect (sf_cellular_ctrl_t *const
p_ctrl)

 Terminates the connection. More...

ssp_err_t SF_CELLULAR_COMMON_NetworkStatusGet (sf_cellular_ctrl_t *const
p_ctrl, sf_cellular_network_status_t *p_network_status)

 Get Network Status information. More...

ssp_err_t SF_CELLULAR_COMMON_SimPinSet (sf_cellular_ctrl_t *const p_ctrl,
uint8_t *const p_old_pin, uint8_t *const p_new_pin)

 Set the SIM PIN. More...

ssp_err_t SF_CELLULAR_COMMON_SimLock (sf_cellular_ctrl_t *const p_ctrl,
uint8_t *const p_pin)

 Lock the SIM. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,419 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

ssp_err_t SF_CELLULAR_COMMON_SimUnlock (sf_cellular_ctrl_t *const p_ctrl,
uint8_t *const p_pin)

 Unlock the SIM. More...

ssp_err_t SF_CELLULAR_COMMON_SimIDGet (sf_cellular_ctrl_t *const p_ctrl,
uint8_t *p_sim_id)

 Get SIM ID. More...

ssp_err_t SF_CELLULAR_COMMON_CommandSend (sf_cellular_ctrl_t *const
p_ctrl, sf_cellular_cmd_resp_t *const p_input_at_command,
sf_cellular_cmd_resp_t *const p_output, uint32_t const timeout)

 Send AT command directly to Cellular Modem. More...

ssp_err_t SF_CELLULAR_COMMON_FotaCheck (sf_cellular_ctrl_t *const p_ctrl,
void *p_fotacheck)

 Checks for available firmware upgrade. More...

ssp_err_t SF_CELLULAR_COMMON_FotaStart (sf_cellular_ctrl_t *const p_ctrl,
void *p_fotastart)

 Perform the firmware upgrade. More...

ssp_err_t SF_CELLULAR_COMMON_FotaStop (sf_cellular_ctrl_t *const p_ctrl,
void *p_fotastop)

 Stop firmware upgrade. More...

Detailed Description

SF_Cellular Framework API Common Code.

Cellular Framework header files Framework header files for this package HAL Layer communication
interface header file

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,420 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_Close()

ssp_err_t SF_CELLULAR_COMMON_Close (sf_cellular_ctrl_t *const p_ctrl)

Stop Cellular driver functionality.

Implements sf_cellular_api_t::close This function deactivates the PDP context and Update global
variables for future use

Parameters
[in] p_ctrl Cellular control block

Return values
SSP_SUCCESS Cellular Driver stop successfully.

SSP_ERR_NOT_OPEN Device is not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Driver un-initialization failed

SSP_ERR_IN_USE Device already in used

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

Delete is used in close API where all resources are released, hence no need to check the return
code

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,421 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_CommandSend()

ssp_err_t SF_CELLULAR_COMMON_CommandSend (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_cmd_resp_t *const p_input_at_command, sf_cellular_cmd_resp_t *const p_output,
uint32_t const timeout)

Send AT command directly to Cellular Modem.

This API will send AT command provided by user to the Cellular Modem and will collect the
response from the Modem and will send it back to the user. If Modem is in Data Mode when this API
is called then Framework will first switch Modem to Command Mode, then send the AT command
and collect the response and then switches the Modem back to Data Mode.

Parameters
[in] p_ctrl Pointer to the control block

for the Cellular module.

[in] p_input_at_command Pointer to structure which
contains Modem command
to send

[in,out] p_output Pointer to buffer in which
response will be sent to
user, Also user will pass the
size of the buffer which is
pointed by p_output

[in] timeout Timeout for which
framework will wait for
response in milliseconds

Return values
SSP_SUCCESS Successfully sent AT command and

collected response from Cellular modem

SSP_ERR_CELLULAR_FAILED Failed to either send AT command or collect
response from Cellular modem

SSP_ERR_NOT_OPEN Device is not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Device already in use

Get Mutex

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,422 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_FotaCheck()

ssp_err_t SF_CELLULAR_COMMON_FotaCheck (sf_cellular_ctrl_t *const p_ctrl, void * p_fotacheck)

Checks for available firmware upgrade.

Implements sf_cellular_api_t::fotaCheck Checks for available firmware upgrade.

Parameters
[in] p_ctrl Cellular control block

[in] p_fotacheck Fota check specific structure

Return values
SSP_ERR_UNSUPPORTED Functionality not supported

◆ SF_CELLULAR_COMMON_FotaStart()

ssp_err_t SF_CELLULAR_COMMON_FotaStart (sf_cellular_ctrl_t *const p_ctrl, void * p_fotastart)

Perform the firmware upgrade.

Implements sf_cellular_api_t::fotaStart Perform the firmware upgrade.

Parameters
[in] p_ctrl Cellular control block

[in] p_fotastart Fota start specific structure

Return values
SSP_ERR_UNSUPPORTED Functionality not supported

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,423 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_FotaStop()

ssp_err_t SF_CELLULAR_COMMON_FotaStop (sf_cellular_ctrl_t *const p_ctrl, void * p_fotastop)

Stop firmware upgrade.

Implements sf_cellular_api_t::fotaStop Stop firmware upgrade

Parameters
[in] p_ctrl Cellular control block

[in] p_fotastop Fota stop specific structure

Return values
SSP_ERR_UNSUPPORTED Functionality not supported

◆ SF_CELLULAR_COMMON_InfoGet()

ssp_err_t SF_CELLULAR_COMMON_InfoGet (sf_cellular_ctrl_t *const p_ctrl, sf_cellular_info_t *const
p_cellular_info)

Get Cellular module information.

Implements sf_cellular_api_t::infoGet Get Cellular module information like chipset/driver
information, RSSI, noise level, link quality

Parameters
[in] p_ctrl Cellular control block

[in] p_cellular_info Cellular information
structure

Return values
SSP_SUCCESS Successfully get the Cellular information

SSP_ERR_NOT_OPEN Driver not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Failed reading Cellular information

SSP_ERR_IN_USE Device already in used

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,424 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_NetworkConnect()

ssp_err_t SF_CELLULAR_COMMON_NetworkConnect (sf_cellular_ctrl_t *const p_ctrl)

Establishes the Data connection.

Implements sf_cellular_api_t::networkConnect Establishes the Network Connection

Parameters
[in] p_ctrl Cellular control block

Return values
SSP_SUCCESS Successfully establishes the Network

connection

SSP_ERR_NOT_OPEN Device not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Failed to establish the Network Connection

SSP_ERR_IN_USE Device already in used

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

Enter Data Mode

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,425 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_NetworkConnectWithCGDATA()

ssp_err_t SF_CELLULAR_COMMON_NetworkConnectWithCGDATA (sf_cellular_ctrl_t *const p_ctrl)

Establishes the Data connection using AT+CGDATA command. Limitation: This API activates only
one PDP Context Id even though AT+CGDATA command actually supports activation of multiple
Context Ids in single command.

Implements sf_cellular_api_t::networkConnect Establishes the Network Connection

Parameters
[in] p_ctrl Cellular control block

Return values
SSP_SUCCESS Successfully establishes the Network

connection

SSP_ERR_NOT_OPEN Device not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Failed to establish the Network Connection

SSP_ERR_IN_USE Device already in used

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

Enter Data Mode

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,426 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_NetworkDisconnect()

ssp_err_t SF_CELLULAR_COMMON_NetworkDisconnect (sf_cellular_ctrl_t *const p_ctrl)

Terminates the connection.

Implements sf_cellular_api_t::networkDisconnect

Parameters
[in] p_ctrl Cellular control block

Return values
SSP_SUCCESS Successfully disconnect the connection

SSP_ERR_NOT_OPEN Cellular driver is not opened

SSP_ERR_CELLULAR_FAILED Failed to terminate the network connection

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

Exit Data Mode

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,427 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_NetworkStatusGet()

ssp_err_t SF_CELLULAR_COMMON_NetworkStatusGet (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_network_status_t * p_network_status)

Get Network Status information.

Implements sf_cellular_api_t::networkStatusGet

Parameters
[in] p_ctrl Cellular control block

[out] p_network_status Cellular network structure

Return values
SSP_SUCCESS Successfully read the Network status

information

SSP_ERR_NOT_OPEN Cellular driver is not opened

SSP_ERR_CELLULAR_FAILED Failed reading Network Status information.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,428 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_Open()

ssp_err_t SF_CELLULAR_COMMON_Open (sf_cellular_ctrl_t * p_ctrl, sf_cellular_cfg_t const *const
p_cfg)

Initialize Cellular driver.

Implements sf_cellular_api_t::open Initializes Cellular Driver and Configure the parameters as per
the p_cfg Update global variables for future use.

Parameters
[out] p_ctrl Cellular control block

[in] p_cfg Cellular configuration
structure

Return values
SSP_SUCCESS Driver initialization successfully.

SSP_ERR_ALREADY_OPEN Cellular Driver is already opened.

SSP_ERR_CELLULAR_CONFIG_FAILED Cellular module Configuration failed

SSP_ERR_CELLULAR_INIT_FAILED Cellular module initialization failed

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Driver initialization failed

SSP_ERR_IN_USE Device already in used

Create Mutex for Synchronization

Get Mutex Lock

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,429 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_ProvisioningGet()

ssp_err_t SF_CELLULAR_COMMON_ProvisioningGet (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_provisioning_t *const p_cellular_provisioning)

Reads the provisioning information.

Implements sf_cellular_api_t::provisioningGet Reads Cellular's provisioning information

Parameters
[in] p_ctrl Cellular control block

[out] p_cellular_provisioning Cellular provisioning
structure

Return values
SSP_SUCCESS Successfully read the provisioning

information.

SSP_ERR_NOT_OPEN Device not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Reading provisioning information failed

SSP_ERR_IN_USE Device already in used

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

Copy provisioning info to driver structure

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,430 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_ProvisioningSet()

ssp_err_t SF_CELLULAR_COMMON_ProvisioningSet (sf_cellular_ctrl_t *const p_ctrl,
sf_cellular_provisioning_t const *const p_cellular_provisioning)

Sets the provisioning information.

Implements sf_cellular_api_t::provisioningSet Sets Cellular's provisioning information

Parameters
[in] p_ctrl Cellular control block

[in] p_cellular_provisioning Cellular provisioning
structure

Return values
SSP_SUCCESS Successfully set the provisioning

information.

SSP_ERR_NOT_OPEN Device not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Provisioning configuration failed

SSP_ERR_IN_USE Device already in used

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

SSP_ERR_CELLULAR_INIT_FAILED Failed due to invalid response received from
modem

Get Mutex

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,431 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_SimIDGet()

ssp_err_t SF_CELLULAR_COMMON_SimIDGet (sf_cellular_ctrl_t *const p_ctrl, uint8_t * p_sim_id)

Get SIM ID.

Implements sf_cellular_api_t::simGetID Get SIM ID

Parameters
[in] p_ctrl Cellular control block

[out] p_sim_id SIM ID

Return values
SSP_SUCCESS Successfully get the SIM ID.

SSP_ERR_CELLULAR_FAILED Failed to get the SIM ID

SSP_ERR_NOT_OPEN Device is not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,432 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_SimLock()

ssp_err_t SF_CELLULAR_COMMON_SimLock (sf_cellular_ctrl_t *const p_ctrl, uint8_t *const p_pin)

Lock the SIM.

Implements sf_cellular_api_t::simLock

Parameters
[in] p_ctrl Cellular control block

[in] p_pin SIM Pin

Return values
SSP_SUCCESS Successfully lock the SIM

SSP_ERR_NOT_OPEN Cellular driver is not opened

SSP_ERR_CELLULAR_FAILED Failed to Lock the SIM

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,433 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_SimPinSet()

ssp_err_t SF_CELLULAR_COMMON_SimPinSet (sf_cellular_ctrl_t *const p_ctrl, uint8_t *const
p_old_pin, uint8_t *const p_new_pin)

Set the SIM PIN.

Implements sf_cellular_api_t::simSetPin

Parameters
[in] p_ctrl Cellular control block

[in] p_old_pin Old SIM Pin

[in] p_new_pin New SIM Pin

Return values
SSP_SUCCESS Successfully set SIM Pin

SSP_ERR_NOT_OPEN Cellular driver is not opened

SSP_ERR_CELLULAR_FAILED Failed to set the SIM Pin

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,434 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_SimUnlock()

ssp_err_t SF_CELLULAR_COMMON_SimUnlock (sf_cellular_ctrl_t *const p_ctrl, uint8_t *const p_pin
)

Unlock the SIM.

Implements sf_cellular_api_t::simUnlock

Parameters
[in] p_ctrl Cellular control block

[in] p_pin SIM Pin

Return values
SSP_SUCCESS Successfully unlock the SIM

SSP_ERR_NOT_OPEN Cellular driver is not opened

SSP_ERR_CELLULAR_FAILED Failed to unlock the SIM

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Device already in use

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,435 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_StatisticsGet()

ssp_err_t SF_CELLULAR_COMMON_StatisticsGet (sf_cellular_ctrl_t *const p_ctrl, sf_cellular_stats_t
*const p_cellular_device_stats)

Get the interface statistics.

Implements sf_cellular_api_t::statisticsGet Collect the statistics information of Cellular interface

Parameters
[in] p_ctrl Cellular control block

[in] p_cellular_device_stats Cellular statistic structure

Return values
SSP_SUCCESS Successfully get the Statistics information.

SSP_ERR_UNSUPPORTED Functionality is not supported.

SSP_ERR_NOT_OPEN Device not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Failed Reading statistics information

SSP_ERR_IN_USE Device already in used

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,436 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > SF CELLULAR Common Interface

◆ SF_CELLULAR_COMMON_Transmit()

ssp_err_t SF_CELLULAR_COMMON_Transmit (sf_cellular_ctrl_t *const p_ctrl, uint8_t *const p_buf,
uint32_t length)

Passes packet buffer to PPP stack for transmission.

Implements sf_cellular_api_t::transmit Send packet buffer to PPP stack

Parameters
[in] p_ctrl Cellular control block

[in] p_buf transmit byte buffer pointer

[in] length Length of data

Return values
SSP_SUCCESS Successfully send the packet buffer.

SSP_ERR_NOT_OPEN Device not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Transmitting Data failed

SSP_ERR_IN_USE Device already in used

SSP_ERR_CELLULAR_INVALID_STATE Module in Data mode can't send AT
command

Get Mutex

The return code is not checked here because tx_mutex_put cannot fail when called with a mutex
owned by the current thread. The mutex is owned by the current thread because this call follows a
successful call to tx_mutex_get.

5.1.2.60 BSD Socket over RYZ014CATM1 on-chip stack API
Renesas Synergy Software Package Reference » Framework Interfaces

SF_CELLULAR Socket Framework API on RYZ014CATM1. More...

Functions

ssp_err_t SF_CELLULAR_RYZ014CATM1_SOCKET_Open
(sf_cellular_socket_ctrl_t *p_ctrl, sf_cellular_socket_cfg_t const *const
p_cfg)

 Open the Cellular Device driver to use the Socket Layer on Cellular
Driver On-Chip stack. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,437 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

ssp_err_t SF_CELLULAR_RYZ014CATM1_SOCKET_Close
(sf_cellular_socket_ctrl_t *const p_ctrl)

 Close the Cellular Device driver. More...

ssp_err_t SF_CELLULAR_RYZ014CATM1_SOCKET_PING (sf_cellular_socket_ctrl_t
*const p_ctrl, ULONG *p_ip_address, uint32_t count, uint32_t
interval_ms)

int socket (int domain, int type, int protocol)

 This creates socket for communication. More...

int close (int sockfd)

 This closes socket. More...

int bind (int sockfd, const struct sockaddr *p_local_sock_addr, socklen_t
addrlen)

 This binds socket to IP address. More...

int listen (int sockfd, int backlog)

 This listens for connection on socket. More...

int connect (int sockfd, const struct sockaddr *p_serv_addr, socklen_t
addrlen)

 This connects with remote socket(stream socket). More...

int accept (int sockfd, struct sockaddr *p_cliaddr, socklen_t *p_addrlen)

 This accepts connection from remote socket. More...

ssize_t send (int sockfd, const void *p_buf, size_t length, int flags)

 This sends data over STREAM socket. More...

ssize_t recv (int sockfd, void *p_buf, size_t length, int flags)

 This receives data over STREAM socket. More...

ssize_t sendto (int sockfd, const void *p_buf, size_t length, int flags, const
struct sockaddr *p_dest_addr, socklen_t addrlen)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,438 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

 This sends data over DGRAM socket. More...

ssize_t recvfrom (int sockfd, void *p_buf, size_t length, int flags, struct
sockaddr *p_src_addr, socklen_t *p_addrlen)

 This receives data over DGRAM socket. More...

int setsockopt (int sockfd, int level, int optname, const void *p_optval,
socklen_t optlen)

 This sets socket specific options. More...

int getsockopt (int sockfd, int level, int optname, void *p_optval,
socklen_t *p_optlen)

 This gets socket specific options. More...

int select (int nfds, fd_set *p_readfds, fd_set *p_writefds, fd_set
*p_exceptfds, struct timeval *p_timeout)

 This waits for any activity on socket. More...

ssp_err_t SF_CELLULAR_RYZ014CATM1_SOCKET_VersionGet (ssp_version_t
*const p_version)

 This function gets the version information of the underlying driver.
More...

Detailed Description

SF_CELLULAR Socket Framework API on RYZ014CATM1.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,439 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

◆ accept()

int accept (int sockfd, struct sockaddr * p_cliaddr, socklen_t * p_addrlen)

This accepts connection from remote socket.

Implements accept This function accepts connection from remote socket. This API is used only with
socket type STREAM. The call is blocked if no connection is present or the socket is blocking.

Parameters
[in] sockfd Socket File Descriptor

[out] p_cliaddr Remote machine Network
address (Can be NULL)

[out] p_addrlen Size of Socket address
structure(Can be NULL)

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error accepting the connection or invalid
input parameters

Returns
Otherwise Connection is received successfully.

◆ bind()

int bind (int sockfd, const struct sockaddr * p_local_sock_addr, socklen_t addrlen)

This binds socket to IP address.

Implements bind This function binds socket to given IP address and port.

Parameters
sockfd Socket file descriptor

p_local_sock_addr Socket address structure

addrlen Size of Socket address structure

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Binding socket failed or invalid input
parameters

Returns
Otherwise Socket is bound successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,440 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

◆ close()

int close (int sockfd)

This closes socket.

Implements close Close opened socket

Parameters
[in] sockfd Socket file descriptor

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Closing socket failed or invalid input
parameters

Returns
Otherwise Socket is closed successfully.

◆ connect()

int connect (int sockfd, const struct sockaddr * p_serv_addr, socklen_t addrlen)

This connects with remote socket(stream socket).

Implements connect This function connects local socket with remote socket. The call is blocked
until a connection is established or error is returned.

Parameters
[in] sockfd Socket File Descriptor

[in] p_serv_addr Remote machine Network
address

[in] addrlen Size of Socket address
structure

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error occurred or invalid input parameters

Returns
Otherwise Socket is connected successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,441 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

◆ getsockopt()

int getsockopt (int sockfd, int level, int optname, void * p_optval, socklen_t * p_optlen)

This gets socket specific options.

This reads socket specific options. Quectel CATM1 supports following socket options SO_SNDBUF:
Transmission packet size TCP_MAX_RETRIES: Maximum Number of retransmission TCP_MAX_RTO:
Maximum interval time of TCP retransmission.

Implements getsockopt This gets options for an existing socket.

Parameters
[in] sockfd Socket file descriptor

[in] level Level

[in] optname Socket option name

[out] p_optval Socket option value

[out] p_optlen Size of Socket option

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error reading socket option or invalid socket
descriptor

Returns
Otherwise Socket option read successfully.

◆ listen()

int listen (int sockfd, int backlog)

This listens for connection on socket.

Implements listen This function listen for connection on socket.

Parameters
[in] sockfd Socket File Descriptor

[in] backlog number of maximum
connection can be accepted

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Failed to set socket in Listen mode or invalid
input parameters

Returns
Otherwise Set socket in Listen mode successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,442 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

◆ recv()

ssize_t recv (int sockfd, void * p_buf, size_t length, int flags)

This receives data over STREAM socket.

Implements receive This function receives data on a stream socket in connected state. If no packet
is available, the socket is blocked until it is set to non-blocking. The application must provide a
valid buffer to receive the payload. If the buffer length is smaller than the available payload, the
API will do a partial copy, and hold on the rest of the payload for a subsequent call to the API.

Parameters
[in] sockfd Socket File Descriptor

[out] p_buf Buffer to read data

[out] length Data length

[in] flags Socket flag

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Failed to receive data or invalid input
parameters

Returns
Otherwise Data received successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,443 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

◆ recvfrom()

ssize_t recvfrom (int sockfd, void * p_buf, size_t length, int flags, struct sockaddr * p_src_addr,
socklen_t * p_addrlen)

This receives data over DGRAM socket.

Implements recvfrom This function receives data on a dgram socket. If no packet is available, the
socket is blocked until it is set to non-blocking. The application must provide a valid buffer to
receive the payload. If the buffer length is smaller than the available payload, the API will do a
partial copy, and hold on the rest of the payload for a subsequent call to the API.

Parameters
[in] sockfd Socket file descriptor

[out] p_buf Data buffer pointer to read
data

[in] length Length of data to read

[in] flags Flags

[in] p_src_addr Remote machine network
address (Can be NULL)

[in] p_addrlen Size of Remote machine
network (Can be NULL)

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error receiving data or invalid input
parameters

Returns
Otherwise Numbers of data bytes received successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,444 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

◆ select()

int select (int nfds, fd_set * p_readfds, fd_set * p_writefds, fd_set * p_exceptfds, struct timeval *
p_timeout)

This waits for any activity on socket.

Implements select Allow an application thread to block on a given socket handle for a specified
time period. This API checks for any activity on specified socket, for example arrival of a packet at
the receive queue.

Parameters
[in] nfds Number of socket fds in to

check

[in] p_readfds Read socket fd set

[in] p_writefds Write socket fd set - API
does not used this
parameter

[in] p_exceptfds Exceptional socket fd set -
API does not used this
parameter

[in] p_timeout Timeout

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Timeout occurred, no activity or invalid
socket descriptor

Returns
Otherwise Activity detected(Packet available).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,445 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

◆ send()

ssize_t send (int sockfd, const void * p_buf, size_t length, int flags)

This sends data over STREAM socket.

Implements send This function sends data on a stream socket in connected state.

Parameters
[in] sockfd Socket File Descriptor

[in] p_buf Buffer data to send

[in] length Data length

[in] flags Socket flag

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Failed to send data or invalid input
parameters

Returns
Otherwise Data sent successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,446 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

◆ sendto()

ssize_t sendto (int sockfd, const void * p_buf, size_t length, int flags, const struct sockaddr *
p_dest_addr, socklen_t addrlen)

This sends data over DGRAM socket.

Implements sendto This function sends data to remote.

Parameters
[in] sockfd Socket File Descriptor

[in] p_buf Buffer data pointer

[in] length Length of data

[in] flags Flag

[in] p_dest_addr Address of remote UDP
server

[in] addrlen Size of Network address
structure

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error Sending data or invalid input
parameters

Returns
Otherwise Numbers of bytes sent successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,447 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

◆ setsockopt()

int setsockopt (int sockfd, int level, int optname, const void * p_optval, socklen_t optlen)

This sets socket specific options.

This updates socket specific options. Quectel CATM1 supports following socket options SO_SNDBUF:
Transmission packet size TCP_MAX_RETRIES: Maximum Number of retransmission TCP_MAX_RTO:
Maximum interval time of TCP retransmission.

Implements setsockopt This sets options for an existing socket.

Parameters
[in] sockfd Socket file descriptor

[in] level Level

[in] optname Socket option name

[in] p_optval Socket option value

[in] optlen Size of Socket option

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Error setting socket option or invalid socket
descriptor

Returns
Otherwise Socket option set successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,448 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

◆ SF_CELLULAR_RYZ014CATM1_SOCKET_Close()

ssp_err_t SF_CELLULAR_RYZ014CATM1_SOCKET_Close (sf_cellular_socket_ctrl_t *const p_ctrl)

Close the Cellular Device driver.

Implements sf_cellular_socket_api_t::close Calls the low level Cellular device driver's Close API to
close the cellular Driver.

Return values
SSP_SUCCESS Cellular Driver stop successfully.

SSP_ERR_NOT_OPEN Device is not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Driver un-initialization failed

SSP_ERR_IN_USE Device already in used

SF Cellular instance variable

SF Cellular API structure variable

SF Cellular Stack control block structure

Close cellular framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,449 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

◆ SF_CELLULAR_RYZ014CATM1_SOCKET_Open()

ssp_err_t SF_CELLULAR_RYZ014CATM1_SOCKET_Open (sf_cellular_socket_ctrl_t * p_ctrl,
sf_cellular_socket_cfg_t const *const p_cfg)

Open the Cellular Device driver to use the Socket Layer on Cellular Driver On-Chip stack.

Implements sf_cellular_socket_api_t::open Calls the low level Cellular device driver's Open API to
Initialize the Cellular Device Driver, for using Socket Layer on On-Chip stack.

Return values
SSP_SUCCESS Driver initialization successfully.

SSP_ERR_ALREADY_OPEN Cellular RYZ014CATM1 Driver is already
opened.

SSP_ERR_CELLULAR_CONFIG_FAILED Cellular RYZ014CATM1 module
Configuration failed

SSP_ERR_CELLULAR_INIT_FAILED Cellular RYZ014CATM1 module initialization
failed

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_CELLULAR_FAILED Driver initialization failed

SSP_ERR_IN_USE Device already in used

SF Cellular instance variable

SF Cellular API structure variable

SF Cellular configuration structure variable

SF Cellular Stack control block structure

Initialize Cellular Modem

Initialize Socket Interface global variable

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,450 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

◆ SF_CELLULAR_RYZ014CATM1_SOCKET_PING()

ssp_err_t SF_CELLULAR_RYZ014CATM1_SOCKET_PING (sf_cellular_socket_ctrl_t *const p_ctrl,
ULONG * p_ip_address, uint32_t count, uint32_t interval_ms)

Ping an IP address on the network.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_ip_address Pointer to IP address.

[in] count Number of ping attempts.

[in] interval_ms Interval between ping
attempts.

Return values
SSP_SUCCESS Function completed successfully.

SSP_ERR_CELLULAR_FAILED Driver initialization failed.

SSP_ERR_IN_USE Device already in use

Get mutex lock

Ping specified IP address

Release the mutex

◆ SF_CELLULAR_RYZ014CATM1_SOCKET_VersionGet()

ssp_err_t SF_CELLULAR_RYZ014CATM1_SOCKET_VersionGet (ssp_version_t *const p_version)

This function gets the version information of the underlying driver.

Implements sf_cellular_socket_api_t::versionGet

Parameters
[out] p_version Driver version information

Return values
SSP_ERR_ASSERTION Argument NULL is passed

SSP_SUCCESS Successfully read version information

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,451 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Interfaces > BSD Socket over RYZ014CATM1 on-chip stack API

◆ socket()

int socket (int domain, int type, int protocol)

This creates socket for communication.

Implements socket Creates socket with given parameters.

Parameters
[in] domain Network Domain

[in] type Socket type

[in] protocol Protocol type

Return values
SF_CELLULAR_RYZ014CATM1_SOCKET_INVA
LID_FD

Socket creation failed

Returns
Otherwise Socket created successfully

5.1.3 Framework Layer
Renesas Synergy Software Package Reference

Modules

ADC periodic Framework

 RTOS-integrated ADC Framework.

Audio Framework

 RTOS-integrated Audio Framework.

DAC Audio Playback Framework

 RTOS-integrated DAC implementation of Audio Playback Interface.

I2S Audio Playback Framework

 RTOS-integrated I2S implementation of Audio Playback Interface.

ADC Audio recording Framework

 RTOS-integrated ADC implementation of Audio Recording Interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,452 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer

I2S Audio recording Framework

 I2S implementation of Audio Recording Interface.

BLOCK_MEDIA_LEVELX_NOR

 RTOS-integrated Block Media framework for LEVELX driver.

BLOCK_MEDIA_QSPI

 RTOS-integrated Block Media framework for QSPI driver.

BLOCK_MEDIA_RAM

 RTOS-integrated Block Media framework for RAM.

BLOCK_MEDIA_SDMMC

 RTOS-integrated Block Media framework for SDMMC driver.

Cellular NSAL Implementation on NetX

 Cellular NetX NSAL interface implementation header file.

Telnet Communication Framework on sf_comms_telnet

 RTOS-integrated Communications Framework NetX telnet server
implementation.

Console Framework

 RTOS-integrated Console Framework.

SSP Crypto Common Framework

 RTOS-integrated Crypto Common Framework Module.

SSP Crypto Cipher Framework

 RTOS-integrated Crypto Cipher Framework Module.

SSP Crypto Hash Framework

 RTOS-integrated Crypto HASH Framework Module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,453 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer

SSP Crypto Key Framework

 RTOS-integrated Crypto Key Framework Module.

SSP Crypto Key Installation Framework

 RTOS-integrated Crypto Key Installation Framework Module.

SSP Crypto Signature Framework

 RTOS-integrated Crypto Signature Framework Module.

SSP Crypto TRNG Framework

 RTOS-integrated Crypto TRNG Framework Module.

FX_IO Framework

 FileX adaptation layer for block media device drivers.

GUIX Synergy Port

 GUIX adaptation layer.

EL_LX_NOR

 LevelX NOR driver implementation.

USB Communication Framework V2

 RTOS-integrated USBX CDC ACM device implementation.

External IRQ Framework

 RTOS-integrated external IRQ Framework.

I2C Framework

 RTOS-integrated I2C Framework.

JPEG Framework

 RTOS-integrated JPEG Framework.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,454 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer

Memory framework

 RTOS-integrated Memory framework for QSPI NOR driver.

Messaging Framework

 RTOS-integrated Messaging Framework implementation.

Power Profiles Framework V2

 Power Profiles Framework.

SPI Framework

 RTOS-integrated SPI Framework.

Thread Monitor Framework

 Framework module providing monitoring of threads.

CTSU V2 Framework

 CTSU V2 Framework.

Touch Panel V2 Framework

 RTOS-integrated touch panel V2 Framework implementation touch
chips.

UART Framework Instance

 RTOS-integrated Communications Framework UART implementation.

NetX Synergy Port

 RTOS-integrated NetX Ethernet driver for the Renesas Synergy
software and Synergy Ethernet IP.

NetX Synergy Port PHY Driver

 Interface between SF_EL_NX Ethernet framework and PHY driver.

BLE Framework on RL78G1D

 RTOS-integrated BLE Framework example. Implementation of
RL78G1D BLE Driver. It implements the following interfaces:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,455 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer

BLE On-Board Profile Framework on RL78G1D

 RTOS-integrated BLE On-Board Profile Framework example.
Implementation of RL78G1D BLE On-Board Profile Driver. It
implements the following interfaces:

Cellular Framework Example using Quectel CATM1

 RTOS-integrated Cellular Framework example. Implementation of
Cellular Quectel CATM1 Driver. It implements the following
interfaces:

BSD Socket over Quectel CATM1 on-chip stack

 RTOS-integrated Cellular Socket Framework example.
Implementation of Quectel CATM1 Socket layer over Quectel CATM1
On-Chip stack It implements the following interfaces:

Cellular Framework Example using RYZ014 CATM1

 RTOS-integrated Cellular Framework example. Implementation of
Cellular RYZ014 CATM1 Driver. It implements the following
interfaces:

BSD Socket over RYZ014CATM1 on-chip stack

 RTOS-integrated Cellular Socket Framework example.
Implementation of RYZ014CATM1 Socket layer over RYZ014CATM1
On-Chip stack It implements the following interfaces:

Touch Panel Framework Example for FT5X06

 RTOS-integrated touch panel chip ft5x06 example. Implementation
of ft5x06 touch chip Driver. It implements the following interfaces:

Touch Panel Framework Example for SX8654

 RTOS-integrated touch panel chip sx8654 example. Implementation
of sx8654 touch chip Driver. It implements the following interfaces:

WiFi Framework on GT202

 RTOS-integrated WiFi Framework example. Implementation of
Atheros WiFi Driver. It implements the following interfaces:

WiFi On Chip Stack on GT202

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,456 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer

 RTOS-integrated WiFi On Chip Stack Framework example.
Implementation of Atheros WiFi Driver. It implements the following
interfaces:

BSD Socket on GT202

 Implementation of GT202 Socket layer over GT202 On-Chip stack.

WiFi Framework on QCA4010

 RTOS-integrated WiFi Framework example. Implementation of Silex
ULPGN WiFi Driver. It implements the following interfaces:

WiFi On Chip Stack on QCA4010

 RTOS-integrated WiFi On Chip Stack Framework example.
Implementation of SILEX WiFi Driver. It implements the following
interfaces:

Socket on QCA4010

 Implementation of QCA4010 Socket layer over QCA4010 On-Chip
stack.

USBX Framework

 RTOS-integrated USBX adaptation framework for Synergy.
Implements USB HOST and DEVICE low level device drivers.

2D Drawing Engine Support Framework

Detailed Description

The framework layer provides RTOS aware drivers for functional use cases.

5.1.3.1 ADC periodic Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated ADC Framework. More...

Data Structures

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,457 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC periodic Framework

struct sf_adc_periodic_instance_ctrl_t

Macros

#define SF_ADC_PERIODIC_CODE_VERSION_MAJOR (2U)

Functions

void sf_adc_periodic_demo_task (ULONG thread_input)

void app_callback (sf_adc_periodic_callback_args_t *p_args)

ssp_err_t SF_ADC_PERIODIC_Open (sf_adc_periodic_ctrl_t *const p_api_ctrl,
sf_adc_periodic_cfg_t const *const p_cfg)

 Configures periodic ADC framework and optionally starts the timer.
More...

ssp_err_t SF_ADC_PERIODIC_Start (sf_adc_periodic_ctrl_t *const p_api_ctrl)

 Gets mutex, starts the periodic ADC scan, and releases mutex.
More...

ssp_err_t SF_ADC_PERIODIC_Stop (sf_adc_periodic_ctrl_t *const p_api_ctrl)

 Gets mutex, stops the periodic ADC scan, and releases mutex.
More...

ssp_err_t SF_ADC_PERIODIC_Close (sf_adc_periodic_ctrl_t *const p_api_ctrl)

 The close function acquires the unit's mutex, closes all lower level
drivers, releases and deletes the mutex. More...

ssp_err_t SF_ADC_PERIODIC_VersionGet (ssp_version_t *const p_version)

 Gets version and stores it in provided pointer p_version. More...

Detailed Description

RTOS-integrated ADC Framework.

Macro Definition Documentation

◆ SF_ADC_PERIODIC_CODE_VERSION_MAJOR

#define SF_ADC_PERIODIC_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,458 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC periodic Framework

Function Documentation

◆ app_callback()

void app_callback (sf_adc_periodic_callback_args_t * p_args)

Callback function that will be called when the requested number of sampling iterations are
complete

If the event indicates that new data is available

Assuming only one channel is configured, data for that channel is available via the buffer index.
Refer to the usage manual for more details.

◆ SF_ADC_PERIODIC_Close()

ssp_err_t SF_ADC_PERIODIC_Close (sf_adc_periodic_ctrl_t *const p_api_ctrl)

The close function acquires the unit's mutex, closes all lower level drivers, releases and deletes the
mutex.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION One or more pointers point to NULL.

SSP_ERR_NOT_OPEN Driver control block not valid. Call
SF_ADC_PERIODIC_Open to configure.

Get mutex since this will access hardware registers

Close the HAL layer modules

Delete RTOS services used

Clear information from control block so other functions know this instance is closed

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,459 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC periodic Framework

◆ sf_adc_periodic_demo_task()

void sf_adc_periodic_demo_task (ULONG thread_input)

Initialize the framework

Check for error condition

Start the scan process

Check for error condition

Stop the scan process

Check for error condition

Restart the scan process

Check for error condition

Stop the scan process

Check for error condition

Close the framework

Check for error condition

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,460 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC periodic Framework

◆ SF_ADC_PERIODIC_Open()

ssp_err_t SF_ADC_PERIODIC_Open (sf_adc_periodic_ctrl_t *const p_api_ctrl, sf_adc_periodic_cfg_t
const *const p_cfg)

Configures periodic ADC framework and optionally starts the timer.

The SF_ADC_PERIODIC_Open function acquires a mutex for the ADC Unit used, then calls the driver
.open function in the p_api parameter. The mutex is released following the driver layer open
function.

Return values
SSP_SUCCESS Initialization was successful.

SSP_ERR_ASSERTION One of the following parameters may be
NULL: p_api_ctrl or p_cfg. See HAL driver for
other possible causes.

SSP_ERR_INVALID_ARGUMENT An invalid argument is used

SSP_ERR_INTERNAL An internal ThreadX error has occurred. This
is typically a failure to create/use a mutex
or to create an internal thread.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

Save driver structure pointer for use in other framework layer functions

Create a mutex

Initialize the HAL layer

If any of the HAL layer initializations failed, then delete the mutex and exit the function with the
error code

Delete the mutex.

Mark control block open so other tasks know it is valid

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,461 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC periodic Framework

◆ SF_ADC_PERIODIC_Start()

ssp_err_t SF_ADC_PERIODIC_Start (sf_adc_periodic_ctrl_t *const p_api_ctrl)

Gets mutex, starts the periodic ADC scan, and releases mutex.

Warning
The driver will enable the ADC to be triggered via timer event; there will be a time delay
from the time this function is called to the time the hardware timer count expires and
triggers the scan.

Return values
SSP_SUCCESS ADC Periodic Scan started successfully.

SSP_ERR_ASSERTION One or more pointers point to NULL.

SSP_ERR_NOT_OPEN Driver control block not valid. Call
SF_ADC_PERIODIC_Open to configure.

SSP_ERR_INTERNAL An internal ThreadX error has occurred. This
is typically a failure to create/use a mutex
or to create an internal thread.

SSP_ERR_IN_USE The module is currently busy performing
another operation

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls:

adc_api_t::scanStart
timer_api_t::start

Get mutex, start timer, then release mutex

Enable the ADC to receive hardware triggers

If the scan was successfully enabled in the ADC HAL,

Start the timer to generate the ADC trigger events

Return the mutex.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,462 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC periodic Framework

◆ SF_ADC_PERIODIC_Stop()

ssp_err_t SF_ADC_PERIODIC_Stop (sf_adc_periodic_ctrl_t *const p_api_ctrl)

Gets mutex, stops the periodic ADC scan, and releases mutex.

Return values
SSP_SUCCESS Periodic ADC scan stopped successfully.

SSP_ERR_ASSERTION One or more pointers point to NULL..

SSP_ERR_NOT_OPEN Driver control block not valid. Call
SF_ADC_PERIODIC_Open to configure.

SSP_ERR_INTERNAL An internal ThreadX error has occurred. This
is typically a failure to create/use a mutex
or to create an internal thread.

SSP_ERR_IN_USE The module is currently busy performing
another operation

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls:

timer_api_t::stop
Get mutex, stop timer, then release mutex

Return the mutex.

◆ SF_ADC_PERIODIC_VersionGet()

ssp_err_t SF_ADC_PERIODIC_VersionGet (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Return values
SSP_SUCCESS Version returned successfully.

SSP_ERR_ASSERTION Parameter p_version was null.

 sf_adc_periodic_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » ADC periodic Framework

#include <sf_adc_periodic.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,463 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC periodic Framework > sf_adc_periodic_instance_ctrl_t Struct Reference

uint32_t open

 Used by driver to check if pointer to control block is valid.

TX_MUTEX mutex

 Mutex used to protect access to lower level driver hardware
registers.

adc_instance_t const * p_lower_lvl_adc

 Pointer to the ADC instance.

timer_instance_t const * p_lower_lvl_timer

 Pointer to the Timer instance.

transfer_instance_t const * p_lower_lvl_transfer

 Pointer to the Transfer instance.

void const *volatile p_src_transfer

 Source pointer for the low level transfer method.

uint16_t * p_data_buffer

 Pointer to the buffer that will store the samples.

uint32_t data_buffer_length

 Length of the data buffer that will store the samples.

uint32_t data_buffer_index

 Index of the data buffer where data is to be written to next.

uint32_t sample_count

 Samples per channel to be buffered before notifying the app.

uint32_t current_sample_count

 Current sample count of the output buffer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,464 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC periodic Framework > sf_adc_periodic_instance_ctrl_t Struct Reference

uint32_t dtc_transfer_length

 Total Length of DTC transfer for requested number of samples.

uint32_t size_multiplier

 Multiplier used to treat p_data_buffer as a 32-bit array.

uint16_t length

 Length of transfer.

bool lower_level

 Used to detect lower level driver.

void(* p_callback)(sf_adc_periodic_callback_args_t *p_args)

 Callback function.

void const * p_context

 Placeholder for user data.

Detailed Description

Channel instance control block. DO NOT INITIALIZE. Initialization occurs when
SF_ADC_PERIODIC_Open is called

The documentation for this struct was generated from the following file:

sf_adc_periodic.h

5.1.3.2 Audio Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Audio Framework. More...

Data Structures

struct sf_audio_playback_common_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,465 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Audio Framework

struct sf_audio_playback_instance_ctrl_t

Macros

#define SF_AUDIO_PLAYBACK_CODE_VERSION_MAJOR (2U)

#define SF_AUDIO_PLAYBACK_STACK_SIZE
 (SF_AUDIO_PLAYBACK_CFG_THREAD_STACK_SIZE)

Functions

ssp_err_t SF_AUDIO_PLAYBACK_Open (sf_audio_playback_ctrl_t *const
p_api_ctrl, sf_audio_playback_cfg_t const *const p_cfg)

ssp_err_t SF_AUDIO_PLAYBACK_Close (sf_audio_playback_ctrl_t *const
p_api_ctrl)

ssp_err_t SF_AUDIO_PLAYBACK_Start (sf_audio_playback_ctrl_t *const
p_api_ctrl, sf_audio_playback_data_t *const p_data, UINT const
timeout)

ssp_err_t SF_AUDIO_PLAYBACK_Pause (sf_audio_playback_ctrl_t *const
p_api_ctrl)

ssp_err_t SF_AUDIO_PLAYBACK_Stop (sf_audio_playback_ctrl_t *const
p_api_ctrl)

ssp_err_t SF_AUDIO_PLAYBACK_Resume (sf_audio_playback_ctrl_t *const
p_api_ctrl)

ssp_err_t SF_AUDIO_PLAYBACK_VolumeSet (sf_audio_playback_ctrl_t *const
p_api_ctrl, uint8_t const volume)

ssp_err_t SF_AUDIO_PLAYBACK_VersionGet (ssp_version_t *const p_version)

Detailed Description

RTOS-integrated Audio Framework.

Summary
This module is a ThreadX-aware Audio Framework. The module implements Audio Framework
Interface.

Name of module used by error logger macro

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,466 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Audio Framework

◆ SF_AUDIO_PLAYBACK_CODE_VERSION_MAJOR

#define SF_AUDIO_PLAYBACK_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

◆ SF_AUDIO_PLAYBACK_STACK_SIZE

#define SF_AUDIO_PLAYBACK_STACK_SIZE (SF_AUDIO_PLAYBACK_CFG_THREAD_STACK_SIZE)

Audio playback internal thread stack size. Varies by application, but rarely requires more than 256
bytes.

Function Documentation

◆ SF_AUDIO_PLAYBACK_Close()

ssp_err_t SF_AUDIO_PLAYBACK_Close (sf_audio_playback_ctrl_t *const p_api_ctrl)

Implements sf_audio_playback_api_t::close.

Return values
SSP_SUCCESS Audio instance successfully closed

SSP_ERR_ASSERTION p_ctrl is NULL

SSP_ERR_NOT_OPEN The stream control block p_ctrl is not
initialized.

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Note
This function is not reentrant.

Mark stream as unused in hardware control block and determine if all streams are closed.

Mark hardware control block as unused so it can be reconfigured.

Close lower level drivers

Delete RTOS services used

Mark control block as unused so it can be reconfigured.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,467 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Audio Framework

◆ SF_AUDIO_PLAYBACK_Open()

ssp_err_t SF_AUDIO_PLAYBACK_Open (sf_audio_playback_ctrl_t *const p_api_ctrl,
sf_audio_playback_cfg_t const *const p_cfg)

Implements sf_audio_playback_api_t::open.

Return values
SSP_SUCCESS Audio hardware successfully configured.

SSP_ERR_ASSERTION A pointer is NULL or a parameter is invalid.

SSP_ERR_OUT_OF_MEMORY The number of streams open at once is
limited to
SF_AUDIO_PLAYBACK_CFG_MAX_STREAMS.
If this number is exceeded, an out of
memory error occurs.

SSP_ERR_INTERNAL An internal ThreadX error has occurred. This
is typically a failure to create/use a mutex.

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Note
This function is not reentrant.

Open hardware if it is not already open.

Enter a critical section before checking the common instance mutex status.

Check if common instance mutex is already created. If not then create the mutex.

Create common_instance_mutex to protect common initialization, including initialization of shared
event flags, audio playback thread and lower level hardware.

If mutex create fails, return error.

Exit critical section

Acquire the mutex before accessing the shared resource. Try again if the mutex was deleted in
close.

Create event flags to notify playback thread when playback of a buffer is complete.

Store stream pointer in common control block.

Release the mutex.

Mark stream opened so it can be used by other API's.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,468 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Audio Framework

◆ SF_AUDIO_PLAYBACK_Pause()

ssp_err_t SF_AUDIO_PLAYBACK_Pause (sf_audio_playback_ctrl_t *const p_api_ctrl)

Implements sf_audio_playback_api_t::pause.

Return values
SSP_SUCCESS Audio playback pause message sent to

audio playback thread for this stream.

SSP_ERR_ASSERTION p_ctrl is NULL

SSP_ERR_NOT_OPEN The stream control block p_ctrl is not
initialized.

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Note
This function is reentrant.

Send message with pause event to audio thread.

◆ SF_AUDIO_PLAYBACK_Resume()

ssp_err_t SF_AUDIO_PLAYBACK_Resume (sf_audio_playback_ctrl_t *const p_api_ctrl)

Implements sf_audio_playback_api_t::resume.

Return values
SSP_SUCCESS Audio playback resume message sent to

audio playback thread for this stream.

SSP_ERR_ASSERTION p_ctrl is NULL

SSP_ERR_NOT_OPEN The stream control block p_ctrl is not
initialized.

Note
This function is reentrant.

Send message with resume event to audio thread.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,469 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Audio Framework

◆ SF_AUDIO_PLAYBACK_Start()

ssp_err_t SF_AUDIO_PLAYBACK_Start (sf_audio_playback_ctrl_t *const p_api_ctrl,
sf_audio_playback_data_t *const p_data, UINT const timeout)

Implements sf_audio_playback_api_t::start.

Return values
SSP_SUCCESS Buffer successfully sent to audio playback

thread

SSP_ERR_ASSERTION p_ctrl is NULL

SSP_ERR_NOT_OPEN The stream control block p_ctrl is not
initialized.

Note
This function is reentrant.

Ensure that audio data is only posted from the current stream owner.

Store new stream owner if stream is unowned.

Set message header to audio start event. Set instance to stream instance.

Send message with audio data to audio thread.

◆ SF_AUDIO_PLAYBACK_Stop()

ssp_err_t SF_AUDIO_PLAYBACK_Stop (sf_audio_playback_ctrl_t *const p_api_ctrl)

Implements sf_audio_playback_api_t::stop.

Return values
SSP_SUCCESS Audio playback stop message sent to audio

playback thread for this stream.

SSP_ERR_ASSERTION p_ctrl is NULL

SSP_ERR_NOT_OPEN The stream control block p_ctrl is not
initialized.

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Note
This function is reentrant.

Send message with stop event to audio thread.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,470 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Audio Framework

◆ SF_AUDIO_PLAYBACK_VersionGet()

ssp_err_t SF_AUDIO_PLAYBACK_VersionGet (ssp_version_t *const p_version)

Implements sf_audio_playback_api_t::versionGet.

Return values
SSP_SUCCESS Version returned successfully.

SSP_ERR_ASSERTION Parameter p_version was null.

◆ SF_AUDIO_PLAYBACK_VolumeSet()

ssp_err_t SF_AUDIO_PLAYBACK_VolumeSet (sf_audio_playback_ctrl_t *const p_api_ctrl, uint8_t
const volume)

Implements sf_audio_playback_api_t::volumeSet.

Return values
SSP_SUCCESS Audio playback software volume level

updated (applies to all streams).

SSP_ERR_ASSERTION p_ctrl is NULL

SSP_ERR_NOT_OPEN The stream control block p_ctrl is not
initialized.

Update volume in control block.

 sf_audio_playback_common_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Audio Framework

#include <sf_audio_playback.h>

Public Member Functions

uint8_t stack
[

SF_AUDIO_PLAYBACK_STACK
_SIZE]

BSP_ALIGN_VARIABLE_V2 (BSP_STACK_ALIGNMENT)

Data Fields

uint32_t open

 Used to determine if driver is initialized.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,471 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Audio Framework > sf_audio_playback_common_instance_ctrl_t Struct Reference

void const * p_next_buffer

 Pointer to next buffer (to be played when the current buffer
completes).

uint32_t next_length

 Length of next buffer (to be played when the current buffer
completes).

sf_message_instance_t
const *

p_message

 Pointer to message control block.

TX_QUEUE * p_queue

 Queue subscribed to SF_MESSAGE_EVENT_CLASS_AUDIO events.

sf_audio_playback_hw_insta
nce_t const *

p_lower_lvl_hw

 Hardware API's used.

sf_audio_playback_instance_
ctrl_t *

p_stream [SF_AUDIO_PLAYBACK_CFG_MAX_STREAMS]

 Stream specific data.

TX_THREAD thread

 Main audio thread.

TX_EVENT_FLAGS_GROUP flags

 Event flags used to end wait in audio thread.

sf_audio_playback_data_typ
e_t

data_type

 Sample format required by the hardware.

uint8_t volume

 Volume from 0 (muted) to 255 (maximum, default on open).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,472 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Audio Framework > sf_audio_playback_common_instance_ctrl_t Struct Reference

uint8_t buffer_index

 Which ping pong buffer to use.

int16_t samples
[2][SF_AUDIO_PLAYBACK_CFG_BUFFER_SIZE_BYTES/sizeof(int16_t)]

volatile bool playing

 State of audio instance (currently playing if true)

TX_MUTEX common_instance_mutex

 Mutex for internal use.

Detailed Description

Audio common instance control block. DO NOT INITIALIZE. Initialization the first time
sf_audio_playback_api_t::open is called. Shared by all streams.

Member Function Documentation

◆ BSP_ALIGN_VARIABLE_V2()

uint8_t stack [SF_AUDIO_PLAYBACK_STACK_SIZE]
sf_audio_playback_common_instance_ctrl_t::BSP_ALIGN_VARIABLE_V2 (BSP_STACK_ALIGNMENT)

Stack for audio thread.

Field Documentation

◆ samples

int16_t sf_audio_playback_common_instance_ctrl_t::samples[2][SF_AUDIO_PLAYBACK_CFG_BUFFER
_SIZE_BYTES/sizeof(int16_t)]

Ping pong buffers, used to store converted data during transfer.

The documentation for this struct was generated from the following file:

sf_audio_playback.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,473 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Audio Framework > sf_audio_playback_instance_ctrl_t Struct Reference

 sf_audio_playback_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Audio Framework

#include <sf_audio_playback.h>

Data Fields

uint32_t open

 Used to determine if driver is initialized.

TX_THREAD * p_owner

void(* p_callback)(sf_message_callback_args_t *p_args)

uint8_t class_instance

 Class instance used to identify the stream to the messaging
framework.

uint32_t samples_remaining

 Internal state of data samples remaining for this stream.

uint32_t samples_total

 Total number of samples to play (independent of sample size like
8/12/16).

uint32_t index

 Internal state of current data index for this stream.

uint32_t end

 Used to track completion of looped playback.

sf_audio_playback_data_t * p_data [2]

 Audio data read from queue.

sf_audio_playback_status_t status

 Status of current stream.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,474 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Audio Framework > sf_audio_playback_instance_ctrl_t Struct Reference

sf_audio_playback_common_
instance_ctrl_t *

p_common_ctrl

Detailed Description

Audio stream instance control block. DO NOT INITIALIZE. Initialization occurs when
sf_audio_playback_api_t::open is called.

Field Documentation

◆ p_callback

void(* sf_audio_playback_instance_ctrl_t::p_callback) (sf_message_callback_args_t *p_args)

Callback called when playback of a buffer passed to sf_audio_playback_api_t::start is complete.

◆ p_common_ctrl

sf_audio_playback_common_instance_ctrl_t* sf_audio_playback_instance_ctrl_t::p_common_ctrl

Pointer to the hardware control block used by this stream.

◆ p_owner

TX_THREAD* sf_audio_playback_instance_ctrl_t::p_owner

Pointer to thread that began the stream at this index. Used to ensure multiple threads don't
interleave data on the same stream.

The documentation for this struct was generated from the following file:

sf_audio_playback.h

5.1.3.3 DAC Audio Playback Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated DAC implementation of Audio Playback Interface. More...

Data Structures

struct sf_audio_playback_hw_dac_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,475 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > DAC Audio Playback Framework

struct sf_audio_playback_hw_dac_cfg_t

Functions

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_Open (sf_audio_playback_hw_ctrl_t
*const p_api_ctrl, sf_audio_playback_hw_cfg_t const *const p_cfg)

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_Start (sf_audio_playback_hw_ctrl_t
*const p_api_ctrl)

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_Stop (sf_audio_playback_hw_ctrl_t
*const p_api_ctrl)

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_Play (sf_audio_playback_hw_ctrl_t
*const p_api_ctrl, int16_t const *const p_buffer, uint32_t length)

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_DataTypeGet
(sf_audio_playback_hw_ctrl_t *const p_ctrl,
sf_audio_playback_data_type_t *const p_data_type)

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_Close (sf_audio_playback_hw_ctrl_t
*const p_api_ctrl)

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_VersionGet (ssp_version_t *const
p_version)

Variables

sf_audio_playback_hw_api_t g_sf_audio_playback_hw_on_sf_audio_playback_hw_dac

Detailed Description

RTOS-integrated DAC implementation of Audio Playback Interface.

The Audio Playback Framework DAC implementation uses a timer to generate events at the sampling
frequency, and uses these events to transfer PCM samples to the DAC.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,476 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > DAC Audio Playback Framework

◆ SF_AUDIO_PLAYBACK_HW_DAC_Close()

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_Close (sf_audio_playback_hw_ctrl_t *const p_api_ctrl)

Close open audio driver.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

timer_api_t::close
dac_api_t::close
transfer_api_t::close

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

Close timer driver.

Close DAC driver.

Close transfer driver.

◆ SF_AUDIO_PLAYBACK_HW_DAC_DataTypeGet()

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_DataTypeGet (sf_audio_playback_hw_ctrl_t *const p_ctrl,
sf_audio_playback_data_type_t *const p_data_type)

Provides the expected data type in the pointer p_data_type.

Return values
SSP_SUCCESS Data type stored in p_data_type.

SSP_ERR_ASSERTION The parameter p_ctrl or p_data_type is
NULL.

Note
This function is reentrant if the lower level driver functions are reentrant.

Store data type. The Synergy DAC supports only 12-bit unsigned data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,477 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > DAC Audio Playback Framework

◆ SF_AUDIO_PLAYBACK_HW_DAC_Open()

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_Open (sf_audio_playback_hw_ctrl_t *const p_api_ctrl,
sf_audio_playback_hw_cfg_t const *const p_cfg)

Open the DAC audio driver, including the DAC HAL driver and helper timer and transfer HAL drivers.

Return values
SSP_SUCCESS Configuration of lower level drivers

completed successfully.

SSP_ERR_ASSERTION Null Pointer.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

dac_api_t::open
timer_api_t::open
transfer_api_t::open
timer_api_t::close
dac_api_t::close

Note
This function is reentrant if the lower level driver functions are reentrant.

Open Timer driver at selected frequency

If DTC is selected, register the audio callback with the timer ISR. DTC calls activation source ISR
when the transfer is complete.

Open DAC module

Open transfer module to transfer from buffer to DAC output register

Configure transfer size of driver depending upon the underlying DAC resolution

Open transfer driver

Store driver data.

Play linear ramp data to get DAC up to half the maximum output.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,478 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > DAC Audio Playback Framework

◆ SF_AUDIO_PLAYBACK_HW_DAC_Play()

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_Play (sf_audio_playback_hw_ctrl_t *const p_api_ctrl,
int16_t const *const p_buffer, uint32_t length)

Play a single audio buffer by input samples to the DAC at the sampling frequency configured by the
timer.

Return values
SSP_SUCCESS Buffer playback began successfully.

SSP_ERR_ASSERTION The parameter p_ctrl or p_buffer is NULL or
length is greater than 0x10000UL.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

transfer_api_t::reset
Note

This function is reentrant if the lower level driver functions are reentrant.

Reset transfer.

◆ SF_AUDIO_PLAYBACK_HW_DAC_Start()

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_Start (sf_audio_playback_hw_ctrl_t *const p_api_ctrl)

Start the DAC and timer HAL drivers.

Return values
SSP_SUCCESS Audio playback hardware started

successfully.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

dac_api_t::start
timer_api_t::start

Note
This function is reentrant if the lower level driver functions are reentrant.

Start DAC.

Start timer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,479 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > DAC Audio Playback Framework

◆ SF_AUDIO_PLAYBACK_HW_DAC_Stop()

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_Stop (sf_audio_playback_hw_ctrl_t *const p_api_ctrl)

Stop the DAC and timer HAL drivers.

Return values
SSP_SUCCESS Audio playback hardware stopped

successfully.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

timer_api_t::stop
dac_api_t::stop

Note
This function is reentrant if the lower level driver functions are reentrant.

Stop timer.

Stop DAC.

◆ SF_AUDIO_PLAYBACK_HW_DAC_VersionGet()

ssp_err_t SF_AUDIO_PLAYBACK_HW_DAC_VersionGet (ssp_version_t *const p_version)

Stores the version of the firmware and API in provided pointer p_version.

Return values
SSP_ERR_ASSERTION The parameter p_version is NULL.

SSP_SUCCESS Module version successfully stored in
p_version.

Note
This function is reentrant.

Variable Documentation

◆ g_sf_audio_playback_hw_on_sf_audio_playback_hw_dac

sf_audio_playback_hw_api_t g_sf_audio_playback_hw_on_sf_audio_playback_hw_dac

Function pointers for DAC implementation of audio playback API.

 sf_audio_playback_hw_dac_instance_ctrl_t Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,480 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > DAC Audio Playback Framework > sf_audio_playback_hw_dac_instance_ctrl_t Struct Reference

Renesas Synergy Software Package Reference » Framework Layer » DAC Audio Playback Framework

#include <sf_audio_playback_hw_dac.h>

Data Fields

void(* p_callback)(sf_audio_playback_hw_callback_args_t *p_args)

void * p_context

dac_instance_t const * p_lower_lvl_dac

 DAC API used to access DAC hardware.

timer_instance_t const * p_lower_lvl_timer

 Timer API used to generate sampling frequency.

transfer_instance_t const * p_lower_lvl_transfer

 Transfer API used to transfer data each sampling frequency.

volatile bool is_dac_ramped_up

 Whether the DAC is ramped up to half of maximum output.

Detailed Description

Hardware dependent control block for DAC audio driver.

Field Documentation

◆ p_callback

void(* sf_audio_playback_hw_dac_instance_ctrl_t::p_callback)
(sf_audio_playback_hw_callback_args_t *p_args)

Callback called when play is complete.

◆ p_context

void* sf_audio_playback_hw_dac_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in sf_audio_playback_hw_callback_args_t.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,481 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > DAC Audio Playback Framework > sf_audio_playback_hw_dac_instance_ctrl_t Struct Reference

The documentation for this struct was generated from the following file:

sf_audio_playback_hw_dac.h

 sf_audio_playback_hw_dac_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » DAC Audio Playback Framework

#include <sf_audio_playback_hw_dac.h>

Data Fields

dac_instance_t const * p_lower_lvl_dac

 DAC API used to access DAC hardware.

timer_instance_t const * p_lower_lvl_timer

 Timer API used to generate sampling frequency.

transfer_instance_t const * p_lower_lvl_transfer

 Transfer API used to transfer data each sampling frequency.

Detailed Description

Hardware dependent configuration for DAC audio driver.

The documentation for this struct was generated from the following file:

sf_audio_playback_hw_dac.h

5.1.3.4 I2S Audio Playback Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated I2S implementation of Audio Playback Interface. More...

Data Structures

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,482 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio Playback Framework

struct sf_audio_playback_hw_i2s_instance_ctrl_t

struct sf_audio_playback_hw_i2s_cfg_t

Functions

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_Open (sf_audio_playback_hw_ctrl_t
*const p_api_ctrl, sf_audio_playback_hw_cfg_t const *const p_cfg)

 Open the I2S audio driver, including the I2S HAL driver and helper
timer and transfer HAL drivers. More...

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_Start (sf_audio_playback_hw_ctrl_t
*const p_ctrl)

 Start the I2S and timer HAL drivers. More...

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_Stop (sf_audio_playback_hw_ctrl_t
*const p_api_ctrl)

 Stop the I2S and timer HAL drivers. More...

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_Play (sf_audio_playback_hw_ctrl_t
*const p_api_ctrl, int16_t const *const p_buffer, uint32_t length)

 Play a single audio buffer by input samples to the I2S at the
sampling frequency configured by the timer. More...

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_DataTypeGet
(sf_audio_playback_hw_ctrl_t *const p_ctrl,
sf_audio_playback_data_type_t *const p_data_type)

 Provides the expected data type in the pointer p_data_type. More...

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_Close (sf_audio_playback_hw_ctrl_t
*const p_api_ctrl)

 Close open audio driver. More...

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_VersionGet (ssp_version_t *const
p_version)

 Stores the version of the firmware and API in provided pointer
p_version. More...

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,483 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio Playback Framework

RTOS-integrated I2S implementation of Audio Playback Interface.

The Audio Playback Framework I2S implementation uses the I2S interface for audio playback.

Name of module used by error logger macro

Function Documentation

◆ SF_AUDIO_PLAYBACK_HW_I2S_Close()

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_Close (sf_audio_playback_hw_ctrl_t *const p_api_ctrl)

Close open audio driver.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This function calls:

i2s_api_t::close
Note

This function is reentrant for different channels. It is not reentrant for the same channel.

Close I2S driver.

◆ SF_AUDIO_PLAYBACK_HW_I2S_DataTypeGet()

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_DataTypeGet (sf_audio_playback_hw_ctrl_t *const p_ctrl,
sf_audio_playback_data_type_t *const p_data_type)

Provides the expected data type in the pointer p_data_type.

Return values
SSP_SUCCESS Data type stored in p_data_type.

SSP_ERR_ASSERTION The parameter p_ctrl or p_data_type is
NULL.

Note
This function is reentrant if the lower level driver functions are reentrant.

Store data type. The audio framework supports only 16-bit signed data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,484 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio Playback Framework

◆ SF_AUDIO_PLAYBACK_HW_I2S_Open()

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_Open (sf_audio_playback_hw_ctrl_t *const p_api_ctrl,
sf_audio_playback_hw_cfg_t const *const p_cfg)

Open the I2S audio driver, including the I2S HAL driver and helper timer and transfer HAL drivers.

Return values
SSP_SUCCESS Configuration of lower level drivers

completed successfully.

SSP_ERR_ASSERTION One of the following parameter is null: p_ctrl
or p_cfg or p_cfg_extend->p_lower_lvl_i2s or
p_cfg_extend->p_lower_lvl_i2s->p_api.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This function calls:

i2s_api_t::open
Note

This function is reentrant if the lower level driver functions are reentrant.

Open I2S module

Store driver data.

◆ SF_AUDIO_PLAYBACK_HW_I2S_Play()

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_Play (sf_audio_playback_hw_ctrl_t *const p_api_ctrl,
int16_t const *const p_buffer, uint32_t length)

Play a single audio buffer by input samples to the I2S at the sampling frequency configured by the
timer.

Return values
SSP_SUCCESS Buffer playback began successfully.

SSP_ERR_ASSERTION The parameter p_ctrl or p_buffer is NULL or
length is less than 0x10000U.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This function calls:

i2s_api_t::write
Note

This function is reentrant if the lower level driver functions are reentrant.

Reset transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,485 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio Playback Framework

◆ SF_AUDIO_PLAYBACK_HW_I2S_Start()

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_Start (sf_audio_playback_hw_ctrl_t *const p_ctrl)

Start the I2S and timer HAL drivers.

Return values
SSP_SUCCESS Audio playback hardware started

successfully.

Note
This function is reentrant if the lower level driver functions are reentrant.

This API is not used - I2S is started when write is called from SF_AUDIO_PLAYBACK_HW_I2S_Play.

◆ SF_AUDIO_PLAYBACK_HW_I2S_Stop()

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_Stop (sf_audio_playback_hw_ctrl_t *const p_api_ctrl)

Stop the I2S and timer HAL drivers.

Return values
SSP_SUCCESS Audio playback hardware stopped

successfully.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This function calls:

i2s_api_t::stop
Note

This function is reentrant if the lower level driver functions are reentrant.

Stop I2S.

◆ SF_AUDIO_PLAYBACK_HW_I2S_VersionGet()

ssp_err_t SF_AUDIO_PLAYBACK_HW_I2S_VersionGet (ssp_version_t *const p_version)

Stores the version of the firmware and API in provided pointer p_version.

Return values
SSP_ERR_ASSERTION The parameter p_version is NULL.

SSP_SUCCESS Module version successfully stored in
p_version.

Note
This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,486 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio Playback Framework

 sf_audio_playback_hw_i2s_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » I2S Audio Playback Framework

#include <sf_audio_playback_hw_i2s.h>

Data Fields

void(* p_callback)(sf_audio_playback_hw_callback_args_t *p_args)

void * p_context

i2s_instance_t const * p_lower_lvl_i2s

 I2S API used to access I2S hardware.

Detailed Description

Hardware dependent control block for I2S audio driver.

Field Documentation

◆ p_callback

void(* sf_audio_playback_hw_i2s_instance_ctrl_t::p_callback)
(sf_audio_playback_hw_callback_args_t *p_args)

Callback called when play is complete.

◆ p_context

void* sf_audio_playback_hw_i2s_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in sf_audio_playback_hw_callback_args_t.

The documentation for this struct was generated from the following file:

sf_audio_playback_hw_i2s.h

 sf_audio_playback_hw_i2s_cfg_t Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,487 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio Playback Framework > sf_audio_playback_hw_i2s_cfg_t Struct Reference

Renesas Synergy Software Package Reference » Framework Layer » I2S Audio Playback Framework

#include <sf_audio_playback_hw_i2s.h>

Data Fields

i2s_instance_t const * p_lower_lvl_i2s

 I2S API used to access I2S hardware.

Detailed Description

Hardware dependent configuration for I2S audio driver.

The documentation for this struct was generated from the following file:

sf_audio_playback_hw_i2s.h

5.1.3.5 ADC Audio recording Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated ADC implementation of Audio Recording Interface. More...

Data Structures

struct sf_audio_record_adc_instance_ctrl_t

 Control block for audio recording Initialization occurs when
sf_audio_record_api_t::open is called. More...

Macros

#define SF_AUDIO_RECORD_CODE_VERSION_MAJOR (2U)

Functions

ssp_err_t SF_AUDIO_RECORD_ADC_Open (sf_audio_record_ctrl_t *const
p_api_ctrl, sf_audio_record_cfg_t const *const p_cfg)

 Configure the ADC with user configurations. More...

ssp_err_t SF_AUDIO_RECORD_ADC_Close (sf_audio_record_ctrl_t *const
p_api_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,488 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC Audio recording Framework

 Call the ADC periodic framework Close. More...

ssp_err_t SF_AUDIO_RECORD_ADC_Start (sf_audio_record_ctrl_t *const
p_api_ctrl)

 Call the ADC periodic framework Start. More...

ssp_err_t SF_AUDIO_RECORD_ADC_Stop (sf_audio_record_ctrl_t *const
p_api_ctrl)

 Call the ADC periodic framework Stop. More...

ssp_err_t SF_AUDIO_RECORD_ADC_InfoGet (sf_audio_record_ctrl_t *const
p_api_ctrl, sf_audio_record_info_t *p_info)

 Provide information about the channel supported by audio recording
framework(MONO) More...

ssp_err_t SF_AUDIO_RECORD_ADC_VersionGet (ssp_version_t *const
p_version)

 Gets version and stores it in provided pointer p_version. More...

Detailed Description

RTOS-integrated ADC implementation of Audio Recording Interface.

The Audio Recording Framework implementation uses the ADC periodic interface for audio
recording.

Macro Definition Documentation

◆ SF_AUDIO_RECORD_CODE_VERSION_MAJOR

#define SF_AUDIO_RECORD_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,489 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC Audio recording Framework

◆ SF_AUDIO_RECORD_ADC_Close()

ssp_err_t SF_AUDIO_RECORD_ADC_Close (sf_audio_record_ctrl_t *const p_api_ctrl)

Call the ADC periodic framework Close.

Implements

sf_audio_record_api_t::close.
Return values

SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN Control block p_ctrl is not initialized. Call
SF_AUDIO_RECORD_ADC_Open to configure.

Returns
See Common Error Codes or sf_adc_periodic for other possible return codes or causes. This
function calls

sf_adc_periodic_api_t::close
Call the underlying ADC periodic close

◆ SF_AUDIO_RECORD_ADC_InfoGet()

ssp_err_t SF_AUDIO_RECORD_ADC_InfoGet (sf_audio_record_ctrl_t *const p_api_ctrl,
sf_audio_record_info_t * p_info)

Provide information about the channel supported by audio recording framework(MONO)

Implements

sf_audio_record_api_t::infoGet.
Return values

SSP_SUCCESS InfoGet returns successfully.

SSP_ERR_ASSERTION p_ctrl or p_info is null.

SSP_ERR_NOT_OPEN Control block p_ctrl is not initialized. Call
SF_AUDIO_RECORD_ADC_Open to configure.

Returns
See Common Error Codes or sf_adc_periodic for other possible return codes or causes.

Verify the parameters are valid

Set the channel support as MONO

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,490 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC Audio recording Framework

◆ SF_AUDIO_RECORD_ADC_Open()

ssp_err_t SF_AUDIO_RECORD_ADC_Open (sf_audio_record_ctrl_t *const p_api_ctrl,
sf_audio_record_cfg_t const *const p_cfg)

Configure the ADC with user configurations.

The SF_AUDIO_RECORD_ADC_Open will initialize the configurations for the underlying ADC periodic
framework.

Implements

sf_audio_record_api_t::open.
Return values

SSP_SUCCESS Initialization was successful.

SSP_ERR_ASSERTION The parameter p_ctrl or p_cfg is NULL. Or
any one of the following p_cfg parameter is
NULL/zero. p_cfg->p_capture_data_buffer,
p_cfg->sample_count,
p_cfg->capture_data_buffer_size,
p_cfg->p_callback,
p_cfg->sampling_rate_hz. Or resolution or
time period is not matching. for other
possible causes.

SSP_ERR_IN_USE The channel specified has already been
opened.

Returns
See Common Error Codes or sf_adc_periodic for other possible return codes or causes. This
function calls

sf_adc_periodic_api_t::open
Note

This function is reentrant for any unit.

Initialize the ADC periodic framework

Initialize the configuration parameters for ADC periodic configuration structure

Configure the ADC resolution depending on the data width in cfg

Call the underlying ADC periodic open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,491 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC Audio recording Framework

◆ SF_AUDIO_RECORD_ADC_Start()

ssp_err_t SF_AUDIO_RECORD_ADC_Start (sf_audio_record_ctrl_t *const p_api_ctrl)

Call the ADC periodic framework Start.

Implements

sf_audio_record_api_t::start.
Return values

SSP_SUCCESS ADC Periodic Scan started successfully.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN Control block p_ctrl is not initialized. Call
SF_AUDIO_RECORD_ADC_Open to configure.

Returns
See Common Error Codes or sf_adc_periodic for other possible return codes or causes. This
function calls

sf_adc_periodic_api_t::start
Call the underlying ADC periodic start

◆ SF_AUDIO_RECORD_ADC_Stop()

ssp_err_t SF_AUDIO_RECORD_ADC_Stop (sf_audio_record_ctrl_t *const p_api_ctrl)

Call the ADC periodic framework Stop.

Implements

sf_audio_record_api_t::stop.
Return values

SSP_SUCCESS Periodic ADC scan stopped successfully.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN Control block p_ctrl is not initialized. Call
SF_AUDIO_RECORD_ADC_Open to configure.

Returns
See Common Error Codes or sf_adc_periodic for other possible return codes or causes. This
function calls

sf_adc_periodic_api_t::stop
Call the underlying ADC periodic start

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,492 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC Audio recording Framework

◆ SF_AUDIO_RECORD_ADC_VersionGet()

ssp_err_t SF_AUDIO_RECORD_ADC_VersionGet (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Implements

sf_audio_record_api_t::versionGet.
Return values

SSP_SUCCESS VersionGet returned successfully.

SSP_ERR_ASSERTION Parameter p_version was null.

 sf_audio_record_adc_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » ADC Audio recording Framework

Control block for audio recording Initialization occurs when sf_audio_record_api_t::open is called.
More...

#include <sf_audio_record_adc.h>

Data Fields

uint32_t open

TX_MUTEX mutex

void * p_capture_data_buffer

uint32_t sample_count

void(* p_callback)(sf_audio_record_callback_args_t *p_args)

 Callback function.

void const * p_context

 Placeholder for user data.

sf_adc_periodic_instance_t
const *

p_lower_lvl_adc_periodic

 Lower level ADC periodic instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,493 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > ADC Audio recording Framework > sf_audio_record_adc_instance_ctrl_t Struct Reference

Detailed Description

Control block for audio recording Initialization occurs when sf_audio_record_api_t::open is called.

Field Documentation

◆ mutex

TX_MUTEX sf_audio_record_adc_instance_ctrl_t::mutex

Mutex used to protect access to lower level driver hardware registers

◆ open

uint32_t sf_audio_record_adc_instance_ctrl_t::open

Used by driver to check if pointer to control block is valid

◆ p_capture_data_buffer

void* sf_audio_record_adc_instance_ctrl_t::p_capture_data_buffer

Pointer to the buffer that will store the samples

◆ sample_count

uint32_t sf_audio_record_adc_instance_ctrl_t::sample_count

Samples per channel to be buffered before notifying the app

The documentation for this struct was generated from the following file:

sf_audio_record_adc.h

5.1.3.6 I2S Audio recording Framework
Renesas Synergy Software Package Reference » Framework Layer

I2S implementation of Audio Recording Interface. More...

Data Structures

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,494 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio recording Framework

struct sf_audio_record_i2s_instance_ctrl_t

Macros

#define SF_AUDIO_RECORD_I2S_CODE_VERSION_MAJOR (2U)

#define SF_AUDIO_RECORD_I2S_OPEN (0x49325352)

Functions

ssp_err_t SF_AUDIO_RECORD_I2S_Open (sf_audio_record_ctrl_t *const
p_api_ctrl, sf_audio_record_cfg_t const *const p_cfg)

 Configures the Audio record I2S framework and I2S HAL driver The
SF_AUDIO_RECORD_I2S_Open function creates a mutex for the I2S
Unit used, then calls the driver open function. The mutex is deleted
following the driver layer open function fails. More...

ssp_err_t SF_AUDIO_RECORD_I2S_Start (sf_audio_record_ctrl_t *const
p_api_ctrl)

 Gets mutex, starts recording data into the buffer. More...

ssp_err_t SF_AUDIO_RECORD_I2S_Stop (sf_audio_record_ctrl_t *const
p_api_ctrl)

 Stops the audio recording and releases mutex. More...

ssp_err_t SF_AUDIO_RECORD_I2S_InfoGet (sf_audio_record_ctrl_t *const
p_api_ctrl, sf_audio_record_info_t *p_info)

 Provide information about the channel supported by audio recording
framework(stereo) More...

ssp_err_t SF_AUDIO_RECORD_I2S_Close (sf_audio_record_ctrl_t *const
p_api_ctrl)

 Closes I2S driver, releases and deletes the mutex. More...

ssp_err_t SF_AUDIO_RECORD_I2S_VersionGet (ssp_version_t *const p_version)

 Gets version and stores it in provided pointer p_version. More...

Detailed Description

I2S implementation of Audio Recording Interface.

The Audio Recording Framework implementation uses the I2S interface for audio recording.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,495 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio recording Framework

Macro Definition Documentation

◆ SF_AUDIO_RECORD_I2S_CODE_VERSION_MAJOR

#define SF_AUDIO_RECORD_I2S_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

◆ SF_AUDIO_RECORD_I2S_OPEN

#define SF_AUDIO_RECORD_I2S_OPEN (0x49325352)

Macro definitions "I2SR" in ASCII

Function Documentation

◆ SF_AUDIO_RECORD_I2S_Close()

ssp_err_t SF_AUDIO_RECORD_I2S_Close (sf_audio_record_ctrl_t *const p_api_ctrl)

Closes I2S driver, releases and deletes the mutex.

Implements

sf_audio_record_api_t::close.
Return values

SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN Control block p_ctrl is not initialized.

Returns
See Common Error Codes and lower level driver function for other possible return codes or
causes. This function calls

i2s_api_t::close
Call the underlying I2S close

Post the mutex

If all the HAL layers closed successfully, then delete the mutex and mark module as un-initialized

Clear information from control block so other functions know this instance is closed

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,496 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio recording Framework

◆ SF_AUDIO_RECORD_I2S_InfoGet()

ssp_err_t SF_AUDIO_RECORD_I2S_InfoGet (sf_audio_record_ctrl_t *const p_api_ctrl,
sf_audio_record_info_t * p_info)

Provide information about the channel supported by audio recording framework(stereo)

Implements

sf_audio_record_api_t::infoGet.
Return values

SSP_SUCCESS InfoGet returns successfully.

SSP_ERR_ASSERTION p_ctrl or p_info is null.

SSP_ERR_NOT_OPEN Control block p_ctrl is not initialized.

Returns
See Common Error Codes for other possible return codes or causes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,497 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio recording Framework

◆ SF_AUDIO_RECORD_I2S_Open()

ssp_err_t SF_AUDIO_RECORD_I2S_Open (sf_audio_record_ctrl_t *const p_api_ctrl,
sf_audio_record_cfg_t const *const p_cfg)

Configures the Audio record I2S framework and I2S HAL driver The SF_AUDIO_RECORD_I2S_Open
function creates a mutex for the I2S Unit used, then calls the driver open function. The mutex is
deleted following the driver layer open function fails.

Implements

sf_audio_record_api_t::open.
Return values

SSP_SUCCESS Configuration of lower level drivers
completed successfully.

SSP_ERR_ASSERTION p_ctrl or p_cfg parameter is null:

SSP_ERR_INTERNAL An internal ThreadX error has occurred. This
is typically a failure to create/use a mutex.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This function calls:

i2s_api_t::open
Open I2S module

Create a mutex to protect access to the control structure and the lower level hardware.

Initialize the configuration parameters

If any of the HAL layer initializations failed, then delete the mutex and exit the function with the
error code

Delete the mutex

Mark control block open so other tasks know it is valid

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,498 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio recording Framework

◆ SF_AUDIO_RECORD_I2S_Start()

ssp_err_t SF_AUDIO_RECORD_I2S_Start (sf_audio_record_ctrl_t *const p_api_ctrl)

Gets mutex, starts recording data into the buffer.

Implements

sf_audio_record_api_t::start.
Return values

SSP_SUCCESS I2S record started successfully.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN Driver control block not valid.

SSP_ERR_IN_USE The module is currently busy performing
another operation

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This function calls:

i2s_api_t::read
Get mutex, start i2s

Call the underlying I2S driver read

If any of the HAL layer initializations failed, then delete the mutex and exit the function with the
error code

Return the mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,499 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio recording Framework

◆ SF_AUDIO_RECORD_I2S_Stop()

ssp_err_t SF_AUDIO_RECORD_I2S_Stop (sf_audio_record_ctrl_t *const p_api_ctrl)

Stops the audio recording and releases mutex.

Implements

sf_audio_record_api_t::stop.
Return values

SSP_SUCCESS I2S Record stopped successfully.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

SSP_ERR_NOT_OPEN Control block p_ctrl is not initialized.

SSP_ERR_INTERNAL An internal ThreadX error has occurred. This
is typically a failure to create/use a mutex.

Returns
See Common Error Codes for other possible return codes or causes. This function calls:
i2s_api_t::stop

Return the mutex

If there was a mutex error, return it

◆ SF_AUDIO_RECORD_I2S_VersionGet()

ssp_err_t SF_AUDIO_RECORD_I2S_VersionGet (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Implements

sf_audio_record_api_t::versionGet.
Return values

SSP_SUCCESS VersionGet returned successfully.

SSP_ERR_ASSERTION Parameter p_version was null.

Copy the version information.

 sf_audio_record_i2s_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » I2S Audio recording Framework

#include <sf_audio_record_i2s.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,500 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio recording Framework > sf_audio_record_i2s_instance_ctrl_t Struct Reference

Data Fields

uint32_t open

 Used by driver to check if pointer to control.

TX_MUTEX mutex

 Mutex used to protect access to lower level driver hardware
registers.

void * p_capture_data_buffer

 Pointer to the buffer record buffer */.

uint32_t capture_data_size

 capture data type

uint32_t data_size

 Number of bytes captured for each iteration.

uint32_t buffer_size

 size of the current record buffer */

uint32_t current_buffer_index

 Index into current buffer */.

void(* p_callback)(sf_audio_record_callback_args_t *p_args)

 Callback function.

void const * p_context

 Placeholder for user data.

i2s_instance_t const * p_lower_lvl_i2s

 Lower level I2S instance.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,501 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2S Audio recording Framework > sf_audio_record_i2s_instance_ctrl_t Struct Reference

Control block for audio recording Initialization occurs when sf_audio_record_api_t::open is called

The documentation for this struct was generated from the following file:

sf_audio_record_i2s.h

5.1.3.7 BLOCK_MEDIA_LEVELX_NOR
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Block Media framework for LEVELX driver. More...

Data Structures

struct sf_block_media_on_lx_nor_cfg_t

struct sf_block_media_lx_nor_instance_ctrl_t

Macros

#define SF_BLOCK_MEDIA_LX_NOR_ERROR_RETURN(a,
err) SSP_ERROR_RETURN((a), (err), &g_module_name[0],
&g_block_media_lx_nor_version)

#define SF_BLOCK_MEDIA_LX_NOR_OPEN (0x424D4C4FU)

Functions

ssp_err_t SF_BLOCK_MEDIA_LX_NOR_Open (sf_block_media_ctrl_t *const p_ctrl,
sf_block_media_cfg_t const *const p_cfg)

 Open device for read/write and control. More...

ssp_err_t SF_BLOCK_MEDIA_LX_NOR_Read (sf_block_media_ctrl_t *const p_ctrl,
uint8_t *const p_dest, uint32_t const start_sector, uint32_t const
sector_count)

 Read data from flash using LevelX. More...

ssp_err_t SF_BLOCK_MEDIA_LX_NOR_Write (sf_block_media_ctrl_t *const p_ctrl,
uint8_t const *const p_src, uint32_t const start_sector, uint32_t const
sector_count)

 Write data to flash using LevelX. More...

ssp_err_t SF_BLOCK_MEDIA_LX_NOR_Control (sf_block_media_ctrl_t *const

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,502 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_LEVELX_NOR

p_ctrl, ssp_command_t const command, void *p_data)

 Send control commands to Block Media LevelX NOR driver. More...

ssp_err_t SF_BLOCK_MEDIA_LX_NOR_Close (sf_block_media_ctrl_t *const p_ctrl)

 Close open Block Media LevelX NOR driver. More...

ssp_err_t SF_BLOCK_MEDIA_LX_NOR_VersionGet (ssp_version_t *const
p_version)

 Get version of Block Media LevelX driver. More...

Variables

const sf_block_media_api_t g_sf_block_media_on_sf_block_media_lx_nor

Detailed Description

RTOS-integrated Block Media framework for LEVELX driver.

Macro Definition Documentation

◆ SF_BLOCK_MEDIA_LX_NOR_ERROR_RETURN

#define SF_BLOCK_MEDIA_LX_NOR_ERROR_RETURN (a, err) SSP_ERROR_RETURN((a), (err),
&g_module_name[0], &g_block_media_lx_nor_version)

Macro for error logger.

◆ SF_BLOCK_MEDIA_LX_NOR_OPEN

#define SF_BLOCK_MEDIA_LX_NOR_OPEN (0x424D4C4FU)

"BMLO" in ASCII, used to identify block media LevelX handle

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,503 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_LEVELX_NOR

◆ SF_BLOCK_MEDIA_LX_NOR_Close()

ssp_err_t SF_BLOCK_MEDIA_LX_NOR_Close (sf_block_media_ctrl_t *const p_ctrl)

Close open Block Media LevelX NOR driver.

Close an open Block Media LevelX NOR driver.

Return values
SSP_SUCCESS Successfully closed.

SSP_ERR_ASSERTION p_ctrl or p_nor_flash is NULL.

SSP_ERR_NOT_OPEN The block media is not open.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls:

lx_nor_flash_close
SF_EL_LX_NOR_Close

Validate the parameters

Check whether the instance is in open state

Close the LevelX NOR flash driver.

Close underlying NOR driver, if available

Mark control block close so subsequent calls know the device is close.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,504 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_LEVELX_NOR

◆ SF_BLOCK_MEDIA_LX_NOR_Control()

ssp_err_t SF_BLOCK_MEDIA_LX_NOR_Control (sf_block_media_ctrl_t *const p_ctrl, ssp_command_t
const command, void * p_data)

Send control commands to Block Media LevelX NOR driver.

Return values
SSP_SUCCESS Command executed successfully.

SSP_ERR_ASSERTION p_ctrl or p_data is Null.

SSP_ERR_NOT_OPEN The block media is not open.

SSP_ERR_UNSUPPORTED This module doesn't support requested
command.

SSP_ERR_SECTOR_RELEASE_FAILED Sector release command failed.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls:

lx_nor_flash_sector_release
Validate the parameters

Check whether the instance is in open state

Get the sector count

LevelX divides each NOR flash block into 512-byte logical sectors

It's not write protected

LevelX supports sector release

Release NOR flash sector.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,505 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_LEVELX_NOR

◆ SF_BLOCK_MEDIA_LX_NOR_Open()

ssp_err_t SF_BLOCK_MEDIA_LX_NOR_Open (sf_block_media_ctrl_t *const p_ctrl,
sf_block_media_cfg_t const *const p_cfg)

Open device for read/write and control.

Open LevelX flash device for read/write and control. This function initializes the LevelX driver and
hardware the first time it is called out of reset. The underlying flash needs to either be erased or
already initialized with LevelX.

Return values
SSP_SUCCESS LevelX flash is available and is now open for

read, write, and control access.

SSP_ERR_ASSERTION p_ctrl, p_cfg or an input pointer is NULL.

SSP_ERR_MEDIA_OPEN_FAILED LevelX NOR or the underlying flash failed to
open. The underlying flash needs to either
be erased or already initialized with LevelX.

SSP_ERR_ALREADY_OPEN The block media LevelX NOR instance has
already been opened. No configurations
were changed. Call the associated Close
function or use associated Control
commands to reconfigure the instance.

Returns
See Common Error Codes or lower LevelX drivers for other possible return codes. This
function calls:

lx_nor_flash_open
Validate the parameters

Check whether instance is already open

Update instance control block

Open underlying LevelX

Mark control block open so subsequent calls know the device is open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,506 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_LEVELX_NOR

◆ SF_BLOCK_MEDIA_LX_NOR_Read()

ssp_err_t SF_BLOCK_MEDIA_LX_NOR_Read (sf_block_media_ctrl_t *const p_ctrl, uint8_t *const
p_dest, uint32_t const start_sector, uint32_t const sector_count)

Read data from flash using LevelX.

Return values
SSP_SUCCESS Data read successfully.

SSP_ERR_ASSERTION p_ctrl or p_dest is NULL.

SSP_ERR_NOT_OPEN The block media is not open.

SSP_ERR_READ_FAILED Data read failed.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls:

lx_nor_flash_sector_read
Validate the parameters

Check whether the instance is in open state

Loop to read sectors from flash.

Read a sector from NOR flash.

◆ SF_BLOCK_MEDIA_LX_NOR_VersionGet()

ssp_err_t SF_BLOCK_MEDIA_LX_NOR_VersionGet (ssp_version_t *const p_version)

Get version of Block Media LevelX driver.

Return the version of the firmware and API.

Return values
SSP_ERR_ASSERTION p_version is Pointer.

SSP_SUCCESS version read successfully.

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Note
This function is reentrant.

Validate the parameters

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,507 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_LEVELX_NOR

◆ SF_BLOCK_MEDIA_LX_NOR_Write()

ssp_err_t SF_BLOCK_MEDIA_LX_NOR_Write (sf_block_media_ctrl_t *const p_ctrl, uint8_t const
*const p_src, uint32_t const start_sector, uint32_t const sector_count)

Write data to flash using LevelX.

Return values
SSP_SUCCESS Write finished successfully.

SSP_ERR_ASSERTION p_ctrl or p_src is NULL.

SSP_ERR_NOT_OPEN The block media is not open.

SSP_ERR_WRITE_FAILED Data write failed.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls:

lx_nor_flash_sector_write
Validate the parameters

Check whether the instance is in open state

Loop to write sectors into flash.

Write a sector into NOR flash.

Variable Documentation

◆ g_sf_block_media_on_sf_block_media_lx_nor

const sf_block_media_api_t g_sf_block_media_on_sf_block_media_lx_nor

=

{

 .open = SF_BLOCK_MEDIA_LX_NOR_Open,

 .read = SF_BLOCK_MEDIA_LX_NOR_Read,

 .write = SF_BLOCK_MEDIA_LX_NOR_Write,

 .ioctl = SF_BLOCK_MEDIA_LX_NOR_Control,

 .close = SF_BLOCK_MEDIA_LX_NOR_Close,

 .versionGet = SF_BLOCK_MEDIA_LX_NOR_VersionGet

}

Block Media LevelX function pointers

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,508 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_LEVELX_NOR > sf_block_media_on_lx_nor_cfg_t Struct Reference

 sf_block_media_on_lx_nor_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » BLOCK_MEDIA_LEVELX_NOR

#include <sf_block_media_lx_nor.h>

Data Fields

UINT(* nor_driver_initialize)(LX_NOR_FLASH *)

 Pointer to the initialization function.

LX_NOR_FLASH * p_nor_flash

 NOR Flash instance.

CHAR * p_nor_flash_name

 NOR Flash instance name.

ssp_err_t(* close)()

 Pointer to underlying driver close.

Detailed Description

LevelX NOR block media config structure

The documentation for this struct was generated from the following file:

sf_block_media_lx_nor.h

 sf_block_media_lx_nor_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » BLOCK_MEDIA_LEVELX_NOR

#include <sf_block_media_lx_nor.h>

Data Fields

LX_NOR_FLASH * p_nor_flash

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,509 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_LEVELX_NOR > sf_block_media_lx_nor_instance_ctrl_t Struct Reference

 NOR Flash instance.

CHAR * p_nor_flash_name

 NOR Flash instance name.

uint32_t block_size

 Block size in bytes.

uint32_t open

 Used to determine if framework is initialized.

ssp_err_t(* close)()

 Pointer to underlying driver close.

Detailed Description

LevelX NOR block media instance control block.

The documentation for this struct was generated from the following file:

sf_block_media_lx_nor.h

5.1.3.8 BLOCK_MEDIA_QSPI
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Block Media framework for QSPI driver. More...

Data Structures

struct sf_block_media_qspi_instance_ctrl_t

Macros

#define SF_QSPI_OPEN (0x51535049U)

#define SF_BLOCK_MEDIA_QSPI_ERROR_RETURN(a,
err) SSP_ERROR_RETURN((a), (err), &g_module_name[0],
&g_block_media_qspi_version)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,510 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_QSPI

Functions

ssp_err_t SF_BLOCK_MEDIA_QSPI_Open (sf_block_media_ctrl_t *const
p_api_ctrl, sf_block_media_cfg_t const *const p_cfg)

 Open Block Media QSPI flash device for read/write and control.
Parameter checking and Acquires mutex, then handles driver
initialization at the HAL QSPI layer and marking the open flag in
control block. More...

ssp_err_t SF_BLOCK_MEDIA_QSPI_Read (sf_block_media_ctrl_t *const
p_api_ctrl, uint8_t *const p_dest, uint32_t const start_block, uint32_t
const block_count)

 Read requested data from Block Media QSPI Flash through QSPI
channel. More...

ssp_err_t SF_BLOCK_MEDIA_QSPI_Write (sf_block_media_ctrl_t *const
p_api_ctrl, uint8_t const *const p_src, uint32_t const start_block,
uint32_t const block_count)

 Program requested data content to the Block Media QSPI flash
memory. More...

ssp_err_t SF_BLOCK_MEDIA_QSPI_Control (sf_block_media_ctrl_t *const
p_api_ctrl, ssp_command_t const command, void *p_data)

 Send control commands to and receive status of flash. More...

ssp_err_t SF_BLOCK_MEDIA_QSPI_Close (sf_block_media_ctrl_t *const
p_api_ctrl)

 Close functionality will delete the resources which is initialized in
open call. More...

ssp_err_t SF_BLOCK_MEDIA_QSPI_VersionGet (ssp_version_t *const p_version)

 Get the firmware and API version of Block Media QSPI Framework.
More...

Variables

const sf_block_media_api_t g_sf_block_media_on_sf_block_media_qspi

Detailed Description

RTOS-integrated Block Media framework for QSPI driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,511 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_QSPI

Macro Definition Documentation

◆ SF_BLOCK_MEDIA_QSPI_ERROR_RETURN

#define SF_BLOCK_MEDIA_QSPI_ERROR_RETURN (a, err) SSP_ERROR_RETURN((a), (err),
&g_module_name[0], &g_block_media_qspi_version)

Macro for error logger.

◆ SF_QSPI_OPEN

#define SF_QSPI_OPEN (0x51535049U)

"QSPI" in ASCII, used to identify general SF_BLOCK_MEDIA_QSPI control block

Function Documentation

◆ SF_BLOCK_MEDIA_QSPI_Close()

ssp_err_t SF_BLOCK_MEDIA_QSPI_Close (sf_block_media_ctrl_t *const p_api_ctrl)

Close functionality will delete the resources which is initialized in open call.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION One of the following parameters may be
null: p_api_ctrl.

SSP_ERR_NOT_OPEN Block media QSPI Framework module is not
yet initialized.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

qspi_api_t::close
Delete RTOS services allocated during the open call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,512 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_QSPI

◆ SF_BLOCK_MEDIA_QSPI_Control()

ssp_err_t SF_BLOCK_MEDIA_QSPI_Control (sf_block_media_ctrl_t *const p_api_ctrl, ssp_command_t
const command, void * p_data)

Send control commands to and receive status of flash.

Return values
SSP_SUCCESS Command executed successfully.

SSP_ERR_ASSERTION One of the following parameters may be
null: p_api_ctrl.

SSP_ERR_NOT_OPEN Block media QSPI Framework module is not
yet initialized.

SSP_ERR_UNSUPPORTED Command not support.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

qspi_api_t::infoGet
Get the information of Flash

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,513 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_QSPI

◆ SF_BLOCK_MEDIA_QSPI_Open()

ssp_err_t SF_BLOCK_MEDIA_QSPI_Open (sf_block_media_ctrl_t *const p_api_ctrl,
sf_block_media_cfg_t const *const p_cfg)

Open Block Media QSPI flash device for read/write and control. Parameter checking and Acquires
mutex, then handles driver initialization at the HAL QSPI layer and marking the open flag in control
block.

Name of module used by error logger macro

Return values
SSP_SUCCESS Block media for QSPI framework is

successfully opened.

SSP_ERR_ASSERTION One of the following parameters may be
null: p_api_ctrl, p_cfg or configuration for
qspi.

SSP_ERR_IN_USE The channel specified has already been
opened. or the mutex may be unavailable
for the the device. See HAL driver for other
possible causes.

SSP_ERR_INTERNAL An internal ThreadX error has occurred.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

qspi_api_t::open
 Create a mutex to protect access to the control structure and the lower level hardware.

Calling low level driver

On success populate the control structure

Selecting smallest block erasable by underlying QSPI flash

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,514 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_QSPI

◆ SF_BLOCK_MEDIA_QSPI_Read()

ssp_err_t SF_BLOCK_MEDIA_QSPI_Read (sf_block_media_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const start_block, uint32_t const block_count)

Read requested data from Block Media QSPI Flash through QSPI channel.

Return values
SSP_SUCCESS QSPI data read successfully.

SSP_ERR_ASSERTION p_api_ctrl or p_dest is NULL. Or block_count
is zero.

SSP_ERR_NOT_OPEN Block media QSPI Framework module is not
yet initialized.

SSP_ERR_IN_USE The channel specified has already been
opened. or the mutex may be unavailable
for the the device. See HAL driver for other
possible causes.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

qspi_api_t::read
Obtain mutex before making HAL-level driver call.

Release mutex

◆ SF_BLOCK_MEDIA_QSPI_VersionGet()

ssp_err_t SF_BLOCK_MEDIA_QSPI_VersionGet (ssp_version_t *const p_version)

Get the firmware and API version of Block Media QSPI Framework.

Return values
SSP_SUCCESS Function executed successfully.

SSP_ERR_ASSERTION Null Pointer.

Note
This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,515 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_QSPI

◆ SF_BLOCK_MEDIA_QSPI_Write()

ssp_err_t SF_BLOCK_MEDIA_QSPI_Write (sf_block_media_ctrl_t *const p_api_ctrl, uint8_t const
*const p_src, uint32_t const start_block, uint32_t const block_count)

Program requested data content to the Block Media QSPI flash memory.

Return values
SSP_SUCCESS Flash write finished successfully.

SSP_ERR_ASSERTION p_api_ctrl or p_src is NULL. Or block_count is
zero.

SSP_ERR_NOT_OPEN Block media QSPI Framework module is not
yet initialized.

SSP_ERR_IN_USE The channel specified has already been
opened. or the mutex may be unavailable
for the the device. See HAL driver for other
possible causes.

SSP_ERR_UNSUPPORTED Total number of programmable bytes is
greater than total flash capacity

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

qspi_api_t::pageProgram
Obtain mutex before making HAL-level driver call.

Get the information of Flash

Calculate the address of flash

Check if total number of bytes programmable into flash is greater than total flash capacity

Calculate the number of iteration required to complete write operation

Write data into the block media QSPI flash

Release mutex

Variable Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,516 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_QSPI

◆ g_sf_block_media_on_sf_block_media_qspi

const sf_block_media_api_t g_sf_block_media_on_sf_block_media_qspi

=

{

 .open = SF_BLOCK_MEDIA_QSPI_Open,

 .read = SF_BLOCK_MEDIA_QSPI_Read,

 .write = SF_BLOCK_MEDIA_QSPI_Write,

 .ioctl = SF_BLOCK_MEDIA_QSPI_Control,

 .close = SF_BLOCK_MEDIA_QSPI_Close,

 .versionGet = SF_BLOCK_MEDIA_QSPI_VersionGet

}

Block Media QSPI function pointers

 sf_block_media_qspi_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » BLOCK_MEDIA_QSPI

#include <sf_block_media_qspi.h>

Data Fields

uint32_t open

 Used to determine if framework is initialized.

uint32_t block_size

 Block size in bytes.

qspi_instance_t * p_lower_lvl_qspi

 Pointer to QSPI instance structure.

TX_MUTEX mutex

 Mutex used to protect access to lower level driver hardware
registers.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,517 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_QSPI > sf_block_media_qspi_instance_ctrl_t Struct Reference

Detailed Description

QSPI block media instance control block.

The documentation for this struct was generated from the following file:

sf_block_media_qspi.h

5.1.3.9 BLOCK_MEDIA_RAM
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Block Media framework for RAM. More...

Data Structures

struct sf_block_media_ram_instance_ctrl_t

Functions

ssp_err_t SF_BLOCK_MEDIA_RAM_Open (sf_block_media_ctrl_t *const
p_api_ctrl, sf_block_media_cfg_t const *const p_cfg)

 Open device for read/write and control. More...

ssp_err_t SF_BLOCK_MEDIA_RAM_Read (sf_block_media_ctrl_t *const
p_api_ctrl, uint8_t *const p_dest, uint32_t const start_block, uint32_t
const block_count)

 Read data from RAM buffer. More...

ssp_err_t SF_BLOCK_MEDIA_RAM_Write (sf_block_media_ctrl_t *const
p_api_ctrl, uint8_t const *const p_src, uint32_t const start_block,
uint32_t const block_count)

 Write data to RAM buffer. More...

ssp_err_t SF_BLOCK_MEDIA_RAM_Control (sf_block_media_ctrl_t *const
p_api_ctrl, ssp_command_t const command, void *p_data)

 Send control commands to and receive status of RAM buffer. More...

ssp_err_t SF_BLOCK_MEDIA_RAM_Close (sf_block_media_ctrl_t *const
p_api_ctrl)

 Close the Framework. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,518 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_RAM

ssp_err_t SF_BLOCK_MEDIA_RAM_VersionGet (ssp_version_t *const p_version)

 Get version of Block Media RAM framework. More...

Detailed Description

RTOS-integrated Block Media framework for RAM.

Function Documentation

◆ SF_BLOCK_MEDIA_RAM_Close()

ssp_err_t SF_BLOCK_MEDIA_RAM_Close (sf_block_media_ctrl_t *const p_api_ctrl)

Close the Framework.

Return values
SSP_SUCCESS RAM buffer is available and is now open for

read, write, and control access.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Framework is not opened.

Check if Framework is NOT open

Mark Framework as close

◆ SF_BLOCK_MEDIA_RAM_Control()

ssp_err_t SF_BLOCK_MEDIA_RAM_Control (sf_block_media_ctrl_t *const p_api_ctrl, ssp_command_t
const command, void * p_data)

Send control commands to and receive status of RAM buffer.

Return values
SSP_SUCCESS Command executed successfully.

SSP_ERR_ASSERTION p_api_ctrl or p_data is NULL.

SSP_ERR_NOT_OPEN Framework is not opened.

SSP_ERR_UNSUPPORTED Command not supported.

Check if Framework is NOT open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,519 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_RAM

◆ SF_BLOCK_MEDIA_RAM_Open()

ssp_err_t SF_BLOCK_MEDIA_RAM_Open (sf_block_media_ctrl_t *const p_api_ctrl,
sf_block_media_cfg_t const *const p_cfg)

Open device for read/write and control.

Return values
SSP_SUCCESS RAM buffer is available and is now open for

read, write, and control access.

SSP_ERR_ASSERTION p_api_ctrl, p_cfg, p_cfg->p_extend, or
p_block_media_cfg->p_ram_buffer is NULL.

SSP_ERR_IN_USE Framework is already open by someone else

Check if Framework is already in USE

Copy the block size and RAM buffer memory address to control structure for further operation

Mark device as a open

◆ SF_BLOCK_MEDIA_RAM_Read()

ssp_err_t SF_BLOCK_MEDIA_RAM_Read (sf_block_media_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const start_block, uint32_t const block_count)

Read data from RAM buffer.

Return values
SSP_SUCCESS Data read successfully.

SSP_ERR_ASSERTION p_api_ctrl, p_dest or internal control block
element is NULL.

SSP_ERR_NOT_OPEN The Framework is not opened.

SSP_ERR_INVALID_BLOCKS Invalid block passed to API

Check if Framework is NOT open

Copy the content of p_ram_buffer into destination

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,520 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_RAM

◆ SF_BLOCK_MEDIA_RAM_VersionGet()

ssp_err_t SF_BLOCK_MEDIA_RAM_VersionGet (ssp_version_t *const p_version)

Get version of Block Media RAM framework.

Return the version of the firmware and API.

Return values
SSP_ERR_ASSERTION p_version is NULL.

SSP_SUCCESS version read successfully.

Note
This function is reentrant.

◆ SF_BLOCK_MEDIA_RAM_Write()

ssp_err_t SF_BLOCK_MEDIA_RAM_Write (sf_block_media_ctrl_t *const p_api_ctrl, uint8_t const
*const p_src, uint32_t const start_block, uint32_t const block_count)

Write data to RAM buffer.

Return values
SSP_SUCCESS Data write successfully.

SSP_ERR_ASSERTION p_api_ctrl, p_src or internal control block
element is NULL.

SSP_ERR_NOT_OPEN Framework is not opened.

SSP_ERR_INVALID_BLOCKS Invalid block passed to API

Check if Framework is NOT open

Copy the content of source into p_ram_buffer

 sf_block_media_ram_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » BLOCK_MEDIA_RAM

#include <sf_block_media_ram.h>

Data Fields

uint8_t * p_ram_buffer

 pointer to RAM buffer address

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,521 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_RAM > sf_block_media_ram_instance_ctrl_t Struct Reference

uint32_t block_size

 Block size in bytes.

uint32_t open

 Used to determine if framework is initialized.

uint32_t ram_buffer_size

 Size of RAM buffer.

Detailed Description

RAM block media instance control block.

The documentation for this struct was generated from the following file:

sf_block_media_ram.h

5.1.3.10 BLOCK_MEDIA_SDMMC
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Block Media framework for SDMMC driver. More...

Data Structures

struct sf_block_media_sdmmc_instance_ctrl_t

Functions

ssp_err_t SF_Block_Media_SDMMC_Open (sf_block_media_ctrl_t *const
p_api_ctrl, sf_block_media_cfg_t const *const p_cfg)

 Open device for read/write and control. More...

ssp_err_t SF_Block_Media_SDMMC_Read (sf_block_media_ctrl_t *const
p_api_ctrl, uint8_t *const p_dest, uint32_t const start_block, uint32_t
const block_count)

 Read data from SD/MMC. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,522 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_SDMMC

ssp_err_t SF_Block_Media_SDMMC_Write (sf_block_media_ctrl_t *const
p_api_ctrl, uint8_t const *const p_src, uint32_t const start_block,
uint32_t const block_count)

 Write data to SDMMC channel. More...

ssp_err_t SF_Block_Media_SDMMC_Control (sf_block_media_ctrl_t *const
p_api_ctrl, ssp_command_t const command, void *p_data)

 Send control commands to and receive status of SD/MMC port.
More...

ssp_err_t SF_Block_Media_SDMMC_Close (sf_block_media_ctrl_t *const
p_api_ctrl)

 Close open device port. More...

ssp_err_t SF_Block_Media_SDMMC_VersionGet (ssp_version_t *const p_version)

 Get version of Block Media SD/MMC driver. More...

Detailed Description

RTOS-integrated Block Media framework for SDMMC driver.

Function Documentation

◆ SF_Block_Media_SDMMC_Close()

ssp_err_t SF_Block_Media_SDMMC_Close (sf_block_media_ctrl_t *const p_api_ctrl)

Close open device port.

Close an open SD/MMC device port.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION p_ctrl or p_sdmmc is NULL.

SSP_ERR_NOT_OPEN The channel is not opened.

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

Mark control block as unused so it can be reconfigured.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,523 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_SDMMC

◆ SF_Block_Media_SDMMC_Control()

ssp_err_t SF_Block_Media_SDMMC_Control (sf_block_media_ctrl_t *const p_api_ctrl,
ssp_command_t const command, void * p_data)

Send control commands to and receive status of SD/MMC port.

Send control commands to the SD/MMC port and receive the status of the SD/MMC port.

Return values
SSP_SUCCESS Command executed successfully.

SSP_ERR_ASSERTION p_ctrl or p_sdmmc or p_data is Null.

SSP_ERR_NOT_OPEN The channel is not opened.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls:

sdmmc_api_t::control
Note

This function is reentrant for different channels. It is not reentrant for the same channel.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,524 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_SDMMC

◆ SF_Block_Media_SDMMC_Open()

ssp_err_t SF_Block_Media_SDMMC_Open (sf_block_media_ctrl_t *const p_api_ctrl,
sf_block_media_cfg_t const *const p_cfg)

Open device for read/write and control.

Open an SD or MMC device port for read/write and control. This function initializes the SDMMC
driver and hardware the first time it is called out of reset.

Return values
SSP_SUCCESS Port is available and is now open for read,

write, and control access.

SSP_ERR_ASSERTION p_ctrl, p_cfg, p_block_media_cfg or
p_sdmmc is NULL.

SSP_ERR_INTERNAL OS service call fails.

SSP_ERR_IN_USE The channel specified has already been
opened. No configurations were changed.
Call the associated Close function or use
associated Control commands to
reconfigure the channel.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls:

sdmmc_api_t::open
Note

This function is reentrant for different channels. It is not reentrant for the same channel.

Create SDMMC event flag and put it into context

Mark the stream as open by initializing "BMSO" in its ASCII equivalent.

Cleanup before logging the error

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,525 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_SDMMC

◆ SF_Block_Media_SDMMC_Read()

ssp_err_t SF_Block_Media_SDMMC_Read (sf_block_media_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const start_block, uint32_t const block_count)

Read data from SD/MMC.

Read data from an SD or MMC device port.

Return values
SSP_SUCCESS Data read successfully.

SSP_ERR_ASSERTION p_ctrl, p_sdmmc or p_dest is NULL.

SSP_ERR_NOT_OPEN The channel is not opened.

SSP_ERR_INTERNAL OS service call fails.

SSP_ERR_READ_FAILED Data read failed.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls:

sdmmc_api_t::read
Note

This function is reentrant for different channels. It is not reentrant for the same channel.

Wait until read operation is completed. Event is signaled in event flag object.

◆ SF_Block_Media_SDMMC_VersionGet()

ssp_err_t SF_Block_Media_SDMMC_VersionGet (ssp_version_t *const p_version)

Get version of Block Media SD/MMC driver.

Return the version of the firmware and API.

Return values
SSP_ERR_ASSERTION p_version is Pointer.

SSP_SUCCESS version read successfully.

Note
This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,526 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_SDMMC

◆ SF_Block_Media_SDMMC_Write()

ssp_err_t SF_Block_Media_SDMMC_Write (sf_block_media_ctrl_t *const p_api_ctrl, uint8_t const
*const p_src, uint32_t const start_block, uint32_t const block_count)

Write data to SDMMC channel.

Return values
SSP_SUCCESS Card write finished successfully.

SSP_ERR_ASSERTION p_ctrl, p_sdmmc or p_src is NULL.

SSP_ERR_NOT_OPEN The channel is not opened.

SSP_ERR_INTERNAL OS service call fails.

SSP_ERR_WRITE_FAILED Data write failed.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls:

sdmmc_api_t::write
Note

This function is reentrant for different channels.

Wait until write operation is completed. Event is signaled in event flag object.

 sf_block_media_sdmmc_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » BLOCK_MEDIA_SDMMC

#include <sf_block_media_sdmmc.h>

Data Fields

uint32_t block_size

 Block size in bytes.

sdmmc_instance_t * p_lower_lvl_sdmmc

 Pointer to SDMMC instance structure.

TX_EVENT_FLAGS_GROUP eventflag

 Pointer to the event flag object for SDMMC data transfer.

uint32_t open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,527 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLOCK_MEDIA_SDMMC > sf_block_media_sdmmc_instance_ctrl_t Struct Reference

 Used to determine if framework is initialized.

Detailed Description

SDMMC block media instance control block.

The documentation for this struct was generated from the following file:

sf_block_media_sdmmc.h

5.1.3.11 Cellular NSAL Implementation on NetX
Renesas Synergy Software Package Reference » Framework Layer

Cellular NetX NSAL interface implementation header file. More...

Macros

#define SF_CELR_NSALNX_CODE_VERSION_MAJOR (2U)

#define SF_CELR_NSALNX_CODE_VERSION_MINOR (0U)

Functions

void sf_cellular_nsal_netx_driver (NX_IP_DRIVER *driver_req_ptr,
sf_cellular_instance_t const *p_cellular_instance,
sf_cellular_nsal_cfg_t *p_cellular_nsal_cfg)

 NetX IP Driver entry function. More...

void sf_cellular_nsal_ppp_send_byte (UCHAR byte, sf_cellular_instance_t
const *p_celr_instance)

 PPP Send Byte Callback function call from PPP Stack. More...

void sf_cellular_nsal_invalid_packet_handler (NX_PACKET *p_packet_ptr,
sf_cellular_instance_t const *p_celr_instance)

 Cellular framework nsal invalid callback handler. More...

Detailed Description

Cellular NetX NSAL interface implementation header file.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,528 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Cellular NSAL Implementation on NetX

Macro Definition Documentation

◆ SF_CELR_NSALNX_CODE_VERSION_MAJOR

#define SF_CELR_NSALNX_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file Major Version of code that implements
the API defined in this file

◆ SF_CELR_NSALNX_CODE_VERSION_MINOR

#define SF_CELR_NSALNX_CODE_VERSION_MINOR (0U)

Minor Version of code that implements the API defined in this file

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,529 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Cellular NSAL Implementation on NetX

◆ sf_cellular_nsal_invalid_packet_handler()

void sf_cellular_nsal_invalid_packet_handler (NX_PACKET * p_packet_ptr, sf_cellular_instance_t
const * p_celr_instance)

Cellular framework nsal invalid callback handler.

Parameters
[in] p_packet_ptr Pointer to invalid PPP Packet

received

[in] p_celr_instance Pointer to cellular framework
instance

Cellular framework nsal invalid callback handler.

Parameters
[in] p_packet_ptr Pointer to invalid PPP Packet

received

[in] p_celr_instance Pointer to cellular framework
instance

variable to get Memory compare result

Check whether packet contains "NO CARRIER" string, we are ignoring first and last 2 bytes of
packet which are Carriage Return and Line Feed.

check whether no carrier string present

Disconnect Network

Soft reset the module

Provision the Module using callback

Reestablish data connection

Restart PPP

Release the packet

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,530 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Cellular NSAL Implementation on NetX

◆ sf_cellular_nsal_netx_driver()

void sf_cellular_nsal_netx_driver (NX_IP_DRIVER * driver_req_ptr, sf_cellular_instance_t const *
p_cellular_instance, sf_cellular_nsal_cfg_t * p_cellular_nsal_cfg)

NetX IP Driver entry function.

Parameters
[in] driver_req_ptr Pointer to NetX IP Driver

[in] p_cellular_instance Pointer to cellular framework
instance

[in] p_cellular_nsal_cfg Pointer to cellular nsal
configuration structure

NetX IP Driver entry function.

Parameters
[in] driver_req_ptr Pointer to NetX IP Driver

[in] p_cellular_instance Pointer to cellular framework
instance

[in] p_cellular_nsal_cfg Pointer to cellular nsal
configuration structure

Interface link is UP. Send the packet

◆ sf_cellular_nsal_ppp_send_byte()

void sf_cellular_nsal_ppp_send_byte (UCHAR byte, sf_cellular_instance_t const * p_celr_instance)

PPP Send Byte Callback function call from PPP Stack.

NSAL PPP Send bytes callback API

Parameters
[in] byte Byte to send

[in] p_celr_instance Pointer to cellular framework
instance

[in] byte Byte to send

[in] p_celr_instance Pointer to cellular framework
instance

Transmit byte

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,531 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Telnet Communication Framework on sf_comms_telnet

5.1.3.12 Telnet Communication Framework on sf_comms_telnet
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Communications Framework NetX telnet server implementation. More...

Data Structures

struct sf_comms_telnet_instance_ctrl_t

struct sf_comms_telnet_cfg_t

Macros

#define SF_COMMS_TELNET_OPEN (0x434D544EU)

Functions

ssp_err_t SF_COMMS_TELNET_Open (sf_comms_ctrl_t *const p_api_ctrl,
sf_comms_cfg_t const *const p_cfg)

 Initializes the Telnet server and other operating system resources.
More...

ssp_err_t SF_COMMS_TELNET_Close (sf_comms_ctrl_t *const p_api_ctrl)

 Disconnect Telnet server and clean up resources. More...

ssp_err_t SF_COMMS_TELNET_Read (sf_comms_ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes, UINT const timeout)

 Read data from the Telnet comms connection. More...

ssp_err_t SF_COMMS_TELNET_Write (sf_comms_ctrl_t *const p_api_ctrl, uint8_t
const *const p_src, uint32_t const bytes, UINT const timeout)

 Write data to the Telnet comms connection. More...

ssp_err_t SF_COMMS_TELNET_Lock (sf_comms_ctrl_t *const p_api_ctrl,
sf_comms_lock_t lock_type, UINT timeout)

 Acquire lock type for the Telnet comms instance. More...

ssp_err_t SF_COMMS_TELNET_Unlock (sf_comms_ctrl_t *const p_api_ctrl,
sf_comms_lock_t lock_type)

 Release lock type for the Telnet comms instance. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,532 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Telnet Communication Framework on sf_comms_telnet

ssp_err_t SF_COMMS_TELNET_VersionGet (ssp_version_t *const p_version)

 Get driver version. More...

Detailed Description

RTOS-integrated Communications Framework NetX telnet server implementation.

Macro Definition Documentation

◆ SF_COMMS_TELNET_OPEN

#define SF_COMMS_TELNET_OPEN (0x434D544EU)

"CMTN" in ASCII, used to identify general timer handle

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,533 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Telnet Communication Framework on sf_comms_telnet

◆ SF_COMMS_TELNET_Close()

ssp_err_t SF_COMMS_TELNET_Close (sf_comms_ctrl_t *const p_api_ctrl)

Disconnect Telnet server and clean up resources.

Return values
SSP_SUCCESS Connection successfully closed

SSP_ERR_ASSERTION Parameter check failed for one of the
following:

Pointer p_api_ctrl is NULL
p_ctrl->p_telnet_server is NULL
Telnet server field
nx_telnet_server_id indicate this
instance is not created already thus
invlaid instance of Telnet server.

SSP_ERR_NOT_OPEN Connection is not open

Note
- For Telnet server specific API details, refer Telnet server user manual.
- For NetX specific API details, refer NetX user manual.
- For ThreadX specific API details, refer ThreadX user manual.
- This function is reentrant.

Check if connection is open

Update connection record.

Return connection not open if no record found

Stop and release Telnet server and ThreadX resources for this connection

Mark this connection uninitialized.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,534 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Telnet Communication Framework on sf_comms_telnet

◆ SF_COMMS_TELNET_Lock()

ssp_err_t SF_COMMS_TELNET_Lock (sf_comms_ctrl_t *const p_api_ctrl, sf_comms_lock_t
lock_type, UINT timeout)

Acquire lock type for the Telnet comms instance.

Return values
SSP_SUCCESS Acquired requested lock on given

connection.

SSP_ERR_ASSERTION Pointer p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Connection is not open.

SSP_ERR_TIMEOUT Acquiring requested lock timed-out.

Note
- For Telnet server specific API details, refer Telnet server user manual.
- For NetX specific API details, refer NetX user manual.
- For ThreadX specific API details, refer ThreadX user manual.

Check if connection is open

Get both lock if requested

Else get the lock type requested

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,535 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Telnet Communication Framework on sf_comms_telnet

◆ SF_COMMS_TELNET_Open()

ssp_err_t SF_COMMS_TELNET_Open (sf_comms_ctrl_t *const p_api_ctrl, sf_comms_cfg_t const
*const p_cfg)

Initializes the Telnet server and other operating system resources.

Return values
SSP_SUCCESS comms Telnet instance opened successfully.

SSP_ERR_IN_USE comms Telnet maximum connection limit
reached.

SSP_ERR_ALREADY_OPEN comms Telnet instance already open.

SSP_ERR_ASSERTION Parameter check failed for one of the
following:

Pointer p_api_ctrl is NULL.
Pointer p_cfg is NULL
Pointer p_cfg->p_extend is NULL
Pointer
p_cfg_extend->p_telnet_server is
NULL
Pointer p_cfg_extend->p_ip is NULL
Pointer p_cfg_extend->p_stack is
NULL
Pointer p_cfg_extend->stack_size is
invalid i.e. zero

SSP_ERR_INTERNAL An internal ThreadX Or NetX error has
occurred. This is typically a failure to
create/use thread mutex or failure
create/enable an internal thread/feature for
NetX service.

Note
- Do not modify sf_comms_ctrl_t structure returned by this API as it is for module's internal purpose.
- For Telnet server specific API details, refer Telnet server user manual.
- For NetX specific API details, refer NetX user manual.
- For ThreadX specific API details, refer ThreadX user manual.
- This function is reentrant.

Initialize and start Telnet server and ThreadX resources for this connection

Mark this connection initialized.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,536 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Telnet Communication Framework on sf_comms_telnet

◆ SF_COMMS_TELNET_Read()

ssp_err_t SF_COMMS_TELNET_Read (sf_comms_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const bytes, UINT const timeout)

Read data from the Telnet comms connection.

Return values
SSP_SUCCESS Data reception ends successfully.

SSP_ERR_ASSERTION One of the following invalid parameter
passed.

Pointer p_api_ctrl is NULL
Pointer p_dest is NULL
Invalid read length i.e. bytes value is
zero

SSP_ERR_NOT_OPEN Connection is not open

SSP_ERR_TIMEOUT One of the following operation timed out.

'Event flags get' timed out
'Receive mutex get' timed out
'Queue receive' timed out

SSP_ERR_INTERNAL An internal ThreadX Or NetX error has
occurred. This is typically a failure to
create/use thread mutex or failure
create/enable an internal thread/feature for
NetX service.

Note
- For Telnet server specific API details, refer Telnet server user manual.
- For NetX specific API details, refer NetX user manual.
- For ThreadX specific API details, refer ThreadX user manual.
- This API is reentrant.

Check if connection is open

Check and wait for client to be connected with timeout.

Get read lock.

Get data from read queue.

Release read lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,537 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Telnet Communication Framework on sf_comms_telnet

◆ SF_COMMS_TELNET_Unlock()

ssp_err_t SF_COMMS_TELNET_Unlock (sf_comms_ctrl_t *const p_api_ctrl, sf_comms_lock_t
lock_type)

Release lock type for the Telnet comms instance.

Return values
SSP_SUCCESS Released requested lock on given

connection..

SSP_ERR_ASSERTION Pointer p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Connection is not open.

Note
- For Telnet server specific API details, refer Telnet server user manual.
- For NetX specific API details, refer NetX user manual.
- For ThreadX specific API details, refer ThreadX user manual.

Check if connection is open

Release Lock(s) on this connection.

◆ SF_COMMS_TELNET_VersionGet()

ssp_err_t SF_COMMS_TELNET_VersionGet (ssp_version_t *const p_version)

Get driver version.

Return values
SSP_SUCCESS Operation successful

SSP_ERR_ASSERTION p_version pointer is NULL

Note
- This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,538 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Telnet Communication Framework on sf_comms_telnet

◆ SF_COMMS_TELNET_Write()

ssp_err_t SF_COMMS_TELNET_Write (sf_comms_ctrl_t *const p_api_ctrl, uint8_t const *const p_src,
uint32_t const bytes, UINT const timeout)

Write data to the Telnet comms connection.

Return values
SSP_SUCCESS Data transmission finished successfully.

SSP_ERR_ASSERTION One of the following invalid parameter
passed.

Pointer p_api_ctrl is NULL.
Pointer p_src is NULL.
Invalid write length i.e. bytes value
is zero.

SSP_ERR_NOT_OPEN Connection is not open

SSP_ERR_TIMEOUT One of the following operation timed out.

'Event flags get' timed out
'Transmit mutex get' timed out

SSP_ERR_OUT_OF_MEMORY Couldn't allocate pool memory for Telnet
server

SSP_ERR_INTERNAL An internal ThreadX Or NetX error has
occurred. This is typically a failure to
create/use thread mutex or failure
create/enable an internal thread/feature for
NetX service.

Note
- For Telnet server specific API details, refer Telnet server user manual.
- For NetX specific API details, refer NetX user manual.
- For ThreadX specific API details, refer ThreadX user manual.
- This function is reentrant.

Check if connection is open

Check and wait for client to be connected with timeout.

Get write lock.

Send data to the connected client.

Release write lock.

 sf_comms_telnet_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Telnet Communication
Framework on sf_comms_telnet

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,539 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Telnet Communication Framework on sf_comms_telnet > sf_comms_telnet_instance_ctrl_t Struct Reference

#include <sf_comms_telnet.h>

Data Fields

TX_EVENT_FLAGS_GROUP available

 Flag to tell if this connection is available or not.

TX_QUEUE queue

 Queue of received bytes.

void(* p_disconnect_callback)(sf_comms_callback_args_t *p_args)

 User callback for Client disconnection.

Detailed Description

NetX Telnet server communications driver configuration

The documentation for this struct was generated from the following file:

sf_comms_telnet.h

 sf_comms_telnet_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Telnet Communication
Framework on sf_comms_telnet

#include <sf_comms_telnet.h>

Data Fields

void(* p_disconnect_callback)(sf_comms_callback_args_t *p_args)

 User callback for Client disconnection.

Detailed Description

NetX Telnet server device communications driver configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,540 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Telnet Communication Framework on sf_comms_telnet > sf_comms_telnet_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

sf_comms_telnet.h

5.1.3.13 Console Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Console Framework. More...

Data Structures

struct sf_console_instance_ctrl_t

Macros

#define SF_CONSOLE_CODE_VERSION_MAJOR (2U)

Functions

ssp_err_t SF_CONSOLE_Open (sf_console_ctrl_t *const p_api_ctrl,
sf_console_cfg_t const *const p_cfg)

 Initialize console framework and open low-level communication
driver. More...

ssp_err_t SF_CONSOLE_Close (sf_console_ctrl_t *const p_api_ctrl)

 Close the communications driver. More...

ssp_err_t SF_CONSOLE_Parse (sf_console_ctrl_t *const p_api_ctrl,
sf_console_menu_t const *const p_menu, uint8_t const *const
p_input, uint32_t const bytes)

 Looks for input string in menu, and calls callback function if found.
More...

ssp_err_t SF_CONSOLE_Prompt (sf_console_ctrl_t *const p_api_ctrl,
sf_console_menu_t const *const p_menu, UINT const timeout)

 Prompt the user to input a command. More...

ssp_err_t SF_CONSOLE_Read (sf_console_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes, uint32_t const timeout)

 Reads data into the destination byte by byte and echos input to the
console. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,541 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Console Framework

ssp_err_t SF_CONSOLE_Write (sf_console_ctrl_t *const p_api_ctrl, uint8_t const
*const p_src, uint32_t const timeout)

 Write a NULL terminated string to the console. More...

ssp_err_t SF_CONSOLE_ArgumentFind (uint8_t const *const p_arg, uint8_t
const *const p_str, int32_t *const p_index, int32_t *const p_data)

 Finds a command line argument in an input string and returns the
index of the character immediately following the argument and any
string numbers converted to integers. More...

void SF_CONSOLE_CallbackNextMenu (sf_console_callback_args_t
*p_args)

 Callback provided to continue parsing the next menu down. More...

ssp_err_t SF_CONSOLE_VersionGet (ssp_version_t *const p_version)

 Console version get function. More...

Detailed Description

RTOS-integrated Console Framework.

This is a ThreadX aware console framework implemented using the SSP communications framework.

Macro Definition Documentation

◆ SF_CONSOLE_CODE_VERSION_MAJOR

#define SF_CONSOLE_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,542 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Console Framework

◆ SF_CONSOLE_ArgumentFind()

ssp_err_t SF_CONSOLE_ArgumentFind (uint8_t const *const p_arg, uint8_t const *const p_str,
int32_t *const p_index, int32_t *const p_data)

Finds a command line argument in an input string and returns the index of the character
immediately following the argument and any string numbers converted to integers.

Return values
SSP_SUCCESS Argument found successfully

SSP_ERR_ASSERTION p_arg or p_str is NULL

SSP_ERR_INTERNAL String passed after parsing command is
NULL_CODE.

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Note
This function is reentrant for any channel.

Search for first letter match at beginning of word.

If the input string matches the input argument, store the index of the character following the
argument in p_index and the data at that index in p_data. Then return.

◆ SF_CONSOLE_CallbackNextMenu()

void SF_CONSOLE_CallbackNextMenu (sf_console_callback_args_t * p_args)

Callback provided to continue parsing the next menu down.

Parameters
[in] p_args Pointer to callback

arguments to use in the next
menu.

Next level menu is passed in as the user context parameter

Update current menu.

Check to see if the next menu command was input in the remaining string.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,543 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Console Framework

◆ SF_CONSOLE_Close()

ssp_err_t SF_CONSOLE_Close (sf_console_ctrl_t *const p_api_ctrl)

Close the communications driver.

Return values
SSP_SUCCESS Console successfully closed

SSP_ERR_ASSERTION Pointer to control block is NULL

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Note
This function is reentrant for any channel.

Close UART driver

◆ SF_CONSOLE_Open()

ssp_err_t SF_CONSOLE_Open (sf_console_ctrl_t *const p_api_ctrl, sf_console_cfg_t const *const
p_cfg)

Initialize console framework and open low-level communication driver.

Return values
SSP_SUCCESS Console channel is successfully opened

SSP_ERR_ASSERTION Parameter check failed for one of the
following : -Pointer to the control block is
NULL -Pointer to the config block is NULL
-Pointer p_cfg->p_initial_menu is NULL
-Pointer p_cfg->p_comms is NULL -Pointer
p_cfg->p_comms->p_api is NULL -Pointer
p_cfg->p_comms->p_api->open is NULL

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Note
This function is reentrant for any channel.

Open UART driver

Store echo configuration and initial menu in control block

Prompt for input autostart is true

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,544 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Console Framework

◆ SF_CONSOLE_Parse()

ssp_err_t SF_CONSOLE_Parse (sf_console_ctrl_t *const p_api_ctrl, sf_console_menu_t const *const
p_menu, uint8_t const *const p_input, uint32_t const bytes)

Looks for input string in menu, and calls callback function if found.

Return values
SSP_SUCCESS Data parsed successfully, command found

and callback called.

SSP_ERR_UNSUPPORTED Command not found in the current menu.

SSP_ERR_ASSERTION One or more input parameter pointers are
invalid.

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Note
This function is reentrant for any channel.

Print help menu if help command is entered

Go back one menu if previous menu command is entered.

Go back to root menu if root menu command is entered.

Look for matching commands, call callback if command found.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,545 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Console Framework

◆ SF_CONSOLE_Prompt()

ssp_err_t SF_CONSOLE_Prompt (sf_console_ctrl_t *const p_api_ctrl, sf_console_menu_t const
*const p_menu, UINT const timeout)

Prompt the user to input a command.

Return values
SSP_SUCCESS Received valid command and called

callback

SSP_ERR_ASSERTION p_ctrl is NULL

SSP_ERR_UNSUPPORTED Command not found in the current menu.

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Note
This function is reentrant for any channel.

Update stored current menu pointer if a new pointer is specified.

Print menu name followed by ">" to prompt for user input.

Lock the console UART framework to reserve exclusive access until the command completes.

Note
Transmission is only locked while the menu name is printed and while the input command is non-zero in length.
This allow debug messages to print from other threads while echo is off or no input command has been entered.

Wait for input

Parse input and call associated user callback.

Command is complete, so unlock comms reception.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,546 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Console Framework

◆ SF_CONSOLE_Read()

ssp_err_t SF_CONSOLE_Read (sf_console_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t
const bytes, uint32_t const timeout)

Reads data into the destination byte by byte and echos input to the console.

Return values
SSP_SUCCESS Data read completed successfully

SSP_ERR_ASSERTION Parameter check failed for one of the
following : -Pointer p_dest is NULL -Pointer
to the control block is NULL -Pointer
p_ctrl->p_comms is NULL -Pointer
p_ctrl->p_comms->p_api is NULL -Pointer
p_ctrl->p_comms->p_api->lock is NULL
-Pointer p_ctrl->p_comms->p_api->unlock is
NULL

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Note
This function is reentrant for any channel.

Lock the communications framework reception until carriage return is received.

Read one byte at a time, checking for carriage returns, backspace, delete, and escape codes.

Unlock the communications framework reception

◆ SF_CONSOLE_VersionGet()

ssp_err_t SF_CONSOLE_VersionGet (ssp_version_t *const p_version)

Console version get function.

Parameters
[in] p_version Version information stored

here.

Return values
SSP_SUCCESS Version stored in provided pointer.

SSP_ERR_ASSERTION p_version was null.

Set version pointer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,547 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Console Framework

◆ SF_CONSOLE_Write()

ssp_err_t SF_CONSOLE_Write (sf_console_ctrl_t *const p_api_ctrl, uint8_t const *const p_src,
uint32_t const timeout)

Write a NULL terminated string to the console.

Return values
SSP_SUCCESS Data write completed successfully

SSP_ERR_ASSERTION Pointer to the control block is NULL

SSP_ERR_INVALID_SIZE If length passed is zero or length passed is
greater than 128U (max value).

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Note
This function is reentrant for any channel.

Write null terminated string. Calculate the length. If it isn't longer than the maximum, write the
entire string to the console.

 sf_console_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Console Framework

#include <sf_console.h>

Data Fields

sf_console_menu_t const * p_current_menu

 Current menu is stored here.

sf_comms_instance_t const
*

p_comms

 Pointer to communications driver instance.

uint8_t new_line

 Whether to echo input commands to transmitter.

bool echo

 Whether to echo input commands to transmitter.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,548 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Console Framework > sf_console_instance_ctrl_t Struct Reference

uint8_t input [SF_CONSOLE_MAX_INPUT_LENGTH]

 Input buffer used to store user input.

Detailed Description

Console instance control block. DO NOT INITIALIZE. Initialization occurs when sf_console_api_t::open
is called

The documentation for this struct was generated from the following file:

sf_console.h

5.1.3.14 SSP Crypto Common Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Crypto Common Framework Module. More...

Data Structures

struct sf_crypto_instance_ctrl_t

Macros

#define SF_CRYPTO_CODE_VERSION_MAJOR (2U)

Functions

ssp_err_t SF_CRYPTO_Open (sf_crypto_ctrl_t *const p_api_ctrl, sf_crypto_cfg_t
const *const p_cfg)

 SSP Crypto Framework Common Open operation. More...

ssp_err_t SF_CRYPTO_Close (sf_crypto_ctrl_t *const p_api_ctrl)

 SSP Crypto Framework Common Close operation. More...

ssp_err_t SF_CRYPTO_Lock (sf_crypto_ctrl_t *const p_api_ctrl)

 Locks the module. This API is utilized for locking shared resources.
More...

ssp_err_t SF_CRYPTO_Unlock (sf_crypto_ctrl_t *const p_api_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,549 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Common Framework

 Unlocks the module. This API is utilized for unlocking shared
resources. More...

ssp_err_t SF_CRYPTO_StatusGet (sf_crypto_ctrl_t *const p_api_ctrl,
sf_crypto_state_t *p_status)

 Gets the Crypto Common Framework module status. More...

ssp_err_t SF_CRYPTO_VersionGet (ssp_version_t *const p_version)

 Gets the version of Crypto Common Framework module. More...

Detailed Description

RTOS-integrated Crypto Common Framework Module.

Macro Definition Documentation

◆ SF_CRYPTO_CODE_VERSION_MAJOR

#define SF_CRYPTO_CODE_VERSION_MAJOR (2U)

The API version of SSP Crypto Framework Common Module

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,550 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Common Framework

◆ SF_CRYPTO_Close()

ssp_err_t SF_CRYPTO_Close (sf_crypto_ctrl_t *const p_api_ctrl)

SSP Crypto Framework Common Close operation.

Parameters
[in,out] p_api_ctrl Pointer to a Crypto

framework control block

Return values
SSP_SUCCESS Module was successfully closed.

SSP_ERR_NOT_OPEN Module has not opened.

SSP_ERR_ASSERTION NULL pointer is passed as an input
parameter.

SSP_ERR_INTERNAL RTOS service returned a unexpected error.

SSP_ERR_CRYPTO_HAL_ERROR Unable to successfully close the Crypto
Common HAL module.

Check if the module has been opened. If not, return error.

Close a lower level crypto driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,551 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Common Framework

◆ SF_CRYPTO_Lock()

ssp_err_t SF_CRYPTO_Lock (sf_crypto_ctrl_t *const p_api_ctrl)

Locks the module. This API is utilized for locking shared resources.

Parameters
[in,out] p_api_ctrl Pointer to a Crypto

framework control block

Return values
SSP_SUCCESS Module resources are successfully locked.

SSP_ERR_TIMEOUT Unable to get ownership of the mutex within
the specified time.

SSP_ERR_INTERNAL Thread suspension was aborted. Critical
error.

SSP_ERR_ASSERTION NULL pointer is passed.as an input
parameter.

SSP_ERR_NOT_OPEN The module is not yet opened.

Check if the module has been opened. If not, return error.

Acquire the mutex.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,552 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Common Framework

◆ SF_CRYPTO_Open()

ssp_err_t SF_CRYPTO_Open (sf_crypto_ctrl_t *const p_api_ctrl, sf_crypto_cfg_t const *const p_cfg
)

SSP Crypto Framework Common Open operation.

Parameters
[in,out] p_api_ctrl Pointer to a Crypto

framework control block

[in] p_cfg Pointer to a Crypto
framework configuration
structure

Return values
SSP_SUCCESS Crypto framework was successfully opened.

SSP_ERR_ASSERTION NULL pointer is passed.

SSP_ERR_INTERNAL RTOS service returned a unexpected error.

SSP_ERR_CRYPTO_HAL_ERROR Crypto HAL driver retuned an error.

Check if the module has been opened. If opened, return error.

Open a lower level crypto driver and ensure the engine is initialized here or already in other SCE
supported stack.

◆ SF_CRYPTO_StatusGet()

ssp_err_t SF_CRYPTO_StatusGet (sf_crypto_ctrl_t *const p_api_ctrl, sf_crypto_state_t * p_status)

Gets the Crypto Common Framework module status.

Parameters
[in] p_api_ctrl Pointer to a Crypto

framework control block

[out] p_status Memory location to store
module status.

Return values
SSP_SUCCESS Status returned successfully.

SSP_ERR_ASSERTION The parameter p_status is NULL.

SSP_ERR_CRYPTO_COMMON_NOT_OPENED This common module is not yet opened.

Check if the module has a valid / known status else return error.

Return the module status.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,553 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Common Framework

◆ SF_CRYPTO_Unlock()

ssp_err_t SF_CRYPTO_Unlock (sf_crypto_ctrl_t *const p_api_ctrl)

Unlocks the module. This API is utilized for unlocking shared resources.

Parameters
[in,out] p_api_ctrl Pointer to a Crypto

framework control block

Return values
SSP_SUCCESS Module resources are successfully unlocked.

SSP_ERR_ASSERTION NULL pointer is passed as an input
parameter.

SSP_ERR_INTERNAL Mutex is not owned by a caller thread.

SSP_ERR_NOT_OPEN The module is not yet opened.

Check if the module has been opened. If not, return error.

Return the mutex.

◆ SF_CRYPTO_VersionGet()

ssp_err_t SF_CRYPTO_VersionGet (ssp_version_t *const p_version)

Gets the version of Crypto Common Framework module.

Parameters
[out] p_version Pointer to the memory to

store the version
information.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Return the module version.

 sf_crypto_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » SSP Crypto Common Framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,554 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Common Framework > sf_crypto_instance_ctrl_t Struct Reference

#include <sf_crypto.h>

Data Fields

sf_crypto_state_t status

 Module status.

TX_MUTEX mutex

 Mutex used in the Crypto Framework.

TX_SEMAPHORE semaphore

 Semaphore used in the Crypto Framework (Reserve)

TX_BYTE_POOL byte_pool

 Byte pool used in the Crypto Framework.

uint32_t wait_option

 Wait time option used for RTOS service calls.

uint32_t open_counter

 Counter to keep the number of SF_CRYPTO_XXX opened.

void * p_lower_lvl_crypto

 Pointer to a low-level Crypto engine HAL driver instance.

void(* p_callback)(sf_crypto_callback_args_t *p_args)

 Pointer to callback function.

void * p_context

 Pointer to a context.

sf_crypto_close_option_t close_option

 Close option.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,555 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Common Framework > sf_crypto_instance_ctrl_t Struct Reference

SSP Crypto Framework Common Module instance control block

The documentation for this struct was generated from the following file:

sf_crypto.h

5.1.3.15 SSP Crypto Cipher Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Crypto Cipher Framework Module. More...

Data Structures

struct sf_crypto_cipher_instance_ctrl_t

Macros

#define SF_CRYPTO_CIPHER_CODE_VERSION_MAJOR (2U)

#define SF_CRYPTO_CIPHER_API_VERSION_MAJOR (1U)

#define SF_CRYPTO_CIPHER_AES_128_XTS_KEY_SIZE (2 *
(AES128_SECRET_KEY_SIZE_BYTES))

#define SF_CRYPTO_CIPHER_AES_GCM_TAG_LENGTH_16_BYTES (16U)

 AES GCM tag of length 16 bytes.

#define SF_CRYPTO_CIPHER_AES_IV_LENGTH_12_BYTES (12U)

 IV for AES operations - 16 bytes.

#define SF_CRYPTO_CIPHER_AES_GCM_IV_PAD_4_BYTES (4U)

 4 byte padding for 96-bit IV.

#define SF_CRYPTO_CIPHER_AES_IV_LENGTH_16_BYTES (16U)

 IV for AES operations - 16 bytes.

#define SF_CRYPTO_CIPHER_AES_BLOCK_SIZE_BYTES (16U)

 AES block size = 16 bytes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,556 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

#define SF_CRYPTO_CIPHER_BYTES_PER_WORD (4U)

 number of bytes in a WORD.

#define SF_CRYPTO_CIPHER_RSA_1024_MODULUS_BITS (1024U)

 Modulus size of RSA 1024-bit key. More...

#define SF_CRYPTO_CIPHER_RSA_2048_MODULUS_BITS (2048U)

 Modulus size of RSA 2048-bit key.

#define SF_CRYPTO_PKCS_1_5_EB_START_BYTE (0U)

 Encryption Block start byte = 00.

#define SF_CRYPTO_PKCS_1_5_BT_00 (0U)

 Encryption Block Type (BT) = 00.

#define SF_CRYPTO_PKCS_1_5_BT_01 (1U)

 Encryption Block Type (BT) = 01.

#define SF_CRYPTO_PKCS_1_5_BT_02 (2U)

 Encryption Block Type (BT) = 02.

#define SF_CRYPTO_PKCS_1_5_EB_DATA_SEPARATOR (0U)

 EB Data separator (between PS and Data).

#define SF_CRYPTO_PKCS_1_5_EB_START_BYTE_LENGTH (1U)

 Encryption Block Start Byte length.

#define SF_CRYPTO_PKCS_1_5_EB_BT_BYTE_LENGTH (1U)

 Encryption Block Block Type field length.

#define SF_CRYPTO_PKCS_1_5_EB_PS_MIN_LENGTH (8U)

 Encryption Block Padding String (PS) min length.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,557 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

#define SF_CRYPTO_PKCS_1_5_EB_DATA_SEPARATOR_LENGTH (1U)

 EB Data separator (between PS and Data)length.

#define SF_CRYPTO_PKCS_1_5_EB_OVERHEAD

Enumerations

enum sf_crypto_cipher_state_t {
 SF_CRYPTO_CIPHER_STATE_CLOSED,
SF_CRYPTO_CIPHER_STATE_OPENED,
SF_CRYPTO_CIPHER_STATE_INITIALIZED,
SF_CRYPTO_CIPHER_STATE_UPDATED,
 SF_CRYPTO_CIPHER_STATE_FINALIZED
}

Functions

void sf_crypto_cipher_aes_interface_get (sf_crypto_cipher_instance_ctrl_t
*const p_ctrl)

 Subroutine to get a pointer to the AES HAL API instance. More...

bool sf_crypto_cipher_is_key_type_aes (sf_crypto_key_type_t key_type)

 Subroutine to check if the key type enum provided is a valid AES key
type for cipher operation. More...

ssp_err_t sf_crypto_cipher_aes_init (sf_crypto_cipher_instance_ctrl_t *const
p_ctrl, sf_crypto_cipher_op_mode_t cipher_operation_mode,
sf_crypto_key_t const *const p_key,
sf_crypto_cipher_algorithm_init_params_t
*p_algorithm_specific_params)

 Subroutine to initialize the AES cipher operation. More...

ssp_err_t sf_crypto_cipher_aes_update (sf_crypto_cipher_instance_ctrl_t *const
p_ctrl, sf_crypto_data_handle_t const *const p_data_in,
sf_crypto_data_handle_t *const p_data_out)

 Subroutine to update the cipher AES operation. More...

ssp_err_t sf_crypto_cipher_aes_validate_aad_update_params_context
(sf_crypto_cipher_instance_ctrl_t *const p_ctrl)

 Subroutine to validate the context buffer parameters for the
cipherAadUpdate operation. More...

ssp_err_t sf_crypto_cipher_aes_aad_update (sf_crypto_cipher_instance_ctrl_t
*p_ctrl, sf_crypto_data_handle_t const *const p_aad)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,558 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

 Subroutine to update the AAD for the cipher operation. More...

ssp_err_t sf_crypto_cipher_aes_encrypt_final (sf_crypto_cipher_instance_ctrl_t
*const p_ctrl, sf_crypto_data_handle_t const *const p_data_in,
sf_crypto_data_handle_t *const p_data_out)

 Subroutine to finalize the cipher encrypt operation. More...

ssp_err_t sf_crypto_cipher_aes_decrypt_final (sf_crypto_cipher_instance_ctrl_t
*const p_ctrl, sf_crypto_data_handle_t const *const p_data_in,
sf_crypto_data_handle_t *const p_data_out)

 Subroutine to finalize the cipher decrypt operation. More...

ssp_err_t sf_crypto_cipher_aes_final (sf_crypto_cipher_instance_ctrl_t *const
p_ctrl, sf_crypto_data_handle_t const *const p_data_in,
sf_crypto_data_handle_t *const p_data_out)

 Sub-routine for Crypto Cipher Framework to call the appropriate
routine for final encryption based on the algorithm for the cipherFinal
operation. This function is called by
SF_CRYPTO_CIPHER_CipherFinal(). More...

ssp_err_t sf_crypto_cipher_initialize_aes_instance
(sf_crypto_cipher_instance_ctrl_t *p_ctrl, sf_crypto_cipher_cfg_t const
*const p_cfg)

 Allocates memory for the instance and opens the underlying HAL
instance. More...

ssp_err_t sf_crypto_cipher_deinitialize_aes_instance
(sf_crypto_cipher_instance_ctrl_t *p_ctrl)

 closes the underlying HAL instance and releases the memory for the
instance. More...

__STATIC_INLINE uint32_t SF_CRYPTO_CIPHER_RSA_EB_SIZE_BYTES (uint32_t key_size_bits)

 Routine to calculate and return the Encryption block size based on
the key size. More...

__STATIC_INLINE uint32_t SF_CRYPTO_CIPHER_RSA_PKCS_1_5_EB_DATA_SIZE_BYTES (uint32_t
key_size_bits)

 Routine to calculate and return the Encryption block size based on
the key size. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,559 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

void sf_crypto_cipher_rsa_interface_get (sf_crypto_cipher_instance_ctrl_t
*const p_ctrl)

 Subroutine to get a RSA HAL API instance. This function is called by
sf_crypto_cipher_open_rsa(). More...

bool sf_crypto_cipher_is_key_type_rsa (sf_crypto_key_type_t key_type)

 Subroutine to check if key type is RSA. More...

ssp_err_t sf_crypto_cipher_rsa_init (sf_crypto_cipher_instance_ctrl_t *const
p_ctrl, sf_crypto_cipher_op_mode_t cipher_operation_mode,
sf_crypto_key_t const *const p_key,
sf_crypto_cipher_algorithm_init_params_t
*p_algorithm_specific_params)

 Routine to handle the cipherInit RSA operation. More...

ssp_err_t sf_crypto_cipher_rsa_update (sf_crypto_cipher_instance_ctrl_t *const
p_ctrl, sf_crypto_data_handle_t const *const p_data_in,
sf_crypto_data_handle_t *const p_data_out)

 Subroutine to update the cipher RSA operation. This algorithm is only
suitable for messages of limited length. The total number of input
bytes processed during encryption may not be more than k-11,
where k is the RSA key's modulus size in bytes. The encryption
block(EB) during encryption with a Public key is built as follows: EB =
00 || 02 || PS || 00 || M :: M (input bytes) is the plaintext message ::
PS is an octet string of length k-3-||M|| of pseudo random nonzero
octets. The length of PS must be at least 8 octets. :: k is the RSA
modulus size. More...

ssp_err_t sf_crypto_cipher_rsa_final (sf_crypto_cipher_instance_ctrl_t *const
p_ctrl, sf_crypto_data_handle_t const *const p_data_in,
sf_crypto_data_handle_t *const p_data_out)

 Routine to process the final encryption / decryption operation for
RSA. This function is called by SF_CRYPTO_CIPHER_CipherFinal().
More...

ssp_err_t sf_crypto_cipher_initialize_rsa_instance
(sf_crypto_cipher_instance_ctrl_t *p_ctrl, sf_crypto_cipher_cfg_t const
*const p_cfg)

 Allocates memory for the instance and opens the underlying HAL
instance. More...

ssp_err_t sf_crypto_cipher_deinitialize_rsa_instance
(sf_crypto_cipher_instance_ctrl_t *p_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,560 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

 closes the underlying HAL instance and releases the memory for the
instance. More...

ssp_err_t SF_CRYPTO_CIPHER_Open (sf_crypto_cipher_ctrl_t *const p_api_ctrl,
sf_crypto_cipher_cfg_t const *const p_cfg)

 SSP Crypto Cipher Framework Open operation. More...

ssp_err_t SF_CRYPTO_CIPHER_Close (sf_crypto_cipher_ctrl_t *const p_api_ctrl)

 SSP Crypto Cipher Framework Close operation. More...

ssp_err_t SF_CRYPTO_CIPHER_VersionGet (ssp_version_t *const p_version)

 Gets driver version based on compile time macros. More...

ssp_err_t SF_CRYPTO_CIPHER_CipherInit (sf_crypto_cipher_ctrl_t *const
p_api_ctrl, sf_crypto_cipher_op_mode_t cipher_operation_mode,
sf_crypto_key_t const *const p_key,
sf_crypto_cipher_algorithm_init_params_t *const
p_algorithm_specific_params)

 SSP Crypto Framework Cipher Init operation. The input parameters
initialize the cipher operation. Some of the parameters are algorithm
specific. The input parameters are validated and then copied into the
context buffer. Refer to sf_crypto_cipher_aes_init_params_t or
sf_crypto_cipher_rsa_init_params_t. More...

ssp_err_t SF_CRYPTO_CIPHER_CipherUpdate (sf_crypto_cipher_ctrl_t *const
p_api_ctrl, sf_crypto_data_handle_t const *const p_data_in,
sf_crypto_data_handle_t *const p_data_out)

 SSP Crypto Cipher Framework - Encrypts / Decrypts the input data
and writes the cipher-text or plain-text to the output buffer. Can be
called multiple times for chunks of data. More...

ssp_err_t SF_CRYPTO_CIPHER_CipherAadUpdate (sf_crypto_cipher_ctrl_t *const
p_api_ctrl, sf_crypto_data_handle_t const *const p_aad)

 Updates Additional Authenticated Data. This is applicable only to AES
GCM. Can be called multiple times for chunks of data. More...

ssp_err_t SF_CRYPTO_CIPHER_CipherFinal (sf_crypto_cipher_ctrl_t *const
p_api_ctrl, sf_crypto_data_handle_t const *const p_data_in,
sf_crypto_data_handle_t *const p_data_out)

 SSP Crypto Cipher Framework - Generates encrypted / decrypted
output from all/last input data. This function processes any
remaining input data buffered by one or more calls to the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,561 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

cipherUpdate()API as well as input data supplied in the input
parameter. This function must be invoked to complete a cipher
operation. More...

Detailed Description

RTOS-integrated Crypto Cipher Framework Module.

Macro Definition Documentation

◆ SF_CRYPTO_CIPHER_AES_128_XTS_KEY_SIZE

#define SF_CRYPTO_CIPHER_AES_128_XTS_KEY_SIZE (2 * (AES128_SECRET_KEY_SIZE_BYTES))

Macros for AES operations

◆ SF_CRYPTO_CIPHER_API_VERSION_MAJOR

#define SF_CRYPTO_CIPHER_API_VERSION_MAJOR (1U)

The API version of SSP Crypto CIPHER Framework

◆ SF_CRYPTO_CIPHER_CODE_VERSION_MAJOR

#define SF_CRYPTO_CIPHER_CODE_VERSION_MAJOR (2U)

The API version of SSP Crypto Cipher Framework

◆ SF_CRYPTO_CIPHER_RSA_1024_MODULUS_BITS

#define SF_CRYPTO_CIPHER_RSA_1024_MODULUS_BITS (1024U)

Modulus size of RSA 1024-bit key.

Macros for RSA operations EB = ENCRYPTION_BLOCK PS = Padding String PKCS_1_5 = RSAES-
PKCS1-v1_5

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,562 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ SF_CRYPTO_PKCS_1_5_EB_OVERHEAD

#define SF_CRYPTO_PKCS_1_5_EB_OVERHEAD

(SF_CRYPTO_PKCS_1_5_EB_START_BYTE_LENGTH + \

 SF_CRYPTO_PKCS_1_5_EB_BT_BYTE_LENGTH + \

 SF_CRYPTO_PKCS_1_5_EB_PS_MIN_LENGTH + \

 SF_CRYPTO_PKCS_1_5_EB_DATA_SEPARATOR_LENGTH)

Overhead for formatting the Encryption Block, in number of bytes

Enumeration Type Documentation

◆ sf_crypto_cipher_state_t

enum sf_crypto_cipher_state_t

States the SSP Crypto Cipher Framework module can go through.

Enumerator

SF_CRYPTO_CIPHER_STATE_CLOSED The Cipher module is closed.

SF_CRYPTO_CIPHER_STATE_OPENED The Cipher module is opened.

SF_CRYPTO_CIPHER_STATE_INITIALIZED The cipher operation is initialized.

SF_CRYPTO_CIPHER_STATE_UPDATED The cipher operation is updated.

SF_CRYPTO_CIPHER_STATE_FINALIZED The cipher operation is finalized.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,563 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_aes_aad_update()

ssp_err_t sf_crypto_cipher_aes_aad_update (sf_crypto_cipher_instance_ctrl_t * p_ctrl,
sf_crypto_data_handle_t const *const p_aad)

Subroutine to update the AAD for the cipher operation.

Parameters
[in,out] p_ctrl Pointer to the cipher

framework module control
block used in the open() call.

[in] p_aad Pointer to the input data
structure - has the pointer to
input AAD and the data
length

Return values
SSP_SUCCESS AAD was updated successfully.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

Check if there is data in the aad block buffer. If so first fill it from the input data

Update the number of bytes remaining in the input buffer to be processed.

If data is block length, encrypt it.

Check if the input data is a multiple of block size

Update the number of bytes remaining in the input buffer to be processed.

If any bytes remain that is less than the block size, copy to the partial buffer

Update the size of the data in the partial block

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,564 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_aes_decrypt_final()

ssp_err_t sf_crypto_cipher_aes_decrypt_final (sf_crypto_cipher_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_data_in, sf_crypto_data_handle_t *const p_data_out)

Subroutine to finalize the cipher decrypt operation.

Parameters
[in,out] p_ctrl Pointer to the cipher

framework module control
block used in the open() call.

[in,out] p_data_in Pointer to the input data
structure - has the pointer to
input data and the data
length

[in,out] p_data_out Pointer to the output data
structure - has the pointer to
output data and the data
length.

Return values
SSP_SUCCESS Cipher operation was finalized successfully.

SSP_ERR_INVALID_ARGUMENT Input data is invalid.

SSP_ERR_INVALID_SIZE The out buffer is inadequate to hold the
output data.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

Validate the input parameters

Process the input data

If GCM check if there is any partial AAD remaining, if so call to update AAD

If GCM set the tag

For GCM compute and verify the tag - return error to indicate if the data is valid or not.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,565 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_aes_encrypt_final()

ssp_err_t sf_crypto_cipher_aes_encrypt_final (sf_crypto_cipher_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_data_in, sf_crypto_data_handle_t *const p_data_out)

Subroutine to finalize the cipher encrypt operation.

Parameters
[in,out] p_ctrl Pointer to the cipher

framework module control
block used in the open() call.

[in,out] p_data_in Pointer to the input data
structure - has the pointer to
input data and the data
length

[in,out] p_data_out Pointer to the output data
structure - has the pointer to
output data and the data
length.

Return values
SSP_SUCCESS Cipher operation was finalized successfully.

SSP_ERR_INVALID_ARGUMENT Input data is invalid.

SSP_ERR_INVALID_SIZE The out buffer is inadequate to hold the
output data.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

Validate the input parameters

Process the input data

Handle padding for ECB, CBC modes

Add padding and encrypt the last block.

If there is a remaining partial block process it. For GCM zero padding is automatic

Now that the possible AAD update and plain text encryption is done, get the GCM tag

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,566 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_aes_final()

ssp_err_t sf_crypto_cipher_aes_final (sf_crypto_cipher_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_data_in, sf_crypto_data_handle_t *const p_data_out)

Sub-routine for Crypto Cipher Framework to call the appropriate routine for final encryption based
on the algorithm for the cipherFinal operation. This function is called by
SF_CRYPTO_CIPHER_CipherFinal().

Parameters
[in,out] p_ctrl Pointer to the Cipher

framework module instance
control block.

[in] p_data_in Pointer to the input data
buffer and the length of the
input data.

[in,out] p_data_out Pointer to the output data
buffer and the buffer length
on input. If data is output,
the length of the data will be
updated.

Return values
SSP_SUCCESS The cipher update operation was successful.

SSP_ERR_UNSUPPORTED The module does not support the algorithm
bbased on the key type specified by the
user.

Returns
See Common Error Codes for other possible return codes.

Validate that there is some input data provided / processed before the finalizing operation Applies
to both encrypt and decrypt operations. AES GCM is the only exception.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,567 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_aes_init()

ssp_err_t sf_crypto_cipher_aes_init (sf_crypto_cipher_instance_ctrl_t *const p_ctrl,
sf_crypto_cipher_op_mode_t cipher_operation_mode, sf_crypto_key_t const *const p_key,
sf_crypto_cipher_algorithm_init_params_t * p_algorithm_specific_params)

Subroutine to initialize the AES cipher operation.

Parameters
[in,out] p_ctrl Pointer to the cipher

framework module control
block used in the open() call.

[in] cipher_operation_mode The cipher operation mode -
encrypt / decrypt.

[in] p_key Pointer to the key to be used
for the cipher operations.

[in] p_algorithm_specific_params Pointer to the algorithm
specific parameters.

Return values
SSP_SUCCESS All of the input parameters are validated

successfully.

SSP_ERR_INVALID_ARGUMENT An input for the required cipher operation is
invalid.

All buffers within the context buffer are allocated at Open. Now just zeroise their contents.

Copy the init parameters to the context buffer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,568 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_aes_interface_get()

void sf_crypto_cipher_aes_interface_get (sf_crypto_cipher_instance_ctrl_t *const p_ctrl)

Subroutine to get a pointer to the AES HAL API instance.

Parameters
[in,out] p_ctrl Pointer to a Cipher

framework control block,
whose p_hal_api is filled with
HAL AES interface. This will
be NULL, for MCUs /feature/
configuration parameters
not supported

Get a Crypto common control block and the HAL instance.

Check the AES key type and size and get an appropriate API instance.

Get the HAL API instance for a selected algorithm type.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,569 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_aes_update()

ssp_err_t sf_crypto_cipher_aes_update (sf_crypto_cipher_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_data_in, sf_crypto_data_handle_t *const p_data_out)

Subroutine to update the cipher AES operation.

Parameters
[in,out] p_ctrl Pointer to the cipher

framework module control
block used in the open() call.

[in,out] p_data_in Pointer to the input data
structure - has the pointer to
input data and the data
length

[in,out] p_data_out Pointer to the output data
structure - has the pointer to
output data and the data
length.

Return values
SSP_SUCCESS Cipher operation was updated successfully.

SSP_ERR_INVALID_SIZE The out buffer is inadequate to hold the
output data.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

If GCM check if there is any partial AAD remaining. This is to be processed only if the cipher is in
initialized state. Once the update is done AAD calculations should not be done. if so call to update
AAD

Set the data out length before starting cipher operation.

Update the number of bytes remaining in the input buffer to be processed.

If data is block length, process it. That is encrypt / decrypt it.

Check if the remaining input data is a multiple of block size

Update the number of bytes written to the output buffer.

Update the number of bytes remaining in the input buffer to be processed.

If any bytes remain that is less than the block size, copy to the partial buffer

Update the size of the data in the partial block

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,570 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_aes_validate_aad_update_params_context()

ssp_err_t sf_crypto_cipher_aes_validate_aad_update_params_context (
sf_crypto_cipher_instance_ctrl_t *const p_ctrl)

Subroutine to validate the context buffer parameters for the cipherAadUpdate operation.

Parameters
[in,out] p_ctrl Pointer to the cipher

framework module control
block used in the open() call.

Return values
SSP_SUCCESS Parameters were validated successfully.

SSP_ERR_ASSERTION At least one of the buffer is set to NULL.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,571 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ SF_CRYPTO_CIPHER_CipherAadUpdate()

ssp_err_t SF_CRYPTO_CIPHER_CipherAadUpdate (sf_crypto_cipher_ctrl_t *const p_api_ctrl,
sf_crypto_data_handle_t const *const p_aad)

Updates Additional Authenticated Data. This is applicable only to AES GCM. Can be called multiple
times for chunks of data.

Return values
SSP_SUCCESS The function updated the AAD successfully.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

SSP_ERR_UNSUPPORTED Key types / algorithms are not supported for
the MCU part.

SSP_ERR_INVALID_CALL Function call was made if the module state
had not yet transitioned to
SF_CRYPTO_CIPHER_STATE_INITIALIZED.

Returns
See Common Error Codes for other possible return codes.

Note
1. This is a blocking call.
2. This function has to be called before any call to cipherUpdate / cipherFinal is made.
3. The data buffer must be WORD aligned.

do nothing - similar to the cipherUpdate API

Get a Crypto Framework common control block and the interface.

Check if the Crypto Cipher Framework is in the correct state to execute this operation. If module is
not opened or initialized, return an error.

Acquire the lock from the common module to access the Crypto HAL driver.

AAD is optional so no need to track if it is updated.

Unlock the module.

if update processing has succeeded return the error from unlock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,572 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ SF_CRYPTO_CIPHER_CipherFinal()

ssp_err_t SF_CRYPTO_CIPHER_CipherFinal (sf_crypto_cipher_ctrl_t *const p_api_ctrl,
sf_crypto_data_handle_t const *const p_data_in, sf_crypto_data_handle_t *const p_data_out)

SSP Crypto Cipher Framework - Generates encrypted / decrypted output from all/last input data.
This function processes any remaining input data buffered by one or more calls to the
cipherUpdate()API as well as input data supplied in the input parameter. This function must be
invoked to complete a cipher operation.

Return values
SSP_SUCCESS The module updated a message Digest

successfully.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

SSP_ERR_UNSUPPORTED Key types / algorithms are not supported for
the MCU part.

SSP_ERR_INVALID_CALL Function call was made if the module state
had not yet transitioned to
SF_CRYPTO_CIPHER_STATE_INITIALIZED or
SF_CRYPTO_CIPHER_STATE_UPDATED.

Returns
See Common Error Codes for other possible return codes.

Note
1. This is a blocking call.
2. On encryption and decryption operations, block alignment considerations may require that the number of bytes
written into output buffer be larger or smaller than input data length or even 0.
3. The output data area must not partially overlap the input data area such that the input data is modified before it
is used else incorrect output may result.
4. Except for GCM, if the length of input data is 0 and no input was provided through update, an error is returned.
5. On decryption operations the padding bytes are not written to p_data_out.p_data.
6. The input and output buffers must be WORD aligned.

Get a Crypto Framework common control block and the interface.

Check if the Crypto Cipher Framework is in the correct state to execute this operation. If module is
not opened or initialized, return an error.

Acquire the lock from the common module to access to Crypto HAL driver.

Mark the module status as 'Finalized'.

Unlock the module.

if final processing has succeeded return the error from unlock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,573 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ SF_CRYPTO_CIPHER_CipherInit()

ssp_err_t SF_CRYPTO_CIPHER_CipherInit (sf_crypto_cipher_ctrl_t *const p_api_ctrl,
sf_crypto_cipher_op_mode_t cipher_operation_mode, sf_crypto_key_t const *const p_key,
sf_crypto_cipher_algorithm_init_params_t *const p_algorithm_specific_params)

SSP Crypto Framework Cipher Init operation. The input parameters initialize the cipher operation.
Some of the parameters are algorithm specific. The input parameters are validated and then
copied into the context buffer. Refer to sf_crypto_cipher_aes_init_params_t or
sf_crypto_cipher_rsa_init_params_t.

Return values
SSP_SUCCESS The module is initialized for cipher operation

successfully.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

SSP_ERR_INVALID_ARGUMENT One of the input parameters is invalid.

SSP_ERR_UNSUPPORTED The module does not support the key type
specified by user.

Returns
See Common Error Codes for other possible return codes.

Validate cipher operation mode

Check if the module can transition to the initialized state.

Note: sf_crypto.lock() is not called because the HAL driver does not access HW during init. If HW
will be accessed through the HAL driver, lock should be acquired.

Do algorithm specific init

Mark the module status as 'Initialized'.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,574 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ SF_CRYPTO_CIPHER_CipherUpdate()

ssp_err_t SF_CRYPTO_CIPHER_CipherUpdate (sf_crypto_cipher_ctrl_t *const p_api_ctrl,
sf_crypto_data_handle_t const *const p_data_in, sf_crypto_data_handle_t *const p_data_out)

SSP Crypto Cipher Framework - Encrypts / Decrypts the input data and writes the cipher-text or
plain-text to the output buffer. Can be called multiple times for chunks of data.

Return values
SSP_SUCCESS The function updated a cipher operation

successfully.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

SSP_ERR_UNSUPPORTED Key types / algorithms are not supported for
the MCU part.

SSP_ERR_INVALID_CALL Function call was made if the module state
had not yet transitioned to
SF_CRYPTO_CIPHER_STATE_INITIALIZED.

Returns
See Common Error Codes for other possible return codes.

Note
1. This is a blocking call.
2. The input and output buffers have to be WORD aligned.
3. On encryption and decryption operations, block alignment considerations may require that the number of bytes
written into output buffer be larger or smaller than input data length or even 0.
4. The output data area must not partially overlap the input data area such that the input data is modified before it
is used else incorrect output may result.
5. If the length of input data is 0 this method does nothing.
6. For all Cipher operations cipherFinal() must be called to finalize the operation.
7. For RSA Operations, no data is output unless cipherFinal() is called.

If input data length is 0 - do nothing return success.

The status will be set to 'updated' only when data is processed.

Get a Crypto Framework common control block and the interface.

Check if the Crypto Cipher Framework is in the correct state to transition to do the update
operation. If module is not opened or initialized, return an error.

Acquire the lock from the common module to access the Crypto HAL driver.

If update processing has succeeded return the error from unlock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,575 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ SF_CRYPTO_CIPHER_Close()

ssp_err_t SF_CRYPTO_CIPHER_Close (sf_crypto_cipher_ctrl_t *const p_api_ctrl)

SSP Crypto Cipher Framework Close operation.

Return values
SSP_SUCCESS The module was successfully closed.

SSP_ERR_ASSERTION One or more input parameters maybe NULL.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

Returns
See Common Error Codes for other possible return codes.

Get a Crypto common control block and the interface.

Check if the Crypto Framework Cipher module has been opened. If not yet opened, return an error.

Note: sf_crypto.lock() is not called because the HAL driver does not access HW during close. If HW
will be accessed through the HAL driver, lock should be acquired.

Free the memory allocated for this instance and close the HAL driver.

◆ sf_crypto_cipher_deinitialize_aes_instance()

ssp_err_t sf_crypto_cipher_deinitialize_aes_instance (sf_crypto_cipher_instance_ctrl_t * p_ctrl)

closes the underlying HAL instance and releases the memory for the instance.

Parameters
[in,out] p_ctrl Pointer to Crypto Cipher

Framework instance control
block structure.

Return values
SSP_SUCCESS The module instantiated successfully.

SSP_ERR_TIMEOUT Was unable to allocate the memory within
the specified time to wait.

SP_ERR_OUT_OF_MEMORY Requested size is zero or larger than the
pool.

SSP_ERR_INTERNAL RTOS service returned a unexpected error.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls: sf_crypto_cipher_instance_memory_allocate sf_crypto_cipher_hal_open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,576 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_deinitialize_rsa_instance()

ssp_err_t sf_crypto_cipher_deinitialize_rsa_instance (sf_crypto_cipher_instance_ctrl_t * p_ctrl)

closes the underlying HAL instance and releases the memory for the instance.

Parameters
[in,out] p_ctrl Pointer to Crypto Cipher

Framework instance control
block structure.

Return values
SSP_SUCCESS The module instantiated successfully.

SSP_ERR_TIMEOUT Was unable to allocate the memory within
the specified time to wait.

SP_ERR_OUT_OF_MEMORY Requested size is zero or larger than the
pool.

SSP_ERR_INTERNAL RTOS service returned a unexpected error.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls: sf_crypto_cipher_instance_memory_allocate sf_crypto_cipher_hal_open

First close the Framework TRNG instance.

Then close the HAL RSA instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,577 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_initialize_aes_instance()

ssp_err_t sf_crypto_cipher_initialize_aes_instance (sf_crypto_cipher_instance_ctrl_t * p_ctrl,
sf_crypto_cipher_cfg_t const *const p_cfg)

Allocates memory for the instance and opens the underlying HAL instance.

Parameters
[in,out] p_ctrl Pointer to Crypto Cipher

Framework instance control
block structure.

[in] p_cfg Pointer to the configuration
structure for Cipher module .

Return values
SSP_SUCCESS The module instantiated successfully.

SSP_ERR_TIMEOUT Was unable to allocate the memory within
the specified time to wait.

SP_ERR_OUT_OF_MEMORY Requested size is zero or larger than the
pool.

SSP_ERR_INTERNAL RTOS service returned a unexpected error.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls: sf_crypto_cipher_instance_memory_allocate sf_crypto_cipher_hal_open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,578 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_initialize_rsa_instance()

ssp_err_t sf_crypto_cipher_initialize_rsa_instance (sf_crypto_cipher_instance_ctrl_t * p_ctrl,
sf_crypto_cipher_cfg_t const *const p_cfg)

Allocates memory for the instance and opens the underlying HAL instance.

Parameters
[in,out] p_ctrl Pointer to Crypto Cipher

Framework instance control
block structure.

[in] p_cfg Pointer to the configuration
structure for Cipher module .

Return values
SSP_SUCCESS The module instantiated successfully.

SSP_ERR_TIMEOUT Was unable to allocate the memory within
the specified time to wait.

SP_ERR_OUT_OF_MEMORY Requested size is zero or larger than the
pool.

SSP_ERR_INTERNAL RTOS service returned a unexpected error.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls: sf_crypto_cipher_instance_memory_allocate sf_crypto_cipher_hal_open

◆ sf_crypto_cipher_is_key_type_aes()

bool sf_crypto_cipher_is_key_type_aes (sf_crypto_key_type_t key_type)

Subroutine to check if the key type enum provided is a valid AES key type for cipher operation.

Parameters
[in] key_type The key type to be tested.

Return values
true The key is a valid AES key type.

false The key is NOT a valid AES key type.

Check the key type and and determine the algorithm.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,579 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_is_key_type_rsa()

bool sf_crypto_cipher_is_key_type_rsa (sf_crypto_key_type_t key_type)

Subroutine to check if key type is RSA.

Parameters
[in] key_type Key type enum.

Return values
true Key type is RSA plain text (standard or

CRT)/ wrapped.

false Key type is not RSA.

Check the key type is valid for RSA operations.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,580 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ SF_CRYPTO_CIPHER_Open()

ssp_err_t SF_CRYPTO_CIPHER_Open (sf_crypto_cipher_ctrl_t *const p_api_ctrl,
sf_crypto_cipher_cfg_t const *const p_cfg)

SSP Crypto Cipher Framework Open operation.

The SF_CRYTO_CIPHER_Open function: Allocates memory required for the cipher operations based
on the configuration parameters. Acquires lock for the shared crypto resources. Gets the interface
to the HAL driver based on the config parameters. Calls the .open function of the HAL API. On
successful open, the module status is updated as such. The shared resources are unlocked before
exit.

Return values
SSP_SUCCESS The module was successfully opened.

SSP_ERR_ASSERTION One or more input parameters maybe NULL.

SSP_ERR_INVALID_ARGUMENT An invalid argument is used.

SSP_ERR_CRYPTO_COMMON_NOT_OPENED Crypto Framework Common Module has yet
been opened.

SSP_ERR_ALREADY_OPEN The module has been already opened.

SSP_ERR_UNSUPPORTED The module does not support the key type
specified by user.

SSP_ERR_INTERNAL An internal ThreadX error has occurred. This
is typically a failure to create/use a mutex
or to create an internal thread.

Returns
See Common Error Codes for other possible return codes.

Get a Crypto common control block and the interface.

Get the pointers to TRNG control and API structures from the instance pointed to by the config
structure.

Check if the Crypto Framework has been opened. If not yet opened, return an error.

Check if the Cipher module has been already opened. If opened, return an error.

Validate the cfg parameters

Fill the control block with the validated cfg parameters

Determine and fill the algorithm type in the control block.

Note: sf_crypto.lock() is not called because the HAL driver does not access HW during open. The
HAL interfaceGet API is also called which does not access HW either. If HW will be accessed through
the HAL driver, lock should be acquired.

Allocate memory resources used by this framework instance and open HAL driver

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,581 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ SF_CRYPTO_CIPHER_RSA_EB_SIZE_BYTES()

__STATIC_INLINE uint32_t SF_CRYPTO_CIPHER_RSA_EB_SIZE_BYTES (uint32_t key_size_bits)

Routine to calculate and return the Encryption block size based on the key size.

Private Functions.

Parameters
[in] key_size_bits key size in bits.

◆ sf_crypto_cipher_rsa_final()

ssp_err_t sf_crypto_cipher_rsa_final (sf_crypto_cipher_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_data_in, sf_crypto_data_handle_t *const p_data_out)

Routine to process the final encryption / decryption operation for RSA. This function is called by
SF_CRYPTO_CIPHER_CipherFinal().

Return values
SSP_SUCCESS The cipher update operation was successful.

SSP_ERR_UNSUPPORTED The module does not support the algorithm
bbased on the key type specified by the
user.

Returns
See Common Error Codes for other possible return codes.

Clean up the data in the context buffer before exiting.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,582 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_rsa_init()

ssp_err_t sf_crypto_cipher_rsa_init (sf_crypto_cipher_instance_ctrl_t *const p_ctrl,
sf_crypto_cipher_op_mode_t cipher_operation_mode, sf_crypto_key_t const *const p_key,
sf_crypto_cipher_algorithm_init_params_t * p_algorithm_specific_params)

Routine to handle the cipherInit RSA operation.

Parameters
[in,out] p_ctrl Pointer to the cipher

framework module control
block used in the open() call.

[in] cipher_operation_mode The cipher operation mode -
encrypt / decrypt.

[in] p_key Pointer to the key to be used
for the cipher operations.

[in] p_algorithm_specific_params Pointer to the algorithm
specific parameters.

Return values
SSP_SUCCESS Cipher operation was updated successfully.

SSP_ERR_INVALID_SIZE The out buffer is inadequate to hold the
output data.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

All buffers within the context buffer are allocated at Open. Now just zeroise their contents.

Copy data into the control block / context buffer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,583 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_rsa_interface_get()

void sf_crypto_cipher_rsa_interface_get (sf_crypto_cipher_instance_ctrl_t *const p_ctrl)

Subroutine to get a RSA HAL API instance. This function is called by sf_crypto_cipher_open_rsa().

Parameters
[in,out] p_ctrl Pointer to a Key framework

control block, whose
p_hal_api filled with HAL RSA
interface. This indicates
NULL, for not supported
MCUs

Get a Crypto common control block and the HAL instance.

Check the RSA key type.

Check the RSA key type.

Get the HAL API instance for a selected algorithm type.

◆ SF_CRYPTO_CIPHER_RSA_PKCS_1_5_EB_DATA_SIZE_BYTES()

__STATIC_INLINE uint32_t SF_CRYPTO_CIPHER_RSA_PKCS_1_5_EB_DATA_SIZE_BYTES (uint32_t
key_size_bits)

Routine to calculate and return the Encryption block size based on the key size.

Parameters
[in] key_size_bits key size in bits.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,584 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ sf_crypto_cipher_rsa_update()

ssp_err_t sf_crypto_cipher_rsa_update (sf_crypto_cipher_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_data_in, sf_crypto_data_handle_t *const p_data_out)

Subroutine to update the cipher RSA operation. This algorithm is only suitable for messages of
limited length. The total number of input bytes processed during encryption may not be more than
k-11, where k is the RSA key's modulus size in bytes. The encryption block(EB) during encryption
with a Public key is built as follows: EB = 00 || 02 || PS || 00 || M :: M (input bytes) is the plaintext
message :: PS is an octet string of length k-3-||M|| of pseudo random nonzero octets. The length of
PS must be at least 8 octets. :: k is the RSA modulus size.

Parameters
[in,out] p_ctrl Pointer to the cipher

framework module control
block used in the open() call.

[in] p_data_in Pointer to the input data
structure - has the pointer to
input data and the data
length

[in,out] p_data_out Pointer to the output data
structure - has the pointer to
output data and the buffer
length on input. If data is
filled the length is updated
on output.

Return values
SSP_SUCCESS Cipher operation was updated successfully.

SSP_ERR_UNSUPPORTED Unknown cipher operation mode was
passed in.

SSP_ERR_INVALID_SIZE The out buffer is inadequate to hold the
output data.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

input parameters validation - done at the entry nothing to do here no output on update - so no
checks for output buffer / length collect input up to the block size for encryption when no padding
is selected. collect data up to block size -11 for encryption when padding is selected collect input
up to the block size for decryption if it exceeds the above return error

Copy the data into the partial block

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,585 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework

◆ SF_CRYPTO_CIPHER_VersionGet()

ssp_err_t SF_CRYPTO_CIPHER_VersionGet (ssp_version_t *const p_version)

Gets driver version based on compile time macros.

Return values
SSP_SUCCESS The version is returned successfully.

SSP_ERR_ASSERTION The parameter p_version is NULL.

 sf_crypto_cipher_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » SSP Crypto Cipher Framework

#include <sf_crypto_cipher.h>

Data Fields

sf_crypto_key_type_t key_type

 Key type.

sf_crypto_key_size_t key_size

 Key size.

sf_crypto_cipher_mode_t cipher_chaining_mode

 Chaining mode specified for the cipher operation.

sf_crypto_cipher_state_t status

 Module status.

crypto_algorithm_type_t cipher_algorithm_type

 Cipher algorithm for the keys selected.

sf_crypto_instance_ctrl_t * p_lower_lvl_fwk_common_ctrl

 Pointer to the Crypto Framework Common instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,586 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Cipher Framework > sf_crypto_cipher_instance_ctrl_t Struct Reference

sf_crypto_api_t * p_lower_lvl_fwk_common_api

 Pointer to the Crypto Framework Common API.

sf_crypto_trng_instance_ctrl_
t *

p_lower_lvl_sf_crypto_trng_ctrl

 Pointer to the Crypto TRNG API.

sf_crypto_trng_api_t * p_sf_crypto_trng_api

 Pointer to the Crypto TRNG API.

void * p_hal_ctrl

 Pointer to HAL control structure for the Cipher operation.

void * p_hal_api

 Pointer to HAL API structure for the cipher algorithm.

void * p_cipher_context_buffer

 Cipher context buffer after DWORD alignment.

Detailed Description

SSP Crypto Cipher Framework instance control block. DO NOT INITIALIZE. Initialization occurs when
SF_CRYPTO_CIPHER_Open is called

The documentation for this struct was generated from the following file:

sf_crypto_cipher.h

5.1.3.16 SSP Crypto Hash Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Crypto HASH Framework Module. More...

Data Structures

struct sf_crypto_hash_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,587 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Hash Framework

Macros

#define SF_CRYPTO_HASH_CODE_VERSION_MAJOR (2U)

Functions

ssp_err_t SF_CRYPTO_HASH_Open (sf_crypto_hash_ctrl_t *const p_api_ctrl,
sf_crypto_hash_cfg_t const *const p_cfg)

 SSP Crypto HASH Framework Open operation. More...

ssp_err_t SF_CRYPTO_HASH_Close (sf_crypto_hash_ctrl_t *const p_api_ctrl)

 SSP Crypto HASH Framework Close operation. More...

ssp_err_t SF_CRYPTO_HASH_MessageDigestInit (sf_crypto_hash_ctrl_t *const
p_api_ctrl)

 SSP Crypto HASH Framework - Generates the initial message digest
in an internal context buffer. Can be called once
messageDigestFinal() is called to initialize a new digest operation.
Unless a different HASH type is used, users do not need to close the
module for new digest operation. This is a blocking call. More...

ssp_err_t SF_CRYPTO_HASH_MessageDigestUpdate (sf_crypto_hash_ctrl_t
*const p_api_ctrl, sf_crypto_data_handle_t const *const p_data_in)

 SSP Crypto HASH Framework - Hashes input data and saves it in an
internal context buffer. Can be called multiple times for additional
blocks of data. This is a blocking call. More...

ssp_err_t SF_CRYPTO_HASH_MessageDigestFinal (sf_crypto_hash_ctrl_t *const
p_api_ctrl, sf_crypto_data_handle_t *const p_msg_digest, uint32_t
*p_size)

 SSP Crypto HASH Framework - Hashes the last block of data and
returns the message digest in the output buffer. Once this function is
called, no additional function calls can be made but open function
call can be made to initialize a new digest operation. The Output
buffer will contain the message digest on success and the buffer
length will be updated to reflect the size of the digest. On error, only
the length is set to 0.This is a blocking call. More...

ssp_err_t SF_CRYPTO_HASH_VersionGet (ssp_version_t *const p_version)

 Gets driver version based on compile time macros. More...

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,588 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Hash Framework

RTOS-integrated Crypto HASH Framework Module.

Macro Definition Documentation

◆ SF_CRYPTO_HASH_CODE_VERSION_MAJOR

#define SF_CRYPTO_HASH_CODE_VERSION_MAJOR (2U)

The API version of SSP Crypto Framework

Function Documentation

◆ SF_CRYPTO_HASH_Close()

ssp_err_t SF_CRYPTO_HASH_Close (sf_crypto_hash_ctrl_t *const p_api_ctrl)

SSP Crypto HASH Framework Close operation.

Return values
SSP_SUCCESS The module was successfully closed.

SSP_ERR_ASSERTION NULL is passed through the argument.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

SSP_ERR_UNSUPPORTED HASH algorithms are not supported for the
MCU part.

Returns
See Common Error Codes for other possible return codes.

Get a Crypto Framework common control block and the interface.

Check if the Crypto HASH Framework has been opened.

Delete memory resources used by this module and close the HASH HAL module.

Mark the module status as 'Closed'.

Decrement the open counter to enable users to close SF_CRYPTO module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,589 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Hash Framework

◆ SF_CRYPTO_HASH_MessageDigestFinal()

ssp_err_t SF_CRYPTO_HASH_MessageDigestFinal (sf_crypto_hash_ctrl_t *const p_api_ctrl,
sf_crypto_data_handle_t *const p_msg_digest, uint32_t * p_size)

SSP Crypto HASH Framework - Hashes the last block of data and returns the message digest in the
output buffer. Once this function is called, no additional function calls can be made but open
function call can be made to initialize a new digest operation. The Output buffer will contain the
message digest on success and the buffer length will be updated to reflect the size of the digest.
On error, only the length is set to 0.This is a blocking call.

Return values
SSP_SUCCESS The module updated a message Digest

successfully.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_INVALID_SIZE The memory size to store a message digest
is not sufficient for the digest type.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

SSP_ERR_UNSUPPORTED HASH algorithms are not supported for the
MCU part.

SSP_ERR_INVALID_CALL Function call was made if the module state
had not yet transitioned to
SF_CRYPTO_HASH_DIGEST_UPDATED.

Returns
See Common Error Codes for other possible return codes.

Note
p_msg_digest->p_data must be WORD aligned. The memory allocation to store a message digest is user's
responsibility.

Get a Crypto Framework common control block and the interface.

Check if the Crypto Framework has been in 'Digest Updated' status. If not, return an error.

Update the message digest.

We are all set now. A message digest is returned. Mark the module status as 'Opened'.

Unlock the module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,590 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Hash Framework

◆ SF_CRYPTO_HASH_MessageDigestInit()

ssp_err_t SF_CRYPTO_HASH_MessageDigestInit (sf_crypto_hash_ctrl_t *const p_api_ctrl)

SSP Crypto HASH Framework - Generates the initial message digest in an internal context buffer.
Can be called once messageDigestFinal() is called to initialize a new digest operation. Unless a
different HASH type is used, users do not need to close the module for new digest operation. This is
a blocking call.

Return values
SSP_SUCCESS The module updated a message Digest

successfully.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

Returns
See Common Error Codes for other possible return codes.

Note
When this function is called if SF_CRYPTO_HASH_DIGEST_INITIALIZED or
SF_CRYPTO_HASH_DIGEST_UPDATED, the message digest will be initialized.

Check if the Crypto HASH Framework module has been opened. If not yet opened, return an error.

Create initial message digest code in the module context.

Mark the module status as 'Digest Initialized'.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,591 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Hash Framework

◆ SF_CRYPTO_HASH_MessageDigestUpdate()

ssp_err_t SF_CRYPTO_HASH_MessageDigestUpdate (sf_crypto_hash_ctrl_t *const p_api_ctrl,
sf_crypto_data_handle_t const *const p_data_in)

SSP Crypto HASH Framework - Hashes input data and saves it in an internal context buffer. Can be
called multiple times for additional blocks of data. This is a blocking call.

Return values
SSP_SUCCESS The module updated a message Digest

successfully.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

SSP_ERR_UNSUPPORTED HASH algorithms are not supported for the
MCU part.

SSP_ERR_INVALID_CALL Function call was made if the module state
had not yet transitioned to
SF_CRYPTO_HASH_DIGEST_INITIALIZED.

Returns
See Common Error Codes for other possible return codes.

Get a Crypto Framework common control block and the interface.

Check if the Crypto Framework has been in 'Digest Initialized' status. If not, return an error.

Update the message digest.

Mark the module status as 'Digest Updated'.

Unlock the module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,592 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Hash Framework

◆ SF_CRYPTO_HASH_Open()

ssp_err_t SF_CRYPTO_HASH_Open (sf_crypto_hash_ctrl_t *const p_api_ctrl, sf_crypto_hash_cfg_t
const *const p_cfg)

SSP Crypto HASH Framework Open operation.

Return values
SSP_SUCCESS The module was successfully opened.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_CRYPTO_COMMON_NOT_OPENED Crypto Framework Common Module has yet
been opened.

SSP_ERR_ALREADY_OPEN The module has been already opened.

SSP_ERR_UNSUPPORTED HASH algorithms are not supported for the
MCU part.

Returns
See Common Error Codes for other possible return codes.

Get a Crypto Framework common instance, the control block and interface.

Get a lower-level HASH instance.

Check if the Crypto Framework common instance has been opened. If not yet opened, return an
error.

Check if the Crypto HASH Framework module has been opened.

Create memory resources used by this module and open a HASH HAL module.

Increment the open counter.

We have successfully processed the open procedures. Mark the module status as 'Opened'.

◆ SF_CRYPTO_HASH_VersionGet()

ssp_err_t SF_CRYPTO_HASH_VersionGet (ssp_version_t *const p_version)

Gets driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

 sf_crypto_hash_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » SSP Crypto Hash Framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,593 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Hash Framework > sf_crypto_hash_instance_ctrl_t Struct Reference

#include <sf_crypto_hash.h>

Data Fields

sf_crypto_hash_state_t status

 Module status.

sf_crypto_hash_type_t hash_type

 HASH algorithm type.

sf_crypto_hash_context_t hash_context

 Context for calculating message digest.

sf_crypto_instance_t * p_lower_lvl_crypto_common

 Pointer to a Crypto Framework common instance.

hash_instance_t * p_lower_lvl_instance

 pointer to lower-level crypto module control structure

Detailed Description

SSP Crypto HASH Framework instance control block

The documentation for this struct was generated from the following file:

sf_crypto_hash.h

5.1.3.17 SSP Crypto Key Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Crypto Key Framework Module. More...

Data Structures

struct sf_crypto_key_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,594 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

Macros

#define SF_CRYPTO_KEY_CODE_VERSION_MAJOR (2U)

Functions

ssp_err_t sf_crypto_key_open_aes (sf_crypto_key_instance_ctrl_t *p_ctrl,
sf_crypto_key_cfg_t const *const p_cfg)

 Subroutine to open a Crypto AES HAL module. This function is called
by SF_CRYPTO_KEY_Open(). More...

ssp_err_t sf_crypto_key_close_aes (sf_crypto_key_instance_ctrl_t *p_ctrl)

 Subroutine to close a Crypto AES HAL module. This function is called
by SF_CRYPTO_KEY_Close(). More...

ssp_err_t sf_crypto_key_generate_aes (sf_crypto_key_instance_ctrl_t *p_ctrl,
sf_crypto_key_t *const p_secret_key)

 Subroutine to generate a AES key. This function is called by
SF_CRYPTO_KEY_Generate(). More...

void sf_crypto_key_aes_interface_get (sf_crypto_key_instance_ctrl_t
*const p_ctrl)

 Subroutine to get a AES HAL API instance. This function is called by
sf_crypto_key_open_aes(). Key framework control block's p_hal_api
field is filled with HAL AES interface. This will be set to NULL if the
API interface is not found on the particular MCU. More...

void sf_crypto_key_aes_get_available_api_interface
(sf_crypto_key_instance_ctrl_t *const p_ctrl,
crypto_interface_get_param_t *p_param)

 Subroutine to get first available AES HAL API instance for
ECB/CBC/CTR/GCM chaining modes. This function is called by
sf_crypto_key_aes_interface_get(). Key framework control block's
p_hal_api field is filled with HAL AES interface. This will be set to
NULL if the API interface is not found on the particular MCU. More...

ssp_err_t sf_crypto_key_aes_verify_wrappedkey_buffersize
(sf_crypto_key_size_t key_size, uint32_t buffer_length)

 Subroutine to verify that the provided buffer_length (indicates size of
the secret AES Wrapped key) is sufficient or not, before proceeding
with key Generate function. This function is called by AES Key
Generate function before passing request to Crypto HAL Key
generate API call. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,595 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

ssp_err_t sf_crypto_key_aes_verify_wrapped_xtskey_buffersize
(sf_crypto_key_size_t key_size, uint32_t buffer_length)

 Subroutine to verify that the provided num_words (indicates size of
the secret AES Wrapped key for XTS AES chaining mode) is sufficient
or not, before proceeding with key operations. This function is called
by sf_crypto_key_aes_verify_wrappedkey_buffersize as an internal
function call. More...

ssp_err_t sf_crypto_key_open_ecc (sf_crypto_key_instance_ctrl_t *p_ctrl,
sf_crypto_key_cfg_t const *const p_cfg)

 Subroutine to open a Crypto ECC HAL module. This function is called
by SF_CRYPTO_KEY_Open(). The configuration parameters are
validated before opening the HAL module. More...

ssp_err_t sf_crypto_key_close_ecc (sf_crypto_key_instance_ctrl_t *p_ctrl)

 Subroutine to close a Crypto ECC HAL module. This function is called
by SF_CRYPTO_KEY_Close(). More...

ssp_err_t sf_crypto_key_generate_ecc (sf_crypto_key_instance_ctrl_t *p_ctrl,
sf_crypto_key_t *const p_secret_key, sf_crypto_key_t *const
p_public_key)

 Subroutine to generate a ECC key. This function is called by
SF_CRYPTO_KEY_Generate(). More...

ssp_err_t sf_crypto_key_scalar_multiplication_ecc
(sf_crypto_key_instance_ctrl_t *p_ctrl, sf_crypto_key_t *const
p_secret_key, sf_crypto_key_t *const p_point_on_curve,
sf_crypto_key_t *const p_resultant_vector)

 Subroutine to perform a ECC scalar multiplication. This function is
called by SF_CRYPTO_KEY_ECDHCompute(). More...

ssp_err_t sf_crypto_key_open_rsa (sf_crypto_key_instance_ctrl_t *p_ctrl,
sf_crypto_key_cfg_t const *const p_cfg)

 Subroutine to open a Crypto RSA HAL module. This function is called
by SF_CRYPTO_KEY_Open(). More...

ssp_err_t sf_crypto_key_close_rsa (sf_crypto_key_instance_ctrl_t *p_ctrl)

 Subroutine to close a Crypto RSA HAL module. This function is called
by SF_CRYPTO_KEY_Close(). More...

ssp_err_t sf_crypto_key_generate_rsa (sf_crypto_key_instance_ctrl_t *p_ctrl,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,596 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

sf_crypto_key_t *const p_secret_key, sf_crypto_key_t *const
p_public_key)

 Subroutine to generate a RSA key. This function is called by
SF_CRYPTO_KEY_Generate(). More...

void sf_crypto_key_rsa_interface_get (sf_crypto_key_instance_ctrl_t *const
p_ctrl)

 Subroutine to get a RSA HAL API instance. This function is called by
sf_crypto_key_open_rsa(). More...

ssp_err_t sf_crypto_key_rsa_verify_privatekey_buffersize (sf_crypto_key_type_t
key_type, sf_crypto_key_size_t key_size, uint32_t buffer_length)

 Subroutine to verify that the provided buffer_length (buffer to hold
the secret RSA private key) is sufficient or not, before proceeding
with key Generate function. This function is called by RSA Key
Generate function before passing request to Crypto HAL Key
generate API call. More...

ssp_err_t sf_crypto_key_rsa_verify_publickey_buffersize (sf_crypto_key_type_t
key_type, sf_crypto_key_size_t key_size, uint32_t buffer_length)

 Subroutine to verify that the provided buffer_length (buffer to hold
the secret RSA Public key) is sufficient or not, before proceeding with
key Generate function. This function is called by RSA Key Generate
function before passing request to Crypto HAL Key generate API call.
More...

ssp_err_t sf_crypto_key_rsa_verify_plaintext_buffersize (sf_crypto_key_size_t
key_size, uint32_t buffer_length)

 Subroutine to verify that the provided buffer_length (buffer to hold
the secret RSA Plain text key) is sufficient or not, before proceeding
with key Generate function. This function is called by
sf_crypto_key_rsa_verify_privatekey_buffersize as an internal
function call. More...

ssp_err_t sf_crypto_key_rsa_verify_crtplaintext_buffersize (sf_crypto_key_size_t
key_size, uint32_t buffer_length)

 Subroutine to verify that the provided buffer_length (buffer to hold
the secret RSA CRT Plain text key) is sufficient or not, before
proceeding with key Generate function. This function is called by
sf_crypto_key_rsa_verify_privatekey_buffersize as an internal
function call. More...

ssp_err_t sf_crypto_key_rsa_verify_wrapped_buffersize (sf_crypto_key_size_t
key_size, uint32_t buffer_length)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,597 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

 Subroutine to verify that the provided buffer_length (buffer to hold
the secret RSA Wrapped key) is sufficient or not, before proceeding
with key Generate function. This function is called by
sf_crypto_key_rsa_verify_privatekey_buffersize as an internal
function call. More...

ssp_err_t SF_CRYPTO_KEY_Open (sf_crypto_key_ctrl_t *const p_api_ctrl,
sf_crypto_key_cfg_t const *const p_cfg)

 SSP Crypto KeyFramework Open operation. More...

ssp_err_t SF_CRYPTO_KEY_Close (sf_crypto_key_ctrl_t *const p_api_ctrl)

 SSP Crypto Key Framework Close operation. More...

ssp_err_t SF_CRYPTO_KEY_Generate (sf_crypto_key_ctrl_t *const p_api_ctrl,
sf_crypto_key_t *const p_secret_key, sf_crypto_key_t *const
p_public_key)

 SSP Crypto Framework Key Generate operation. More...

ssp_err_t SF_CRYPTO_KEY_EcdhSharedSecretCompute (sf_crypto_key_ctrl_t
*const p_api_ctrl, sf_crypto_key_t *const p_local_secret_key,
sf_crypto_key_t *const p_remote_public_key, sf_crypto_key_t *const
p_shared_secret)

 SSP Crypto Framework ECDH Shared Secret Computation operation.
More...

ssp_err_t SF_CRYPTO_KEY_VersionGet (ssp_version_t *const p_version)

 Gets driver version based on compile time macros. More...

Detailed Description

RTOS-integrated Crypto Key Framework Module.

Macro Definition Documentation

◆ SF_CRYPTO_KEY_CODE_VERSION_MAJOR

#define SF_CRYPTO_KEY_CODE_VERSION_MAJOR (2U)

The API version of SSP Crypto Framework

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,598 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_aes_get_available_api_interface()

void sf_crypto_key_aes_get_available_api_interface (sf_crypto_key_instance_ctrl_t *const p_ctrl,
crypto_interface_get_param_t * p_param)

Subroutine to get first available AES HAL API instance for ECB/CBC/CTR/GCM chaining modes. This
function is called by sf_crypto_key_aes_interface_get(). Key framework control block's p_hal_api
field is filled with HAL AES interface. This will be set to NULL if the API interface is not found on the
particular MCU.

Parameters
[in,out] p_ctrl Pointer to a Key framework

control block.

[in] p_param Interface get param.
Algorithm type, key type and
key size is set by the caller.

◆ sf_crypto_key_aes_interface_get()

void sf_crypto_key_aes_interface_get (sf_crypto_key_instance_ctrl_t *const p_ctrl)

Subroutine to get a AES HAL API instance. This function is called by sf_crypto_key_open_aes(). Key
framework control block's p_hal_api field is filled with HAL AES interface. This will be set to NULL if
the API interface is not found on the particular MCU.

Parameters
[in,out] p_ctrl Pointer to a Key framework

control block. interface. This
indicates NULL, for not
supported MCUs

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,599 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_aes_verify_wrapped_xtskey_buffersize()

ssp_err_t sf_crypto_key_aes_verify_wrapped_xtskey_buffersize (sf_crypto_key_size_t key_size,
uint32_t buffer_length)

Subroutine to verify that the provided num_words (indicates size of the secret AES Wrapped key for
XTS AES chaining mode) is sufficient or not, before proceeding with key operations. This function is
called by sf_crypto_key_aes_verify_wrappedkey_buffersize as an internal function call.

Parameters
[in] key_size Indicates AES key sizes -

128/256-bits, supported
chaining mode - XTS

[in] buffer_length Length of the secret key
which shall be filled by AES
Key generation algorithm.

Return values
SSP_SUCCESS Key length is successful, and proceed with

AES Key Generation.

SSP_ERR_INVALID_SIZE Failed, as the allocated key length is not
sufficient for the Key generation operation
of AES

Note
This function is not a user API but an internal function for SF_CRYPTO_KEY to verify whether passed buffer size
is sufficient for Key to hold in Key Generate API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,600 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_aes_verify_wrappedkey_buffersize()

ssp_err_t sf_crypto_key_aes_verify_wrappedkey_buffersize (sf_crypto_key_size_t key_size,
uint32_t buffer_length)

Subroutine to verify that the provided buffer_length (indicates size of the secret AES Wrapped key)
is sufficient or not, before proceeding with key Generate function. This function is called by AES
Key Generate function before passing request to Crypto HAL Key generate API call.

Parameters
[in] key_size Indicates AES key sizes -

128/192/256-bits, supported
chaining modes - CBC, ECB,
GCM, CTR

[in] buffer_length Length of the secret key
which shall be filled by AES
Key generation algorithm.

Return values
SSP_SUCCESS Key length is successful, and proceed with

AES Key Generation.

SSP_ERR_INVALID_SIZE Failed, as the allocated key length is not
sufficient for the Key generation operation
of AES

Note
This function is not a user API but an internal function for SF_CRYPTO_KEY to verify whether passed buffer size
is sufficient for Key to hold in Key Generate API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,601 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ SF_CRYPTO_KEY_Close()

ssp_err_t SF_CRYPTO_KEY_Close (sf_crypto_key_ctrl_t *const p_api_ctrl)

SSP Crypto Key Framework Close operation.

Return values
SSP_SUCCESS The module was successfully closed.

SSP_ERR_ASSERTION NULL is passed through the argument.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

Returns
See Common Error Codes for other possible return codes.

Get a Crypto common control block and the interface.

Check if the Crypto Framework has been opened. If not yet opened, return an error.

Close Crypto HAL module.

Decrement the open counter to enable users to close SF_CRYPTO module.

◆ sf_crypto_key_close_aes()

ssp_err_t sf_crypto_key_close_aes (sf_crypto_key_instance_ctrl_t * p_ctrl)

Subroutine to close a Crypto AES HAL module. This function is called by SF_CRYPTO_KEY_Close().

Parameters
[in] p_ctrl Pointer to a Crypto Key

Framework module control
block

Return values
SSP_SUCCESS AES HAL module is successfully closed.

Returns
See Common Error Codes for other possible return codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,602 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_close_ecc()

ssp_err_t sf_crypto_key_close_ecc (sf_crypto_key_instance_ctrl_t * p_ctrl)

Subroutine to close a Crypto ECC HAL module. This function is called by SF_CRYPTO_KEY_Close().

Parameters
[in] p_ctrl Pointer to a Crypto Key

Framework module control
block

Return values
SSP_SUCCESS ECC HAL module is successfully closed.

Returns
See Common Error Codes for other possible return codes.

Close the Crypto HAL driver.

Release the control block memory back to byte pool

◆ sf_crypto_key_close_rsa()

ssp_err_t sf_crypto_key_close_rsa (sf_crypto_key_instance_ctrl_t * p_ctrl)

Subroutine to close a Crypto RSA HAL module. This function is called by SF_CRYPTO_KEY_Close().

Parameters
[in] p_ctrl Pointer to a Crypto Key

Framework module control
block

Return values
SSP_SUCCESS RSA HAL module is successfully closed.

Returns
See Common Error Codes for other possible return codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,603 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ SF_CRYPTO_KEY_EcdhSharedSecretCompute()

ssp_err_t SF_CRYPTO_KEY_EcdhSharedSecretCompute (sf_crypto_key_ctrl_t *const p_api_ctrl,
sf_crypto_key_t *const p_local_secret_key, sf_crypto_key_t *const p_remote_public_key,
sf_crypto_key_t *const p_shared_secret)

SSP Crypto Framework ECDH Shared Secret Computation operation.

Return values
SSP_SUCCESS The module created a key successfully.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

SSP_ERR_UNSUPPORTED The module does not support scalar
multiplication operation.

SSP_ERR_INVALID_SIZE The length of the buffer supplied for the key
to be generated, is insufficient.

Returns
See Common Error Codes for other possible return codes.

Check if ECDH computation is used with ECC, otherwise return an error.

Check if the Crypto Framework has been opened. If not yet opened, return an error.

Lock the module to access to Crypto HAL module.

Perform the scalar multiplication.

Unlock the module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,604 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ SF_CRYPTO_KEY_Generate()

ssp_err_t SF_CRYPTO_KEY_Generate (sf_crypto_key_ctrl_t *const p_api_ctrl, sf_crypto_key_t *const
p_secret_key, sf_crypto_key_t *const p_public_key)

SSP Crypto Framework Key Generate operation.

Return values
SSP_SUCCESS The module created a key successfully.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

SSP_ERR_UNSUPPORTED The module does not support the key type
specified by user.

SSP_ERR_INVALID_SIZE The length of the buffer supplied for the key
to be generated, is insufficient.

Returns
See Common Error Codes for other possible return codes.

Check if the Crypto Framework has been opened. If not yet opened, return an error.

Lock the module to access to Crypto HAL module.

Generate a key.

Unlock the module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,605 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_generate_aes()

ssp_err_t sf_crypto_key_generate_aes (sf_crypto_key_instance_ctrl_t * p_ctrl, sf_crypto_key_t
*const p_secret_key)

Subroutine to generate a AES key. This function is called by SF_CRYPTO_KEY_Generate().

Parameters
[in] p_ctrl Pointer to a Crypto Key

Framework module control
block.

[out] p_secret_key Pointer to a secret key.

Return values
SSP_SUCCESS The module created the AES Secret key

successfully.

SSP_ERR_INVALID_SIZE Failed, as the allocated key buffer length is
not sufficient for the AES Key generation
operation.

SSP_ERR_UNSUPPORTED Procedure is not supported for the supplied
parameters.

Returns
See Common Error Codes for other possible return codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,606 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_generate_ecc()

ssp_err_t sf_crypto_key_generate_ecc (sf_crypto_key_instance_ctrl_t * p_ctrl, sf_crypto_key_t
*const p_secret_key, sf_crypto_key_t *const p_public_key)

Subroutine to generate a ECC key. This function is called by SF_CRYPTO_KEY_Generate().

Parameters
[in] p_ctrl Pointer to a Crypto Key

Framework module control
block

[out] p_secret_key Pointer to a secret key

[out] p_public_key Pointer to a public key

Return values
SSP_SUCCESS The module created a key successfully.

SSP_ERR_INVALID_SIZE Failed, as the allocated key buffer length is
not sufficient for the ECC Key generation
operation.

SSP_ERR_UNSUPPORTED Procedure is not supported for the supplied
parameters.

Returns
See Common Error Codes for other possible return codes.

Verify the domain parameter input buffer size. The length has to be exactly as specified

Verify the public key buffer size that holds the generated public key.

Verify the secret key buffer size that holds the generated private key.

Local variable created to call the HAL API.

Note that the HAL driver requires data in WORDS

Call Crypto HAL driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,607 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_generate_rsa()

ssp_err_t sf_crypto_key_generate_rsa (sf_crypto_key_instance_ctrl_t * p_ctrl, sf_crypto_key_t
*const p_secret_key, sf_crypto_key_t *const p_public_key)

Subroutine to generate a RSA key. This function is called by SF_CRYPTO_KEY_Generate().

Parameters
[in] p_ctrl Pointer to a Crypto Key

Framework module control
block

[out] p_secret_key Pointer to a secret key

[out] p_public_key Pointer to a public key

Return values
SSP_SUCCESS The module created a key successfully.

SSP_ERR_INVALID_SIZE Failed, as the allocated key buffer length is
not sufficient for the RSA Key generation
operation.

SSP_ERR_UNSUPPORTED Procedure is not supported for the supplied
parameters.

Returns
See Common Error Codes for other possible return codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,608 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ SF_CRYPTO_KEY_Open()

ssp_err_t SF_CRYPTO_KEY_Open (sf_crypto_key_ctrl_t *const p_api_ctrl, sf_crypto_key_cfg_t const
*const p_cfg)

SSP Crypto KeyFramework Open operation.

Return values
SSP_SUCCESS The module was successfully opened.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_CRYPTO_COMMON_NOT_OPENED Crypto Framework Common Module has yet
been opened.

SSP_ERR_ALREADY_OPEN The module has been already opened.

SSP_ERR_UNSUPPORTED The module does not support the key type
specified by user.

SSP_ERR_INVALID_SIZE The buffer length of one of the configuration
parameters is invalid.

Returns
See Common Error Codes for other possible return codes.

Get a Crypto common control block and the interface.

Check if the Crypto Framework has been opened. If not yet opened, return an error.

Check if the Crypto key framework module has been already opened. If yes, return an error.

Set a key type, size, domain and generator point. Generator point and domain are UNUSED for RSA
and AES algorithms, applicable only for ECC.

Open Crypto HAL module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,609 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_open_aes()

ssp_err_t sf_crypto_key_open_aes (sf_crypto_key_instance_ctrl_t * p_ctrl, sf_crypto_key_cfg_t const
*const p_cfg)

Subroutine to open a Crypto AES HAL module. This function is called by SF_CRYPTO_KEY_Open().

Parameters
[in,out] p_ctrl Pointer to a Crypto Key

Framework module control
block

[in] p_cfg Pointer to a Crypto Key
Framework module
configuration structure

Return values
SSP_SUCCESS AES HAL module is successfully opened.

SSP_ERR_OUT_OF_MEMORY Failed to allocate memory to store AES HAL
module control block.

SSP_ERR_INTERNAL RTOS service returned a unexpected error.

Returns
See Common Error Codes for other possible return codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,610 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_open_ecc()

ssp_err_t sf_crypto_key_open_ecc (sf_crypto_key_instance_ctrl_t * p_ctrl, sf_crypto_key_cfg_t const
*const p_cfg)

Subroutine to open a Crypto ECC HAL module. This function is called by SF_CRYPTO_KEY_Open().
The configuration parameters are validated before opening the HAL module.

Parameters
[in,out] p_ctrl Pointer to a Crypto Key

Framework module control
block

[in,out] p_cfg Pointer to a Crypto Key
Framework module
configuration structure

Return values
SSP_SUCCESS ECC HAL module is successfully opened.

SSP_ERR_OUT_OF_MEMORY Failed to allocate memory to store ECC HAL
module control block.

SSP_ERR_INTERNAL RTOS service returned a unexpected error.

Returns
See Common Error Codes for other possible return codes.

Validate the cfg parameters. The key type is already validated.

Verify the key size.

Verify the domain parameter input buffer size. The length has to be exactly as specified

Verify the generator point input buffer size. The length has to be exactly as specified

Get a Crypto common control block and the interface.

Allocate memory for a Crypto HAL control block in the byte pool.

Get a ECC interface instance.

Set Crypto HAL API instance with the control common hardware api.

Open the Crypto HAL module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,611 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_open_rsa()

ssp_err_t sf_crypto_key_open_rsa (sf_crypto_key_instance_ctrl_t * p_ctrl, sf_crypto_key_cfg_t const
*const p_cfg)

Subroutine to open a Crypto RSA HAL module. This function is called by SF_CRYPTO_KEY_Open().

Parameters
[in,out] p_ctrl Pointer to a Crypto Key

Framework module control
block

[in,out] p_cfg Pointer to a Crypto Key
Framework module
configuration structure

Return values
SSP_SUCCESS RSA HAL module is successfully opened.

SSP_ERR_OUT_OF_MEMORY Failed to allocate memory to store RSA HAL
module control block.

SSP_ERR_INTERNAL RTOS service returned a unexpected error.

Returns
See Common Error Codes for other possible return codes.

◆ sf_crypto_key_rsa_interface_get()

void sf_crypto_key_rsa_interface_get (sf_crypto_key_instance_ctrl_t *const p_ctrl)

Subroutine to get a RSA HAL API instance. This function is called by sf_crypto_key_open_rsa().

Parameters
[in,out] p_ctrl Pointer to a Key framework

control block, whose
p_hal_api filled with HAL RSA
interface. This indicates
NULL, for not supported
MCUs

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,612 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_rsa_verify_crtplaintext_buffersize()

ssp_err_t sf_crypto_key_rsa_verify_crtplaintext_buffersize (sf_crypto_key_size_t key_size, uint32_t
buffer_length)

Subroutine to verify that the provided buffer_length (buffer to hold the secret RSA CRT Plain text
key) is sufficient or not, before proceeding with key Generate function. This function is called by
sf_crypto_key_rsa_verify_privatekey_buffersize as an internal function call.

Parameters
[in] key_size Indicates RSA key size -

1024/2048-bits.

[in] buffer_length Length of the secret key
which shall be filled by RSA
Key generation algorithm.

Return values
SSP_SUCCESS Key length is successful, and proceed with

RSA Key Generation.

SSP_ERR_INVALID_SIZE Failed, as the allocated key length is not
sufficient for the Key generation operation
of RSA.

Note
This function is not a user API but an internal function for SF_CRYPTO_KEY to verify whether passed buffer size
is sufficient for Key to hold in Key Generate API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,613 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_rsa_verify_plaintext_buffersize()

ssp_err_t sf_crypto_key_rsa_verify_plaintext_buffersize (sf_crypto_key_size_t key_size, uint32_t
buffer_length)

Subroutine to verify that the provided buffer_length (buffer to hold the secret RSA Plain text key) is
sufficient or not, before proceeding with key Generate function. This function is called by
sf_crypto_key_rsa_verify_privatekey_buffersize as an internal function call.

Parameters
[in] key_size Indicates RSA key size -

1024/2048-bits.

[in] buffer_length Length of the secret key
which shall be filled by RSA
Key generation algorithm.

Return values
SSP_SUCCESS Key length is successful, and proceed with

RSA Key Generation.

SSP_ERR_INVALID_SIZE Failed, as the allocated key length is not
sufficient for the Key generation operation
of RSA.

Note
This function is not a user API but an internal function for SF_CRYPTO_KEY to verify whether passed buffer size
is sufficient for Key to hold in Key Generate API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,614 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_rsa_verify_privatekey_buffersize()

ssp_err_t sf_crypto_key_rsa_verify_privatekey_buffersize (sf_crypto_key_type_t key_type,
sf_crypto_key_size_t key_size, uint32_t buffer_length)

Subroutine to verify that the provided buffer_length (buffer to hold the secret RSA private key) is
sufficient or not, before proceeding with key Generate function. This function is called by RSA Key
Generate function before passing request to Crypto HAL Key generate API call.

Parameters
[in] key_type Indicates RSA key type -

Plain text/CRT Plain Text/
Wrapped key.

[in] key_size Indicates RSA key size -
1024/2048-bits.

[in] buffer_length Length of the secret key
which shall be filled by RSA
Key generation algorithm.

Return values
SSP_SUCCESS Key length is successful, and proceed with

RSA Key Generation.

SSP_ERR_INVALID_SIZE Failed, as the allocated key length is not
sufficient for the Key generation operation
of RSA.

Note
This function is not a user API but an internal function for SF_CRYPTO_KEY to verify whether passed buffer size
is sufficient for Key to hold in Key Generate API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,615 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_rsa_verify_publickey_buffersize()

ssp_err_t sf_crypto_key_rsa_verify_publickey_buffersize (sf_crypto_key_type_t key_type,
sf_crypto_key_size_t key_size, uint32_t buffer_length)

Subroutine to verify that the provided buffer_length (buffer to hold the secret RSA Public key) is
sufficient or not, before proceeding with key Generate function. This function is called by RSA Key
Generate function before passing request to Crypto HAL Key generate API call.

Parameters
[in] key_type Indicates RSA key type -

Plain text/CRT Plain Text/
Wrapped key.

[in] key_size Indicates RSA key size -
1024/2048-bits.

[in] buffer_length Length of the secret key
which shall be filled by RSA
Key generation algorithm.

Return values
SSP_SUCCESS Key length is successful, and proceed with

RSA Key Generation.

SSP_ERR_INVALID_SIZE Failed, as the allocated key length is not
sufficient for the Key generation operation
of RSA.

Note
This function is not a user API but an internal function for SF_CRYPTO_KEY to verify whether passed buffer size
is sufficient for Key to hold in Key Generate API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,616 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_rsa_verify_wrapped_buffersize()

ssp_err_t sf_crypto_key_rsa_verify_wrapped_buffersize (sf_crypto_key_size_t key_size, uint32_t
buffer_length)

Subroutine to verify that the provided buffer_length (buffer to hold the secret RSA Wrapped key) is
sufficient or not, before proceeding with key Generate function. This function is called by
sf_crypto_key_rsa_verify_privatekey_buffersize as an internal function call.

Parameters
[in] key_size Indicates RSA key size -

1024/2048-bits.

[in] buffer_length Length of the secret key
which shall be filled by RSA
Key generation algorithm.

Return values
SSP_SUCCESS Key length is successful, and proceed with

RSA Key Generation.

SSP_ERR_INVALID_SIZE Failed, as the allocated key length is not
sufficient for the Key generation operation
of RSA.

Note
This function is not a user API but an internal function for SF_CRYPTO_KEY to verify whether passed buffer size
is sufficient for Key to hold in Key Generate API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,617 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ sf_crypto_key_scalar_multiplication_ecc()

ssp_err_t sf_crypto_key_scalar_multiplication_ecc (sf_crypto_key_instance_ctrl_t * p_ctrl,
sf_crypto_key_t *const p_secret_key, sf_crypto_key_t *const p_point_on_curve, sf_crypto_key_t
*const p_resultant_vector)

Subroutine to perform a ECC scalar multiplication. This function is called by
SF_CRYPTO_KEY_ECDHCompute().

Parameters
[in] p_ctrl Pointer to a Crypto Key

Framework module control
block

[in] p_secret_key Pointer to a secret key

[in] p_point_on_curve Pointer to a point specified
on the curve.

[in] p_resultant_vector Pointer to the resultant point
on the curve.

Return values
SSP_SUCCESS The module created a key successfully.

SSP_ERR_INVALID_SIZE Failed, as the allocated key buffer length is
not sufficient for the ECC Key generation
operation.

SSP_ERR_UNSUPPORTED Procedure is not supported for the supplied
parameters.

Returns
See Common Error Codes for other possible return codes.

Verify the secret key buffer size that holds the generated private key.

Verify the input buffer size for holding the data, representing point on the curve data.

Verify the output buffer size to hold the resultant data, representing point on the curve.

Local variable created to call the HAL API.

Note that the HAL driver requires data in WORDS

Call Crypto HAL driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,618 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework

◆ SF_CRYPTO_KEY_VersionGet()

ssp_err_t SF_CRYPTO_KEY_VersionGet (ssp_version_t *const p_version)

Gets driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

 sf_crypto_key_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » SSP Crypto Key Framework

#include <sf_crypto_key.h>

Data Fields

sf_crypto_key_state_t status

 Module status.

sf_crypto_key_type_t key_type

 Key type.

sf_crypto_key_size_t key_size

 Key size.

sf_crypto_data_handle_t domain_params

 Domain parameters structure with pointer to data and length.

sf_crypto_data_handle_t generator_point

 Generator Point structure with pointer to data and length.

sf_crypto_instance_ctrl_t * p_fwk_common_ctrl

 Pointer to the Crypto Framework Common instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,619 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Framework > sf_crypto_key_instance_ctrl_t Struct Reference

sf_crypto_api_t * p_fwk_common_api

 Pointer to the Crypto Framework Common instance.

void * p_hal_ctrl

 pointer to Crypto module control structure

void * p_hal_api

 pointer to Crypto module API structure

Detailed Description

SSP Crypto Key Framework instance control block

The documentation for this struct was generated from the following file:

sf_crypto_key.h

5.1.3.18 SSP Crypto Key Installation Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Crypto Key Installation Framework Module. More...

Data Structures

struct sf_crypto_key_installation_instance_ctrl_t

Macros

#define SF_CRYPTO_KEY_INSTALLATION_CODE_VERSION_MAJOR (2U)

Functions

ssp_err_t SF_CRYPTO_KEY_INSTALLATION_Open
(sf_crypto_key_installation_ctrl_t *const p_api_ctrl,
sf_crypto_key_installation_cfg_t const *const p_cfg)

 SSP Crypto Key Installation Framework Open operation. More...

ssp_err_t SF_CRYPTO_KEY_INSTALLATION_Close
(sf_crypto_key_installation_ctrl_t *const p_api_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,620 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Installation Framework

 SSP Crypto Key Installation Framework Close operation. More...

ssp_err_t SF_CRYPTO_KEY_INSTALLATION_KeyInstall
(sf_crypto_key_installation_ctrl_t *const p_api_ctrl,
sf_crypto_data_handle_t const *const p_user_key_rsa_modulus,
sf_crypto_data_handle_t const *const p_user_key_input,
sf_crypto_key_installation_shared_index_t const shared_index_input,
sf_crypto_data_handle_t const *const p_session_key_input, uint32_t
const *const p_iv_input, sf_crypto_data_handle_t *const
p_key_data_out)

 SSP Crypto Framework Key Installation operation. More...

ssp_err_t SF_CRYPTO_KEY_INSTALLATION_VersionGet (ssp_version_t *const
p_version)

 Gets driver version based on compile time macros. More...

Detailed Description

RTOS-integrated Crypto Key Installation Framework Module.

Macro Definition Documentation

◆ SF_CRYPTO_KEY_INSTALLATION_CODE_VERSION_MAJOR

#define SF_CRYPTO_KEY_INSTALLATION_CODE_VERSION_MAJOR (2U)

The API version of SSP Crypto Key Installation Framework

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,621 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Installation Framework

◆ SF_CRYPTO_KEY_INSTALLATION_Close()

ssp_err_t SF_CRYPTO_KEY_INSTALLATION_Close (sf_crypto_key_installation_ctrl_t *const p_api_ctrl)

SSP Crypto Key Installation Framework Close operation.

Return values
SSP_SUCCESS The module was successfully closed.

SSP_ERR_ASSERTION NULL is passed through the argument.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

Returns
See Common Error Codes for other possible return codes.

Check if the Crypto Framework has been opened. If not yet opened, return an error.

Call HAL API to Close Key Installation HAL Driver

◆ SF_CRYPTO_KEY_INSTALLATION_KeyInstall()

ssp_err_t SF_CRYPTO_KEY_INSTALLATION_KeyInstall (sf_crypto_key_installation_ctrl_t *const
p_api_ctrl, sf_crypto_data_handle_t const *const p_user_key_rsa_modulus, sf_crypto_data_handle_t
const *const p_user_key_input, sf_crypto_key_installation_shared_index_t const
shared_index_input, sf_crypto_data_handle_t const *const p_session_key_input, uint32_t const
*const p_iv_input, sf_crypto_data_handle_t *const p_key_data_out)

SSP Crypto Framework Key Installation operation.

Return values
SSP_SUCCESS The module created a key successfully.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

SSP_ERR_INVALID_ARGUMENT At least one of the input arguments is
invalid.

SSP_ERR_INVALID_SIZE At least one of the buffers provided is of
invalid size.

Returns
See Common Error Codes for other possible return codes.

Validate modulus and output buffers only in case of RSA key type.

Check if the Crypto Key Installation Framework has been opened. If not yet opened, return an error.

Call HAL API to perform Key Installation operation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,622 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Installation Framework

◆ SF_CRYPTO_KEY_INSTALLATION_Open()

ssp_err_t SF_CRYPTO_KEY_INSTALLATION_Open (sf_crypto_key_installation_ctrl_t *const p_api_ctrl,
sf_crypto_key_installation_cfg_t const *const p_cfg)

SSP Crypto Key Installation Framework Open operation.

Return values
SSP_SUCCESS The module was successfully opened.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_CRYPTO_COMMON_NOT_OPENED Crypto Framework Common Module has yet
been opened.

SSP_ERR_ALREADY_OPEN The module has been already opened.

SSP_ERR_INVALID_ARGUMENT The module does not support the key type
specified by user.

Returns
See Common Error Codes for other possible return codes.

Check if the Crypto Framework has been opened. If not yet opened, return an error.

Check if SF Crypto Key Installation is already opened

Validate and copy configuration parameters to control block

Call HAL API to Open Key Installation HAL Driver

Set Key Installation Framework module status to Open

◆ SF_CRYPTO_KEY_INSTALLATION_VersionGet()

ssp_err_t SF_CRYPTO_KEY_INSTALLATION_VersionGet (ssp_version_t *const p_version)

Gets driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

 sf_crypto_key_installation_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » SSP Crypto Key Installation
Framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,623 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Key Installation Framework > sf_crypto_key_installation_instance_ctrl_t Struct Reference

#include <sf_crypto_key_installation.h>

Data Fields

sf_crypto_key_installation_st
ate_t

status

 Module status.

sf_crypto_key_type_t key_type

 Type of key to be installed.

sf_crypto_key_size_t key_size

 Size of key to be installed.

sf_crypto_instance_ctrl_t * p_lower_lvl_common_ctrl

 Pointer to the Crypto Framework Common instance.

sf_crypto_api_t * p_lower_lvl_common_api

 Pointer to the Crypto Framework Common instance.

void * p_lower_lvl_instance

 Pointer to HAL KeyInstall Crypto module instance structure.

Detailed Description

SSP Crypto Key Installation Framework instance control block

The documentation for this struct was generated from the following file:

sf_crypto_key_installation.h

5.1.3.19 SSP Crypto Signature Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Crypto Signature Framework Module. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,624 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

Data Structures

struct sf_crypto_signature_context_t

struct sf_crypto_signature_instance_ctrl_t

Macros

#define SF_CRYPTO_SIGNATURE_CODE_VERSION_MAJOR (2U)

Enumerations

enum sf_crypto_signature_state_t { SF_CRYPTO_SIGNATURE_CLOSED,
SF_CRYPTO_SIGNATURE_OPENED }

enum sf_crypto_signature_operation_state_t {
 SF_CRYPTO_SIGNATURE_OPERATION_STATE_OPEN,
SF_CRYPTO_SIGNATURE_OPERATION_STATE_SIGN_INITIALIZED,
SF_CRYPTO_SIGNATURE_OPERATION_STATE_SIGN_UPDATED,
SF_CRYPTO_SIGNATURE_OPERATION_STATE_SIGN_FINALIZED,
 SF_CRYPTO_SIGNATURE_OPERATION_STATE_VERIFY_INITIALIZED,
SF_CRYPTO_SIGNATURE_OPERATION_STATE_VERIFY_UPDATED,
SF_CRYPTO_SIGNATURE_OPERATION_STATE_VERIFY_FINALIZED
}

Functions

ssp_err_t sf_crypto_signature_key_size_config_rsa (sf_crypto_signature_cfg_t
const *const p_cfg)

 Function for Crypto Signature Framework to check configuration
params - Key size. This function is called by
sf_crypto_signature_validate_config(). More...

ssp_err_t sf_crypto_signature_open_rsa (sf_crypto_signature_instance_ctrl_t
*const p_ctrl, sf_crypto_signature_cfg_t const *const p_cfg)

 Function for Crypto Signature Framework to open the RSA HAL
driver. This function is called by sf_crypto_signature_hal_open().
More...

ssp_err_t sf_crypto_signature_close_rsa (sf_crypto_signature_instance_ctrl_t
*p_ctrl)

 Function for Crypto Signature Framework to close the RSA HAL
driver. This function is called by sf_crypto_signature_hal_close().
More...

ssp_err_t sf_crypto_signature_context_init_rsa
(sf_crypto_signature_instance_ctrl_t *const p_ctrl,
sf_crypto_signature_mode_t operation_mode,
sf_crypto_signature_algorithm_init_params_t *const

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,625 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

p_algorithm_specific_params, sf_crypto_key_t const *const p_key)

 Function for Crypto Signature Framework to initialize the Signature
framework module context. This function is called by
sf_crypto_signature_hal_context_init(). More...

ssp_err_t sf_crypto_signature_sign_update_rsa
(sf_crypto_signature_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_message)

 Function for Crypto Signature Framework to perform sign update
operation. This function is called by
sf_crypto_signature_hal_sign_update(). More...

ssp_err_t sf_crypto_signature_verify_update_rsa
(sf_crypto_signature_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_message)

 Function for Crypto Signature Framework to perform verify update
operation. This function is called by
sf_crypto_signature_hal_verify_update(). More...

ssp_err_t sf_crypto_signature_sign_final_rsa
(sf_crypto_signature_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_message,
sf_crypto_data_handle_t *const p_dest)

 Function for Crypto Signature Framework to perform sign final
operation. This function is called by
sf_crypto_signature_hal_sign_final(). More...

ssp_err_t sf_crypto_signature_verify_final_rsa
(sf_crypto_signature_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_signature,
sf_crypto_data_handle_t const *const p_message)

 Function for Crypto Signature Framework to perform verify final
operation. This function is called by
sf_crypto_signature_hal_verify_final(). More...

ssp_err_t SF_CRYPTO_SIGNATURE_Open (sf_crypto_signature_ctrl_t *const
p_api_ctrl, sf_crypto_signature_cfg_t const *const p_cfg)

 SSP Crypto Signature Framework Open operation. More...

ssp_err_t SF_CRYPTO_SIGNATURE_Close (sf_crypto_signature_ctrl_t *const
p_api_ctrl)

 SSP Crypto Signature Framework Close operation. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,626 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

ssp_err_t SF_CRYPTO_SIGNATURE_ContextInit (sf_crypto_signature_ctrl_t
*const p_api_ctrl, sf_crypto_signature_mode_t operation_mode,
sf_crypto_signature_algorithm_init_params_t *const
p_algorithm_specific_params, sf_crypto_key_t const *const p_key)

 SSP Crypto Signature Framework Context Initialization operation.
More...

ssp_err_t SF_CRYPTO_SIGNATURE_SignUpdate (sf_crypto_signature_ctrl_t
*const p_api_ctrl, sf_crypto_data_handle_t const *const p_message)

 SSP Crypto Signature Framework Signature Update operation.
More...

ssp_err_t SF_CRYPTO_SIGNATURE_VerifyUpdate (sf_crypto_signature_ctrl_t
*const p_api_ctrl, sf_crypto_data_handle_t const *const p_message)

 SSP Crypto Signature Framework Signature-Verification Update
operation. More...

ssp_err_t SF_CRYPTO_SIGNATURE_SignFinal (sf_crypto_signature_ctrl_t *const
p_api_ctrl, sf_crypto_data_handle_t const *const p_message,
sf_crypto_data_handle_t *const p_dest)

 SSP Crypto Signature Framework Signature Final operation. More...

ssp_err_t SF_CRYPTO_SIGNATURE_VerifyFinal (sf_crypto_signature_ctrl_t *const
p_api_ctrl, sf_crypto_data_handle_t const *const p_signature,
sf_crypto_data_handle_t const *const p_message)

 SSP Crypto Signature Framework Signature-Verification Update
operation. More...

ssp_err_t SF_CRYPTO_SIGNATURE_VersionGet (ssp_version_t *const p_version)

 Gets driver version based on compile time macros. More...

ssp_err_t sf_crypto_signature_validate_sign_operation_state_transition
(sf_crypto_signature_instance_ctrl_t *p_ctrl,
sf_crypto_signature_operation_state_t next_state)

 SSP Crypto Signature Framework State transition validation for sign
operation. More...

ssp_err_t sf_crypto_signature_validate_verify_operation_state_transition
(sf_crypto_signature_instance_ctrl_t *p_ctrl,
sf_crypto_signature_operation_state_t next_state)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,627 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

 SSP Crypto Signature Framework State transition validation for verify
operation. More...

Detailed Description

RTOS-integrated Crypto Signature Framework Module.

Macro Definition Documentation

◆ SF_CRYPTO_SIGNATURE_CODE_VERSION_MAJOR

#define SF_CRYPTO_SIGNATURE_CODE_VERSION_MAJOR (2U)

The API version of SSP Crypto Signature Framework

Enumeration Type Documentation

◆ sf_crypto_signature_operation_state_t

enum sf_crypto_signature_operation_state_t

Internal state codes for the SSP Crypto Signature framework module.

Enumerator

SF_CRYPTO_SIGNATURE_OPERATION_STATE_OPE
N

Module opened to perform sign/verify
operation.

SF_CRYPTO_SIGNATURE_OPERATION_STATE_SIG
N_INITIALIZED

Context is initialized for Sign Operation.

SF_CRYPTO_SIGNATURE_OPERATION_STATE_SIG
N_UPDATED

Sign operation is in progress.

SF_CRYPTO_SIGNATURE_OPERATION_STATE_SIG
N_FINALIZED

Sign operation has been completed.

SF_CRYPTO_SIGNATURE_OPERATION_STATE_VER
IFY_INITIALIZED

Context is initialized for Verify Operation.

SF_CRYPTO_SIGNATURE_OPERATION_STATE_VER
IFY_UPDATED

Verify operation is in progress.

SF_CRYPTO_SIGNATURE_OPERATION_STATE_VER
IFY_FINALIZED

Verify operation has been completed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,628 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ sf_crypto_signature_state_t

enum sf_crypto_signature_state_t

State codes for the SSP Crypto Signature framework module. Once the module is opened
successfully, then the state is transition to OPENED state. After sign/verify operations, the
Signature framework module must be closed with CLOSED state.

Enumerator

SF_CRYPTO_SIGNATURE_CLOSED The Signature module is closed.

SF_CRYPTO_SIGNATURE_OPENED The Signature module is opened.

Function Documentation

◆ SF_CRYPTO_SIGNATURE_Close()

ssp_err_t SF_CRYPTO_SIGNATURE_Close (sf_crypto_signature_ctrl_t *const p_api_ctrl)

SSP Crypto Signature Framework Close operation.

Return values
SSP_SUCCESS The module was successfully closed.

SSP_ERR_ASSERTION NULL is passed through the argument.

SSP_ERR_INTERNAL Critical internal error.

SSP_ERR_NOT_OPEN The module has yet been opened. Call Open
API first.

Returns
See Common Error Codes for other possible return codes.

Check if the Crypto Framework has been opened. If not yet opened, return an error.

Close Crypto HAL module.

Decrement Open counter to indicate a (this) module is closed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,629 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ sf_crypto_signature_close_rsa()

ssp_err_t sf_crypto_signature_close_rsa (sf_crypto_signature_instance_ctrl_t * p_ctrl)

Function for Crypto Signature Framework to close the RSA HAL driver. This function is called by
sf_crypto_signature_hal_close().

Parameters
[in,out] p_ctrl Pointer to Crypto Signature

Framework instance control
block structure.

Return values
SSP_SUCCESS The module was successfully closed.

SSP_ERR_INTERNAL Critical internal error.

Returns
See Common Error Codes for other possible return codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,630 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ sf_crypto_signature_context_init_rsa()

ssp_err_t sf_crypto_signature_context_init_rsa (sf_crypto_signature_instance_ctrl_t *const p_ctrl,
sf_crypto_signature_mode_t operation_mode, sf_crypto_signature_algorithm_init_params_t *const
p_algorithm_specific_params, sf_crypto_key_t const *const p_key)

Function for Crypto Signature Framework to initialize the Signature framework module context.
This function is called by sf_crypto_signature_hal_context_init().

Parameters
[in,out] p_ctrl Pointer to Crypto Signature

Framework instance control
block structure.

[in] operation_mode Perform Sign Or Verify
operation.

[in] p_algorithm_specific_params Algorithm specific params.

[in] p_key Private key if sign operation
is to be performed. Public
key if verify operation is to
be performed.

Return values
SSP_SUCCESS The module context was successfully

initialized.

SSP_ERR_INTERNAL Critical internal error.

SSP_ERR_INVALID_CALL Invalid call to this API.

SSP_ERR_UNSUPPORTED Invalid Hash module request.

SSP_ERR_CRYPTO_INVALID_OPERATION_MO
DE

Invalid operation mode requested.

Returns
See Common Error Codes for other possible return codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,631 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ SF_CRYPTO_SIGNATURE_ContextInit()

ssp_err_t SF_CRYPTO_SIGNATURE_ContextInit (sf_crypto_signature_ctrl_t *const p_api_ctrl,
sf_crypto_signature_mode_t operation_mode, sf_crypto_signature_algorithm_init_params_t *const
p_algorithm_specific_params, sf_crypto_key_t const *const p_key)

SSP Crypto Signature Framework Context Initialization operation.

Return values
SSP_SUCCESS The module context was successfully

initialized.

SSP_ERR_ASSERTION NULL is passed through the argument.

SSP_ERR_INTERNAL Critical internal error.

SSP_ERR_INVALID_CALL Invalid call to this API.

SSP_ERR_UNSUPPORTED Invalid Hash module request.

SSP_ERR_CRYPTO_INVALID_OPERATION_MO
DE

Invalid operation mode requested.

Returns
See Common Error Codes for other possible return codes.

Check if the Crypto Framework has been opened. If not yet opened, return an error.

Setup Context for HAL.

◆ sf_crypto_signature_key_size_config_rsa()

ssp_err_t sf_crypto_signature_key_size_config_rsa (sf_crypto_signature_cfg_t const *const p_cfg)

Function for Crypto Signature Framework to check configuration params - Key size. This function is
called by sf_crypto_signature_validate_config().

Parameters
[in] p_cfg Pointer to

sf_crypto_signature_cfg_t
configuration structure.

Return values
SSP_SUCCESS Valid RSA Key size.

SSP_ERR_INVALID_ARGUMENT Invalid RSA Key size.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,632 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ SF_CRYPTO_SIGNATURE_Open()

ssp_err_t SF_CRYPTO_SIGNATURE_Open (sf_crypto_signature_ctrl_t *const p_api_ctrl,
sf_crypto_signature_cfg_t const *const p_cfg)

SSP Crypto Signature Framework Open operation.

Return values
SSP_SUCCESS The module was successfully opened.

SSP_ERR_ASSERTION NULL is passed through an argument.

SSP_ERR_INTERNAL Critical internal error.

SSP_ERR_CRYPTO_COMMON_NOT_OPENED Crypto Framework Common Module has yet
been opened.

SSP_ERR_ALREADY_OPEN The module has been already opened.

SSP_ERR_UNSUPPORTED The module does not support the key type
specified by user.

Returns
See Common Error Codes for other possible return codes.

Setup control block with common framework module (instance control and API).

Setup control block with Hash framework module (instance).

Check if Crypto Common module is opened before calling this API.

Check if SF Crypto Signature is already opened.

Validate configuration parameters.

Copy configuration parameters to control block.

Open Crypto HAL module.

Set Signature Framework module internal operation state to Open.

Set Signature Framework module status to Open.

Increment Open counter to indicate a (this) module is open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,633 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ sf_crypto_signature_open_rsa()

ssp_err_t sf_crypto_signature_open_rsa (sf_crypto_signature_instance_ctrl_t *const p_ctrl,
sf_crypto_signature_cfg_t const *const p_cfg)

Function for Crypto Signature Framework to open the RSA HAL driver. This function is called by
sf_crypto_signature_hal_open().

Parameters
[in,out] p_ctrl Pointer to Crypto Signature

Framework instance control
block structure.

[in] p_cfg Pointer to
sf_crypto_signature_cfg_t
configuration structure.

Return values
SSP_SUCCESS The module was successfully opened.

SSP_ERR_INTERNAL Critical internal error.

Returns
See Common Error Codes for other possible return codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,634 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ sf_crypto_signature_sign_final_rsa()

ssp_err_t sf_crypto_signature_sign_final_rsa (sf_crypto_signature_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_message, sf_crypto_data_handle_t *const p_dest)

Function for Crypto Signature Framework to perform sign final operation. This function is called by
sf_crypto_signature_hal_sign_final().

Parameters
[in,out] p_ctrl Pointer to Crypto Signature

Framework instance control
block structure.

[in] p_message Pointer to data handle
containing last block of data
and its length. If there is no
more data to be passed this
param can be set to NULL.

[in,out] p_dest Pointer to data handle
containing pointer to a
buffer for storing signature.
The data_length of this
handle must be populated
with the buffer length. Upon
successful return this
data_length will be updated
with the number of bytes
written to this buffer.

Return values
SSP_SUCCESS Sign Final operation was performed

successfully.

SSP_ERR_INTERNAL Critical internal error.

SSP_ERR_CRYPTO_INVALID_SIZE Not enough space to store signature.

SSP_ERR_UNSUPPORTED Invalid Hash module request.

SSP_ERR_CRYPTO_BUF_OVERFLOW Update data exceeded the block size.

Returns
See Common Error Codes for other possible return codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,635 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ sf_crypto_signature_sign_update_rsa()

ssp_err_t sf_crypto_signature_sign_update_rsa (sf_crypto_signature_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_message)

Function for Crypto Signature Framework to perform sign update operation. This function is called
by sf_crypto_signature_hal_sign_update().

Parameters
[in,out] p_ctrl Pointer to Crypto Signature

Framework instance control
block structure.

[in] p_message Pointer to data handle
containing update data and
its length.

Return values
SSP_SUCCESS Sign update was performed successfully.

SSP_ERR_ASSERTION Critical internal error.

SSP_ERR_UNSUPPORTED Invalid Hash module request.

SSP_ERR_CRYPTO_BUF_OVERFLOW Update data exceeded the block size.

SSP_ERR_CRYPTO_INVALID_OPERATION_MO
DE

Invalid operation mode requested.

Returns
See Common Error Codes for other possible return codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,636 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ SF_CRYPTO_SIGNATURE_SignFinal()

ssp_err_t SF_CRYPTO_SIGNATURE_SignFinal (sf_crypto_signature_ctrl_t *const p_api_ctrl,
sf_crypto_data_handle_t const *const p_message, sf_crypto_data_handle_t *const p_dest)

SSP Crypto Signature Framework Signature Final operation.

Return values
SSP_SUCCESS Sign Final operation was performed

successfully.

SSP_ERR_ASSERTION NULL is passed through the argument.

SSP_ERR_INTERNAL Critical internal error.

SSP_ERR_INVALID_CALL Invalid call to this API.

SSP_ERR_CRYPTO_INVALID_SIZE Not enough space to store signature.

SSP_ERR_UNSUPPORTED Invalid Hash module request.

SSP_ERR_CRYPTO_BUF_OVERFLOW Update data exceeded the block size.

Returns
See Common Error Codes for other possible return codes.

Check if the Crypto Framework has been opened. If not yet opened, return an error.

Validate state transition.

Lock the module to access to Crypto HAL module.

Perform Sign Final.

Set Signature Framework internal state.

Unlock the module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,637 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ SF_CRYPTO_SIGNATURE_SignUpdate()

ssp_err_t SF_CRYPTO_SIGNATURE_SignUpdate (sf_crypto_signature_ctrl_t *const p_api_ctrl,
sf_crypto_data_handle_t const *const p_message)

SSP Crypto Signature Framework Signature Update operation.

Return values
SSP_SUCCESS Sign update was performed successfully.

SSP_ERR_ASSERTION NULL is passed through the argument.

SSP_ERR_INTERNAL Critical internal error.

SSP_ERR_INVALID_CALL Invalid call to this API.

SSP_ERR_UNSUPPORTED Invalid Hash module request.

SSP_ERR_CRYPTO_BUF_OVERFLOW Update data exceeded the block size.

SSP_ERR_CRYPTO_INVALID_OPERATION_MO
DE

Invalid operation mode requested.

Returns
See Common Error Codes for other possible return codes.

Check if the Crypto Framework has been opened. If not yet opened, return an error.

Validate state transition.

Lock the module to access to Crypto HAL module.

Perform Sign Update.

Set Signature Framework internal state.

Unlock the module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,638 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ sf_crypto_signature_validate_sign_operation_state_transition()

ssp_err_t sf_crypto_signature_validate_sign_operation_state_transition (
sf_crypto_signature_instance_ctrl_t * p_ctrl, sf_crypto_signature_operation_state_t next_state)

SSP Crypto Signature Framework State transition validation for sign operation.

Parameters
[in] p_ctrl Pointer to Crypto Signature

Framework instance control
block structure.

[in] next_state Requested next state.

Return values
SSP_SUCCESS Valid call to the calling API.

SSP_ERR_INVALID_CALL Invalid call to the calling API.

◆ sf_crypto_signature_validate_verify_operation_state_transition()

ssp_err_t sf_crypto_signature_validate_verify_operation_state_transition (
sf_crypto_signature_instance_ctrl_t * p_ctrl, sf_crypto_signature_operation_state_t next_state)

SSP Crypto Signature Framework State transition validation for verify operation.

Parameters
[in] p_ctrl Pointer to Crypto Signature

Framework instance control
block structure.

[in] next_state Requested next state.

Return values
SSP_SUCCESS Valid call to the calling API.

SSP_ERR_INVALID_CALL Invalid call to the calling API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,639 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ sf_crypto_signature_verify_final_rsa()

ssp_err_t sf_crypto_signature_verify_final_rsa (sf_crypto_signature_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_signature, sf_crypto_data_handle_t const *const
p_message)

Function for Crypto Signature Framework to perform verify final operation. This function is called by
sf_crypto_signature_hal_verify_final().

Parameters
[in,out] p_ctrl Pointer to Crypto Signature

Framework instance control
block structure.

[in] p_signature Pointer to data handle
containing signature and its
length.

[in] p_message Pointer to data handle
containing message in
appropriate format and its
length.

Return values
SSP_SUCCESS Verify Final operation was performed

successfully.

SSP_ERR_INTERNAL Critical internal error.

SSP_ERR_CRYPTO_INVALID_SIZE Invalid signature length.

SSP_ERR_UNSUPPORTED Invalid Hash module request.

SSP_ERR_CRYPTO_BUF_OVERFLOW Update data exceeded the block size.

Returns
See Common Error Codes for other possible return codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,640 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ sf_crypto_signature_verify_update_rsa()

ssp_err_t sf_crypto_signature_verify_update_rsa (sf_crypto_signature_instance_ctrl_t *const p_ctrl,
sf_crypto_data_handle_t const *const p_message)

Function for Crypto Signature Framework to perform verify update operation. This function is called
by sf_crypto_signature_hal_verify_update().

Parameters
[in,out] p_ctrl Pointer to Crypto Signature

Framework instance control
block structure.

[in] p_message Pointer to data handle
containing message in
appropriate format and its
length.

Return values
SSP_SUCCESS Verify update operation was performed

successfully.

SSP_ERR_ASSERTION Critical internal error.

SSP_ERR_UNSUPPORTED Invalid Hash module request.

SSP_ERR_CRYPTO_BUF_OVERFLOW Update data exceeded the block size.

SSP_ERR_CRYPTO_INVALID_OPERATION_MO
DE

Invalid operation mode requested.

Returns
See Common Error Codes for other possible return codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,641 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ SF_CRYPTO_SIGNATURE_VerifyFinal()

ssp_err_t SF_CRYPTO_SIGNATURE_VerifyFinal (sf_crypto_signature_ctrl_t *const p_api_ctrl,
sf_crypto_data_handle_t const *const p_signature, sf_crypto_data_handle_t const *const
p_message)

SSP Crypto Signature Framework Signature-Verification Update operation.

Return values
SSP_SUCCESS Verify final operation is performed

successfully.

SSP_ERR_ASSERTION NULL is passed through the argument.

SSP_ERR_INTERNAL Critical internal error.

SSP_ERR_INVALID_CALL Invalid call to this API.

SSP_ERR_CRYPTO_INVALID_SIZE Invalid signature length.

SSP_ERR_UNSUPPORTED Invalid Hash module request.

SSP_ERR_CRYPTO_BUF_OVERFLOW Update data exceeded the block size.

Returns
See Common Error Codes for other possible return codes.

Check if the Crypto Framework has been opened. If not yet opened, return an error.

Validate state transition.

Lock the module to access to Crypto HAL module.

Perform Verify Final.

Set Signature Framework internal state.

Unlock the module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,642 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework

◆ SF_CRYPTO_SIGNATURE_VerifyUpdate()

ssp_err_t SF_CRYPTO_SIGNATURE_VerifyUpdate (sf_crypto_signature_ctrl_t *const p_api_ctrl,
sf_crypto_data_handle_t const *const p_message)

SSP Crypto Signature Framework Signature-Verification Update operation.

Return values
SSP_SUCCESS Verify update operation was performed

successfully.

SSP_ERR_ASSERTION NULL is passed through the argument.

SSP_ERR_INTERNAL Critical internal error.

SSP_ERR_INVALID_CALL Invalid call to this API.

SSP_ERR_UNSUPPORTED Invalid Hash module request.

SSP_ERR_CRYPTO_BUF_OVERFLOW Update data exceeded the block size.

SSP_ERR_CRYPTO_INVALID_OPERATION_MO
DE

Invalid operation mode requested.

Returns
See Common Error Codes for other possible return codes.

Check if the Crypto Framework has been opened. If not yet opened, return an error.

Validate state transition.

Lock the module to access to Crypto HAL module.

Perform Verify Update.

Set Signature Framework internal state.

Unlock the module.

◆ SF_CRYPTO_SIGNATURE_VersionGet()

ssp_err_t SF_CRYPTO_SIGNATURE_VersionGet (ssp_version_t *const p_version)

Gets driver version based on compile time macros.

Return values
SSP_SUCCESS Function returned successfully.

SSP_ERR_ASSERTION The parameter p_version is NULL.

 sf_crypto_signature_context_t Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,643 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework > sf_crypto_signature_context_t Struct Reference

Renesas Synergy Software Package Reference » Framework Layer » SSP Crypto Signature
Framework

#include <sf_crypto_signature.h>

Data Fields

sf_crypto_signature_mode_t operation_mode

sf_crypto_signature_algorith
m_init_params_t *

p_aglorithm_specific_params

sf_crypto_data_handle_t buffer

uint8_t * p_key_data

uint32_t key_data_length

Detailed Description

Internal SSP Crypto Signature framework module context.

Field Documentation

◆ buffer

sf_crypto_data_handle_t sf_crypto_signature_context_t::buffer

Internal buffer to format input data

◆ key_data_length

uint32_t sf_crypto_signature_context_t::key_data_length

Length of key data.

◆ operation_mode

sf_crypto_signature_mode_t sf_crypto_signature_context_t::operation_mode

Operating mode. (Sign / Verify operation)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,644 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework > sf_crypto_signature_context_t Struct Reference

◆ p_aglorithm_specific_params

sf_crypto_signature_algorithm_init_params_t*
sf_crypto_signature_context_t::p_aglorithm_specific_params

Algorithm specific parameters. OR hold formatted input data.

◆ p_key_data

uint8_t* sf_crypto_signature_context_t::p_key_data

Buffer to hold private key in case of Sign Operations. OR. Buffer to hold public key in case of Verify
Operations.

The documentation for this struct was generated from the following file:

sf_crypto_signature.h

 sf_crypto_signature_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » SSP Crypto Signature
Framework

#include <sf_crypto_signature.h>

Data Fields

sf_crypto_signature_state_t status

 Module status.

sf_crypto_key_type_t key_type

 Key type.

sf_crypto_key_size_t key_size

 Key size.

sf_crypto_signature_operatio
n_state_t

operation_state

 Internal Operation state.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,645 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework > sf_crypto_signature_instance_ctrl_t Struct Reference

sf_crypto_signature_context
_t

operation_context

sf_crypto_instance_ctrl_t * p_lower_lvl_common_ctrl

sf_crypto_api_t * p_lower_lvl_common_api

void * p_hal_ctrl

void * p_hal_api

sf_crypto_hash_instance_t * p_lower_lvl_sf_crypto_hash

Detailed Description

SSP Crypto Signature Framework instance control block

Field Documentation

◆ operation_context

sf_crypto_signature_context_t sf_crypto_signature_instance_ctrl_t::operation_context

Context for sign / verify operations.

◆ p_hal_api

void* sf_crypto_signature_instance_ctrl_t::p_hal_api

pointer to Crypto module API structure

◆ p_hal_ctrl

void* sf_crypto_signature_instance_ctrl_t::p_hal_ctrl

pointer to Crypto module control structure

◆ p_lower_lvl_common_api

sf_crypto_api_t* sf_crypto_signature_instance_ctrl_t::p_lower_lvl_common_api

Pointer to the Crypto Framework API instance

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,646 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto Signature Framework > sf_crypto_signature_instance_ctrl_t Struct Reference

◆ p_lower_lvl_common_ctrl

sf_crypto_instance_ctrl_t* sf_crypto_signature_instance_ctrl_t::p_lower_lvl_common_ctrl

Pointer to the Crypto Framework Common instance

◆ p_lower_lvl_sf_crypto_hash

sf_crypto_hash_instance_t* sf_crypto_signature_instance_ctrl_t::p_lower_lvl_sf_crypto_hash

pointer to Crypto Framework Hash instance

The documentation for this struct was generated from the following file:

sf_crypto_signature.h

5.1.3.20 SSP Crypto TRNG Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Crypto TRNG Framework Module. More...

Macros

#define SF_CRYPTO_TRNG_CODE_VERSION_MAJOR (2U)

Functions

ssp_err_t SF_CRYPTO_TRNG_Open (sf_crypto_trng_ctrl_t *const p_api_ctrl,
sf_crypto_trng_cfg_t const *const p_cfg)

 SSP Crypto TRNG Framework Open operation. More...

ssp_err_t SF_CRYPTO_TRNG_Close (sf_crypto_trng_ctrl_t *const p_api_ctrl)

 SSP Crypto TRNG Framework Close operation. More...

ssp_err_t SF_CRYPTO_TRNG_RandomNumberGenerate (sf_crypto_trng_ctrl_t
*const p_api_ctrl, sf_crypto_data_handle_t *const
p_random_number_buff)

 SSP Crypto TRNG Framework True Random Generation operation.
More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,647 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto TRNG Framework

ssp_err_t SF_CRYPTO_TRNG_VersionGet (ssp_version_t *const p_version)

 Sets TRNG Framework Code and API version based on compile time
macros. More...

Variables

const sf_crypto_trng_api_t g_sf_crypto_trng_api

Detailed Description

RTOS-integrated Crypto TRNG Framework Module.

Macro Definition Documentation

◆ SF_CRYPTO_TRNG_CODE_VERSION_MAJOR

#define SF_CRYPTO_TRNG_CODE_VERSION_MAJOR (2U)

The API version of SSP Crypto Framework

Function Documentation

◆ SF_CRYPTO_TRNG_Close()

ssp_err_t SF_CRYPTO_TRNG_Close (sf_crypto_trng_ctrl_t *const p_api_ctrl)

SSP Crypto TRNG Framework Close operation.

Return values
SSP_SUCCESS The module was successfully closed

SSP_ERR_ASSERTION One or more input parameters are NULL.

SSP_ERR_CRYPTO_COMMON_NOT_OPENED Crypto Common module has not been
opened.

SSP_ERR_NOT_OPEN The module has not been opened before
calling this API.

Returns
See Common Error Codes for other possible return codes.

Check if SF Crypto TRNG is opened before

Call HAL API to Close TRNG HAL Driver

Set TRNG status to Closed

Decrement Open counter to indicate a (this) module is closed

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,648 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto TRNG Framework

◆ SF_CRYPTO_TRNG_Open()

ssp_err_t SF_CRYPTO_TRNG_Open (sf_crypto_trng_ctrl_t *const p_api_ctrl, sf_crypto_trng_cfg_t
const *const p_cfg)

SSP Crypto TRNG Framework Open operation.

Return values
SSP_SUCCESS The module was successfully opened

SSP_ERR_ASSERTION One or more input parameters are NULL.

SSP_ERR_CRYPTO_COMMON_NOT_OPENED Crypto framework common module has not
been opened before calling this API.

SSP_ERR_ALREADY_OPEN The module has already been opened.

Returns
See Common Error Codes for other possible return codes.

Check if Crypto Common module is opened before calling this API

Check if SF Crypto TRNG is already opened

Setup HAL API

Call HAL API to Open TRNG HAL Driver

Set TRNG status to Open

Increment Open counter to indicate a (this) module is open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,649 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SSP Crypto TRNG Framework

◆ SF_CRYPTO_TRNG_RandomNumberGenerate()

ssp_err_t SF_CRYPTO_TRNG_RandomNumberGenerate (sf_crypto_trng_ctrl_t *const p_api_ctrl,
sf_crypto_data_handle_t *const p_random_number_buff)

SSP Crypto TRNG Framework True Random Generation operation.

Return values
SSP_SUCCESS The module was successfully closed.

SSP_ERR_NOT_OPEN The module has not been opened before
calling this API.

SSP_ERR_ASSERTION One or more input parameters are NULL.

Returns
See Common Error Codes for other possible return codes.

Check if SF Crypto TRNG is opened before

Acquire SF Crypto Common lock before accessing HAL

Call HAL API to generate true random number

Get 16-byte multiples of TRNs first and store/hold it in the user buffer

Release SF Crypto Common lock

◆ SF_CRYPTO_TRNG_VersionGet()

ssp_err_t SF_CRYPTO_TRNG_VersionGet (ssp_version_t *const p_version)

Sets TRNG Framework Code and API version based on compile time macros.

Return values
SSP_SUCCESS Successful close

SSP_ERR_ASSERTION The parameter p_version is NULL.

Variable Documentation

◆ g_sf_crypto_trng_api

const sf_crypto_trng_api_t g_sf_crypto_trng_api

Filled in Interface API structure for this Instance.

5.1.3.21 FX_IO Framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,650 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework

Renesas Synergy Software Package Reference » Framework Layer

FileX adaptation layer for block media device drivers. More...

Data Structures

struct sf_el_fx_media_partition_data_info_t

struct sf_el_fx_media_mbr_info_t

struct sf_el_fx_media_ebr_info_t

struct sf_el_fx_media_boot_record_table_info_t

struct sf_el_fx_media_global_open_info_t

struct sf_el_fx_media_partition_info_t

struct sf_el_fx_media_info_t

struct sf_el_fx_callback_args_t

struct sf_el_fx_config_t

struct sf_el_fx_instance_ctrl_t

struct sf_el_fx_t

Macros

#define SF_EL_FX_API_VERSION_MAJOR (2)

#define SF_EL_FX_CODE_VERSION_MAJOR (2U)

#define SF_EL_FX_55AA_SIGNATURE_OFFSET (0x1FEU)

#define SF_EL_FX_OPEN (0x4649584FU)

Enumerations

enum sf_el_fx_media_partition_table_update_status_t {
SF_EL_FX_PARTITION_TABLE_UPDATE_DISABLE = 0U,
SF_EL_FX_PARTITION_TABLE_UPDATE_ENABLE = 1U }

enum sf_el_fx_media_partition_exist_status_t { SF_EL_FX_NO_PARTITIONS
= 0U, SF_EL_FX_MULTIPLE_PARTITIONS = 1U }

enum sf_el_fx_media_partition_type_t {
 SF_EL_FX_PARTITION_TYPE_UNKNOWN = 0x00U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,651 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework

SF_EL_FX_PARTITION_TYPE_FAT_16_MEMORY_LESS_THAN_32MB =
0x04U, SF_EL_FX_PARTITION_TYPE_EXTENDED = 0x05U,
SF_EL_FX_PARTITION_TYPE_FAT_16_MEMORY_MORE_THAN_32MB =
0x06U,
 SF_EL_FX_PARTITION_TYPE_EXFAT = 0x07U,
SF_EL_FX_PARTITION_TYPE_FAT_32 = 0x0BU,
SF_EL_FX_PARTITION_TYPE_EXTENDED_INT13 = 0x0FU
}

enum sf_el_fx_media_init_status_t { SF_EL_FX_SYS_UNINIT = 0U,
SF_EL_FX_SYS_INIT_PARTIAL = 1U, SF_EL_FX_SYS_INIT_FULL = 2U }

enum sf_el_fx_media_mbr_ebr_status_t {
SF_EL_FX_DONOT_EXIST_OR_INVALID = 0x00U,
SF_EL_FX_EXIST_AND_VALID = 0x01U }

enum sf_el_fx_media_partition_global_open_status_t {
SF_EL_FX_PARTITION_GLOBAL_CLOSE = 0U,
SF_EL_FX_PARTITION_GLOBAL_OPEN = 1U }

enum sf_el_fx_media_partition_open_status_t {
SF_EL_FX_PARTITION_CLOSE = 0U, SF_EL_FX_PARTITION_OPEN = 1U
}

enum sf_el_fx_media_partition_format_status_t {
SF_EL_FX_PARTITION_UNFORMATED = 0U,
SF_EL_FX_PARTITION_PRE_RESET_FORMATED = 1U,
SF_EL_FX_PARTITION_POST_RESET_FORMATED = 2U }

enum sf_el_fx_media_partition_ebr_buff_update_t {
SF_EL_FX_EBR_BUFF_UPDATE_PRESENT = 0U,
SF_EL_FX_EBR_BUFF_UPDATE_NEXT = 1U }

Functions

void SF_EL_FX_BlockDriver (FX_MEDIA *p_fx_media)

 Access Block Media device functions open, close, read, write and
control. More...

Detailed Description

FileX adaptation layer for block media device drivers.

SF_EL_FX FileX I/O is a single entry function which adapts FileX to Renesas Synergy block media
device drivers.

Summary
SF_EL_FX Has no API file.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,652 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework

Macro Definition Documentation

◆ SF_EL_FX_55AA_SIGNATURE_OFFSET

#define SF_EL_FX_55AA_SIGNATURE_OFFSET (0x1FEU)

SSP FileX Support.

◆ SF_EL_FX_API_VERSION_MAJOR

#define SF_EL_FX_API_VERSION_MAJOR (2)

Version of the API defined in this file

◆ SF_EL_FX_CODE_VERSION_MAJOR

#define SF_EL_FX_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

◆ SF_EL_FX_OPEN

#define SF_EL_FX_OPEN (0x4649584FU)

"FIXO" in ASCII. Used to determine if the control block is open.

Enumeration Type Documentation

◆ sf_el_fx_media_init_status_t

enum sf_el_fx_media_init_status_t

Media initialization status

Enumerator

SF_EL_FX_SYS_UNINIT System not initialized.

SF_EL_FX_SYS_INIT_PARTIAL System partial initialized.

SF_EL_FX_SYS_INIT_FULL System full initialized.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,653 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework

◆ sf_el_fx_media_mbr_ebr_status_t

enum sf_el_fx_media_mbr_ebr_status_t

Media MBR/EBR table status

Enumerator

SF_EL_FX_DONOT_EXIST_OR_INVALID MBR/EBR table do not exist or is invalid.

SF_EL_FX_EXIST_AND_VALID MBT/EBR table is valid.

◆ sf_el_fx_media_partition_ebr_buff_update_t

enum sf_el_fx_media_partition_ebr_buff_update_t

Media partition EBR buffer update

Enumerator

SF_EL_FX_EBR_BUFF_UPDATE_PRESENT Update present EBR table.

SF_EL_FX_EBR_BUFF_UPDATE_NEXT Update next EBR table.

◆ sf_el_fx_media_partition_exist_status_t

enum sf_el_fx_media_partition_exist_status_t

Media partition exist status

Enumerator

SF_EL_FX_NO_PARTITIONS No partition in memory.

SF_EL_FX_MULTIPLE_PARTITIONS Multiple partitions in memory.

◆ sf_el_fx_media_partition_format_status_t

enum sf_el_fx_media_partition_format_status_t

Media partition format status

Enumerator

SF_EL_FX_PARTITION_UNFORMATED Partition is not formated.

SF_EL_FX_PARTITION_PRE_RESET_FORMATED Partition exist before reset of the system.

SF_EL_FX_PARTITION_POST_RESET_FORMATED Partition created after system reset.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,654 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework

◆ sf_el_fx_media_partition_global_open_status_t

enum sf_el_fx_media_partition_global_open_status_t

Media partition global open status

Enumerator

SF_EL_FX_PARTITION_GLOBAL_CLOSE All partitions are closed.

SF_EL_FX_PARTITION_GLOBAL_OPEN At least one partition is open.

◆ sf_el_fx_media_partition_open_status_t

enum sf_el_fx_media_partition_open_status_t

Media partition open status

Enumerator

SF_EL_FX_PARTITION_CLOSE Partition is close.

SF_EL_FX_PARTITION_OPEN Partition is open.

◆ sf_el_fx_media_partition_table_update_status_t

enum sf_el_fx_media_partition_table_update_status_t

Block Media Control Block Type Media partition table update status

Enumerator

SF_EL_FX_PARTITION_TABLE_UPDATE_DISABLE Partition table update is disabled.

SF_EL_FX_PARTITION_TABLE_UPDATE_ENABLE Partition table update is enabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,655 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework

◆ sf_el_fx_media_partition_type_t

enum sf_el_fx_media_partition_type_t

Media partition types

Enumerator

SF_EL_FX_PARTITION_TYPE_UNKNOWN Partition type unknown.

SF_EL_FX_PARTITION_TYPE_FAT_16_MEMORY_LE
SS_THAN_32MB

Partition type fat16 with size less than 32 MB.

SF_EL_FX_PARTITION_TYPE_EXTENDED Partition type extended.

SF_EL_FX_PARTITION_TYPE_FAT_16_MEMORY_MO
RE_THAN_32MB

Partition type fat16 with size more than 32
MB.

SF_EL_FX_PARTITION_TYPE_EXFAT Partition type exFAT.

SF_EL_FX_PARTITION_TYPE_FAT_32 Partition type fat32.

SF_EL_FX_PARTITION_TYPE_EXTENDED_INT13 Partition type extended with interrupt 13.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,656 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework

◆ SF_EL_FX_BlockDriver()

void SF_EL_FX_BlockDriver (FX_MEDIA * p_fx_media)

Access Block Media device functions open, close, read, write and control.

The file system relies on the media to be formatted prior to creating directories and files The sector
size and sector count will change depending on the media type and size.

The File Allocation Table (FAT) starts after the reserved sectors in the media. The FAT area is
basically an array of 12-bit, 16-bit, or 32-bit entries that determine if that cluster is allocated or
part of a chain of clusters comprising a subdirectory or a file. The size of each FAT entry is
determined by the number of clusters that need to be represented. If the number of clusters
(derived from the total sectors divided by the sectors per cluster) is less than 4,086, 12-bit FAT
entries are used. If the total number of clusters is greater than 4,086 and less than or equal to
65,525, 16-bit FAT entries are used. Otherwise, if the total number of clusters is greater than
65,525, 32-bit FAT entries are used. The SF_EL_FX_BlockDriver function is called from the FileX file
system driver and issues requests to a Block Media device through the Synergy Block Media
Interface. Uses block media driver for accesses.

Parameters
[in,out] p_fx_media FileX media control block. All

information about each open
media device are maintained
in by the FX_MEDIA data
type. The I/O driver
communicates the success
or failure of the request
through the
fx_media_driver_status
member of FX_MEDIA (p_fx_
media->fx_media_driver_sta
tus). Possible values are
documented in the FileX
User Guide.

Return values
none.

Note
This function returns nothing, but updates FileX media control block.This function calls
sf_el_fx_driver_request_handler

Initialize FileX I/O status to error. It will change to FX_SUCCESS unless an operation fails.

Pass control to sf_el_fx_driver_request_handler, which is responsible for setting
FX_MEDIA::fx_media_driver_status in-case of any failure.

Update FX_MEDIA::fx_media_driver_status to FX_SUCCESS on successful driver request.

 sf_el_fx_media_partition_data_info_t Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,657 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework > sf_el_fx_media_partition_data_info_t Struct Reference

Renesas Synergy Software Package Reference » Framework Layer » FX_IO Framework

#include <sf_el_fx.h>

Data Fields

uint32_t offset

 Partition offset.

uint32_t size

 Partition size.

sf_el_fx_media_partition_ope
n_status_t

open_status

 Partition open status.

sf_el_fx_media_partition_for
mat_status_t

format_status

 Partition format status.

Detailed Description

Individual partition offset, size, open and format status data

The documentation for this struct was generated from the following file:

sf_el_fx.h

 sf_el_fx_media_mbr_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » FX_IO Framework

#include <sf_el_fx.h>

Data Fields

sf_el_fx_media_mbr_ebr_stat
us_t

status

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,658 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework > sf_el_fx_media_mbr_info_t Struct Reference

 MBR table status.

uint8_t buff [512]

 MBR buffer.

Detailed Description

MBR status and buffer data

The documentation for this struct was generated from the following file:

sf_el_fx.h

 sf_el_fx_media_ebr_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » FX_IO Framework

#include <sf_el_fx.h>

Data Fields

sf_el_fx_media_mbr_ebr_stat
us_t

status

 EBR table status.

uint32_t base_addr

 EBR table base address.

uint8_t buff [512]

 EBR buffer.

Detailed Description

EBR status, buffer and base address data

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,659 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework > sf_el_fx_media_ebr_info_t Struct Reference

sf_el_fx.h

 sf_el_fx_media_boot_record_table_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » FX_IO Framework

#include <sf_el_fx.h>

Data Fields

sf_el_fx_media_mbr_info_t mbr

 MBR information.

sf_el_fx_media_ebr_info_t ebr

 EBR information.

Detailed Description

MBR and EBR table information

The documentation for this struct was generated from the following file:

sf_el_fx.h

 sf_el_fx_media_global_open_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » FX_IO Framework

#include <sf_el_fx.h>

Data Fields

sf_el_fx_media_partition_glo
bal_open_status_t

status

 Global partition open/close status.

uint32_t counter

 Partition open counter.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,660 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework > sf_el_fx_media_global_open_info_t Struct Reference

Detailed Description

Global open and counter status of the partition

The documentation for this struct was generated from the following file:

sf_el_fx.h

 sf_el_fx_media_partition_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » FX_IO Framework

#include <sf_el_fx.h>

Data Fields

sf_el_fx_media_partition_exi
st_status_t

multiple_partitions_status

 Single or multiple partition status in the memory.

sf_el_fx_media_partition_dat
a_info_t *

p_data

 Pointer to partition data.

uint32_t total_count

 Total number of partitions.

uint32_t actual_count

 Actual number of partitions created.

Detailed Description

Multiple partition status with total and actual count of partitions

The documentation for this struct was generated from the following file:

sf_el_fx.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,661 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework > sf_el_fx_media_partition_info_t Struct Reference

 sf_el_fx_media_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » FX_IO Framework

#include <sf_el_fx.h>

Data Fields

sf_el_fx_media_init_status_t init_status

 Media init status.

sf_el_fx_media_global_open_
info_t

global_open

 Global open status and counter.

sf_el_fx_media_boot_record_
table_info_t

boot_record_table

 Boot table.

sf_el_fx_media_partition_info
_t

partition

 Partition details.

uint32_t memory_total_sectors

 Total sectors of the memory.

uint32_t memory_free_sectors

 Memory sectors available.

Detailed Description

Available media information

The documentation for this struct was generated from the following file:

sf_el_fx.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,662 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework > sf_el_fx_media_info_t Struct Reference

 sf_el_fx_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » FX_IO Framework

#include <sf_el_fx.h>

Data Fields

uint32_t * p_hidden_sector

 Partition base address.

void const * p_context

 Placeholder for user data.

Detailed Description

Callback function parameter data

The documentation for this struct was generated from the following file:

sf_el_fx.h

 sf_el_fx_config_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » FX_IO Framework

#include <sf_el_fx.h>

Data Fields

sf_block_media_instance_t * p_lower_lvl_block_media

 Lower level block media pointer.

void const * p_context

 Pointer to user-provided context.

void * p_extend

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,663 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework > sf_el_fx_config_t Struct Reference

 Any configuration data needed by the hardware.

uint32_t total_partitions

 Total partition as per the user configuration input.

void(* p_callback)(sf_el_fx_callback_args_t *p_args)

 User callback to specify partitions offset when partitions exist and
board got reset.

Detailed Description

SF_EL_FX configuration block.

The documentation for this struct was generated from the following file:

sf_el_fx.h

 sf_el_fx_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » FX_IO Framework

#include <sf_el_fx.h>

Data Fields

uint32_t open

 Flag to determine if the device is open.

sf_el_fx_media_info_t media_info

 Available media and partition details.

sf_block_media_instance_t * p_lower_lvl_block_media

 Lower level block media pointer.

void const * p_context

 Pointer to user-provided context.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,664 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > FX_IO Framework > sf_el_fx_instance_ctrl_t Struct Reference

void(* p_callback)(sf_el_fx_callback_args_t *p_args)

 User callback to specify partitions offset when partitions exist and
board got reset.

Detailed Description

SF_EL_FX instance control block.

The documentation for this struct was generated from the following file:

sf_el_fx.h

 sf_el_fx_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » FX_IO Framework

#include <sf_el_fx.h>

Data Fields

sf_el_fx_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

sf_el_fx_config_t const * p_config

 Pointer to the configuration structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

sf_el_fx.h

5.1.3.22 GUIX Synergy Port
Renesas Synergy Software Package Reference » Framework Layer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,665 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > GUIX Synergy Port

GUIX adaptation layer. More...

Data Structures

struct sf_el_gx_instance_ctrl_t

Functions

ssp_err_t SF_EL_GX_Open (sf_el_gx_ctrl_t *const p_api_ctrl, sf_el_gx_cfg_t
const *const p_cfg)

 GUIX adaptation framework driver for Synergy, open function to
configure the framework module. The function initialize RTOS
resources used by the module, initialize the control block based on
user configuration, and transition the module state to
SF_EL_GX_OPENED. This function calls following functions: More...

ssp_err_t SF_EL_GX_Close (sf_el_gx_ctrl_t *const p_api_ctrl)

 GUIX adaptation framework for Synergy, Close function. This function
calls following functions: More...

ssp_err_t SF_EL_GX_VersionGet (ssp_version_t *p_version)

 GUIX adaptation framework for Synergy, Version get function. More...

UINT SF_EL_GX_Setup (GX_DISPLAY *p_display)

 GUIX adaptation framework for Synergy, Setup GUIX low level device
drivers for Display and D/AVE 2D interface. This function has to be
passed to the GUIX Studio display driver setup function
gx_studio_display_configure() to let GUIX call this function and
configure the GUIX low level device driver(s). This function calls
following functions: More...

ssp_err_t SF_EL_GX_CanvasInit (sf_el_gx_ctrl_t *const p_api_ctrl,
GX_WINDOW_ROOT *p_window_root)

 GUIX adaptation framework for Synergy, Canvas initialization, setup
the memory address of first canvas to be rendered. More...

Detailed Description

GUIX adaptation layer.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,666 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > GUIX Synergy Port

◆ SF_EL_GX_CanvasInit()

ssp_err_t SF_EL_GX_CanvasInit (sf_el_gx_ctrl_t *const p_api_ctrl, GX_WINDOW_ROOT *
p_window_root)

GUIX adaptation framework for Synergy, Canvas initialization, setup the memory address of first
canvas to be rendered.

Return values
SSP_SUCCESS Memory address is successfully configured

to a canvas.

SSP_ERR_ASSERTION Invalid control block (NULL pointer) or
window root (NULL pointer) passed to
driver.

SSP_ERR_INVALID_CALL Function call was made when the driver is
not in SF_EL_GX_CONFIGURED state.

SSP_ERR_INTERNAL Mutex operation had an error.

Locks the driver to update the context.

Lets GUIX know the first canvas

Unlocks the driver.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,667 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > GUIX Synergy Port

◆ SF_EL_GX_Close()

ssp_err_t SF_EL_GX_Close (sf_el_gx_ctrl_t *const p_api_ctrl)

GUIX adaptation framework for Synergy, Close function. This function calls following functions:

tx_mutex_delete() Deletes the mutex for driver
tx_semaphore_delete() Deletes the semaphore for rendering and displaying
synchronization.
sf_el_gx_d2_close() Finalizes 2D Drawing Engine hardware.
sf_el_gx_display_close() Finalizes display hardware.
Return values

SSP_SUCCESS Closed the module successfully.

SSP_ERR_ASSERTION NULL pointer error happens.

SSP_ERR_NOT_OPEN SF_EL_GX is not opened.

Note
This function is re-entrant.

Finalizes display hardware

Changes the driver state

Deletes a semaphore for frame buffer flip

Deletes driver global mutex

Clears the temporary storage for the pointer to a control block. This procedure has done in
SF_EL_GX_Setup() in the expected function call sequence, but clear it here as well in case
SF_EL_GX_Setup() being not called.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,668 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > GUIX Synergy Port

◆ SF_EL_GX_Open()

ssp_err_t SF_EL_GX_Open (sf_el_gx_ctrl_t *const p_api_ctrl, sf_el_gx_cfg_t const *const p_cfg)

GUIX adaptation framework driver for Synergy, open function to configure the framework module.
The function initialize RTOS resources used by the module, initialize the control block based on
user configuration, and transition the module state to SF_EL_GX_OPENED. This function calls
following functions:

sf_el_gx_open_param_check() Check configuration parameters if parameter check is
enabled.
tx_mutex_create() Creates the mutex for lock the driver during the context update.
tx_mutex_delete() Deletes the mutex if kernel service calls failed in the process.
tx_semaphore_create() Creates the semaphore for rendering and displaying
synchronization.
Return values

SSP_SUCCESS Opened the module successfully.

SSP_ERR_ASSERTION NULL pointer error happened.

SSP_ERR_IN_USE SF_EL_GX is in-use.

SSP_ERR_INTERNAL Error happened in kernel service calls.

SSP_ERR_INVALID_ARGUMENT An invalid argument was passed to the
driver.

Note
This function does not initialize the display or rendering hardware but setup function will do.
This function registers a user callback function but it is optional. Set NULL to p_cfg::p_callback if user
callback is not required.
The configuration for the frame buffer B (p_cfg::p_framebuffer_b) is optional. Set NULL to
p_framebuffer_b in case of a single-buffered system.

Creates global mutex for SF_EL_GX to protect access to the control structure and GUIX low level
device drivers setup.

Locks the SF_EL_GX instance until driver setup is done by SF_EL_GX_Setup().

Creates a semaphore for frame buffer flip

Initializes the SF_EL_GX control block

Saves the control block to the global pointer inside the module temporarily. Stored data will be
used in sf_el_gx_driver_setup() which will be invoked by GUIX. This pointer will be valid at last but
be protected until SF_EL_GX_Setup() is done.

Changes the driver state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,669 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > GUIX Synergy Port

◆ SF_EL_GX_Setup()

UINT SF_EL_GX_Setup (GX_DISPLAY * p_display)

GUIX adaptation framework for Synergy, Setup GUIX low level device drivers for Display and D/AVE
2D interface. This function has to be passed to the GUIX Studio display driver setup function
gx_studio_display_configure() to let GUIX call this function and configure the GUIX low level device
driver(s). This function calls following functions:

tx_mutex_put() Puts the driver global mutex when the low level driver setup is done
tx_mutex_delete() Deletes the mutex if kernel service calls failed in the process
_gx_synergy_display_driver_565rgb_setup() Setups default GUIX callback functions for
RGB565 in case of display format format is RGB565 format
_gx_synergy_display_driver_24xrgb_setup() Setups default GUIX callback functions for
RGB565 in case of display format format is RGB888, unpacked format
_gx_display_driver_32argb_setup() Setups default GUIX callback functions for RGB565 in
case of display format format is ARGB8888, unpacked format
sf_el_gx_driver_setup() Setups low level device drivers and overrides the GUIX default
callback functions with hardware accelerated functions.
Return values

GX_SUCCESS Device driver setup is successfully
done.

GX_FAILURE Device driver setup failed.

Note
Make sure SF_EL_GX_Open() has been called when this function is called back by GUIX. The behavior
is not defined if this function were not invoked by GUIX.

Copies the GX_DISPLAY context for later use.

Setups GUIX low level device drivers

Changes the driver state

Clears the temporary storage for the pointer to a control block.

Unlocks the SF_EL_GX instance since driver setup is done

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,670 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > GUIX Synergy Port

◆ SF_EL_GX_VersionGet()

ssp_err_t SF_EL_GX_VersionGet (ssp_version_t * p_version)

GUIX adaptation framework for Synergy, Version get function.

Parameters
[in,out] p_version The version number.

Return values
SSP_SUCCESS Successfully returned the module version.

SSP_ERR_ASSERTION NULL pointer is passed to function.

Note
This function is re-entrant.

 sf_el_gx_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » GUIX Synergy Port

#include <sf_el_gx.h>

Data Fields

GX_DISPLAY * p_display

 Pointer to the GUIX display context.

display_instance_t * p_display_instance

 Pointer to a display instance.

display_runtime_cfg_t * p_display_runtime_cfg

 Pointer to a runtime display configuration.

display_frame_layer_t inherit_frame_layer

 Configured Inherit Screen Layer.

void * p_canvas

 Pointer to a canvas(reserved)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,671 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > GUIX Synergy Port > sf_el_gx_instance_ctrl_t Struct Reference

void * p_framebuffer_read

 Pointer to a frame buffer (for displaying)

void * p_framebuffer_write

 Pointer to a frame buffer (for rendering)

void(* p_callback)(sf_el_gx_callback_args_t *p_args)

 Pointer to callback function.

void * p_context

 Pointer to a context.

TX_SEMAPHORE semaphore

 Semaphore for the frame buffer flip sync.

bool rendering_enable

 Sync flag between Rendering and displaying.

bool display_list_flushed

 Flag to show the display list is flushed.

sf_el_gx_state_t state

 State of this module.

void * p_jpegbuffer

 Pointer to a JPEG work buffer.

uint32_t jpegbuffer_size

 Size of a JPEG work buffer.

void * p_sf_jpeg_decode_instance

 Pointer to a JPEG framework instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,672 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > GUIX Synergy Port > sf_el_gx_instance_ctrl_t Struct Reference

_Bool dave2d_buffer_cache_enabled

 D/AVE 2D buffer cache enabled/disabled.

uint8_t bytes_per_pixel

 Number of bytes per pixel.

Detailed Description

GUIX adaptation layer for SSP. Instance control block for the SSP GUIX adaptation framework

The documentation for this struct was generated from the following file:

sf_el_gx.h

5.1.3.23 EL_LX_NOR
Renesas Synergy Software Package Reference » Framework Layer

LevelX NOR driver implementation. More...

Data Structures

struct sf_el_lx_nor_memory_settings_t

struct sf_el_lx_nor_callback_args_t

struct sf_el_lx_nor_instance_ctrl_t

struct sf_el_lx_nor_instance_cfg_t

Macros

#define SF_EL_LX_NOR_API_VERSION_MAJOR (2U)

#define SF_EL_LX_NOR_CODE_VERSION_MAJOR (2U)

Enumerations

enum sf_el_lx_nor_event_t { SF_EL_LX_NOR_EVENT_BLOCK_ERASE }

Functions

ssp_err_t SF_EL_LX_NOR_Open (sf_el_lx_nor_instance_ctrl_t *const p_ctrl,
sf_el_lx_nor_instance_cfg_t const *const p_cfg)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,673 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > EL_LX_NOR

 Initializes LevelX NOR frame work read/write and control. More...

ssp_err_t SF_EL_LX_NOR_Read (sf_el_lx_nor_instance_ctrl_t *const p_ctrl,
ULONG *const p_flash, ULONG *const p_dest, ULONG word_count)

 LevelX NOR driver "read sector" service. More...

ssp_err_t SF_EL_LX_NOR_Write (sf_el_lx_nor_instance_ctrl_t *const p_ctrl,
ULONG *const p_flash, ULONG *const p_src, ULONG word_count)

 LevelX NOR driver "write sector" service. More...

ssp_err_t SF_EL_LX_NOR_BlockErase (sf_el_lx_nor_instance_ctrl_t *const p_ctrl,
ULONG block, ULONG erase_count)

 LevelX NOR driver "block erase" service. More...

ssp_err_t SF_EL_LX_NOR_BlockErasedVerify (sf_el_lx_nor_instance_ctrl_t *const
p_ctrl, ULONG block)

 LevelX NOR driver "block erased verify" service. More...

ssp_err_t SF_EL_LX_NOR_Close (sf_el_lx_nor_instance_ctrl_t *const p_ctrl)

 LevelX NOR driver close service. More...

Detailed Description

LevelX NOR driver implementation.

Macro Definition Documentation

◆ SF_EL_LX_NOR_API_VERSION_MAJOR

#define SF_EL_LX_NOR_API_VERSION_MAJOR (2U)

Common macro for SSP header files. There is also a corresponding SSP_FOOTER macro at the end
of this file. Version of the API defined in this file

◆ SF_EL_LX_NOR_CODE_VERSION_MAJOR

#define SF_EL_LX_NOR_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,674 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > EL_LX_NOR

Enumeration Type Documentation

◆ sf_el_lx_nor_event_t

enum sf_el_lx_nor_event_t

Options for the callback events.

Enumerator

SF_EL_LX_NOR_EVENT_BLOCK_ERASE Block erase event triggered.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,675 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > EL_LX_NOR

◆ SF_EL_LX_NOR_BlockErase()

ssp_err_t SF_EL_LX_NOR_BlockErase (sf_el_lx_nor_instance_ctrl_t *const p_ctrl, ULONG block,
ULONG erase_count)

LevelX NOR driver "block erase" service.

This is responsible for erasing the specified block of the NOR flash.

Parameters
[in] p_ctrl Control block for the LevelX

NOR framework instance.

[in] block Specifies which NOR block to
erase.

[in] erase_count Provided for diagnostic
purposes(currently unused).

Return values
SSP_SUCCESS LevelX NOR flash block erase successful.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN Driver not in OPEN state for erasing.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls

sf_memory_api_t:erase
Validate the parameters

If the driver is not open return an error.

Calculate the block address

Erase using underlying API

Call the user function if available

Prepare the callback arguments

Invoke callback function

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,676 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > EL_LX_NOR

◆ SF_EL_LX_NOR_BlockErasedVerify()

ssp_err_t SF_EL_LX_NOR_BlockErasedVerify (sf_el_lx_nor_instance_ctrl_t *const p_ctrl, ULONG
block)

LevelX NOR driver "block erased verify" service.

This is responsible for verifying the specified block of the NOR flash is erased.

Parameters
[in] p_ctrl Control block for the LevelX

NOR framework instance.

[in] block Specifies which block to
verify that it is erased.

Return values
SSP_SUCCESS LevelX flash block erase verification

successful.

SSP_ERR_ASSERTION p_ctrl or lower level driver is NULL.

SSP_ERR_NOT_OPEN Driver not in OPEN state for verifying.

SSP_ERR_NOT_ERASED The block is not erased properly.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls

sf_memory_api_t:read
Validate the parameters

Check whether the driver is in OPEN state

Loop to check if the block is erased.

Check whether the driver read is success or not

Iterate over buffer and validate

Is this word erased?

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,677 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > EL_LX_NOR

◆ SF_EL_LX_NOR_Close()

ssp_err_t SF_EL_LX_NOR_Close (sf_el_lx_nor_instance_ctrl_t *const p_ctrl)

LevelX NOR driver close service.

This is responsible for closing the driver properly.

Parameters
[in] p_ctrl Control block for the LevelX

NOR framework instance.

Return values
SSP_SUCCESS LevelX flash is available and is now open for

read, write, and control access.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN Driver not in OPEN state for closing.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls

sf_memory_api_t:close
Validate the parameters

Check whether the driver is in OPEN state

Close underlying API

Reset OPEN state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,678 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > EL_LX_NOR

◆ SF_EL_LX_NOR_Open()

ssp_err_t SF_EL_LX_NOR_Open (sf_el_lx_nor_instance_ctrl_t *const p_ctrl,
sf_el_lx_nor_instance_cfg_t const *const p_cfg)

Initializes LevelX NOR frame work read/write and control.

Name of module used by error logger macro Calls lower level driver initialization function.

Parameters
[in,out] p_ctrl Control block for the LevelX

NOR framework instance.

[in,out] p_cfg LevelX NOR driver instance.

Return values
SSP_SUCCESS LevelX NOR driver is successfully opened.

SSP_ERR_ASSERTION p_ctrl or p_cfg is NULL.

SSP_ERR_ALREADY_OPEN Driver is already in OPEN state.

SSP_ERR_INVALID_ARGUMENT p_memory_settings structure configured to
invalid values.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls

sf_memory_api_t:open
sf_memory_api_t:infoGet
sf_memory_api_t:close

Validate the parameters

Check whether instance is already open

Update the instance control block

Open the underlying memory instance

Get the underlying NOR flash info

If unable to get NOR flash info, close lower layer driver

Update memory region info

Setup the base address of the flash memory.

Setup geometry of the flash.

Setup the base address of the flash memory.

Setup geometry of the flash.

Mark control block open so subsequent calls know the device is open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,679 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > EL_LX_NOR

◆ SF_EL_LX_NOR_Read()

ssp_err_t SF_EL_LX_NOR_Read (sf_el_lx_nor_instance_ctrl_t *const p_ctrl, ULONG *const p_flash,
ULONG *const p_dest, ULONG word_count)

LevelX NOR driver "read sector" service.

This is responsible for reading a specific sector in a specific block of the NOR flash. All error
checking and correcting logic is the responsibility of the this service.

Parameters
[in] p_ctrl Control block for the LevelX

NOR framework instance.

[in] p_flash Specifies the address of a
logical sector within a NOR
flash block of memory.

[in,out] p_dest Specifies where to place the
sector contents.

[in] word_count Specifies how many 32-bit
words to read.

Return values
SSP_SUCCESS LevelX NOR flash sector read successful.

SSP_ERR_ASSERTION p_ctrl, p_flash or p_dest is NULL.

SSP_ERR_NOT_OPEN Driver not in OPEN state for reading.

SSP_ERR_INVALID_ARGUMENT Requested range can't fit in the flash
address range.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls

sf_memory_api_t:read
Validate the parameters

Check whether the driver is in OPEN state

Read from underlying API

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,680 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > EL_LX_NOR

◆ SF_EL_LX_NOR_Write()

ssp_err_t SF_EL_LX_NOR_Write (sf_el_lx_nor_instance_ctrl_t *const p_ctrl, ULONG *const p_flash,
ULONG *const p_src, ULONG word_count)

LevelX NOR driver "write sector" service.

This is responsible for writing a specific sector into a block of the NOR flash. All error checking is
the responsibility of the this service.

Parameters
[in] p_ctrl Control block for the LevelX

NOR framework instance.

[in,out] p_flash Specifies the address of a
logical sector within a NOR
flash block of memory.

[in] p_src Specifies the source of the
write.

[in] word_count Specifies how many 32-bit
words to write.

Return values
SSP_SUCCESS LevelX NOR flash sector write successful.

SSP_ERR_ASSERTION p_ctrl, p_flash or p_src is NULL.

SSP_ERR_NOT_OPEN Driver not in OPEN state for writing.

SSP_ERR_INVALID_ARGUMENT Requested range can't fit in the flash
address range.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls

sf_memory_api_t:write
Validate the parameters

Check whether the driver is in OPEN state

Write to underlying API

 sf_el_lx_nor_memory_settings_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » EL_LX_NOR

#include <sf_el_lx_nor.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,681 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > EL_LX_NOR > sf_el_lx_nor_memory_settings_t Struct Reference

Data Fields

uint32_t absolute_start_addr

 Starting address of memory partition.

uint32_t size

 Size of the partitioned region.

Detailed Description

SF_EL_LX_NOR memory settings for partition functionality.

The documentation for this struct was generated from the following file:

sf_el_lx_nor.h

 sf_el_lx_nor_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » EL_LX_NOR

#include <sf_el_lx_nor.h>

Data Fields

sf_el_lx_nor_event_t event

 LevelX NOR driver callback event.

void const * p_context

 Placeholder for user data.

uint32_t erase_block_number

 Erase block number.

uint32_t erase_block_count

 Erase count of specified block number.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,682 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > EL_LX_NOR > sf_el_lx_nor_callback_args_t Struct Reference

Detailed Description

SF_EL_LX_NOR callback arguments definitions

The documentation for this struct was generated from the following file:

sf_el_lx_nor.h

 sf_el_lx_nor_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » EL_LX_NOR

#include <sf_el_lx_nor.h>

Data Fields

sf_memory_instance_t const
*

p_lower_lvl

 Lower level memory pointer.

LX_NOR_FLASH * p_lx_nor_flash

 Pointer to the LevelX nor flash instance.

sf_memory_region_info_t * p_region_info

 Memory region information.

void const * p_context

 Placeholder for user data. Passed to the user callback.

sf_el_lx_nor_memory_setting
s_t const *

p_memory_settings

 Pointer to memory settings structure for partitioning functionality.

void(* p_callback)(sf_el_lx_nor_callback_args_t *p_args)

 Callback function.

uint32_t open

 Used to determine if framework is initialized.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,683 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > EL_LX_NOR > sf_el_lx_nor_instance_ctrl_t Struct Reference

Detailed Description

SF_EL_LX_NOR Control Block Type

The documentation for this struct was generated from the following file:

sf_el_lx_nor.h

 sf_el_lx_nor_instance_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » EL_LX_NOR

#include <sf_el_lx_nor.h>

Data Fields

sf_memory_instance_t const
*

p_lower_lvl

 Lower level memory pointer.

LX_NOR_FLASH * p_lx_nor_flash

 Pointer to the LevelX nor flash instance.

void const * p_context

 Placeholder for user data. Passed to the user callback.

sf_el_lx_nor_memory_setting
s_t const *

p_memory_settings

 Pointer to memory settings structure for partitioning functionality.

void(* p_callback)(sf_el_lx_nor_callback_args_t *p_args)

 Callback function.

Detailed Description

SF_EL_LX_NOR Config Block Type

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,684 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > EL_LX_NOR > sf_el_lx_nor_instance_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

sf_el_lx_nor.h

5.1.3.24 USB Communication Framework V2
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated USBX CDC ACM device implementation. More...

Data Structures

struct sf_el_ux_comms_instance_ctrl_t

Functions

ssp_err_t SF_EL_UX_COMMS_Open (sf_comms_ctrl_t *const p_api_ctrl,
sf_comms_cfg_t const *const p_cfg)

 Initializes a USB channel for CDC ACM mode. More...

ssp_err_t SF_EL_UX_COMMS_Close (sf_comms_ctrl_t *const p_api_ctrl)

 Releases all the ThreadX Resources. More...

ssp_err_t SF_EL_UX_COMMS_Read (sf_comms_ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes, UINT const timeout)

 Read data from the USBX CDC-ACM driver. More...

ssp_err_t SF_EL_UX_COMMS_Write (sf_comms_ctrl_t *const p_api_ctrl, uint8_t
const *const p_src, uint32_t const bytes, UINT const timeout)

 Write data to the USBX CDC-ACM framework. More...

ssp_err_t SF_EL_UX_COMMS_Lock (sf_comms_ctrl_t *const p_api_ctrl,
sf_comms_lock_t lock_type, UINT timeout)

 Lock the USB COM resource. More...

ssp_err_t SF_EL_UX_COMMS_Unlock (sf_comms_ctrl_t *const p_api_ctrl,
sf_comms_lock_t lock_type)

 Unlock the USB COM resource. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,685 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USB Communication Framework V2

ssp_err_t SF_EL_UX_COMMS_VersionGet (ssp_version_t *const p_version)

 Get driver version. More...

Detailed Description

RTOS-integrated USBX CDC ACM device implementation.

Function Documentation

◆ SF_EL_UX_COMMS_Close()

ssp_err_t SF_EL_UX_COMMS_Close (sf_comms_ctrl_t *const p_api_ctrl)

Releases all the ThreadX Resources.

Return values
SSP_SUCCESS Channel successfully closed

SSP_ERR_ASSERTION Pointer to control block is NULL

SSP_ERR_NOT_OPEN Module is not opened.

Note
This function is reentrant.

Check if module has been opened.

Delete transmit mutex.

Delete receive mutex.

Deletes a semaphore for USBX CDC instance

◆ SF_EL_UX_COMMS_Lock()

ssp_err_t SF_EL_UX_COMMS_Lock (sf_comms_ctrl_t *const p_api_ctrl, sf_comms_lock_t lock_type,
UINT timeout)

Lock the USB COM resource.

Return values
SSP_SUCCESS Locking a USB COM resource successful.

SSP_ERR_ASSERTION Pointer to control block is NULL.

SSP_ERR_NOT_OPEN Module is not opened.

SSP_ERR_TIMEOUT Mutex not available in timeout.

If lock type is ALL, both TX and RX gets locked else either TX or RX is locked.

If TX or RX fails to acquire mutex, return error.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,686 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USB Communication Framework V2

◆ SF_EL_UX_COMMS_Open()

ssp_err_t SF_EL_UX_COMMS_Open (sf_comms_ctrl_t *const p_api_ctrl, sf_comms_cfg_t const
*const p_cfg)

Initializes a USB channel for CDC ACM mode.

Parameters
[in] p_api_ctrl Pointer to control structure

block.

[in] p_cfg Pointer to configuration
structure block. This
parameter is not used in the
framework hence the NULL
parameter check not
implemented.

Return values
SSP_SUCCESS Channel opened successfully.

SSP_ERR_ASSERTION p_api_ctrl pointer parameter to control block
is NULL.

SSP_ERR_TIMEOUT Semaphore not available in timeout.

SSP_ERR_INTERNAL Transmit/Receive mutex or Semaphore
creation fails.

SSP_ERR_IN_USE Channel/peripheral is running/busy.

Note
This function is reentrant.

Create semaphore if the USBX CDC instance is not ready.

If the semaphore creation fails, return error.

Suspend here until a USBX CDC instance is created by the USBX CDC for this module.

Create the mutex for protecting the access to control structure for transmit and related hardware

Create the mutex for protecting the access to control structure for receive and related hardware

Mark control block open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,687 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USB Communication Framework V2

◆ SF_EL_UX_COMMS_Read()

ssp_err_t SF_EL_UX_COMMS_Read (sf_comms_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const bytes, UINT const timeout)

Read data from the USBX CDC-ACM driver.

Return values
SSP_SUCCESS Data reception ends successfully.

SSP_ERR_INTERNAL An error has occurred if usb read operation
fails or buffer overflow occurred.

SSP_ERR_TIMEOUT Receive mutex get timed out

Note
This API is reentrant.

Get mutex.

Set timeout value in the transfer request.

If there is data leftover from the last packet, use it.

Read from the CDC class.

Release mutex in case of buffer overflow or read error .

Release mutex for Read API.

◆ SF_EL_UX_COMMS_Unlock()

ssp_err_t SF_EL_UX_COMMS_Unlock (sf_comms_ctrl_t *const p_api_ctrl, sf_comms_lock_t
lock_type)

Unlock the USB COM resource.

Return values
SSP_SUCCESS Unlocking a USB COM resource successful.

SSP_ERR_ASSERTION Pointer to control block is NULL.

SSP_ERR_NOT_OPEN Module is not opened.

SSP_ERR_INTERNAL Failed to release the mutex.

Unlock the USB CDC COM resource as per the user request.

If USB CDC COM resource fails to unlock,returns error.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,688 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USB Communication Framework V2

◆ SF_EL_UX_COMMS_VersionGet()

ssp_err_t SF_EL_UX_COMMS_VersionGet (ssp_version_t *const p_version)

Get driver version.

Parameters
[out] p_version Version will be stored here.

Note
This function is reentrant.

◆ SF_EL_UX_COMMS_Write()

ssp_err_t SF_EL_UX_COMMS_Write (sf_comms_ctrl_t *const p_api_ctrl, uint8_t const *const p_src,
uint32_t const bytes, UINT const timeout)

Write data to the USBX CDC-ACM framework.

Return values
SSP_SUCCESS Data transmission finished successfully.

SSP_ERR_INTERNAL An error has occurred, when usb write
operation fails.

SSP_ERR_TIMEOUT Transmit mutex get timed out or when DTR
and RTS state setting gets timed out.

Note
This function is reentrant.

Wait for DTR and RTS state to set.

Get Transmit mutex.

Set timeout value in the transfer request.

Release mutex in case of error condition and log the error .

Release Transmit mutex for Write API.

 sf_el_ux_comms_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » USB Communication Framework
V2

#include <sf_el_ux_comms_v2.h>

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,689 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USB Communication Framework V2 > sf_el_ux_comms_instance_ctrl_t Struct Reference

USBX CDC ACM device communications instance control structure. DO NOT INITIALIZE. Initialization
occurs when sf_comms_api_t::open is called

The documentation for this struct was generated from the following file:

sf_el_ux_comms_v2.h

5.1.3.25 External IRQ Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated external IRQ Framework. More...

Data Structures

struct sf_external_irq_instance_ctrl_t

Functions

ssp_err_t SF_EXTERNAL_IRQ_Open (sf_external_irq_ctrl_t *const p_api_ctrl,
sf_external_irq_cfg_t const *const p_cfg)

 Configure external IRQ and optionally enable external IRQ callbacks.
Implements sf_external_irq_api_t::open. More...

ssp_err_t SF_EXTERNAL_IRQ_Wait (sf_external_irq_ctrl_t *const p_api_ctrl,
ULONG const timeout)

 Get semaphore with specified timeout for external interrupt to
expire. Implements sf_external_irq_api_t::wait. More...

ssp_err_t SF_EXTERNAL_IRQ_VersionGet (ssp_version_t *const p_version)

 Get version and store it in provided pointer p_version. Implements
sf_external_irq_api_t::versionGet. More...

ssp_err_t SF_EXTERNAL_IRQ_Close (sf_external_irq_ctrl_t *const p_api_ctrl)

 Close channel at HAL layer and delete the semaphore . Implements
sf_external_irq_api_t::close. More...

Detailed Description

RTOS-integrated external IRQ Framework.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,690 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > External IRQ Framework

Summary
This module is a ThreadX-aware external IRQ Framework for external inputs such as switches or
other binary signals.

Function Documentation

◆ SF_EXTERNAL_IRQ_Close()

ssp_err_t SF_EXTERNAL_IRQ_Close (sf_external_irq_ctrl_t *const p_api_ctrl)

Close channel at HAL layer and delete the semaphore . Implements sf_external_irq_api_t::close.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter ctrl is NULL.

SSP_ERR_NOT_OPEN The channel is not opened.

SSP_ERR_UNSUPPORTED Unsupported operation.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls:

external_irq_api_t::close
Close low level driver

Clear information from control block so other functions know this instance is closed

Delete the semaphore used

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,691 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > External IRQ Framework

◆ SF_EXTERNAL_IRQ_Open()

ssp_err_t SF_EXTERNAL_IRQ_Open (sf_external_irq_ctrl_t *const p_api_ctrl, sf_external_irq_cfg_t
const *const p_cfg)

Configure external IRQ and optionally enable external IRQ callbacks. Implements
sf_external_irq_api_t::open.

The SF_EXTERNAL_IRQ_Open() function creates semaphore for the external IRQ channel used, then
calls the HAL driver open function. After successful initialization, the external IRQ is ready for use.

Return values
SSP_SUCCESS Initialization was successful and external

interrupt has started.

SSP_ERR_ASSERTION One of the following parameters may be
NULL: p_ctrl, p_api, or p_cfg, p_api, or
p_api->open. See HAL driver for other
possible causes.

SSP_ERR_IN_USE This channel is already open.

SSP_ERR_INTERNAL An internal ThreadX error has occurred.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls:

external_irq_api_t::open
Note

This function is reentrant for any channel.

Save driver structure for use in other framework layer functions

Create semaphore for use with wait function

Prepare configuration for lower layer

Open lower layer

If low level initialization failed, delete the semaphore and exit the function with the error code

Delete the semaphore.

log the error and return the error

Mark control block open so other tasks know it is valid

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,692 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > External IRQ Framework

◆ SF_EXTERNAL_IRQ_VersionGet()

ssp_err_t SF_EXTERNAL_IRQ_VersionGet (ssp_version_t *const p_version)

Get version and store it in provided pointer p_version. Implements sf_external_irq_api_t::versionGet
.

Return values
SSP_SUCCESS Version returned successfully.

SSP_ERR_ASSERTION Parameter p_version was null.

◆ SF_EXTERNAL_IRQ_Wait()

ssp_err_t SF_EXTERNAL_IRQ_Wait (sf_external_irq_ctrl_t *const p_api_ctrl, ULONG const timeout)

Get semaphore with specified timeout for external interrupt to expire. Implements
sf_external_irq_api_t::wait.

Return values
SSP_SUCCESS External interrupt stopped successfully.

SSP_ERR_NOT_OPEN Driver control block not valid. Call
SF_EXTERNAL_IRQ_Open to configure.

SSP_ERR_TIMEOUT Time out happens while waiting a
semaphore.

SSP_ERR_WAIT_ABORTED Suspension was aborted by another thread.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

Wait for semaphore post from ISR

 sf_external_irq_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » External IRQ Framework

#include <sf_external_irq.h>

Data Fields

uint32_t open

 Used by driver to check if control block is valid.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,693 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > External IRQ Framework > sf_external_irq_instance_ctrl_t Struct Reference

TX_SEMAPHORE semaphore

 Semaphore used for SF_EXTERNAL_IRQ_Wait.

external_irq_instance_t
const *

p_lower_lvl_irq

 Pointer to lower level driver instance.

bool callback_used

 Used by driver to check if wait can be used.

Detailed Description

Instance control block. DO NOT INITIALIZE. Initialization occurs when sf_external_irq_api_t::open is
called

The documentation for this struct was generated from the following file:

sf_external_irq.h

5.1.3.26 I2C Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated I2C Framework. More...

Data Structures

struct sf_i2c_instance_ctrl_t

Functions

ssp_err_t SF_I2C_Open (sf_i2c_ctrl_t *const p_api_ctrl, sf_i2c_cfg_t const *const
p_cfg)

 Initialize a I2C bus and open low level I2C driver. More...

ssp_err_t SF_I2C_Read (sf_i2c_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const bytes, bool const restart, uint32_t const timeout)

 Start the transfer process and receive data from I2C device. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,694 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2C Framework

ssp_err_t SF_I2C_Write (sf_i2c_ctrl_t *const p_api_ctrl, uint8_t *const p_src,
uint32_t const bytes, bool const restart, uint32_t const timeout)

 Start the transfer process and send data on I2C bus. More...

ssp_err_t SF_I2C_Reset (sf_i2c_ctrl_t *const p_api_ctrl, uint32_t const timeout)

 Abort any in-progress transfer. More...

ssp_err_t SF_I2C_Close (sf_i2c_ctrl_t *const p_api_ctrl)

 Close the I2C device designated by the control handle and close the
RTOS services used by the bus if last device is connected to the bus
calls this API, else decrement the device count. More...

ssp_err_t SF_I2C_Lock (sf_i2c_ctrl_t *const p_api_ctrl)

 Lock the bus for a device. Once bus is locked by a device it can not
be used by other devices. More...

ssp_err_t SF_I2C_Unlock (sf_i2c_ctrl_t *const p_api_ctrl)

 Unlock the locked bus and make the bus usable for other devices.
More...

ssp_err_t SF_I2C_VersionGet (ssp_version_t *const p_version)

 Get the version information of the framework. More...

ssp_err_t SF_I2C_LockWait (sf_i2c_ctrl_t *const p_api_ctrl, uint32_t const
timeout)

 Lock the I2C Bus resource. Once bus is locked by a device it can not
be used by other devices. More...

Detailed Description

RTOS-integrated I2C Framework.

SSP I2C framework driver API

.

Summary
This is a ThreadX-aware I2C driver API. The API implements the I2C Framework interface and can

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,695 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2C Framework

access several hardware peripherals at the HAL layer. The connection to the HAL layer is established
by passing in a driver structure in SF_I2C_Open.

Interface Used
See also

I2C Framework

Function Documentation

◆ SF_I2C_Close()

ssp_err_t SF_I2C_Close (sf_i2c_ctrl_t *const p_api_ctrl)

Close the I2C device designated by the control handle and close the RTOS services used by the bus
if last device is connected to the bus calls this API, else decrement the device count.

Return values
SSP_SUCCESS Device is successfully closed.

SSP_ERR_NOT_OPEN Device was not even opened.

SSP_ERR_ASSERTION Following parameters is NULL: p_api_ctrl.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This driver function is:

i2c_api_master_t::close
Note

This function is reentrant for any device.

Check whether device is opened or not.

Acquire the device count mutex before accessing the shared resource in close.

Check the count of opened devices on the bus. If there are no devices opened or all other devices
on the bus are closed then close the low level I2C driver and release the RTOS services used by the
bus.

Get the low level control in use.

Close low level driver.

Delete RTOS services used by the bus.

Decrement device count.

Delete the device count mutex

Decrement device count.

Release the device count mutex

Set device to closed state and restarted flag to false.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,696 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2C Framework

◆ SF_I2C_Lock()

ssp_err_t SF_I2C_Lock (sf_i2c_ctrl_t *const p_api_ctrl)

Lock the bus for a device. Once bus is locked by a device it can not be used by other devices.

Return values
SSP_SUCCESS I2C channel is successfully locked.

SSP_ERR_NOT_OPEN Device not opened.

SSP_ERR_IN_USE In-use error.

SSP_ERR_ASSERTION Following parameters is NULL: p_api_ctrl.

Note
This function is reentrant for any device.

Check whether device is opened or not.

Get mutex since this will access hardware registers.

Reconfigure the device address, if necessary

◆ SF_I2C_LockWait()

ssp_err_t SF_I2C_LockWait (sf_i2c_ctrl_t *const p_api_ctrl, uint32_t const timeout)

Lock the I2C Bus resource. Once bus is locked by a device it can not be used by other devices.

Return values
SSP_SUCCESS I2C channel is successfully locked within the

specified timeout.

SSP_ERR_ASSERTION Pointer to I2C control block is NULL.

SSP_ERR_NOT_OPEN Device not opened.

SSP_ERR_TIMEOUT Mutex not available in timeout.

Note
This function is reentrant for any device.

Check whether device is opened or not.

Get the mutex for this device.

Reconfigure the device address, if necessary

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,697 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2C Framework

◆ SF_I2C_Open()

ssp_err_t SF_I2C_Open (sf_i2c_ctrl_t *const p_api_ctrl, sf_i2c_cfg_t const *const p_cfg)

Initialize a I2C bus and open low level I2C driver.

Return values
SSP_SUCCESS I2C device is successfully opened.

SSP_ERR_ASSERTION One of the following parameters is NULL:
p_api_ctrl, p_cfg, Pointer to Open, Close,
Read, Write, or reset API
interfaces,p_cfg->p_bus.

SSP_ERR_INTERNAL Internal error occurred.

SSP_ERR_ALREADY_OPEN Same I2C framework device is already open.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This driver function is

i2c_api_master_t::open
Note

This function is reentrant for any channel.
Control handle must be cleared by caller before calling this function.

Check whether device is already opened or not.

Copy bus pointer to control

Set framework level callback function.

Save context for use in ISRs.

Enter a critical section before checking the device count mutex status.

Check if device count mutex is already created. If not then create the mutex.

Create device_count_mutex. This is used to protect shared variable device_count in bus control
structure.

If mutex create fails, return error.

Exit critical section

Acquire the device count mutex before accessing the shared resource. Try again if the mutex was
deleted in close.

Increment device count.

Release the device count mutex

Save device configuration for reconfiguration.

Set device state as Opened.

Initialize restarted flag to false.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,698 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2C Framework

◆ SF_I2C_Read()

ssp_err_t SF_I2C_Read (sf_i2c_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t const bytes,
bool const restart, uint32_t const timeout)

Start the transfer process and receive data from I2C device.

Return values
SSP_SUCCESS Data received successfully.

SSP_ERR_NOT_OPEN Device instance not opened.

SSP_ERR_ASSERTION One of the following parameters is NULL:
p_api_ctrl, p_dest, bytes, timeout.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This driver function is:

i2c_api_master_t::read
Check whether device is opened or not.

Start transfer process - check reconfiguration, get Mutex.

Get the low level control in use.

Perform read.

Wait for callback to set event flag.

Finish transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,699 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2C Framework

◆ SF_I2C_Reset()

ssp_err_t SF_I2C_Reset (sf_i2c_ctrl_t *const p_api_ctrl, uint32_t const timeout)

Abort any in-progress transfer.

Return values
SSP_SUCCESS Channel was reseted without issue.

SSP_ERR_NOT_OPEN Device was not even opened.

SSP_ERR_IN_USE In-use error.

SSP_ERR_INTERNAL Internal error occurred.

SSP_ERR_ASSERTION Following parameters is NULL: p_api_ctrl.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This driver function is:

i2c_api_master_t::reset
Check whether device is opened or not.

Get the low level control in use.

Get mutex since this will access hardware registers.

◆ SF_I2C_Unlock()

ssp_err_t SF_I2C_Unlock (sf_i2c_ctrl_t *const p_api_ctrl)

Unlock the locked bus and make the bus usable for other devices.

Return values
SSP_SUCCESS I2C bus is successfully unlocked.

SSP_ERR_NOT_OPEN Device not opened.

SSP_ERR_IN_USE In-use error.

SSP_ERR_ASSERTION Following parameters is NULL: p_api_ctrl.

Note
This function is reentrant for any device.

Check whether device is opened or not.

Release the mutex so that others can use the bus.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,700 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2C Framework

◆ SF_I2C_VersionGet()

ssp_err_t SF_I2C_VersionGet (ssp_version_t *const p_version)

Get the version information of the framework.

Return values
SSP_SUCCESS Got version number successfully.

SSP_ERR_ASSERTION Following parameters is NULL: p_version.

Checks error. Further parameter checking can be done at the driver layer.

◆ SF_I2C_Write()

ssp_err_t SF_I2C_Write (sf_i2c_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t const bytes,
bool const restart, uint32_t const timeout)

Start the transfer process and send data on I2C bus.

Return values
SSP_SUCCESS Data written successfully.

SSP_ERR_NOT_OPEN Device instance not opened.

SSP_ERR_ASSERTION One of the following parameters is NULL:
p_api_ctrl, p_src, bytes.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This driver function is:

i2c_api_master_t::write
Check whether device is opened or not.

Start transfer process - check reconfiguration, get Mutex.

Get the low level control in use.

Perform write.

Wait for callback to set event flag.

Finish transfer.

 sf_i2c_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » I2C Framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,701 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > I2C Framework > sf_i2c_instance_ctrl_t Struct Reference

#include <sf_i2c.h>

Data Fields

sf_i2c_bus_t * p_bus

 Bus using this device. Copy from configuration structure.

i2c_master_instance_t const
*

p_lower_lvl_i2c

 I2C instance.

i2c_cfg_t lower_lvl_cfg

 Used to reconfigure I2C driver.

i2c_ctrl_t * p_lower_lvl_ctrl

 I2C peripheral control block.

sf_i2c_dev_state_t dev_state

 Device status.

bool restarted

 Indicates whether device issued a restart.

Detailed Description

I2C instance control block. DO NOT INITIALIZE. Initialization occurs when sf_i2c_api_t::open is called.

The documentation for this struct was generated from the following file:

sf_i2c.h

5.1.3.27 JPEG Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated JPEG Framework. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,702 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework

Data Structures

struct sf_jpeg_decode_instance_ctrl_t

Macros

#define SF_JPEG_DECODE_CODE_VERSION_MAJOR (2U)

#define SF_JPEG_DECODE_OPEN (0x4A504547U)

#define SF_JPEG_ERROR_RETURN(a, err) SSP_ERROR_RETURN((a), (err),
&g_module_name[0], &s_sf_jpeg_version)

Functions

ssp_err_t sf_jpeg_initialize (sf_jpeg_decode_instance_ctrl_t *const p_ctrl,
sf_jpeg_decode_cfg_t const *const p_cfg)

 Acquires mutex, then handles driver initialization at the HAL layer.
This function releases the mutex before returns to the caller. More...

ssp_err_t SF_JPEG_Decode_Open (sf_jpeg_decode_ctrl_t *const p_api_ctrl,
sf_jpeg_decode_cfg_t const *const p_cfg)

 Parameter checking and initialize JPEG decode with sf_jpeg_initialize
helper function and marking the open flag in control block. More...

ssp_err_t SF_JPEG_Decode_InputBufferSet (sf_jpeg_decode_ctrl_t *const
p_api_ctrl, void *const p_buffer, uint32_t const buffer_size)

 Configures JPEG coded input data. More...

ssp_err_t SF_JPEG_Decode_LinesDecodedGet (sf_jpeg_decode_ctrl_t *const
p_api_ctrl, uint32_t *const p_lines)

 Obtain number of lines decoded by the codec. More...

ssp_err_t SF_JPEG_Decode_HorizontalStrideSet (sf_jpeg_decode_ctrl_t *const
p_api_ctrl, uint32_t horizontal_stride)

 Configure the horizontal stride value. More...

ssp_err_t SF_JPEG_Decode_ImageSubsampleSet (sf_jpeg_decode_ctrl_t *const
p_api_ctrl, jpeg_decode_subsample_t horizontal_subsample,
jpeg_decode_subsample_t vertical_subsample)

 Configure the horizontal and vertical subsample values. This allows
an application to reduce the size of the decoded image at runtime.
More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,703 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework

ssp_err_t SF_JPEG_Decode_OutputBufferSet (sf_jpeg_decode_ctrl_t *const
p_api_ctrl, void *p_buffer, uint32_t buffer_size)

 Configure the decode output buffer. More...

ssp_err_t SF_JPEG_Decode_Wait (sf_jpeg_decode_ctrl_t *const p_api_ctrl,
jpeg_decode_status_t *const p_status, uint32_t timeout)

 Wait for current JPEG codec operation to finish. More...

ssp_err_t SF_JPEG_Decode_StatusGet (sf_jpeg_decode_ctrl_t *const p_api_ctrl,
jpeg_decode_status_t *const p_status)

 Obtain JPEG codec status. This function can be used to poll the
device instead of using SF_JPEG_Decode_Wait() to block on JPEG
operations. More...

ssp_err_t SF_JPEG_Decode_PixelFormatGet (sf_jpeg_decode_ctrl_t *const
p_api_ctrl, jpeg_decode_color_space_t *const p_color_space)

 Obtain the format of the image. This function is only useful for
decoding a JPEG image. More...

ssp_err_t SF_JPEG_Decode_ImageSizeGet (sf_jpeg_decode_ctrl_t *const
p_api_ctrl, uint16_t *p_horizontal_size, uint16_t *p_vertical_size)

 Obtain the size of the image. This function is only useful for decoding
a JPEG image. More...

ssp_err_t SF_JPEG_Decode_Close (sf_jpeg_decode_ctrl_t *const p_api_ctrl)

 Close JPEG codec device. Un-finished codec operation is interrupted,
and output data are discarded. More...

ssp_err_t SF_JPEG_Decode_VersionGet (ssp_version_t *const p_version)

 Get version and store it in provided pointer p_version. More...

Detailed Description

RTOS-integrated JPEG Framework.

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,704 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework

◆ SF_JPEG_DECODE_CODE_VERSION_MAJOR

#define SF_JPEG_DECODE_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

◆ SF_JPEG_DECODE_OPEN

#define SF_JPEG_DECODE_OPEN (0x4A504547U)

"JPEG" in ASCII, used to identify general JPEG control block

◆ SF_JPEG_ERROR_RETURN

#define SF_JPEG_ERROR_RETURN (a, err) SSP_ERROR_RETURN((a), (err), &g_module_name[0],
&s_sf_jpeg_version)

Macro for error logger.

Function Documentation

◆ SF_JPEG_Decode_Close()

ssp_err_t SF_JPEG_Decode_Close (sf_jpeg_decode_ctrl_t *const p_api_ctrl)

Close JPEG codec device. Un-finished codec operation is interrupted, and output data are
discarded.

Precondition
Call SF_JPEG_Decode_Open() to configure the timer before using this function.

Return values
SSP_SUCCESS The JPEG decode device is successfully

closed.

SSP_ERR_ASSERTION p_ctrl is null.

SSP_ERR_NOT_OPEN JPEG Decode Framework module is not yet
initialized.

Call the low level driver to close the JPEG device.

Clear information from control block so other functions know this block is closed

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,705 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework

◆ SF_JPEG_Decode_HorizontalStrideSet()

ssp_err_t SF_JPEG_Decode_HorizontalStrideSet (sf_jpeg_decode_ctrl_t *const p_api_ctrl, uint32_t
horizontal_stride)

Configure the horizontal stride value.

Precondition
Call SF_JPEG_Decode_Open() to configure the JPEG codec block before using this function.

Return values
SSP_SUCCESS Horizontal Stride value is successfully

configured.

SSP_ERR_ASSERTION p_ctrl is null.

SSP_ERR_NOT_OPEN JPEG Decode Framework module is not yet
initialized.

SSP_ERR_IN_USE The mutex may be unavailable for the the
device. See HAL driver for other possible
causes.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

jpeg_decode_api_t::horizontalStrideSet
Obtain mutex before making HAL-level driver call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,706 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework

◆ SF_JPEG_Decode_ImageSizeGet()

ssp_err_t SF_JPEG_Decode_ImageSizeGet (sf_jpeg_decode_ctrl_t *const p_api_ctrl, uint16_t *
p_horizontal_size, uint16_t * p_vertical_size)

Obtain the size of the image. This function is only useful for decoding a JPEG image.

Precondition
Call SF_JPEG_Decode_Open() to configure the JPEG codec block before using this function.

Return values
SSP_SUCCESS The JPEG image size is obtained.

SSP_ERR_ASSERTION p_ctrl is null.

SSP_ERR_NOT_OPEN JPEG Decode Framework module is not yet
initialized.

SSP_ERR_IN_USE The mutex may be unavailable for the the
device. See HAL driver for other possible
causes.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

jpeg_decode_api_t::imageSizeGet
Obtain mutex before making HAL-level driver call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,707 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework

◆ SF_JPEG_Decode_ImageSubsampleSet()

ssp_err_t SF_JPEG_Decode_ImageSubsampleSet (sf_jpeg_decode_ctrl_t *const p_api_ctrl,
jpeg_decode_subsample_t horizontal_subsample, jpeg_decode_subsample_t vertical_subsample)

Configure the horizontal and vertical subsample values. This allows an application to reduce the
size of the decoded image at runtime.

Precondition
Call SF_JPEG_Decode_Open() to configure the JPEG codec block before using this function.

Return values
SSP_SUCCESS Image subsample values are successfully

configured.

SSP_ERR_ASSERTION p_ctrl is null.

SSP_ERR_NOT_OPEN JPEG Decode Framework module is not yet
initialized.

SSP_ERR_IN_USE The mutex may be unavailable for the the
device. See HAL driver for other possible
causes.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

jpeg_decode_api_t::imageSubsampleSet
Obtain mutex before making HAL-level driver call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,708 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework

◆ SF_JPEG_Decode_InputBufferSet()

ssp_err_t SF_JPEG_Decode_InputBufferSet (sf_jpeg_decode_ctrl_t *const p_api_ctrl, void *const
p_buffer, uint32_t const buffer_size)

Configures JPEG coded input data.

This API configures the decode input buffer address register. After the input buffer address is set,
the driver checks whether the output buffer address is set, and verifies that the output buffer size
is large enough to hold at least eight output lines of data. If both the input buffer and output buffer
are set properly, the driver automatically starts the decode process.

Precondition
Call SF_JPEG_Decode_Open() to configure the JPEG codec block before using this function.

Return values
SSP_SUCCESS Decode input buffer is successfully

configured.

SSP_ERR_ASSERTION p_ctrl is null.

SSP_ERR_NOT_OPEN JPEG Decode Framework module is not yet
initialized.

SSP_ERR_IN_USE The mutex may be unavailable for the the
device. See HAL driver for other possible
causes.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

jpeg_decode_api_t::inputBufferSet
Obtain mutex before making HAL-level driver call.

Call the HAL driver layer inputBufferSet routine.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,709 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework

◆ SF_JPEG_Decode_LinesDecodedGet()

ssp_err_t SF_JPEG_Decode_LinesDecodedGet (sf_jpeg_decode_ctrl_t *const p_api_ctrl, uint32_t
*const p_lines)

Obtain number of lines decoded by the codec.

Precondition
Call SF_JPEG_Decode_Open() to configure the JPEG codec block before using this function.

Return values
SSP_SUCCESS Lines decoded value is successfully

obtained.

SSP_ERR_ASSERTION p_ctrl is null.

SSP_ERR_NOT_OPEN JPEG Decode Framework module is not yet
initialized.

SSP_ERR_IN_USE The mutex may be unavailable for the the
device. See HAL driver for other possible
causes.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

jpeg_decode_api_t::linesDecodedGet
Obtain mutex before making HAL-level driver call.

◆ SF_JPEG_Decode_Open()

ssp_err_t SF_JPEG_Decode_Open (sf_jpeg_decode_ctrl_t *const p_api_ctrl, sf_jpeg_decode_cfg_t
const *const p_cfg)

Parameter checking and initialize JPEG decode with sf_jpeg_initialize helper function and marking
the open flag in control block.

Return values
SSP_SUCCESS JPEG Decode framework is successfully

opened.

SSP_ERR_ASSERTION One of the following parameters may be
null: p_ctrl or p_cfg.

SSP_ERR_ALREADY_OPEN JPEG Decode framework is already open.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

Initialize the JPEG framework

Save driver structure pointer for use in other framework layer functions.

Mark control block open so subsequent calls know the device is open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,710 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework

◆ SF_JPEG_Decode_OutputBufferSet()

ssp_err_t SF_JPEG_Decode_OutputBufferSet (sf_jpeg_decode_ctrl_t *const p_api_ctrl, void *
p_buffer, uint32_t buffer_size)

Configure the decode output buffer.

This API configures the decode output buffer address register. After the output buffer address is
set, the driver computers the number of output lines the buffer is able to hold. The hardware
requires the number out output lines to decode at a time is multiple of eight. If both the input
buffer and output buffer are set properly, the driver automatically starts the decode process.

Precondition
Call SF_JPEG_Decode_Open() to configure the JPEG codec block before using this function.

Return values
SSP_SUCCESS Output buffer is successfully configured.

SSP_ERR_ASSERTION p_ctrl is null.

SSP_ERR_NOT_OPEN JPEG Decode Framework module is not yet
initialized.

SSP_ERR_IN_USE The mutex may be unavailable for the the
device. See HAL driver for other possible
causes.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

jpeg_decode_api_t::outputBufferSet
Obtain mutex before making HAL-level driver call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,711 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework

◆ SF_JPEG_Decode_PixelFormatGet()

ssp_err_t SF_JPEG_Decode_PixelFormatGet (sf_jpeg_decode_ctrl_t *const p_api_ctrl,
jpeg_decode_color_space_t *const p_color_space)

Obtain the format of the image. This function is only useful for decoding a JPEG image.

Precondition
Call SF_JPEG_Decode_Open() to configure the JPEG codec block before using this function.

Return values
SSP_SUCCESS The JPEG image size is obtained.

SSP_ERR_ASSERTION p_ctrl is null.

SSP_ERR_NOT_OPEN JPEG Decode Framework module is not yet
initialized.

SSP_ERR_IN_USE The mutex may be unavailable for the the
device. See HAL driver for other possible
causes.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

jpeg_decode_api_t::pixelFormatGet
Obtain mutex before making HAL-level driver call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,712 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework

◆ SF_JPEG_Decode_StatusGet()

ssp_err_t SF_JPEG_Decode_StatusGet (sf_jpeg_decode_ctrl_t *const p_api_ctrl,
jpeg_decode_status_t *const p_status)

Obtain JPEG codec status. This function can be used to poll the device instead of using
SF_JPEG_Decode_Wait() to block on JPEG operations.

Precondition
Call SF_JPEG_Decode_Open() to configure the JPEG codec block before using this function.

Return values
SSP_SUCCESS The JPEG status information is obtained.

SSP_ERR_ASSERTION p_ctrl is null.

SSP_ERR_NOT_OPEN JPEG Decode Framework module is not yet
initialized.

SSP_ERR_IN_USE The mutex may be unavailable for the the
device. See HAL driver for other possible
causes.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

jpeg_decode_api_t::statusGet
Obtain mutex before making HAL-level driver call.

◆ SF_JPEG_Decode_VersionGet()

ssp_err_t SF_JPEG_Decode_VersionGet (ssp_version_t *const p_version)

Get version and store it in provided pointer p_version.

Return values
SSP_SUCCESS Version returned successfully.

SSP_ERR_ASSERTION Parameter p_version is null.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,713 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework

◆ SF_JPEG_Decode_Wait()

ssp_err_t SF_JPEG_Decode_Wait (sf_jpeg_decode_ctrl_t *const p_api_ctrl, jpeg_decode_status_t
*const p_status, uint32_t timeout)

Wait for current JPEG codec operation to finish.

Precondition
Call SF_JPEG_Decode_Open() to configure the JPEG codec block before using this function.

Return values
SSP_SUCCESS The wait function returns successfully.

SSP_ERR_ASSERTION p_ctrl or p_status is null.

SSP_ERR_NOT_OPEN JPEG Decode Framework module is not yet
initialized.

SSP_ERR_TIMEOUT The wait operation timed out, the
underlying driver did not response in time.

SSP_ERR_WAIT_ABORTED System internal error occurred.

Obtain mutex before making HAL-level driver call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,714 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework

◆ sf_jpeg_initialize()

ssp_err_t sf_jpeg_initialize (sf_jpeg_decode_instance_ctrl_t *const p_ctrl, sf_jpeg_decode_cfg_t
const *const p_cfg)

Acquires mutex, then handles driver initialization at the HAL layer. This function releases the mutex
before returns to the caller.

Parameters
[in,out] p_ctrl Control handle for JPEG

framework context for a
device.

[in] p_cfg Pointer to JPEG framework
Configuration Structure.

Return values
SSP_SUCCESS JPEG Decode driver is successfully opened.

SSP_ERR_INTERNAL An internal ThreadX error has occurred.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes. This
function calls

jpeg_decode_api_t::open
Create event flags for use with wait function

Create the mutex for this instance, this mutex is used to protect access to lower level hardware

Duplicate the content of p_cfg.

Install framework callback and context.

Call the low level driver to configure the JPEG device.

If the operation failed, delete the resources.

 sf_jpeg_decode_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » JPEG Framework

#include <sf_jpeg_decode.h>

Data Fields

uint32_t open

 Indicate whether the driver is open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,715 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > JPEG Framework > sf_jpeg_decode_instance_ctrl_t Struct Reference

uint32_t state

 Used by driver to check if pointer to control block is valid.

TX_MUTEX mutex

 Mutex used to protect access to lower level driver hardware.

TX_EVENT_FLAGS_GROUP events

 Event flags used by the HAL driver to notify the framework driver of.

jpeg_decode_instance_t
const *

p_lower_lvl_jpeg_decode

 Pointer to lower level instance.

Detailed Description

JPEG framework instance control block. DO NOT INITIALIZE. Initialization occurs when
sf_jpeg_decode_api_t::open is called.

The documentation for this struct was generated from the following file:

sf_jpeg_decode.h

5.1.3.28 Memory framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Memory framework for QSPI NOR driver. More...

Data Structures

struct sf_memory_qspi_nor_instance_ctrl_t

struct sf_memory_qspi_nor_cfg_t

Macros

#define SF_MEMORY_QSPI_NOR_CODE_VERSION_MAJOR (2U)

Functions

ssp_err_t SF_MEMORY_QSPI_NOR_Open (sf_memory_ctrl_t *const p_ctrl,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,716 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Memory framework

sf_memory_cfg_t const *const p_cfg)

 Open the SF Memory QSPI Nor driver module. More...

ssp_err_t SF_MEMORY_QSPI_NOR_Close (sf_memory_ctrl_t *const p_ctrl)

 Close the Memory QSPI NOR driver module. More...

ssp_err_t SF_MEMORY_QSPI_NOR_Read (sf_memory_ctrl_t *const p_ctrl, uint8_t
*const p_dest_address, uint32_t const memory_address, uint32_t
const num_bytes)

 Read data from the flash. More...

ssp_err_t SF_MEMORY_QSPI_NOR_Write (sf_memory_ctrl_t *const p_ctrl, uint8_t
*const p_src_address, uint32_t const memory_address, uint32_t
const num_bytes)

 Program data to the flash. More...

ssp_err_t SF_MEMORY_QSPI_NOR_Flush (sf_memory_ctrl_t *const p_ctrl)

 Flush any pending data to the disk. This is not required for QSPI NOR
Flash. More...

ssp_err_t SF_MEMORY_QSPI_NOR_Erase (sf_memory_ctrl_t *p_ctrl, uint32_t
const memory_address, uint32_t const num_bytes)

 Erase a number of bytes from the flash. More...

ssp_err_t SF_MEMORY_QSPI_NOR_InfoGet (sf_memory_ctrl_t *const p_ctrl,
sf_memory_info_t *const p_info)

 Returns the information about the flash. More...

ssp_err_t SF_MEMORY_QSPI_NOR_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

Detailed Description

RTOS-integrated Memory framework for QSPI NOR driver.

Name of module used by error logger macro

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,717 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Memory framework

◆ SF_MEMORY_QSPI_NOR_CODE_VERSION_MAJOR

#define SF_MEMORY_QSPI_NOR_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

Function Documentation

◆ SF_MEMORY_QSPI_NOR_Close()

ssp_err_t SF_MEMORY_QSPI_NOR_Close (sf_memory_ctrl_t *const p_ctrl)

Close the Memory QSPI NOR driver module.

Return values
SSP_SUCCESS Close was successful.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN Driver is not opened.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

qspi_api_t::close
Validate the parameters

Close the underlying QSPI

Mark instance as closed for future reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,718 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Memory framework

◆ SF_MEMORY_QSPI_NOR_Erase()

ssp_err_t SF_MEMORY_QSPI_NOR_Erase (sf_memory_ctrl_t * p_ctrl, uint32_t const
memory_address, uint32_t const num_bytes)

Erase a number of bytes from the flash.

Return values
SSP_SUCCESS The command to erase the flash was

executed successfully.

SSP_ERR_ASSERTION p_ctrl or memory_address is NULL.

SSP_ERR_INVALID_ARGUMENT Invalid num_bytes entered.

SSP_ERR_NOT_OPEN Driver is not opened.

SSP_ERR_TIMEOUT Wait timed out.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls

qspi_api_t::erase
qspi_api_t::statusGet

Validate the parameters

Check whether instance is open or not

Check whether the device address is valid

Calculate maximum erase size

Check whether we have valid erase size

◆ SF_MEMORY_QSPI_NOR_Flush()

ssp_err_t SF_MEMORY_QSPI_NOR_Flush (sf_memory_ctrl_t *const p_ctrl)

Flush any pending data to the disk. This is not required for QSPI NOR Flash.

Return values
SSP_SUCCESS NO error detected.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN Driver is not opened.

Validate the parameters

Check whether instance is open or not

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,719 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Memory framework

◆ SF_MEMORY_QSPI_NOR_InfoGet()

ssp_err_t SF_MEMORY_QSPI_NOR_InfoGet (sf_memory_ctrl_t *const p_ctrl, sf_memory_info_t
*const p_info)

Returns the information about the flash.

Return values
SSP_SUCCESS Memory info structure updated successfully.

SSP_ERR_ASSERTION p_ctrl or p_info is NULL.

SSP_ERR_NOT_OPEN Driver is not opened.

Returns
InfoGet status.

Validate the parameters

Memory info is obtained while opening, use it

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,720 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Memory framework

◆ SF_MEMORY_QSPI_NOR_Open()

ssp_err_t SF_MEMORY_QSPI_NOR_Open (sf_memory_ctrl_t *const p_ctrl, sf_memory_cfg_t const
*const p_cfg)

Open the SF Memory QSPI Nor driver module.

Open the SF Memory QSPI Nor driver module for the purposes of reading and writing flash memory.

Return values
SSP_SUCCESS Configuration was successful.

SSP_ERR_ASSERTION The parameter p_ctrl or p_cfg is NULL.

SSP_ERR_ALREADY_OPEN Driver is already open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

qspi_api_t::open
qspi_api_t::infoGet
qspi_api_t::close

Validate the parameters

Check whether the framework is in already open state

Update instance control with the lower level driver and configuration information.

Open the QSPI driver

Update the memory info

Close QSPI in case of failure

Mark instance as open for future reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,721 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Memory framework

◆ SF_MEMORY_QSPI_NOR_Read()

ssp_err_t SF_MEMORY_QSPI_NOR_Read (sf_memory_ctrl_t *const p_ctrl, uint8_t *const
p_dest_address, uint32_t const memory_address, uint32_t const num_bytes)

Read data from the flash.

Read specified number of bytes of data from a particular address on the QSPI flash device.

Return values
SSP_SUCCESS The data read was successful.

SSP_ERR_ASSERTION p_ctrl,p_dest_address or memory_address is
NULL.

SSP_ERR_NOT_OPEN Driver is not opened.

SSP_ERR_INVALID_ARGUMENT Number of bytes requested are invalid.

SSP_ERR_TIMEOUT Wait timed out.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

qspi_api_t::read
qspi_api_t::statusGet

Validate the parameters

Check whether instance is open or not

Check whether the device address is valid

Read data from banks using ROM area.

◆ SF_MEMORY_QSPI_NOR_VersionGet()

ssp_err_t SF_MEMORY_QSPI_NOR_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION p_version is NULL.

Returns
API and Code version.

Validate the parameters

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,722 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Memory framework

◆ SF_MEMORY_QSPI_NOR_Write()

ssp_err_t SF_MEMORY_QSPI_NOR_Write (sf_memory_ctrl_t *const p_ctrl, uint8_t *const
p_src_address, uint32_t const memory_address, uint32_t const num_bytes)

Program data to the flash.

Return values
SSP_SUCCESS The flash was programmed successfully.

SSP_ERR_ASSERTION p_ctrl,p_src_address or memory_address is
NULL.

SSP_ERR_INVALID_ARGUMENT Invalid parameter is passed.

SSP_ERR_NOT_OPEN Driver is not opened.

SSP_ERR_TIMEOUT Wait timed out.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

qspi_api_t::pageProgram
qspi_api_t::statusGet

Validate the parameters

Check whether instance is open or not

Check whether the device address is valid

Check whether page size of QSPI NOR is larger than the read buffer size

Calculate current write size

Copy data from source address to a buffer for write if the source address is within address range of
QSPI NOR

Program using underlying QSPI driver

Wait if there is any write operation in progress

 sf_memory_qspi_nor_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Memory framework

#include <sf_memory_qspi_nor.h>

Data Fields

qspi_instance_t * p_qspi

 QSPI instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,723 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Memory framework > sf_memory_qspi_nor_instance_ctrl_t Struct Reference

qspi_info_t qspi_info

 QSPI info.

uint32_t open

 Track opened/closed status.

sf_memory_region_info_t region_info

 Memory region info.

uint32_t timeout_ticks

 Number of ticks to timeout on erase or write waiting.

sf_memory_qspi_nor_pendin
g_operation_t

pending_operation

 The last operation sent to the QSPI chip.

uint32_t pending_operation_size

 The size of the last operation.

void * p_delay_callback_context

 Context passed to the delay callback.

void(* p_delay_callback)(sf_memory_qspi_nor_delay_callback_args_t
*p_args)

 Pointer to user callback function.

Detailed Description

Control block. DO NOT INITIALIZE. Initialization occurs when sf_memory_api_t::open is called

The documentation for this struct was generated from the following file:

sf_memory_qspi_nor.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,724 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Memory framework > sf_memory_qspi_nor_cfg_t Struct Reference

 sf_memory_qspi_nor_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Memory framework

#include <sf_memory_qspi_nor.h>

Data Fields

qspi_instance_t const
*const

p_qspi

 Lower level driver.

uint32_t timeout_ticks

 Number of ticks to timeout on erase or write waiting.

void * p_delay_callback_context

 Context passed to the delay callback.

void(* p_delay_callback)(sf_memory_qspi_nor_delay_callback_args_t
*p_args)

Detailed Description

User configuration structure, used in open function

Field Documentation

◆ p_delay_callback

void(* sf_memory_qspi_nor_cfg_t::p_delay_callback) (sf_memory_qspi_nor_delay_callback_args_t
*p_args)

A custom delay callback can be used to fine tune the amount of time to wait before starting to poll
the QSPI chip after a write or erase operation. If a custom delay callback is used and a timeout
occurs the p_args->timeout_remaining variable must be set to 0 to indicate to the calling function
that a timeout has occurred.

The documentation for this struct was generated from the following file:

sf_memory_qspi_nor.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,725 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Messaging Framework

5.1.3.29 Messaging Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Messaging Framework implementation. More...

Data Structures

struct sf_message_instance_ctrl_t

Macros

#define SF_MESSAGE_CODE_VERSION_MAJOR (2U)

#define SF_MESSAGE_QUEUE_MESSAGE_WORDS (1)

Functions

ssp_err_t SF_MESSAGE_Open (sf_message_ctrl_t *const p_api_ctrl,
sf_message_cfg_t const *const p_cfg)

 Initialize message framework. This function initiates the messaging
framework control block, configures the work memory corresponding
to the configuration parameters. More...

ssp_err_t SF_MESSAGE_Close (sf_message_ctrl_t *const p_api_ctrl)

 Closes message framework. More...

ssp_err_t SF_MESSAGE_BufferAcquire (sf_message_ctrl_t const *const
p_api_ctrl, sf_message_header_t **pp_buffer,
sf_message_acquire_cfg_t const *const p_acquire_cfg, uint32_t const
wait_option)

 Acquire buffer for message passing from the block. More...

ssp_err_t SF_MESSAGE_BufferRelease (sf_message_ctrl_t *const p_api_ctrl,
sf_message_header_t *const p_buffer, sf_message_release_option_t
const option)

 Release buffer obtained by SF_MESSAGE_BufferAcquire(). More...

ssp_err_t SF_MESSAGE_Post (sf_message_ctrl_t *const p_api_ctrl,
sf_message_header_t const *const p_buffer, sf_message_post_cfg_t
const *const p_post_cfg, sf_message_post_err_t *const p_post_err,
uint32_t const wait_option)

 Post a message to the subscribers. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,726 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Messaging Framework

ssp_err_t SF_MESSAGE_Pend (sf_message_ctrl_t const *const p_api_ctrl,
TX_QUEUE const *const p_queue, sf_message_header_t **pp_buffer,
uint32_t const wait_option)

 Pend on a message. More...

ssp_err_t SF_MESSAGE_VersionGet (ssp_version_t *const p_version)

 Get the version of the messaging framework. Stores version
information in provided pointer. More...

Detailed Description

RTOS-integrated Messaging Framework implementation.

Macro Definition Documentation

◆ SF_MESSAGE_CODE_VERSION_MAJOR

#define SF_MESSAGE_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

◆ SF_MESSAGE_QUEUE_MESSAGE_WORDS

#define SF_MESSAGE_QUEUE_MESSAGE_WORDS (1)

The size of a message queue in words

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,727 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Messaging Framework

◆ SF_MESSAGE_BufferAcquire()

ssp_err_t SF_MESSAGE_BufferAcquire (sf_message_ctrl_t const *const p_api_ctrl,
sf_message_header_t ** pp_buffer, sf_message_acquire_cfg_t const *const p_acquire_cfg, uint32_t
const wait_option)

Acquire buffer for message passing from the block.

Return values
SSP_SUCCESS Buffer acquisition was successful.

SSP_ERR_ASSERTION p_ctrl, p_acquire_cfg or pp_buffer is NULL.

SSP_ERR_NOT_OPEN Message framework module has yet to be
opened.

SSP_ERR_NO_MORE_BUFFER No more buffer found in the memory block
pool.

SSP_ERR_TIMEOUT OS service call returns timeout.

SSP_ERR_INTERNAL OS service call fails.

Note
This API function allows to be called from not only thread but also ISR.

Allocates buffer in the block memory pool.

Clears buffer control block

Sets the buffer in-use flag

Sets the address of the allocated buffer to 'pp_buffer'

Clears the event class and event code in the buffer. This is because the initial value in the buffer
control block is unknown and it would not be safe.

Sets the 'buffer_keep' flag in the buffer control block if SF_MESSAGE_ACQUIRE_OPTION_KEEP is set
to the 'option' argument

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,728 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Messaging Framework

◆ SF_MESSAGE_BufferRelease()

ssp_err_t SF_MESSAGE_BufferRelease (sf_message_ctrl_t *const p_api_ctrl, sf_message_header_t
*const p_buffer, sf_message_release_option_t const option)

Release buffer obtained by SF_MESSAGE_BufferAcquire().

Return values
SSP_SUCCESS Buffer release was successful.

SSP_ERR_NOT_OPEN Message framework module has yet to be
opened.

SSP_ERR_ASSERTION p_ctrl or p_buffer is NULL.

SSP_ERR_ILLEGAL_BUFFER_ADDRESS If buffer address is not aligned or p_buffer is
not in the block pool range.

SSP_ERR_BUFFER_RELEASED Buffer has been released.

SSP_ERR_INTERNAL OS service call fails

Note
This API function allows to be called from thread but also from ISR.

Calculates the address of the buffer control block

Release buffer in the condition below. (1) The counting semaphore is zero and the buffer keep
option is not specified. (2) 'option' is set to SF_MESSAGE_RELEASE_OPTION_FORCED_RELEASE.

Clears the flags in the buffer control block.

Release the buffer using ThreadX API "tx_block_release"

Set back the backed up interrupt mask level.

Invokes an user callback function if it is registered in the condition below. (1) The counting
semaphore is zero. (2) 'option' is set to SF_MESSAGE_RELEASE_OPTION_FORCED_RELEASE.

Sets SF_MESSAGE_CALLBACK_EVENT_NAK if any subscribers for the message have responded NAK

Sets SF_MESSAGE_CALLBACK_EVENT_ACK if all subscribers for the message have responded ACK

Sets the pointer to the context to kept in the buffer control block

Invokes the registered user callback function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,729 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Messaging Framework

◆ SF_MESSAGE_Close()

ssp_err_t SF_MESSAGE_Close (sf_message_ctrl_t *const p_api_ctrl)

Closes message framework.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN Message framework module has yet to be
opened.

SSP_ERR_ILLEGAL_SUBSCRIBER_LISTS Message subscriber lists is illegal.

Note
This API function only allows to be called from thread context.

Finds subscribers and flushes their queues

Deletes memory pools allocated in the work memory

◆ SF_MESSAGE_Open()

ssp_err_t SF_MESSAGE_Open (sf_message_ctrl_t *const p_api_ctrl, sf_message_cfg_t const *const
p_cfg)

Initialize message framework. This function initiates the messaging framework control block,
configures the work memory corresponding to the configuration parameters.

Return values
SSP_SUCCESS Initialization was successful.

SSP_ERR_ASSERTION p_ctrl, p_cfg or
p_cfg->p_work_memory_start is NULL.

SSP_ERR_INTERNAL OS service call fails.

SSP_ERR_IN_USE The Messaging Framework is in use.

SSP_ERR_INVALID_WORKBUFFER_SIZE Invalid work buffer size.

SSP_ERR_INVALID_MSG_BUFFER_SIZE Message buffer size is invalid.

SSP_ERR_ILLEGAL_SUBSCRIBER_LISTS Message subscriber lists is illegal.

Note
This API function is allowed to be called once per instance. The behavior if called twice is undefined.
This API function only allows to be called from thread context.

Creates the memory pools in the work memory area

Registers subscriber lists

Changes the messaging framework status from CLOSED to OPENED

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,730 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Messaging Framework

◆ SF_MESSAGE_Pend()

ssp_err_t SF_MESSAGE_Pend (sf_message_ctrl_t const *const p_api_ctrl, TX_QUEUE const *const
p_queue, sf_message_header_t ** pp_buffer, uint32_t const wait_option)

Pend on a message.

Return values
SSP_SUCCESS Message pending was successful.

SSP_ERR_ASSERTION p_ctrl, pp_buffer or p_queue is NULL.

SSP_ERR_NOT_OPEN Message framework module has yet to be
opened.

SSP_ERR_MESSAGE_QUEUE_EMPTY Queue is empty.

SSP_ERR_TIMEOUT OS service call returns timeout.

SSP_ERR_INTERNAL OS service call fails.

Note
This API function allows to be called from not only thread but also ISR(if wait_option is TX_NO_WAIT).

Receiving message here. Receiving data is not message itself but the pointer to the buffer

If there is no data in the message queue and TX_NO_WAIT is specified to wait_option, return
immediately with SSP_ERR_MESSAGE_QUEUE_EMPTY error code

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,731 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Messaging Framework

◆ SF_MESSAGE_Post()

ssp_err_t SF_MESSAGE_Post (sf_message_ctrl_t *const p_api_ctrl, sf_message_header_t const
*const p_buffer, sf_message_post_cfg_t const *const p_post_cfg, sf_message_post_err_t *const
p_post_err, uint32_t const wait_option)

Post a message to the subscribers.

Return values
SSP_SUCCESS Message posting was successful.

SSP_ERR_ASSERTION p_ctrl or p_buffer is NULL.

SSP_ERR_NOT_OPEN Message framework module has yet to be
opened.

SSP_ERR_NO_SUBSCRIBER_FOUND No subscriber found.

SSP_ERR_BUFFER_RELEASED Buffer has been released.

SSP_ERR_MESSAGE_QUEUE_FULL Queue is full (Timeout occurs before
sending a message if timeout option is
specified)

SSP_ERR_ILLEGAL_BUFFER_ADDRESS If buffer address is not aligned or p_buffer is
not in the block pool range.

SSP_ERR_INTERNAL OS service call fails

Note
This API function allows to be called from not only thread but also ISR(if wait_option is TX_NO_WAIT).
Another buffer writing to the buffer before the message read by message consumers results data overwriting.
Checks the number of the subscribers of specified event class

Calculates the address of the buffer control block

Counts up the counting semaphore in the buffer control block

Registers user callback function and context passed from user

◆ SF_MESSAGE_VersionGet()

ssp_err_t SF_MESSAGE_VersionGet (ssp_version_t *const p_version)

Get the version of the messaging framework. Stores version information in provided pointer.

Return values
SSP_SUCCESS Got version number successfully.

SSP_ERR_ASSERTION p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,732 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Messaging Framework > sf_message_instance_ctrl_t Struct Reference

 sf_message_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Messaging Framework

#include <sf_message.h>

Data Fields

TX_BLOCK_POOL block_pool

 Pointer to the memory block pool control.

sf_message_subscriber_list_t
**

pp_subscriber_lists

 Pointer array to the subscriber lists.

uint32_t buffer_size

 Bytes of the message buffer.

uint32_t number_of_buffers

 The number of allocated buffers.

uint16_t number_of_subscriber_groups

 The number of subscriber groups.

sf_message_state_t state

 Status of the message framework.

Detailed Description

Messaging framework instance control block structure

The documentation for this struct was generated from the following file:

sf_message.h

5.1.3.30 Power Profiles Framework V2
Renesas Synergy Software Package Reference » Framework Layer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,733 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Power Profiles Framework V2

Power Profiles Framework. More...

Macros

#define SF_POWER_PROFILES_V2_CODE_VERSION_MAJOR (2U)

Functions

ssp_err_t SF_POWER_PROFILES_V2_Open (sf_power_profiles_v2_ctrl_t *const
p_ctrl, sf_power_profiles_v2_cfg_t const *const p_cfg)

 Configures the Power Profiles framework and opens any required
HAL layer drivers that will be used. More...

ssp_err_t SF_POWER_PROFILES_V2_RunApply (sf_power_profiles_v2_ctrl_t
*const p_ctrl, sf_power_profiles_v2_run_cfg_t const *const p_cfg)

 Applies a Run profile. More...

ssp_err_t SF_POWER_PROFILES_V2_LowPowerApply
(sf_power_profiles_v2_ctrl_t *const p_ctrl,
sf_power_profiles_v2_low_power_cfg_t const *const p_cfg)

 Applies a Low Power profile. More...

ssp_err_t SF_POWER_PROFILES_V2_Close (sf_power_profiles_v2_ctrl_t *const
p_ctrl)

 Closes the framework. More...

ssp_err_t SF_POWER_PROFILES_V2_VersionGet (ssp_version_t *const
p_version)

 Gets version and stores it in provided pointer p_version. More...

Detailed Description

Power Profiles Framework.

Macro Definition Documentation

◆ SF_POWER_PROFILES_V2_CODE_VERSION_MAJOR

#define SF_POWER_PROFILES_V2_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,734 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Power Profiles Framework V2

Function Documentation

◆ SF_POWER_PROFILES_V2_Close()

ssp_err_t SF_POWER_PROFILES_V2_Close (sf_power_profiles_v2_ctrl_t *const p_ctrl)

Closes the framework.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN Power profiles framework is not open.

SSP_ERR_IN_USE Unable to obtain mutex.

SSP_ERR_INTERNAL Unable to release mutex.

Clear information from control block so other functions know this block is closed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,735 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Power Profiles Framework V2

◆ SF_POWER_PROFILES_V2_LowPowerApply()

ssp_err_t SF_POWER_PROFILES_V2_LowPowerApply (sf_power_profiles_v2_ctrl_t *const p_ctrl,
sf_power_profiles_v2_low_power_cfg_t const *const p_cfg)

Applies a Low Power profile.

The SF_POWER_PROFILES_V2_LowPowerApply function will:

Apply a LPMv2 configuration to prepare for low power
Apply an IO port configuration to prepare for low power, if supplied
Notify application that low power is about to be entered
Enter low power mode
When low power mode is exited, apply an IO port configuration for wake up, if supplied
Notify application that wake up has occurred

Return values
SSP_SUCCESS Entered and exited low power mode

successfully.

SSP_ERR_ASSERTION p_ctrl or p_ctrl->p_api is NULL.

SSP_ERR_NOT_OPEN Power profiles framework is not open.

SSP_ERR_UNSUPPORTED This function is not supported by one of the
HAL drivers, r_lpmv2, r_ioport.

SSP_ERR_INVALID_MODE r_lpmv2 mode is not
LPMV2_LOW_POWER_MODE_SLEEP but
r_lmv2 p_extend is NULL.

SSP_ERR_IN_USE Unable to obtain mutex.

SSP_ERR_INTERNAL Unable to release mutex.

Returns
See Common Error Codes, r_ioport, or r_lpmv2 drivers for other possible return codes or
causes.

Apply the LPM configuration.

Apply the pre-low power IOPORT configuration.

Notify application.

Enter low power mode.

Apply the post-low power IOPORT configuration.

Notify application.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,736 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Power Profiles Framework V2

◆ SF_POWER_PROFILES_V2_Open()

ssp_err_t SF_POWER_PROFILES_V2_Open (sf_power_profiles_v2_ctrl_t *const p_ctrl,
sf_power_profiles_v2_cfg_t const *const p_cfg)

Configures the Power Profiles framework and opens any required HAL layer drivers that will be
used.

The SF_POWER_PROFILES_V2_Open function initializes the critical data structures and variables.

Return values
SSP_SUCCESS Initialization was successful.

SSP_ERR_ASSERTION One of the following parameters may be
NULL: p_ctrl, p_api, or p_cfg. See HAL driver
for other possible causes.

SSP_ERR_IN_USE Power profiles framework is already open.

SSP_ERR_INTERNAL Unable to obtain mutex. Unable to release
mutex.

Returns
See Common Error Codes for other possible return codes or causes.

Initialize the LPM HAL driver.

Mark control block open so other tasks know it is valid.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,737 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Power Profiles Framework V2

◆ SF_POWER_PROFILES_V2_RunApply()

ssp_err_t SF_POWER_PROFILES_V2_RunApply (sf_power_profiles_v2_ctrl_t *const p_ctrl,
sf_power_profiles_v2_run_cfg_t const *const p_cfg)

Applies a Run profile.

The SF_POWER_PROFILES_V2_RunApply function will:

Apply an IO port configuration, if supplied
Apply a clock configuration

Return values
SSP_SUCCESS Initialization was successful.

SSP_ERR_ASSERTION One of the following parameters may be
NULL: p_ctrl, p_api, or p_cfg. See HAL driver
for other possible causes.

SSP_ERR_INVALID_ARGUMENT Clock configuration is invalid.

SSP_ERR_NOT_OPEN Power profiles framework is not open.

SSP_ERR_IN_USE Unable to obtain mutex.

SSP_ERR_INTERNAL Unable to release mutex.

SSP_ERR_INVALID_HW_CONDITION Incompatible system clock configuration.

Returns
See Common Error Codes, r_ioport, or r_cgc driver for other possible return codes or causes.

Apply the ioport configuration.

Set the clock config, this also sets the operating mode based on the clock speed.

◆ SF_POWER_PROFILES_V2_VersionGet()

ssp_err_t SF_POWER_PROFILES_V2_VersionGet (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Return values
SSP_SUCCESS Version returned successfully.

SSP_ERR_ASSERTION Parameter p_version was null.

5.1.3.31 SPI Framework
Renesas Synergy Software Package Reference » Framework Layer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,738 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SPI Framework

RTOS-integrated SPI Framework. More...

Data Structures

struct sf_spi_instance_ctrl_t

Functions

ssp_err_t SF_SPI_Open (sf_spi_ctrl_t *const p_api_ctrl, sf_spi_cfg_t const *const
p_cfg)

 Initialize a SPI bus and open low level SPI driver. More...

ssp_err_t SF_SPI_Read (sf_spi_ctrl_t *const p_api_ctrl, void *const p_dest,
uint32_t const length, spi_bit_width_t const bit_width, uint32_t const
timeout)

 Starts the transfer process and receives data from SPI device. More...

ssp_err_t SF_SPI_Write (sf_spi_ctrl_t *const p_api_ctrl, void *const p_src,
uint32_t const length, spi_bit_width_t const bit_width, uint32_t const
timeout)

 Starts the transfer process and writes data to SPI device. More...

ssp_err_t SF_SPI_WriteRead (sf_spi_ctrl_t *const p_api_ctrl, void *const p_src,
void *const p_dest, uint32_t const length, spi_bit_width_t const
bit_width, uint32_t const timeout)

 Simultaneously transmit data to SPI device while receiving data from
SPI device(full duplex). More...

ssp_err_t SF_SPI_Close (sf_spi_ctrl_t *const p_api_ctrl)

 Disable the SPI device designated by the control handle and close
the RTOS services used by the bus if no devices are connected to the
bus. More...

ssp_err_t SF_SPI_Lock (sf_spi_ctrl_t *const p_api_ctrl)

 Lock the bus for a device. More...

ssp_err_t SF_SPI_Unlock (sf_spi_ctrl_t *const p_api_ctrl)

 Unlock the bus for a particular device and make the bus usable for
other devices. More...

ssp_err_t SF_SPI_VersionGet (ssp_version_t *const p_version)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,739 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SPI Framework

 Get the version information of the framework. More...

ssp_err_t SF_SPI_LockWait (sf_spi_ctrl_t *const p_api_ctrl, uint32_t const
timeout)

 Lock the SPI bus resource. Once bus is locked by a device it can not
be used by other devices. More...

Detailed Description

RTOS-integrated SPI Framework.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,740 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SPI Framework

◆ SF_SPI_Close()

ssp_err_t SF_SPI_Close (sf_spi_ctrl_t *const p_api_ctrl)

Disable the SPI device designated by the control handle and close the RTOS services used by the
bus if no devices are connected to the bus.

Return values
SSP_SUCCESS SPI channel is successfully closed.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Device not opened.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This driver function is:

spi_api_t::close
Note

This function is reentrant for any device.

Check whether device is open.

Acquire the device count mutex before accessing the shared resource in close.

Check the count of opened devices on the bus. If there are no devices opened or all other devices
on the bus are closed then close the low level SPI driver and release the RTOS services used by the
bus.

Get the low level control in use.

Close low level driver.

Delete RTOS services used by the bus.

Decrement device count.

Delete the device count mutex

Decrement device count.

Release the device count mutex

Set device to closed state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,741 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SPI Framework

◆ SF_SPI_Lock()

ssp_err_t SF_SPI_Lock (sf_spi_ctrl_t *const p_api_ctrl)

Lock the bus for a device.

Return values
SSP_SUCCESS SPI bus is successfully locked.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Device not opened.

SSP_ERR_IN_USE In-use error.

Note
This function is reentrant for any device.

Check whether device is open.

Get the mutex for this device.

Start transfer process - check lock, check reconfiguration, check bus compatibility, enable chip
select.

Release the mutex

Set lock flag.

◆ SF_SPI_LockWait()

ssp_err_t SF_SPI_LockWait (sf_spi_ctrl_t *const p_api_ctrl, uint32_t const timeout)

Lock the SPI bus resource. Once bus is locked by a device it can not be used by other devices.

Return values
SSP_SUCCESS SPI channel is successfully locked within the

specified timeout.

SSP_ERR_ASSERTION Pointer to SPI control block is NULL.

SSP_ERR_NOT_OPEN Device not opened.

SSP_ERR_TIMEOUT Mutex not available in timeout.

Note
This function is reentrant for any device.

Check whether device is open.

Get the mutex for this device.

Set lock flag.

Enable slave.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,742 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SPI Framework

◆ SF_SPI_Open()

ssp_err_t SF_SPI_Open (sf_spi_ctrl_t *const p_api_ctrl, sf_spi_cfg_t const *const p_cfg)

Initialize a SPI bus and open low level SPI driver.

Return values
SSP_SUCCESS SPI channel is successfully opened.

SSP_ERR_ASSERTION One of the following parameters is NULL:
p_api_ctrl, p_cfg, Pointer to Open, Close,
Read, Write, or Writeread API interfaces,
p_cfg->p_bus or p_cfg->p_lower_lvl_cfg.

SSP_ERR_INTERNAL Internal error occurred.

SSP_ERR_ALREADY_OPEN Same SPI framework device is already open.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This driver function is

spi_api_t::open
Note

This function is reentrant for any channel.
Control block must be cleared by caller before calling this function.

Check whether device is already opened or not.

Copy bus to control

Copy chip_select to control

Copy chip_select level to control

Initialize bus lock to false

Set framework level callback function.

Save context for use in ISRs.

Use bus channel in device open.

Enter a critical section before checking the device count mutex status.

Check if device count mutex is already created. If not then create the mutex.

Create device_count_mutex. This is used to protect shared variable device_count in bus control
structure.

If mutex create fails, return error.

Exit critical section

Acquire the device count mutex before accessing the shared resource. Try again if the mutex was
deleted in close.

Increment device count.

Save device configuration for reconfiguration.

Set device state as Opened.

Initialize chip select.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,743 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SPI Framework

◆ SF_SPI_Read()

ssp_err_t SF_SPI_Read (sf_spi_ctrl_t *const p_api_ctrl, void *const p_dest, uint32_t const length,
spi_bit_width_t const bit_width, uint32_t const timeout)

Starts the transfer process and receives data from SPI device.

Return values
SSP_SUCCESS Data read completed successfully.

SSP_ERR_ASSERTION One of the following parameters is NULL:
p_api_ctrl, p_dest, length.

SSP_ERR_NOT_OPEN Device not opened.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This driver function is:

spi_api_t::read
Check whether device is open.

Get mutex for this bus.

Start transfer process - check lock, check reconfiguration, check bus compatibility, enable chip
select.

Release the mutex

Perform read.

Finish transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,744 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SPI Framework

◆ SF_SPI_Unlock()

ssp_err_t SF_SPI_Unlock (sf_spi_ctrl_t *const p_api_ctrl)

Unlock the bus for a particular device and make the bus usable for other devices.

Return values
SSP_SUCCESS SPI bus is successfully unlocked.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Device not opened.

SSP_ERR_IN_USE In-use error.

Note
This function is reentrant for any device.

Check whether device is open.

Acquire the mutex.

Clear lock flag.

Disable slave.

Release the mutex so that others can use the bus.

◆ SF_SPI_VersionGet()

ssp_err_t SF_SPI_VersionGet (ssp_version_t *const p_version)

Get the version information of the framework.

Return values
SSP_ERR_ASSERTION p_version is NULL.

SSP_SUCCESS Successful return.

Checks error. Further parameter checking can be done at the driver layer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,745 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SPI Framework

◆ SF_SPI_Write()

ssp_err_t SF_SPI_Write (sf_spi_ctrl_t *const p_api_ctrl, void *const p_src, uint32_t const length,
spi_bit_width_t const bit_width, uint32_t const timeout)

Starts the transfer process and writes data to SPI device.

Return values
SSP_SUCCESS Data write completed successfully.

SSP_ERR_ASSERTION One of the following parameters may be
NULL: p_api_ctrl, p_src, length.

SSP_ERR_NOT_OPEN Device not opened.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This driver function is:

spi_api_t::write
Check whether device is open.

Get mutex for this bus.

Start transfer process - check lock, check reconfiguration, check bus compatibility, enable chip
select.

Release the mutex

Perform write.

Finish transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,746 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SPI Framework

◆ SF_SPI_WriteRead()

ssp_err_t SF_SPI_WriteRead (sf_spi_ctrl_t *const p_api_ctrl, void *const p_src, void *const p_dest,
uint32_t const length, spi_bit_width_t const bit_width, uint32_t const timeout)

Simultaneously transmit data to SPI device while receiving data from SPI device(full duplex).

Return values
SSP_SUCCESS Data write completed successfully.

SSP_ERR_ASSERTION One of the following parameters may be
NULL: p_api_ctrl, p_src, p_dest, length.

SSP_ERR_NOT_OPEN Device not opened.

Returns
See Common Error Codes and lower level driver function for other possible return codes.
This driver function is:

spi_api_t::writeRead
Check whether device is open.

Get mutex for this bus.

Start transfer process - check lock, check reconfiguration, check bus compatibility, enable chip
select.

Release the mutex

Perform write read.

Finish transfer.

 sf_spi_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » SPI Framework

#include <sf_spi.h>

Data Fields

sf_spi_bus_t * p_bus

 Bus using this device (copy from cfg)

ioport_port_pin_t chip_select

 Chip select for this device (copy from cfg)

ioport_level_t chip_select_level_active

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,747 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > SPI Framework > sf_spi_instance_ctrl_t Struct Reference

 Polarity of CS, active High or Low (copy from cfg)

spi_cfg_t lower_lvl_cfg

 SPI peripheral configuration, use for bus reconfiguration.

spi_ctrl_t * p_lower_lvl_ctrl

 SPI peripheral control block.

sf_spi_dev_state_t dev_state

 Device status.

bool locked

 Lock and unlock bus for a device.

Detailed Description

SPI device context. DO NOT INITIALIZE. Initialization occurs when sf_spi_api_t::open is called.

The documentation for this struct was generated from the following file:

sf_spi.h

5.1.3.32 Thread Monitor Framework
Renesas Synergy Software Package Reference » Framework Layer

Framework module providing monitoring of threads. More...

Data Structures

struct sf_thread_monitor_instance_ctrl_t

Macros

#define SF_THREAD_MONITOR_CODE_VERSION_MAJOR (2U)

Functions

void SF_THREAD_MONITOR_Thread (ULONG thread_input)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,748 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Thread Monitor Framework

 The SF_THREAD_MONITOR_thread() is the main thread monitor
thread which runs periodically. More...

ssp_err_t SF_THREAD_MONITOR_Open (sf_thread_monitor_ctrl_t *const
p_api_ctrl, sf_thread_monitor_cfg_t const *const p_cfg)

 Calls the driver .open function in the p_lower_lvl_wdt parameter.
More...

ssp_err_t SF_THREAD_MONITOR_Close (sf_thread_monitor_ctrl_t *const
p_api_ctrl)

 Stop the thread monitoring thread. All threads are unregistered and
no longer monitored. More...

ssp_err_t SF_THREAD_MONITOR_ThreadRegister (sf_thread_monitor_ctrl_t
*const p_api_ctrl, sf_thread_monitor_counter_min_max_t const
*p_counter_min_max)

 Register a thread to be monitored by the watchdog monitoring
thread. More...

ssp_err_t SF_THREAD_MONITOR_ThreadUnregister (sf_thread_monitor_ctrl_t
*const p_api_ctrl)

 Remove a thread from being monitored by the Watchdog monitoring
thread. More...

ssp_err_t SF_THREAD_MONITOR_CountIncrement (sf_thread_monitor_ctrl_t
*const p_api_ctrl)

 Safely increment the counter of a thread. A mutex is used to ensure
this increment occurs without corruption. More...

ssp_err_t SF_THREAD_MONITOR_VersionGet (ssp_version_t *const p_version)

 Get version and store it in provided pointer p_version. Implements
sf_thread_monitor_api_t::versionGet. More...

Detailed Description

Framework module providing monitoring of threads.

Any misbehaving threads result in the device being reset. Both the WDT and IWDT HAL modules are
supported by this framework module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,749 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Thread Monitor Framework

Interface Used
See also

WDT Interface

Macro Definition Documentation

◆ SF_THREAD_MONITOR_CODE_VERSION_MAJOR

#define SF_THREAD_MONITOR_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

Function Documentation

◆ SF_THREAD_MONITOR_Close()

ssp_err_t SF_THREAD_MONITOR_Close (sf_thread_monitor_ctrl_t *const p_api_ctrl)

Stop the thread monitoring thread. All threads are unregistered and no longer monitored.

Return values
SSP_SUCCESS Close was successful and watchdog

monitoring thread has stopped.

SSP_ERR_ASSERTION p_ctrl pointer is NULL.

SSP_ERR_NOT_OPEN SF_THREAD_MONITOR_Open() has either not
been called or it was not called successfully.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

Note
This function is not reentrant.
This function DOES NOT stop the watchdog timer (e.g. WDT or IWDT). It does however stop the thread which
refreshes the these timers. To prevent the hardware watchdog from reseting the device the watchdog must be
refreshed elsewhere.
The Thread Monitor can be closed with SF_THREAD_MONITOR_Close(). However, if the underlying watchdog
timer hardware such as WDT or IWDT cannot be closed or stopped then there are likely to be undesirable results.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,750 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Thread Monitor Framework

◆ SF_THREAD_MONITOR_CountIncrement()

ssp_err_t SF_THREAD_MONITOR_CountIncrement (sf_thread_monitor_ctrl_t *const p_api_ctrl)

Safely increment the counter of a thread. A mutex is used to ensure this increment occurs without
corruption.

Return values
SSP_SUCCESS Thread counter successfully incremented.

SSP_ERR_ASSERTION p_ctrl pointer is NULL.

SSP_ERR_INSUFFICIENT_SPACE Not enough entries in the threads to be
monitored array to add this thread.

SSP_ERR_NOT_OPEN SF_THREAD_MONITOR_Open() has either not
been called or it was not called successfully.

SSP_ERR_INTERNAL An internal ThreadX error has occurred.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

Note
This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,751 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Thread Monitor Framework

◆ SF_THREAD_MONITOR_Open()

ssp_err_t SF_THREAD_MONITOR_Open (sf_thread_monitor_ctrl_t *const p_api_ctrl,
sf_thread_monitor_cfg_t const *const p_cfg)

Calls the driver .open function in the p_lower_lvl_wdt parameter.

After successively opening and configuring the HAL driver, the SF_THREAD_MONITOR_Open()
function starts the thread monitoring thread. This thread is responsible for checking thread
execution through thread count variables and for refreshing the implemented watchdog timer
peripheral.

Return values
SSP_SUCCESS Initialization was successful and watchdog

monitoring thread has started.

SSP_ERR_ASSERTION p_ctrl, p_cfg, p_cfg->p_lower_lvl_wdt
pointers and/or p_cfg->p_lower_lvl_wdt are
NULL.

SSP_ERR_IN_USE Thread monitor has already been opened.

SSP_ERR_INVALID_MODE Low level watchdog peripheral returned an
error when opened.

SSP_ERR_UNSUPPORTED Data structure could not be allocated.

SSP_ERR_INVALID_ARGUMENT One or more configuration options is invalid
for the low level driver.

SSP_ERR_INTERNAL An internal ThreadX error has occurred.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

Note
This function is not reentrant.
If there are no threads registered to be monitored the monitoring thread refreshes the watchdog and prevents the
watchdog from reseting the device.
The Thread Monitor can be closed with SF_THREAD_MONITOR_Close and then SF_THREAD_MONITOR_Open
can be called again. However, if the underlying watchdog timer hardware such as WDT or IWDT cannot be closed
or stopped then there are likely to be undesirable results.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,752 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Thread Monitor Framework

◆ SF_THREAD_MONITOR_Thread()

void SF_THREAD_MONITOR_Thread (ULONG thread_input)

The SF_THREAD_MONITOR_thread() is the main thread monitor thread which runs periodically.

The period is determined from the timeout period of the Watchdog hardware. This thread's period
should be half of that of the watchdog hardware so the watchdog is refreshed at 50% of the count
value.

Parameters
[in] thread_input This is the address of the

control block for the thread
monitor module. This allows
this thread to be created
multiple times with the data
used and hardware
interfaced with governed by
the control structure.

As this is a ThreadX thread this function does not return.

Note
This function is not reentrant.
If there are no threads registered to be monitored the monitoring thread will refresh/tickle/kick the watchdog and
so prevent the watchdog from reseting the device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,753 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Thread Monitor Framework

◆ SF_THREAD_MONITOR_ThreadRegister()

ssp_err_t SF_THREAD_MONITOR_ThreadRegister (sf_thread_monitor_ctrl_t *const p_api_ctrl,
sf_thread_monitor_counter_min_max_t const * p_counter_min_max)

Register a thread to be monitored by the watchdog monitoring thread.

This thread must supply the minimum and maximum expected values for the thread. The
mininimum and maximum values can be determined by using monitoring mode.

Return values
SSP_SUCCESS Thread successfully registered.

SSP_ERR_ASSERTION p_ctrl or p_counter_min_max pointers are
NULL.

SSP_ERR_INSUFFICIENT_SPACE Not enough entries in the threads to be
monitored array to add this thread. Increase
the value of THREAD_MONITOR_CFG_MAX_N
UMBER_OF_THREADS in
sf_thread_moinitor_cfg.h

SSP_ERR_NOT_OPEN SF_THREAD_MONITOR_Open() has either not
been called or it was not called successfully.

SSP_ERR_INTERNAL An internal ThreadX error has occurred.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

Note
This function is reentrant.

◆ SF_THREAD_MONITOR_ThreadUnregister()

ssp_err_t SF_THREAD_MONITOR_ThreadUnregister (sf_thread_monitor_ctrl_t *const p_api_ctrl)

Remove a thread from being monitored by the Watchdog monitoring thread.

Return values
SSP_SUCCESS Thread successfully unregistered.

SSP_ERR_ASSERTION p_ctrl pointer is NULL.

SSP_ERR_NOT_OPEN SF_THREAD_MONITOR_Open() has either not
been called or it was not called successfully.

SSP_ERR_INTERNAL An internal ThreadX error has occurred.

Returns
See Common Error Codes or HAL driver for other possible return codes or causes.

Note
This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,754 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Thread Monitor Framework

◆ SF_THREAD_MONITOR_VersionGet()

ssp_err_t SF_THREAD_MONITOR_VersionGet (ssp_version_t *const p_version)

Get version and store it in provided pointer p_version. Implements
sf_thread_monitor_api_t::versionGet.

Return values
SSP_SUCCESS Version returned successfully.

SSP_ERR_ASSERTION Parameter p_version was null.

 sf_thread_monitor_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Thread Monitor Framework

#include <sf_thread_monitor.h>

Public Member Functions

uint8_t stack [THREAD_MONI
TOR_THREAD_STACK_SIZE]

BSP_ALIGN_VARIABLE_V2 (BSP_STACK_ALIGNMENT)

Data Fields

uint32_t open

wdt_instance_t const * p_lower_lvl_wdt

uint32_t timeout_period_msec

uint32_t timeout_period_watchdog_clocks

bool profiling_mode_enabled

TX_MUTEX mutex

 Mutex to protect access to the thread counters.

uint32_t profiling_mode_check

sf_thread_monitor_thread_c
ounter_t

thread_counters
[THREAD_MONITOR_CFG_MAX_NUMBER_OF_THREADS]

TX_THREAD thread

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,755 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Thread Monitor Framework > sf_thread_monitor_instance_ctrl_t Struct Reference

 Thread monitor thread.

void const * p_extend

 Extended configuration data.

Detailed Description

Thread monitor control block. DO NOT INITIALIZE. Initialization occurs when
sf_thread_monitor_api_t::open is called.

Member Function Documentation

◆ BSP_ALIGN_VARIABLE_V2()

uint8_t stack [THREAD_MONITOR_THREAD_STACK_SIZE]
sf_thread_monitor_instance_ctrl_t::BSP_ALIGN_VARIABLE_V2 (BSP_STACK_ALIGNMENT)

Stack for thread monitor thread.

Field Documentation

◆ open

uint32_t sf_thread_monitor_instance_ctrl_t::open

Used by driver to check if the control structure is valid

◆ p_lower_lvl_wdt

wdt_instance_t const* sf_thread_monitor_instance_ctrl_t::p_lower_lvl_wdt

Pointer to interface structure for the watchdog peripheral

◆ profiling_mode_check

uint32_t sf_thread_monitor_instance_ctrl_t::profiling_mode_check

Value used to verify profiling mode is enabled when prfiling_mode_enabled == true.

◆ profiling_mode_enabled

bool sf_thread_monitor_instance_ctrl_t::profiling_mode_enabled

Used by the driver to check if profiling mode is enabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,756 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Thread Monitor Framework > sf_thread_monitor_instance_ctrl_t Struct Reference

◆ thread_counters

sf_thread_monitor_thread_counter_t sf_thread_monitor_instance_ctrl_t::thread_counters[THREAD_M
ONITOR_CFG_MAX_NUMBER_OF_THREADS]

Data storage for the thread counter information.

◆ timeout_period_msec

uint32_t sf_thread_monitor_instance_ctrl_t::timeout_period_msec

Time in milliseconds of the watchdog timeout period. Used to calculate the period of the monitoring
thread.

◆ timeout_period_watchdog_clocks

uint32_t sf_thread_monitor_instance_ctrl_t::timeout_period_watchdog_clocks

Maximum count value of the watchdog. Used to synchronise to the count.

The documentation for this struct was generated from the following file:

sf_thread_monitor.h

5.1.3.33 CTSU V2 Framework
Renesas Synergy Software Package Reference » Framework Layer

CTSU V2 Framework. More...

Data Structures

struct sf_touch_ctsu_button_info_t

struct sf_touch_ctsu_slider_info_t

struct sf_touch_ctsu_wheel_info_t

struct sf_touch_ctsu_instance_ctrl_t

Functions

ssp_err_t SF_TOUCH_CTSU_Open (sf_touch_ctsu_ctrl_t *const p_ctrl,
sf_touch_ctsu_cfg_t const *const p_cfg)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,757 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > CTSU V2 Framework

 Opens and configures the TOUCH Middle module. Implements
sf_touch_ctsu_api_t::open. More...

ssp_err_t SF_TOUCH_CTSU_ScanStart (sf_touch_ctsu_ctrl_t *const p_ctrl)

 This function should be called each time a periodic timer expires. If
initial offset tuning is enabled, The first several calls are used to
tuning for the sensors. Before starting the next scan, first get the
data with SF_TOUCH_CTSU_DataGet(). If a different control block
scan should be run, check the scan is complete before executing.
Implements sf_touch_ctsu_api_t::scanStart. More...

ssp_err_t SF_TOUCH_CTSU_DataGet (sf_touch_ctsu_ctrl_t *const p_ctrl,
uint64_t *p_button_status, uint16_t *p_slider_position, uint16_t
*p_wheel_position)

 Gets the 64-bit mask indicating which buttons are pressed. Also, this
function gets the current position of where slider or wheel is being
pressed. If initial offset tuning is enabled, The first several calls are
used to tuning for the sensors. Implements
sf_touch_ctsu_api_t::dataGet. More...

ssp_err_t SF_TOUCH_CTSU_CallbackSet (sf_touch_ctsu_ctrl_t *const p_api_ctrl,
void(*p_callback)(sf_touch_ctsu_callback_args_t *), void const *const
p_context, sf_touch_ctsu_callback_args_t *const p_callback_memory)

ssp_err_t SF_TOUCH_CTSU_Close (sf_touch_ctsu_ctrl_t *const p_ctrl)

 Disables specified TOUCH control block. Implements
sf_touch_ctsu_api_t::close. More...

ssp_err_t SF_TOUCH_CTSU_VersionGet (ssp_version_t *const p_version)

Detailed Description

CTSU V2 Framework.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,758 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > CTSU V2 Framework

◆ SF_TOUCH_CTSU_CallbackSet()

ssp_err_t SF_TOUCH_CTSU_CallbackSet (sf_touch_ctsu_ctrl_t *const p_api_ctrl,
void(*)(sf_touch_ctsu_callback_args_t *) p_callback, void const *const p_context,
sf_touch_ctsu_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
sf_touch_ctsu_api_t::callbackSet

Return values
SSP_SUCCESS Callback updated successfully.

SSP_ERR_ASSERTION A required pointer is NULL.

SSP_ERR_NOT_OPEN The control block has not been opened.

◆ SF_TOUCH_CTSU_Close()

ssp_err_t SF_TOUCH_CTSU_Close (sf_touch_ctsu_ctrl_t *const p_ctrl)

Disables specified TOUCH control block. Implements sf_touch_ctsu_api_t::close.

Return values
SSP_SUCCESS Successfully closed.

SSP_ERR_ASSERTION p_ctrl or p_ctrl->p_api is NULL.

SSP_ERR_NOT_OPEN Driver control block not valid. Call
SF_TOUCH_CTSU_Open to configure.

◆ SF_TOUCH_CTSU_DataGet()

ssp_err_t SF_TOUCH_CTSU_DataGet (sf_touch_ctsu_ctrl_t *const p_ctrl, uint64_t *
p_button_status, uint16_t * p_slider_position, uint16_t * p_wheel_position)

Gets the 64-bit mask indicating which buttons are pressed. Also, this function gets the current
position of where slider or wheel is being pressed. If initial offset tuning is enabled, The first several
calls are used to tuning for the sensors. Implements sf_touch_ctsu_api_t::dataGet.

Return values
SSP_SUCCESS Successfully data decoded.

SSP_ERR_ASSERTION Null pointer passed as a parameter.

SSP_ERR_NOT_OPEN Module is not open.

SSP_ERR_CTSU_SCANNING Scanning this instance.

SSP_ERR_CTSU_INCOMPLETE_TUNING Incomplete initial offset tuning.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,759 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > CTSU V2 Framework

◆ SF_TOUCH_CTSU_Open()

ssp_err_t SF_TOUCH_CTSU_Open (sf_touch_ctsu_ctrl_t *const p_ctrl, sf_touch_ctsu_cfg_t const
*const p_cfg)

Opens and configures the TOUCH Middle module. Implements sf_touch_ctsu_api_t::open.

Return values
SSP_SUCCESS Initialization was successful.

SSP_ERR_ASSERTION One of the following parameters may be
NULL: p_ctrl, p_api, or p_cfg. See HAL driver
for other possible causes.

SSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

SSP_ERR_INVALID_ARGUMENT Configuration parameter error.

Parameter Setting

◆ SF_TOUCH_CTSU_ScanStart()

ssp_err_t SF_TOUCH_CTSU_ScanStart (sf_touch_ctsu_ctrl_t *const p_ctrl)

This function should be called each time a periodic timer expires. If initial offset tuning is enabled,
The first several calls are used to tuning for the sensors. Before starting the next scan, first get the
data with SF_TOUCH_CTSU_DataGet(). If a different control block scan should be run, check the
scan is complete before executing. Implements sf_touch_ctsu_api_t::scanStart.

Return values
SSP_SUCCESS Successfully started.

SSP_ERR_ASSERTION Null pointer passed as a parameter.

SSP_ERR_NOT_OPEN Module is not open.

SSP_ERR_CTSU_SCANNING Scanning this instance or other.

SSP_ERR_CTSU_NOT_GET_DATA The previous data has not been retrieved by
DataGet.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,760 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > CTSU V2 Framework

◆ SF_TOUCH_CTSU_VersionGet()

ssp_err_t SF_TOUCH_CTSU_VersionGet (ssp_version_t *const p_version)

Return TOUCH Middle module version. Implements sf_touch_ctsu_api_t::versionGet.

Return values
SSP_SUCCESS Version returned successfully.

SSP_ERR_ASSERTION Null pointer passed as a parameter

 sf_touch_ctsu_button_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » CTSU V2 Framework

#include <sf_touch_ctsuv2.h>

Data Fields

uint64_t status

 Touch result bitmap.

uint16_t * p_threshold

 Pointer to Threshold value array. g_touch_button_threshold[] is set
by Open API.

uint16_t * p_hysteresis

 Pointer to Hysteresis value array. g_touch_button_hysteresis[] is set
by Open API.

uint16_t * p_reference

 Pointer to Reference value array. g_touch_button_reference[] is set
by Open API.

uint16_t * p_on_count

 Continuous touch counter. g_touch_button_on_count[] is set by Open
API.

uint16_t * p_off_count

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,761 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > CTSU V2 Framework > sf_touch_ctsu_button_info_t Struct Reference

 Continuous non-touch counter. g_touch_button_off_count[] is set by
Open API.

uint32_t * p_drift_buf

 Drift reference value. g_touch_button_drift_buf[] is set by Open API.

uint16_t * p_drift_count

 Drift counter. g_touch_button_drift_count[] is set by Open API.

uint8_t on_freq

 Copy from config by Open API.

uint8_t off_freq

 Copy from config by Open API.

uint16_t drift_freq

 Copy from config by Open API.

uint16_t cancel_freq

 Copy from config by Open API.

Detailed Description

Information of button

The documentation for this struct was generated from the following file:

sf_touch_ctsuv2.h

 sf_touch_ctsu_slider_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » CTSU V2 Framework

#include <sf_touch_ctsuv2.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,762 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > CTSU V2 Framework > sf_touch_ctsu_slider_info_t Struct Reference

Data Fields

uint16_t * p_position

 Calculated Position data. g_touch_slider_position[] is set by Open API.

uint16_t * p_threshold

 Copy from config by Open API. g_touch_slider_threshold[] is set by
Open API.

Detailed Description

Information of slider

The documentation for this struct was generated from the following file:

sf_touch_ctsuv2.h

 sf_touch_ctsu_wheel_info_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » CTSU V2 Framework

#include <sf_touch_ctsuv2.h>

Data Fields

uint16_t * p_position

 Calculated Position data. g_touch_wheel_position[] is set by Open
API.

uint16_t * p_threshold

 Copy from config by Open API. g_touch_wheel_threshold[] is set by
Open API.

Detailed Description

Information of wheel

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,763 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > CTSU V2 Framework > sf_touch_ctsu_wheel_info_t Struct Reference

sf_touch_ctsuv2.h

 sf_touch_ctsu_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » CTSU V2 Framework

#include <sf_touch_ctsuv2.h>

Data Fields

uint32_t open

 Whether or not driver is open.

sf_touch_ctsu_button_info_t binfo

 Information of button.

sf_touch_ctsu_slider_info_t sinfo

 Information of slider.

sf_touch_ctsu_wheel_info_t winfo

 Information of wheel.

sf_touch_ctsu_cfg_t const * p_touch_cfg

 Pointer to initial configurations.

ctsu_instance_t const * p_ctsu_instance

 Pointer to CTSU instance.

Detailed Description

SF_TOUCH_CTSU private control block. DO NOT MODIFY. Initialization occurs when
SF_TOUCH_CTSU_Open() is called.

The documentation for this struct was generated from the following file:

sf_touch_ctsuv2.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,764 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > CTSU V2 Framework > sf_touch_ctsu_instance_ctrl_t Struct Reference

5.1.3.34 Touch Panel V2 Framework
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated touch panel V2 Framework implementation touch chips. More...

Data Structures

struct sf_touch_panel_v2_instance_ctrl_t

Macros

#define SF_TOUCH_PANEL_V2_STACK_SIZE
 (SF_TOUCH_PANEL_V2_CFG_THREAD_STACK_SIZE)

#define SF_TOUCH_PANEL_V2_ERROR_RETURN(a,
err) SSP_ERROR_RETURN((a), (err), &g_module_name[0],
&g_version)

#define SF_TOUCH_PANEL_V2_OPEN (0x54504e4cU)

Functions

ssp_err_t SF_TOUCH_PANEL_V2_Open (sf_touch_panel_v2_ctrl_t *const
p_api_ctrl, sf_touch_panel_v2_cfg_t const *const p_cfg)

 Implements sf_touch_panel_v2_api_t::open. More...

ssp_err_t SF_TOUCH_PANEL_V2_Calibrate (sf_touch_panel_v2_ctrl_t *const
p_api_ctrl, sf_touch_panel_v2_calibrate_t const *const p_display,
sf_touch_panel_v2_calibrate_t const *const p_touchscreen, ULONG
const timeout)

 Implements sf_touch_panel_v2_api_t::calibrate. More...

ssp_err_t SF_TOUCH_PANEL_V2_Start (sf_touch_panel_v2_ctrl_t *const
p_api_ctrl)

 Implements sf_touch_panel_v2_api_t::start. More...

ssp_err_t SF_TOUCH_PANEL_V2_TouchDataGet (sf_touch_panel_v2_ctrl_t
*const p_api_ctrl, sf_touch_panel_v2_payload_t *p_payload, ULONG
const timeout)

 Implements sf_touch_panel_v2_api_t::touchDataGet. More...

ssp_err_t SF_TOUCH_PANEL_V2_Stop (sf_touch_panel_v2_ctrl_t *const

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,765 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Touch Panel V2 Framework

p_api_ctrl)

 Implements sf_touch_panel_v2_api_t::stop. More...

ssp_err_t SF_TOUCH_PANEL_V2_Reset (sf_touch_panel_v2_ctrl_t *const
p_api_ctrl)

 Implements sf_touch_panel_v2_api_t::reset. More...

ssp_err_t SF_TOUCH_PANEL_V2_Close (sf_touch_panel_v2_ctrl_t *const
p_api_ctrl)

 Implements sf_touch_panel_v2_api_t::close. More...

ssp_err_t SF_TOUCH_PANEL_V2_VersionGet (ssp_version_t *const p_version)

 Implements sf_touch_panel_v2_api_t::versionGet. More...

Detailed Description

RTOS-integrated touch panel V2 Framework implementation touch chips.

Summary
This is a ThreadX touch panel framework implemented for external touch controllers with IRQ pins
used to notify the application when new data is available.

Macro Definition Documentation

◆ SF_TOUCH_PANEL_V2_ERROR_RETURN

#define SF_TOUCH_PANEL_V2_ERROR_RETURN (a, err) SSP_ERROR_RETURN((a), (err),
&g_module_name[0], &g_version)

Macro for error logger.

◆ SF_TOUCH_PANEL_V2_OPEN

#define SF_TOUCH_PANEL_V2_OPEN (0x54504e4cU)

"TPNL" in ASCII, used to identify touch panel handle

◆ SF_TOUCH_PANEL_V2_STACK_SIZE

#define SF_TOUCH_PANEL_V2_STACK_SIZE (SF_TOUCH_PANEL_V2_CFG_THREAD_STACK_SIZE)

Stack size for touch panel thread.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,766 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Touch Panel V2 Framework

Function Documentation

◆ SF_TOUCH_PANEL_V2_Calibrate()

ssp_err_t SF_TOUCH_PANEL_V2_Calibrate (sf_touch_panel_v2_ctrl_t *const p_api_ctrl,
sf_touch_panel_v2_calibrate_t const *const p_display, sf_touch_panel_v2_calibrate_t const *const
p_touchscreen, ULONG const timeout)

Implements sf_touch_panel_v2_api_t::calibrate.

Return values
SSP_SUCCESS Touch panel calibrated successfully.

SSP_ERR_ASSERTION A pointer parameter was NULL.

SSP_ERR_CALIBRATE_FAILED Failed to calibrate

SSP_ERR_NOT_OPEN Touch panel is not configured. Call
SF_TOUCH_PANEL_V2_Open.

SSP_ERR_INVALID_ARGUMENT Set of display or touch screen coordinates
passed are invalid.

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Note
This function is reentrant for any panel.

Timeout not used in this implementation.

◆ SF_TOUCH_PANEL_V2_Close()

ssp_err_t SF_TOUCH_PANEL_V2_Close (sf_touch_panel_v2_ctrl_t *const p_api_ctrl)

Implements sf_touch_panel_v2_api_t::close.

Return values
SSP_SUCCESS Touch panel instance successfully closed.

SSP_ERR_ASSERTION Parameter p_api_ctrl was NULL, or a lower
level driver reported this error.

SSP_ERR_NOT_OPEN Touch panel is not configured. Call
SF_TOUCH_PANEL_V2_Open.

Note
This function is reentrant.

Close the lower level driver.

Suspend internal thread.

Delete RTOS services used

Mark control block close

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,767 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Touch Panel V2 Framework

◆ SF_TOUCH_PANEL_V2_Open()

ssp_err_t SF_TOUCH_PANEL_V2_Open (sf_touch_panel_v2_ctrl_t *const p_api_ctrl,
sf_touch_panel_v2_cfg_t const *const p_cfg)

Implements sf_touch_panel_v2_api_t::open.

Return values
SSP_SUCCESS Touch panel thread created and lower level

drivers opened successfully.

SSP_ERR_ASSERTION A pointer parameter was NULL, or a lower
level driver reported this error.

SSP_ERR_INTERNAL The touch panel thread or event flags could
not be created, or a lower level driver
reported this error.

SSP_ERR_ALREADY_OPEN Touch panel framework is already
configured.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls:

sf_touch_panel_chip_api_t::open
sf_touch_panel_chip_api_t::reset

Note
This function is reentrant for any panel.

Store user configurations in control block.

Create a mutex to protect access to the control structure and the lower level hardware.

Open the lower level driver.

Delete RTOS services used and log the error

Reset the touch chip.

Delete RTOS services used and log the error

Create event flags for internal communication.

Create semaphore for use with touchDataGet function

Delete RTOS services used

Create main touch panel thread.

Delete RTOS services used

Mark control block open so other tasks know it is valid

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,768 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Touch Panel V2 Framework

◆ SF_TOUCH_PANEL_V2_Reset()

ssp_err_t SF_TOUCH_PANEL_V2_Reset (sf_touch_panel_v2_ctrl_t *const p_api_ctrl)

Implements sf_touch_panel_v2_api_t::reset.

Return values
SSP_SUCCESS Touch chip reset successful.

SSP_ERR_ASSERTION Parameter p_api_ctrl was NULL, or a lower
level driver reported this error.

SSP_ERR_IN_USE Mutex was not available, or a lower level
driver reported this error.

SSP_ERR_NOT_OPEN Touch panel is not configured. Use Open API
to configure.

Returns
See Common Error Codes or lower level drivers for other possible return codes. This
function calls:

sf_touch_panel_chip_api_t::reset
Note

This function is reentrant for any panel.

Obtain mutex since this accesses shared resources.

Call hardware specific reset function.

Release mutex.

◆ SF_TOUCH_PANEL_V2_Start()

ssp_err_t SF_TOUCH_PANEL_V2_Start (sf_touch_panel_v2_ctrl_t *const p_api_ctrl)

Implements sf_touch_panel_v2_api_t::start.

Return values
SSP_SUCCESS Enabled touch panel thread to scan for new

touch events.

SSP_ERR_ASSERTION A pointer parameter was NULL.

SSP_ERR_NOT_OPEN Touch panel is not configured. Call
SF_TOUCH_PANEL_V2_Open.

Note
This function is reentrant for any panel.

Set start flag.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,769 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Touch Panel V2 Framework

◆ SF_TOUCH_PANEL_V2_Stop()

ssp_err_t SF_TOUCH_PANEL_V2_Stop (sf_touch_panel_v2_ctrl_t *const p_api_ctrl)

Implements sf_touch_panel_v2_api_t::stop.

Return values
SSP_SUCCESS Disabled touch panel thread from scanning

the touch events.

SSP_ERR_ASSERTION A pointer parameter was NULL.

SSP_ERR_NOT_OPEN Touch panel is not configured. Call
SF_TOUCH_PANEL_V2_Open.

Note
This function is reentrant for any panel.

Set stop flag.

◆ SF_TOUCH_PANEL_V2_TouchDataGet()

ssp_err_t SF_TOUCH_PANEL_V2_TouchDataGet (sf_touch_panel_v2_ctrl_t *const p_api_ctrl,
sf_touch_panel_v2_payload_t * p_payload, ULONG const timeout)

Implements sf_touch_panel_v2_api_t::touchDataGet.

Return values
SSP_SUCCESS Touch panel data read successfully.

SSP_ERR_ASSERTION A pointer parameter was NULL.

SSP_ERR_NOT_OPEN Touch panel is not configured. Call
SF_TOUCH_PANEL_V2_Open.

SSP_ERR_TIMEOUT Time out occurs while waiting for
semaphore.

SSP_ERR_WAIT_ABORTED Suspension was aborted by another thread.

Note
This function is reentrant for any panel.
The function will pend until new touch event data is available or it will timeout.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,770 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Touch Panel V2 Framework

◆ SF_TOUCH_PANEL_V2_VersionGet()

ssp_err_t SF_TOUCH_PANEL_V2_VersionGet (ssp_version_t *const p_version)

Implements sf_touch_panel_v2_api_t::versionGet.

Return values
SSP_SUCCESS Version returned successfully.

SSP_ERR_ASSERTION Parameter p_version was null.

 sf_touch_panel_v2_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Touch Panel V2 Framework

#include <sf_touch_panel_v2.h>

Public Member Functions

uint8_t stack
[

SF_TOUCH_PANEL_V2_STAC
K_SIZE]

BSP_ALIGN_VARIABLE_V2 (BSP_STACK_ALIGNMENT)

Data Fields

uint32_t open

 Used by driver to check if control block is valid.

uint16_t hsize_pixels

 Horizontal size of screen in pixels.

uint16_t vsize_pixels

 Vertical size of screen in pixels.

sf_touch_panel_v2_payload_
t

payload

 Pointer to buffer used to store payload.

TX_MUTEX mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,771 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Touch Panel V2 Framework > sf_touch_panel_v2_instance_ctrl_t Struct Reference

 Mutex used to protect access to shared resources.

TX_EVENT_FLAGS_GROUP flags

 Event flags for internal communication.

TX_THREAD thread

 Main touch panel thread.

TX_SEMAPHORE semaphore

 Semaphore used for SF_TOUCH_PANEL_V2_TouchDataGet.

sf_touch_panel_chip_instanc
e_t const *

p_chip

 Pointer to touch chip.

uint16_t update_hz

uint16_t rotation_angle

 Touch coordinate rotation angle(0/90/180/270)

void const * p_context

 Pointer to user callback context data.

bool calibrate

 Used to check if calibration is required or not.

Detailed Description

Instance control block. DO NOT INITIALIZE. Initialization occurs when sf_touch_panel_v2_api_t::open
is called

Member Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,772 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Touch Panel V2 Framework > sf_touch_panel_v2_instance_ctrl_t Struct Reference

◆ BSP_ALIGN_VARIABLE_V2()

uint8_t stack [SF_TOUCH_PANEL_V2_STACK_SIZE]
sf_touch_panel_v2_instance_ctrl_t::BSP_ALIGN_VARIABLE_V2 (BSP_STACK_ALIGNMENT)

Stack for touch panel thread

Field Documentation

◆ update_hz

uint16_t sf_touch_panel_v2_instance_ctrl_t::update_hz

The frequency to report repeat (SF_TOUCH_PANEL_V2_EVENT_DOWN or
SF_TOUCH_PANEL_V2_EVENT_HOLD) touch events in Hertz.

Note
This will be converted to RTOS ticks in the driver and rounded up to the nearest integer value of RTOS ticks.

The documentation for this struct was generated from the following file:

sf_touch_panel_v2.h

5.1.3.35 UART Framework Instance
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Communications Framework UART implementation. More...

Data Structures

struct sf_uart_comms_instance_ctrl_t

struct sf_uart_comms_cfg_t

Macros

#define SF_UART_COMMS_CODE_VERSION_MAJOR (2U)

Enumerations

enum sf_uart_comms_state_t { SF_UART_COMMS_STATE_CLOSED = 0,
SF_UART_COMMS_STATE_OPENED,
SF_UART_COMMS_STATE_READING,
SF_UART_COMMS_STATE_WRITING }

Functions

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,773 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > UART Framework Instance

ssp_err_t SF_UART_COMMS_Open (sf_comms_ctrl_t *const p_api_ctrl,
sf_comms_cfg_t const *const p_cfg)

 Open the UART for communication. More...

ssp_err_t SF_UART_COMMS_Close (sf_comms_ctrl_t *const p_api_ctrl)

 Close the UART Channel and clean up the resources. More...

ssp_err_t SF_UART_COMMS_Read (sf_comms_ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes, UINT const timeout)

 Read user specified number of bytes into destination buffer pointer.
More...

ssp_err_t SF_UART_COMMS_Write (sf_comms_ctrl_t *const p_api_ctrl, uint8_t
const *const p_src, uint32_t const bytes, UINT const timeout)

 Write user specified number of bytes from the source buffer. More...

ssp_err_t SF_UART_COMMS_Lock (sf_comms_ctrl_t *const p_api_ctrl,
sf_comms_lock_t lock_type, UINT timeout)

 Lock the UART resource. More...

ssp_err_t SF_UART_COMMS_Unlock (sf_comms_ctrl_t *const p_api_ctrl,
sf_comms_lock_t lock_type)

 UnLock the UART resource. More...

ssp_err_t SF_UART_COMMS_VersionGet (ssp_version_t *const p_version)

Detailed Description

RTOS-integrated Communications Framework UART implementation.

Macro Definition Documentation

◆ SF_UART_COMMS_CODE_VERSION_MAJOR

#define SF_UART_COMMS_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,774 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > UART Framework Instance

◆ sf_uart_comms_state_t

enum sf_uart_comms_state_t

Framework UART state

Enumerator

SF_UART_COMMS_STATE_CLOSED UART port is closed.

SF_UART_COMMS_STATE_OPENED UART port is opened.

SF_UART_COMMS_STATE_READING UART port is on data reception.

SF_UART_COMMS_STATE_WRITING UART port is on data transmission.

Function Documentation

◆ SF_UART_COMMS_Close()

ssp_err_t SF_UART_COMMS_Close (sf_comms_ctrl_t *const p_api_ctrl)

Close the UART Channel and clean up the resources.

Parameters
[in] p_api_ctrl Pointer to the UART control

block

Return values
SSP_SUCCESS UART channel is successfully closed.

SSP_ERR_ASSERTION Parameter check failed for one of the
following:

Pointer p_api_ctrl is NULL.
Pointer p_ctrl->p_lower_lvl_uart is
NULL
Pointer
p_ctrl->p_lower_lvl_uart->p_api is
NULL
Pointer p_ctrl->p_lower_lvl_uart->p_
api->close is NULL

SSP_ERR_NOT_OPEN Channel is not opened.

Note
This function is reentrant for any channel.

Checks error. Further parameter checking can be done at the driver layer.

Calls close function of UART HAL driver

Release ThreadX resources

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,775 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > UART Framework Instance

◆ SF_UART_COMMS_Lock()

ssp_err_t SF_UART_COMMS_Lock (sf_comms_ctrl_t *const p_api_ctrl, sf_comms_lock_t lock_type,
UINT timeout)

Lock the UART resource.

Parameters
[in] p_api_ctrl Pointer to the UART control

block

[in] lock_type Type of Lock.

[in] timeout timeout for lock.

Return values
SSP_SUCCESS Locking UART resource successful.

SSP_ERR_ASSERTION Pointer to UART control block is NULL.

SSP_ERR_NOT_OPEN Channel is not opened.

SSP_ERR_TIMEOUT Timeout Error. 'Receive mutex get' timed
out 'Transmit mutex get' timed out

Get both lock if requested, else get the lock type requested

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,776 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > UART Framework Instance

◆ SF_UART_COMMS_Open()

ssp_err_t SF_UART_COMMS_Open (sf_comms_ctrl_t *const p_api_ctrl, sf_comms_cfg_t const *const
p_cfg)

Open the UART for communication.

Parameters
[in,out] p_api_ctrl Pointer to the UART control

block

[in] p_cfg Pointer to the configuration
structure

Return values
SSP_SUCCESS Channel opened successfully.

SSP_ERR_IN_USE Channel already in use.

SSP_ERR_ASSERTION Parameter check failed for one of the
following:

Pointer p_api_ctrl is NULL.
Pointer p_cfg is NULL
Pointer p_cfg->p_extend is NULL
Pointer
p_cfg_extend->p_lower_lvl_uart is
NULL
Pointer p_cfg_extend->p_lower_lvl_u
art->p_api->open is NULL
Pointer p_cfg_extend->p_lower_lvl_u
art->p_cfg is NULL

SSP_ERR_INTERNAL An internal ThreadX error has occurred. This
is typically a failure to create/use thread
mutex or failure create/use event flags or
queue.

Returns
See Common Error Codes or functions called by this function for other possible codes. This
function calls:

uart_api_t::open
Note

This function is reentrant for any channel. Handle must be cleared by caller before calling this function.

Checks error. Further parameter checking can be done at the driver layer.

Initialize and start ThreadX resources

Calls open function of UART HAL driver

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,777 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > UART Framework Instance

◆ SF_UART_COMMS_Read()

ssp_err_t SF_UART_COMMS_Read (sf_comms_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const bytes, UINT const timeout)

Read user specified number of bytes into destination buffer pointer.

Parameters
[in] p_api_ctrl Pointer to the UART control

block

[in] bytes No.of bytes to be read

[in] timeout timeout for read

[out] p_dest Destination buffer

Return values
SSP_SUCCESS Data reception ends successfully.

SSP_ERR_NOT_OPEN Channel is not opened.

SSP_ERR_HW_LOCKED Channel is locked.

SSP_ERR_ASSERTION Pointer to UART control block/pointer to
destination address is NULL.

SSP_ERR_INVALID_MODE Channel is used for non-UART mode.

SSP_ERR_INSUFFICIENT_DATA Not enough data in receive circular buffer.

SSP_ERR_OVERFLOW Hardware overflow.

SSP_ERR_FRAMING Framing error.

SSP_ERR_PARITY Parity error.

SSP_ERR_BREAK_DETECT Break signal detected.

SSP_ERR_TIMEOUT One of the following operation timed out.

'Event flags get' timed out
'Receive mutex get' timed out

SSP_ERR_INTERNAL An internal ThreadX error has occurred. This
is typically a failure to create/use thread
mutex or failure create/use event flags or
queue.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

uart_api_t::read
uart_api_t::communicationAbort

Locks the UART reception hardware resource

Unlock the UART reception hardware resource

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,778 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > UART Framework Instance

◆ SF_UART_COMMS_Unlock()

ssp_err_t SF_UART_COMMS_Unlock (sf_comms_ctrl_t *const p_api_ctrl, sf_comms_lock_t
lock_type)

UnLock the UART resource.

Parameters
[in] p_api_ctrl Pointer to the UART control

block

[in] lock_type Type of Lock.

Return values
SSP_SUCCESS Unlocking UART resource successful.

SSP_ERR_ASSERTION Pointer to UART control block is NULL.

SSP_ERR_NOT_OPEN Channel is not opened.

SSP_ERR_INTERNAL Failed to release the mutex.

◆ SF_UART_COMMS_VersionGet()

ssp_err_t SF_UART_COMMS_VersionGet (ssp_version_t *const p_version)

Return values
SSP_SUCCESS Version number obtained successfully.

SSP_ERR_ASSERTION Pointer to version is NULL

◆ SF_UART_COMMS_Write()

ssp_err_t SF_UART_COMMS_Write (sf_comms_ctrl_t *const p_api_ctrl, uint8_t const *const p_src,
uint32_t const bytes, UINT const timeout)

Write user specified number of bytes from the source buffer.

Parameters
[in] p_api_ctrl Pointer to the UART control

block

[in] bytes Number of bytes to be
written.

[in] timeout Timeout for write. This
timeout must be long
enough for the write to
complete. A timeout of 0 or

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,779 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > UART Framework Instance

TX_NO_WAIT results in a
return value of
SSP_ERR_TIMEOUT.

[out] p_src Source buffer

Return values
SSP_SUCCESS Data transmission finished successfully.

SSP_ERR_ASSERTION Pointer to UART control block is NULL.
Pointer to source buffer is NULL.

SSP_ERR_NOT_OPEN Channel is not opened.

SSP_ERR_INVALID_MODE Channel is used for non-UART mode or
illegal mode is set in handle.

SSP_ERR_INSUFFICIENT_SPACE Not enough space in transmission circular
buffer.

SSP_ERR_HW_LOCKED Could not lock hardware.

SSP_ERR_TIMEOUT 'Transmit mutex get' timed out

SSP_ERR_INTERNAL An internal ThreadX error has occurred. This
is typically a failure to create/use thread
mutex or failure create/use event flags or
queue.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

uart_api_t::write
uart_api_t::communicationAbort

Locks the UART transmission hardware resource

Clear the event flag.

Calls write function of UART HAL driver

Wait until write operation is completed. Event is signaled in event flag object

Calls communicationAbort function of UART HAL driver to abort write operation.

Unlock the UART transmission hardware resource

 sf_uart_comms_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » UART Framework Instance

#include <sf_uart_comms.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,780 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > UART Framework Instance > sf_uart_comms_instance_ctrl_t Struct Reference

uint32_t state

 UART status.

uart_instance_t const * p_lower_lvl_uart

 Pointer to UART interface (copied from cfg)

TX_MUTEX mutex [2]

 Pointer to the mutex object for UART resource mutual exclusion.

TX_EVENT_FLAGS_GROUP eventflag [2]

 Pointer to the event flag object for UART data transfer.

TX_QUEUE queue

 Queue for reading.

uint32_t queue_mem [SF_UART_COMMS_CFG_QUEUE_SIZE_WORDS]

 Queue memory.

Detailed Description

UART communications instance control structure. DO NOT INITIALIZE. Initialization occurs when
sf_comms_api_t::open is called

The documentation for this struct was generated from the following file:

sf_uart_comms.h

 sf_uart_comms_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » UART Framework Instance

#include <sf_uart_comms.h>

Data Fields

uart_instance_t const * p_lower_lvl_uart

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,781 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > UART Framework Instance > sf_uart_comms_cfg_t Struct Reference

Detailed Description

Configuration for RTOS integrated UART driver

Field Documentation

◆ p_lower_lvl_uart

uart_instance_t const* sf_uart_comms_cfg_t::p_lower_lvl_uart

Pointer to UART Driver instance

The documentation for this struct was generated from the following file:

sf_uart_comms.h

5.1.3.36 NetX Synergy Port
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated NetX Ethernet driver for the Renesas Synergy software and Synergy Ethernet IP.
More...

Modules

Interface file between SF_EL_NX and PHY driver

Data Structures

struct EMAC_BD

struct nx_mac_address_t

struct NX_CALLBACK_REC

struct sf_el_nx_cfg_t

struct NX_REC

Macros

#define SF_EL_NX_API_VERSION_MAJOR (2U)

#define SF_EL_NX_CODE_VERSION_MAJOR (2U)

#define MAX_ENET_INSTANCES 2

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,782 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port

#define TX_QUEUE_DEPTH 10

#define NX_ENET_MAX_MTU 1518U

#define NX_INITIALIZE_DONE 0x0002U

#define NX_LINK_ENABLED 0x0004U

#define DESCRIPTOR_FLAG_ACTIVE 0x80000000U /* TACT/RACT - Tx/Rx
descriptor active */

Functions

void edmac_eint_isr (void)

 edmac_eint_isr More...

UINT nx_synergy_ethernet_init (NX_REC *nx_rec_ptr, sf_el_nx_cfg_t
*sf_el_nx_cfg_ptr, bool hw_padding)

 nx_synergy_ethernet_init More...

void nx_driver_event_handler (NX_REC *nx_rec_ptr)

 nx_driver_event_handler More...

void enet_hw_enable_interrupt (NX_REC *nx_rec_ptr)

 enet_hw_enable_interrupt More...

UINT nx_synergy_ethernet_deinit (NX_REC *nx_rec_ptr, sf_el_nx_cfg_t
*sf_el_nx_cfg_ptr)

 nx_synergy_ethernet_deinit More...

ssp_err_t nx_ether_custom_packet_send (NX_PACKET_POOL *pool_ptr, NX_REC
*nx_record_ptr, UCHAR *data, UINT length, USHORT ether_type,
nx_mac_address_t dest_mac_address)

 nx_ether_custom_packet_send More...

ssp_err_t nx_ether_driver (NX_IP_DRIVER *driver_req_ptr, NX_REC *nx_rec_ptr,
sf_el_nx_cfg_t *sf_el_nx_cfg_ptr)

 nx_ether_driver More...

void nx_ether_interrupt (NX_REC *nx_rec_ptr)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,783 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port

 nx_ether_interrupt More...

ssp_err_t nx_ethernet_version_get (ssp_version_t *const p_version)

 Retrieve the API version number. More...

Detailed Description

RTOS-integrated NetX Ethernet driver for the Renesas Synergy software and Synergy Ethernet IP.

Macro Definition Documentation

◆ DESCRIPTOR_FLAG_ACTIVE

#define DESCRIPTOR_FLAG_ACTIVE 0x80000000U /* TACT/RACT - Tx/Rx descriptor active */

Bits in the status word of the tx / rx descriptors

◆ MAX_ENET_INSTANCES

#define MAX_ENET_INSTANCES 2

Determine if the driver uses IP deferred processing or direct ISR processing.

◆ NX_ENET_MAX_MTU

#define NX_ENET_MAX_MTU 1518U

Max Ethernet packet size (14+ 1500 +2)

◆ NX_INITIALIZE_DONE

#define NX_INITIALIZE_DONE 0x0002U

Device is Initialized

◆ NX_LINK_ENABLED

#define NX_LINK_ENABLED 0x0004U

Device is enabled

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,784 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port

◆ SF_EL_NX_API_VERSION_MAJOR

#define SF_EL_NX_API_VERSION_MAJOR (2U)

Version of the API defined in this file

◆ SF_EL_NX_CODE_VERSION_MAJOR

#define SF_EL_NX_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

◆ TX_QUEUE_DEPTH

#define TX_QUEUE_DEPTH 10

Netx packets queued before dropping

Function Documentation

◆ edmac_eint_isr()

void edmac_eint_isr (void)

edmac_eint_isr

This is the Ethernet interrupt service routine. It clears the interrupt flag and calls nx_ether_interrupt
to process the interrupt.

Save context if RTOS is used

Process the interrupt.

Clear pending interrupt flag to make sure it doesn't fire again after exiting.

Restore context if RTOS is used

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,785 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port

◆ enet_hw_enable_interrupt()

void enet_hw_enable_interrupt (NX_REC * nx_rec_ptr)

enet_hw_enable_interrupt

This function enables interrupts for the given Ethernet port.

Parameters
[in] nx_rec_ptr : Pointer to Ethernet record

structure.

Note
The pointer parameter passed to this function is already validated at the higher level.

Enable interrupts at the NVIC.

Enable interrupts at the Ethernet controller

◆ nx_driver_event_handler()

void nx_driver_event_handler (NX_REC * nx_rec_ptr)

nx_driver_event_handler

This function is called from the IP thread deferred event. On every deferred event, this routine
checks for Phy link status and handles link up/down and link change. During initialization this
routine is responsible for checking for autonegotiation.

Parameters
[in] nx_rec_ptr : Pointer to Ethernet record

structure.

Determine previous link status.

Save link status and changed polling interval.

Check PHY link status.

Save link status and changed polling interval.

◆ nx_ether_custom_packet_send()

ssp_err_t nx_ether_custom_packet_send (NX_PACKET_POOL * pool_ptr, NX_REC * nx_record_ptr,
UCHAR * data, UINT length, USHORT ether_type, nx_mac_address_t dest_mac_address)

nx_ether_custom_packet_send

Ethernet driver routine to send a user data in raw Ethernet packet frame from a Source HW
address to destination HW address with the requested EtherType through a Ethernet channel

Parameters

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,786 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port

[in] pool_ptr : Pointer to packet pool to
use

[in] nx_record_ptr : Pointer to Ethernet record
structure

[in] data : Pointer to data to be send

[in] length : length of data to send

[in] ether_type : Type of Ethernet packet

[in] dest_mac_address : Destination hardware
address to send the user
data

Return values
SSP_SUCCESS : Call successful

SSP_ERR_ASSERTION : - A parameter pointers point to NULL

Invalid Ethernet record structure
pointer
Invalid data length

SSP_ERR_OUT_OF_MEMORY : No memory is free to allocate the packet in
the pool buffer

SSP_ERR_NOT_OPEN : Link not enabled

SSP_ERR_INTERNAL : - Maximum transmit queue depth has been
reached

No packet is available to append the
data

Free the packet that we will not send.

Setup the prepend pointer in order to build the Ethernet frame. Backup another 2 bytes to get
32-bit word alignment.

Build the actual Ethernet frame.

Build the sender's MAC access.

Set the Ethernet frame type.

Endian swapping if necessary.

Put the frame on the wire.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,787 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port

◆ nx_ether_driver()

ssp_err_t nx_ether_driver (NX_IP_DRIVER * driver_req_ptr, NX_REC * nx_rec_ptr, sf_el_nx_cfg_t *
sf_el_nx_cfg_ptr)

nx_ether_driver

Ethernet driver function for Renesas Synergy.

Parameters
[in] driver_req_ptr : Pointer to driver request

structure

[in] nx_rec_ptr : Pointer to Ethernet record
structure

[in] sf_el_nx_cfg_ptr : sf_el_nx configuration
structure pointer. This is
similar to SSP configuration
structure

Return values
SSP_SUCCESS : Call successful.

SSP_ERR_ASSERTION : One or more pointers point to NULL.

Returns
See NX user manual for all possible return values.

Perform parameter checking

Setup the IP pointer from the driver request.

Default to successful return.

Extract driver command.

Process the driver request.

Save the callback record pointer in the record structure.

Record the interface structure in the driver record.

This command is used in multi homed devices - return NX_SUCCESS by default.

Process driver initialization.

Initialize BDs.

Record the interface structure in the driver record.

Update associated channel information in driver record

Configure mac address.

Get MAC address from user.

Detect S5D5 Mask Rev 02 to enable software padding for it

Initialize the ETHERC and E-DMAC hardware.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,788 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port

Setup the link maximum IP layer transfer unit.

See if we can honor the NX_LINK_ENABLE request. NX_ALREADY_ENABLED: Device has already
been enabled

Enable the interrupts, at the interrupt controller and Ethernet controller.

Make sure we are in the right state to do the NX_LINK_DISABLE.

Disable receive and transmit.

Clear link enabled flag.

Clear the enabled flag since there is no-one else.

Free the packet that we will not send.

Process driver send packet. Place the Ethernet frame at the front of the packet.

Adjust the prepend pointer to accommodate Ethernet header.

Check if there is enough space in packet to append data.

Packet underflow.

Free the packet as there is not enough space to append data in it.

Adjust packet length.

Setup the prepend pointer in order to build the Ethernet frame. Backup another 2 bytes to get
32-bit word alignment.

Build the actual Ethernet frame.

Use MAC broadcast for this frame.

Build the sender's MAC access.

Set the Ethernet frame type.

Endian swapping if necessary.

Put the frame on the wire.

Enable multicast.

The device automatically receives multicast packets. Nothing needs to be done.

Process driver deferred requests. Process a device driver function on behalf of the IP thread.

Un-Initialize the ETHERC, E-DMAC and EPTPC hardware

Return the unhandled command status.

Return NULL in the supplied return pointer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,789 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port

◆ nx_ether_interrupt()

void nx_ether_interrupt (NX_REC * nx_rec_ptr)

nx_ether_interrupt

This function is the main Renesas Ethernet interrupt handler.

Parameters
[in] nx_rec_ptr : Pointer to Ethernet record

structure

Read EDMAC and EtherC status register.

Clear all interrupts.

Frame transmit completed interrupt The MAC sets Transmit Complete flag only if all frames are
transmitted. This creates a delay in processing transmitted frames. The work around: this driver
process transmitted packets when frame receive interrupt occurs. This way the transmitted
packets can be released before processing received packets, reducing the delay.

Frame received.

Special case for ECI interrupt + link change.

To report link status changes to the application, add a semaphore put or event flag set to the
statement below.

Link present.

◆ nx_ethernet_version_get()

ssp_err_t nx_ethernet_version_get (ssp_version_t *const p_version)

Retrieve the API version number.

Return values
SSP_SUCCESS Successful return.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Return the version number

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,790 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port

◆ nx_synergy_ethernet_deinit()

UINT nx_synergy_ethernet_deinit (NX_REC * nx_rec_ptr, sf_el_nx_cfg_t * sf_el_nx_cfg_ptr)

nx_synergy_ethernet_deinit

This function performs reset of the ethernet controller and PTP controller.

Parameters
[in] nx_rec_ptr : Pointer to Ethernet record

structure.

[in] sf_el_nx_cfg_ptr : sf_el_nx configuration
structure pointer

Return values
NX_SUCCESS : Call successful

NX_NOT_SUCCESSFUL : Call not successful

Disable transmission and reception at the Ethernet controller

Reset the EPTPC, Resetting after detection of an erroneous flag

Reset the ETHERC and EDMAC

Wait for 64 PCLKA cycles to reset ETHERC and EDMAC

Double check the Interrupts are disabled

Disable interrupts at the NVIC.

Check for the ether channel

Hold PHY in Reset for channel 1

Hold PHY in Reset for channel 0

Disable clock to the module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,791 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port

◆ nx_synergy_ethernet_init()

UINT nx_synergy_ethernet_init (NX_REC * nx_rec_ptr, sf_el_nx_cfg_t * sf_el_nx_cfg_ptr, bool
hw_padding)

nx_synergy_ethernet_init

This function initializes the specified Ethernet port.

Parameters
[in] nx_rec_ptr Pointer to Ethernet record

structure.

[in] hw_padding Flag to indicate hardware 2
byte padding is used or not.

[in] sf_el_nx_cfg_ptr Pointer to configuration
structure.

Return values
SSP_SUCCESS Call successful.

NX_NOT_SUCCESSFUL Call not successful.

Configure the Ethernet interrupt.

Enable clock

Reset PHY

Initialize & reset EDMAC and ETHERC

Wait at least 64 cycles of PCLKA to reset the EDMAC and ETHERC. PCLKA must be at least 12.5 MHz
to use Ethernet, so wait at least 5.12 us.

Set ETHERC default modes 100 Mbps, Full duplex

Set to little Endian.

Initialize controller

Set up descriptor addresses

Configure FIFO

Enable EDMAC receive

Enable receive, transmit, ECI interrupts.

Initialize PHY.

Start PHY auto negotiation

Create a timer to poll for completion of autonegotiation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,792 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port > Interface file between SF_EL_NX and PHY driver

 Interface file between SF_EL_NX and PHY driver
Renesas Synergy Software Package Reference » Framework Layer » NetX Synergy Port

Data Structures

struct phy_record_t

Macros

#define R_PHY_OK (int16_t)(0)

 PHY device is initialized successfully.

#define R_PHY_ERROR (int16_t)(-1)

 PHY device is not initialized successfully.

#define R_PHY_NORMAL_PREAMBLE 0x20U

 Standard preamble length (32bit 1's)

#define R_PHY_SUPPRESSED_PREAMBLE 0x01U

 Preamble suppression value.

#define PHY_MII_READ (0x2U << 12)

 PHY read OP code.

#define PHY_MII_WRITE (0x1U << 12)

 PHY write OP code.

#define PHY_REG_CONTROL (0x0000U)

 Basic Control register.

#define PHY_REG_STATUS (0x0001U)

 Basic Status register.

#define PHY_REG_IDENTIFIER1 (0x0002U)

 PHY Identifier 1 register.

#define PHY_REG_IDENTIFIER2 (0x0003U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,793 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port > Interface file between SF_EL_NX and PHY driver

 PHY Identifier 2 register.

#define PHY_REG_AN_ADVERTISEMENT (0x0004U)

 Auto-Negotiation Advertisement register.

#define PHY_REG_AN_LINK_PARTNER (0x0005U)

 Auto-Negotiation Link Partner Ability register.

#define PHY_REG_AN_EXPANSION (0x0006U)

 Auto-Negotiation Expansion register.

Enumerations

enum linkstat_t {
 PHY_NO_LINK = 0, PHY_LINK_10H, PHY_LINK_10F, PHY_LINK_100H,
 PHY_LINK_100F
}

Detailed Description

Enumeration Type Documentation

◆ linkstat_t

enum linkstat_t

Standard PHY speed and duplex operation mode

Enumerator

PHY_NO_LINK Link not established.

PHY_LINK_10H 10Mbps Half duplex

PHY_LINK_10F 10Mbps Full duplex

PHY_LINK_100H 100Mbps Half duplex

PHY_LINK_100F 100Mbps Full duplex

 phy_record_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » NetX Synergy Port » Interface
file between SF_EL_NX and PHY driver

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,794 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port > Interface file between SF_EL_NX and PHY driver > phy_record_t Struct Reference

#include <sf_el_nx.h>

Data Fields

uint16_t preamble_length

 Preamble length.

uint16_t local_advertise

 The capabilities of the local link as PHY data.

Detailed Description

Standard PHY data structure

The documentation for this struct was generated from the following file:

sf_el_nx.h

 EMAC_BD Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » NetX Synergy Port

#include <nx_renesas_synergy.h>

Data Fields

uint32_t bd_status

 Status - 32 bits.

uint16_t bd_rxdatalength

 data length

uint16_t bd_bufsize

 Buffer size.

uint8_t * bd_buffer_ptr

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,795 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port > EMAC_BD Struct Reference

 Buffer pointer.

NX_PACKET * bd_nx_packet

 Padding used to associate descriptor with nx_packet.

Detailed Description

Descriptor structure

The documentation for this struct was generated from the following file:

nx_renesas_synergy.h

 nx_mac_address_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » NetX Synergy Port

#include <nx_renesas_synergy.h>

Detailed Description

MAC Address structure

The documentation for this struct was generated from the following file:

nx_renesas_synergy.h

 NX_CALLBACK_REC Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » NetX Synergy Port

#include <nx_renesas_synergy.h>

Detailed Description

SF_EL_NX callback record structure

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,796 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port > NX_CALLBACK_REC Struct Reference

nx_renesas_synergy.h

 sf_el_nx_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » NetX Synergy Port

#include <nx_renesas_synergy.h>

Detailed Description

sf_el_nx configuration structure is similar to SSP configuration structure. This is collection of
parameters for this module that is required for an instance initialization.

The documentation for this struct was generated from the following file:

nx_renesas_synergy.h

 NX_REC Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » NetX Synergy Port

#include <nx_renesas_synergy.h>

Data Fields

UINT nx_state

 state of this driver

NX_IP * ip_ptr

 NetX IP structure handling this controller.

uint16_t channel

 Channel associated with this record.

UCHAR rx_bd_space [sizeof(EMAC_BD) *(NUM_RX_DESC+1)]

EMAC_BD * driver_rx_bd

 Pointer to Receive BD.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,797 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port > NX_REC Struct Reference

EMAC_BD * driver_tx_bd

 Pointer to Transmit BD.

ULONG driver_tx_bd_index

 Transmit BD buffer index.

ULONG driver_tx_bd_in_use

 Number of transmit BD in use.

ULONG driver_tx_release_index

 Index of Transmit buffer index to release.

ULONG driver_rx_bd_index

 Receive BD buffer index.

UINT driver_packets_queued

 [not used]

NX_PACKET * driver_tx_packet_queue

 [not used]

NX_PACKET * driver_tx_packet_queue_end

 [not used]

R_ETHERC0_Type * etherc_ptr

 Pointer to ETHERC register base address.

R_EDMAC0_Type * edmac_ptr

 Pointer to EDMAC register base address.

UINT link_established

 link status flag

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,798 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port > NX_REC Struct Reference

UINT nx_driver_phy_polling_requested

 Polling flag.

NX_CALLBACK_REC * p_callback_rec

 pointer to the user callback function

IRQn_Type irq

 Interrupt priority number.

Detailed Description

Driver record structure is similar to SSP control structure that describes an open instance of sf_el_nx
module.

Field Documentation

◆ rx_bd_space

UCHAR NX_REC::rx_bd_space[sizeof(EMAC_BD) *(NUM_RX_DESC+1)]

Allocate space for the BDs. Build one extra BD there because the BDs must be 16 byte aligned.

The documentation for this struct was generated from the following file:

nx_renesas_synergy.h

5.1.3.37 NetX Synergy Port PHY Driver
Renesas Synergy Software Package Reference » Framework Layer

Interface between SF_EL_NX Ethernet framework and PHY driver. More...

Functions

int16_t bsp_ethernet_phy_init (uint32_t channel)

 bsp_ethernet_phy_init - Initialize Ethernet PHY device. More...

void bsp_ethernet_phy_start_autonegotiate (uint32_t channel, uint8_t
pause)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,799 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port PHY Driver

 Sets Auto-Negotiation advertisement and starts auto-negotiation.
More...

int16_t bsp_ethernet_phy_get_autonegotiate (uint32_t channel, uint16_t
*p_line_speed_duplex, uint16_t *p_local_pause, uint16_t
*p_partner_pause)

 Gets capabilities of an Ethernet PHY device. More...

int16_t bsp_ethernet_phy_get_link_status (uint32_t channel)

 bsp_ethernet_phy_get_link_status - Returns the status of the physical
link. More...

Detailed Description

Interface between SF_EL_NX Ethernet framework and PHY driver.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,800 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port PHY Driver

◆ bsp_ethernet_phy_get_autonegotiate()

int16_t bsp_ethernet_phy_get_autonegotiate (uint32_t channel, uint16_t * p_line_speed_duplex,
uint16_t * p_local_pause, uint16_t * p_partner_pause)

Gets capabilities of an Ethernet PHY device.

Parameters
[in] channel Ethernet channel number

[in] p_line_speed_duplex A pointer to the location of
both the line speed and the
duplex

[in] p_local_pause A pointer to the location to
store the local pause bits

[in] p_partner_pause A pointer to the location to
store the partner pause bits

Return values
R_PHY_OK Got information successfully

R_PHY_ERROR PHY device is yet to be initialized

Note
Validating parameters is not required by this function as it by design is only called by sf_el_nx framework with
valid parameters.

Reads the status register. Because reading the first time shows the previous state, the Link status
bit should be read twice.

Checks the link status

Check the auto-negotiation status

Gets local pause capability

◆ bsp_ethernet_phy_get_link_status()

int16_t bsp_ethernet_phy_get_link_status (uint32_t channel)

bsp_ethernet_phy_get_link_status - Returns the status of the physical link.

Parameters
[in] channel Ethernet channel number

Return values
R_PHY_OK PHY device is initialized successfully

R_PHY_ERROR PHY device is not initialized successfully

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,801 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > NetX Synergy Port PHY Driver

◆ bsp_ethernet_phy_init()

int16_t bsp_ethernet_phy_init (uint32_t channel)

bsp_ethernet_phy_init - Initialize Ethernet PHY device.

Parameters
[in] channel Ethernet channel number

Return values
R_PHY_OK PHY device is initialized successfully

R_PHY_ERROR PHY device is not initialized successfully or
Validation of PHY chip fails.

Note
Refer HW manual for valid channels for a target MCU

Read the PHY Identifier register and compare read value with the PHY chip OUI identifier number

Resets PHY device

Waits the reset completion, PHY_CONTROL_RESET bit is self-cleared after 1 is written to it.

When MICREL_KSZ8091RNB of the Micrel, Inc. is used, the pin that outputs the state of LINK is used
combinedly with ACTIVITY in default. The setting of the pin is changed so that only the state of LINK
is output. Set Clock Mode to 50MHz

Sets Duplex Mode as Full-duplex

◆ bsp_ethernet_phy_start_autonegotiate()

void bsp_ethernet_phy_start_autonegotiate (uint32_t channel, uint8_t pause)

Sets Auto-Negotiation advertisement and starts auto-negotiation.

Parameters
[in] channel Ethernet channel number

[in] pause Using state of pause frames

5.1.3.38 BLE Framework on RL78G1D
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated BLE Framework example. Implementation of RL78G1D BLE Driver. It implements
the following interfaces: More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,802 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

Data Structures

struct sf_ble_on_rl78g1d_cfg_t

Macros

#define SF_BLE_RL78G1D_CODE_VERSION_MAJOR (2U)

#define SF_BLE_RL78G1D_CODE_VERSION_MINOR (0U)

Functions

ssp_err_t SF_BLE_RL78G1D_Open (sf_ble_ctrl_t *const p_ctrl, sf_ble_cfg_t const
*const p_cfg)

 Initialize BLE RL78G1D driver Implements sf_ble_api_t::open
Following tasks are performed Initialize module Store user specified
configuration in internal driver data for further use. More...

ssp_err_t SF_BLE_RL78G1D_Close (sf_ble_ctrl_t *const p_ctrl)

 De-Initialize BLE driver Implements sf_ble_api_t::close Following
tasks are performed Terminate working threads and timers Reset
internal driver data. More...

ssp_err_t SF_BLE_RL78G1D_InfoGet (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_ble_info_t *const p_ble_info)

 Get BLE module information Implements sf_ble_api_t::infoGet Gets
module information like chip-set information and RSSI value. More...

ssp_err_t SF_BLE_RL78G1D_ProvisioningGet (sf_ble_ctrl_t *const p_ctrl,
sf_ble_provisioning_t *const p_ble_provisioning)

 Reads the current BLE Provisioning information. More...

ssp_err_t SF_BLE_RL78G1D_ProvisioningSet (sf_ble_ctrl_t *const p_ctrl,
sf_ble_provisioning_t const *const p_ble_provisioning)

 Provisions the RL78G1D BLE Driver. More...

ssp_err_t SF_BLE_RL78G1D_Scan (sf_ble_ctrl_t *const p_ctrl, sf_ble_scan_t
*const p_scan, uint8_t *const p_cnt, sf_ble_scan_info_t *p_scan_info)

 Scans for available BLE devices. More...

ssp_err_t SF_BLE_RL78G1D_AdvertisementStart (sf_ble_ctrl_t *const p_ctrl,
sf_ble_adv_info_t *const p_adv_info)

 Make the device discoverable Implements

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,803 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

sf_ble_api_t::advertisementStart Broadcasts device information to
make it discoverable for other BLE modules. More...

ssp_err_t SF_BLE_RL78G1D_AdvertisementStop (sf_ble_ctrl_t *const p_ctrl)

 Stop the device from being discoverable Implements
sf_ble_api_t::advertisementStop Stop broadcasting device
information to other BLE modules. More...

ssp_err_t SF_BLE_RL78G1D_WhitelistAdd (sf_ble_ctrl_t *const p_ctrl, uint8_t
const *const p_bd_addr)

 Add specified devices to whitelist Implements
sf_ble_api_t::whitelistAdd Adds the devices to whitelist. More...

ssp_err_t SF_BLE_RL78G1D_WhitelistDel (sf_ble_ctrl_t *const p_ctrl, uint8_t
const *const p_bd_addr)

 Remove specified devices from whitelist Implements
sf_ble_api_t::whitelistDel Removes devices from whiteList. More...

ssp_err_t SF_BLE_RL78G1D_BondingStart (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, uint8_t const *const p_bd_addr,
sf_ble_bonding_start_t *p_bonding_start)

 Initiate bonding process with remote BLE device Implements
sf_ble_api_t::bondingStart Initiates bonding process and exchange
security keys if enabled. More...

ssp_err_t SF_BLE_RL78G1D_BondingResponse (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, uint8_t const *const p_bd_addr,
sf_ble_bonding_response_t *p_bonding_resp)

 Respond to the bonding request from the remote BLE device
Implements sf_ble_api_t::bondingResponse Send bonding response
on reception of SF_BLE_EVENT_BONDING_INDICATION. More...

ssp_err_t SF_BLE_RL78G1D_StartEncryption (sf_ble_ctrl_t *const p_ctrl,
sf_ble_sm_enc_info_t const *p_enc_info)

 Start encryption with remote BLE device Implements
sf_ble_api_t::startEncryption Encrypts with remote BLE device.
More...

ssp_err_t SF_BLE_RL78G1D_Connect (sf_ble_ctrl_t *const p_ctrl,
sf_ble_connection_t const *const p_conn, sf_ble_conn_handle_t
*p_handle)

 Connect to a remote BLE device Implements sf_ble_api_t::connect

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,804 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

Initiate a connection with remote BLE device. More...

ssp_err_t SF_BLE_RL78G1D_Listen (sf_ble_ctrl_t *const p_ctrl)

 Listen for connection request from remote device Implements
sf_ble_api_t::listen. More...

ssp_err_t SF_BLE_RL78G1D_Authorization (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle)

 Specifies remote device has been authorized by user Implements
sf_ble_api_t::authorization Indicates that the specified remote device
has been authorized by user. More...

ssp_err_t SF_BLE_RL78G1D_Disconnect (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle)

 Terminate connection with remote BLE device Implements
sf_ble_api_t::disconnect Disconnects with remote BLE device. More...

ssp_err_t SF_BLE_RL78G1D_SetTxPower (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *const p_handle, sf_ble_set_tx_pwr_info_t
*p_tx_power_info)

 Sets the transmit power for the procedure specified by the
connection handle Implements sf_ble_api_t::setTxPower Sets the
transmit power for the procedure. Valid values of TX power level
(p_tx_power_info->power_lvl) for RL78G1D in dBm are -15, -10, -7,
-2, -1 and 0. More...

ssp_err_t SF_BLE_RL78G1D_AddCustomProfiles (sf_ble_ctrl_t *const p_ctrl,
sf_ble_svc_attribute_t *p_svc_attr, uint32_t svc_attr_len,
sf_ble_char_attribute_t *p_char_attr, uint32_t char_attr_len)

 Add GATT Attributes to create Custom GATT Profile Implements
sf_ble_api_t::gattAddCustomProfiles This function is called with list of
service and characteristics which is to be added to GATT database.
Services and characteristics which were previously added will be
removed and newly passed services and characteristics will be
added. More...

ssp_err_t SF_BLE_RL78G1D_GATTServiceDiscovery (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_ble_service_discovery_req_t
const *const p_sf_ble_svc_dscv_req, sf_ble_service_discovery_rsp_t
*const p_sf_ble_svc_dscv_rsp, uint32_t *const p_rsp_cnt)

 Perform service discovery used by GATT client Implements
sf_ble_api_t::gattServiceDiscovery GATT client performs service
discovery of GATT server. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,805 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

ssp_err_t SF_BLE_RL78G1D_GATTCharDiscovery (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_ble_char_discovery_req_t const
*const p_sf_ble_char_dscv_req, sf_ble_char_discovery_rsp_t *const
p_sf_ble_char_dscv_rsp, uint32_t *const p_rsp_cnt)

 Perform characteristics discovery used by GATT client Implements
sf_ble_api_t::gattCharDiscovery GATT client performs characteristics
discovery of GATT server. More...

ssp_err_t SF_BLE_RL78G1D_GATTCharDescDiscovery (sf_ble_ctrl_t *const
p_ctrl, sf_ble_conn_handle_t *p_handle, uint16_t start_handle,
uint16_t end_handle, sf_ble_char_desc_discovery_rsp_t *const
p_sf_ble_chardesc_dscv_rsp, uint32_t *const p_rsp_cnt)

 Perform characteristics descriptor discovery used by GATT client
Implements sf_ble_api_t::gattCharDescDiscovery GATT client
performs characteristics descriptor discovery of GATT server. More...

ssp_err_t SF_BLE_RL78G1D_GATTCharRead (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_ble_char_read_req_t const *const
p_char_read_req, sf_ble_char_read_rsp_t *const p_char_read_rsp)

 Perform read characteristic used by GATT client Implements
sf_ble_api_t::gattCharRead GATT client reads from GATT server.
More...

ssp_err_t SF_BLE_RL78G1D_GATTCharWrite (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_ble_char_write_req_t const *const
p_char_write_req)

 Perform write characteristic used by GATT client Implements
sf_ble_api_t::gattCharWrite GATT client performs write operation on
GATT server. More...

ssp_err_t SF_BLE_RL78G1D_GATTCharExecuteWrite (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, sf_ble_execute_write_t
execute_flag)

 Perform execute write on all pending write operations, used by GATT
client Implements sf_ble_api_t::gattCharExecuteWrite GATT client
performs execute write on all pending write operations on GATT
server. More...

ssp_err_t SF_BLE_RL78G1D_GATTCharWriteLocal (sf_ble_ctrl_t *const p_ctrl,
uint16_t char_handle, uint16_t data_length, uint8_t *const p_data)

 Perform local characteristic write used by GATT server Implements
sf_ble_api_t::gattCharWriteLocal GATT server performs local
characteristic write. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,806 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

ssp_err_t SF_BLE_RL78G1D_GATTSendNotify (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, uint16_t char_handle)

 Send notification to GATT client, used by GATT server Implements
sf_ble_api_t::gattSendNotify GATT server sends notification to GATT
client. More...

ssp_err_t SF_BLE_RL78G1D_GATTSendIndicate (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, uint16_t char_handle)

 Send indication to GATT client, used by GATT server Implements
sf_ble_api_t::gattSendIndicate GATT server sends indication to GATT
client. More...

ssp_err_t SF_BLE_RL78G1D_GATTWriteResponse (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t *p_handle, uint16_t handle,
sf_ble_attribute_error_code_t error_code)

 Send response to write operation received by GATT client, used by
GATT server Implements sf_ble_api_t::gattWriteResponse GATT
server sends response of write operation to GATT client. More...

ssp_err_t SF_BLE_RL78G1D_VersionGet (ssp_version_t *const p_version)

 Get driver version based on compile time macros. Implements
sf_ble_api_t::versionGet. More...

Detailed Description

RTOS-integrated BLE Framework example. Implementation of RL78G1D BLE Driver. It implements
the following interfaces:

SF BLE Framework Interface

Macro Definition Documentation

◆ SF_BLE_RL78G1D_CODE_VERSION_MAJOR

#define SF_BLE_RL78G1D_CODE_VERSION_MAJOR (2U)

BLE Interface. Major Version of code that implements the API defined in this file

◆ SF_BLE_RL78G1D_CODE_VERSION_MINOR

#define SF_BLE_RL78G1D_CODE_VERSION_MINOR (0U)

Minor Version of code that implements the API defined in this file

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,807 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

Function Documentation

◆ SF_BLE_RL78G1D_AddCustomProfiles()

ssp_err_t SF_BLE_RL78G1D_AddCustomProfiles (sf_ble_ctrl_t *const p_ctrl, sf_ble_svc_attribute_t *
p_svc_attr, uint32_t svc_attr_len, sf_ble_char_attribute_t * p_char_attr, uint32_t char_attr_len)

Add GATT Attributes to create Custom GATT Profile Implements
sf_ble_api_t::gattAddCustomProfiles This function is called with list of service and characteristics
which is to be added to GATT database. Services and characteristics which were previously added
will be removed and newly passed services and characteristics will be added.

If services and characteristics were previously added and now those services and characteristics
are to be removed and no new services and characteristics are to be added , then call this API with
service and characteristics length as zero

Return values
SSP_ERR_UNSUPPORTED Unsupported Feature

◆ SF_BLE_RL78G1D_AdvertisementStart()

ssp_err_t SF_BLE_RL78G1D_AdvertisementStart (sf_ble_ctrl_t *const p_ctrl, sf_ble_adv_info_t
*const p_adv_info)

Make the device discoverable Implements sf_ble_api_t::advertisementStart Broadcasts device
information to make it discoverable for other BLE modules.

Return values
SSP_SUCCESS Start the advertisement of device

successfully

SSP_ERR_BLE_FAILED Advertisement Start failure

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_ASSERTION Invalid Arguments

SSP_ERR_INVALID_MODE Invalid GAP Role

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,808 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_AdvertisementStop()

ssp_err_t SF_BLE_RL78G1D_AdvertisementStop (sf_ble_ctrl_t *const p_ctrl)

Stop the device from being discoverable Implements sf_ble_api_t::advertisementStop Stop
broadcasting device information to other BLE modules.

Return values
SSP_SUCCESS Stop the advertisement of device

successfully

SSP_ERR_BLE_FAILED Advertisement Stop failure

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_ASSERTION Invalid Arguments

◆ SF_BLE_RL78G1D_Authorization()

ssp_err_t SF_BLE_RL78G1D_Authorization (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *
p_handle)

Specifies remote device has been authorized by user Implements sf_ble_api_t::authorization
Indicates that the specified remote device has been authorized by user.

Return values
SSP_SUCCESS Authorization success

SSP_ERR_BLE_FAILED Authorization failed

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,809 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_BondingResponse()

ssp_err_t SF_BLE_RL78G1D_BondingResponse (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *
p_handle, uint8_t const *const p_bd_addr, sf_ble_bonding_response_t * p_bonding_resp)

Respond to the bonding request from the remote BLE device Implements
sf_ble_api_t::bondingResponse Send bonding response on reception of
SF_BLE_EVENT_BONDING_INDICATION.

Return values
SSP_SUCCESS Bonding response success

SSP_ERR_BLE_FAILED Failed getting bonding response

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_ASSERTION Invalid Arguments

◆ SF_BLE_RL78G1D_BondingStart()

ssp_err_t SF_BLE_RL78G1D_BondingStart (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *
p_handle, uint8_t const *const p_bd_addr, sf_ble_bonding_start_t * p_bonding_start)

Initiate bonding process with remote BLE device Implements sf_ble_api_t::bondingStart Initiates
bonding process and exchange security keys if enabled.

Return values
SSP_SUCCESS Bonding start success

SSP_ERR_BLE_FAILED Bonding start failure

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_ASSERTION Invalid Arguments

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,810 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_Close()

ssp_err_t SF_BLE_RL78G1D_Close (sf_ble_ctrl_t *const p_ctrl)

De-Initialize BLE driver Implements sf_ble_api_t::close Following tasks are performed Terminate
working threads and timers Reset internal driver data.

Return values
SSP_SUCCESS Suspend the driver functionality

SSP_ERR_BLE_FAILED Close failure

SSP_ERR_NOT_OPEN Module is not opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

◆ SF_BLE_RL78G1D_Connect()

ssp_err_t SF_BLE_RL78G1D_Connect (sf_ble_ctrl_t *const p_ctrl, sf_ble_connection_t const *const
p_conn, sf_ble_conn_handle_t * p_handle)

Connect to a remote BLE device Implements sf_ble_api_t::connect Initiate a connection with remote
BLE device.

Return values
SSP_SUCCESS Connect success

SSP_ERR_BLE_FAILED Failed to connect

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_INVALID_MODE Invalid GAP Role

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,811 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_Disconnect()

ssp_err_t SF_BLE_RL78G1D_Disconnect (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *
p_handle)

Terminate connection with remote BLE device Implements sf_ble_api_t::disconnect Disconnects
with remote BLE device.

Return values
SSP_SUCCESS Disconnect success

SSP_ERR_BLE_FAILED Disconnect failed

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_ASSERTION Invalid Arguments

◆ SF_BLE_RL78G1D_GATTCharDescDiscovery()

ssp_err_t SF_BLE_RL78G1D_GATTCharDescDiscovery (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t * p_handle, uint16_t start_handle, uint16_t end_handle,
sf_ble_char_desc_discovery_rsp_t *const p_sf_ble_chardesc_dscv_rsp, uint32_t *const p_rsp_cnt)

Perform characteristics descriptor discovery used by GATT client Implements
sf_ble_api_t::gattCharDescDiscovery GATT client performs characteristics descriptor discovery of
GATT server.

Return values
SSP_ERR_BLE_FAILED Characteristics descriptor discovery failed

SSP_SUCCESS Characteristics descriptor discovery
successful

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,812 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_GATTCharDiscovery()

ssp_err_t SF_BLE_RL78G1D_GATTCharDiscovery (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
* p_handle, sf_ble_char_discovery_req_t const *const p_sf_ble_char_dscv_req,
sf_ble_char_discovery_rsp_t *const p_sf_ble_char_dscv_rsp, uint32_t *const p_rsp_cnt)

Perform characteristics discovery used by GATT client Implements sf_ble_api_t::gattCharDiscovery
GATT client performs characteristics discovery of GATT server.

Return values
SSP_ERR_BLE_FAILED Characteristics discovery failed

SSP_SUCCESS Characteristics discovery successful

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

◆ SF_BLE_RL78G1D_GATTCharExecuteWrite()

ssp_err_t SF_BLE_RL78G1D_GATTCharExecuteWrite (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t * p_handle, sf_ble_execute_write_t execute_flag)

Perform execute write on all pending write operations, used by GATT client Implements
sf_ble_api_t::gattCharExecuteWrite GATT client performs execute write on all pending write
operations on GATT server.

Return values
SSP_ERR_BLE_FAILED Execute write failed

SSP_SUCCESS Execute write successful

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,813 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_GATTCharRead()

ssp_err_t SF_BLE_RL78G1D_GATTCharRead (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *
p_handle, sf_ble_char_read_req_t const *const p_char_read_req, sf_ble_char_read_rsp_t *const
p_char_read_rsp)

Perform read characteristic used by GATT client Implements sf_ble_api_t::gattCharRead GATT client
reads from GATT server.

Return values
SSP_ERR_BLE_FAILED Characteristic read failed

SSP_SUCCESS Characteristic read successful

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

◆ SF_BLE_RL78G1D_GATTCharWrite()

ssp_err_t SF_BLE_RL78G1D_GATTCharWrite (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *
p_handle, sf_ble_char_write_req_t const *const p_char_write_req)

Perform write characteristic used by GATT client Implements sf_ble_api_t::gattCharWrite GATT
client performs write operation on GATT server.

Return values
SSP_ERR_BLE_FAILED Characteristic write failed

SSP_SUCCESS Characteristic write successful

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,814 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_GATTCharWriteLocal()

ssp_err_t SF_BLE_RL78G1D_GATTCharWriteLocal (sf_ble_ctrl_t *const p_ctrl, uint16_t char_handle,
uint16_t data_length, uint8_t *const p_data)

Perform local characteristic write used by GATT server Implements sf_ble_api_t::gattCharWriteLocal
GATT server performs local characteristic write.

Return values
SSP_ERR_BLE_FAILED Local characteristic write failed

SSP_SUCCESS Local characteristic write successful

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

◆ SF_BLE_RL78G1D_GATTSendIndicate()

ssp_err_t SF_BLE_RL78G1D_GATTSendIndicate (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *
p_handle, uint16_t char_handle)

Send indication to GATT client, used by GATT server Implements sf_ble_api_t::gattSendIndicate
GATT server sends indication to GATT client.

Return values
SSP_ERR_BLE_FAILED Send Indication failed

SSP_SUCCESS Send Indication successful

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,815 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_GATTSendNotify()

ssp_err_t SF_BLE_RL78G1D_GATTSendNotify (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *
p_handle, uint16_t char_handle)

Send notification to GATT client, used by GATT server Implements sf_ble_api_t::gattSendNotify
GATT server sends notification to GATT client.

Return values
SSP_ERR_BLE_FAILED Send notification failed

SSP_SUCCESS Send notification successful

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

◆ SF_BLE_RL78G1D_GATTServiceDiscovery()

ssp_err_t SF_BLE_RL78G1D_GATTServiceDiscovery (sf_ble_ctrl_t *const p_ctrl,
sf_ble_conn_handle_t * p_handle, sf_ble_service_discovery_req_t const *const
p_sf_ble_svc_dscv_req, sf_ble_service_discovery_rsp_t *const p_sf_ble_svc_dscv_rsp, uint32_t
*const p_rsp_cnt)

Perform service discovery used by GATT client Implements sf_ble_api_t::gattServiceDiscovery GATT
client performs service discovery of GATT server.

Return values
SSP_ERR_BLE_FAILED Service discovery failed

SSP_SUCCESS Service discovery successful

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,816 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_GATTWriteResponse()

ssp_err_t SF_BLE_RL78G1D_GATTWriteResponse (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t
* p_handle, uint16_t handle, sf_ble_attribute_error_code_t error_code)

Send response to write operation received by GATT client, used by GATT server Implements
sf_ble_api_t::gattWriteResponse GATT server sends response of write operation to GATT client.

Return values
SSP_ERR_BLE_FAILED Send write response failed

SSP_SUCCESS Send write response successful

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

◆ SF_BLE_RL78G1D_InfoGet()

ssp_err_t SF_BLE_RL78G1D_InfoGet (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t * p_handle,
sf_ble_info_t *const p_ble_info)

Get BLE module information Implements sf_ble_api_t::infoGet Gets module information like chip-set
information and RSSI value.

Return values
SSP_SUCCESS Successfully get the BLE information

SSP_ERR_BLE_FAILED Info get failure

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

SSP_ERR_TIMEOUT BLE event timeout

Initialize RSSI to zero and do not check return value of Read RSSI API since InfoGet API can be
called before connection is established and in that case Read RSSI API will return error but InfoGet
API should return Success with 0 RSSI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,817 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_Listen()

ssp_err_t SF_BLE_RL78G1D_Listen (sf_ble_ctrl_t *const p_ctrl)

Listen for connection request from remote device Implements sf_ble_api_t::listen.

Return values
SSP_ERR_UNSUPPORTED Functionality is not supported.

◆ SF_BLE_RL78G1D_Open()

ssp_err_t SF_BLE_RL78G1D_Open (sf_ble_ctrl_t *const p_ctrl, sf_ble_cfg_t const *const p_cfg)

Initialize BLE RL78G1D driver Implements sf_ble_api_t::open Following tasks are performed
Initialize module Store user specified configuration in internal driver data for further use.

Return values
SSP_SUCCESS Module initialization successful

SSP_ERR_BLE_FAILED Failed to initialize module

SSP_ERR_ALREADY_OPEN Device is already open

SSP_ERR_IN_USE Module in use

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_ASSERTION Invalid Arguments

SSP_ERR_INTERNAL GATT Initialization failure

If mutex is already created then mutex create returns TX_MUTEX_ERROR which is a valid condition

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,818 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_ProvisioningGet()

ssp_err_t SF_BLE_RL78G1D_ProvisioningGet (sf_ble_ctrl_t *const p_ctrl, sf_ble_provisioning_t
*const p_ble_provisioning)

Reads the current BLE Provisioning information.

Implements sf_ble_api_t::provisionGet Reads the provisioning information

Return values
SSP_SUCCESS Successfully reads provisioning information

SSP_ERR_BLE_FAILED Provisioning get failure

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Invalid Arguments

◆ SF_BLE_RL78G1D_ProvisioningSet()

ssp_err_t SF_BLE_RL78G1D_ProvisioningSet (sf_ble_ctrl_t *const p_ctrl, sf_ble_provisioning_t const
*const p_ble_provisioning)

Provisions the RL78G1D BLE Driver.

Implements sf_ble_api_t::provisionSet This function performs the following tasks: Provisions the BLE
driver. Set bonding and security modes as provisioned.

Return values
SSP_SUCCESS Successfully provisioned the device.

SSP_ERR_BLE_FAILED Provisioning set failure

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_ASSERTION Invalid Arguments

SSP_ERR_UNSUPPORTED Unsupported feature

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,819 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_Scan()

ssp_err_t SF_BLE_RL78G1D_Scan (sf_ble_ctrl_t *const p_ctrl, sf_ble_scan_t *const p_scan, uint8_t
*const p_cnt, sf_ble_scan_info_t * p_scan_info)

Scans for available BLE devices.

Implements sf_ble_api_t::scan Scans for available BLE devices and return the list to caller.

Return values
SSP_SUCCESS Successful scan of available BLE devices

SSP_ERR_BLE_FAILED Scan failure

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_ASSERTION Invalid Arguments

SSP_ERR_INVALID_MODE Invalid GAP Role

◆ SF_BLE_RL78G1D_SetTxPower()

ssp_err_t SF_BLE_RL78G1D_SetTxPower (sf_ble_ctrl_t *const p_ctrl, sf_ble_conn_handle_t *const
p_handle, sf_ble_set_tx_pwr_info_t * p_tx_power_info)

Sets the transmit power for the procedure specified by the connection handle Implements
sf_ble_api_t::setTxPower Sets the transmit power for the procedure. Valid values of TX power level
(p_tx_power_info->power_lvl) for RL78G1D in dBm are -15, -10, -7, -2, -1 and 0.

Return values
SSP_SUCCESS TX power set successfully

SSP_ERR_BLE_FAILED TX power set failed

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_ASSERTION Invalid Arguments

SSP_ERR_INVALID_ARGUMENT Invalid transmit power level parameter not
supported by device

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,820 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_StartEncryption()

ssp_err_t SF_BLE_RL78G1D_StartEncryption (sf_ble_ctrl_t *const p_ctrl, sf_ble_sm_enc_info_t const
* p_enc_info)

Start encryption with remote BLE device Implements sf_ble_api_t::startEncryption Encrypts with
remote BLE device.

Return values
SSP_SUCCESS in case of success

SSP_ERR_BLE_FAILED Failed to start encryption

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_ASSERTION Invalid Arguments

◆ SF_BLE_RL78G1D_VersionGet()

ssp_err_t SF_BLE_RL78G1D_VersionGet (ssp_version_t *const p_version)

Get driver version based on compile time macros. Implements sf_ble_api_t::versionGet.

Return values
SSP_SUCCESS Success

SSP_ERR_ASSERTION Argument NULL is passed

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,821 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D

◆ SF_BLE_RL78G1D_WhitelistAdd()

ssp_err_t SF_BLE_RL78G1D_WhitelistAdd (sf_ble_ctrl_t *const p_ctrl, uint8_t const *const
p_bd_addr)

Add specified devices to whitelist Implements sf_ble_api_t::whitelistAdd Adds the devices to
whitelist.

Return values
SSP_SUCCESS Whitelist add success

SSP_ERR_BLE_FAILED Whitelist add failure

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_ASSERTION Invalid Arguments

◆ SF_BLE_RL78G1D_WhitelistDel()

ssp_err_t SF_BLE_RL78G1D_WhitelistDel (sf_ble_ctrl_t *const p_ctrl, uint8_t const *const
p_bd_addr)

Remove specified devices from whitelist Implements sf_ble_api_t::whitelistDel Removes devices
from whiteList.

Return values
SSP_SUCCESS Whitelist delete success

SSP_ERR_BLE_FAILED Whitelist delete failure

SSP_ERR_NOT_OPEN Device Not Opened

SSP_ERR_IN_USE Module in use

SSP_ERR_TIMEOUT BLE event timeout

SSP_ERR_ASSERTION Invalid Arguments

 sf_ble_on_rl78g1d_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » BLE Framework on RL78G1D

#include <sf_ble_rl78g1d.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,822 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE Framework on RL78G1D > sf_ble_on_rl78g1d_cfg_t Struct Reference

Data Fields

sf_comms_instance_t const
*

p_low_lvl_sf_comms

 Pointer to Communication Framework instance.

timer_instance_t const * p_low_lvl_timer

 Pointer to timer instance.

UINT ble_driver_thread_priority

 BLE Driver Thread Priority.

UINT ble_serial_thread_priority

 BLE Serial Thread Priority.

Detailed Description

Extension structure for this Implementation. Each implementation can have its own extension
structure. For example one implementation may use RSPI for communicating with the BLE chip while
another may use SDIO.

The documentation for this struct was generated from the following file:

sf_ble_rl78g1d.h

5.1.3.39 BLE On-Board Profile Framework on RL78G1D
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated BLE On-Board Profile Framework example. Implementation of RL78G1D BLE On-
Board Profile Driver. It implements the following interfaces: More...

Macros

#define SF_BLE_ONBOARD_PROFILE_RL78G1D_CODE_VERSION_MAJOR (2U)

#define SF_BLE_ONBOARD_PROFILE_RL78G1D_CODE_VERSION_MINOR (0U)

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,823 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BLE On-Board Profile Framework on RL78G1D

RTOS-integrated BLE On-Board Profile Framework example. Implementation of RL78G1D BLE On-
Board Profile Driver. It implements the following interfaces:

SF BLE On-Board Profile Framework Interface

Macro Definition Documentation

◆ SF_BLE_ONBOARD_PROFILE_RL78G1D_CODE_VERSION_MAJOR

#define SF_BLE_ONBOARD_PROFILE_RL78G1D_CODE_VERSION_MAJOR (2U)

BLE On-Board Profile Interface. Major Version of code that implements the API defined in this file

◆ SF_BLE_ONBOARD_PROFILE_RL78G1D_CODE_VERSION_MINOR

#define SF_BLE_ONBOARD_PROFILE_RL78G1D_CODE_VERSION_MINOR (0U)

Minor Version of code that implements the API defined in this file

5.1.3.40 Cellular Framework Example using Quectel CATM1
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Cellular Framework example. Implementation of Cellular Quectel CATM1 Driver. It
implements the following interfaces: More...

Data Structures

struct sf_cellular_qctlcatm1_extended_cfg_t

Macros

#define SF_CELLULAR_QCTLCATM1_CODE_VER_MAJOR (2U)

#define SF_CELLULAR_QCTLCATM1_CODE_VER_MINOR (0U)

Enumerations

enum sf_cellular_qctlcatm1_network_scan_seq_t {

SF_CELLULAR_QCTLCATM1_NWSCANSEQ_LTECATM1_LTECATNB1_GS
M = 0,
SF_CELLULAR_QCTLCATM1_NWSCANSEQ_LTECATM1_GSM_LTECATNB
1 = 1,
SF_CELLULAR_QCTLCATM1_NWSCANSEQ_GSM_LTECATNB1_LTECATM
1 = 3,
SF_CELLULAR_QCTLCATM1_NWSCANSEQ_GSM_LTECATM1_LTECATNB
1 = 2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,824 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Cellular Framework Example using Quectel CATM1

SF_CELLULAR_QCTLCATM1_NWSCANSEQ_LTECATNB1_LTECATM1_GS
M = 4,
SF_CELLULAR_QCTLCATM1_NWSCANSEQ_LTECATNB1_GSM_LTECATM
1 = 5
}

Detailed Description

RTOS-integrated Cellular Framework example. Implementation of Cellular Quectel CATM1 Driver. It
implements the following interfaces:

SF CELLULAR Framework Interface

Macro Definition Documentation

◆ SF_CELLULAR_QCTLCATM1_CODE_VER_MAJOR

#define SF_CELLULAR_QCTLCATM1_CODE_VER_MAJOR (2U)

Cellular Interface. Major Version of code that implements the API defined in this file

◆ SF_CELLULAR_QCTLCATM1_CODE_VER_MINOR

#define SF_CELLULAR_QCTLCATM1_CODE_VER_MINOR (0U)

Minor Version of code that implements the API defined in this file

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,825 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Cellular Framework Example using Quectel CATM1

◆ sf_cellular_qctlcatm1_network_scan_seq_t

enum sf_cellular_qctlcatm1_network_scan_seq_t

Cellular Fallback sequence type

Enumerator

SF_CELLULAR_QCTLCATM1_NWSCANSEQ_LTECA
TM1_LTECATNB1_GSM

Network scan sequence Default (LTE
Cat.M1->LTE Cat.NB1->GSM)

SF_CELLULAR_QCTLCATM1_NWSCANSEQ_LTECA
TM1_GSM_LTECATNB1

Network scan sequence LTE
Cat.M1->GSM->LTE Cat.NB1.

SF_CELLULAR_QCTLCATM1_NWSCANSEQ_GSM_L
TECATNB1_LTECATM1

Network scan sequence GSM->LTE
Cat.NB1->LTE Cat.M1.

SF_CELLULAR_QCTLCATM1_NWSCANSEQ_GSM_L
TECATM1_LTECATNB1

Network scan sequence GSM->LTE
Cat.M1->LTE Cat.NB1.

SF_CELLULAR_QCTLCATM1_NWSCANSEQ_LTECA
TNB1_LTECATM1_GSM

Network scan sequence LTE Cat.NB1->LTE
Cat.M1->GSM.

SF_CELLULAR_QCTLCATM1_NWSCANSEQ_LTECA
TNB1_GSM_LTECATM1

Network scan sequence LTE
Cat.NB1->GSM->LTE Cat.M1.

 sf_cellular_qctlcatm1_extended_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Cellular Framework Example
using Quectel CATM1

#include <sf_cellular_qctlcatm1.h>

Data Fields

sf_cellular_qctlcatm1_netwo
rk_scan_seq_t

nwscanseq

 Network fall back sequence selection.

uint8_t * nbiot_band_selection

 NBIOT band selections.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,826 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Cellular Framework Example using Quectel CATM1 > sf_cellular_qctlcatm1_extended_cfg_t Struct Reference

Extended configuration for Quectel CATM1 BG96

The documentation for this struct was generated from the following file:

sf_cellular_qctlcatm1.h

5.1.3.41 BSD Socket over Quectel CATM1 on-chip stack
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Cellular Socket Framework example. Implementation of Quectel CATM1 Socket
layer over Quectel CATM1 On-Chip stack It implements the following interfaces: More...

RTOS-integrated Cellular Socket Framework example. Implementation of Quectel CATM1 Socket
layer over Quectel CATM1 On-Chip stack It implements the following interfaces:

SF Socket CELLULAR Framework Interface

5.1.3.42 Cellular Framework Example using RYZ014 CATM1
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Cellular Framework example. Implementation of Cellular RYZ014 CATM1 Driver. It
implements the following interfaces: More...

Macros

#define SF_CELLULAR_RYZ014CATM1_CODE_VER_MAJOR (2U)

#define SF_CELLULAR_RYZ014CATM1_CODE_VER_MINOR (0U)

Detailed Description

RTOS-integrated Cellular Framework example. Implementation of Cellular RYZ014 CATM1 Driver. It
implements the following interfaces:

SF CELLULAR Framework Interface

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,827 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Cellular Framework Example using RYZ014 CATM1

◆ SF_CELLULAR_RYZ014CATM1_CODE_VER_MAJOR

#define SF_CELLULAR_RYZ014CATM1_CODE_VER_MAJOR (2U)

Cellular Interface. Major Version of code that implements the API defined in this file

◆ SF_CELLULAR_RYZ014CATM1_CODE_VER_MINOR

#define SF_CELLULAR_RYZ014CATM1_CODE_VER_MINOR (0U)

Minor Version of code that implements the API defined in this file

5.1.3.43 BSD Socket over RYZ014CATM1 on-chip stack
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated Cellular Socket Framework example. Implementation of RYZ014CATM1 Socket layer
over RYZ014CATM1 On-Chip stack It implements the following interfaces: More...

RTOS-integrated Cellular Socket Framework example. Implementation of RYZ014CATM1 Socket layer
over RYZ014CATM1 On-Chip stack It implements the following interfaces:

SF Socket CELLULAR Framework Interface

5.1.3.44 Touch Panel Framework Example for FT5X06
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated touch panel chip ft5x06 example. Implementation of ft5x06 touch chip Driver. It
implements the following interfaces: More...

Data Structures

struct sf_touch_panel_chip_ft5x06_instance_ctrl_t

struct sf_touch_panel_chip_on_ft5x06_cfg_t

Detailed Description

RTOS-integrated touch panel chip ft5x06 example. Implementation of ft5x06 touch chip Driver. It
implements the following interfaces:

Touch chip Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,828 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Touch Panel Framework Example for FT5X06

 sf_touch_panel_chip_ft5x06_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Touch Panel Framework
Example for FT5X06

#include <sf_touch_panel_chip_ft5x06.h>

Data Fields

ioport_port_pin_t pin

 Reset pin.

sf_i2c_instance_t const * p_lower_lvl_framewrk

 Pointer to lower level I2C framework.

sf_external_irq_instance_t
const *

p_lower_lvl_irq

 Pointer to lower level external IRQ.

sf_touch_panel_v2_payload_
t

last_payload

 Stores most recent payload for comparison.

Detailed Description

Instance control block. DO NOT INITIALIZE. Initialization occurs when sf_touch_panel_chip_api_t::open
is called

The documentation for this struct was generated from the following file:

sf_touch_panel_chip_ft5x06.h

 sf_touch_panel_chip_on_ft5x06_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Touch Panel Framework
Example for FT5X06

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,829 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Touch Panel Framework Example for FT5X06 > sf_touch_panel_chip_on_ft5x06_cfg_t Struct Reference

#include <sf_touch_panel_chip_ft5x06.h>

Data Fields

ioport_port_pin_t pin

 Port pin connected to reset line on touch controller chip.

sf_i2c_instance_t const * p_lower_lvl_framewrk

 Pointer to lower level I2C framework.

sf_external_irq_instance_t
const *

p_lower_lvl_irq

 Pointer to lower level external IRQ.

Detailed Description

Configuration for RTOS touch panel driver.

The documentation for this struct was generated from the following file:

sf_touch_panel_chip_ft5x06.h

5.1.3.45 Touch Panel Framework Example for SX8654
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated touch panel chip sx8654 example. Implementation of sx8654 touch chip Driver. It
implements the following interfaces: More...

Data Structures

struct sf_touch_panel_chip_sx8654_instance_ctrl_t

struct sf_touch_panel_chip_on_sx8654_cfg_t

Detailed Description

RTOS-integrated touch panel chip sx8654 example. Implementation of sx8654 touch chip Driver. It
implements the following interfaces:

Touch chip Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,830 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Touch Panel Framework Example for SX8654

 sf_touch_panel_chip_sx8654_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Touch Panel Framework
Example for SX8654

#include <sf_touch_panel_chip_sx8654.h>

Data Fields

ioport_port_pin_t pin

 Reset pin.

sf_i2c_instance_t const * p_lower_lvl_framewrk

 Pointer to lower level I2C framework.

sf_external_irq_instance_t
const *

p_lower_lvl_irq

 Pointer to lower level external IRQ.

uint16_t hsize_pixels

 Horizontal size of screen in pixels.

uint16_t vsize_pixels

 Vertical size of screen in pixels.

sf_touch_panel_v2_payload_
t

last_payload

 Stores most recent payload for comparison.

Detailed Description

Instance control block. DO NOT INITIALIZE. Initialization occurs when sf_touch_panel_chip_api_t::open
is called

The documentation for this struct was generated from the following file:

sf_touch_panel_chip_sx8654.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,831 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Touch Panel Framework Example for SX8654 > sf_touch_panel_chip_sx8654_instance_ctrl_t Struct Reference

 sf_touch_panel_chip_on_sx8654_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » Touch Panel Framework
Example for SX8654

#include <sf_touch_panel_chip_sx8654.h>

Data Fields

ioport_port_pin_t pin

 Port pin connected to reset line on touch controller chip.

sf_i2c_instance_t const * p_lower_lvl_framewrk

 Pointer to lower level I2C framework.

sf_external_irq_instance_t
const *

p_lower_lvl_irq

 Pointer to lower level external IRQ.

uint16_t hsize_pixels

 Horizontal size of screen in pixels.

uint16_t vsize_pixels

 Vertical size of screen in pixels.

Detailed Description

Configuration for RTOS touch panel driver.

The documentation for this struct was generated from the following file:

sf_touch_panel_chip_sx8654.h

5.1.3.46 WiFi Framework on GT202
Renesas Synergy Software Package Reference » Framework Layer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,832 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on GT202

RTOS-integrated WiFi Framework example. Implementation of Atheros WiFi Driver. It implements the
following interfaces: More...

Data Structures

struct sf_wifi_on_gt202_cfg_t

Macros

#define SF_WIFI_GT202_CODE_VERSION_MAJOR (2U)

#define SF_WIFI_GT202_CODE_VERSION_MINOR (0U)

Functions

ssp_err_t SF_WIFI_GT202_Open (sf_wifi_ctrl_t *p_ctrl, sf_wifi_cfg_t const *const
p_cfg)

 Initialize WiFi module. More...

ssp_err_t SF_WIFI_GT202_Close (sf_wifi_ctrl_t *const p_ctrl)

 Stop WiFi module functionality. More...

ssp_err_t SF_WIFI_GT202_ProvisioningSet (sf_wifi_ctrl_t *const p_ctrl,
sf_wifi_provisioning_t const *const p_wifi_provisioning)

 Provisions the WiFi module. More...

ssp_err_t SF_WIFI_GT202_ProvisioningGet (sf_wifi_ctrl_t *const p_ctrl,
sf_wifi_provisioning_t *const p_wifi_provisioning)

 Reads the current WiFi Provisioning information of the WiFi module.
More...

ssp_err_t SF_WIFI_GT202_MulticastListAdd (sf_wifi_ctrl_t *const p_ctrl, uint8_t
const *const p_mac_addr)

 Add MAC address in multicast list. More...

ssp_err_t SF_WIFI_GT202_MulticastListDelete (sf_wifi_ctrl_t *const p_ctrl,
uint8_t const *const p_mac_addr)

 Delete MAC address from multicast list. More...

ssp_err_t SF_WIFI_GT202_StatisticsGet (sf_wifi_ctrl_t *const p_ctrl,
sf_wifi_stats_t *const p_wifi_device_stats)

 Get the interface statistics. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,833 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on GT202

ssp_err_t SF_WIFI_GT202_Transmit (sf_wifi_ctrl_t *const p_ctrl, uint8_t *const
p_buf, uint32_t length)

 Transmit data packets. More...

ssp_err_t SF_WIFI_GT202_InfoGet (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_info_t
*const p_wifi_info)

 Get WiFi module information. More...

ssp_err_t SF_WIFI_GT202_Scan (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_scan_t
*const p_scan, uint8_t *const p_cnt)

 Scans for available APs. More...

ssp_err_t SF_WIFI_GT202_ACLAdd (sf_wifi_ctrl_t *const p_ctrl, uint8_t const
*const p_mac)

 Add MAC address from Access control list. More...

ssp_err_t SF_WIFI_GT202_ACLDelete (sf_wifi_ctrl_t *const p_ctrl, uint8_t const
*const p_mac)

 Delete MAC address from Access control list. More...

ssp_err_t SF_WIFI_GT202_MACAddressSet (sf_wifi_ctrl_t *const p_ctrl, uint8_t
const *const p_mac)

 Set MAC address of WiFi module. More...

ssp_err_t SF_WIFI_GT202_MACAddressGet (sf_wifi_ctrl_t *const p_ctrl, uint8_t
*const p_mac)

 Get MAC address of WiFi module. More...

ssp_err_t SF_WIFI_GT202_WpsStart (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_wps_t
const *const p_wps)

 Start WiFi WPS. More...

ssp_err_t SF_WIFI_GT202_VersionGet (ssp_version_t *const p_version)

 Set driver version based on compile time macros. Implements
sf_wifi_api_t::versionGet. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,834 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on GT202

Detailed Description

RTOS-integrated WiFi Framework example. Implementation of Atheros WiFi Driver. It implements the
following interfaces:

SF WIFI Framework Interface

Macro Definition Documentation

◆ SF_WIFI_GT202_CODE_VERSION_MAJOR

#define SF_WIFI_GT202_CODE_VERSION_MAJOR (2U)

WiFi Interface. Major Version of code that implements the API defined in this file

◆ SF_WIFI_GT202_CODE_VERSION_MINOR

#define SF_WIFI_GT202_CODE_VERSION_MINOR (0U)

Minor Version of code that implements the API defined in this file

Function Documentation

◆ SF_WIFI_GT202_ACLAdd()

ssp_err_t SF_WIFI_GT202_ACLAdd (sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const p_mac)

Add MAC address from Access control list.

Implements sf_wifi_api_t::ACLAdd Add specified mac address in access control list

Return values
SSP_ERR_UNSUPPORTED Functionality is not supported.

◆ SF_WIFI_GT202_ACLDelete()

ssp_err_t SF_WIFI_GT202_ACLDelete (sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const p_mac)

Delete MAC address from Access control list.

Implements sf_wifi_api_t::ACLDelete Delete specified mac address from access control list

Return values
SSP_ERR_UNSUPPORTED Functionality is not supported.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,835 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on GT202

◆ SF_WIFI_GT202_Close()

ssp_err_t SF_WIFI_GT202_Close (sf_wifi_ctrl_t *const p_ctrl)

Stop WiFi module functionality.

Implements sf_wifi_api_t::close This function performs the following tasks: Update global variables
for future use. Disable the Interrupt and suspend the driver task thread.

Return values
SSP_SUCCESS Suspend the driver functionality.

SSP_ERR_NOT_OPEN Device is not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Module in use

SSP_ERR_WIFI_FAILED Failed to close

Dis-associate or Stop Access Point

Stop WiFi Driver

Delete byte pool used by WiFi driver

Terminate and Delete WiFi Driver task thread

Set init done flag to false and driver handle to NULL

◆ SF_WIFI_GT202_InfoGet()

ssp_err_t SF_WIFI_GT202_InfoGet (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_info_t *const p_wifi_info)

Get WiFi module information.

Implements sf_wifi_api_t::infoGet Get WiFi module information like chipset/driver information, RSSI,
noise level, link quality

Return values
SSP_SUCCESS Successfully get the WiFi information

SSP_ERR_NOT_OPEN Driver not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_WIFI_FAILED Failed reading WiFi information

SSP_ERR_IN_USE Module in use

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,836 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on GT202

◆ SF_WIFI_GT202_MACAddressGet()

ssp_err_t SF_WIFI_GT202_MACAddressGet (sf_wifi_ctrl_t *const p_ctrl, uint8_t *const p_mac)

Get MAC address of WiFi module.

Implements sf_wifi_api_t::getMACAddress Read configured MAC address of the WiFi module.

Return values
SSP_SUCCESS Successfully reads the mac address.

SSP_ERR_WIFI_FAILED Failed to read mac address

SSP_ERR_NOT_OPEN Driver not opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Argument NULL is passed

Driver param structure for ioctl

◆ SF_WIFI_GT202_MACAddressSet()

ssp_err_t SF_WIFI_GT202_MACAddressSet (sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const p_mac
)

Set MAC address of WiFi module.

Implements sf_wifi_api_t::setMACAddress Configure MAC address of the WiFi module.

Return values
SSP_ERR_UNSUPPORTED Functionality is not supported.

◆ SF_WIFI_GT202_MulticastListAdd()

ssp_err_t SF_WIFI_GT202_MulticastListAdd (sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const
p_mac_addr)

Add MAC address in multicast list.

Implements sf_wifi_api_t::multicastListAdd Adds specified MAC address in Multicast list

Return values
SSP_ERR_UNSUPPORTED Functionality is not supported by WiFi

module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,837 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on GT202

◆ SF_WIFI_GT202_MulticastListDelete()

ssp_err_t SF_WIFI_GT202_MulticastListDelete (sf_wifi_ctrl_t *const p_ctrl, uint8_t const *const
p_mac_addr)

Delete MAC address from multicast list.

Implements sf_wifi_api_t::multicastListDelete Deletes specified MAC Address from Multicast list

Return values
SSP_ERR_UNSUPPORTED Functionality is not supported.

◆ SF_WIFI_GT202_Open()

ssp_err_t SF_WIFI_GT202_Open (sf_wifi_ctrl_t * p_ctrl, sf_wifi_cfg_t const *const p_cfg)

Initialize WiFi module.

Implements sf_wifi_api_t::open This function performs the following tasks: Initializes WiFi module
and Configure the parameters as per the p_cfg Update global variables for future use.

Return values
SSP_SUCCESS Module initialization successful

SSP_ERR_ALREADY_OPEN WiFi module is already opened

SSP_ERR_WIFI_CONFIG_FAILED WiFi module Configuration failed

SSP_ERR_WIFI_INIT_FAILED WiFi module initialization failed

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Module in use

SSP_ERR_WIFI_FAILED Failed to initialize

SSP_ERR_UNSUPPORTED Unsupported Parameter configuration

SSP_ERR_INTERNAL Extended Configuration is NULL

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,838 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on GT202

◆ SF_WIFI_GT202_ProvisioningGet()

ssp_err_t SF_WIFI_GT202_ProvisioningGet (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_provisioning_t *const
p_wifi_provisioning)

Reads the current WiFi Provisioning information of the WiFi module.

Implements sf_wifi_api_t::provisioningGet Reads the provisioning information

Return values
SSP_SUCCESS Successfully reads provisioning information

SSP_ERR_NOT_OPEN Device is not opened

SSP_ERR_WIFI_FAILED Failed to get provisioning information

SSP_ERR_ASSERTION Argument NULL is passed

◆ SF_WIFI_GT202_ProvisioningSet()

ssp_err_t SF_WIFI_GT202_ProvisioningSet (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_provisioning_t const
*const p_wifi_provisioning)

Provisions the WiFi module.

Implements sf_wifi_api_t::provisioningSet This function performs the following tasks: Provisions the
WiFi driver. Start WiFi interface in AP or Client mode as provisioned.

Return values
SSP_SUCCESS Successfully provisioned the driver.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_NOT_OPEN Device is not opened

SSP_ERR_WIFI_FAILED Failed to set provisioning configuration.

SSP_ERR_INVALID_SIZE Invalid length of security key

SSP_ERR_INVALID_ARGUMENT Invalid encryption type for given security

SSP_ERR_IN_USE Module in use

if is_opened

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,839 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on GT202

◆ SF_WIFI_GT202_Scan()

ssp_err_t SF_WIFI_GT202_Scan (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_scan_t *const p_scan, uint8_t
*const p_cnt)

Scans for available APs.

Implements sf_wifi_api_t::scan Scan for available AP's SSID and return the list to caller.

Return values
SSP_SUCCESS Successfully scan the network for available

APs

SSP_ERR_NOT_OPEN Driver not opened

SSP_ERR_WIFI_FAILED Failed to scan

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Module in use

◆ SF_WIFI_GT202_StatisticsGet()

ssp_err_t SF_WIFI_GT202_StatisticsGet (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_stats_t *const
p_wifi_device_stats)

Get the interface statistics.

Implements sf_wifi_api_t::statisticsGet Collect the statistics information of WiFi interface

Return values
SSP_SUCCESS Successfully get the Statistics information.

SSP_ERR_UNSUPPORTED Functionality is not supported.

SSP_ERR_NOT_OPEN Device not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Module in use

SSP_ERR_WIFI_FAILED Failed reading WiFi statistics

Statistics are not available in case of On chip Stack

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,840 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on GT202

◆ SF_WIFI_GT202_Transmit()

ssp_err_t SF_WIFI_GT202_Transmit (sf_wifi_ctrl_t *const p_ctrl, uint8_t *const p_buf, uint32_t
length)

Transmit data packets.

Implements sf_wifi_api_t::transmit Adds packets in transmit Queue.

Return values
SSP_SUCCESS Successfully added the packet in transmit

queue

SSP_ERR_NOT_OPEN WiFi driver is not opened

SSP_ERR_OUT_OF_MEMORY Memory allocation failed

SSP_ERR_WIFI_TRANSMIT_FAILED Transmission failed

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Module in use

SSP_ERR_WIFI_FAILED Failed to transmit

SSP_ERR_UNSUPPORTED When using On-Chip stack

Transmit function will be used only when using NSAL

◆ SF_WIFI_GT202_VersionGet()

ssp_err_t SF_WIFI_GT202_VersionGet (ssp_version_t *const p_version)

Set driver version based on compile time macros. Implements sf_wifi_api_t::versionGet.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,841 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on GT202

◆ SF_WIFI_GT202_WpsStart()

ssp_err_t SF_WIFI_GT202_WpsStart (sf_wifi_ctrl_t *const p_ctrl, sf_wifi_wps_t const *const p_wps)

Start WiFi WPS.

Implements sf_wifi_api_t::wpsStart Start WPS to connect device.

Return values
SSP_SUCCESS WPS started Successfully and device is able

to connect

SSP_ERR_INTERNAL Internal error

SSP_ERR_WIFI_FAILED Failed to connect WiFi module using WPS
method

SSP_ERR_NOT_OPEN Driver not opened

SSP_ERR_IN_USE Module in use

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_INVALID_ARGUMENT Invalid input parameters

SSP_ERR_WIFI_WPS_MULTIPLE_PB_SESSIONS Another Push button session is already in
progress

SSP_ERR_TIMEOUT WPS Timer expired

SSP_ERR_WIFI_WPS_M2D_RECEIVED M2D Error code received which means
Registrar is unable to authenticate with the
Enrollee

SSP_ERR_WIFI_WPS_AUTHENTICATION_FAILE
D

WPS authentication failed

SSP_ERR_WIFI_WPS_CANCELLED WPS Request was not accepted by
underlying driver

SSP_ERR_WIFI_WPS_INVALID_PIN Invalid WPS Pin

 sf_wifi_on_gt202_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » WiFi Framework on GT202

#include <sf_wifi_gt202.h>

Data Fields

spi_instance_t const * p_lower_lvl_spi

 SPI Interface used for WiFi communications.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,842 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on GT202 > sf_wifi_on_gt202_cfg_t Struct Reference

external_irq_instance_t
const *

p_lower_lvl_icu

 ICU Interface used for WiFi communications.

ioport_port_pin_t pin_reset

 Port pin used for resetting chipset.

ioport_port_pin_t pin_slave_select

 Port pin used for SPI slave select.

uint32_t driver_task_priority

 Driver task thread priority, should be high priority.

Detailed Description

Extension structure for this Implementation. Each implementation can have its own extension
structure. For example one implementation may use RSPI for communicating with the WiFi chip while
another may use SDIO.

The documentation for this struct was generated from the following file:

sf_wifi_gt202.h

5.1.3.47 WiFi On Chip Stack on GT202
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated WiFi On Chip Stack Framework example. Implementation of Atheros WiFi Driver. It
implements the following interfaces: More...

Macros

#define SF_WIFI_GT202_ONCHIP_STACK_CODE_MAJOR (2U)

#define SF_WIFI_GT202_ONCHIP_STACK_CODE_MINOR (0U)

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,843 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi On Chip Stack on GT202

RTOS-integrated WiFi On Chip Stack Framework example. Implementation of Atheros WiFi Driver. It
implements the following interfaces:

SF WIFI On-Chip Stack Interface

Macro Definition Documentation

◆ SF_WIFI_GT202_ONCHIP_STACK_CODE_MAJOR

#define SF_WIFI_GT202_ONCHIP_STACK_CODE_MAJOR (2U)

WiFi Interface. Major Version of code that implements the API defined in this file

◆ SF_WIFI_GT202_ONCHIP_STACK_CODE_MINOR

#define SF_WIFI_GT202_ONCHIP_STACK_CODE_MINOR (0U)

Minor Version of code that implements the API defined in this file

5.1.3.48 BSD Socket on GT202
Renesas Synergy Software Package Reference » Framework Layer

Implementation of GT202 Socket layer over GT202 On-Chip stack. More...

Macros

#define SF_WIFI_GT202_SOCKET_CODE_MAJOR (2U)

#define SF_WIFI_GT202_SOCKET_CODE_MINOR (0U)

#define AF_LOCAL (1)

 Local Socket Family.

#define AF_INET (2)

 IPV4 Socket Family.

#define AF_INET6 (10)

 IPV6 Socket Family.

Enumerations

enum sf_wifi_socket_type_t {
 SOCK_STREAM = 0, SOCK_DGRAM, SOCK_STREAM = 1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,844 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > BSD Socket on GT202

SOCK_DGRAM,
 SOCK_RAW
}

Variables

const sf_socket_api_t g_sf_socket_wifi_on_sf_socket_wifi_gt202

 Socket API interface.

Detailed Description

Implementation of GT202 Socket layer over GT202 On-Chip stack.

Macro Definition Documentation

◆ SF_WIFI_GT202_SOCKET_CODE_MAJOR

#define SF_WIFI_GT202_SOCKET_CODE_MAJOR (2U)

WiFi Interface. Major Version of code that implements the API defined in this file

◆ SF_WIFI_GT202_SOCKET_CODE_MINOR

#define SF_WIFI_GT202_SOCKET_CODE_MINOR (0U)

Minor Version of code that implements the API defined in this file

Enumeration Type Documentation

◆ sf_wifi_socket_type_t

enum sf_wifi_socket_type_t

Type of Socket

Enumerator

SOCK_STREAM TCP Socket.

SOCK_DGRAM UDP Socket.

SOCK_STREAM TCP Socket.

SOCK_DGRAM UDP Socket.

SOCK_RAW RAW Socket.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,845 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on QCA4010

5.1.3.49 WiFi Framework on QCA4010
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated WiFi Framework example. Implementation of Silex ULPGN WiFi Driver. It implements
the following interfaces: More...

Data Structures

struct sf_wifi_qca4010_instance_cfg_t

Macros

#define SF_WIFI_QCA4010_CODE_VERSION_MAJOR (2U)

#define SF_WIFI_QCA4010_CODE_VERSION_MINOR (0U)

Functions

ssp_err_t SF_WiFi_QCA4010_Open (sf_wifi_qca4010_ctrl_t *p_ctrl,
sf_wifi_qca4010_cfg_t const *const p_cfg)

 Initialize WiFi module. More...

ssp_err_t SF_WiFi_QCA4010_Close (sf_wifi_qca4010_ctrl_t *const p_ctrl)

 Stop Wifi QCA4010 driver functionality. More...

ssp_err_t SF_WiFi_QCA4010_ProvisioningSet (sf_wifi_qca4010_ctrl_t *const
p_ctrl, sf_wifi_qca4010_provisioning_t const *const
p_wifi_provisioning)

 Sets the provisioning information. More...

ssp_err_t SF_WiFi_QCA4010_WifiStatusGet (sf_wifi_qca4010_ctrl_t *const
p_ctrl, sf_wifi_qca4010_status_t *const p_wifi_status)

 Get the network information. More...

ssp_err_t SF_WiFi_QCA4010_Scan (sf_wifi_qca4010_ctrl_t *p_ctrl,
sf_wifi_qca4010_scan_t *const p_scan, uint8_t count)

 Scans for available APs. More...

ssp_err_t SF_Wifi_QCA4010_CommandSend (sf_wifi_qca4010_ctrl_t *const
p_ctrl, sf_wifi_qca4010_cmd_resp_t *const p_input_at_command,
sf_wifi_qca4010_cmd_resp_t *const p_output, uint32_t const timeout)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,846 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on QCA4010

 Send custom AT command to SX-ULPGN module. More...

ssp_err_t SF_WiFi_QCA4010_VersionGet (ssp_version_t *const p_version)

 Set driver version based on compile time macros. Implements
sf_wifi_qca4010_api_t::versionGet. More...

Detailed Description

RTOS-integrated WiFi Framework example. Implementation of Silex ULPGN WiFi Driver. It implements
the following interfaces:

SF WIFI QCA4010 Framework Interface

Macro Definition Documentation

◆ SF_WIFI_QCA4010_CODE_VERSION_MAJOR

#define SF_WIFI_QCA4010_CODE_VERSION_MAJOR (2U)

WiFi Interface. Major Version of code that implements the API defined in this file

◆ SF_WIFI_QCA4010_CODE_VERSION_MINOR

#define SF_WIFI_QCA4010_CODE_VERSION_MINOR (0U)

Minor Version of code that implements the API defined in this file

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,847 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on QCA4010

◆ SF_WiFi_QCA4010_Close()

ssp_err_t SF_WiFi_QCA4010_Close (sf_wifi_qca4010_ctrl_t *const p_ctrl)

Stop Wifi QCA4010 driver functionality.

Implements sf_wifi_qca4010_api_t::close De-initializes the lower level interface

Parameters
[in] p_ctrl Wifi control block

Return values
SSP_SUCCESS Wifi Driver stop successfully.

SSP_ERR_NOT_OPEN Device is not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_WIFI_FAILED Driver De-initialization failed

SSP_ERR_IN_USE Device already in use

SSP_ERR_INTERNAL Internal Error occurred

Get Mutex

Disconnect from the access point

close module

Set module open flag to false and delete mutex

Release the mutex

Delete the mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,848 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on QCA4010

◆ SF_Wifi_QCA4010_CommandSend()

ssp_err_t SF_Wifi_QCA4010_CommandSend (sf_wifi_qca4010_ctrl_t *const p_ctrl,
sf_wifi_qca4010_cmd_resp_t *const p_input_at_command, sf_wifi_qca4010_cmd_resp_t *const
p_output, uint32_t const timeout)

Send custom AT command to SX-ULPGN module.

This API will send AT command provided by user to the SX-ULPGN and will collect the response
from the modem and will send it back to the user. If silex is in Data Mode when this API is called
then Framework will first switch Modem to Command Mode, then send the AT command and collect
the response and then switches the Modem back to Data Mode.

Parameters
[in] p_ctrl Pointer to the wifi control

block

[in] p_input_at_command Pointer to structure which
contains command to send

[in,out] p_output Pointer to buffer in which
response will be sent to
user, Also user will pass the
size of the buffer which is
pointed by p_output

[in] timeout Timeout for which
framework will wait for
response in milliseconds

Return values
SSP_SUCCESS Successfully sent AT command and

collected response

SSP_ERR_WIFI_FAILED Failed to either send AT command or collect
response

SSP_ERR_NOT_OPEN Device is not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Device already in use

Get Mutex

Send AT command

Release the mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,849 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on QCA4010

◆ SF_WiFi_QCA4010_Open()

ssp_err_t SF_WiFi_QCA4010_Open (sf_wifi_qca4010_ctrl_t * p_ctrl, sf_wifi_qca4010_cfg_t const
*const p_cfg)

Initialize WiFi module.

Implements sf_wifi_qca4010_api_t::open This function performs the following tasks: Initializes WiFi
module and Configure the parameters as per the p_cfg Update global variables for future use.

Parameters
[out] p_ctrl Wifi control block

[in] p_cfg Wifi configuration structure

Return values
SSP_SUCCESS Module initialization successful

SSP_ERR_ALREADY_OPEN WiFi module is already opened

SSP_ERR_WIFI_INIT_FAILED WiFi module initialization failed

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Module in use

SSP_ERR_WIFI_FAILED Module initialization failed

SSP_ERR_INTERNAL Internal Error occurred

Create Mutex for Synchronization

Get Mutex Lock

Open and configure the wifi module

Release Mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,850 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on QCA4010

◆ SF_WiFi_QCA4010_ProvisioningSet()

ssp_err_t SF_WiFi_QCA4010_ProvisioningSet (sf_wifi_qca4010_ctrl_t *const p_ctrl,
sf_wifi_qca4010_provisioning_t const *const p_wifi_provisioning)

Sets the provisioning information.

Implements sf_wifi_qca4010_api_t::provisioningSet Sets Wifi's provisioning information

Parameters
[in] p_ctrl Wifi control block

[in] p_wifi_provisioning Wifi provisioning structure

Return values
SSP_SUCCESS Successfully set the provisioning

information.

SSP_ERR_NOT_OPEN Device not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_WIFI_FAILED Provisioning failed

SSP_ERR_IN_USE Device already in use

SSP_ERR_INTERNAL Internal Error occurred

SSP_ERR_INVALID_ARGUMENT Invalid input value or No commas are
accepted in the SSID or key.

Get Mutex

Provision in AP or client mode

Release the mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,851 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on QCA4010

◆ SF_WiFi_QCA4010_Scan()

ssp_err_t SF_WiFi_QCA4010_Scan (sf_wifi_qca4010_ctrl_t * p_ctrl, sf_wifi_qca4010_scan_t *const
p_scan, uint8_t count)

Scans for available APs.

Implements sf_wifi_qca4010_api_t::scan Scan for available AP's SSID and return the list to caller.

Parameters
[in] p_ctrl Wifi control block

[out] p_scan Wifi scan structure

[in] count Number of access points to
be scanned

Return values
SSP_SUCCESS Successfully scan the network for available

APs

SSP_ERR_NOT_OPEN Driver not opened

SSP_ERR_WIFI_FAILED Failed to scan

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Module in use

SSP_ERR_INTERNAL Internal Error occurred

Get Mutex

Scan for available access points

Release the mutex

◆ SF_WiFi_QCA4010_VersionGet()

ssp_err_t SF_WiFi_QCA4010_VersionGet (ssp_version_t *const p_version)

Set driver version based on compile time macros. Implements sf_wifi_qca4010_api_t::versionGet.

Parameters
[in] p_version Wifi version

Return values
SSP_SUCCESS Version information retrieved successfully.

SSP_ERR_ASSERTION The parameter p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,852 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on QCA4010

◆ SF_WiFi_QCA4010_WifiStatusGet()

ssp_err_t SF_WiFi_QCA4010_WifiStatusGet (sf_wifi_qca4010_ctrl_t *const p_ctrl,
sf_wifi_qca4010_status_t *const p_wifi_status)

Get the network information.

Implements sf_wifi_qca4010_api_t::statisticsGet Collect the statistics information of WiFi interface

Parameters
[in] p_ctrl Wifi control block

[out] p_wifi_status Wifi status structure

Return values
SSP_SUCCESS Successfully get the Statistics information.

SSP_ERR_NOT_OPEN Device not opened

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Module in use

SSP_ERR_WIFI_FAILED Failed reading WiFi statistics information

SSP_ERR_INTERNAL Internal Error occurred

Get Mutex

Get Wifi Network information

Release the mutex

 sf_wifi_qca4010_instance_cfg_t Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » WiFi Framework on QCA4010

#include <sf_wifi_qca4010.h>

Data Fields

uint32_t num_uarts

 number of UARTS currently used for communication with module

uint8_t is_opened

 Status flag storing framework open status.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,853 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on QCA4010 > sf_wifi_qca4010_instance_cfg_t Struct Reference

uint8_t init_done

 Status flag storing driver initialization status.

uint32_t curr_cmd_port

 Current UART instance index for AT commands.

uint32_t curr_data_port

 Current UART instance index for data.

volatile uint8_t curr_socket_index

 Currently active socket instance.

sf_wifi_qca4010_cfg_t const
*

p_cfg

 Instance configuration.

sf_wifi_qca4010_provisionin
g_t

prov_info

 Provisioning information.

TX_MUTEX * p_wifi_mutex

 Mutex for Framework API synchronization.

uart_instance_t * p_uart_instance_objects
[SF_WIFI_QCA4010_CFG_MAX_NUMBER_UART_PORTS]

 UART instance objects.

TX_QUEUE socket_queue [12]

 Queue to read data from socket.

uint8_t command_flag

 Variable to indicate data or command mode.

uint8_t * p_resp_buff

 Array to store AT command response.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,854 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi Framework on QCA4010 > sf_wifi_qca4010_instance_cfg_t Struct Reference

uint32_t resp_buffer_length

 Response buffer length.

uint8_t is_data_mode_on

 Status flag storing data mode status.

Detailed Description

SF Wifi framework instance configuration

The documentation for this struct was generated from the following file:

sf_wifi_qca4010.h

5.1.3.50 WiFi On Chip Stack on QCA4010
Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated WiFi On Chip Stack Framework example. Implementation of SILEX WiFi Driver. It
implements the following interfaces: More...

Macros

#define SF_WIFI_QCA4010_ONCHIP_CODE_VERSION_MAJOR (2U)

#define SF_WIFI_QCA4010_ONCHIP_CODE_VERSION_MINOR (0U)

Functions

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_Open
(sf_wifi_qca4010_onchip_stack_ctrl_t *p_ctrl,
sf_wifi_qca4010_onchip_stack_cfg_t const *const p_cfg)

 Open the WiFi Device driver to use the Onchip stack support. More...

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_Close
(sf_wifi_qca4010_onchip_stack_ctrl_t *const p_ctrl)

 Close the Wifi Device driver. More...

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_Ping
(sf_wifi_qca4010_onchip_stack_ctrl_t *const p_ctrl, ULONG

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,855 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi On Chip Stack on QCA4010

*p_ip_addr, uint32_t count, uint32_t interval_ms)

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_IPAddressConfigure
(sf_wifi_qca4010_onchip_stack_ctrl_t *const p_ctrl,
sf_wifi_qca4010_onchip_stack_ip_cfg_t *const p_ip_cfg)

 Configure static IP or enable DHCP. More...

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_VersionGet (ssp_version_t *const
p_version)

 This function gets the version information of the underlying driver.
More...

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_DhcpServerStart
(sf_wifi_qca4010_onchip_stack_ctrl_t *const p_ctrl, ULONG
*p_start_ip, ULONG *p_end_ip)

 Starts DHCP server. More...

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_DhcpServerStop
(sf_wifi_qca4010_onchip_stack_ctrl_t *const p_ctrl, ULONG
*p_start_ip, ULONG *p_end_ip)

 Stops DHCP server. More...

Detailed Description

RTOS-integrated WiFi On Chip Stack Framework example. Implementation of SILEX WiFi Driver. It
implements the following interfaces:

SF WIFI QCA4010 On-Chip Interface

Macro Definition Documentation

◆ SF_WIFI_QCA4010_ONCHIP_CODE_VERSION_MAJOR

#define SF_WIFI_QCA4010_ONCHIP_CODE_VERSION_MAJOR (2U)

WiFi Interface. Major Version of code that implements the API defined in this file

◆ SF_WIFI_QCA4010_ONCHIP_CODE_VERSION_MINOR

#define SF_WIFI_QCA4010_ONCHIP_CODE_VERSION_MINOR (0U)

Minor Version of code that implements the API defined in this file

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,856 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi On Chip Stack on QCA4010

Function Documentation

◆ SF_WIFI_QCA4010_ONCHIP_STACK_Close()

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_Close (sf_wifi_qca4010_onchip_stack_ctrl_t *const
p_ctrl)

Close the Wifi Device driver.

Parameters
[in] p_ctrl Wifi control block

Implements
sf_wifi_qca4010_onchip_stac
k_api_t::close Calls the low
level wifi device driver's
Close API to close the wifi
Driver.

Return values
SSP_SUCCESS Wifi Driver stop successfully.

SSP_ERR_NOT_OPEN Device is not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_WIFI_FAILED Driver De-initialization failed

SSP_ERR_IN_USE Device already in use

SSP_ERR_INTERNAL Internal Error occurred

Get Mutex

Close lower level wifi driver

Release the mutex

Delete Mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,857 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi On Chip Stack on QCA4010

◆ SF_WIFI_QCA4010_ONCHIP_STACK_DhcpServerStart()

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_DhcpServerStart (sf_wifi_qca4010_onchip_stack_ctrl_t
*const p_ctrl, ULONG * p_start_ip, ULONG * p_end_ip)

Starts DHCP server.

Implements sf_wifi_qca4010_onchip_stack_api_t::dhcpServerStart Starts DHCP server using on CHIP
networking stack support.

Parameters
[in] p_ctrl Wifi control block

[in] p_start_ip Pointer to Start IP address

[in] p_end_ip Pointer to End IP address

Return values
SSP_SUCCESS Successfully started DHCP Server

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_NOT_OPEN WiFi Driver in not open

SSP_ERR_IN_USE Device already in use

SSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

Get the mutex

Start DHCP server

Release the mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,858 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi On Chip Stack on QCA4010

◆ SF_WIFI_QCA4010_ONCHIP_STACK_DhcpServerStop()

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_DhcpServerStop (sf_wifi_qca4010_onchip_stack_ctrl_t
*const p_ctrl, ULONG * p_start_ip, ULONG * p_end_ip)

Stops DHCP server.

Implements sf_wifi_qca4010_onchip_stack_api_t::dhcpServerStop Stops DHCP server using on CHIP
networking stack support.

Parameters
[in] p_ctrl Wifi control block

[in] p_start_ip Pointer to Start IP

[in] p_end_ip Pointer to End IP

Return values
SSP_SUCCESS Successfully stopped DHCP Server

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_NOT_OPEN WiFi Driver is not open

SSP_ERR_IN_USE Device already in use

SSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

Get mutex

Stop DHCP server

Release the mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,859 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi On Chip Stack on QCA4010

◆ SF_WIFI_QCA4010_ONCHIP_STACK_IPAddressConfigure()

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_IPAddressConfigure (
sf_wifi_qca4010_onchip_stack_ctrl_t *const p_ctrl, sf_wifi_qca4010_onchip_stack_ip_cfg_t *const
p_ip_cfg)

Configure static IP or enable DHCP.

Implements sf_wifi_qca4010_onchip_stack_api_t::ipAddressConfigure Configures the IP address of
the interface or enables DHCP using on CHIP networking stack support.

Parameters
[in] p_ctrl Wifi control block

[out] p_ip_cfg Pointer to IP Address
configuration structure

Return values
SSP_SUCCESS Successfully configured IP address.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_NOT_OPEN WiFi Driver in not open

SSP_ERR_UNSUPPORTED Functionality Unsupported

SSP_ERR_IN_USE Device already in use

SSP_ERR_WIFI_FAILED IP configuration failed.

SSP_ERR_INTERNAL Internal Error occurred

Get Mutex

Configure static IP or enable DHCP

Release the mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,860 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi On Chip Stack on QCA4010

◆ SF_WIFI_QCA4010_ONCHIP_STACK_Open()

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_Open (sf_wifi_qca4010_onchip_stack_ctrl_t * p_ctrl,
sf_wifi_qca4010_onchip_stack_cfg_t const *const p_cfg)

Open the WiFi Device driver to use the Onchip stack support.

Implements sf_wifi_qca4010_onchip_stack_api_t::open Calls the low level WiFi device driver's Open
API to Initialize the WiFi Device Driver, for using onchip stack.

Return values
SSP_SUCCESS Module initialization successful

SSP_ERR_ALREADY_OPEN WiFi module is already opened

SSP_ERR_WIFI_INIT_FAILED WiFi module initialization failed

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Module in use

SSP_ERR_WIFI_FAILED Failed to initialize

SSP_ERR_INTERNAL Internal Error occurred

Create Mutex for Synchronization

Get Mutex Lock

Initialize Wifi module

Initialize Socket Interface global variable , if module open is successful or already open

Release Mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,861 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > WiFi On Chip Stack on QCA4010

◆ SF_WIFI_QCA4010_ONCHIP_STACK_Ping()

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_Ping (sf_wifi_qca4010_onchip_stack_ctrl_t *const
p_ctrl, ULONG * p_ip_addr, uint32_t count, uint32_t interval_ms)

Ping an IP address on the network.

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_ip_addr Pointer to IP address.

[in] count Number of ping attempts.

[in] interval_ms Interval between ping
attempts.

Return values
SSP_SUCCESS Function completed successfully.

SSP_ERR_WIFI_FAILED Error occurred with command to Wifi
module.

SSP_ERR_ASSERTION Assertion error occurred.

SSP_ERR_NOT_OPEN The instance has not been opened.

SSP_ERR_IN_USE Device already in use

Get Mutex

Ping specified IP address

Release the mutex

◆ SF_WIFI_QCA4010_ONCHIP_STACK_VersionGet()

ssp_err_t SF_WIFI_QCA4010_ONCHIP_STACK_VersionGet (ssp_version_t *const p_version)

This function gets the version information of the underlying driver.

Implements sf_wifi_qca4010_onchip_stack_api_t::versionGet

Parameters
[out] p_version Driver version information

Return values
SSP_ERR_ASSERTION Argument NULL is passed

SSP_SUCCESS Successfully read version information

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,862 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Socket on QCA4010

5.1.3.51 Socket on QCA4010
Renesas Synergy Software Package Reference » Framework Layer

Implementation of QCA4010 Socket layer over QCA4010 On-Chip stack. More...

Macros

#define AF_INET (4U)

 IPV4 Socket Family. More...

#define AF_INET6 (6U)

 IPV6 Socket Family.

#define SF_WIFI_QCA4010_SOCKET_CODE_VERSION_MAJOR (2U)

#define SF_WIFI_QCA4010_SOCKET_CODE_VERSION_MINOR (0U)

Enumerations

enum sf_wifi_qca4010_socket_status_t

Functions

ssp_err_t SF_WIFI_QCA4010_Socket_Open (sf_wifi_qca4010_socket_ctrl_t
*p_ctrl, sf_wifi_qca4010_socket_cfg_t const *const p_cfg)

 Open the WiFi Device driver to use the Socket Layer on WiFi Driver
On-Chip stack. More...

ssp_err_t SF_WIFI_QCA4010_Socket_Close (sf_wifi_qca4010_socket_ctrl_t
*const p_ctrl)

 Close the WiFi Device driver. More...

ssp_err_t SF_WIFI_QCA4010_Socket_VersionGet (ssp_version_t *const
p_version)

 This function gets the version information of the underlying driver.
More...

ssp_err_t SF_WIFI_QCA4010_Socket_Create (sf_wifi_qca4010_socket_ctrl_t
*p_ctrl, uint8_t socket_no, sf_wifi_socket_type_t type, uint8_t
ipversion)

 This creates socket for communication. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,863 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Socket on QCA4010

ssp_err_t SF_WIFI_QCA4010_Socket_Connect (sf_wifi_qca4010_socket_ctrl_t
*p_ctrl, uint8_t socket_no, const struct sockaddr *p_serv_addr,
socklen_t addrlen)

ssp_err_t SF_WIFI_QCA4010_Socket_Disconnect (sf_wifi_qca4010_socket_ctrl_t
*p_ctrl, uint8_t socket_no)

 This closes socket. Close opened socket. More...

ssp_err_t SF_WIFI_QCA4010_Socket_Send (sf_wifi_qca4010_socket_ctrl_t
*p_ctrl, uint8_t socket_no, const uint8_t *p_data, uint32_t length,
uint32_t timeout_ms)

ssp_err_t SF_WIFI_QCA4010_Socket_Recv (sf_wifi_qca4010_socket_ctrl_t
*p_ctrl, uint8_t socket_no, uint8_t *const p_data, uint32_t length,
uint32_t timeout_ms)

ssp_err_t SF_WIFI_QCA4010_Socket_Status_Get (sf_wifi_qca4010_socket_ctrl_t
*p_ctrl, uint8_t socket_no, uint32_t *p_socket_status)

Detailed Description

Implementation of QCA4010 Socket layer over QCA4010 On-Chip stack.

SF Socket WIFI Framework Interface

Macro Definition Documentation

◆ AF_INET

#define AF_INET (4U)

IPV4 Socket Family.

WiFi Interface.

◆ SF_WIFI_QCA4010_SOCKET_CODE_VERSION_MAJOR

#define SF_WIFI_QCA4010_SOCKET_CODE_VERSION_MAJOR (2U)

Major Version of code that implements the API defined in this file

◆ SF_WIFI_QCA4010_SOCKET_CODE_VERSION_MINOR

#define SF_WIFI_QCA4010_SOCKET_CODE_VERSION_MINOR (0U)

Minor Version of code that implements the API defined in this file

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,864 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Socket on QCA4010

Enumeration Type Documentation

◆ sf_wifi_qca4010_socket_status_t

enum sf_wifi_qca4010_socket_status_t

Silex ULPGN Wifi socket status types

Function Documentation

◆ SF_WIFI_QCA4010_Socket_Close()

ssp_err_t SF_WIFI_QCA4010_Socket_Close (sf_wifi_qca4010_socket_ctrl_t *const p_ctrl)

Close the WiFi Device driver.

Parameters
[in] p_ctrl Socket control block

Implements
sf_wifi_qca4010_socket_api_t
::close Call the low level WiFi
device driver's Close API to
close the WiFi Driver.

Return values
SSP_SUCCESS Suspend the driver functionality.

SSP_ERR_NOT_OPEN Device is not opened.

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Module in use

SSP_ERR_WIFI_FAILED Failed to close

SSP_ERR_INTERNAL Internal Error occurred

Get Mutex Lock

Close lower level drivers

Delete thread created for each socket

Release Mutex

Delete the mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,865 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Socket on QCA4010

◆ SF_WIFI_QCA4010_Socket_Connect()

ssp_err_t SF_WIFI_QCA4010_Socket_Connect (sf_wifi_qca4010_socket_ctrl_t * p_ctrl, uint8_t
socket_no, const struct sockaddr * p_serv_addr, socklen_t addrlen)

Connect to a specific IP and Port using socket.

Parameters
[in] p_ctrl pointer to Socket Wifi control

block

[in] socket_no Socket ID number.

[in] p_serv_addr Pointer to remote socket
address

[in] addrlen Size of sock address
structure

Return values
SSP_SUCCESS Socket connection is successful.

SSP_ERR_WIFI_FAILED Socket connection failed

SSP_ERR_NOT_OPEN The instance has not been opened.

SSP_ERR_ASSERTION Assertion error occurred.

SSP_ERR_IN_USE Module in use

SSP_ERR_INTERNAL Internal Error occurred

Get Mutex Lock

Change socket index for multiple socket communication

Connect socket to specified address

For UDP server, specify the destination address and port

Specify the destination address and port for UDP data to be sent

Release Mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,866 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Socket on QCA4010

◆ SF_WIFI_QCA4010_Socket_Create()

ssp_err_t SF_WIFI_QCA4010_Socket_Create (sf_wifi_qca4010_socket_ctrl_t * p_ctrl, uint8_t
socket_no, sf_wifi_socket_type_t type, uint8_t ipversion)

This creates socket for communication.

Parameters
[in] p_ctrl pointer to Socket control

block

[in] socket_no Socket ID number.

[in] type Socket type (SOCK_STREAM
for TCP and SOCK_DGRAM
for UDP)

[in] ipversion Socket IP type.(for IPV4 ->
AF_INET or for IPV6 ->
AF_INET6)

Return values
SSP_SUCCESS Socket creation is successful

SSP_ERR_WIFI_FAILED Failed to create socket

SSP_ERR_NOT_OPEN The instance has not been opened.

SSP_ERR_ASSERTION Assertion error occurred.

SSP_ERR_INVALID_ARGUMENT Invalid argument

SSP_ERR_IN_USE Module in use

SSP_ERR_INTERNAL Internal Error occurred

Get Mutex Lock

Change socket index for multiple socket communication

Create socket

Release Mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,867 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Socket on QCA4010

◆ SF_WIFI_QCA4010_Socket_Disconnect()

ssp_err_t SF_WIFI_QCA4010_Socket_Disconnect (sf_wifi_qca4010_socket_ctrl_t * p_ctrl, uint8_t
socket_no)

This closes socket. Close opened socket.

Parameters
[in] p_ctrl pointer to Socket Wifi control

block

[in] socket_no Socket no

Return values
SSP_SUCCESS Disconnect and close socket network

SSP_ERR_WIFI_FAILED Failed to close socket network

SSP_ERR_NOT_OPEN The instance has not been opened.

SSP_ERR_ASSERTION Assertion error occurred.

SSP_ERR_IN_USE Module in use

SSP_ERR_INTERNAL Internal Error occurred

Get Mutex Lock

Change socket index for multiple socket communication

If only one UART is used then send escape sequence command

Close the socket network

Release Mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,868 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Socket on QCA4010

◆ SF_WIFI_QCA4010_Socket_Open()

ssp_err_t SF_WIFI_QCA4010_Socket_Open (sf_wifi_qca4010_socket_ctrl_t * p_ctrl,
sf_wifi_qca4010_socket_cfg_t const *const p_cfg)

Open the WiFi Device driver to use the Socket Layer on WiFi Driver On-Chip stack.

Parameters
[out] p_ctrl pointer to Socket control

block

[in] p_cfg pointer to Socket
configuration structure
Implements
sf_wifi_qca4010_socket_api_t
::open Call the low level WiFi
device driver's Open API to
Initialize the WiFi Device
Driver, for using Socket
Layer on On-Chip stack.

Return values
SSP_SUCCESS Module initialization successful

SSP_ERR_ALREADY_OPEN WiFi module is already opened

SSP_ERR_WIFI_INIT_FAILED WiFi module initialization failed

SSP_ERR_ASSERTION Argument NULL is passed

SSP_ERR_IN_USE Module in use

SSP_ERR_WIFI_FAILED Failed to initialize

SSP_ERR_INTERNAL Internal Error occurred

SSP_ERR_INVALID_ARGUMENT Failed due to invalid argument

Create Mutex for Synchronization

Get Mutex Lock

Socket open

Initialize global variables

Release Mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,869 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Socket on QCA4010

◆ SF_WIFI_QCA4010_Socket_Recv()

ssp_err_t SF_WIFI_QCA4010_Socket_Recv (sf_wifi_qca4010_socket_ctrl_t * p_ctrl, uint8_t
socket_no, uint8_t *const p_data, uint32_t length, uint32_t timeout_ms)

Receive data over TCP/UDP from server/client.

Parameters
[in] p_ctrl pointer to Socket Wifi control

block

[in] socket_no Socket ID number.

[out] p_data Pointer to data received
from socket.

[in] length Length of data array used
for receive.

[in] timeout_ms Timeout to wait for data to
be received from socket.

Return values
SSP_SUCCESS Data reception us successful

SSP_ERR_WIFI_FAILED Failed to receive data

SSP_ERR_NOT_OPEN The instance has not been opened.

SSP_ERR_ASSERTION Assertion error occurred.

SSP_ERR_IN_USE Module in use

SSP_ERR_INTERNAL Internal Error occurred

Get Mutex Lock

Change socket index for multiple socket communication

Receive data which is sent from server/client

Release Mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,870 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Socket on QCA4010

◆ SF_WIFI_QCA4010_Socket_Send()

ssp_err_t SF_WIFI_QCA4010_Socket_Send (sf_wifi_qca4010_socket_ctrl_t * p_ctrl, uint8_t
socket_no, const uint8_t * p_data, uint32_t length, uint32_t timeout_ms)

Send data over TCP/UDP to server/client.

Parameters
[in] p_ctrl pointer to Socket Wifi control

block

[in] socket_no Socket ID number.

[in] p_data Pointer to data to send.

[in] length Length of data to send.

[in] timeout_ms Timeout to wait for transmit
end event

Return values
SSP_SUCCESS Data send to client/server is successful.

SSP_ERR_WIFI_FAILED Failed to send data.

SSP_ERR_NOT_OPEN The instance has not been opened.

SSP_ERR_ASSERTION Assertion error occurred.

SSP_ERR_IN_USE Module in use

SSP_ERR_INTERNAL Internal Error occurred

SSP_ERR_TIMEOUT Timeout to send data

Get Mutex Lock

Change socket index for multiple socket communication

Send data over data port

Release Mutex

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,871 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > Socket on QCA4010

◆ SF_WIFI_QCA4010_Socket_Status_Get()

ssp_err_t SF_WIFI_QCA4010_Socket_Status_Get (sf_wifi_qca4010_socket_ctrl_t * p_ctrl, uint8_t
socket_no, uint32_t * p_socket_status)

Get the socket status.

Parameters
[in] p_ctrl Socket Wifi control block

[in] socket_no Socket ID number.

[out] p_socket_status Pointer to an integer to hold
the socket status

Return values
SSP_SUCCESS Socket status obtained successfully.

SSP_ERR_ASSERTION Assertion error occurred.

SSP_ERR_NOT_OPEN The instance has not been opened.

SSP_ERR_IN_USE Module in use

SSP_ERR_WIFI_FAILED Failed obtain socket status

SSP_ERR_INTERNAL Internal Error occurred

Get Mutex Lock

Obtain socket status

Release Mutex

◆ SF_WIFI_QCA4010_Socket_VersionGet()

ssp_err_t SF_WIFI_QCA4010_Socket_VersionGet (ssp_version_t *const p_version)

This function gets the version information of the underlying driver.

Implements sf_wifi_qca4010_socket_api_t::versionGet

Return values
SSP_SUCCESS Retrieval of version information is

successful

SSP_ERR_ASSERTION Argument NULL is passed

5.1.3.52 USBX Framework

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,872 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

Renesas Synergy Software Package Reference » Framework Layer

RTOS-integrated USBX adaptation framework for Synergy. Implements USB HOST and DEVICE low
level device drivers. More...

Data Structures

struct UX_DCD_SYNERGY_ED

struct UX_DCD_SYNERGY_TRANSFER

struct UX_DCD_SYNERGY_PAYLOAD_TRANSFER

struct UX_DCD_SYNERGY

struct UX_HCD_SYNERGY_TRANSFER

struct UX_HCD_SYNERGY

struct UX_HCD_SYNERGY_PAYLOAD_TRANSFER

struct UX_HCD_SYNERGY_FIFO

struct UX_SYNERGY_ED

struct UX_SYNERGY_TD

struct UX_SYNERGY_ISO_TD

Macros

#define UX_DCD_SYNERGY_SLAVE_CONTROLLER (0x80U)

#define UX_SYNERGY_DCD_SYSCFG (0x00UL)

#define UX_SYNERGY_DCD_BUSWAIT_CALC_FREQ_PCLK_CYC (17142857U)

#define UX_SYNERGY_DCD_MAIN_OSC_24MHz (24000000U)

#define UX_SYNERGY_DCD_SYSCFG_SCKE (1U<<10)

#define UX_SYNERGY_DCD_DCP (0)

#define UX_SYNERGY_DCD_PIPESEL_NO_PIPE (0x000FU)

#define UX_SYNERGY_DCD_PIPE0_SIZE (256U)

#define UX_SYNERGY_DCD_COMMAND_STATUS_RESET (0)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,873 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

#define UX_SYNERGY_DCD_FIFO_WRITING (2U)

#define UX_SYNERGY_DCD_FIFO_READING (2U)

#define UX_SYNERGY_DCD_ED_BRDY (0x00000001U)

#define UX_SYNERGY_DCD_PHYSLEW_SLEW_SLEWR00 (1U<<0)

#define UX_DCD_SYNERGY_ED_STATUS_UNUSED (0U)

#define UX_DCD_SYNERGY_ED_STATE_IDLE (0U)

#define UX_SYNERGY_CONTROLLER (0)

#define UX_SYNERGY_HC_SYSCFG (0x00UL)

#define UX_SYNERGY_HC_BUSWAIT_CALC_FREQ_PCLK_CYC (17142857U)

#define UX_SYNERGY_HC_MAIN_OSC_24MHz (24000000U)

#define UX_SYNERGY_HC_SYSCFG_SCKE (1U<<10)

#define UX_SYNERGY_HC_DCP (0)

#define UX_SYNERGY_HC_PIPESEL_NO_PIPE 0x000f

#define UX_SYNERGY_HC_PIPE0_SIZE (256)

#define UX_SYNERGY_HC_AVAILABLE_BANDWIDTH (2304UL)

#define UX_SYNERGY_HC_COMMAND_STATUS_RESET (0)

#define UX_SYNERGY_HC_FIFO_WRITING (2)

#define UX_SYNERGY_HC_FIFO_READING (2)

#define UX_SYNERGY_HC_ED_BRDY (0x00000001U)

#define UX_SYNERGY_HC_PHYSLEW_SLEW_SLEWR00 (1U<<0)

#define UX_SYNERGY_HC_PORT_ENABLED (1)

#define UX_SYNERGY_ED_STATIC (0x80000000)

#define UX_SYNERGY_TD_SETUP_PHASE (0x00010000)

Functions

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,874 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

void usbhs_usb_int_resume_isr (void)

 This function calls the host interrupt handler or the device interrupt
handler.

void usbfs_int_isr (void)

 All the USBFS interrupts are handled by this ISR.

void usbfs_resume_isr (void)

 VBINT (VBUS interrupt), RESM (Resume interrupt), OVRCR (Over
current input), BCHG (Change interrupt), and PDDETINT0 (Bus
change interrupt) fire this ISR. This is only used for canceling
following standby modes. More...

VOID ux_dcd_synergy_buffer_empty_interrupt (UX_DCD_SYNERGY
*dcd_synergy, UX_DCD_SYNERGY_ED *ed, ULONG flag)

 This function processes the BEMP interrupt for the specific endpoint.
More...

VOID ux_dcd_synergy_buffer_notready_interrupt (UX_DCD_SYNERGY
*dcd_synergy, UX_DCD_SYNERGY_ED *ed, ULONG flag)

 This function processes the NRDY(Not Ready) interrupt for the
specific endpoint. More...

UINT ux_dcd_synergy_buffer_read (UX_DCD_SYNERGY *dcd_synergy,
UX_DCD_SYNERGY_ED *ed)

 This function reads from a specified pipe into a buffer. More...

VOID ux_dcd_synergy_buffer_ready_interrupt (UX_DCD_SYNERGY
*dcd_synergy, UX_DCD_SYNERGY_ED *ed, ULONG flag)

 This function enable or disable the BRDY(Ready) interrupt for the
pipe. More...

UINT ux_dcd_synergy_buffer_write (UX_DCD_SYNERGY *dcd_synergy,
UX_DCD_SYNERGY_ED *ed)

 This function writes a data from input buffer to the specified PIPE.
More...

VOID ux_dcd_synergy_current_endpoint_change (UX_DCD_SYNERGY
*dcd_synergy, UX_DCD_SYNERGY_ED *ed, ULONG direction)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,875 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

 This function configures the FIFO as per the request specified in
endpoint descriptor. More...

ULONG ux_dcd_synergy_data_buffer_size (UX_DCD_SYNERGY *dcd_synergy,
UX_DCD_SYNERGY_ED *ed)

 This function returns the size of the data buffer and selects the
specified pipe. More...

UINT ux_dcd_synergy_endpoint_create (UX_DCD_SYNERGY *dcd_synergy,
UX_SLAVE_ENDPOINT *endpoint)

 This function creates a physical endpoint. More...

UINT ux_dcd_synergy_endpoint_destroy (UX_DCD_SYNERGY *dcd_synergy,
UX_SLAVE_ENDPOINT *endpoint)

 This function will destroy a physical endpoint. More...

VOID ux_dcd_synergy_endpoint_nak_set (UX_DCD_SYNERGY *dcd_synergy,
UX_DCD_SYNERGY_ED *ed)

 This function sets a NAK(Not Acknowledged) to an endpoint. More...

UINT ux_dcd_synergy_endpoint_reset (UX_DCD_SYNERGY *dcd_synergy,
UX_SLAVE_ENDPOINT *endpoint)

 This function will reset a physical endpoint. More...

UINT ux_dcd_synergy_remote_wakeup (UX_DCD_SYNERGY *dcd_synergy,
ULONG *parameter)

 This function is called when the device wants to wake up the host.
More...

UINT ux_dcd_synergy_endpoint_stall (UX_DCD_SYNERGY *dcd_synergy,
UX_SLAVE_ENDPOINT *endpoint)

 This function will stall a physical endpoint. More...

UINT ux_dcd_synergy_endpoint_status (UX_DCD_SYNERGY *dcd_synergy,
ULONG endpoint_index)

 This function will retrieve the status of the endpoint. More...

ULONG ux_dcd_synergy_fifo_port_change (UX_DCD_SYNERGY *dcd_synergy,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,876 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

UX_DCD_SYNERGY_ED *ed, ULONG direction)

 This function configures the FIFO port. More...

UINT ux_dcd_synergy_fifoc_read (UX_DCD_SYNERGY *dcd_synergy,
UX_DCD_SYNERGY_ED *ed)

 This function reads from the hardware FIFO C and stores in the
destination buffer. More...

UINT ux_dcd_synergy_fifo_read (UX_DCD_SYNERGY *dcd_synergy,
UX_DCD_SYNERGY_ED *ed)

 This function reads from the hardware FIFO D0 or D1 and stores in
the destination buffer. More...

UINT ux_dcd_synergy_fifo_read_dma (UX_DCD_SYNERGY *dcd_synergy,
UX_DCD_SYNERGY_ED *ed, UINT dma_bytes_to_transfer)

 This function reads the data from HW D0/ D1 FIFO using DMA. More...

UINT ux_dcd_synergy_fifoc_write (UX_DCD_SYNERGY *dcd_synergy,
UX_DCD_SYNERGY_ED *ed)

 This function writes a data from a buffer into USB FIFO using CPU.
More...

VOID ux_dcd_synergy_fifo_write_software_copy (UX_DCD_SYNERGY
*dcd_synergy, UX_DCD_SYNERGY_PAYLOAD_TRANSFER *p_payload,
VOID *p_fifo, ULONG fifo_sel)

 USBX DCD FIFO write by software copy. Call a subroutine for
selected USB controller hardware. More...

VOID ux_dcd_synergy_fifo_write_last_bytes
(UX_DCD_SYNERGY_PAYLOAD_TRANSFER *p_payload, VOID *p_fifo,
ULONG usb_base)

 USBX DCD FIFO write - Copy last bytes to FIFO by software if the rest
bytes are less than FIFO access width. More...

UINT ux_dcd_synergy_fifod_write (UX_DCD_SYNERGY *dcd_synergy,
UX_DCD_SYNERGY_ED *ed)

 This function writes a buffer to FIFOD0 or FIFOD1. More...

UINT ux_dcd_synergy_fifod_write_dma (UX_DCD_SYNERGY *dcd_synergy,
UX_DCD_SYNERGY_ED *ed, UINT dma_bytes_to_transfer)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,877 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

 This function writes a buffer to FIFOD0 or FIFOD1 using DMA. More...

VOID ux_dcd_synergy_write_dma_configure (UX_DCD_SYNERGY
*dcd_synergy, UX_DCD_SYNERGY_PAYLOAD_TRANSFER *p_payload,
ULONG fifo_sel, ULONG endpoint_size)

 USBX DCD DMA write setup function. Call a subroutine for selected
USB controller hardware. More...

VOID ux_dcd_synergy_fifo_dma_start_write (UX_DCD_SYNERGY
*dcd_synergy, UCHAR *p_payload_buffer, VOID *p_fifo_add, VOID
*p_fifo_ctrl, VOID *p_fifo_sel)

 USBX DCD DMA FIFO write - DMA start function. More...

UINT ux_dcd_synergy_frame_number_get (UX_DCD_SYNERGY
*dcd_synergy, ULONG *frame_number)

 This function will return the frame number currently used by the
controller. This function is mostly used for isochronous purposes.
More...

UINT ux_dcd_synergy_function (UX_SLAVE_DCD *dcd, UINT function, VOID
*parameter)

 This function act as interface between upper layer USBX device stack
and synergy controller. More...

UINT ux_dcd_synergy_initialize (ULONG dcd_io)

 This function initializes the USB slave controller for Renesas Synergy
MCUs. More...

UINT ux_dcd_synergy_initialize_transfer_support (ULONG dcd_io,
UX_DCD_SYNERGY_TRANSFER *p_transfer_instance)

 The function initializes the USB slave controller of the Renesas
Synergy MCUs with associated DMA transfer modules. More...

UINT ux_dcd_synergy_initialize_complete (VOID)

 This function completes the initialization of the USB slave controller
for the Renesas Synergy MCUs. More...

VOID ux_dcd_synergy_interrupt_handler (VOID)

 This function is the interrupt handler for the synergy controller.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,878 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

More...

VOID ux_dcd_synergy_register_clear (UX_DCD_SYNERGY *dcd_synergy,
ULONG synergy_register, USHORT value)

 This function clears a bit in a register of the synergy. More...

VOID ux_dcd_synergy_usb_status_register_clear (UX_DCD_SYNERGY
*dcd_synergy, ULONG synergy_register, USHORT value)

 This function clears a bit in a status register of the synergy.To clear
the status bits, need to write 0 only to the bits to be cleared. Write 1
to the other bits. More...

ULONG ux_dcd_synergy_register_read (UX_DCD_SYNERGY *dcd_synergy,
ULONG synergy_register)

 This function reads a synergy USB register. More...

VOID ux_dcd_synergy_register_set (UX_DCD_SYNERGY *dcd_synergy,
ULONG synergy_register, USHORT value)

 This function set a bit in synergy USB register. More...

VOID ux_dcd_synergy_register_write (UX_DCD_SYNERGY *dcd_synergy,
ULONG synergy_register, USHORT value)

 This function writes a bit in synergy USB register. More...

UINT ux_dcd_synergy_transfer_abort (UX_DCD_SYNERGY *dcd_synergy,
UX_SLAVE_TRANSFER *transfer_request)

 This function will terminate the transfer. More...

UINT ux_dcd_synergy_transfer_callback (UX_DCD_SYNERGY *dcd_synergy,
UX_SLAVE_TRANSFER *transfer_request, ULONG interrupt_status,
ULONG ctsq_mask)

 This function is invoked under ISR when an event happens on a
specific endpoint. More...

UINT ux_dcd_synergy_transfer_request (UX_DCD_SYNERGY *dcd_synergy,
UX_SLAVE_TRANSFER *transfer_request)

 This function will initiate a transfer to a specific endpoint. If the
endpoint is IN, the endpoint register will be set to accept the
request. If the endpoint is IN, the endpoint FIFO will be filled with the
buffer and the endpoint register set. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,879 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

void ux_dcd_synergy_disconnect (void)

 USBX DCD disconnect the USB controller communication from the
host.

UINT ux_dcd_synergy_uninitialize (ULONG dcd_io)

 USBX DCD un-initialization the USB controller. More...

UINT ux_dcd_synergy_uninitialize_transfer_support (ULONG dcd_io)

 The function un-initializes the USB slave controller of the Renesas
Synergy MCUs with associated DMA transfer modules. More...

VOID ux_hcd_synergy_asynch_queue_process (UX_HCD_SYNERGY
*hcd_synergy)

 This function process the asynchronous transactions. The function
will identify the USB interrupts occurred associated with an endpoint
and will process the interrupts. More...

VOID ux_hcd_synergy_asynch_queue_process_bemp (UX_HCD_SYNERGY
*hcd_synergy, UX_SYNERGY_ED *ed)

 This function process the BEMP(Buffer Empty) interrupt that occurred
on a specific ED. More...

VOID ux_hcd_synergy_asynch_queue_process_brdy (UX_HCD_SYNERGY
*hcd_synergy, UX_SYNERGY_ED *ed)

 This function process the BRDY(Buffer Ready)interrupt that occurred
on a specific ED. More...

VOID ux_hcd_synergy_asynch_queue_process_nrdy (UX_HCD_SYNERGY
*hcd_synergy, UX_SYNERGY_ED *ed)

 This function process the NRDY(Not Ready) Interrupt that occurred
on a specific ED. More...

VOID ux_hcd_synergy_asynch_queue_process_sign (UX_HCD_SYNERGY
*hcd_synergy, UX_SYNERGY_ED *ed)

 This function process the Setup transaction Error Interrupt. More...

VOID ux_hcd_synergy_asynch_schedule (UX_HCD_SYNERGY *hcd_synergy)

 This function schedules new transfers from the control or bulk lists.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,880 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

More...

UINT ux_hcd_synergy_asynchronous_endpoint_create (UX_HCD_SYNERGY
*hcd_synergy, UX_ENDPOINT *endpoint)

 This function will create an asynchronous endpoint. The control and
bulk endpoints fall into this category. More...

UINT ux_hcd_synergy_asynchronous_endpoint_destroy (UX_HCD_SYNERGY
*hcd_synergy, UX_ENDPOINT *endpoint)

 This function will destroy an asynchronous endpoint. The control and
bulk endpoints fall into this category. More...

VOID ux_hcd_synergy_buffer_empty_interrupt (UX_HCD_SYNERGY
*hcd_synergy, UX_SYNERGY_ED *ed, ULONG flag)

 This function enable or disable the BEMP(Buffer Empty) interrupt for
the pipe. More...

VOID ux_hcd_synergy_buffer_notready_interrupt (UX_HCD_SYNERGY
*hcd_synergy, UX_SYNERGY_ED *ed, ULONG flag)

 This function enable or disable the NRDY(Not Ready) interrupt for the
pipe. More...

UINT ux_hcd_synergy_buffer_read (UX_HCD_SYNERGY *hcd_synergy,
UX_SYNERGY_ED *ed)

 This function reads from a specified pipe into a buffer. More...

VOID ux_hcd_synergy_buffer_ready_interrupt (UX_HCD_SYNERGY
*hcd_synergy, UX_SYNERGY_ED *ed, ULONG flag)

 This function enable or disable the BRDY(Ready) interrupt for the
pipe. More...

UINT ux_hcd_synergy_buffer_write (UX_HCD_SYNERGY *hcd_synergy,
UX_SYNERGY_ED *ed)

 This function writes data to the selected FIFO of the endpoint. More...

UINT ux_hcd_synergy_bulk_endpoint_create (UX_HCD_SYNERGY
*hcd_synergy, UX_ENDPOINT *endpoint)

 This function will create a bulk endpoint. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,881 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

UINT ux_hcd_synergy_bulk_int_td_add (UX_HCD_SYNERGY *hcd_synergy,
UX_SYNERGY_ED *ed)

 This function adds a transfer descriptor to an Bulk or INT ED. More...

UINT ux_hcd_synergy_control_endpoint_create (UX_HCD_SYNERGY
*hcd_synergy, UX_ENDPOINT *endpoint)

 This function will create a control endpoint. More...

UINT ux_hcd_synergy_control_td_add (UX_HCD_SYNERGY *hcd_synergy,
UX_SYNERGY_ED *ed)

 This function adds a transfer descriptor to an ED. More...

UINT ux_hcd_synergy_controller_disable (UX_HCD_SYNERGY
*hcd_synergy)

 This function will disable the Synergy controller. The controller will
release all its resources (memory, IO ...). After this, the controller will
not send SOF any longer. All transactions should have been
completed, all classes should have been closed. More...

VOID ux_hcd_synergy_current_endpoint_change (UX_HCD_SYNERGY
*hcd_synergy, UX_SYNERGY_ED *ed, ULONG direction)

 This function change the endpoint in the FIFO. More...

ULONG ux_hcd_synergy_data_buffer_size (UX_HCD_SYNERGY *hcd_synergy,
UX_SYNERGY_ED *ed)

 This function returns the size of the buffer data. More...

UX_SYNERGY_ED * ux_hcd_synergy_ed_obtain (UX_HCD_SYNERGY *hcd_synergy)

 This function obtains a free ED from the ED list. More...

VOID ux_hcd_synergy_ed_td_clean (UX_SYNERGY_ED *ed)

 This function process cleans the ED of all tds except the last dummy
TD. More...

VOID ux_hcd_synergy_endpoint_nak_set (UX_HCD_SYNERGY *hcd_synergy,
UX_SYNERGY_ED *ed)

 This function sets a NAK(Not Acknowledged) to an endpoint. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,882 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

UINT ux_hcd_synergy_endpoint_reset (UX_HCD_SYNERGY *hcd_synergy,
UX_ENDPOINT *endpoint)

 This function will reset an endpoint. More...

UINT ux_hcd_synergy_entry (UX_HCD *hcd, UINT function, VOID
*parameter)

 This function is the entry function to the USB driver from the USB
stack. More...

ULONG ux_hcd_synergy_fifo_port_change (UX_HCD_SYNERGY *hcd_synergy,
UX_SYNERGY_ED *ed, ULONG direction)

 This function change the port of the FIFO. More...

UINT ux_hcd_synergy_fifo_read (UX_HCD_SYNERGY *hcd_synergy,
UX_SYNERGY_ED *ed)

 This function read data from the FIFO configured for the PIPE(FIFO C,
D0 or D1). More...

UINT ux_hcd_synergy_fifoc_write (UX_HCD_SYNERGY *hcd_synergy,
UX_SYNERGY_ED *ed)

 This function writes a buffer to FIFOC. More...

VOID ux_hcd_synergy_fifo_write_software_copy (UX_HCD_SYNERGY
*hcd_synergy, ULONG payload_length, UCHAR *payload_buffer, VOID
*fifo_addr, ULONG fifo_sel)

 USBX HCD CPU FIFO write by software copy. Call a suitable
subroutine for selected USB controller hardware. More...

VOID ux_hcd_synergy_fifo_write_software_copy_remaining_bytes
(UX_HCD_SYNERGY *hcd_synergy, ULONG payload_length, UCHAR
*payload_buffer, VOID *fifo_addr)

 USBX HCD CPU FIFO write - Copy remaining bytes to FIFO by
software if the rest bytes are less than FIFO access width. More...

UINT ux_hcd_synergy_fifod_write (UX_HCD_SYNERGY *hcd_synergy,
UX_SYNERGY_ED *ed)

 This function writes a buffer data to FIFOD0 or FIFOD1. More...

UINT ux_hcd_synergy_frame_number_get (UX_HCD_SYNERGY

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,883 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

*hcd_synergy, ULONG *frame_number)

 This function will return the frame number currently used by the
controller. This function is mostly used for isochronous purposes and
for timing. More...

VOID ux_hcd_synergy_frame_number_set (UX_HCD_SYNERGY
*hcd_synergy, ULONG frame_number)

 This function will set the current frame number to the one specified.
This function is mostly used for isochronous purpos.es. More...

UINT ux_hcd_synergy_initialize (UX_HCD *hcd)

 This function initializes the Synergy controller. More...

UINT ux_hcd_synergy_initialize_transfer_support (UX_HCD *hcd, const
UX_HCD_SYNERGY_TRANSFER *p_transfer_instance)

 USBX HCD Transfer Support with DMA support. More...

UINT ux_hcd_synergy_interrupt_endpoint_create (UX_HCD_SYNERGY
*hcd_synergy, UX_ENDPOINT *endpoint)

 This function will create an interrupt endpoint. The interrupt
endpoint has an interval of operation from 1 to 255. The Synergy has
no hardware scheduler but we still build an interrupt tree similar to
the OHCI controller. More...

VOID ux_hcd_synergy_interrupt_handler (UINT hcd_index)

 This function is the interrupt handler for the Synergy USB HS
controller. Normally an interrupt occurs from the controller when
there is either a EOF signal and there has been transfers within the
frame or when there is a change on one of the downstream ports.
More...

VOID ux_hcd_synergy_iso_queue_process (UX_HCD_SYNERGY
*hcd_synergy)

 This function process the isochronous transactions that happened in
the last frame. More...

VOID ux_hcd_synergy_iso_queue_process_bemp (UX_HCD_SYNERGY
*hcd_synergy, UX_SYNERGY_ED *ed)

 This function process the BEMP(Buffer Empty) Interrupt that occurred
on a specific ED used for Isochronous transfer. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,884 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

VOID ux_hcd_synergy_iso_queue_process_brdy (UX_HCD_SYNERGY
*hcd_synergy, UX_SYNERGY_ED *ed)

 This function process the BRDY(Buffer Ready)interrupt that occurred
on a specific ED used for isochronous transfer. More...

VOID ux_hcd_synergy_iso_queue_process_nrdy (UX_HCD_SYNERGY
*hcd_synergy, UX_SYNERGY_ED *ed)

 This function process the NRDY(Not Ready) Interrupt that occurred
on a specific ED used for Isochronous transfer. More...

VOID ux_hcd_synergy_iso_schedule (UX_HCD_SYNERGY *hcd_synergy)

 This function schedules new transfers from isochronous list. More...

UINT ux_hcd_synergy_iso_td_add (UX_HCD_SYNERGY *hcd_synergy,
UX_SYNERGY_ED *ed)

 This function adds a transfer descriptor to an Isochronous Endpoint
Descriptor. More...

UINT ux_hcd_synergy_isochronous_endpoint_create (UX_HCD_SYNERGY
*hcd_synergy, UX_ENDPOINT *endpoint)

 This function creates an isochronous endpoint. More...

UX_SYNERGY_ISO_TD * ux_hcd_synergy_isochronous_td_obtain (UX_HCD_SYNERGY
*hcd_synergy)

 This function obtains a free TD from the isochronous TD list. More...

UX_SYNERGY_ED * ux_hcd_synergy_least_traffic_list_get (UX_HCD_SYNERGY
*hcd_synergy)

 This function return a pointer to the first ED in the periodic tree that
has the least traffic registered. More...

UINT ux_hcd_synergy_periodic_endpoint_destroy (UX_HCD_SYNERGY
*hcd_synergy, UX_ENDPOINT *endpoint)

 This function will destroy an isochronous endpoint. More...

VOID ux_hcd_synergy_periodic_schedule (UX_HCD_SYNERGY
*hcd_synergy)

 This function schedules new transfers from the periodic interrupt list.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,885 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

More...

UINT ux_hcd_synergy_periodic_tree_create (UX_HCD_SYNERGY
*hcd_synergy)

 This function creates the periodic static tree for the interrupt and
isochronous eds. More...

UINT ux_hcd_synergy_port_disable (UX_HCD_SYNERGY *hcd_synergy,
ULONG port_index)

 This function will disable a specific port attached to the root HUB.
More...

UINT ux_hcd_synergy_port_enable (UX_HCD_SYNERGY *hcd_synergy,
ULONG port_index)

 This function will enable a specific port attached to the root HUB.
More...

UINT ux_hcd_synergy_port_reset (UX_HCD_SYNERGY *hcd_synergy,
ULONG port_index)

 This function will reset a specific port attached to the root HUB.
More...

UINT ux_hcd_synergy_port_resume (UX_HCD_SYNERGY *hcd_synergy,
UINT port_index)

 This function will resume a specific port attached to the root HUB.
Present, this function is not supported for resume port. More...

ULONG ux_hcd_synergy_port_status_get (UX_HCD_SYNERGY *hcd_synergy,
ULONG port_index)

 This function will return the status for each port attached to the root
HUB. More...

UINT ux_hcd_synergy_port_suspend (UX_HCD_SYNERGY *hcd_synergy,
ULONG port_index)

 This function will suspend a specific port attached to the root HUB.
Present, this function is does not supported. More...

UINT ux_hcd_synergy_power_down_port (UX_HCD_SYNERGY *hcd_synergy,
ULONG port_index)

 This function will power down a specific port attached to the root

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,886 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

HUB. Present, this function is does not supported. More...

UINT ux_hcd_synergy_power_on_port (UX_HCD_SYNERGY *hcd_synergy,
ULONG port_index)

 This function will power a specific port attached to the root HUB.
Present, this function is does not supported. More...

VOID ux_hcd_synergy_power_root_hubs (UX_HCD_SYNERGY *hcd_synergy)

 This function will power the root HUB. Present, this function is does
not supported. More...

VOID ux_hcd_synergy_register_clear (UX_HCD_SYNERGY *hcd_synergy,
ULONG synergy_register, USHORT value)

 This function clears flags in a synergy USB register. More...

VOID ux_hcd_synergy_register_status_clear (UX_HCD_SYNERGY
*hcd_synergy, ULONG synergy_register, USHORT value)

 This function clears a bit in a status register of the synergy
controller.To clear the status bits, need to write 0 only to the bits to
be cleared. Write 1 to the other bits. More...

ULONG ux_hcd_synergy_register_read (UX_HCD_SYNERGY *hcd_synergy,
ULONG synergy_register)

 This function reads a data from synergy USB register. More...

VOID ux_hcd_synergy_register_set (UX_HCD_SYNERGY *hcd_synergy,
ULONG synergy_register, USHORT value)

 This function sets flags in a synergy USB register. More...

VOID ux_hcd_synergy_register_write (UX_HCD_SYNERGY *hcd_synergy,
ULONG synergy_register, USHORT value)

 This function writes a data to a Synergy USB register. More...

UX_SYNERGY_TD * ux_hcd_synergy_regular_td_obtain (UX_HCD_SYNERGY *hcd_synergy)

 This function obtains a free TD from the regular TD list. More...

UINT ux_hcd_synergy_request_bulk_transfer (UX_HCD_SYNERGY
*hcd_synergy, UX_TRANSFER *transfer_request)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,887 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

 This function performs a bulk transfer request. A bulk transfer can be
larger than the size of the Synergy buffer so it may be required to
chain multiple tds to accommodate this transfer request. A bulk
transfer is non blocking, so we return before the transfer request is
completed. More...

UINT ux_hcd_synergy_request_control_transfer (UX_HCD_SYNERGY
*hcd_synergy, UX_TRANSFER *transfer_request)

 This function performs a control transfer from a transfer request. The
USB control transfer is in 3 phases (setup, data, status). This function
will chain all phases of the control sequence before setting the
Synergy endpoint as a candidate for transfer. More...

UINT ux_hcd_synergy_request_interrupt_transfer (UX_HCD_SYNERGY
*hcd_synergy, UX_TRANSFER *transfer_request)

 This function performs an interrupt transfer request. An interrupt
transfer can only be as large as the MaxpacketField in the endpoint
descriptor. This was verified at the USB layer and does not need to
be reverified here. More...

UINT ux_hcd_synergy_request_isochronous_transfer (UX_HCD_SYNERGY
*hcd_synergy, UX_TRANSFER *transfer_request)

 This function performs an isochronous transfer request. More...

UINT ux_hcd_synergy_request_transfer (UX_HCD_SYNERGY *hcd_synergy,
UX_TRANSFER *transfer_request)

 This function is the handler for all the transactions on the USB. The
transfer request passed as parameter contains the endpoint and the
device descriptors in addition to the type of transaction de be
executed. This function routes the transfer request to according to
the type of transfer to be executed. More...

UINT ux_hcd_synergy_td_add (UX_HCD_SYNERGY *hcd_synergy,
UX_SYNERGY_ED *ed)

 This function add new TD for control, Bulk or Interrupt endpoint.
More...

UINT ux_hcd_synergy_transfer_abort (UX_HCD_SYNERGY *hcd_synergy,
UX_TRANSFER *transfer_request)

 This function will abort transactions attached to a transfer request.
More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,888 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

UINT ux_hcd_synergy_disable (ULONG ux_hcd_io)

 This function disables the Synergy HOST controller. More...

UINT ux_hcd_synergy_uninitialize (ULONG ux_hcd_io)

 This function un-initializes the Synergy HOST controller. More...

UINT ux_hcd_synergy_uninitialize_transfer_support (UX_HCD_SYNERGY
*hcd_synergy)

 This function un-initializes the transfer module associated with the
USBX HOST controller. More...

Detailed Description

RTOS-integrated USBX adaptation framework for Synergy. Implements USB HOST and DEVICE low
level device drivers.

USBX Component SYNERGY Controller Driver

Macro Definition Documentation

◆ UX_DCD_SYNERGY_ED_STATE_IDLE

#define UX_DCD_SYNERGY_ED_STATE_IDLE (0U)

Define USB SYNERGY physical endpoint state machine definition.

◆ UX_DCD_SYNERGY_ED_STATUS_UNUSED

#define UX_DCD_SYNERGY_ED_STATUS_UNUSED (0U)

Define USB SYNERGY physical endpoint status definition.

◆ UX_DCD_SYNERGY_SLAVE_CONTROLLER

#define UX_DCD_SYNERGY_SLAVE_CONTROLLER (0x80U)

Define SYNERGY generic equivalences.

◆ UX_SYNERGY_CONTROLLER

#define UX_SYNERGY_CONTROLLER (0)

Define Synergy generic definitions.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,889 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ UX_SYNERGY_DCD_BUSWAIT_CALC_FREQ_PCLK_CYC

#define UX_SYNERGY_DCD_BUSWAIT_CALC_FREQ_PCLK_CYC (17142857U)

Register access wait cycles for USBHS controller. 7cycles at Peripheral clock 120MHz

◆ UX_SYNERGY_DCD_COMMAND_STATUS_RESET

#define UX_SYNERGY_DCD_COMMAND_STATUS_RESET (0)

Define synergy initialization values.

◆ UX_SYNERGY_DCD_DCP

#define UX_SYNERGY_DCD_DCP (0)

Define synergy command/status bitmaps.

◆ UX_SYNERGY_DCD_ED_BRDY

#define UX_SYNERGY_DCD_ED_BRDY (0x00000001U)

Define synergy physical endpoint definitions.

◆ UX_SYNERGY_DCD_FIFO_READING

#define UX_SYNERGY_DCD_FIFO_READING (2U)

Define synergy FIFO read completion code.

◆ UX_SYNERGY_DCD_FIFO_WRITING

#define UX_SYNERGY_DCD_FIFO_WRITING (2U)

Define synergy FIFO write completion code.

◆ UX_SYNERGY_DCD_MAIN_OSC_24MHz

#define UX_SYNERGY_DCD_MAIN_OSC_24MHz (24000000U)

Supported USBMCLK frequency for S7G2 and S5D9.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,890 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ UX_SYNERGY_DCD_PHYSLEW_SLEW_SLEWR00

#define UX_SYNERGY_DCD_PHYSLEW_SLEW_SLEWR00 (1U<<0)

PHY Cross Point Adjustment, note that Hardware Manual to be updated(0xE->0x5)

◆ UX_SYNERGY_DCD_PIPE0_SIZE

#define UX_SYNERGY_DCD_PIPE0_SIZE (256U)

Define synergy fifo definition.

◆ UX_SYNERGY_DCD_PIPESEL_NO_PIPE

#define UX_SYNERGY_DCD_PIPESEL_NO_PIPE (0x000FU)

Define synergy PIPE selection definitions.

◆ UX_SYNERGY_DCD_SYSCFG

#define UX_SYNERGY_DCD_SYSCFG (0x00UL)

Define SYNERGY HCOR register mapping.

◆ UX_SYNERGY_DCD_SYSCFG_SCKE

#define UX_SYNERGY_DCD_SYSCFG_SCKE (1U<<10)

Define SYNERGY control register values.

◆ UX_SYNERGY_ED_STATIC

#define UX_SYNERGY_ED_STATIC (0x80000000)

Define Synergy ED bitmap.

◆ UX_SYNERGY_HC_AVAILABLE_BANDWIDTH

#define UX_SYNERGY_HC_AVAILABLE_BANDWIDTH (2304UL)

Define Synergy static definition. This macro is used for checking the available bandwidth for
periodic transfers(Isochronous and Interrupt) Maximum bandwidth is calculated as {2048byes(2x
ISO PIPEs) + 256bytes(4x INT PIPEs)} for high-speed operation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,891 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ UX_SYNERGY_HC_BUSWAIT_CALC_FREQ_PCLK_CYC

#define UX_SYNERGY_HC_BUSWAIT_CALC_FREQ_PCLK_CYC (17142857U)

Register access wait cycles for USBHS controller. 7cycles at Peripheral clock 120MHz

◆ UX_SYNERGY_HC_COMMAND_STATUS_RESET

#define UX_SYNERGY_HC_COMMAND_STATUS_RESET (0)

Define Synergy initialization values.

◆ UX_SYNERGY_HC_DCP

#define UX_SYNERGY_HC_DCP (0)

Define Synergy HCOR command/status bitmaps.

◆ UX_SYNERGY_HC_ED_BRDY

#define UX_SYNERGY_HC_ED_BRDY (0x00000001U)

Define Synergy physical endpoint definitions.

◆ UX_SYNERGY_HC_FIFO_READING

#define UX_SYNERGY_HC_FIFO_READING (2)

Define Synergy FIFO read completion code.

◆ UX_SYNERGY_HC_FIFO_WRITING

#define UX_SYNERGY_HC_FIFO_WRITING (2)

Define Synergy FIFO write completion code.

◆ UX_SYNERGY_HC_MAIN_OSC_24MHz

#define UX_SYNERGY_HC_MAIN_OSC_24MHz (24000000U)

Supported USBMCLK frequency for S7G2 and S5D9.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,892 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ UX_SYNERGY_HC_PHYSLEW_SLEW_SLEWR00

#define UX_SYNERGY_HC_PHYSLEW_SLEW_SLEWR00 (1U<<0)

PHY Cross Point Adjustment, note that Hardware Manual to be updated(0xE->0x5)

◆ UX_SYNERGY_HC_PIPE0_SIZE

#define UX_SYNERGY_HC_PIPE0_SIZE (256)

Define Synergy fifo definition.

◆ UX_SYNERGY_HC_PIPESEL_NO_PIPE

#define UX_SYNERGY_HC_PIPESEL_NO_PIPE 0x000f

Define Synergy PIPE selection definitions.

◆ UX_SYNERGY_HC_PORT_ENABLED

#define UX_SYNERGY_HC_PORT_ENABLED (1)

Define Synergy Root hub states.

◆ UX_SYNERGY_HC_SYSCFG

#define UX_SYNERGY_HC_SYSCFG (0x00UL)

Protection against no definition of Synergy controller.

◆ UX_SYNERGY_HC_SYSCFG_SCKE

#define UX_SYNERGY_HC_SYSCFG_SCKE (1U<<10)

Define Synergy control register values.

◆ UX_SYNERGY_TD_SETUP_PHASE

#define UX_SYNERGY_TD_SETUP_PHASE (0x00010000)

Define Synergy TD bitmap.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,893 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ usbfs_resume_isr()

void usbfs_resume_isr (void)

VBINT (VBUS interrupt), RESM (Resume interrupt), OVRCR (Over current input), BCHG (Change
interrupt), and PDDETINT0 (Bus change interrupt) fire this ISR. This is only used for canceling
following standby modes.

Canceling the software standby mode
Canceling deep standby mode

◆ ux_dcd_synergy_buffer_empty_interrupt()

VOID ux_dcd_synergy_buffer_empty_interrupt (UX_DCD_SYNERGY * dcd_synergy,
UX_DCD_SYNERGY_ED * ed, ULONG flag)

This function processes the BEMP interrupt for the specific endpoint.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] ed Pointer to physical
Endpoint(ED) control block

[in] flag Flag to enable or disable the
buffer empty interrupt.

◆ ux_dcd_synergy_buffer_notready_interrupt()

VOID ux_dcd_synergy_buffer_notready_interrupt (UX_DCD_SYNERGY * dcd_synergy,
UX_DCD_SYNERGY_ED * ed, ULONG flag)

This function processes the NRDY(Not Ready) interrupt for the specific endpoint.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] ed Pointer to physical
Endpoint(ED) control block

[in] flag Flag for DCD synergy enable
or disable.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,894 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_buffer_read()

UINT ux_dcd_synergy_buffer_read (UX_DCD_SYNERGY * dcd_synergy, UX_DCD_SYNERGY_ED * ed
)

This function reads from a specified pipe into a buffer.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] ed Pointer to a physical
Endpoint(ED) control block

Return values
UX_SUCCESS Read a data from buffer successfully.

UX_ERROR Unable to read a data from buffer.

Returns
See Common Error Codes for other possible return codes or causes. This function calls:

ux_dcd_synergy_fifo_read()

◆ ux_dcd_synergy_buffer_ready_interrupt()

VOID ux_dcd_synergy_buffer_ready_interrupt (UX_DCD_SYNERGY * dcd_synergy,
UX_DCD_SYNERGY_ED * ed, ULONG flag)

This function enable or disable the BRDY(Ready) interrupt for the pipe.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] ed Pointer to a physical
Endpoint(ED) control block

[in] flag Check whether DCD synergy
is enable or disable.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,895 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_buffer_write()

UINT ux_dcd_synergy_buffer_write (UX_DCD_SYNERGY * dcd_synergy, UX_DCD_SYNERGY_ED *
ed)

This function writes a data from input buffer to the specified PIPE.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] ed Pointer to a physical
Endpoint(ED) control block

Return values
UX_SUCCESS Write a data to FIFO(D0, D1 and C)

successfully.

UX_ERROR Unable to write a data to FIFO(D0, D1 and
C).

Returns
See Common Error Codes for other possible return codes or causes. This function calls:

ux_dcd_synergy_fifod_write()
ux_dcd_synergy_fifoc_write()

◆ ux_dcd_synergy_current_endpoint_change()

VOID ux_dcd_synergy_current_endpoint_change (UX_DCD_SYNERGY * dcd_synergy,
UX_DCD_SYNERGY_ED * ed, ULONG direction)

This function configures the FIFO as per the request specified in endpoint descriptor.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] ed Pointer to a physical
Endpoint(ED) control block

[in] direction Endpoint direction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,896 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_data_buffer_size()

ULONG ux_dcd_synergy_data_buffer_size (UX_DCD_SYNERGY * dcd_synergy,
UX_DCD_SYNERGY_ED * ed)

This function returns the size of the data buffer and selects the specified pipe.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] ed Pointer to a physical
Endpoint(ED) control block

Return values
buffer_size Maximum packet size.

◆ ux_dcd_synergy_endpoint_create()

UINT ux_dcd_synergy_endpoint_create (UX_DCD_SYNERGY * dcd_synergy, UX_SLAVE_ENDPOINT *
endpoint)

This function creates a physical endpoint.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] endpoint Pointer to a Device
Controller Endpoint
structure.

Return values
UX_SUCCESS Endpoint is created successfully.

UX_ERROR Buffer is not free or endpoint creation is
unsuccessful.

UX_NO_ED_AVAILABLE Endpoint is already in use.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,897 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_endpoint_destroy()

UINT ux_dcd_synergy_endpoint_destroy (UX_DCD_SYNERGY * dcd_synergy, UX_SLAVE_ENDPOINT
* endpoint)

This function will destroy a physical endpoint.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] endpoint Pointer to a Device
Controller Endpoint
structure.

Return values
UX_SUCCESS Endpoint is destroyed successfully.

◆ ux_dcd_synergy_endpoint_nak_set()

VOID ux_dcd_synergy_endpoint_nak_set (UX_DCD_SYNERGY * dcd_synergy,
UX_DCD_SYNERGY_ED * ed)

This function sets a NAK(Not Acknowledged) to an endpoint.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] ed Pointer to a physical
Endpoint(ED) control block

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,898 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_endpoint_reset()

UINT ux_dcd_synergy_endpoint_reset (UX_DCD_SYNERGY * dcd_synergy, UX_SLAVE_ENDPOINT *
endpoint)

This function will reset a physical endpoint.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] endpoint Pointer to a Device
Controller Endpoint
structure.

Return values
UX_SUCCESS Endpoint is reset successfully.

UX_NO_ED_AVAILABLE Device Controller Endpoint structure pointer
is NULL

Abort the transfer request on this endpoint.

◆ ux_dcd_synergy_endpoint_stall()

UINT ux_dcd_synergy_endpoint_stall (UX_DCD_SYNERGY * dcd_synergy, UX_SLAVE_ENDPOINT *
endpoint)

This function will stall a physical endpoint.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] endpoint Pointer to a Device
Controller Endpoint
structure.

Return values
UX_SUCCESS Endpoint is stalled successfully.

UX_NO_ED_AVAILABLE Device Controller Endpoint control pointer is
Null.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,899 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_endpoint_status()

UINT ux_dcd_synergy_endpoint_status (UX_DCD_SYNERGY * dcd_synergy, ULONG
endpoint_index)

This function will retrieve the status of the endpoint.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] endpoint_index Endpoint number who's
status is to be known.

Return values
UX_ERROR Endpoint already in use.

UX_FALSE Endpoint is stalled.

UX_TRUE Endpoint is not stalled.

◆ ux_dcd_synergy_fifo_dma_start_write()

VOID ux_dcd_synergy_fifo_dma_start_write (UX_DCD_SYNERGY * dcd_synergy, UCHAR *
p_payload_buffer, VOID * p_fifo_add, VOID * p_fifo_ctrl, VOID * p_fifo_sel)

USBX DCD DMA FIFO write - DMA start function.

Parameters
[in] dcd_synergy Pointer to the DCD control

block

[in,out] p_payload_buffer Pointer to a payload buffer

[in] p_fifo_add FIFO register address

[in] p_fifo_ctrl FIFO port control register
address

[in] p_fifo_sel FIFO port selection register
address

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,900 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_fifo_port_change()

ULONG ux_dcd_synergy_fifo_port_change (UX_DCD_SYNERGY * dcd_synergy,
UX_DCD_SYNERGY_ED * ed, ULONG direction)

This function configures the FIFO port.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] ed Pointer to a physical
Endpoint(ED) control block

[in] direction Direction to switch

Return values
UX_ERROR Unable to change fifo port.

Returns
synergy_register Current endpoint index(pipe)

◆ ux_dcd_synergy_fifo_read()

UINT ux_dcd_synergy_fifo_read (UX_DCD_SYNERGY * dcd_synergy, UX_DCD_SYNERGY_ED * ed)

This function reads from the hardware FIFO D0 or D1 and stores in the destination buffer.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] ed : Pointer to a physical
Endpoint(ED) control block

Return values
UX_ERROR FIFO is not accessible.

UX_SYNERGY_DCD_FIFO_READ_OVER FIFO read overflow.

UX_SYNERGY_DCD_FIFO_READ_SHORT Short packet is received.

UX_SYNERGY_DCD_FIFO_READING Continue reading FIFO.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,901 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_fifo_read_dma()

UINT ux_dcd_synergy_fifo_read_dma (UX_DCD_SYNERGY * dcd_synergy, UX_DCD_SYNERGY_ED *
ed, UINT dma_bytes_to_transfer)

This function reads the data from HW D0/ D1 FIFO using DMA.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] ed : Pointer to a physical
Endpoint(ED) control block

[in,out] dma_bytes_to_transfer : No of bytes to be
transferred using DMA

Return values
UX_ERROR FIFO is not accessible.

UX_SYNERGY_DCD_FIFO_READ_OVER FIFO read overflow.

UX_SYNERGY_DCD_FIFO_READ_SHORT Short packet is received.

UX_SYNERGY_DCD_FIFO_READING Continue reading FIFO.

◆ ux_dcd_synergy_fifo_write_last_bytes()

VOID ux_dcd_synergy_fifo_write_last_bytes (UX_DCD_SYNERGY_PAYLOAD_TRANSFER * p_payload,
VOID * p_fifo, ULONG usb_base)

USBX DCD FIFO write - Copy last bytes to FIFO by software if the rest bytes are less than FIFO
access width.

Parameters
[in,out] p_payload Pointer to a payload transfer

structure

[in] p_fifo FIFO register address

[in] usb_base USB controller hardware
base address

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,902 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_fifo_write_software_copy()

VOID ux_dcd_synergy_fifo_write_software_copy (UX_DCD_SYNERGY * dcd_synergy,
UX_DCD_SYNERGY_PAYLOAD_TRANSFER * p_payload, VOID * p_fifo, ULONG fifo_sel)

USBX DCD FIFO write by software copy. Call a subroutine for selected USB controller hardware.

Parameters
[in] dcd_synergy Pointer to the DCD control

block

[in,out] p_payload Pointer to a payload transfer
structure

[in] p_fifo FIFO register address

[in] fifo_sel FIFO select register

◆ ux_dcd_synergy_fifoc_read()

UINT ux_dcd_synergy_fifoc_read (UX_DCD_SYNERGY * dcd_synergy, UX_DCD_SYNERGY_ED * ed)

This function reads from the hardware FIFO C and stores in the destination buffer.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] ed : Pointer to a physical
Endpoint(ED) control block

Return values
UX_ERROR FIFO is not accessible.

UX_SYNERGY_DCD_FIFO_READ_OVER FIFO read overflow.

UX_SYNERGY_DCD_FIFO_READ_SHORT Short packet is received.

UX_SYNERGY_DCD_FIFO_READING Continue reading FIFO.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,903 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_fifoc_write()

UINT ux_dcd_synergy_fifoc_write (UX_DCD_SYNERGY * dcd_synergy, UX_DCD_SYNERGY_ED * ed)

This function writes a data from a buffer into USB FIFO using CPU.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] ed : Pointer to a physical
Endpoint(ED) control block

Return values
UX_ERROR FIFO is not accessible.

UX_SYNERGY_DCD_FIFO_WRITE_END Status for fifo write ends.

UX_SYNERGY_DCD_FIFO_WRITING Status for fifo multiple writes.

◆ ux_dcd_synergy_fifod_write()

UINT ux_dcd_synergy_fifod_write (UX_DCD_SYNERGY * dcd_synergy, UX_DCD_SYNERGY_ED * ed
)

This function writes a buffer to FIFOD0 or FIFOD1.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] ed : Pointer to a physical
Endpoint(ED) control block

Return values
UX_ERROR FIFO is not accessible.

UX_SYNERGY_DCD_FIFO_WRITE_END Write ends of FIFO.

UX_SYNERGY_DCD_FIFO_WRITING Continue multiple write to FIFO.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,904 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_fifod_write_dma()

UINT ux_dcd_synergy_fifod_write_dma (UX_DCD_SYNERGY * dcd_synergy, UX_DCD_SYNERGY_ED
* ed, UINT dma_bytes_to_transfer)

This function writes a buffer to FIFOD0 or FIFOD1 using DMA.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] ed : Pointer to a physical
Endpoint(ED) control block

[in,out] dma_bytes_to_transfer : No of bytes to be
transferred using DMA

Return values
UX_ERROR FIFO is not accessible.

UX_SYNERGY_DCD_FIFO_WRITE_END Write ends of FIFO.

UX_SYNERGY_DCD_FIFO_WRITING Continue multiple write to FIFO.

UX_SYNERGY_DCD_FIFO_WRITE_ERROR Return error if timeout occurs or endpoint
reset occurs.

Setup DMA transfer.

Start DMA transfer by software control.

Wait till DMA transfer is done.

Return error, if semaphore timeouts or endpoint reset occurs.

Wait for certain time - if the buffer is not ready return error

Clear the DELSR.n.IR flag by starting the dummy DMA transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,905 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_frame_number_get()

UINT ux_dcd_synergy_frame_number_get (UX_DCD_SYNERGY * dcd_synergy, ULONG *
frame_number)

This function will return the frame number currently used by the controller. This function is mostly
used for isochronous purposes.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] frame_number : Pointer to a frame number
in use

Return values
UX_SUCCESS In use frame number is returned

successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,906 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_function()

UINT ux_dcd_synergy_function (UX_SLAVE_DCD * dcd, UINT function, VOID * parameter)

This function act as interface between upper layer USBX device stack and synergy controller.

Parameters
[in,out] dcd : Pointer to a USBX control

block.

[in,out] function : Function requested to be
despatched.

[in,out] parameter : Pointer to requested
function parameters.

Return values
UX_CONTROLLER_UNKNOWN Desired controller is not specified.

UX_FUNCTION_NOT_SUPPORTED DCD function is not supported by the
controller.

UX_SUCCESS DCD function despatched successfully.

Returns
See Common Error Codes for other possible return codes or causes. This function calls:

ux_dcd_synergy_frame_number_get()
ux_dcd_synergy_transfer_request()
ux_dcd_synergy_transfer_abort()
ux_dcd_synergy_endpoint_create()
ux_dcd_synergy_endpoint_destroy()
ux_dcd_synergy_endpoint_reset()
ux_dcd_synergy_endpoint_stall()
ux_dcd_synergy_endpoint_status()

◆ ux_dcd_synergy_initialize()

UINT ux_dcd_synergy_initialize (ULONG dcd_io)

This function initializes the USB slave controller for Renesas Synergy MCUs.

Parameters
[in,out] dcd_io Address of DCD

Returns
See Common Error Codes for other possible return codes or causes.

 This function calls:
 * ux_dcd_synergy_initialize_common()

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,907 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_initialize_complete()

UINT ux_dcd_synergy_initialize_complete (VOID)

This function completes the initialization of the USB slave controller for the Renesas Synergy
MCUs.

Return values
UX_SUCCESS USB slave is initialized successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,908 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_initialize_transfer_support()

UINT ux_dcd_synergy_initialize_transfer_support (ULONG dcd_io, UX_DCD_SYNERGY_TRANSFER *
p_transfer_instance)

The function initializes the USB slave controller of the Renesas Synergy MCUs with associated DMA
transfer modules.

Parameters
[in] dcd_io Address of the USB

controller.

[in] p_transfer_instance Pointer to Synergy Transfer
module instances.

Return values
UX_SUCCESS Completed the USB controller initialization

successfully.

UX_CONTROLLER_INIT_FAILED Failed to initialize the USB controller.

UX_MEMORY_INSUFFICIENT Memory was not allocated properly for the
Synergy DCD instance.

Get the pointer to the Synergy DCD instance.

To begin, initialize D0 and D1 FIFO as free.

Initialize Transfer instances.

Setup the Transfer module for transmission.

DTC is not supported in S1 series - so no need of activation source

Clear the DMA transfer end callback flag.

Open Transfer module for transmission.

Setup the Transfer module for reception.

Note address mode in rx is reverst of tx: Destination (which is ram) is incremented and source
(which is FIFO_1 buffer)

DTC is not supported in S1 series - so no need of activation source

Clear the DMA transfer end callback flag.

Open Transfer module for reception.

Return successful completion.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,909 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_interrupt_handler()

VOID ux_dcd_synergy_interrupt_handler (VOID)

This function is the interrupt handler for the synergy controller.

The controller will trigger an interrupt when something happens on an endpoint whose mask has
been set in the interrupt enable register.

Get the pointer to the DCD.

Get the pointer to the synergy DCD.

Get the pointer to the device.

Read the interrupt status register from the controller.

Check if we have an RESUME.

Check the source of the interrupt. Is it VBUS transition?

Check the source of the interrupt. Is it Device State transition (DVST) ?

We enter this state when there is a Bus Reset.

If the device is marked as configured, the device is reset.

Decide what speed is used by the host, read DVSTCTR and isolate speed.

Check if we have a BEMP interrupt.

Check if we have a BRDY interrupt.

Check if we have a NRDY interrupt.

Check if we have a SETUP transaction phase.

◆ ux_dcd_synergy_register_clear()

VOID ux_dcd_synergy_register_clear (UX_DCD_SYNERGY * dcd_synergy, ULONG synergy_register,
USHORT value)

This function clears a bit in a register of the synergy.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] synergy_register : Register to clear

[in,out] value : Value to clear

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,910 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_register_read()

ULONG ux_dcd_synergy_register_read (UX_DCD_SYNERGY * dcd_synergy, ULONG
synergy_register)

This function reads a synergy USB register.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] synergy_register : Register to read

Return values
dcd_reg Value read from USB register.

◆ ux_dcd_synergy_register_set()

VOID ux_dcd_synergy_register_set (UX_DCD_SYNERGY * dcd_synergy, ULONG synergy_register,
USHORT value)

This function set a bit in synergy USB register.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] synergy_register : Register to set

[in,out] value : Value to set

◆ ux_dcd_synergy_register_write()

VOID ux_dcd_synergy_register_write (UX_DCD_SYNERGY * dcd_synergy, ULONG synergy_register,
USHORT value)

This function writes a bit in synergy USB register.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] synergy_register : Register to write

[in,out] value : Value to write

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,911 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_remote_wakeup()

UINT ux_dcd_synergy_remote_wakeup (UX_DCD_SYNERGY * dcd_synergy, ULONG * parameter)

This function is called when the device wants to wake up the host.

Parameters
[in] dcd_synergy Pointer to a DCD control

block

[in] parameter Pointer to a remote wakeup
parameter.

Return values
UX_SUCCESS Remote wakeup signaled to the USB HOST

successfully.

UX_ERROR Remote wakeup signal failed from DEVICE
to the USB HOST.

◆ ux_dcd_synergy_transfer_abort()

UINT ux_dcd_synergy_transfer_abort (UX_DCD_SYNERGY * dcd_synergy, UX_SLAVE_TRANSFER *
transfer_request)

This function will terminate the transfer.

Parameters
[in] dcd_synergy : Pointer to a DCD control

block

[in] transfer_request : Pointer to transfer request

Return values
UX_SUCCESS Transfer Abort is initiated successfully.

Set the ACLRM bit to 1 and then to 0 for clearing FIFO buffers.

Clear the FIFO buffer memory.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,912 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_transfer_callback()

UINT ux_dcd_synergy_transfer_callback (UX_DCD_SYNERGY * dcd_synergy, UX_SLAVE_TRANSFER
* transfer_request, ULONG interrupt_status, ULONG ctsq_mask)

This function is invoked under ISR when an event happens on a specific endpoint.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] transfer_request : Pointer to USBX Device
Transfer Request structure

[in,out] interrupt_status : Check if we have SETUP
condition or BRDY or BEMP
interrupt.

[in,out] ctsq_mask : Mask to isolate the CTSQ
field.

Return values
UX_SUCCESS Function is invoked under ISR successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,913 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_transfer_request()

UINT ux_dcd_synergy_transfer_request (UX_DCD_SYNERGY * dcd_synergy, UX_SLAVE_TRANSFER
* transfer_request)

This function will initiate a transfer to a specific endpoint. If the endpoint is IN, the endpoint register
will be set to accept the request. If the endpoint is IN, the endpoint FIFO will be filled with the buffer
and the endpoint register set.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] transfer_request : Pointer to transfer request

Return values
UX_SUCCESS Transfer to a specific endpoint is initiated

successfully.

ux_slave_transfer_request_completion_code Pointer to structure
UX_SLAVE_TRANSFER(transfer request
completion code).

UX_TRANSFER_ERROR Transfer is completed with error.

Returns
See Common Error Codes for other possible return codes or causes. This function calls:

ux_dcd_synergy_buffer_write()
Set the ACLRM bit to 1 and then to 0 for clearing FIFO buffers.

Clear the D1 FIFO buffer memory.

Clear the CFIFO buffer memory.

Clean the pending semaphore due to timeout on this transfer request.

Check the completion code, and if it is not successful abort this transfer and return the error to the
caller

Check the completion code, and if it is not successful abort this transfer and return the error to the
caller

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,914 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_uninitialize()

UINT ux_dcd_synergy_uninitialize (ULONG dcd_io)

USBX DCD un-initialization the USB controller.

Parameters
[in] dcd_io Address of the USB

controller.

Return values
UX_SUCCESS Completed the USB controller Un-

initialization successfully.

UX_DCD_SYNERGY_UNINIT_FAILED Failed to Un-initialize the USB controller.

Disable interrupt requests

uninitialize and disable DMA support

Stop the clock to the USB module. The SCKE clearing is required for USBFS controller but not for
USBHS

Reset USB Module.

Clear the Pending IRQ in NVIC

Disable the IRQ in NVIC

Stop the module usage

Free up resource.

◆ ux_dcd_synergy_uninitialize_transfer_support()

UINT ux_dcd_synergy_uninitialize_transfer_support (ULONG dcd_io)

The function un-initializes the USB slave controller of the Renesas Synergy MCUs with associated
DMA transfer modules.

Parameters
[in] dcd_io Address of the USB

controller.

Return values
UX_SUCCESS Completed the USB controller Un-

initialization successfully.

UX_DCD_SYNERGY_UNINIT_FAILED Failed to Un-initialize the USB controller.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,915 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_dcd_synergy_usb_status_register_clear()

VOID ux_dcd_synergy_usb_status_register_clear (UX_DCD_SYNERGY * dcd_synergy, ULONG
synergy_register, USHORT value)

This function clears a bit in a status register of the synergy.To clear the status bits, need to write 0
only to the bits to be cleared. Write 1 to the other bits.

Parameters
[in,out] dcd_synergy : Pointer to a DCD control

block

[in,out] synergy_register : Register to clear

[in,out] value : Value to clear

◆ ux_dcd_synergy_write_dma_configure()

VOID ux_dcd_synergy_write_dma_configure (UX_DCD_SYNERGY * dcd_synergy,
UX_DCD_SYNERGY_PAYLOAD_TRANSFER * p_payload, ULONG fifo_sel, ULONG endpoint_size)

USBX DCD DMA write setup function. Call a subroutine for selected USB controller hardware.

Parameters
[in] dcd_synergy Pointer to the DCD control

block

[in,out] p_payload Pointer to a payload transfer
structure

[in] fifo_sel FIFO select register

[in] endpoint_size Endpoint size

◆ ux_hcd_synergy_asynch_queue_process()

VOID ux_hcd_synergy_asynch_queue_process (UX_HCD_SYNERGY * hcd_synergy)

This function process the asynchronous transactions. The function will identify the USB interrupts
occurred associated with an endpoint and will process the interrupts.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,916 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_asynch_queue_process_bemp()

VOID ux_hcd_synergy_asynch_queue_process_bemp (UX_HCD_SYNERGY * hcd_synergy,
UX_SYNERGY_ED * ed)

This function process the BEMP(Buffer Empty) interrupt that occurred on a specific ED.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] ed : Pointer to an Endpoint
control block

◆ ux_hcd_synergy_asynch_queue_process_brdy()

VOID ux_hcd_synergy_asynch_queue_process_brdy (UX_HCD_SYNERGY * hcd_synergy,
UX_SYNERGY_ED * ed)

This function process the BRDY(Buffer Ready)interrupt that occurred on a specific ED.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] ed : Pointer to an Endpoint
control block

◆ ux_hcd_synergy_asynch_queue_process_nrdy()

VOID ux_hcd_synergy_asynch_queue_process_nrdy (UX_HCD_SYNERGY * hcd_synergy,
UX_SYNERGY_ED * ed)

This function process the NRDY(Not Ready) Interrupt that occurred on a specific ED.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] ed : Pointer to an Endpoint
control block

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

UX_TRANSFER::ux_transfer_request_completion_function

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,917 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_asynch_queue_process_sign()

VOID ux_hcd_synergy_asynch_queue_process_sign (UX_HCD_SYNERGY * hcd_synergy,
UX_SYNERGY_ED * ed)

This function process the Setup transaction Error Interrupt.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] ed : Pointer to an Endpoint
control block

◆ ux_hcd_synergy_asynch_schedule()

VOID ux_hcd_synergy_asynch_schedule (UX_HCD_SYNERGY * hcd_synergy)

This function schedules new transfers from the control or bulk lists.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

◆ ux_hcd_synergy_asynchronous_endpoint_create()

UINT ux_hcd_synergy_asynchronous_endpoint_create (UX_HCD_SYNERGY * hcd_synergy,
UX_ENDPOINT * endpoint)

This function will create an asynchronous endpoint. The control and bulk endpoints fall into this
category.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] endpoint : Pointer to endpoint

Return values
UX_NO_ED_AVAILABLE ED for new endpoint not available.

UX_NO_TD_AVAILABLE Dummy TD not available for terminating the
ED transfer chain.

UX_SUCCESS Asynchronous endpoint created
successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,918 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_asynchronous_endpoint_destroy()

UINT ux_hcd_synergy_asynchronous_endpoint_destroy (UX_HCD_SYNERGY * hcd_synergy,
UX_ENDPOINT * endpoint)

This function will destroy an asynchronous endpoint. The control and bulk endpoints fall into this
category.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] endpoint : Pointer to endpoint

Return values
UX_ENDPOINT_HANDLE_UNKNOWN Physical endpoint has not been initialized

properly.

UX_SUCCESS Asynchronous endpoint destroyed
successfully.

◆ ux_hcd_synergy_buffer_empty_interrupt()

VOID ux_hcd_synergy_buffer_empty_interrupt (UX_HCD_SYNERGY * hcd_synergy,
UX_SYNERGY_ED * ed, ULONG flag)

This function enable or disable the BEMP(Buffer Empty) interrupt for the pipe.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] ed : Pointer to physical
Endpoint(ED) control block

[in] flag : Check whether DCD
synergy is enable or disable.

Reset the BEMPE, NRDYE, BRDYE bits.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,919 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_buffer_notready_interrupt()

VOID ux_hcd_synergy_buffer_notready_interrupt (UX_HCD_SYNERGY * hcd_synergy,
UX_SYNERGY_ED * ed, ULONG flag)

This function enable or disable the NRDY(Not Ready) interrupt for the pipe.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] ed : Pointer to physical
Endpoint(ED) control block

[in] flag : Check whether DCD
synergy is enable or disable.

◆ ux_hcd_synergy_buffer_read()

UINT ux_hcd_synergy_buffer_read (UX_HCD_SYNERGY * hcd_synergy, UX_SYNERGY_ED * ed)

This function reads from a specified pipe into a buffer.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] ed : Pointer to a physical
Endpoint(ED) control block

Returns
See Common Error Codes for other possible return codes or causes. This function calls:

ux_hcd_synergy_fifo_read()

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,920 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_buffer_ready_interrupt()

VOID ux_hcd_synergy_buffer_ready_interrupt (UX_HCD_SYNERGY * hcd_synergy, UX_SYNERGY_ED
* ed, ULONG flag)

This function enable or disable the BRDY(Ready) interrupt for the pipe.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] ed : Pointer to physical
Endpoint(ED) control block

[in] flag : Check whether DCD
synergy is enable or disable.

◆ ux_hcd_synergy_buffer_write()

UINT ux_hcd_synergy_buffer_write (UX_HCD_SYNERGY * hcd_synergy, UX_SYNERGY_ED * ed)

This function writes data to the selected FIFO of the endpoint.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in] ed : Pointer to a physical
Endpoint(ED) control block

Return values
UX_SUCCESS Buffer written to the specified PIPE

successfully.

Returns
See Common Error Codes for other possible return codes or causes. This function calls:

ux_hcd_synergy_fifod_write()
ux_hcd_synergy_fifoc_write()

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,921 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_bulk_endpoint_create()

UINT ux_hcd_synergy_bulk_endpoint_create (UX_HCD_SYNERGY * hcd_synergy, UX_ENDPOINT *
endpoint)

This function will create a bulk endpoint.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] endpoint : Pointer to a USBX Endpoint
Container structure

Return values
UX_ERROR PIPE is not available for bulk endpoint

creation .

UX_SUCCESS Bulk endpoints created successfully.

UX_NO_ED_AVAILABLE ED for bulk endpoint is not available.

UX_NO_TD_AVAILABLE Dummy TD for terminating the ED transfer
chain is not available.

Limit the max packet size to the size the HW supports.

◆ ux_hcd_synergy_bulk_int_td_add()

UINT ux_hcd_synergy_bulk_int_td_add (UX_HCD_SYNERGY * hcd_synergy, UX_SYNERGY_ED * ed)

This function adds a transfer descriptor to an Bulk or INT ED.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] ed : Pointer to a Synergy ED
structure

Return values
UX_SUCCESS Transfer descriptor added successfully.

Clear the BRDY and BEMP status for this pipe.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,922 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_control_endpoint_create()

UINT ux_hcd_synergy_control_endpoint_create (UX_HCD_SYNERGY * hcd_synergy, UX_ENDPOINT
* endpoint)

This function will create a control endpoint.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] endpoint : Pointer to an Endpoint
control block

Return values
UX_SUCCESS Control endpoint created successfully.

UX_NO_ED_AVAILABLE Failed to obtain an ED for control endpoint.

UX_NO_TD_AVAILABLE Failed to obtain a TD for control endpoint.

◆ ux_hcd_synergy_control_td_add()

UINT ux_hcd_synergy_control_td_add (UX_HCD_SYNERGY * hcd_synergy, UX_SYNERGY_ED * ed)

This function adds a transfer descriptor to an ED.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] ed : Pointer to Synergy ED
structure

Return values
UX_SUCCESS Transfer descriptor added to an ED

successfully.

Get transmit descriptors.

Set TD into response pending state.

Check data, status for setup phase.

We are processing a SETUP phase. Set the device address register if different.

And store it. Note that the device address is not an index.

DEVADDm.USBSPD[1:0] is set by the Software after the speed of the device is obtained and reset
after connecting/disconnecting the device every time. To set the TRNENSEL bit, when LS device is
connected to FS Hub, we are indirectly examining the speed of the device by examining
DEVADDm.USBSPD[1:0].

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,923 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

Check if the speed of the connected HUB is FS

Clear the address field first.

Store the new address but leave the MPS field intact.

Set the buffer address to be accessed.

Copy the payload of the control transfer into each register : Request.

Copy the payload of the control transfer into each register : Value.

Copy the payload of the control transfer into each register : Index.

Copy the payload of the control transfer into each register : Length.

Start transmission.

We are processing data/status stage of control transfer. Check direction now.

This is an IN. Reset the PID mask register.

Set PIPE0 FIFO in in status.

Set DATA0-DATA1 toggle.

We are doing a read. Reset the Direction bit in the DCPCFG register.

Clear the FIFO buffer memory.

Enable the Buffer empty interrupt.

Enable the Ready interrupt.

Start transmission - set PID to NAK then set PID to BUF.

Must be an OUT now.

Clear the FIFO buffer memory.

Set PID to NAK.

Set DATA0-DATA1 toggle.

Write the buffer to the pipe.

Check status.

Return successful completion.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,924 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_controller_disable()

UINT ux_hcd_synergy_controller_disable (UX_HCD_SYNERGY * hcd_synergy)

This function will disable the Synergy controller. The controller will release all its resources
(memory, IO ...). After this, the controller will not send SOF any longer. All transactions should have
been completed, all classes should have been closed.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

Return values
UX_SUCCESS Synergy controller disabled successfully.

◆ ux_hcd_synergy_current_endpoint_change()

VOID ux_hcd_synergy_current_endpoint_change (UX_HCD_SYNERGY * hcd_synergy,
UX_SYNERGY_ED * ed, ULONG direction)

This function change the endpoint in the FIFO.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] ed : Pointer to Synergy ED
structure

[in] direction : Direction to transfer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,925 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_data_buffer_size()

ULONG ux_hcd_synergy_data_buffer_size (UX_HCD_SYNERGY * hcd_synergy, UX_SYNERGY_ED *
ed)

This function returns the size of the buffer data.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] ed : Pointer to Synergy ED
structure

Return values
buffer_size buffer size

◆ ux_hcd_synergy_disable()

UINT ux_hcd_synergy_disable (ULONG ux_hcd_io)

This function disables the Synergy HOST controller.

Parameters
[in] ux_hcd_io : HCD controller base

address

Return values
UX_SUCCESS HCD controller disabled successfully.

UX_SYNERGY_UNINIT_FAILED HCD controller un-initialization failed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,926 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_ed_obtain()

UX_SYNERGY_ED* ux_hcd_synergy_ed_obtain (UX_HCD_SYNERGY * hcd_synergy)

This function obtains a free ED from the ED list.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

Return values
UX_NULL No available ED in the ED list.

Returns
ed Endpoint descriptor pointer address.

◆ ux_hcd_synergy_ed_td_clean()

VOID ux_hcd_synergy_ed_td_clean (UX_SYNERGY_ED * ed)

This function process cleans the ED of all tds except the last dummy TD.

Parameters
[in,out] ed : Pointer to Synergy ED

structure

◆ ux_hcd_synergy_endpoint_nak_set()

VOID ux_hcd_synergy_endpoint_nak_set (UX_HCD_SYNERGY * hcd_synergy, UX_SYNERGY_ED *
ed)

This function sets a NAK(Not Acknowledged) to an endpoint.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] ed : Pointer to Synergy ED
structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,927 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_endpoint_reset()

UINT ux_hcd_synergy_endpoint_reset (UX_HCD_SYNERGY * hcd_synergy, UX_ENDPOINT *
endpoint)

This function will reset an endpoint.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in,out] endpoint : Pointer to an Endpoint
control block

Return values
UX_SUCCESS Endpoint reset successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,928 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_entry()

UINT ux_hcd_synergy_entry (UX_HCD * hcd, UINT function, VOID * parameter)

This function is the entry function to the USB driver from the USB stack.

Parameters
[in] hcd : Pointer to USBX Host

Controller structure.

[in] function : Function for driver to
perform

[in] parameter : Pointer to function
parameter(s)

Return values
UX_SUCCESS HCD function is dispatched successfully.

UX_CONTROLLER_UNKNOWN Synergy controller is not known.

UX_FUNCTION_NOT_SUPPORTED Function not supported.

Returns
See Common Error Codes for other possible return codes or causes. This function calls:

ux_hcd_synergy_controller_disable()
ux_hcd_synergy_port_status_get()
ux_hcd_synergy_port_enable()
ux_hcd_synergy_port_disable()
ux_hcd_synergy_power_on_port()
ux_hcd_synergy_power_down_port()
ux_hcd_synergy_port_suspend()
ux_hcd_synergy_port_resume()
ux_hcd_synergy_port_reset()
ux_hcd_synergy_frame_number_get()
ux_hcd_synergy_request_transfer()
ux_hcd_synergy_transfer_abort()
ux_hcd_synergy_control_endpoint_create()
ux_hcd_synergy_bulk_endpoint_create()
ux_hcd_synergy_interrupt_endpoint_create()
ux_hcd_synergy_isochronous_endpoint_create()
ux_hcd_synergy_asynchronous_endpoint_destroy()
ux_hcd_synergy_periodic_endpoint_destroy()
ux_hcd_synergy_endpoint_reset()

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,929 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_fifo_port_change()

ULONG ux_hcd_synergy_fifo_port_change (UX_HCD_SYNERGY * hcd_synergy, UX_SYNERGY_ED *
ed, ULONG direction)

This function change the port of the FIFO.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] ed : Pointer to Synergy ED
structure

[in] direction : Direction to transfer

Return values
synergy_register Content of FIFO control register.

UX_ERROR Port not changed successfully or unable to
access FIFO.

◆ ux_hcd_synergy_fifo_read()

UINT ux_hcd_synergy_fifo_read (UX_HCD_SYNERGY * hcd_synergy, UX_SYNERGY_ED * ed)

This function read data from the FIFO configured for the PIPE(FIFO C, D0 or D1).

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in] ed : Pointer to Synergy ED
structure

Return values
UX_ERROR Unable to access FIFO successfully.

UX_SYNERGY_HC_FIFO_READ_OVER Status set to read overflow.

UX_SYNERGY_HC_FIFO_READ_SHORT Short packet to read.

UX_SYNERGY_HC_FIFO_READING Continue reading buffer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,930 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_fifo_write_software_copy()

VOID ux_hcd_synergy_fifo_write_software_copy (UX_HCD_SYNERGY * hcd_synergy, ULONG
payload_length, UCHAR * payload_buffer, VOID * fifo_addr, ULONG fifo_sel)

USBX HCD CPU FIFO write by software copy. Call a suitable subroutine for selected USB controller
hardware.

Parameters
[in] hcd_synergy Pointer to the HCD control

block

[in] payload_length Payload length

[in] payload_buffer Payload buffer address

[in] fifo_addr FIFO register address

[in] fifo_sel FIFO select register

◆ ux_hcd_synergy_fifo_write_software_copy_remaining_bytes()

VOID ux_hcd_synergy_fifo_write_software_copy_remaining_bytes (UX_HCD_SYNERGY *
hcd_synergy, ULONG payload_length, UCHAR * payload_buffer, VOID * fifo_addr)

USBX HCD CPU FIFO write - Copy remaining bytes to FIFO by software if the rest bytes are less than
FIFO access width.

Parameters
[in] hcd_synergy Pointer to the HCD control

block

[in,out] payload_length Payload length

[in,out] payload_buffer Payload buffer address

[in,out] fifo_addr FIFO register address

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,931 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_fifoc_write()

UINT ux_hcd_synergy_fifoc_write (UX_HCD_SYNERGY * hcd_synergy, UX_SYNERGY_ED * ed)

This function writes a buffer to FIFOC.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] ed : Pointer to Synergy ED
structure

Return values
UX_ERROR Unable to access FIFO successfully.

UX_SYNERGY_HC_FIFO_WRITE_END Writing at ends.

UX_SYNERGY_HC_FIFO_WRITE_SHORT Writing short data.

UX_SYNERGY_HC_FIFO_WRITING Doing multiple writes.

◆ ux_hcd_synergy_fifod_write()

UINT ux_hcd_synergy_fifod_write (UX_HCD_SYNERGY * hcd_synergy, UX_SYNERGY_ED * ed)

This function writes a buffer data to FIFOD0 or FIFOD1.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] ed : Pointer to Synergy ED
structure

Return values
UX_ERROR Unable to access FIFO successfully.

UX_SYNERGY_HC_FIFO_WRITE_END Writing at ends.

UX_SYNERGY_HC_FIFO_WRITE_SHORT Writing short data.

UX_SYNERGY_HC_FIFO_WRITING Doing multiple writes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,932 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_frame_number_get()

UINT ux_hcd_synergy_frame_number_get (UX_HCD_SYNERGY * hcd_synergy, ULONG *
frame_number)

This function will return the frame number currently used by the controller. This function is mostly
used for isochronous purposes and for timing.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] frame_number : Frame number to set

Return values
UX_SUCCESS Frame number returned successfully.

◆ ux_hcd_synergy_frame_number_set()

VOID ux_hcd_synergy_frame_number_set (UX_HCD_SYNERGY * hcd_synergy, ULONG
frame_number)

This function will set the current frame number to the one specified. This function is mostly used
for isochronous purpos.es.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] frame_number : Frame number to set

◆ ux_hcd_synergy_initialize()

UINT ux_hcd_synergy_initialize (UX_HCD * hcd)

This function initializes the Synergy controller.

Parameters
[in,out] hcd : Pointer to USBX host

controller structure.

Returns
See Common Error Codes for other possible return codes or causes. This function calls:

ux_hcd_synergy_initialize_common()

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,933 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_initialize_transfer_support()

UINT ux_hcd_synergy_initialize_transfer_support (UX_HCD * hcd, const
UX_HCD_SYNERGY_TRANSFER * p_transfer_instance)

USBX HCD Transfer Support with DMA support.

Parameters
[in,out] hcd Pointer to the USBX HCD

control block.

[in] p_transfer_instance Pointer to Transfer module
instances.

Return values
UX_SUCCESS Initialize hcd transfer support successfully.

UX_CONTROLLER_INIT_FAILED Failed in Transfer module setup, or
Unsupported USB controller was specified.

UX_SEMAPHORE_ERROR Failed in creating a semaphore used for
DMA transfer.

UX_MEMORY_INSUFFICIENT Failed in allocation memory.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,934 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_interrupt_endpoint_create()

UINT ux_hcd_synergy_interrupt_endpoint_create (UX_HCD_SYNERGY * hcd_synergy, UX_ENDPOINT
* endpoint)

This function will create an interrupt endpoint. The interrupt endpoint has an interval of operation
from 1 to 255. The Synergy has no hardware scheduler but we still build an interrupt tree similar to
the OHCI controller.

This routine will match the best interval for the Synergy hardware. It will also determine the best
node to hook the endpoint based on the load that already exists on the horizontal ED chain.

The tricky part is to understand how the interrupt matrix is constructed. We have used eds with the
skip bit on to build a frame of anchor eds. Each ED creates a node for an appropriate combination
of interval frequency in the list.

After obtaining a pointer to the list with the lowest traffic, we traverse the list from the highest
interval until we reach the interval required. At that node, we anchor our real ED to the node and
link the ED that was attached to the node to our ED.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] endpoint : Pointer to an Endpoint
control block

Return values
UX_SUCCESS Interrupt endpoint created successfully.

UX_ERROR Available pipe is not found for interrupt
endpoint.

UX_NO_ED_AVAILABLE Failed to obtain an ED for new endpoint.

UX_NO_TD_AVAILABLE Failed to obtain a TD for terminating the ED
transfer chain.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,935 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_interrupt_handler()

VOID ux_hcd_synergy_interrupt_handler (UINT hcd_index)

This function is the interrupt handler for the Synergy USB HS controller. Normally an interrupt
occurs from the controller when there is either a EOF signal and there has been transfers within the
frame or when there is a change on one of the downstream ports.

All we need to do in the ISR is scan the controllers to find out which one has issued a IRQ. If there is
work to do for this controller we need to wake up the corresponding thread to take care of the job.

Parameters
[in] hcd_index : HCD number

Check if the controller is operational, if not, skip it.

Examine the source of interrupts. Check for SOF signal.

Check for Over Current condition.

Check if we have a BEMP interrupt.

Do we have a BRDY interrupt ?

Do we have a NRDY interrupt ?

Check for attach signal.

Is it a detach signal ?

Check for BCHG signal.

Is it a EOFERR signal.

Did we get a SACK interrupt ?

Did we get a SIGN interrupt ?

◆ ux_hcd_synergy_iso_queue_process()

VOID ux_hcd_synergy_iso_queue_process (UX_HCD_SYNERGY * hcd_synergy)

This function process the isochronous transactions that happened in the last frame.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,936 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_iso_queue_process_bemp()

VOID ux_hcd_synergy_iso_queue_process_bemp (UX_HCD_SYNERGY * hcd_synergy,
UX_SYNERGY_ED * ed)

This function process the BEMP(Buffer Empty) Interrupt that occurred on a specific ED used for
Isochronous transfer.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] ed : Pointer to an Endpoint
control block

◆ ux_hcd_synergy_iso_queue_process_brdy()

VOID ux_hcd_synergy_iso_queue_process_brdy (UX_HCD_SYNERGY * hcd_synergy,
UX_SYNERGY_ED * ed)

This function process the BRDY(Buffer Ready)interrupt that occurred on a specific ED used for
isochronous transfer.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] ed : Pointer to an Endpoint
control block

◆ ux_hcd_synergy_iso_queue_process_nrdy()

VOID ux_hcd_synergy_iso_queue_process_nrdy (UX_HCD_SYNERGY * hcd_synergy,
UX_SYNERGY_ED * ed)

This function process the NRDY(Not Ready) Interrupt that occurred on a specific ED used for
Isochronous transfer.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] ed : Pointer to an Endpoint
control block

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,937 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_iso_schedule()

VOID ux_hcd_synergy_iso_schedule (UX_HCD_SYNERGY * hcd_synergy)

This function schedules new transfers from isochronous list.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

◆ ux_hcd_synergy_iso_td_add()

UINT ux_hcd_synergy_iso_td_add (UX_HCD_SYNERGY * hcd_synergy, UX_SYNERGY_ED * ed)

This function adds a transfer descriptor to an Isochronous Endpoint Descriptor.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] ed : Pointer to an Endpoint
control block

Return values
UX_SUCCESS A transfer descriptor was added to an

Isochronous Endpoint Descriptor
successfully.

Others See Common Error Codes for other possible
return codes or causes. This function calls :
ux_hcd_synergy_buffer_write()

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,938 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_isochronous_endpoint_create()

UINT ux_hcd_synergy_isochronous_endpoint_create (UX_HCD_SYNERGY * hcd_synergy,
UX_ENDPOINT * endpoint)

This function creates an isochronous endpoint.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] endpoint : Pointer to an Endpoint
control block

Return values
UX_SUCCESS Isochronous endpoint is created

successfully.

UX_NO_ED_AVAILABLE Failed to obtain an ED terminating the ED
transfer chain.

UX_NO_TD_AVAILABLE Failed to obtain a TD for new endpoint.

◆ ux_hcd_synergy_isochronous_td_obtain()

UX_SYNERGY_ISO_TD* ux_hcd_synergy_isochronous_td_obtain (UX_HCD_SYNERGY * hcd_synergy)

This function obtains a free TD from the isochronous TD list.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

Return values
td Pointer to Synergy ISO Trasfer Descriptor.

UX_NULL TD not available in the TD list.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,939 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_least_traffic_list_get()

UX_SYNERGY_ED* ux_hcd_synergy_least_traffic_list_get (UX_HCD_SYNERGY * hcd_synergy)

This function return a pointer to the first ED in the periodic tree that has the least traffic
registered.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

Return values
min_bandwidth_ed End descriptor interrupt Number(ed)

◆ ux_hcd_synergy_periodic_endpoint_destroy()

UINT ux_hcd_synergy_periodic_endpoint_destroy (UX_HCD_SYNERGY * hcd_synergy,
UX_ENDPOINT * endpoint)

This function will destroy an isochronous endpoint.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] endpoint : Pointer to an Endpoint
control block

Return values
UX_SUCCESS Isochronous endpoint is destroyed

successfully.

UX_ENDPOINT_HANDLE_UNKNOWN Physical endpoint has not been initialized
properly.

◆ ux_hcd_synergy_periodic_schedule()

VOID ux_hcd_synergy_periodic_schedule (UX_HCD_SYNERGY * hcd_synergy)

This function schedules new transfers from the periodic interrupt list.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,940 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_periodic_tree_create()

UINT ux_hcd_synergy_periodic_tree_create (UX_HCD_SYNERGY * hcd_synergy)

This function creates the periodic static tree for the interrupt and isochronous eds.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

Return values
UX_SUCCESS Periodic tree created successfully.

UX_NO_ED_AVAILABLE Failed to obtain an ED.

◆ ux_hcd_synergy_port_disable()

UINT ux_hcd_synergy_port_disable (UX_HCD_SYNERGY * hcd_synergy, ULONG port_index)

This function will disable a specific port attached to the root HUB.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] port_index : Port Index

Return values
UX_SUCCESS Port disabled successfully.

UX_PORT_INDEX_UNKNOWN Invalid port .

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,941 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_port_enable()

UINT ux_hcd_synergy_port_enable (UX_HCD_SYNERGY * hcd_synergy, ULONG port_index)

This function will enable a specific port attached to the root HUB.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in] port_index : Port Index

Return values
UX_SUCCESS Port enabled successfully.

UX_PORT_INDEX_UNKNOWN Invalid port.

UX_NO_DEVICE_CONNECTED Device not connected properly.

◆ ux_hcd_synergy_port_reset()

UINT ux_hcd_synergy_port_reset (UX_HCD_SYNERGY * hcd_synergy, ULONG port_index)

This function will reset a specific port attached to the root HUB.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] port_index : Port Index

Return values
UX_SUCCESS Port reset successfully.

UX_PORT_INDEX_UNKNOWN Invalid port.

UX_NO_DEVICE_CONNECTED Device not connected properly.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,942 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_port_resume()

UINT ux_hcd_synergy_port_resume (UX_HCD_SYNERGY * hcd_synergy, UINT port_index)

This function will resume a specific port attached to the root HUB. Present, this function is not
supported for resume port.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] port_index : Port Index

Return values
UX_FUNCTION_NOT_SUPPORTED Unsupported function.

◆ ux_hcd_synergy_port_status_get()

ULONG ux_hcd_synergy_port_status_get (UX_HCD_SYNERGY * hcd_synergy, ULONG port_index)

This function will return the status for each port attached to the root HUB.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in] port_index : Port Index

Return values
UX_PORT_INDEX_UNKNOWN Invalid port.

port_status Synergy Port status

Check to see if this port is valid on this controller.

The port is valid, build the status mask for this port. This function returns a controller agnostic bit
field.

Provides a delay of 100 ms to stabilize while initial power up

Find the number of enumeration events occurred on another HOST.

Wait for the semaphore to be put by the root hub or a regular hub.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,943 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_port_suspend()

UINT ux_hcd_synergy_port_suspend (UX_HCD_SYNERGY * hcd_synergy, ULONG port_index)

This function will suspend a specific port attached to the root HUB. Present, this function is does
not supported.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] port_index : Port Index

Return values
UX_FUNCTION_NOT_SUPPORTED Unsupported function.

◆ ux_hcd_synergy_power_down_port()

UINT ux_hcd_synergy_power_down_port (UX_HCD_SYNERGY * hcd_synergy, ULONG port_index)

This function will power down a specific port attached to the root HUB. Present, this function is
does not supported.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] port_index : Port Index

Return values
UX_FUNCTION_NOT_SUPPORTED Unsupported function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,944 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_power_on_port()

UINT ux_hcd_synergy_power_on_port (UX_HCD_SYNERGY * hcd_synergy, ULONG port_index)

This function will power a specific port attached to the root HUB. Present, this function is does not
supported.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] port_index : Port Index

Return values
UX_FUNCTION_NOT_SUPPORTED Unsupported function.

◆ ux_hcd_synergy_power_root_hubs()

VOID ux_hcd_synergy_power_root_hubs (UX_HCD_SYNERGY * hcd_synergy)

This function will power the root HUB. Present, this function is does not supported.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

◆ ux_hcd_synergy_register_clear()

VOID ux_hcd_synergy_register_clear (UX_HCD_SYNERGY * hcd_synergy, ULONG synergy_register,
USHORT value)

This function clears flags in a synergy USB register.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in] synergy_register : Register to write

[in] value : Value to clear

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,945 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_register_read()

ULONG ux_hcd_synergy_register_read (UX_HCD_SYNERGY * hcd_synergy, ULONG
synergy_register)

This function reads a data from synergy USB register.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in] synergy_register : Register to read

Return values
hcd_reg Value read from the specified

register(ULONG value).

◆ ux_hcd_synergy_register_set()

VOID ux_hcd_synergy_register_set (UX_HCD_SYNERGY * hcd_synergy, ULONG synergy_register,
USHORT value)

This function sets flags in a synergy USB register.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in] synergy_register : Register to read

[in] value : Value to be set

◆ ux_hcd_synergy_register_status_clear()

VOID ux_hcd_synergy_register_status_clear (UX_HCD_SYNERGY * hcd_synergy, ULONG
synergy_register, USHORT value)

This function clears a bit in a status register of the synergy controller.To clear the status bits, need
to write 0 only to the bits to be cleared. Write 1 to the other bits.

Parameters
[in,out] hcd_synergy : Pointer to a DCD control

block

[in,out] synergy_register : Register to clear

[in,out] value : Value to clear

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,946 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_register_write()

VOID ux_hcd_synergy_register_write (UX_HCD_SYNERGY * hcd_synergy, ULONG synergy_register,
USHORT value)

This function writes a data to a Synergy USB register.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in] synergy_register : Register to write

[in] value : Value to write

◆ ux_hcd_synergy_regular_td_obtain()

UX_SYNERGY_TD* ux_hcd_synergy_regular_td_obtain (UX_HCD_SYNERGY * hcd_synergy)

This function obtains a free TD from the regular TD list.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

Return values
td A pointer to Synergy TD.

UX_NULL Null pointer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,947 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_request_bulk_transfer()

UINT ux_hcd_synergy_request_bulk_transfer (UX_HCD_SYNERGY * hcd_synergy, UX_TRANSFER *
transfer_request)

This function performs a bulk transfer request. A bulk transfer can be larger than the size of the
Synergy buffer so it may be required to chain multiple tds to accommodate this transfer request. A
bulk transfer is non blocking, so we return before the transfer request is completed.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in,out] transfer_request : Pointer to transfer request

Return values
UX_SUCCESS Bulk transfer happened successfully.

UX_NO_TD_AVAILABLE Unavailable New TD.

Perform bulk transfer. If transfer request payload length is zero, transfer it once.

◆ ux_hcd_synergy_request_control_transfer()

UINT ux_hcd_synergy_request_control_transfer (UX_HCD_SYNERGY * hcd_synergy, UX_TRANSFER
* transfer_request)

This function performs a control transfer from a transfer request. The USB control transfer is in 3
phases (setup, data, status). This function will chain all phases of the control sequence before
setting the Synergy endpoint as a candidate for transfer.

Parameters
[in,out] hcd_synergy : Pointer to a HCD control

block

[in,out] transfer_request : Pointer to transfer request

Return values
UX_MEMORY_INSUFFICIENT Insufficient memory to build the SETUP

request.

UX_NO_TD_AVAILABLE Unavailable New TD.

ux_transfer_request_completion_code Pointer to USBX transfer request
structure(request completion code).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,948 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_request_interrupt_transfer()

UINT ux_hcd_synergy_request_interrupt_transfer (UX_HCD_SYNERGY * hcd_synergy,
UX_TRANSFER * transfer_request)

This function performs an interrupt transfer request. An interrupt transfer can only be as large as
the MaxpacketField in the endpoint descriptor. This was verified at the USB layer and does not
need to be reverified here.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in,out] transfer_request : Pointer to transfer request

Return values
UX_SUCCESS Interrupt transfer request processed

successfully.

UX_NO_TD_AVAILABLE Unavailable new TD.

◆ ux_hcd_synergy_request_isochronous_transfer()

UINT ux_hcd_synergy_request_isochronous_transfer (UX_HCD_SYNERGY * hcd_synergy,
UX_TRANSFER * transfer_request)

This function performs an isochronous transfer request.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in,out] transfer_request : Pointer to transfer request

Return values
UX_SUCCESS Isochronous transfer request processed

successfully.

UX_NO_TD_AVAILABLE Unavailable new TD.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,949 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_request_transfer()

UINT ux_hcd_synergy_request_transfer (UX_HCD_SYNERGY * hcd_synergy, UX_TRANSFER *
transfer_request)

This function is the handler for all the transactions on the USB. The transfer request passed as
parameter contains the endpoint and the device descriptors in addition to the type of transaction
de be executed. This function routes the transfer request to according to the type of transfer to be
executed.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in,out] transfer_request : Pointer to transfer request

Return values
UX_ERROR Error while Isolating the endpoint type and

routing the transfer request.

UX_NO_DEVICE_CONNECTED No device attached.

Returns
See Common Error Codes for other possible return codes or causes. This function calls:

ux_hcd_synergy_request_control_transfer()
ux_hcd_synergy_request_bulk_transfer()
ux_hcd_synergy_request_interrupt_transfer()
ux_hcd_synergy_request_isochronous_transfer()

◆ ux_hcd_synergy_td_add()

UINT ux_hcd_synergy_td_add (UX_HCD_SYNERGY * hcd_synergy, UX_SYNERGY_ED * ed)

This function add new TD for control, Bulk or Interrupt endpoint.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in] ed : Pointer to Synergy ED
structure

Return values
UX_SUCCESS Transfer done successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,950 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_transfer_abort()

UINT ux_hcd_synergy_transfer_abort (UX_HCD_SYNERGY * hcd_synergy, UX_TRANSFER *
transfer_request)

This function will abort transactions attached to a transfer request.

Parameters
[in] hcd_synergy : Pointer to a HCD control

block

[in,out] transfer_request : Pointer to transfer request

Return values
UX_SUCCESS Transactions attached to transfer request

are aborted successfully.

UX_ENDPOINT_HANDLE_UNKNOWN Endpoint is not initialized properly.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,951 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_uninitialize()

UINT ux_hcd_synergy_uninitialize (ULONG ux_hcd_io)

This function un-initializes the Synergy HOST controller.

Parameters
[in] ux_hcd_io : HCD controller base

address

Return values
UX_SUCCESS Completed the USB controller Un-

initialization successfully.

UX_SYNERGY_UNINIT_FAILED HCD controller un-initialization failed.

Returns
See Common Error Codes for other possible return codes or causes. This function calls:

ux_hcd_synergy_uninitialize_transfer_support()
Reset the BEMPE, NRDYE, BRDYE, SOFE bits.

Clear the INTENB1 bits.

Reset the BRDY, NRDY, BEMPE for all pipes.

Clear USB interrupt status0 register.

Clear USB interrupt status1 register.

Clear all the physical endpoint.

Disable pull-up/pull-down of the D+/D- line.

Disable USB clock operation.

uninitialize and disable DMA support

Stop the module usage

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,952 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework

◆ ux_hcd_synergy_uninitialize_transfer_support()

UINT ux_hcd_synergy_uninitialize_transfer_support (UX_HCD_SYNERGY * hcd_synergy)

This function un-initializes the transfer module associated with the USBX HOST controller.

Parameters
[in] hcd_synergy : HCD synergy controller

instance.

Return values
UX_SUCCESS Completed the transfer Un-initialization

successfully.

UX_SYNERGY_UNINIT_FAILED Failed to Un-initialize the USB controller.

 UX_DCD_SYNERGY_ED Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » USBX Framework

#include <ux_dcd_synergy.h>

Data Fields

TX_SEMAPHORE ux_dcd_synergy_ep_slave_transfer_request_semaphore

Detailed Description

Define USB SYNERGY physical endpoint structure.

Field Documentation

◆ ux_dcd_synergy_ep_slave_transfer_request_semaphore

TX_SEMAPHORE UX_DCD_SYNERGY_ED::ux_dcd_synergy_ep_slave_transfer_request_semaphore

Each pipe to have its own transfer request semaphore

The documentation for this struct was generated from the following file:

ux_dcd_synergy.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,953 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework > UX_DCD_SYNERGY_TRANSFER Struct Reference

 UX_DCD_SYNERGY_TRANSFER Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » USBX Framework

#include <ux_dcd_synergy.h>

Detailed Description

Define SYNERGY Transfer structure

The documentation for this struct was generated from the following file:

ux_dcd_synergy.h

 UX_DCD_SYNERGY_PAYLOAD_TRANSFER Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » USBX Framework

#include <ux_dcd_synergy.h>

Data Fields

UCHAR * payload_buffer

 Destination buffer address.

ULONG payload_length

 Payload length to transmit.

UINT transfer_times

 Number of transfer.

UINT transfer_width

 Bytes per transfer.

UINT transfer_blocks

 Number of blocks of above width * times.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,954 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework > UX_DCD_SYNERGY_PAYLOAD_TRANSFER Struct Reference

Detailed Description

Define SYNERGY Payload Transfer structure

The documentation for this struct was generated from the following file:

ux_dcd_synergy.h

 UX_DCD_SYNERGY Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » USBX Framework

#include <ux_dcd_synergy.h>

Data Fields

ULONG ux_dcd_synergy_pipe [UX_DCD_SYNERGY_MAX_PIPE+1]

 "+1" is added to support total number of pipes e.g.S1 series
supports 0-7(total 8) pipes, as "UX_DCD_SYNERGY_MAX_PIPE" is
defined as 7

UINT ux_dcd_synergy_D0_fifo_state

UINT ux_dcd_synergy_D1_fifo_state

Detailed Description

Define USB SYNERGY DCD structure definition.

Field Documentation

◆ ux_dcd_synergy_D0_fifo_state

UINT UX_DCD_SYNERGY::ux_dcd_synergy_D0_fifo_state

This variable determines the D0 FIFO is used for DMA or not

◆ ux_dcd_synergy_D1_fifo_state

UINT UX_DCD_SYNERGY::ux_dcd_synergy_D1_fifo_state

This variable determines the D1 FIFO is used for DMA or not

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,955 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework > UX_DCD_SYNERGY Struct Reference

The documentation for this struct was generated from the following file:

ux_dcd_synergy.h

 UX_HCD_SYNERGY_TRANSFER Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » USBX Framework

#include <ux_hcd_synergy.h>

Detailed Description

Define synergy transfer structure

The documentation for this struct was generated from the following file:

ux_hcd_synergy.h

 UX_HCD_SYNERGY Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » USBX Framework

#include <ux_hcd_synergy.h>

Data Fields

ULONG ux_synergy_next_available_bufnum

 will need to implement some type of dynamic buffer management,
for now just carve off */

Detailed Description

Define Synergy structure.

The documentation for this struct was generated from the following file:

ux_hcd_synergy.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,956 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework > UX_HCD_SYNERGY_PAYLOAD_TRANSFER Struct Reference

 UX_HCD_SYNERGY_PAYLOAD_TRANSFER Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » USBX Framework

#include <ux_hcd_synergy.h>

Data Fields

UCHAR * payload_buffer

 Destination buffer address.

ULONG payload_length

 Payload length to transmit.

UCHAR transfer_width

 Bytes per transfer.

Detailed Description

Define SYNERGY Payload Transfer structure

The documentation for this struct was generated from the following file:

ux_hcd_synergy.h

 UX_HCD_SYNERGY_FIFO Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » USBX Framework

#include <ux_hcd_synergy.h>

Data Fields

ULONG fifo_sel

 FIFO type.

VOID * fifo_addr

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,957 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework > UX_HCD_SYNERGY_FIFO Struct Reference

 Selected FIFO address.

ULONG fifo_ctrl

 Selected FIFO control.

Detailed Description

Define SYNERGY fifo structure

The documentation for this struct was generated from the following file:

ux_hcd_synergy.h

 UX_SYNERGY_ED Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » USBX Framework

#include <ux_hcd_synergy.h>

Detailed Description

Define Synergy ED structure.

The documentation for this struct was generated from the following file:

ux_hcd_synergy.h

 UX_SYNERGY_TD Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » USBX Framework

#include <ux_hcd_synergy.h>

Detailed Description

Define Synergy TD structure.

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,958 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > USBX Framework > UX_SYNERGY_TD Struct Reference

ux_hcd_synergy.h

 UX_SYNERGY_ISO_TD Struct Reference
Renesas Synergy Software Package Reference » Framework Layer » USBX Framework

#include <ux_hcd_synergy.h>

Detailed Description

Define Synergy ISOCHRONOUS TD structure.

The documentation for this struct was generated from the following file:

ux_hcd_synergy.h

5.1.3.53 2D Drawing Engine Support Framework
Renesas Synergy Software Package Reference » Framework Layer

Functions

d1_device * d1_opendevice (d1_long_t flags)

 Creates a device handle to access hardware. This function initializes
the D1 device handle, supply module clock to D/AVE 2D hardware
and enables the D/AVE 2D interrupt. It is called by the D/AVE 2D
driver function d2_inithw() to initialize the D/AVE 2D hardware.
More...

d1_int_t d1_closedevice (d1_device *handle)

 Close a device handle. It is called by the D/AVE 2D driver function
d2_deinithw to de-initialize the D/AVE 2D hardware. Disables the
D/AVE 2D interrupt and stop the module clock supply. More...

void d1_setregister (d1_device *handle, d1_int_t deviceid, d1_int_t index,
d1_long_t value)

 Write data to the D/AVE 2D hardware register. More...

d1_long_t d1_getregister (d1_device *handle, d1_int_t deviceid, d1_int_t index)

 Read data from hardware register. Reading a register from an invalid
or unsupported device ID will always return 0. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,959 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

d1_int_t d1_devicesupported (d1_device *handle, d1_int_t deviceid)

 Check if the specified device ID is valid for the D/AVE 2D
implemented for Synergy. Use this function to verify that a specific
hardware interface is available on the current host system. More...

void drw_int_isr (void)

 DRW ISR. More...

d1_int_t d1_initirq_intern (d1_device_synergy *handle)

 Initialize IRQ for D/AVE 2D hardware. More...

d1_int_t d1_shutdownirq_intern (d1_device_synergy *handle)

 De-initialize IRQ for D/AVE 2D hardware. More...

d1_int_t d1_queryirq (d1_device *handle, d1_int_t irqmask, d1_int_t timeout)

 Wait for next IRQ being happened. More...

void * d1_allocmem (d1_uint_t size)

 Allocates memory in the driver heap. More...

void d1_freemem (void *ptr)

 Free the specified memory area in the driver heap. More...

d1_uint_t d1_memsize (void *ptr)

 This function intends to return the size of the given memory block
but we don't return valid value. This function returns always 1.
More...

void * d1_allocvidmem (d1_device *handle, d1_int_t memtype, d1_uint_t
size)

 Allocate video memory. Synergy does not use the virtual memory
space so this function exactly works same as d1_allocmem. More...

void d1_freevidmem (d1_device *handle, d1_int_t memtype, void *ptr)

 Free video memory. Synergy does not use the virtual memory space
so this function exactly works same as d1_freemem. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,960 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

d1_int_t d1_queryvidmem (d1_device *handle, d1_int_t memtype, d1_int_t
query)

 Get current memory status. This function does not do anything
special. More...

d1_int_t d1_queryarchitecture (d1_device *handle)

 Return hints about systems memory architecture. More...

void * d1_mapvidmem (d1_device *handle, void *ptr, d1_int_t flags)

 Map video memory for direct CPU access. Synergy does not use the
virtual memory space so this function does not do anything special.
More...

d1_int_t d1_unmapvidmem (d1_device *handle, void *ptr)

 Release memory mapping. Synergy does not use the virtual memory
space so this function does not do anything special. More...

void * d1_maptovidmem (d1_device *handle, void *ptr)

 Map CPU accessible address of a video memory block back to video
memory address. Synergy does not use the virtual memory space so
this function does not do anything special. More...

void * d1_mapfromvidmem (d1_device *handle, void *ptr)

 Map already allocated video memory address to an address for
direct CPU access. More...

d1_int_t d1_copytovidmem (d1_device *handle, void *dst, const void *src,
d1_uint_t size, d1_int_t flags)

 Copy data to video memory. Destination (video) memory area has to
be allocated by d1_allocvidmem. More...

d1_int_t d1_copyfromvidmem (d1_device *handle, void *dst, const void *src,
d1_uint_t size, d1_int_t flags)

 Copy data from video memory. Source (video) memory area has to
be allocated by d1_allocvidmem. More...

d1_int_t d1_cacheflush (d1_device *handle, d1_int_t memtype)

 Flush CPU data caches. Synergy does not have a cache memory so

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,961 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

does not do anything special. More...

d1_int_t d1_cacheblockflush (d1_device *handle, d1_int_t memtype, const
void *ptr, d1_uint_t size)

 Flush part of CPU data caches. Synergy does not have a cache
memory so does not do anything special. More...

Detailed Description

Function Documentation

◆ d1_allocmem()

void* d1_allocmem (d1_uint_t size)

Allocates memory in the driver heap.

Parameters
[in] size Size of the memory to be

allocated.

Return values
Non-NULL The function returns the pointer to memory

chunk if memory allocation was successful.

NULL The function returns NULL if memory
allocation was failed.

Create a byte memory pool in the driver heap if this function call is the first time.

Allocate memory from a byte memory pool.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,962 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ d1_allocvidmem()

void* d1_allocvidmem (d1_device * handle, d1_int_t memtype, d1_uint_t size)

Allocate video memory. Synergy does not use the virtual memory space so this function exactly
works same as d1_allocmem.

Parameters
[in] handle Pointer to the d1_device

object.

[in] memtype Type of memory.

[in] size Number of bytes.

Return values
Non-NULL The function returns the pointer to memory

chunk if memory allocation was successful.

NULL The function returns Null if memory
allocation was failed.

◆ d1_cacheblockflush()

d1_int_t d1_cacheblockflush (d1_device * handle, d1_int_t memtype, const void * ptr, d1_uint_t
size)

Flush part of CPU data caches. Synergy does not have a cache memory so does not do anything
special.

Parameters
[in] handle Pointer to the d1_device

object.

[in] memtype Memory pools to flush (can
be ored together).

[in] ptr Start address of memory to
be flushed.

[in] size Size of memory to be
flushed.

Return values
1 The function always return 1.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,963 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ d1_cacheflush()

d1_int_t d1_cacheflush (d1_device * handle, d1_int_t memtype)

Flush CPU data caches. Synergy does not have a cache memory so does not do anything special.

Parameters
[in] handle Pointer to the d1_device

object.

[in] memtype Memory pools to flush (can
be ored together).

Return values
1 The function always return 1.

◆ d1_closedevice()

d1_int_t d1_closedevice (d1_device * handle)

Close a device handle. It is called by the D/AVE 2D driver function d2_deinithw to de-initialize the
D/AVE 2D hardware. Disables the D/AVE 2D interrupt and stop the module clock supply.

Parameters
[in] handle Pointer to the d1_device

object.

Return values
0 The function returns 0 if error occurred,

NULL is passed to the argument handle.

1 The function returns 1 if successfully device
handle was closed.

Disable the D/AVE 2D interrupt.

Stop clock supply to the D/AVE 2D hardware.

Delete used semaphore

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,964 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ d1_copyfromvidmem()

d1_int_t d1_copyfromvidmem (d1_device * handle, void * dst, const void * src, d1_uint_t size,
d1_int_t flags)

Copy data from video memory. Source (video) memory area has to be allocated by
d1_allocvidmem.

Parameters
[in] handle Pointer to the d1_device

object.

[in] dst pointer into system memory
(destination).

[in] src Pointer into video memory
(source).

[in] size Number of bytes to copy.

[in] flags Reserved for future use.

Return values
1 The function always return 1.

Simply use C standard memcpy.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,965 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ d1_copytovidmem()

d1_int_t d1_copytovidmem (d1_device * handle, void * dst, const void * src, d1_uint_t size,
d1_int_t flags)

Copy data to video memory. Destination (video) memory area has to be allocated by
d1_allocvidmem.

Parameters
[in] handle Pointer to the d1_device

object.

[in] dst pointer into video memory
(destination).

[in] src Pointer into system memory
(source).

[in] size Number of bytes to copy.

[in] flags Bitfield containing additional
information on data to be
copied.

Return values
1 The function always return 1.

Simply use C standard memcpy.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,966 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ d1_devicesupported()

d1_int_t d1_devicesupported (d1_device * handle, d1_int_t deviceid)

Check if the specified device ID is valid for the D/AVE 2D implemented for Synergy. Use this
function to verify that a specific hardware interface is available on the current host system.

Parameters
[in] handle Pointer to a device handle.

[in] deviceid D1_DAVE2D(Rendering
core). The others are
ignored.

Return values
0 The function returns 0 if specified device ID

not supported.

1 The function returns 1 if specified device ID
supported.

Check the deviceid.

Return 1 in case of valid deviceid.

Return 0 in case of Unknown device ID.

◆ d1_freemem()

void d1_freemem (void * ptr)

Free the specified memory area in the driver heap.

Parameters
[in] ptr Pointer to the memory area

to be freed.

Free specified memory allocated by d1_allocmem.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,967 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ d1_freevidmem()

void d1_freevidmem (d1_device * handle, d1_int_t memtype, void * ptr)

Free video memory. Synergy does not use the virtual memory space so this function exactly works
same as d1_freemem.

Parameters
[in] handle Pointer to the d1_device

object.

[in] memtype Type of memory.

[in] ptr Address returned by
d1_allocvidmem.

◆ d1_getregister()

d1_long_t d1_getregister (d1_device * handle, d1_int_t deviceid, d1_int_t index)

Read data from hardware register. Reading a register from an invalid or unsupported device ID will
always return 0.

Parameters
[in] handle Pointer to a device handle.

[in] deviceid D1_DAVE2D(Rendering core)
or D1_DLISTINDIRECT(Lists
of dlist support). The others
are ignored.

[in] index Register index (starts with
0).

Return values
Value The function returns 32-bit value of the

register.

Check the deviceid to see whether Register addressing or dlist mode is being used.

If Register addressing is used return the value stored in specified D/AVE 2D register.

If dlist mode is used return the dlist address.

If neither Register addressing nor dlist mode is used return 0.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,968 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ d1_initirq_intern()

d1_int_t d1_initirq_intern (d1_device_synergy * handle)

Initialize IRQ for D/AVE 2D hardware.

Parameters
[in] handle Pointer to the d1_device

object.

Return values
0 The function returns 0 if failed in the IRQ

initialization.

1 The function returns 1 if successfully IRQ is
initialized.

Clear all the D/AVE 2D IRQs and enable Display list IRQ.

Access to FMI through the eventInfoGet interface and get the D/AVE 2D IRQ information.

Check return value of eventInfoGet API, if SUCCESS Enable the D/AVE 2D IRQ Vector

Set D/AVE 2D interrupt priority in NVIC if the IRQ vector is valid.

Enable D/AVE 2D interrupt in NVIC if the IRQ vector is valid.

◆ d1_mapfromvidmem()

void* d1_mapfromvidmem (d1_device * handle, void * ptr)

Map already allocated video memory address to an address for direct CPU access.

Parameters
[in] handle Pointer to the d1_device

object.

[in] ptr Video memory address
returned by
d1_allocvidmem.

Return values
ptr The function just returns ptr back since no

mapping required for Synergy.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,969 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ d1_maptovidmem()

void* d1_maptovidmem (d1_device * handle, void * ptr)

Map CPU accessible address of a video memory block back to video memory address. Synergy
does not use the virtual memory space so this function does not do anything special.

Parameters
[in] handle Pointer to the d1_device

object.

[in] ptr CPU accessible address
pointing to a video memory
block originally allocated
using d1_allocvidmem.

Return values
ptr The function just returns ptr back since no

mapping required for Synergy.

◆ d1_mapvidmem()

void* d1_mapvidmem (d1_device * handle, void * ptr, d1_int_t flags)

Map video memory for direct CPU access. Synergy does not use the virtual memory space so this
function does not do anything special.

Parameters
[in] handle Pointer to the d1_device

object.

[in] ptr Video memory address
returned by
d1_allocvidmem.

[in] flags Memory mapping flags.

Return values
ptr The function just returns ptr back since no

mapping required for Synergy.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,970 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ d1_memsize()

d1_uint_t d1_memsize (void * ptr)

This function intends to return the size of the given memory block but we don't return valid value.
This function returns always 1.

Parameters
[in] ptr Pointer to a memory block in

Heap.

Return values
1 The function always return 1.

Always return 1.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,971 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ d1_opendevice()

d1_device* d1_opendevice (d1_long_t flags)

Creates a device handle to access hardware. This function initializes the D1 device handle, supply
module clock to D/AVE 2D hardware and enables the D/AVE 2D interrupt. It is called by the D/AVE
2D driver function d2_inithw() to initialize the D/AVE 2D hardware.

Parameters
[in] flags Reserved. Not used in this

function.

Return values
Non-NULL The function returns the pointer to a

d1_device object if the D1 device handle
was successfully initialized.

NULL The function returns NULL if failed to create
the display list synchronization semaphore.

Get new device handle.

Initialize device data.

Access to FMI through the productFeatureGet interface and get the D/AVE 2D hardware
information.

If failed to get the D/AVE 2D information from FMI, set NULL to handle and return.

Initialize the D/AVE 2D hardware bass address in the device context.

Supply clock to the D/AVE 2D hardware.

Create the semaphore to notify the completion of display list execution.

Enable the D/AVE 2D interrupt if semaphore creation was successful.

If failed to enable the D/AVE 2D interrupt, set NULL to handle.

If failed to create the semaphore, set NULL to handle.

Returns the pointer to the d1_device object.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,972 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ d1_queryarchitecture()

d1_int_t d1_queryarchitecture (d1_device * handle)

Return hints about systems memory architecture.

Parameters
[in] handle Pointer to the d1_device

object.

Return values
d1_ma_unified The function always return d1_ma_unified

(Unified memory architecture).

Return d1_ma_unified as Memory architecture is such that CPU can directly access pointers
returned by allocvidmem.

◆ d1_queryirq()

d1_int_t d1_queryirq (d1_device * handle, d1_int_t irqmask, d1_int_t timeout)

Wait for next IRQ being happened.

Parameters
[in] handle Pointer to the d1_device

object (Not used).

[in] irqmask Interrupt ID (Not used.
Synergy only uses Display
list IRQ).

[in] timeout Timeout value.

Return values
0 The function returns 0 if wait through

semaphore is not successful

1 The function returns 1 if wait through
semaphore is successful.

Wait for dlist processing to complete.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,973 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ d1_queryvidmem()

d1_int_t d1_queryvidmem (d1_device * handle, d1_int_t memtype, d1_int_t query)

Get current memory status. This function does not do anything special.

Parameters
[in] handle Pointer to the d1_device

object.

[in] memtype Type of memory.

[in] query Type of requested
information.

Return values
0 The function always return 0.

◆ d1_setregister()

void d1_setregister (d1_device * handle, d1_int_t deviceid, d1_int_t index, d1_long_t value)

Write data to the D/AVE 2D hardware register.

Parameters
[in] handle Pointer to a device handle.

[in] deviceid D1_DAVE2D(Rendering core)
or D1_DLISTINDIRECT(Lists
of dlist support). The others
are ignored.

[in] index Register index (word offset
from the D/AVE 2D base
address).

[in] value 32-bit value to write.

Write data to specified D/AVE 2D register.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,974 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ d1_shutdownirq_intern()

d1_int_t d1_shutdownirq_intern (d1_device_synergy * handle)

De-initialize IRQ for D/AVE 2D hardware.

Parameters
[in] handle Pointer to the d1_device

object.

Return values
0 The function returns 0 if failed in the IRQ de-

initialization.

1 The function returns 1 if successfully IRQ is
de-initialized.

Access to FMI through the eventInfoGet interface and get the D/AVE 2D IRQ information.

Check return value of eventInfoGet API, if SUCCESS disable the D/AVE 2D IRQ Vector

Disable D/AVE 2D interrupt in NVIC if the IRQ vector is valid.

Clear all the D/AVE 2D IRQs and disable Display list IRQ.

◆ d1_unmapvidmem()

d1_int_t d1_unmapvidmem (d1_device * handle, void * ptr)

Release memory mapping. Synergy does not use the virtual memory space so this function does
not do anything special.

Parameters
[in] handle Pointer to the d1_device

object.

[in] ptr Mapped video memory
address returned by
d1_mapvidmem.

Return values
1 The function always return 1.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,975 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > Framework Layer > 2D Drawing Engine Support Framework

◆ drw_int_isr()

void drw_int_isr (void)

DRW ISR.

Just in case, check if the driver initialization done.

Get D/AVE 2D interrupt status.

Clear all the D/AVE 2D interrupts (keep the Display list interrupt enable).

Display list interrupt?

Signal semaphore for driver.

Clear IRQ status.

5.1.4 HAL Interfaces
Renesas Synergy Software Package Reference

Modules

ADC Interface

 Interface for A/D Converters.

Analog Connect Interface

 Interface for analog connections.

CAC Interface

 Interface for clock frequency accuracy measurements.

CAN Interface

 Interface for CAN peripheral.

CGC Interface

 Interface for clock generation.

COMPARATOR Interface

 Interface for Comparators.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,976 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces

CRC Interface

 Interface for cyclic redundancy checking.

Crypto Interface

 Cryptographic algorithm APIs for encryption/decryption,
signing/verification, and hashing.

CTSU v2 Interface

 Interface for Capacitive Touch Controllers.

DAC Interface

 Interface for D/A converters.

Display Interface

 Interface for LCD panel displays.

DOC Interface

 Interface for the Data Operation Circuit.

events and peripheral definitions

 Interface for the Event Link Controller.

External IRQ Interface

 Interface for detecting external interrupts.

Flash Interface

 Interface for the flash controller.

FMI Interface

 Interface for reading on-chip factory information.

I2C Interface

 Interface for I2C communication.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,977 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces

I2S Interface

 The I2S (Inter-IC Sound) interface provides APIs and definitions for
I2S audio communication.

Input Capture Interface

 Interface for sampling input signals for pulse width.

I/O Port Interface

 Interface for accessing I/O ports and configuring I/O functionality.

JPEG Decode Interface

 Interface for JPEG decode functions.

JPEG Encode Interface

 Interface for JPEG encode functions.

Key Matrix Interface

 Interface for key matrix functions.

Low Power Modes V2 Interface

 Interface for accessing low power modes.

Low Voltage Detection Interface

 This section defines the API for the LVD (Low Voltage Detection)
Driver.

OPAMP Interface

 Interface for Operational Amplifiers.

PDC Interface

 Interface for PDC functions.

PTP driver Interface

 Interface for PTP functions.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,978 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces

PTPEDMAC driver Interface

 Interface for PTPEDMAC functions.

Quad SPI Flash Interface

 Interface for accessing external SPI flash devices.

RTC Interface

 Interface for accessing the Realtime Clock.

SD/MMC Interface

 Interface for accessing SD, eMMC, and SDIO devices.

SLCDC Interface

 Interface for Segment LCD controllers.

SPI Interface

 Interface for SPI communications.

Timer Interface

 Interface for timer functions.

Transfer Interface

 Interface for data transfer functions.

UART Interface

 Interface for UART communications.

WDT Interface

 Interface for watch dog timer functions.

Detailed Description

The HAL Interfaces offer common APIs for functional use cases. They can be implemented by one or
more HAL layer drivers. Framework Layer drivers connect to these HAL drivers through the Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,979 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces

Layer.

5.1.4.1 ADC Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for A/D Converters. More...

Data Structures

struct adc_sample_state_t

struct adc_callback_args_t

struct adc_info_t

struct adc_channel_cfg_t

struct adc_cfg_t

struct adc_api_t

struct adc_instance_t

Macros

#define ADC_API_VERSION_MAJOR (2U)

Typedefs

typedef void adc_ctrl_t

Enumerations

enum adc_mode_t { ADC_MODE_SINGLE_SCAN = 0,
ADC_MODE_GROUP_SCAN = 1, ADC_MODE_CONTINUOUS_SCAN = 2
}

enum adc_resolution_t {
 ADC_RESOLUTION_12_BIT = 0, ADC_RESOLUTION_10_BIT = 1,
ADC_RESOLUTION_8_BIT = 2, ADC_RESOLUTION_14_BIT = 3,
 ADC_RESOLUTION_16_BIT = 4, ADC_RESOLUTION_24_BIT = 5
}

enum adc_pga_t { ,
 SINGLE_INPUT_GAIN_1 = 0x0, SINGLE_INPUT_GAIN_2 = 0x1,
SINGLE_INPUT_GAIN_3 = 0x2, SINGLE_INPUT_GAIN_4 = 0x3,
 SINGLE_INPUT_GAIN_5 = 0x4, SINGLE_INPUT_GAIN_6 = 0x5,
SINGLE_INPUT_GAIN_7 = 0x6, SINGLE_INPUT_GAIN_8 = 0x7,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,980 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface

 SINGLE_INPUT_GAIN_9 = 0x8, SINGLE_INPUT_GAIN_10 = 0x9,
SINGLE_INPUT_GAIN_11 = 0xA, SINGLE_INPUT_GAIN_12 = 0xB,
 SINGLE_INPUT_GAIN_13 = 0xC, SINGLE_INPUT_GAIN_14 = 0xD,
SINGLE_INPUT_GAIN_15 = 0xE, DIFFERENTIAL_INPUT_GAIN_1 = 0x81,
 DIFFERENTIAL_INPUT_GAIN_2 = 0x95, DIFFERENTIAL_INPUT_GAIN_3
= 0xA9, DIFFERENTIAL_INPUT_GAIN_4 = 0xBB
}

enum adc_alignment_t { ADC_ALIGNMENT_RIGHT = 0x0000,
ADC_ALIGNMENT_LEFT = 0x8000 }

enum adc_add_t {
 ADC_ADD_OFF = 0, ADC_ADD_TWO = 1, ADC_ADD_THREE = 2,
ADC_ADD_FOUR = 3,
 ADC_ADD_SIXTEEN = 0x05, ADC_ADD_AVERAGE_TWO = 0x81,
ADC_ADD_AVERAGE_FOUR = 0x83, ADC_ADD_AVERAGE_EIGHT =
0X84,
 ADC_ADD_AVERAGE_SIXTEEN = 0x85
}

enum adc_clear_t { ADC_CLEAR_AFTER_READ_OFF = 0x0000,
ADC_CLEAR_AFTER_READ_ON = 0x0020 }

enum adc_trigger_t { ADC_TRIGGER_ASYNC_EXT_TRG0,
ADC_TRIGGER_SYNC_ELC, ADC_TRIGGER_SOFTWARE }

enum adc_sample_state_reg_t {
 ADC_SAMPLE_STATE_CHANNEL_0 = 0,
ADC_SAMPLE_STATE_CHANNEL_1, ADC_SAMPLE_STATE_CHANNEL_2,
ADC_SAMPLE_STATE_CHANNEL_3,
 ADC_SAMPLE_STATE_CHANNEL_4, ADC_SAMPLE_STATE_CHANNEL_5
, ADC_SAMPLE_STATE_CHANNEL_6, ADC_SAMPLE_STATE_CHANNEL_7
,
 ADC_SAMPLE_STATE_CHANNEL_8, ADC_SAMPLE_STATE_CHANNEL_9
, ADC_SAMPLE_STATE_CHANNEL_10,
ADC_SAMPLE_STATE_CHANNEL_11,
 ADC_SAMPLE_STATE_CHANNEL_12,
ADC_SAMPLE_STATE_CHANNEL_13,
ADC_SAMPLE_STATE_CHANNEL_14,
ADC_SAMPLE_STATE_CHANNEL_15,
 ADC_SAMPLE_STATE_CHANNEL_16_TO_21 = -3,
ADC_SAMPLE_STATE_CHANNEL_16_TO_20 = -3,
ADC_SAMPLE_STATE_CHANNEL_16_TO_27 = -3,
ADC_SAMPLE_STATE_TEMPERATURE = -2,
 ADC_SAMPLE_STATE_VOLTAGE = -1
}

enum adc_cb_event_t { ADC_EVENT_SCAN_COMPLETE,
ADC_EVENT_SCAN_COMPLETE_GROUP_B,
ADC_EVENT_CALIBRATION_COMPLETE,
ADC_EVENT_CONVERSION_COMPLETE }

enum adc_group_a_t { ADC_GROUP_A_PRIORITY_OFF = 0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,981 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface

ADC_GROUP_A_GROUP_B_WAIT_FOR_TRIGGER = 1,
ADC_GROUP_A_GROUP_B_RESTART_SCAN = 3,
ADC_GROUP_A_GROUP_B_CONTINUOUS_SCAN = 0x8001 }

enum adc_voltage_reference_t { ADC_EXTERNAL_VOLTAGE = 0x00,
ADC_INTERNAL_VREF_1_5V, ADC_INTERNAL_VREF_2_0V,
ADC_INTERNAL_VREF_2_5V }

enum adc_over_current_t { OVER_CURRENT_DETECTION_DISABLE = 0x00,
OVER_CURRENT_DETECTION_ENABLE = 0x01 }

enum adc_register_t {
 ADC_REG_CHANNEL_0 = 0, ADC_REG_CHANNEL_1 = 1,
ADC_REG_CHANNEL_2 = 2, ADC_REG_CHANNEL_3 = 3,
 ADC_REG_CHANNEL_4 = 4, ADC_REG_CHANNEL_5 = 5,
ADC_REG_CHANNEL_6 = 6, ADC_REG_CHANNEL_7 = 7,
 ADC_REG_CHANNEL_8 = 8, ADC_REG_CHANNEL_9 = 9,
ADC_REG_CHANNEL_10 = 10, ADC_REG_CHANNEL_11 = 11,
 ADC_REG_CHANNEL_12 = 12, ADC_REG_CHANNEL_13 = 13,
ADC_REG_CHANNEL_14 = 14, ADC_REG_CHANNEL_15 = 15,
 ADC_REG_CHANNEL_16 = 16, ADC_REG_CHANNEL_17 = 17,
ADC_REG_CHANNEL_18 = 18, ADC_REG_CHANNEL_19 = 19,
 ADC_REG_CHANNEL_20 = 20, ADC_REG_CHANNEL_21 = 21,
ADC_REG_CHANNEL_22 = 22, ADC_REG_CHANNEL_23 = 23,
 ADC_REG_CHANNEL_24 = 24, ADC_REG_CHANNEL_25 = 25,
ADC_REG_CHANNEL_26 = 26, ADC_REG_CHANNEL_27 = 27,
 ADC_REG_TEMPERATURE = -3, ADC_REG_VOLT = -2
}

Detailed Description

Interface for A/D Converters.

Summary
The ADC interface provides standard ADC functionality including one-shot mode (single scan),
continuous scan and group scan. It also allows configuration of hardware and software triggers for
starting scans. After each conversion an interrupt can be triggered, and if a callback function is
provided, the call back is invoked with the appropriate event information.

Implemented by: ADC Sigma Delta ADC (SDADC)

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

ADC Interface description: ADC Driver

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,982 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface

◆ ADC_API_VERSION_MAJOR

#define ADC_API_VERSION_MAJOR (2U)

Includes board and MCU related header files. Version Number of API.

Typedef Documentation

◆ adc_ctrl_t

typedef void adc_ctrl_t

ADC control block. Allocate using driver instance control structure from driver instance header file.

Enumeration Type Documentation

◆ adc_add_t

enum adc_add_t

ADC data sample addition and averaging options

Enumerator

ADC_ADD_OFF Addition turned off for channels/sensors.

ADC_ADD_TWO Add two samples.

ADC_ADD_THREE Add three samples.

ADC_ADD_FOUR Add four samples.

ADC_ADD_SIXTEEN Add sixteen samples.

ADC_ADD_AVERAGE_TWO Average two samples.

ADC_ADD_AVERAGE_FOUR Average four samples.

ADC_ADD_AVERAGE_EIGHT Average eight samples.

ADC_ADD_AVERAGE_SIXTEEN Average sixteen samples.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,983 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface

◆ adc_alignment_t

enum adc_alignment_t

ADC data alignment definitions

Enumerator

ADC_ALIGNMENT_RIGHT Data alignment right.

ADC_ALIGNMENT_LEFT Data alignment left.

◆ adc_cb_event_t

enum adc_cb_event_t

ADC callback event definitions

Enumerator

ADC_EVENT_SCAN_COMPLETE Normal/Group A scan complete.

ADC_EVENT_SCAN_COMPLETE_GROUP_B Group B scan complete.

ADC_EVENT_CALIBRATION_COMPLETE Calibration complete.

ADC_EVENT_CONVERSION_COMPLETE Conversion complete.

◆ adc_clear_t

enum adc_clear_t

ADC clear after read definitions

Enumerator

ADC_CLEAR_AFTER_READ_OFF Clear after read off.

ADC_CLEAR_AFTER_READ_ON Clear after read on.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,984 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface

◆ adc_group_a_t

enum adc_group_a_t

ADC action for group A interrupts group B scan. This enumeration is used to specify the priority
between Group A and B in group mode.

Enumerator

ADC_GROUP_A_PRIORITY_OFF Group A ignored and does not interrupt
ongoing group B scan.

ADC_GROUP_A_GROUP_B_WAIT_FOR_TRIGGER Group A interrupts Group B(single scan) which
restarts at next Group B trigger.

ADC_GROUP_A_GROUP_B_RESTART_SCAN Group A interrupts Group B(single scan) which
restarts immediately after Group A scan is
complete.

ADC_GROUP_A_GROUP_B_CONTINUOUS_SCAN Group A interrupts Group B(continuous scan)
which continues scanning without a new Group
B trigger.

◆ adc_mode_t

enum adc_mode_t

ADC operation mode definitions

Enumerator

ADC_MODE_SINGLE_SCAN Single scan - one or more channels.

ADC_MODE_GROUP_SCAN Two trigger sources to trigger scan for two
groups which contain one or more channels.

ADC_MODE_CONTINUOUS_SCAN Continuous scan - one or more channels.

◆ adc_over_current_t

enum adc_over_current_t

ADC reference voltage selection (Applicable for S1/S3 series MCU's only

Enumerator

OVER_CURRENT_DETECTION_DISABLE ADC over current detection disable.

OVER_CURRENT_DETECTION_ENABLE ADC over current detection enable.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,985 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface

◆ adc_pga_t

enum adc_pga_t

ADC pga setting definitions

Enumerator

SINGLE_INPUT_GAIN_1 Single ended input Gain_1.

SINGLE_INPUT_GAIN_2 Single ended input Gain_2.

SINGLE_INPUT_GAIN_3 Single ended input Gain_3.

SINGLE_INPUT_GAIN_4 Single ended input Gain_4.

SINGLE_INPUT_GAIN_5 Single ended input Gain_5.

SINGLE_INPUT_GAIN_6 Single ended input Gain_6.

SINGLE_INPUT_GAIN_7 Single ended input Gain_7.

SINGLE_INPUT_GAIN_8 Single ended input Gain_8.

SINGLE_INPUT_GAIN_9 Single ended input Gain_9.

SINGLE_INPUT_GAIN_10 Single ended input Gain_10.

SINGLE_INPUT_GAIN_11 Single ended input Gain_11.

SINGLE_INPUT_GAIN_12 Single ended input Gain_12.

SINGLE_INPUT_GAIN_13 Single ended input Gain_13.

SINGLE_INPUT_GAIN_14 Single ended input Gain_14.

SINGLE_INPUT_GAIN_15 Single ended input Gain_15.

DIFFERENTIAL_INPUT_GAIN_1 Differential input Gain_1 ADPGADCR0 = 0x8,
ADPGAGS0 = 0x1.

DIFFERENTIAL_INPUT_GAIN_2 Differential input Gain_2.

DIFFERENTIAL_INPUT_GAIN_3 Differential input Gain_3.

DIFFERENTIAL_INPUT_GAIN_4 Differential input Gain_4.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,986 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface

◆ adc_register_t

enum adc_register_t

ADC registers used for the Read() argument

Enumerator

ADC_REG_CHANNEL_0 ADC channel 0.

ADC_REG_CHANNEL_1 ADC channel 1.

ADC_REG_CHANNEL_2 ADC channel 2.

ADC_REG_CHANNEL_3 ADC channel 3.

ADC_REG_CHANNEL_4 ADC channel 4.

ADC_REG_CHANNEL_5 ADC channel 5.

ADC_REG_CHANNEL_6 ADC channel 6.

ADC_REG_CHANNEL_7 ADC channel 7.

ADC_REG_CHANNEL_8 ADC channel 8.

ADC_REG_CHANNEL_9 ADC channel 9.

ADC_REG_CHANNEL_10 ADC channel 10.

ADC_REG_CHANNEL_11 ADC channel 11.

ADC_REG_CHANNEL_12 ADC channel 12.

ADC_REG_CHANNEL_13 ADC channel 13.

ADC_REG_CHANNEL_14 ADC channel 14.

ADC_REG_CHANNEL_15 ADC channel 15.

ADC_REG_CHANNEL_16 ADC channel 16.

ADC_REG_CHANNEL_17 ADC channel 17.

ADC_REG_CHANNEL_18 ADC channel 18.

ADC_REG_CHANNEL_19 ADC channel 19.

ADC_REG_CHANNEL_20 ADC channel 20.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,987 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface

ADC_REG_CHANNEL_21 ADC channel 21.

ADC_REG_CHANNEL_22 ADC channel 22.

ADC_REG_CHANNEL_23 ADC channel 23.

ADC_REG_CHANNEL_24 ADC channel 24.

ADC_REG_CHANNEL_25 ADC channel 25.

ADC_REG_CHANNEL_26 ADC channel 26.

ADC_REG_CHANNEL_27 ADC channel 27.

ADC_REG_TEMPERATURE ADC channel temperature.

ADC_REG_VOLT ADC channel volt.

◆ adc_resolution_t

enum adc_resolution_t

ADC data resolution definitions

Enumerator

ADC_RESOLUTION_12_BIT 12 bit resolution

ADC_RESOLUTION_10_BIT 10 bit resolution

ADC_RESOLUTION_8_BIT 8 bit resolution

ADC_RESOLUTION_14_BIT 14 bit resolution

ADC_RESOLUTION_16_BIT 16 bit resolution

ADC_RESOLUTION_24_BIT 24 bit resolution

◆ adc_sample_state_reg_t

enum adc_sample_state_reg_t

ADC sample state registers

Enumerator

ADC_SAMPLE_STATE_CHANNEL_0 Sample state register channel 0.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,988 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface

ADC_SAMPLE_STATE_CHANNEL_1 Sample state register channel 1.

ADC_SAMPLE_STATE_CHANNEL_2 Sample state register channel 2.

ADC_SAMPLE_STATE_CHANNEL_3 Sample state register channel 3.

ADC_SAMPLE_STATE_CHANNEL_4 Sample state register channel 4.

ADC_SAMPLE_STATE_CHANNEL_5 Sample state register channel 5.

ADC_SAMPLE_STATE_CHANNEL_6 Sample state register channel 6.

ADC_SAMPLE_STATE_CHANNEL_7 Sample state register channel 7.

ADC_SAMPLE_STATE_CHANNEL_8 Sample state register channel 8.

ADC_SAMPLE_STATE_CHANNEL_9 Sample state register channel 9.

ADC_SAMPLE_STATE_CHANNEL_10 Sample state register channel 10.

ADC_SAMPLE_STATE_CHANNEL_11 Sample state register channel 11.

ADC_SAMPLE_STATE_CHANNEL_12 Sample state register channel 12.

ADC_SAMPLE_STATE_CHANNEL_13 Sample state register channel 13.

ADC_SAMPLE_STATE_CHANNEL_14 Sample state register channel 14.

ADC_SAMPLE_STATE_CHANNEL_15 Sample state register channel 15.

ADC_SAMPLE_STATE_CHANNEL_16_TO_21 Sample state register channel 16 to 21 for unit
0 on S7G2.

ADC_SAMPLE_STATE_CHANNEL_16_TO_20 Sample state register channel 16 to 20 for unit
1 on S7G2.

ADC_SAMPLE_STATE_CHANNEL_16_TO_27 Sample state register channel 16 to 27 for unit
0 on S3A7.

ADC_SAMPLE_STATE_TEMPERATURE Sample state register channel temperature.

ADC_SAMPLE_STATE_VOLTAGE Sample state register channel voltage.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,989 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface

◆ adc_trigger_t

enum adc_trigger_t

ADC trigger mode definitions

Enumerator

ADC_TRIGGER_ASYNC_EXT_TRG0 External asynchronous trigger; not for group
modes.

ADC_TRIGGER_SYNC_ELC Synchronous trigger via ELC.

ADC_TRIGGER_SOFTWARE Software trigger; not for group modes.

◆ adc_voltage_reference_t

enum adc_voltage_reference_t

ADC reference voltage selection (Applicable for S1/S3 series MCU's only

Enumerator

ADC_EXTERNAL_VOLTAGE External voltage(VREFH0)

ADC_INTERNAL_VREF_1_5V Internal voltage(1.5V)

ADC_INTERNAL_VREF_2_0V Internal voltage(2.0V)

ADC_INTERNAL_VREF_2_5V Internal voltage(2.5V)

 adc_sample_state_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » ADC Interface

#include <r_adc_api.h>

Data Fields

adc_sample_state_reg_t reg_id

 Sample state register ID.

uint8_t num_states

 Number of sampling states for conversion. Ch16-20/21 use the same

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,990 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_sample_state_t Struct Reference

value.

Detailed Description

ADC sample state configuration

The documentation for this struct was generated from the following file:

r_adc_api.h

 adc_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » ADC Interface

#include <r_adc_api.h>

Data Fields

uint16_t unit

 ADC device in use.

adc_cb_event_t event

 ADC callback event.

void const * p_context

 Placeholder for user data.

adc_register_t channel

 Channel of conversion result. Only valid for
ADC_EVENT_CONVERSION_COMPLETE.

Detailed Description

ADC callback arguments definitions

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,991 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_callback_args_t Struct Reference

r_adc_api.h

 adc_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » ADC Interface

#include <r_adc_api.h>

Data Fields

__I uint16_t * p_address

 The address to start reading the data from.

uint32_t length

 The total number of transfers to read.

transfer_size_t transfer_size

 The size of each transfer.

elc_peripheral_t elc_peripheral

 Name of the peripheral in the ELC list.

elc_event_t elc_event

 Name of the ELC event for the peripheral.

uint32_t calibration_data

int16_t slope_microvolts

 Temperature sensor slope in microvolts/°C.

bool calibration_ongoing

 Calibration is in progress.

Detailed Description

ADC Information Structure for Transfer Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,992 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_info_t Struct Reference

Field Documentation

◆ calibration_data

uint32_t adc_info_t::calibration_data

Temperature sensor calibration data (0xFFFFFFFF if unsupported). Refer to hardware manual for
steps on using slope with calibration data to determine temperature

The documentation for this struct was generated from the following file:

r_adc_api.h

 adc_channel_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » ADC Interface

#include <r_adc_api.h>

Data Fields

uint32_t scan_mask

uint32_t scan_mask_group_b

 Valid for group modes. Use #define ADC_MASK_CHANNEL_x from
r_adc.h.

adc_group_a_t priority_group_a

 Valid for group modes.

uint32_t add_mask

 Valid if add enabled in Open(). Use #define ADC_MASK_CHANNEL_x
from r_adc.h.

uint8_t sample_hold_mask

 Channels/bits 0-2. Use #define ADC_MASK_CHANNEL_x from r_adc.h.

uint8_t sample_hold_states

 Number of states to be used for sample and hold. Affects channels

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,993 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_channel_cfg_t Struct Reference

0-2.

Detailed Description

ADC channel(s) configuration

Field Documentation

◆ scan_mask

uint32_t adc_channel_cfg_t::scan_mask

Channels/bits: bit 0 is ch0; bit 15 is ch15. Use #define ADC_MASK_CHANNEL_x from r_adc.h.

The documentation for this struct was generated from the following file:

r_adc_api.h

 adc_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » ADC Interface

#include <r_adc_api.h>

Data Fields

uint16_t unit

 ADC Unit to be used.

adc_mode_t mode

 ADC operation mode.

adc_resolution_t resolution

 ADC resolution 8, 10, or 12-bit.

adc_alignment_t alignment

 Specify left or right alignment; ignored if addition used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,994 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_cfg_t Struct Reference

adc_add_t add_average_count

 Add or average samples.

adc_clear_t clearing

 Clear after read.

adc_trigger_t trigger

 Default and Group A trigger source.

adc_trigger_t trigger_group_b

 Group B trigger source; valid only for group mode.

uint8_t scan_end_ipl

 Scan end interrupt priority.

uint8_t scan_end_b_ipl

 Scan end group B interrupt priority.

bool calib_adc_skip

 Option to perform calibration when channels are configured.

void(* p_callback)(adc_callback_args_t *p_args)

 Callback function; set to NULL for none.

void const * p_context

 Placeholder for user data. Passed to the user callback in
adc_api_t::adc_callback_args_t.

void const * p_extend

 Extension parameter for hardware specific settings.

adc_voltage_reference_t voltage_ref

 ADC reference voltage selection. Default is VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,995 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_cfg_t Struct Reference

adc_over_current_t over_current

 ADC reference voltage selection. Default is Over current.

adc_pga_t pga0

 PGA0 setting.

adc_pga_t pga1

 PGA1 setting.

adc_pga_t pga2

 PGA2 setting.

Detailed Description

ADC general configuration

The documentation for this struct was generated from the following file:

r_adc_api.h

 adc_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » ADC Interface

#include <r_adc_api.h>

Data Fields

ssp_err_t(* open)(adc_ctrl_t *const p_ctrl, adc_cfg_t const *const p_cfg)

ssp_err_t(* scanCfg)(adc_ctrl_t *const p_ctrl, adc_channel_cfg_t const *const
p_channel_cfg)

ssp_err_t(* scanStart)(adc_ctrl_t *const p_ctrl)

ssp_err_t(* scanStop)(adc_ctrl_t *const p_ctrl)

ssp_err_t(* scanStatusGet)(adc_ctrl_t *const p_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,996 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_api_t Struct Reference

ssp_err_t(* read)(adc_ctrl_t *const p_ctrl, adc_register_t const reg_id, uint16_t
*const p_data)

ssp_err_t(* read32)(adc_ctrl_t *const p_ctrl, adc_register_t const reg_id,
uint32_t *const p_data)

ssp_err_t(* sampleStateCountSet)(adc_ctrl_t *const p_ctrl, adc_sample_state_t
*p_sample)

ssp_err_t(* calibrate)(adc_ctrl_t *const p_ctrl, void *const p_extend)

ssp_err_t(* offsetSet)(adc_ctrl_t *const p_ctrl, adc_register_t const reg_id,
int32_t const offset)

ssp_err_t(* close)(adc_ctrl_t *const p_ctrl)

ssp_err_t(* infoGet)(adc_ctrl_t *const p_ctrl, adc_info_t *const p_adc_info)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

ADC functions implemented at the HAL layer will follow this API.

Field Documentation

◆ calibrate

ssp_err_t(* adc_api_t::calibrate) (adc_ctrl_t *const p_ctrl, void *const p_extend)

Calibrate ADC or associated PGA (programmable gain amplifier). The driver may require
implementation specific arguments to the p_extend input. Not supported for all implementations.
See implementation for details.

Implemented as

R_SDADC_Calibrate()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] p_extend Pointer to implementation
specific arguments

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,997 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_api_t Struct Reference

◆ close

ssp_err_t(* adc_api_t::close) (adc_ctrl_t *const p_ctrl)

Close the specified ADC unit by ending any scan in progress, disabling interrupts, and removing
power to the specified A/D unit.

Implemented as

R_ADC_Close()
R_SDADC_Close()

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ infoGet

ssp_err_t(* adc_api_t::infoGet) (adc_ctrl_t *const p_ctrl, adc_info_t *const p_adc_info)

Return the ADC data register address of the first (lowest number) channel and the total number of
bytes to be read in order for the DTC/DMAC to read the conversion results of all configured
channels. Return the temperature sensor calibration and slope data.

Implemented as

R_ADC_InfoGet()
R_SDADC_InfoGet()

Parameters
[in] p_ctrl Pointer to control handle

structure

[out] p_adc_info Pointer to ADC information
structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,998 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_api_t Struct Reference

◆ offsetSet

ssp_err_t(* adc_api_t::offsetSet) (adc_ctrl_t *const p_ctrl, adc_register_t const reg_id, int32_t const
offset)

Set offset for input PGA configured for differential input. Not supported for all implementations. See
implementation for details.

Implemented as

R_SDADC_OffsetSet()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] reg_id ADC channel to read (see
enumeration adc_register_t)

[in] offset See implementation for
details.

◆ open

ssp_err_t(* adc_api_t::open) (adc_ctrl_t *const p_ctrl, adc_cfg_t const *const p_cfg)

Initialize ADC Unit; apply power, set the operational mode, trigger sources, interrupt priority, and
configurations common to all channels and sensors.

Implemented as

R_ADC_Open()
R_SDADC_Open()

Precondition
Configure peripheral clocks, ADC pins and IRQs prior to calling this function.

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_cfg Pointer to configuration
structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 2,999 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_api_t Struct Reference

◆ read

ssp_err_t(* adc_api_t::read) (adc_ctrl_t *const p_ctrl, adc_register_t const reg_id, uint16_t *const
p_data)

Read ADC conversion result.

Implemented as

R_ADC_Read()
R_SDADC_Read()

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] reg_id ADC channel to read (see
enumeration adc_register_t)

[in] p_data Pointer to variable to load
value into.

◆ read32

ssp_err_t(* adc_api_t::read32) (adc_ctrl_t *const p_ctrl, adc_register_t const reg_id, uint32_t *const
p_data)

Read ADC conversion result into a 32-bit word.

Implemented as

R_SDADC_Read32()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] reg_id ADC channel to read (see
enumeration adc_register_t)

[in] p_data Pointer to variable to load
value into.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,000 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_api_t Struct Reference

◆ sampleStateCountSet

ssp_err_t(* adc_api_t::sampleStateCountSet) (adc_ctrl_t *const p_ctrl, adc_sample_state_t
*p_sample)

Set the sample state count for the specified channel. Not supported for all implementations. See
implementation for details.

Implemented as

R_ADC_SetSampleStateCount()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] p_sample Pointer to the ADC channels
and corresponding sample
states to be set

◆ scanCfg

ssp_err_t(* adc_api_t::scanCfg) (adc_ctrl_t *const p_ctrl, adc_channel_cfg_t const *const
p_channel_cfg)

Configure the scan including the channels, groups and scan triggers to be used for the unit that
was initialized in the open call. Some configurations are not supported for all implementations. See
implementation for details.

Implemented as

R_ADC_ScanConfigure()
R_SDADC_ScanConfigure()

Parameters
[in] p_ctrl Pointer to control handle

structure

[in] p_channel_cfg Pointer to scan configuration
structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,001 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_api_t Struct Reference

◆ scanStart

ssp_err_t(* adc_api_t::scanStart) (adc_ctrl_t *const p_ctrl)

Start the scan (in case of a software trigger), or enable the hardware trigger.

Implemented as

R_ADC_ScanStart()
R_SDADC_ScanStart()

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ scanStatusGet

ssp_err_t(* adc_api_t::scanStatusGet) (adc_ctrl_t *const p_ctrl)

Check scan status.

Implemented as

R_ADC_CheckScanDone()
R_SDADC_CheckScanDone()

Parameters
[in] p_ctrl Pointer to control handle

structure

◆ scanStop

ssp_err_t(* adc_api_t::scanStop) (adc_ctrl_t *const p_ctrl)

Stop the ADC scan (in case of a software trigger), or disable the hardware trigger.

Implemented as

R_ADC_ScanStop()
R_SDADC_ScanStop()

Parameters
[in] p_ctrl Pointer to control handle

structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,002 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_api_t Struct Reference

◆ versionGet

ssp_err_t(* adc_api_t::versionGet) (ssp_version_t *const p_version)

Retrieve the API version.

Implemented as

R_ADC_VersionGet()
R_SDADC_VersionGet()

Precondition
This function retrieves the API version.

Parameters
[in] p_version Pointer to version structure

The documentation for this struct was generated from the following file:

r_adc_api.h

 adc_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » ADC Interface

#include <r_adc_api.h>

Data Fields

adc_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

adc_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

adc_channel_cfg_t const * p_channel_cfg

 Pointer to the channel configuration structure for this instance.

adc_api_t const * p_api

 Pointer to the API structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,003 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > ADC Interface > adc_instance_t Struct Reference

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_adc_api.h

5.1.4.2 Analog Connect Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for analog connections. More...

Data Structures

struct analog_connect_cfg_t

struct analog_connect_table_t

struct analog_connect_api_t

struct analog_connect_instance_t

Macros

#define ANALOG_CONNECT_API_VERSION_MAJOR (2U)

Detailed Description

Interface for analog connections.

Summary
The analog connection interface allows the user to configure internal analog connections.

Implemented by: Analog Connections

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Analog Connect Interface description: Analog Connection Driver on r_analog_connect

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,004 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Analog Connect Interface

Macro Definition Documentation

◆ ANALOG_CONNECT_API_VERSION_MAJOR

#define ANALOG_CONNECT_API_VERSION_MAJOR (2U)

Includes board and MCU related header files. Version Number of API.

 analog_connect_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Analog Connect Interface

#include <r_analog_connect_api.h>

Data Fields

uint8_t unused

 Placeholder for future use.

Detailed Description

User configuration structure, used in init function

The documentation for this struct was generated from the following file:

r_analog_connect_api.h

 analog_connect_table_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Analog Connect Interface

#include <r_analog_connect_api.h>

Data Fields

uint32_t number_of_connections

 Number of connections in the table.

analog_connect_t const * p_connection_table

 List of connections.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,005 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Analog Connect Interface > analog_connect_table_t Struct Reference

Detailed Description

Table of connections.

The documentation for this struct was generated from the following file:

r_analog_connect_api.h

 analog_connect_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Analog Connect Interface

#include <r_analog_connect_api.h>

Data Fields

ssp_err_t(* init)(analog_connect_cfg_t const *const p_cfg)

ssp_err_t(* connect)(analog_connect_t const connection)

ssp_err_t(* connectMultiple)(analog_connect_table_t const *const p_table)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Comparator functions implemented at the HAL layer will follow this API.

Field Documentation

◆ connect

ssp_err_t(* analog_connect_api_t::connect) (analog_connect_t const connection)

Make one internal analog connection.

Implemented as

R_ANALOG_CONNECT_Connect()
Parameters

[in] connection Internal analog connection
to make

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,006 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Analog Connect Interface > analog_connect_api_t Struct Reference

◆ connectMultiple

ssp_err_t(* analog_connect_api_t::connectMultiple) (analog_connect_table_t const *const p_table)

Make multiple internal analog connections. Connections are made in the order they are listed in the
table. This API is most efficient when all connections for the same module/channel combination are
grouped together.

Implemented as

R_ANALOG_CONNECT_ConnectMultiple()
Parameters

[in] p_table Pointer to table of internal
analog connection to make

◆ init

ssp_err_t(* analog_connect_api_t::init) (analog_connect_cfg_t const *const p_cfg)

Initialize the analog connect module.

Implemented as

R_ANALOG_CONNECT_Init()
Parameters

[in] p_cfg Pointer to configuration

◆ versionGet

ssp_err_t(* analog_connect_api_t::versionGet) (ssp_version_t *const p_version)

Retrieve the API version.

Implemented as

R_ANALOG_CONNECT_VersionGet()
Parameters

[in] p_version Pointer to version structure

The documentation for this struct was generated from the following file:

r_analog_connect_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,007 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Analog Connect Interface > analog_connect_instance_t Struct Reference

 analog_connect_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Analog Connect Interface

#include <r_analog_connect_api.h>

Data Fields

analog_connect_cfg_t const
*

p_cfg

 Pointer to the configuration structure for this instance.

analog_connect_api_t const
*

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_analog_connect_api.h

5.1.4.3 CAC Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for clock frequency accuracy measurements. More...

Data Structures

struct cac_ref_clock_config_t

struct cac_meas_clock_config_t

struct cac_callback_args_t

struct cac_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,008 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAC Interface

struct cac_api_t

struct cac_instance_t

Typedefs

typedef void cac_ctrl_t

Enumerations

enum cac_event_t { CAC_EVENT_FREQUENCY_ERROR,
CAC_EVENT_MEASUREMENT_COMPLETE,
CAC_EVENT_COUNTER_OVERFLOW }

enum cac_clock_type_t { CAC_CLOCK_MEASURED, CAC_CLOCK_REFERENCE
}

enum cac_clock_source_t {
 CAC_CLOCK_SOURCE_MAIN_OSC = 0x00,
CAC_CLOCK_SOURCE_SUBCLOCK = 0x01,
CAC_CLOCK_SOURCE_HOCO = 0x02, CAC_CLOCK_SOURCE_MOCO =
0x03,
 CAC_CLOCK_SOURCE_LOCO = 0x04, CAC_CLOCK_SOURCE_PCLKB =
0x05, CAC_CLOCK_SOURCE_IWDT = 0x06,
CAC_CLOCK_SOURCE_MEAS_MAX = CAC_CLOCK_SOURCE_IWDT,
 CAC_CLOCK_SOURCE_EXTERNAL = 0x07,
CAC_CLOCK_SOURCE_REF_MAX = CAC_CLOCK_SOURCE_EXTERNAL
}

enum cac_ref_divider_t { CAC_REF_DIV_32 = 0x00, CAC_REF_DIV_128 =
0x01, CAC_REF_DIV_1024 = 0x02, CAC_REF_DIV_8192 = 0x03 }

enum cac_ref_digfilter_t { CAC_REF_DIGITAL_FILTER_OFF = 0x00,
CAC_REF_DIGITAL_FILTER_1 = 0x01, CAC_REF_DIGITAL_FILTER_4 =
0x02, CAC_REF_DIGITAL_FILTER_16 = 0x03 }

enum cac_ref_edge_t { CAC_REF_EDGE_RISE = 0x00, CAC_REF_EDGE_FALL
= 0x01, CAC_REF_EDGE_BOTH = 0x02 }

enum cac_meas_divider_t { CAC_MEAS_DIV_1 = 0x00, CAC_MEAS_DIV_4 =
0x01, CAC_MEAS_DIV_8 = 0x02, CAC_MEAS_DIV_32 = 0x03 }

Detailed Description

Interface for clock frequency accuracy measurements.

Register definitions, common services and error codes.

Summary
The interface for the clock frequency accuracy measurement circuit (CAC) peripheral is used to

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,009 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAC Interface

check a system clock frequency with a reference clock signal by counting the number of pulses of
the clock (system clock) to be measured.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

CAC Interface description: Clock Accurate Circuit Driver

Typedef Documentation

◆ cac_ctrl_t

typedef void cac_ctrl_t

CAC control block. Allocate an instance specific control block to pass into the CAC API calls.

Implemented as

cac_instance_ctrl_t

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,010 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAC Interface

◆ cac_clock_source_t

enum cac_clock_source_t

Enumeration of the possible clock sources for both the reference and measurement clocks.

Enumerator

CAC_CLOCK_SOURCE_MAIN_OSC Main clock oscillator.

CAC_CLOCK_SOURCE_SUBCLOCK Sub-clock.

CAC_CLOCK_SOURCE_HOCO HOCO (High speed on chip oscillator)

CAC_CLOCK_SOURCE_MOCO MOCO (Middle speed on chip oscillator)

CAC_CLOCK_SOURCE_LOCO LOCO (Middle speed on chip oscillator)

CAC_CLOCK_SOURCE_PCLKB PCLKB (Peripheral Clock B)

CAC_CLOCK_SOURCE_IWDT IWDT- Dedicated on-chip oscillator.

CAC_CLOCK_SOURCE_MEAS_MAX Maximum measured clock.

CAC_CLOCK_SOURCE_EXTERNAL Externally supplied measurement clock on
CACREF pin.

CAC_CLOCK_SOURCE_REF_MAX Maximum reference clock.

◆ cac_clock_type_t

enum cac_clock_type_t

Enumeration of the two possible clocks.

Enumerator

CAC_CLOCK_MEASURED Measurement clock.

CAC_CLOCK_REFERENCE Reference clock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,011 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAC Interface

◆ cac_event_t

enum cac_event_t

Event types returned by the ISR callback when used in CAC interrupt mode

Enumerator

CAC_EVENT_FREQUENCY_ERROR Frequency error.

CAC_EVENT_MEASUREMENT_COMPLETE Measurement complete.

CAC_EVENT_COUNTER_OVERFLOW Counter overflow.

◆ cac_meas_divider_t

enum cac_meas_divider_t

Enumeration of available dividers for the measurement clock

Enumerator

CAC_MEAS_DIV_1 Measurement clock divided by 1.

CAC_MEAS_DIV_4 Measurement clock divided by 4.

CAC_MEAS_DIV_8 Measurement clock divided by 8.

CAC_MEAS_DIV_32 Measurement clock divided by 32.

◆ cac_ref_digfilter_t

enum cac_ref_digfilter_t

Enumeration of available digital filter settings for an external reference clock.

Enumerator

CAC_REF_DIGITAL_FILTER_OFF No digital filter on the CACREF pin for
reference clock.

CAC_REF_DIGITAL_FILTER_1 Sampling clock for digital filter = measuring
frequency.

CAC_REF_DIGITAL_FILTER_4 Sampling clock for digital filter = measuring
frequency/4.

CAC_REF_DIGITAL_FILTER_16 Sampling clock for digital filter = measuring
frequency/16.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,012 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAC Interface

◆ cac_ref_divider_t

enum cac_ref_divider_t

Enumeration of available dividers for the reference clock.

Enumerator

CAC_REF_DIV_32 Reference clock divided by 32.

CAC_REF_DIV_128 Reference clock divided by 128.

CAC_REF_DIV_1024 Reference clock divided by 1024.

CAC_REF_DIV_8192 Reference clock divided by 8192.

◆ cac_ref_edge_t

enum cac_ref_edge_t

Enumeration of available edge detect settings for the reference clock.

Enumerator

CAC_REF_EDGE_RISE Rising edge detect for the Reference clock.

CAC_REF_EDGE_FALL Falling edge detect for the Reference clock.

CAC_REF_EDGE_BOTH Both Rising and Falling edges detect for the
Reference clock.

 cac_ref_clock_config_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAC Interface

#include <r_cac_api.h>

Data Fields

cac_ref_divider_t divider

 Divider specification for the Reference clock.

cac_clock_source_t clock

 Clock source for the Reference clock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,013 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAC Interface > cac_ref_clock_config_t Struct Reference

cac_ref_digfilter_t digfilter

 Digital filter selection for the CACREF ext clock.

cac_ref_edge_t edge

 Edge detection for the Reference clock.

Detailed Description

Structure defining the settings that apply to reference clock configuration.

The documentation for this struct was generated from the following file:

r_cac_api.h

 cac_meas_clock_config_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAC Interface

#include <r_cac_api.h>

Data Fields

cac_meas_divider_t divider

 Divider specification for the Measurement clock.

cac_clock_source_t clock

 Clock source for the Measurement clock.

Detailed Description

Structure defining the settings that apply to measurement clock configuration.

The documentation for this struct was generated from the following file:

r_cac_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,014 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAC Interface > cac_callback_args_t Struct Reference

 cac_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAC Interface

#include <r_cac_api.h>

Data Fields

cac_event_t event

 The event can be used to identify what caused the callback (cac
ready or error).

void const * p_context

 Placeholder for user data. Set in cac_api_t::open function in cac_cfg_t
.

Detailed Description

Callback function parameter data

The documentation for this struct was generated from the following file:

r_cac_api.h

 cac_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAC Interface

#include <r_cac_api.h>

Data Fields

cac_ref_clock_config_t cac_ref_clock

 reference clock specific settings

cac_meas_clock_config_t cac_meas_clock

 measurement clock specific settings

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,015 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAC Interface > cac_cfg_t Struct Reference

uint16_t cac_upper_limit

 the upper limit counter threshold

uint16_t cac_lower_limit

 the lower limit counter threshold

bool mei_interrupt_enabled

 True if Measurement Complete interrupt is enabled.

bool ovf_interrupt_enabled

 True if Overflow interrupt is enabled.

bool ferr_interrupt_enabled

 True if Frequency Error interrupt is enabled.

bool continuous_mode

 True if measurement continuously restarts after completing.

uint8_t frequency_error_ipl

 Frequency error interrupt priority.

uint8_t measurement_end_ipl

 Measurement end interrupt priority.

uint8_t overflow_ipl

 Overflow interrupt priority.

void(* p_callback)(cac_callback_args_t *p_args)

 Callback provided when a CAC interrupt ISR occurs.

void const * p_extend

 CAC hardware dependent configuration.

void const * p_context

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,016 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAC Interface > cac_cfg_t Struct Reference

 Placeholder for user data. Passed to user callback in
cac_callback_args_t.

Detailed Description

CAC Configuration

The documentation for this struct was generated from the following file:

r_cac_api.h

 cac_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAC Interface

#include <r_cac_api.h>

Data Fields

ssp_err_t(* open)(cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

ssp_err_t(* read)(cac_ctrl_t *const p_ctrl, uint8_t *const p_status, uint16_t
*const p_counter)

ssp_err_t(* close)(cac_ctrl_t *const p_ctrl)

ssp_err_t(* stopMeasurement)(cac_ctrl_t *const p_ctrl)

ssp_err_t(* startMeasurement)(cac_ctrl_t *const p_ctrl)

ssp_err_t(* reset)(cac_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *p_version)

Detailed Description

CAC functions implemented at the HAL layer API

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,017 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAC Interface > cac_api_t Struct Reference

◆ close

ssp_err_t(* cac_api_t::close) (cac_ctrl_t *const p_ctrl)

Close function for CAC device.

Parameters
[in] p_ctrl Pointer to CAC device

control.

◆ open

ssp_err_t(* cac_api_t::open) (cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

Open function for CAC device.

Parameters
[out] p_ctrl Pointer to CAC device

control. Must be declared by
user. Value set here.

[in] cac_cfg_t Pointer to CAC configuration
structure. All elements of
this structure must be set by
user.

◆ read

ssp_err_t(* cac_api_t::read) (cac_ctrl_t *const p_ctrl, uint8_t *const p_status, uint16_t *const
p_counter)

Read function for CAC peripheral.

Parameters
[in] p_ctrl Control for the CAC device

context.

[in] p_status Pointer to variable in which
to store the current CASTR
register contents.

[in] p_counter Pointer to variable in which
to store the current
CACNTBR register contents.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,018 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAC Interface > cac_api_t Struct Reference

◆ reset

ssp_err_t(* cac_api_t::reset) (cac_ctrl_t *const p_ctrl)

Reset function for CAC device.

Parameters
[in] p_ctrl Pointer to CAC device

control.

◆ startMeasurement

ssp_err_t(* cac_api_t::startMeasurement) (cac_ctrl_t *const p_ctrl)

Begin a measurement for the CAC peripheral.

Parameters
[in] p_ctrl Pointer to CAC device

control.

◆ stopMeasurement

ssp_err_t(* cac_api_t::stopMeasurement) (cac_ctrl_t *const p_ctrl)

End a measurement for the CAC peripheral.

Parameters
[in] p_ctrl Pointer to CAC device

control.

◆ versionGet

ssp_err_t(* cac_api_t::versionGet) (ssp_version_t *p_version)

Get the CAC API and code version information.

Parameters
[out] p_version is value returned.

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,019 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAC Interface > cac_api_t Struct Reference

r_cac_api.h

 cac_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAC Interface

#include <r_cac_api.h>

Data Fields

cac_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

cac_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

cac_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_cac_api.h

5.1.4.4 CAN Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for CAN peripheral. More...

Data Structures

union can_status_t

union can_error_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,020 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface

struct can_callback_args_t

struct can_bit_timing_cfg_t

struct can_frame_t

struct can_mailbox_t

struct can_cfg_t

struct can_api_t

struct can_instance_t

Typedefs

typedef uint32_t can_id_t

typedef void can_ctrl_t

Enumerations

enum can_event_t {
 CAN_EVENT_RX_COMPLETE, CAN_EVENT_TX_COMPLETE,
CAN_EVENT_ERR_BUS_OFF, CAN_EVENT_BUS_RECOVERY,
 CAN_EVENT_ERR_PASSIVE, CAN_EVENT_ERR_WARNING,
CAN_EVENT_MAILBOX_OVERWRITE_OVERRUN = 6,
CAN_EVENT_MAILBOX_OVERRUN = 6
}

enum can_mode_t {
 CAN_MODE_NORMAL, CAN_MODE_HALT, CAN_MODE_SLEEP,
CAN_MODE_EXIT_SLEEP,
 CAN_MODE_RESET, CAN_MODE_LISTEN,
CAN_MODE_LOOPBACK_INTERNAL,
CAN_MODE_LOOPBACK_EXTERNAL
}

enum can_id_mode_t { CAN_ID_MODE_STANDARD,
CAN_ID_MODE_EXTENDED }

enum can_frame_type_t { CAN_FRAME_TYPE_DATA,
CAN_FRAME_TYPE_REMOTE }

enum can_message_mode_t { CAN_MESSAGE_MODE_OVERWRITE,
CAN_MESSAGE_MODE_OVERRUN }

enum can_clock_source_t { CAN_CLOCK_SOURCE_PCLKB,
CAN_CLOCK_SOURCE_CANMCLK }

enum can_time_segment1_t {

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,021 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface

 CAN_TIME_SEGMENT1_TQ4 = 3, CAN_TIME_SEGMENT1_TQ5,
CAN_TIME_SEGMENT1_TQ6, CAN_TIME_SEGMENT1_TQ7,
 CAN_TIME_SEGMENT1_TQ8, CAN_TIME_SEGMENT1_TQ9,
CAN_TIME_SEGMENT1_TQ10, CAN_TIME_SEGMENT1_TQ11,
 CAN_TIME_SEGMENT1_TQ12, CAN_TIME_SEGMENT1_TQ13,
CAN_TIME_SEGMENT1_TQ14, CAN_TIME_SEGMENT1_TQ15,
 CAN_TIME_SEGMENT1_TQ16
}

enum can_time_segment2_t {
 CAN_TIME_SEGMENT2_TQ2 = 1, CAN_TIME_SEGMENT2_TQ3,
CAN_TIME_SEGMENT2_TQ4, CAN_TIME_SEGMENT2_TQ5,
 CAN_TIME_SEGMENT2_TQ6, CAN_TIME_SEGMENT2_TQ7,
CAN_TIME_SEGMENT2_TQ8
}

enum can_sync_jump_width_t { CAN_SYNC_JUMP_WIDTH_TQ1 = 0,
CAN_SYNC_JUMP_WIDTH_TQ2, CAN_SYNC_JUMP_WIDTH_TQ3,
CAN_SYNC_JUMP_WIDTH_TQ4 }

enum can_mailbox_send_receive_t { CAN_MAILBOX_RECEIVE,
CAN_MAILBOX_TRANSMIT }

enum can_command_t { CAN_COMMAND_MODE_SWITCH = 1 }

Detailed Description

Interface for CAN peripheral.

Summary
The CAN interface provides common APIs for CAN HAL drivers. CAN interface supports following
features.

Full-duplex CAN communication
Generic CAN parameter setting
Interrupt driven transmit/receive processing
Callback function support with returning event code
Hardware resource locking during a transaction

Typedef Documentation

◆ can_ctrl_t

typedef void can_ctrl_t

CAN control block. Allocate an instance specific control block to pass into the CAN API calls.

Implemented as

can_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,022 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface

◆ can_id_t

typedef uint32_t can_id_t

CAN Id

Enumeration Type Documentation

◆ can_clock_source_t

enum can_clock_source_t

CAN Source Clock

Enumerator

CAN_CLOCK_SOURCE_PCLKB PCLB is the source of the CAN Clock.

CAN_CLOCK_SOURCE_CANMCLK CANMCLK is the source of the CAN Clock.

◆ can_command_t

enum can_command_t

CAN control commands.

Enumerator

CAN_COMMAND_MODE_SWITCH Switch CAN operating mode..

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,023 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface

◆ can_event_t

enum can_event_t

CAN event codes

Enumerator

CAN_EVENT_RX_COMPLETE Receive complete event.

CAN_EVENT_TX_COMPLETE Transmit complete event.

CAN_EVENT_ERR_BUS_OFF Bus Off event.

CAN_EVENT_BUS_RECOVERY Bus Off Recovery event.

CAN_EVENT_ERR_PASSIVE Error Passive event.

CAN_EVENT_ERR_WARNING Error Warning event.

CAN_EVENT_MAILBOX_OVERWRITE_OVERRUN DEPRECATED, Mailbox has been overrun. This
event is not used when the mailbox is
overwritten.

CAN_EVENT_MAILBOX_OVERRUN Mailbox has been overrun.

◆ can_frame_type_t

enum can_frame_type_t

CAN frame types

Enumerator

CAN_FRAME_TYPE_DATA Data frame type.

CAN_FRAME_TYPE_REMOTE Remote frame type.

◆ can_id_mode_t

enum can_id_mode_t

CAN ID modes

Enumerator

CAN_ID_MODE_STANDARD Standard IDs of 11 bits used.

CAN_ID_MODE_EXTENDED Extended IDs of 29 bits used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,024 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface

◆ can_mailbox_send_receive_t

enum can_mailbox_send_receive_t

CAN Mailbox type

Enumerator

CAN_MAILBOX_RECEIVE Mailbox is for receiving.

CAN_MAILBOX_TRANSMIT Mailbox is for sending.

◆ can_message_mode_t

enum can_message_mode_t

CAN Message Modes

Enumerator

CAN_MESSAGE_MODE_OVERWRITE Receive data will be overwritten if not read
before the next frame.

CAN_MESSAGE_MODE_OVERRUN Receive data will be retained until it is read.

◆ can_mode_t

enum can_mode_t

CAN Operation modes

Enumerator

CAN_MODE_NORMAL CAN Normal Mode.

CAN_MODE_HALT CAN Halt Mode.

CAN_MODE_SLEEP CAN SLEEP Mode.

CAN_MODE_EXIT_SLEEP CAN Exit SLEEP Mode.

CAN_MODE_RESET CAN Reset Mode.

CAN_MODE_LISTEN CAN Listen Mode.

CAN_MODE_LOOPBACK_INTERNAL CAN Internal Loopback Mode.

CAN_MODE_LOOPBACK_EXTERNAL CAN External Loopback Mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,025 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface

◆ can_sync_jump_width_t

enum can_sync_jump_width_t

CAN Synchronization Jump Width Time Quanta

Enumerator

CAN_SYNC_JUMP_WIDTH_TQ1 Synchronization Jump Width setting for 1 Time
Quanta.

CAN_SYNC_JUMP_WIDTH_TQ2 Synchronization Jump Width setting for 2 Time
Quanta.

CAN_SYNC_JUMP_WIDTH_TQ3 Synchronization Jump Width setting for 3 Time
Quanta.

CAN_SYNC_JUMP_WIDTH_TQ4 Synchronization Jump Width setting for 4 Time
Quanta.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,026 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface

◆ can_time_segment1_t

enum can_time_segment1_t

CAN Time Segment 1 Time Quanta

Enumerator

CAN_TIME_SEGMENT1_TQ4 Time Segment 1 setting for 4 Time Quanta.

CAN_TIME_SEGMENT1_TQ5 Time Segment 1 setting for 5 Time Quanta.

CAN_TIME_SEGMENT1_TQ6 Time Segment 1 setting for 6 Time Quanta.

CAN_TIME_SEGMENT1_TQ7 Time Segment 1 setting for 7 Time Quanta.

CAN_TIME_SEGMENT1_TQ8 Time Segment 1 setting for 8 Time Quanta.

CAN_TIME_SEGMENT1_TQ9 Time Segment 1 setting for 9 Time Quanta.

CAN_TIME_SEGMENT1_TQ10 Time Segment 1 setting for 10 Time Quanta.

CAN_TIME_SEGMENT1_TQ11 Time Segment 1 setting for 11 Time Quanta.

CAN_TIME_SEGMENT1_TQ12 Time Segment 1 setting for 12 Time Quanta.

CAN_TIME_SEGMENT1_TQ13 Time Segment 1 setting for 13 Time Quanta.

CAN_TIME_SEGMENT1_TQ14 Time Segment 1 setting for 14 Time Quanta.

CAN_TIME_SEGMENT1_TQ15 Time Segment 1 setting for 15 Time Quanta.

CAN_TIME_SEGMENT1_TQ16 Time Segment 1 setting for 16 Time Quanta.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,027 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface

◆ can_time_segment2_t

enum can_time_segment2_t

CAN Time Segment 2 Time Quanta

Enumerator

CAN_TIME_SEGMENT2_TQ2 Time Segment 2 setting for 2 Time Quanta.

CAN_TIME_SEGMENT2_TQ3 Time Segment 2 setting for 3 Time Quanta.

CAN_TIME_SEGMENT2_TQ4 Time Segment 2 setting for 4 Time Quanta.

CAN_TIME_SEGMENT2_TQ5 Time Segment 2 setting for 5 Time Quanta.

CAN_TIME_SEGMENT2_TQ6 Time Segment 2 setting for 6 Time Quanta.

CAN_TIME_SEGMENT2_TQ7 Time Segment 2 setting for 7 Time Quanta.

CAN_TIME_SEGMENT2_TQ8 Time Segment 2 setting for 8 Time Quanta.

 can_status_t Union Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAN Interface

#include <r_can_api.h>

Detailed Description

CAN Status

The documentation for this union was generated from the following file:

r_can_api.h

 can_error_t Union Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAN Interface

#include <r_can_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,028 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface > can_error_t Union Reference

Detailed Description

CAN Error Code

The documentation for this union was generated from the following file:

r_can_api.h

 can_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAN Interface

#include <r_can_api.h>

Data Fields

uint32_t channel

 Device channel number.

can_event_t event

 Event code.

uint32_t mailbox

 Mailbox number of interrupt source.

void const * p_context

 Context provided to user during callback.

Detailed Description

CAN callback parameter definition

The documentation for this struct was generated from the following file:

r_can_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,029 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface > can_bit_timing_cfg_t Struct Reference

 can_bit_timing_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAN Interface

#include <r_can_api.h>

Data Fields

uint32_t baud_rate_prescaler

 Baud rate prescaler. Valid values: 1 - 1024.

can_time_segment1_t time_segment_1

 Time segment 1 control.

can_time_segment2_t time_segment_2

 Time segment 2 control.

can_sync_jump_width_t synchronization_jump_width

 Synchronization jump width.

Detailed Description

CAN bit rate configuration.

The documentation for this struct was generated from the following file:

r_can_api.h

 can_frame_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAN Interface

#include <r_can_api.h>

Data Fields

can_id_t id

 CAN id.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,030 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface > can_frame_t Struct Reference

uint8_t data_length_code

 CAN Data Length code, number of bytes in the message.

uint8_t data [8]

 CAN data, up to 8 bytes.

can_frame_type_t type

 Frame type, data or remote frame.

Detailed Description

CAN data Frame

The documentation for this struct was generated from the following file:

r_can_api.h

 can_mailbox_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAN Interface

#include <r_can_api.h>

Data Fields

can_id_t mailbox_id

 Mailbox ID.

can_mailbox_send_receive_t mailbox_type

 Receive or Transmit mailbox type.

can_frame_type_t frame_type

 Frame type for receive mailbox.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,031 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface > can_mailbox_t Struct Reference

Detailed Description

CAN Mailbox

The documentation for this struct was generated from the following file:

r_can_api.h

 can_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAN Interface

#include <r_can_api.h>

Data Fields

uint32_t channel

 CAN channel.

can_bit_timing_cfg_t * p_bit_timing

 CAN bit timing.

can_id_mode_t id_mode

 Standard or Extended ID mode.

uint32_t mailbox_count

 Number of mailboxes.

can_mailbox_t * p_mailbox

 Pointer to mailboxes.

can_message_mode_t message_mode

 Overwrite message or overrun.

void(* p_callback)(can_callback_args_t *p_args)

 Pointer to callback function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,032 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface > can_cfg_t Struct Reference

void const * p_context

 User defined callback context.

void const * p_extend

 CAN hardware dependent configuration.

uint8_t error_ipl

 Error interrupt priority.

uint8_t mailbox_rx_ipl

 Receive interrupt priority.

uint8_t mailbox_tx_ipl

 Transmit interrupt priority.

Detailed Description

CAN Configuration

The documentation for this struct was generated from the following file:

r_can_api.h

 can_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAN Interface

#include <r_can_api.h>

Data Fields

ssp_err_t(* open)(can_ctrl_t *const p_ctrl, can_cfg_t const *const p_cfg)

ssp_err_t(* read)(can_ctrl_t *const p_ctrl, uint32_t mailbox, can_frame_t *const
p_frame)

ssp_err_t(* write)(can_ctrl_t *const p_ctrl, uint32_t mailbox, can_frame_t *const
p_frame)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,033 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface > can_api_t Struct Reference

ssp_err_t(* close)(can_ctrl_t *const p_ctrl)

ssp_err_t(* control)(can_ctrl_t *const p_ctrl, can_command_t const command,
void *p_data)

ssp_err_t(* infoGet)(can_ctrl_t *const p_ctrl, can_info_t *const p_info)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Shared Interface definition for CAN

Field Documentation

◆ close

ssp_err_t(* can_api_t::close) (can_ctrl_t *const p_ctrl)

Close function for CAN device

Implemented as

R_CAN_Close()
Parameters

[in] p_ctrl Pointer to the CAN control
block.

◆ control

ssp_err_t(* can_api_t::control) (can_ctrl_t *const p_ctrl, can_command_t const command, void
*p_data)

Control function for CAN device

Implemented as

R_CAN_Control()
Parameters

[in] p_ctrl Pointer to the CAN control
block.

[in] command Command type.

[in] p_data Command data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,034 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface > can_api_t Struct Reference

◆ infoGet

ssp_err_t(* can_api_t::infoGet) (can_ctrl_t *const p_ctrl, can_info_t *const p_info)

Get CAN channel info.

Implemented as

R_CAN_InfoGet()
Parameters

[in] p_ctrl Handle for channel (pointer
to channel control block)

[out] p_info Memory address to return
channel specific data to.

◆ open

ssp_err_t(* can_api_t::open) (can_ctrl_t *const p_ctrl, can_cfg_t const *const p_cfg)

Open function for CAN device

Implemented as

R_CAN_Open()
Parameters

[in,out] p_ctrl Pointer to the CAN control
block Must be declared by
user. Value set here.

[in] can_cfg_t Pointer to CAN configuration
structure. All elements of
this structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,035 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface > can_api_t Struct Reference

◆ read

ssp_err_t(* can_api_t::read) (can_ctrl_t *const p_ctrl, uint32_t mailbox, can_frame_t *const p_frame)

Read function for CAN device, non-Blocking.

Implemented as

R_CAN_Read()
Parameters

[in] p_ctrl Pointer to the CAN control
block for the channel.

[in] mailbox Mailbox to read from.

[out] p_frame Pointer for frame of CAN ID,
DLC, data and frame type.

◆ versionGet

ssp_err_t(* can_api_t::versionGet) (ssp_version_t *const p_version)

Version get function for CAN device

Implemented as

R_CAN_VersionGet()
Parameters

[in] p_version Pointer to the memory to
store the version information

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,036 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface > can_api_t Struct Reference

◆ write

ssp_err_t(* can_api_t::write) (can_ctrl_t *const p_ctrl, uint32_t mailbox, can_frame_t *const
p_frame)

Write function for CAN device

Implemented as

R_CAN_Write()
Parameters

[in] p_ctrl Pointer to the CAN control
block.

[in] mailbox Mailbox to write to.

[in] p_frame Pointer for frame of CAN ID,
DLC, data and frame type to
write.

The documentation for this struct was generated from the following file:

r_can_api.h

 can_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CAN Interface

#include <r_can_api.h>

Data Fields

can_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

can_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

can_api_t const * p_api

 Pointer to the API structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,037 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CAN Interface > can_instance_t Struct Reference

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_can_api.h

5.1.4.5 CGC Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for clock generation. More...

Data Structures

struct cgc_callback_args_t

struct cgc_clock_cfg_t

struct cgc_system_clock_cfg_t

struct cgc_clocks_cfg_t

struct cgc_api_t

struct cgc_instance_t

Enumerations

enum cgc_event_t { CGC_EVENT_OSC_STOP_DETECT }

enum cgc_clock_t {
 CGC_CLOCK_HOCO = 0x00, CGC_CLOCK_MOCO = 0x01,
CGC_CLOCK_LOCO = 0x02, CGC_CLOCK_MAIN_OSC = 0x03,
 CGC_CLOCK_SUBCLOCK = 0x04, CGC_CLOCK_PLL = 0x05
}

enum cgc_pll_div_t { CGC_PLL_DIV_1 = 0x00, CGC_PLL_DIV_2 = 0x01,
CGC_PLL_DIV_3 = 0x02, CGC_PLL_DIV_4 = 0x03 }

enum cgc_sys_clock_div_t {
 CGC_SYS_CLOCK_DIV_1 = 0x00, CGC_SYS_CLOCK_DIV_2 = 0x01,
CGC_SYS_CLOCK_DIV_4 = 0x02, CGC_SYS_CLOCK_DIV_8 = 0x03,
 CGC_SYS_CLOCK_DIV_16 = 0x04, CGC_SYS_CLOCK_DIV_32 = 0x05,
CGC_SYS_CLOCK_DIV_64 = 0x06
}

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,038 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface

enum cgc_system_clocks_t {
 CGC_SYSTEM_CLOCKS_PCLKA, CGC_SYSTEM_CLOCKS_PCLKB,
CGC_SYSTEM_CLOCKS_PCLKC, CGC_SYSTEM_CLOCKS_PCLKD,
 CGC_SYSTEM_CLOCKS_BCLK, CGC_SYSTEM_CLOCKS_FCLK,
CGC_SYSTEM_CLOCKS_ICLK
}

enum cgc_clockout_dividers_t {
 CGC_CLOCKOUT_DIV_1 = 0x00, CGC_CLOCKOUT_DIV_2 = 0x01,
CGC_CLOCKOUT_DIV_4 = 0x02, CGC_CLOCKOUT_DIV_8 = 0x03,
 CGC_CLOCKOUT_DIV_16 = 0x04, CGC_CLOCKOUT_DIV_32 = 0x05,
CGC_CLOCKOUT_DIV_64 = 0x06, CGC_CLOCKOUT_DIV_128 = 0x07
}

enum cgc_bclockout_dividers_t { CGC_BCLOCKOUT_DIV_1 = 0x00,
CGC_BCLOCKOUT_DIV_2 = 0x01 }

enum cgc_usb_clock_div_t { CGC_USB_CLOCK_DIV_3 = 0x02,
CGC_USB_CLOCK_DIV_4 = 0x03, CGC_USB_CLOCK_DIV_5 = 0x04 }

enum cgc_systick_period_units_t {
CGC_SYSTICK_PERIOD_UNITS_MILLISECONDS = 1000,
CGC_SYSTICK_PERIOD_UNITS_MICROSECONDS = 1000000 }

enum cgc_clock_change_t { CGC_CLOCK_CHANGE_NONE,
CGC_CLOCK_CHANGE_STOP, CGC_CLOCK_CHANGE_START }

Detailed Description

Interface for clock generation.

Summary
The CGC interface provides the ability to configure and use all of the CGC module's capabilities.
Among the capabilities is the selection of several clock sources to use as the system clock source.
Additionally, the system clocks can be divided down to provide a wide range of frequencies for
various system and peripheral needs.

Clock stability can be checked and clocks may also be stopped to save power when not needed. The
API has a function to return the frequency of the system and system peripheral clocks at run time.
There is also a feature to detect when the main oscillator has stopped, with the option of calling a
user provided callback function.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

CGC Interface description: CGC Driver

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,039 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface

Enumeration Type Documentation

◆ cgc_bclockout_dividers_t

enum cgc_bclockout_dividers_t

Divider values for the external bus clock output.

Enumerator

CGC_BCLOCKOUT_DIV_1 External bus clock source is divided by 1.

CGC_BCLOCKOUT_DIV_2 External bus clock source is divided by 2.

◆ cgc_clock_change_t

enum cgc_clock_change_t

Clock options

Enumerator

CGC_CLOCK_CHANGE_NONE No change to the clock.

CGC_CLOCK_CHANGE_STOP Stop the clock.

CGC_CLOCK_CHANGE_START Start the clock.

◆ cgc_clock_t

enum cgc_clock_t

System clock source identifiers - The source of ICLK, BCLK, FCLK, PCLKS A-D and UCLK prior to the
system clock divider

Enumerator

CGC_CLOCK_HOCO The high speed on chip oscillator.

CGC_CLOCK_MOCO The middle speed on chip oscillator.

CGC_CLOCK_LOCO The low speed on chip oscillator.

CGC_CLOCK_MAIN_OSC The main oscillator.

CGC_CLOCK_SUBCLOCK The subclock oscillator.

CGC_CLOCK_PLL The PLL oscillator.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,040 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface

◆ cgc_clockout_dividers_t

enum cgc_clockout_dividers_t

Divider values for the CLKOUT output.

Enumerator

CGC_CLOCKOUT_DIV_1 Clockout source is divided by 1.

CGC_CLOCKOUT_DIV_2 Clockout source is divided by 2.

CGC_CLOCKOUT_DIV_4 Clockout source is divided by 4.

CGC_CLOCKOUT_DIV_8 Clockout source is divided by 8.

CGC_CLOCKOUT_DIV_16 Clockout source is divided by 16.

CGC_CLOCKOUT_DIV_32 Clockout source is divided by 32.

CGC_CLOCKOUT_DIV_64 Clockout source is divided by 64.

CGC_CLOCKOUT_DIV_128 Clockout source is divided by 128.

◆ cgc_event_t

enum cgc_event_t

Events that can trigger a callback function

Enumerator

CGC_EVENT_OSC_STOP_DETECT Oscillator stop detection has caused the
event.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,041 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface

◆ cgc_pll_div_t

enum cgc_pll_div_t

PLL divider values

Enumerator

CGC_PLL_DIV_1 PLL divider of 1.

CGC_PLL_DIV_2 PLL divider of 2.

CGC_PLL_DIV_3 PLL divider of 3 (S7G2 only).

CGC_PLL_DIV_4 PLL divider of 4 (S3A7 only).

◆ cgc_sys_clock_div_t

enum cgc_sys_clock_div_t

System clock divider values - The individually selectable divider of each of the system clocks, ICLK,
BCLK, FCLK, PCLKS A-D

Enumerator

CGC_SYS_CLOCK_DIV_1 System clock divided by 1.

CGC_SYS_CLOCK_DIV_2 System clock divided by 2.

CGC_SYS_CLOCK_DIV_4 System clock divided by 4.

CGC_SYS_CLOCK_DIV_8 System clock divided by 8.

CGC_SYS_CLOCK_DIV_16 System clock divided by 16.

CGC_SYS_CLOCK_DIV_32 System clock divided by 32.

CGC_SYS_CLOCK_DIV_64 System clock divided by 64.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,042 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface

◆ cgc_system_clocks_t

enum cgc_system_clocks_t

System clock identifiers - Used as an input parameter to the cgc_api_t::systemClockFreqGet
function.

Enumerator

CGC_SYSTEM_CLOCKS_PCLKA PCLKA - Peripheral module clock A.

CGC_SYSTEM_CLOCKS_PCLKB PCLKB - Peripheral module clock B.

CGC_SYSTEM_CLOCKS_PCLKC PCLKC - Peripheral module clock C.

CGC_SYSTEM_CLOCKS_PCLKD PCLKD - Peripheral module clock D.

CGC_SYSTEM_CLOCKS_BCLK BCLK - External bus Clock.

CGC_SYSTEM_CLOCKS_FCLK FCLK - FlashIF clock.

CGC_SYSTEM_CLOCKS_ICLK ICLK - System clock.

◆ cgc_systick_period_units_t

enum cgc_systick_period_units_t

Available period units for R_CGC_SystickUpdate()

Enumerator

CGC_SYSTICK_PERIOD_UNITS_MILLISECONDS Requested period in milliseconds.

CGC_SYSTICK_PERIOD_UNITS_MICROSECONDS Requested period in microseconds.

◆ cgc_usb_clock_div_t

enum cgc_usb_clock_div_t

USB clock divider values

Enumerator

CGC_USB_CLOCK_DIV_3 Divide USB source clock by 3.

CGC_USB_CLOCK_DIV_4 Divide USB source clock by 4.

CGC_USB_CLOCK_DIV_5 Divide USB source clock by 5.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,043 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface

 cgc_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CGC Interface

#include <r_cgc_api.h>

Data Fields

cgc_event_t event

 The event can be used to identify what caused the callback.

void const * p_context

 Placeholder for user data.

Detailed Description

Callback function parameter data

The documentation for this struct was generated from the following file:

r_cgc_api.h

 cgc_clock_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CGC Interface

#include <r_cgc_api.h>

Data Fields

cgc_clock_t source_clock

 PLL source clock (S7G2 only).

cgc_pll_div_t divider

 PLL divider.

float multiplier

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,044 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_clock_cfg_t Struct Reference

 PLL multiplier.

Detailed Description

Clock configuration structure - Used as an input parameter to the cgc_api_t::clockStart function for
the PLL clock.

The documentation for this struct was generated from the following file:

r_cgc_api.h

 cgc_system_clock_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CGC Interface

#include <r_cgc_api.h>

Data Fields

cgc_sys_clock_div_t pclka_div

 Divider value for PCLKA.

cgc_sys_clock_div_t pclkb_div

 Divider value for PCLKB.

cgc_sys_clock_div_t pclkc_div

 Divider value for PCLKC.

cgc_sys_clock_div_t pclkd_div

 Divider value for PCLKD.

cgc_sys_clock_div_t bclk_div

 Divider value for BCLK.

cgc_sys_clock_div_t fclk_div

 Divider value for FCLK.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,045 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_system_clock_cfg_t Struct Reference

cgc_sys_clock_div_t iclk_div

 Divider value for ICLK.

Detailed Description

Clock configuration structure - Used as an input parameter to the cgc_api_t::systemClockSet and
cgc_api_t::systemClockGet functions.

The documentation for this struct was generated from the following file:

r_cgc_api.h

 cgc_clocks_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CGC Interface

#include <r_cgc_api.h>

Data Fields

cgc_clock_t system_clock

 System clock source enumeration.

cgc_clock_cfg_t pll_cfg

 PLL configuration structure.

cgc_system_clock_cfg_t sys_cfg

 Clock dividers structure.

cgc_clock_change_t loco_state

 State of LOCO.

cgc_clock_change_t moco_state

 State of MOCO.

cgc_clock_change_t hoco_state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,046 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_clocks_cfg_t Struct Reference

 State of HOCO.

cgc_clock_change_t subosc_state

 State of Sub-oscillator.

cgc_clock_change_t mainosc_state

 State of Main oscillator.

cgc_clock_change_t pll_state

 State of PLL.

Detailed Description

Clock configuration

The documentation for this struct was generated from the following file:

r_cgc_api.h

 cgc_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CGC Interface

#include <r_cgc_api.h>

Data Fields

ssp_err_t(* init)(void)

ssp_err_t(* clocksCfg)(cgc_clocks_cfg_t const *const p_clock_cfg)

ssp_err_t(* clockStart)(cgc_clock_t clock_source, cgc_clock_cfg_t *p_clock_cfg)

ssp_err_t(* clockStop)(cgc_clock_t clock_source)

ssp_err_t(* systemClockSet)(cgc_clock_t clock_source, cgc_system_clock_cfg_t
const *const p_clock_cfg)

ssp_err_t(* systemClockGet)(cgc_clock_t *p_clock_source,
cgc_system_clock_cfg_t *p_set_clock_cfg)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,047 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_api_t Struct Reference

ssp_err_t(* systemClockFreqGet)(cgc_system_clocks_t clock, uint32_t
*p_freq_hz)

ssp_err_t(* clockCheck)(cgc_clock_t clock_source)

ssp_err_t(* oscStopDetect)(void(*p_callback)(cgc_callback_args_t *p_args), bool
enable)

ssp_err_t(* oscStopStatusClear)(void)

ssp_err_t(* busClockOutCfg)(cgc_bclockout_dividers_t divider)

ssp_err_t(* busClockOutEnable)(void)

ssp_err_t(* busClockOutDisable)(void)

ssp_err_t(* clockOutCfg)(cgc_clock_t clock, cgc_clockout_dividers_t divider)

ssp_err_t(* clockOutEnable)(void)

ssp_err_t(* clockOutDisable)(void)

ssp_err_t(* lcdClockCfg)(cgc_clock_t clock)

ssp_err_t(* lcdClockEnable)(void)

ssp_err_t(* lcdClockDisable)(void)

ssp_err_t(* sdadcClockCfg)(cgc_clock_t clock)

ssp_err_t(* sdadcClockEnable)(void)

ssp_err_t(* sdadcClockDisable)(void)

ssp_err_t(* sdramClockOutEnable)(void)

ssp_err_t(* sdramClockOutDisable)(void)

ssp_err_t(* usbClockCfg)(cgc_usb_clock_div_t divider)

ssp_err_t(* systickUpdate)(uint32_t period_count, cgc_systick_period_units_t
units)

ssp_err_t(* versionGet)(ssp_version_t *p_version)

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,048 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_api_t Struct Reference

CGC functions implemented at the HAL layer follow this API.

Field Documentation

◆ busClockOutCfg

ssp_err_t(* cgc_api_t::busClockOutCfg) (cgc_bclockout_dividers_t divider)

Configure the bus clock output secondary divider. The primary divider is set using the bsp clock
configuration and the cgc_api_t::systemClockSet function (S7G2 and S3A7 only).

Implemented as

R_CGC_BusClockOutCfg()
Parameters

[in] divider The divider of 1 or 2 of the
clock source.

◆ busClockOutDisable

ssp_err_t(* cgc_api_t::busClockOutDisable) (void)

Disable the bus clock output (S7G2 and S3A7 only).

Implemented as

R_CGC_BusClockOutDisable()

◆ busClockOutEnable

ssp_err_t(* cgc_api_t::busClockOutEnable) (void)

Enable the bus clock output (S7G2 and S3A7 only).

Implemented as

R_CGC_BusClockOutEnable()

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,049 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_api_t Struct Reference

◆ clockCheck

ssp_err_t(* cgc_api_t::clockCheck) (cgc_clock_t clock_source)

Check the stability of the selected clock.

Implemented as

R_CGC_ClockCheck()
Parameters

[in] clock_source Which clock source to check
for stability.

◆ clockOutCfg

ssp_err_t(* cgc_api_t::clockOutCfg) (cgc_clock_t clock, cgc_clockout_dividers_t divider)

Configure clockOut.

Implemented as

R_CGC_ClockOutCfg()
Parameters

[in] clock Clock source.

[in] divider Divider of between 1 and
128 of the clock source.

◆ clockOutDisable

ssp_err_t(* cgc_api_t::clockOutDisable) (void)

Disable clock output on the CLKOUT pin. The source of the clock is controlled by
cgc_api_t::clockOutCfg.

Implemented as

R_CGC_ClockOutDisable()

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,050 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_api_t Struct Reference

◆ clockOutEnable

ssp_err_t(* cgc_api_t::clockOutEnable) (void)

Enable clock output on the CLKOUT pin. The source of the clock is controlled by
cgc_api_t::clockOutCfg.

Implemented as

R_CGC_ClockOutEnable()

◆ clocksCfg

ssp_err_t(* cgc_api_t::clocksCfg) (cgc_clocks_cfg_t const *const p_clock_cfg)

Configure all system clocks.

Implemented as

R_CGC_ClocksCfg()
Note

The BSP module calls this function at startup, but it can also be called from the application to change clocks at
runtime.

Parameters
[in] p_clock_cfg Pointer to a structure that

contains the dividers or
multipliers to be used when
configuring the PLL.

◆ clockStart

ssp_err_t(* cgc_api_t::clockStart) (cgc_clock_t clock_source, cgc_clock_cfg_t *p_clock_cfg)

Start a clock.

Implemented as

R_CGC_ClockStart()
Precondition

Clock to be started must not be running prior to calling this function or an error will be
returned.

Parameters
[in] clock_source Clock source to initialize.

[in] p_clock_cfg Pointer to a structure that
contains the dividers or
multipliers to be used when
configuring the PLL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,051 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_api_t Struct Reference

◆ clockStop

ssp_err_t(* cgc_api_t::clockStop) (cgc_clock_t clock_source)

Stop a clock.

Implemented as

R_CGC_ClockStop()
Precondition

Clock to be stopped must not be stopped prior to calling this function or an error will be
returned.

Parameters
[in] clock_source The clock source to stop.

◆ init

ssp_err_t(* cgc_api_t::init) (void)

Initial configuration

Implemented as

R_CGC_Init()
Note

The BSP module calls this function at startup. No further initialization is necessary.

◆ lcdClockCfg

ssp_err_t(* cgc_api_t::lcdClockCfg) (cgc_clock_t clock)

Configure the segment LCD Clock (S3A7 and S124 only).

Implemented as

R_CGC_LCDClockCfg()
Parameters

[in] clock Segment LCD clock source.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,052 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_api_t Struct Reference

◆ lcdClockDisable

ssp_err_t(* cgc_api_t::lcdClockDisable) (void)

Disables the LCD clock (S3A7 and S124 only).

Implemented as

R_CGC_LCDClockDisable()

◆ lcdClockEnable

ssp_err_t(* cgc_api_t::lcdClockEnable) (void)

Enable the LCD clock (S3A7 and S124 only).

Implemented as

R_CGC_LCDClockEnable()

◆ oscStopDetect

ssp_err_t(* cgc_api_t::oscStopDetect) (void(*p_callback)(cgc_callback_args_t *p_args), bool enable)

Configure the Main Oscillator stop detection.

Implemented as

R_CGC_OscStopDetect()
Parameters

[in] p_callback Callback function that will be
called by the NMI interrupt
when an oscillation stop is
detected. If the second
argument is "false", then
this argument can be NULL.

[in] enable Enable/disable Oscillation
Stop Detection.

◆ oscStopStatusClear

ssp_err_t(* cgc_api_t::oscStopStatusClear) (void)

Clear the oscillator stop detection flag.

Implemented as

R_CGC_OscStopStatusClear()

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,053 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_api_t Struct Reference

◆ sdadcClockCfg

ssp_err_t(* cgc_api_t::sdadcClockCfg) (cgc_clock_t clock)

Configure the 24-bit Sigma-Delta A/D Converter Clock (S1JA only).

Implemented as

R_CGC_SDADCClockCfg()
Parameters

[in] clock SDADC clock source.

◆ sdadcClockDisable

ssp_err_t(* cgc_api_t::sdadcClockDisable) (void)

Disables the SDADC clock (S1JA only).

Implemented as

R_CGC_SDADCClockDisable()

◆ sdadcClockEnable

ssp_err_t(* cgc_api_t::sdadcClockEnable) (void)

Enable the SDADC clock (S1JA only).

Implemented as

R_CGC_SDADCClockEnable()

◆ sdramClockOutDisable

ssp_err_t(* cgc_api_t::sdramClockOutDisable) (void)

Disables the SDRAM clock (S7G2 only).

Implemented as

R_CGC_SDRAMClockOutDisable()

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,054 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_api_t Struct Reference

◆ sdramClockOutEnable

ssp_err_t(* cgc_api_t::sdramClockOutEnable) (void)

Enables the SDRAM clock output (S7G2 only).

Implemented as

R_CGC_SDRAMClockOutEnable()

◆ systemClockFreqGet

ssp_err_t(* cgc_api_t::systemClockFreqGet) (cgc_system_clocks_t clock, uint32_t *p_freq_hz)

Return the frequency of the selected clock.

Implemented as

R_CGC_SystemClockFreqGet()
Parameters

[in] clock Specifies the internal clock
whose frequency is returned.

[out] p_freq_hz Returns the frequency in Hz
referenced by this pointer.

◆ systemClockGet

ssp_err_t(* cgc_api_t::systemClockGet) (cgc_clock_t *p_clock_source, cgc_system_clock_cfg_t
*p_set_clock_cfg)

Get the system clock information.

Implemented as

R_CGC_SystemClockGet()
Parameters

[in] p_set_clock_cfg Pointer to clock
configuration structure

[out] clock_source Returns the current system
clock.

[out] p_clock_cfg Returns the current system
clock dividers.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,055 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_api_t Struct Reference

◆ systemClockSet

ssp_err_t(* cgc_api_t::systemClockSet) (cgc_clock_t clock_source, cgc_system_clock_cfg_t const
*const p_clock_cfg)

Set the system clock.

Implemented as

R_CGC_SystemClockSet()
Precondition

The clock to be set as the system clock must be running prior to calling this function.
Parameters

[in] clock_source Clock source to set as
system clock

[in] p_clock_cfg Pointer to the clock dividers
configuration passed by the
caller.

◆ systickUpdate

ssp_err_t(* cgc_api_t::systickUpdate) (uint32_t period_count, cgc_systick_period_units_t units)

Update the Systick timer.

Implemented as

R_CGC_SystickUpdate()
Parameters

[in] period_count The duration for the systick
period.

[in] units The units for the provided
period.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,056 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_api_t Struct Reference

◆ usbClockCfg

ssp_err_t(* cgc_api_t::usbClockCfg) (cgc_usb_clock_div_t divider)

Configures the USB clock (S7G2 only).

Implemented as

R_CGC_USBClockCfg()
Parameters

[in] divider The divider of 3, 4 or 5, of
the clock source.

◆ versionGet

ssp_err_t(* cgc_api_t::versionGet) (ssp_version_t *p_version)

Gets the CGC driver version.

Implemented as

R_CGC_VersionGet()
Parameters

[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_cgc_api.h

 cgc_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CGC Interface

#include <r_cgc_api.h>

Data Fields

cgc_clock_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

cgc_api_t const * p_api

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,057 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CGC Interface > cgc_instance_t Struct Reference

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_cgc_api.h

5.1.4.6 COMPARATOR Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for Comparators. More...

Data Structures

struct comparator_info_t

struct comparator_status_t

struct comparator_callback_args_t

struct comparator_cfg_t

struct comparator_api_t

struct comparator_instance_t

Macros

#define COMPARATOR_API_VERSION_MAJOR (2U)

Typedefs

typedef void comparator_ctrl_t

Enumerations

enum comparator_mode_t { COMPARATOR_MODE_NORMAL = 0,
COMPARATOR_MODE_WINDOW = 1 }

enum comparator_trigger_t { COMPARATOR_TRIGGER_RISING = 1,
COMPARATOR_TRIGGER_FALLING = 2,
COMPARATOR_TRIGGER_BOTH_EDGE = 3 }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,058 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > COMPARATOR Interface

enum comparator_polarity_invert_t { COMPARATOR_POLARITY_INVERT_OFF
= 0, COMPARATOR_POLARITY_INVERT_ON = 1 }

enum comparator_pin_output_t { COMPARATOR_PIN_OUTPUT_OFF = 0,
COMPARATOR_PIN_OUTPUT_ON = 1 }

enum comparator_filter_t {
 COMPARATOR_FILTER_OFF = 0, COMPARATOR_FILTER_1 = 4,
COMPARATOR_FILTER_8 = 1, COMPARATOR_FILTER_16 = 2,
 COMPARATOR_FILTER_32 = 3
}

enum comparator_state_t { COMPARATOR_STATE_OUTPUT_DISABLED = 0,
COMPARATOR_STATE_OUTPUT_LOW = 1,
COMPARATOR_STATE_OUTPUT_HIGH = 2 }

Detailed Description

Interface for Comparators.

Summary
The comparator interface provides standard comparator functionality, including generating an event
when the comparator result changes.

Implemented by: High-Speed Analog Comparator Low Power Analog Comparator

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

COMPARATOR Interface description: Comparator Driver on r_acmphs and HALACMPLPModule

Macro Definition Documentation

◆ COMPARATOR_API_VERSION_MAJOR

#define COMPARATOR_API_VERSION_MAJOR (2U)

Includes board and MCU related header files. Version Number of API.

Typedef Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,059 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > COMPARATOR Interface

◆ comparator_ctrl_t

typedef void comparator_ctrl_t

Comparator control block. Allocate an instance specific control block to pass into the comparator
API calls.

Implemented as

acmphs_instance_ctrl_t
acmplp_instance_ctrl_t

Enumeration Type Documentation

◆ comparator_filter_t

enum comparator_filter_t

Comparator digital filtering sample clock divisor settings.

Enumerator

COMPARATOR_FILTER_OFF Disable debounce filter.

COMPARATOR_FILTER_1 Filter using PCLK divided by 1, not supported
by all implementations.

COMPARATOR_FILTER_8 Filter using PCLK divided by 8.

COMPARATOR_FILTER_16 Filter using PCLK divided by 16, not supported
by all implementations.

COMPARATOR_FILTER_32 Filter using PCLK divided by 32.

◆ comparator_mode_t

enum comparator_mode_t

Select whether to invert the polarity of the comparator output.

Enumerator

COMPARATOR_MODE_NORMAL Normal mode.

COMPARATOR_MODE_WINDOW Window mode, not supported by all
implementations.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,060 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > COMPARATOR Interface

◆ comparator_pin_output_t

enum comparator_pin_output_t

Select whether to include the comparator output on the output pin.

Enumerator

COMPARATOR_PIN_OUTPUT_OFF Do not include comparator output on output
pin.

COMPARATOR_PIN_OUTPUT_ON Include comparator output on output pin.

◆ comparator_polarity_invert_t

enum comparator_polarity_invert_t

Select whether to invert the polarity of the comparator output.

Enumerator

COMPARATOR_POLARITY_INVERT_OFF Do not invert polarity.

COMPARATOR_POLARITY_INVERT_ON Invert polarity.

◆ comparator_state_t

enum comparator_state_t

Current comparator state.

Enumerator

COMPARATOR_STATE_OUTPUT_DISABLED comparator_api_t::outputEnable() has not been
called

COMPARATOR_STATE_OUTPUT_LOW VCMP < VREF if polarity is not inverted, VCMP
> VREF if inverted.

COMPARATOR_STATE_OUTPUT_HIGH VCMP > VREF if polarity is not inverted, VCMP
< VREF if inverted.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,061 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > COMPARATOR Interface

◆ comparator_trigger_t

enum comparator_trigger_t

Trigger type: rising edge, falling edge, both edges, low level.

Enumerator

COMPARATOR_TRIGGER_RISING Rising edge trigger.

COMPARATOR_TRIGGER_FALLING Falling edge trigger.

COMPARATOR_TRIGGER_BOTH_EDGE Both edges trigger.

 comparator_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » COMPARATOR Interface

#include <r_comparator_api.h>

Data Fields

uint32_t min_stabilization_wait_us

 Minimum stabilization wait time in microseconds.

Detailed Description

Comparator information.

The documentation for this struct was generated from the following file:

r_comparator_api.h

 comparator_status_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » COMPARATOR Interface

#include <r_comparator_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,062 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > COMPARATOR Interface > comparator_status_t Struct Reference

comparator_state_t state

 Current comparator state.

Detailed Description

Comparator status.

The documentation for this struct was generated from the following file:

r_comparator_api.h

 comparator_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » COMPARATOR Interface

#include <r_comparator_api.h>

Data Fields

void const * p_context

uint32_t channel

 The physical hardware channel that caused the interrupt.

Detailed Description

Callback function parameter data

Field Documentation

◆ p_context

void const* comparator_callback_args_t::p_context

Placeholder for user data. Set in comparator_api_t::open function in comparator_cfg_t.

The documentation for this struct was generated from the following file:

r_comparator_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,063 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > COMPARATOR Interface > comparator_callback_args_t Struct Reference

 comparator_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » COMPARATOR Interface

#include <r_comparator_api.h>

Data Fields

uint8_t channel

 Hardware channel used.

uint8_t irq_ipl

 Interrupt priority.

comparator_mode_t mode

 Normal or window mode.

comparator_trigger_t trigger

 Trigger setting.

comparator_filter_t filter

 Digital filter clock divisor setting.

comparator_polarity_invert_t invert

 Whether to invert output.

comparator_pin_output_t pin_output

 Whether to include output on output pin.

void(* p_callback)(comparator_callback_args_t *p_args)

void const * p_context

void const * p_extend

 Comparator hardware dependent configuration.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,064 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > COMPARATOR Interface > comparator_cfg_t Struct Reference

Detailed Description

User configuration structure, used in open function

Field Documentation

◆ p_callback

void(* comparator_cfg_t::p_callback) (comparator_callback_args_t *p_args)

Callback called when comparator event occurs.

◆ p_context

void const* comparator_cfg_t::p_context

Placeholder for user data. Passed to the user callback in comparator_callback_args_t.

The documentation for this struct was generated from the following file:

r_comparator_api.h

 comparator_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » COMPARATOR Interface

#include <r_comparator_api.h>

Data Fields

ssp_err_t(* open)(comparator_ctrl_t *const p_ctrl, comparator_cfg_t const
*const p_cfg)

ssp_err_t(* outputEnable)(comparator_ctrl_t *const p_ctrl)

ssp_err_t(* infoGet)(comparator_ctrl_t *const p_ctrl, comparator_info_t *const
p_info)

ssp_err_t(* statusGet)(comparator_ctrl_t *const p_ctrl, comparator_status_t
*const p_status)

ssp_err_t(* close)(comparator_ctrl_t *const p_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,065 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > COMPARATOR Interface > comparator_api_t Struct Reference

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Comparator functions implemented at the HAL layer will follow this API.

Field Documentation

◆ close

ssp_err_t(* comparator_api_t::close) (comparator_ctrl_t *const p_ctrl)

Stop the comparator.

Implemented as

R_ACMPHS_Close()
R_ACMPLP_Close()

Parameters
[in] p_ctrl Pointer to instance control

block

◆ infoGet

ssp_err_t(* comparator_api_t::infoGet) (comparator_ctrl_t *const p_ctrl, comparator_info_t *const
p_info)

Provide information such as the recommended minimum stabilization wait time.

Implemented as

R_ACMPHS_InfoGet()
R_ACMPLP_InfoGet()

Parameters
[in] p_ctrl Pointer to instance control

block

[out] p_info Comparator information
stored here

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,066 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > COMPARATOR Interface > comparator_api_t Struct Reference

◆ open

ssp_err_t(* comparator_api_t::open) (comparator_ctrl_t *const p_ctrl, comparator_cfg_t const *const
p_cfg)

Initialize the comparator.

Implemented as

R_ACMPHS_Open()
R_ACMPLP_Open()

Parameters
[in] p_ctrl Pointer to instance control

block

[in] p_cfg Pointer to configuration

◆ outputEnable

ssp_err_t(* comparator_api_t::outputEnable) (comparator_ctrl_t *const p_ctrl)

Start the comparator.

Implemented as

R_ACMPHS_OutputEnable()
R_ACMPLP_OutputEnable()

Parameters
[in] p_ctrl Pointer to instance control

block

◆ statusGet

ssp_err_t(* comparator_api_t::statusGet) (comparator_ctrl_t *const p_ctrl, comparator_status_t
*const p_status)

Provide current comparator status.

Implemented as

R_ACMPHS_StatusGet()
R_ACMPLP_StatusGet()

Parameters
[in] p_ctrl Pointer to instance control

block

[out] p_status Status stored here

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,067 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > COMPARATOR Interface > comparator_api_t Struct Reference

◆ versionGet

ssp_err_t(* comparator_api_t::versionGet) (ssp_version_t *const p_version)

Retrieve the API version.

Implemented as

R_ACMPHS_VersionGet()
R_ACMPLP_VersionGet()

Precondition
This function retrieves the API version.

Parameters
[in] p_version Pointer to version structure

The documentation for this struct was generated from the following file:

r_comparator_api.h

 comparator_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » COMPARATOR Interface

#include <r_comparator_api.h>

Data Fields

comparator_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

comparator_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

comparator_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,068 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > COMPARATOR Interface > comparator_instance_t Struct Reference

The documentation for this struct was generated from the following file:

r_comparator_api.h

5.1.4.7 CRC Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for cyclic redundancy checking. More...

Data Structures

struct crc_cfg_t

struct crc_snoop_cfg_t

struct crc_api_t

struct crc_instance_t

Typedefs

typedef void crc_ctrl_t

Enumerations

enum crc_polynomial_t {
 CRC_POLYNOMIAL_CRC_8 = 1, CRC_POLYNOMIAL_CRC_16,
CRC_POLYNOMIAL_CRC_CCITT, CRC_POLYNOMIAL_CRC_32,
 CRC_POLYNOMIAL_CRC_32C
}

enum crc_bit_order_t { CRC_BIT_ORDER_LMS_LSB = 0,
CRC_BIT_ORDER_LMS_MSB }

enum crc_snoop_direction_t { CRC_SNOOP_DIRECTION_RECEIVE = 0,
CRC_SNOOP_DIRECTION_TRANSMIT }

Detailed Description

Interface for cyclic redundancy checking.

Summary
The CRC (Cyclic Redundancy Check) calculator generates CRC codes using five different polynomials
including 8 bit, 16 bit, and 32 bit variations. Calculation can be performed by sending data to the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,069 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CRC Interface

block using the CPU or by snooping on read or write activity on one of 10 SCI channels.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

CRC Interface description: CRC Driver

Typedef Documentation

◆ crc_ctrl_t

typedef void crc_ctrl_t

CRC control block. Allocate an instance specific control block to pass into the CRC API calls.

Implemented as

crc_instance_ctrl_t

Enumeration Type Documentation

◆ crc_bit_order_t

enum crc_bit_order_t

CRC Calculation Switching (LMS)

Enumerator

CRC_BIT_ORDER_LMS_LSB Generates CRC for LSB first communication.

CRC_BIT_ORDER_LMS_MSB Generates CRC for MSB first communication.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,070 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CRC Interface

◆ crc_polynomial_t

enum crc_polynomial_t

CRC Generating Polynomial Switching (GPS).

Enumerator

CRC_POLYNOMIAL_CRC_8 8-bit CRC-8 (X^8 + X^2 + X + 1)

CRC_POLYNOMIAL_CRC_16 16-bit CRC-16 (X^16 + X^15 + X^2 + 1)

CRC_POLYNOMIAL_CRC_CCITT 16-bit CRC-CCITT (X^16 + X^12 + X^5 + 1)

CRC_POLYNOMIAL_CRC_32 32-bit CRC-32 (X^32 + X^26 + X^23 + X^22
+ X^16 + X^12 + X^11 + X^10 + X^8 +
X^7 + X^5 + X^4 + X^2 + X + 1)

CRC_POLYNOMIAL_CRC_32C 32-bit CRC-32C (X^32 + X^28 + X^27 +
X^26 + X^25 + X^23 + X^22 + X^20 +
X^19 + X^18 + X^14 + X^13 + X^11 +
X^10 + X^9 + X^8 + X^6 + 1)

◆ crc_snoop_direction_t

enum crc_snoop_direction_t

Snoop-On-Write/Read Switch (CRCSWR)

Enumerator

CRC_SNOOP_DIRECTION_RECEIVE Snoop-on-read.

CRC_SNOOP_DIRECTION_TRANSMIT Snoop-on-write.

 crc_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CRC Interface

#include <r_crc_api.h>

Data Fields

crc_polynomial_t polynomial

 CRC Generating Polynomial Switching. (GPS)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,071 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CRC Interface > crc_cfg_t Struct Reference

crc_bit_order_t bit_order

 CRC Calculation Switching (LMS)

void const * p_extend

 CRC Hardware Dependent Configuration.

bool fifo_mode

 FIFO Mode selection for sci_uart in CRC snoop operation.

Detailed Description

User configuration structure, used in open function

The documentation for this struct was generated from the following file:

r_crc_api.h

 crc_snoop_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CRC Interface

#include <r_crc_api.h>

Data Fields

uint32_t snoop_channel

 Register Snoop Address (CRCSA)

crc_snoop_direction_t snoop_direction

 Snoop-On-Write/Read Switch (CRCSWR)

Detailed Description

Snoop configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,072 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CRC Interface > crc_snoop_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

r_crc_api.h

 crc_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CRC Interface

#include <r_crc_api.h>

Data Fields

ssp_err_t(* open)(crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfg)

ssp_err_t(* close)(crc_ctrl_t *const p_ctrl)

ssp_err_t(* crcResultGet)(crc_ctrl_t *const p_ctrl, uint32_t *crc_result)

ssp_err_t(* snoopEnable)(crc_ctrl_t *const p_ctrl, uint32_t crc_seed)

ssp_err_t(* snoopDisable)(crc_ctrl_t *const p_ctrl)

ssp_err_t(* snoopCfg)(crc_ctrl_t *const p_ctrl, crc_snoop_cfg_t *const
p_snoop_cfg)

ssp_err_t(* calculate)(crc_ctrl_t *const p_ctrl, void *p_input_buffer, uint32_t
num_bytes, uint32_t crc_seed, uint32_t *p_crc_result)

ssp_err_t(* versionGet)(ssp_version_t *version)

Detailed Description

CRC driver structure. General CRC functions implemented at the HAL layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,073 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CRC Interface > crc_api_t Struct Reference

◆ calculate

ssp_err_t(* crc_api_t::calculate) (crc_ctrl_t *const p_ctrl, void *p_input_buffer, uint32_t num_bytes,
uint32_t crc_seed, uint32_t *p_crc_result)

Perform a CRC calculation on a block of data.

Implemented as

R_CRC_Calculate()
Parameters

[in] p_ctrl Pointer to crc device handle.

[in] input_buffer A pointer to an array of data
values.

[in] num_bytes The number of bytes (not
elements) in the array.

[in] crc_seed The seeded value for crc
calculations.

[out] crc_result The calculated value of the
CRC calculation.

◆ close

ssp_err_t(* crc_api_t::close) (crc_ctrl_t *const p_ctrl)

Close the CRC module driver

Implemented as

R_CRC_Close()
Parameters

[in] p_ctrl Pointer to crc device handle

Return values
SSP_SUCCESS Configuration was successful.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,074 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CRC Interface > crc_api_t Struct Reference

◆ crcResultGet

ssp_err_t(* crc_api_t::crcResultGet) (crc_ctrl_t *const p_ctrl, uint32_t *crc_result)

Return the current calculated value.

Implemented as

R_CRC_CalculatedValueGet()
Parameters

[in] p_ctrl Pointer to CRC device
handle.

[out] crc_result The calculated value from
the last CRC calculation.

◆ open

ssp_err_t(* crc_api_t::open) (crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfg)

Open the CRC driver module.

Implemented as

R_CRC_Open()
Parameters

[in] p_ctrl Pointer to CRC device
handle.

[in] p_cfg Pointer to a configuration
structure.

◆ snoopCfg

ssp_err_t(* crc_api_t::snoopCfg) (crc_ctrl_t *const p_ctrl, crc_snoop_cfg_t *const p_snoop_cfg)

Configure the snoop channel and direction.

Implemented as

R_CRC_SnoopCfg()
Parameters

[in] p_ctrl Pointer to crc device handle.

[in] p_snoopCfg Snoop configuration.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,075 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CRC Interface > crc_api_t Struct Reference

◆ snoopDisable

ssp_err_t(* crc_api_t::snoopDisable) (crc_ctrl_t *const p_ctrl)

Disable snooping.

Implemented as

R_CRC_SnoopDisable()
Parameters

[in] p_ctrl Pointer to crc device handle.

◆ snoopEnable

ssp_err_t(* crc_api_t::snoopEnable) (crc_ctrl_t *const p_ctrl, uint32_t crc_seed)

Enable snooping.

Implemented as

R_CRC_SnoopEnable()
Parameters

[in] p_ctrl Pointer to CRC device
handle.

[in] crc_seed CRC seed.

◆ versionGet

ssp_err_t(* crc_api_t::versionGet) (ssp_version_t *version)

Get the driver version based on compile time macros.

Implemented as

R_CRC_VersionGet()

The documentation for this struct was generated from the following file:

r_crc_api.h

 crc_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CRC Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,076 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CRC Interface > crc_instance_t Struct Reference

#include <r_crc_api.h>

Data Fields

crc_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

crc_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

crc_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_crc_api.h

5.1.4.8 Crypto Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Cryptographic algorithm APIs for encryption/decryption, signing/verification, and hashing. More...

Modules

AES Interface

 AES encryption and decryption APIs.

ARC4 Interface

 ARC4 encryption and decryption APIs.

DSA Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,077 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface

 DSA (Digital Signature Algorithm) signature generation and
verification APIs.

ECC Interface

 ECC cryptographic functions for scalar multiplication, generate key,
generate sign, verify sign and version get.

HASH Algorithm Interface

 HASH_Interface Hash algorithm APIs.

KEY_INSTALLATION Interface

 Key Installation functions for Key Installation procedure.

RSA Interface

 RSA cryptographic functions for signature generation, verification,
encryption and decryption.

TDES Interface

 TDES encryption and decryption APIs.

Random number generation

 RNG_Interface Random number generation.

Data Structures

struct crypto_ctrl_t

struct r_crypto_data_handle_t

struct crypto_cfg_t

struct crypto_interface_get_param_t

struct crypto_api_t

struct crypto_instance_t

Macros

#define CRYPTO_API_VERSION_MAJOR (1U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,078 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface

Enumerations

enum crypto_word_endian_t

enum crypto_algorithm_type_t

enum crypto_hash_type_t

enum crypto_key_type_t

enum crypto_key_size_t

enum crypto_chaining_mode_t

enum crypto_module_status_t { CRYPTO_SCE_COMMON_MODULE_CLOSED
= 0, CRYPTO_SCE_COMMON_MODULE_OPENED = 1 }

Detailed Description

Cryptographic algorithm APIs for encryption/decryption, signing/verification, and hashing.

Macro Definition Documentation

◆ CRYPTO_API_VERSION_MAJOR

#define CRYPTO_API_VERSION_MAJOR (1U)

Register definitions, common services and error codes.

Enumeration Type Documentation

◆ crypto_algorithm_type_t

enum crypto_algorithm_type_t

MIN and MAX values under enums are for internal use only Enumerated Crypto Algorithm Type

◆ crypto_chaining_mode_t

enum crypto_chaining_mode_t

Enumerated chaining modes

◆ crypto_hash_type_t

enum crypto_hash_type_t

Enumerated HASH Types

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,079 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface

◆ crypto_key_size_t

enum crypto_key_size_t

Enumerated Key Sizes

◆ crypto_key_type_t

enum crypto_key_type_t

Enumerated Key Types

◆ crypto_module_status_t

enum crypto_module_status_t

SCE Initialization status codes.

Enumerator

CRYPTO_SCE_COMMON_MODULE_CLOSED The module is closed.

CRYPTO_SCE_COMMON_MODULE_OPENED The module is opened.

◆ crypto_word_endian_t

enum crypto_word_endian_t

Enumerator for Crypto API uint32_t[] array word endian selection

 AES Interface
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

AES encryption and decryption APIs. More...

Data Structures

struct aes_ctrl_t

struct aes_cfg_t

struct aes_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,080 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface

struct aes_instance_t

Macros

#define AES_API_VERSION_MAJOR (1U)

#define AES_XTS_128_WRAPPPED_SECRET_KEY_SIZE_BYTES (52)

#define AES_XTS_256_WRAPPPED_SECRET_KEY_SIZE_BYTES (84)

#define AES128_WRAPPPED_SECRET_KEY_SIZE_BYTES (36)

#define AES192_WRAPPPED_SECRET_KEY_SIZE_BYTES (52)

#define AES256_WRAPPPED_SECRET_KEY_SIZE_BYTES (52)

#define AES128_SECRET_KEY_SIZE_BYTES (16)

#define AES192_SECRET_KEY_SIZE_BYTES (24)

#define AES256_SECRET_KEY_SIZE_BYTES (32)

Variables

const aes_api_t g_aes128ecb_on_sce

const aes_api_t g_aes128cbc_on_sce

const aes_api_t g_aes128ctr_on_sce

const aes_api_t g_aes256ecb_on_sce

const aes_api_t g_aes256cbc_on_sce

const aes_api_t g_aes256ctr_on_sce

const aes_api_t g_aes128gcm_on_sce

const aes_api_t g_aes128xts_on_sce

const aes_api_t g_aes256gcm_on_sce

const aes_api_t g_aes256xts_on_sce

const aes_api_t g_aes192ecb_on_sce

const aes_api_t g_aes192cbc_on_sce

const aes_api_t g_aes192ctr_on_sce

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,081 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface

const aes_api_t g_aes192gcm_on_sce

const aes_api_t g_aes128ecb_on_sceHrk

const aes_api_t g_aes192gcm_on_sceHrk

Detailed Description

AES encryption and decryption APIs.

Macro Definition Documentation

◆ AES128_SECRET_KEY_SIZE_BYTES

#define AES128_SECRET_KEY_SIZE_BYTES (16)

Return AES secret key size in bytes for a 128-bit AES Key

◆ AES128_WRAPPPED_SECRET_KEY_SIZE_BYTES

#define AES128_WRAPPPED_SECRET_KEY_SIZE_BYTES (36)

Return Wrapped AES secret key size in bytes for a 128-bit AES Key

◆ AES192_SECRET_KEY_SIZE_BYTES

#define AES192_SECRET_KEY_SIZE_BYTES (24)

Return AES secret key size in bytes for a 192-bit AES Key

◆ AES192_WRAPPPED_SECRET_KEY_SIZE_BYTES

#define AES192_WRAPPPED_SECRET_KEY_SIZE_BYTES (52)

Return Wrapped AES secret key size in bytes for a 192-bit AES Key

◆ AES256_SECRET_KEY_SIZE_BYTES

#define AES256_SECRET_KEY_SIZE_BYTES (32)

Return AES secret key size in bytes for a 256-bit AES Key

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,082 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface

◆ AES256_WRAPPPED_SECRET_KEY_SIZE_BYTES

#define AES256_WRAPPPED_SECRET_KEY_SIZE_BYTES (52)

Return Wrapped AES secret key size in bytes for a 256-bit AES Key

◆ AES_API_VERSION_MAJOR

#define AES_API_VERSION_MAJOR (1U)

Register definitions, common services and error codes.

◆ AES_XTS_128_WRAPPPED_SECRET_KEY_SIZE_BYTES

#define AES_XTS_128_WRAPPPED_SECRET_KEY_SIZE_BYTES (52)

Return Wrapped AES-XTS secret key size in bytes for a 128-bit AES XTS Mode Key

◆ AES_XTS_256_WRAPPPED_SECRET_KEY_SIZE_BYTES

#define AES_XTS_256_WRAPPPED_SECRET_KEY_SIZE_BYTES (84)

Return AES-XTS secret key size in bytes for a 256-bit AES XTS Mode Key

Variable Documentation

◆ g_aes128cbc_on_sce

const aes_api_t g_aes128cbc_on_sce

AES 128-bit CBC mode implementation

◆ g_aes128ctr_on_sce

const aes_api_t g_aes128ctr_on_sce

AES 128-bit CTR mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,083 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface

◆ g_aes128ecb_on_sce

const aes_api_t g_aes128ecb_on_sce

AES interface available boards - S7G2, S5D9, S5D5, S3A7, S3A3 and S3A6 - Chaining modes CBC,
GCM, CTR, ECB, XTS for 128 & 256-bit S7G2, S5D9, and S5D5 - Chaining modes CBC, GCM, CTR,
ECB for 192-bit

AES 128-bit ECB mode implementation

◆ g_aes128ecb_on_sceHrk

const aes_api_t g_aes128ecb_on_sceHrk

HRK Supported global structure definitions

◆ g_aes128gcm_on_sce

const aes_api_t g_aes128gcm_on_sce

AES 128-bit GCM mode implementation

◆ g_aes128xts_on_sce

const aes_api_t g_aes128xts_on_sce

AES 128-bit CCM mode implementation

◆ g_aes192cbc_on_sce

const aes_api_t g_aes192cbc_on_sce

AES 192-bit CBC mode implementation

◆ g_aes192ctr_on_sce

const aes_api_t g_aes192ctr_on_sce

AES 192-bit CTR mode implementation

◆ g_aes192ecb_on_sce

const aes_api_t g_aes192ecb_on_sce

AES 192-bit ECB mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,084 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface

◆ g_aes192gcm_on_sce

const aes_api_t g_aes192gcm_on_sce

AES 192-bit GCM mode implementation

◆ g_aes192gcm_on_sceHrk

const aes_api_t g_aes192gcm_on_sceHrk

AES 192-bit GCM HRK mode implementation

◆ g_aes256cbc_on_sce

const aes_api_t g_aes256cbc_on_sce

AES 256-bit CBC mode implementation

◆ g_aes256ctr_on_sce

const aes_api_t g_aes256ctr_on_sce

AES 256-bit CTR mode implementation

◆ g_aes256ecb_on_sce

const aes_api_t g_aes256ecb_on_sce

AES 256-bit ECB mode implementation

◆ g_aes256gcm_on_sce

const aes_api_t g_aes256gcm_on_sce

AES 256-bit GCM mode implementation

◆ g_aes256xts_on_sce

const aes_api_t g_aes256xts_on_sce

AES 256-bit XTS mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,085 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface > aes_ctrl_t Struct Reference

 aes_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » AES Interface

#include <r_aes_api.h>

Data Fields

crypto_ctrl_t * p_crypto_ctrl

 pointer to crypto engine control structure

crypto_api_t const * p_crypto_api

 pointer to crypto engine API

uint32_t work_buffer [DRV_AES_CONTEXT_BUFFER_SIZE]

 Examples: AES-GCM mode uses this for storing authentication tag
etc. More...

Detailed Description

AES Interface control structure

Field Documentation

◆ work_buffer

uint32_t aes_ctrl_t::work_buffer[DRV_AES_CONTEXT_BUFFER_SIZE]

Examples: AES-GCM mode uses this for storing authentication tag etc.

used for storing context/state of the Cipher

The documentation for this struct was generated from the following file:

r_aes_api.h

 aes_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » AES Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,086 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface > aes_cfg_t Struct Reference

#include <r_aes_api.h>

Data Fields

crypto_api_t const * p_crypto_api

 pointer to crypto engine api

Detailed Description

AES Interface configuration structure. User must fill in these values before invoking the open()
function

The documentation for this struct was generated from the following file:

r_aes_api.h

 aes_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » AES Interface

#include <r_aes_api.h>

Data Fields

uint32_t(* open)(aes_ctrl_t *const p_ctrl, aes_cfg_t const *const p_cfg)

uint32_t(* createKey)(aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t
*p_key)

 Generate an AES key for encrypt / decrypt operations. More...

uint32_t(* encrypt)(aes_ctrl_t *const p_ctrl, const uint32_t *p_key, uint32_t
*p_iv, uint32_t num_words, uint32_t *p_source, uint32_t *p_dest)

 AES encryption. More...

uint32_t(* addAdditionalAuthenticationData)(aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source)

 Add additional authentication data (called before starting an
encryption or decryption operation) More...

uint32_t(* encryptFinal)(aes_ctrl_t *const p_ctrl, const uint32_t *p_key,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,087 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface > aes_api_t Struct Reference

uint32_t *p_iv, uint32_t input_num_words, uint32_t *p_source,
uint32_t output_num_words, uint32_t *p_dest)

 AES final encryption using the chaining mode and padding mode
specified in the aes.open() function call.

uint32_t(* decrypt)(aes_ctrl_t *const p_ctrl, const uint32_t *p_key, uint32_t
*p_iv, uint32_t imaxcnt, uint32_t *p_source, uint32_t *p_dest)

 AES Decryption. More...

uint32_t(* setGcmTag)(aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t
*p_source)

 set parameter specific to the mode More...

uint32_t(* getGcmTag)(aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t
*p_dest)

 Get authentication tag data. More...

uint32_t(* close)(aes_ctrl_t *const p_ctrl)

uint32_t(* zeroPaddingEncrypt)(aes_ctrl_t *const p_ctrl, const uint32_t *p_key,
uint32_t *p_iv, uint32_t num_bytes, uint32_t *p_source, uint32_t
*p_dest)

 AES zero padding encryption using the chaining mode and padding
mode specified. Implementation for GCM mode only API usage -.
More...

uint32_t(* zeroPaddingDecrypt)(aes_ctrl_t *const p_ctrl, const uint32_t *p_key,
uint32_t *p_iv, uint32_t num_bytes, uint32_t *p_source, uint32_t
*p_dest)

 AES zero padding decryption using the chaining mode and padding
mode specified. Implementation for GCM mode only API usage -.
More...

uint32_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

AES_Interface SCE functions implemented at the HAL layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,088 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface > aes_api_t Struct Reference

◆ addAdditionalAuthenticationData

uint32_t(* aes_api_t::addAdditionalAuthenticationData) (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source)

Add additional authentication data (called before starting an encryption or decryption operation)

Parameters
[in] *p_key pointer to the AES plain-text

key

[in] *p_iv unused for ECB mode

[in] num_words data buffer size in words.
Each word is 4-bytes.
multiples of 4

[in] *p_source input data buffer

◆ close

uint32_t(* aes_api_t::close) (aes_ctrl_t *const p_ctrl)

Close the AES module.

Parameters
[in] p_ctrl pointer to the control

structure

◆ createKey

uint32_t(* aes_api_t::createKey) (aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t *p_key)

Generate an AES key for encrypt / decrypt operations.

Parameters
[in,out] p_ctrl pointer to control structure

for the AES interface.

[in] num_words number of words in buffer
p_key

[out] p_key pointer to key buffer.
Generated key will be stored
at this location.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,089 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface > aes_api_t Struct Reference

◆ decrypt

uint32_t(* aes_api_t::decrypt) (aes_ctrl_t *const p_ctrl, const uint32_t *p_key, uint32_t *p_iv,
uint32_t imaxcnt, uint32_t *p_source, uint32_t *p_dest)

AES Decryption.

Decrypt input data with ECB mode using a 128-bit AES key

Parameters
[in] *p_key 128-bit plain key

[in] *p_iv is a pointer to initialization
vector. For ECB mode this
parameter is unused. NULL
value is acceptable.

[in] num_words Size in words of p_source
and p_dest data buffers.
Each word is 4-bytes. Must
be multiples of 4 words.

[in] *p_source input data buffer

[out] *p_dest output data buffer

◆ encrypt

uint32_t(* aes_api_t::encrypt) (aes_ctrl_t *const p_ctrl, const uint32_t *p_key, uint32_t *p_iv,
uint32_t num_words, uint32_t *p_source, uint32_t *p_dest)

AES encryption.

Encrypt input data with ECB mode using a 128-bit AES key

Parameters
[in] *p_key pointer to the AES plain-text

key

[in] *p_iv is a pointer to initialization
vector. For ECB mode this
parameter is unused. NULL
value is acceptable.

[in] num_words data buffer size in words.
Each word is 4-bytes.
multiples of 4

[in] *p_source input data buffer

[out] *p_dest output data buffer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,090 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface > aes_api_t Struct Reference

◆ getGcmTag

uint32_t(* aes_api_t::getGcmTag) (aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t *p_dest)

Get authentication tag data.

Parameters
[in] p_ctrl pointer to the control

structure

[in] num_words number of words in p_dest
buffer. This must be atleast
4 words

[in] p_dest pointer to data buffer, must
be of size 4 words.

◆ open

uint32_t(* aes_api_t::open) (aes_ctrl_t *const p_ctrl, aes_cfg_t const *const p_cfg)

AES module open function. Must be called before performing any encrypt/decrypt operations.

Parameters
[in,out] p_ctrl pointer to control structure

for the AES interface. Must
be declared by user.
Elements are set here.

[in] p_cfg pointer to control structure
for the AES configuration. All
elements of this structure
must be set by user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,091 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface > aes_api_t Struct Reference

◆ setGcmTag

uint32_t(* aes_api_t::setGcmTag) (aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t *p_source)

set parameter specific to the mode

Parameters
[in] p_ctrl pointer to the control

structure

[in] num_words number of words in p_source
buffer. This must be atleast
4 words

[in] p_source pointer to authentication tag
data buffer, must be of size
4 words.

◆ versionGet

uint32_t(* aes_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version Code and API version used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,092 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface > aes_api_t Struct Reference

◆ zeroPaddingDecrypt

uint32_t(* aes_api_t::zeroPaddingDecrypt) (aes_ctrl_t *const p_ctrl, const uint32_t *p_key, uint32_t
*p_iv, uint32_t num_bytes, uint32_t *p_source, uint32_t *p_dest)

AES zero padding decryption using the chaining mode and padding mode specified.
Implementation for GCM mode only API usage -.

1. Set expected tag value using the setGcmTag() function
2. Provide any Add Authentication Data (AAD), invoke this API using p_dest = NULL
1. Decryption: set p_source to input encrypted data, decrypted data will be returned in p_dest
2. Verify the tag, invoke this API using p_source = NULL and p_dest = NULL, the return value

indicates authentication tag verification status.
Parameters

[in] p_ctrl pointer to the control
structure

[in] *p_key pointer to the AES plain-text
key, the buffer size should
be equal to the keylength

[in] *p_iv the buffer size must be 16
bytes

[in] num_bytes data buffer size in bytes.

[in] *p_source input data buffer, computes
tag when set to NULL.

[out] *p_dest output data buffer, adds
authentication data when
set to NULL.

Note
this function is not thread safe.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,093 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface > aes_api_t Struct Reference

◆ zeroPaddingEncrypt

uint32_t(* aes_api_t::zeroPaddingEncrypt) (aes_ctrl_t *const p_ctrl, const uint32_t *p_key, uint32_t
*p_iv, uint32_t num_bytes, uint32_t *p_source, uint32_t *p_dest)

AES zero padding encryption using the chaining mode and padding mode specified.
Implementation for GCM mode only API usage -.

1. Provide any Add Authentication Data (AAD): set p_dest = NULL
2. Encryption: set p_source to input data and p_dest will return encrypted data
3. Get/Compute Tag: set p_source = NULL

Parameters
[in] p_ctrl pointer to the control

structure

[in] *p_key pointer to the AES plain-text
key, the buffer size should
be equal to the keylength

[in] *p_iv the buffer size must be 16
bytes

[in] num_bytes data buffer size in bytes.

[in] *p_source input data buffer, computes
tag when set to NULL.

[out] *p_dest output data buffer, adds
authentication data when
set to NULL.

Note
this function is not thread safe.

The documentation for this struct was generated from the following file:

r_aes_api.h

 aes_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » AES Interface

#include <r_aes_api.h>

Data Fields

aes_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,094 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > AES Interface > aes_instance_t Struct Reference

aes_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

aes_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_aes_api.h

 ARC4 Interface
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

ARC4 encryption and decryption APIs. More...

Data Structures

struct arc4_ctrl_t

struct arc4_cfg_t

struct arc4_api_t

struct arc4_instance_t

Macros

#define ARC4_API_VERSION_MAJOR (1U)

Variables

const arc4_api_t g_arc4_on_sce

Detailed Description

ARC4 encryption and decryption APIs.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,095 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ARC4 Interface

Macro Definition Documentation

◆ ARC4_API_VERSION_MAJOR

#define ARC4_API_VERSION_MAJOR (1U)

Register definitions, common services and error codes.

Variable Documentation

◆ g_arc4_on_sce

const arc4_api_t g_arc4_on_sce

ARC4 interface is only available on S7G2, S5D9 and S5D5.

SCE/ARC4 implementation of ARC4 API.

 arc4_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » ARC4 Interface

#include <r_arc4_api.h>

Data Fields

crypto_ctrl_t * p_crypto_ctrl

 pointer to crypto engine control structure

crypto_api_t const * p_crypto_api

 pointer to crypto engine API

uint32_t state

 used to identify state of the ARC4 control block

bsp_lock_t open

 indicates whether driver is opened with this control block More...

Detailed Description

ARC4 Interface control structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,096 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ARC4 Interface > arc4_ctrl_t Struct Reference

Field Documentation

◆ open

bsp_lock_t arc4_ctrl_t::open

indicates whether driver is opened with this control block

used for storing context of the cipher < ARC4 uses this for storing the sbox results for the next
encrypt/ decrypt operations

The documentation for this struct was generated from the following file:

r_arc4_api.h

 arc4_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » ARC4 Interface

#include <r_arc4_api.h>

Data Fields

crypto_api_t const * p_crypto_api

 pointer to crypto engine api

uint32_t length

 Length of p_key in bytes.

uint8_t const * p_key

 ARC4 key to use for encrypt or decrypto operations.

Detailed Description

ARC4 Interface configuration structure. User must fill in these values before invoking the open()
function

The documentation for this struct was generated from the following file:

r_arc4_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,097 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ARC4 Interface > arc4_cfg_t Struct Reference

 arc4_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » ARC4 Interface

#include <r_arc4_api.h>

Data Fields

uint32_t(* open)(arc4_ctrl_t *const p_ctrl, arc4_cfg_t const *const p_cfg)

uint32_t(* keySet)(arc4_ctrl_t *const p_ctrl, uint32_t length, uint8_t const
*p_key)

uint32_t(* arc4Process)(arc4_ctrl_t *const p_ctrl, uint32_t num_bytes, uint8_t
*p_source, uint8_t *p_dest)

 Encrypt or decrypt source data p_source of length num_bytes and
write the results to destination buffer p_dest More...

uint32_t(* close)(arc4_ctrl_t *const p_ctrl)

uint32_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

ARC4_Interface SCE functions implemented at the HAL layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,098 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ARC4 Interface > arc4_api_t Struct Reference

◆ arc4Process

uint32_t(* arc4_api_t::arc4Process) (arc4_ctrl_t *const p_ctrl, uint32_t num_bytes, uint8_t
*p_source, uint8_t *p_dest)

Encrypt or decrypt source data p_source of length num_bytes and write the results to destination
buffer p_dest

Parameters
[in,out] p_ctrl pointer to control structure

for ARC4 interface.

[in] num_bytes number of bytes to encrypt
or decrypt, the value must
be a multiple of 16

[in] p_source pointer to source data buffer

[out] p_dest pointer to destination data
buffer

◆ close

uint32_t(* arc4_api_t::close) (arc4_ctrl_t *const p_ctrl)

Close the ARC4 module.

Parameters
[in,out] p_ctrl pointer to the control

structure

◆ keySet

uint32_t(* arc4_api_t::keySet) (arc4_ctrl_t *const p_ctrl, uint32_t length, uint8_t const *p_key)

ARC4 module key set function. Resets the state of the ARC4 encryption block.

Parameters
[in,out] p_ctrl pointer to control structure

for the ARC4 interface.

[in] length length of the p_key key
material in bytes

[in] p_key pointer to the key material
to use for encryption
operations.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,099 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ARC4 Interface > arc4_api_t Struct Reference

◆ open

uint32_t(* arc4_api_t::open) (arc4_ctrl_t *const p_ctrl, arc4_cfg_t const *const p_cfg)

ARC4 module open function. Must be called before performing any encrypt/decrypt operations.
Initializes the context for the encrypt or decrypt operations using the chosen Cipher interface.

Parameters
[in,out] p_ctrl pointer to control structure

for the ARC4 interface. Must
be declared by user.
Elements are set here.

[in] p_cfg pointer to control structure
for the ARC4 configuration.
All elements of this structure
must be set by user.

◆ versionGet

uint32_t(* arc4_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_arc4_api.h

 arc4_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » ARC4 Interface

#include <r_arc4_api.h>

Data Fields

arc4_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,100 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ARC4 Interface > arc4_instance_t Struct Reference

arc4_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

arc4_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_arc4_api.h

 DSA Interface
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

DSA (Digital Signature Algorithm) signature generation and verification APIs. More...

Data Structures

struct dsa_ctrl_t

struct dsa_cfg_t

struct dsa_api_t

struct dsa_instance_t

Macros

#define DSA_API_VERSION_MAJOR (1U)

Variables

const dsa_api_t g_dsa1024_160_on_sce

const dsa_api_t g_dsa2048_224_on_sce

const dsa_api_t g_dsa2048_256_on_sce

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,101 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > DSA Interface

Detailed Description

DSA (Digital Signature Algorithm) signature generation and verification APIs.

Macro Definition Documentation

◆ DSA_API_VERSION_MAJOR

#define DSA_API_VERSION_MAJOR (1U)

Register definitions, common services and error codes.

Variable Documentation

◆ g_dsa1024_160_on_sce

const dsa_api_t g_dsa1024_160_on_sce

DSA interface is only available on S7G2, S5D9 and S5D5.

SCE/DSA implementation of DSA API.

◆ g_dsa2048_224_on_sce

const dsa_api_t g_dsa2048_224_on_sce

SCE/DSA implementation of DSA API.

◆ g_dsa2048_256_on_sce

const dsa_api_t g_dsa2048_256_on_sce

SCE/DSA implementation of DSA API.

 dsa_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » DSA Interface

#include <r_dsa_api.h>

Data Fields

crypto_ctrl_t * p_crypto_ctrl

 pointer to crypto engine control structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,102 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > DSA Interface > dsa_ctrl_t Struct Reference

crypto_api_t const * p_crypto_api

 pointer to crypto engine API

Detailed Description

DSA Interface control structure

The documentation for this struct was generated from the following file:

r_dsa_api.h

 dsa_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » DSA Interface

#include <r_dsa_api.h>

Data Fields

crypto_api_t const * p_crypto_api

 pointer to crypto engine api

Detailed Description

DSA Interface configuration structure. User must fill in these values before invoking the open()
function

The documentation for this struct was generated from the following file:

r_dsa_api.h

 dsa_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » DSA Interface

#include <r_dsa_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,103 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > DSA Interface > dsa_api_t Struct Reference

uint32_t(* open)(dsa_ctrl_t *const p_ctrl, dsa_cfg_t const *const p_cfg)

uint32_t(* verify)(const uint32_t *p_key, const uint32_t *p_domain, uint32_t
num_words, uint32_t *p_signature, uint32_t *p_paddedHash)

 DSA signature verification using given DSA public key. More...

uint32_t(* hashVerify)(dsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const
uint32_t *p_domain, uint32_t num_words, uint32_t *p_signature,
uint32_t *p_paddedHash)

 DSA signature verification using given DSA public key. More...

uint32_t(* sign)(const uint32_t *p_key, const uint32_t *p_domain, uint32_t
num_words, uint32_t *p_paddedHash, uint32_t *p_dest)

 DSA Signature generation using DSA private key. More...

uint32_t(* hashSign)(dsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const
uint32_t *p_domain, uint32_t num_words, uint32_t *p_paddedHash,
uint32_t *p_dest)

 DSA Signature generation using DSA private key. More...

uint32_t(* close)(dsa_ctrl_t *const p_ctrl)

uint32_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

DSA_Interface SCE functions implemented at the HAL layer will follow this API.

Field Documentation

◆ close

uint32_t(* dsa_api_t::close) (dsa_ctrl_t *const p_ctrl)

Close the DSA module.

Parameters
[in] p_ctrl pointer to the control

structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,104 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > DSA Interface > dsa_api_t Struct Reference

◆ hashSign

uint32_t(* dsa_api_t::hashSign) (dsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const uint32_t
*p_domain, uint32_t num_words, uint32_t *p_paddedHash, uint32_t *p_dest)

DSA Signature generation using DSA private key.

Generate signature for the buffer p_paddedHash with the given DSA private key p_key for the
domain parameters p_domain. The result will be written to the buffer p_dest

Parameters
[in] *p_ctrl pointer to control structure

[in] *p_key DSA plain text private key

[in] *p_domain pointer to DSA domain
parameters.

[in] num_words data buffer size in words.
Each word is 4-bytes.
multiples of 4

[in] *p_paddedHash input data buffer

[out] *p_dest output data buffer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,105 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > DSA Interface > dsa_api_t Struct Reference

◆ hashVerify

uint32_t(* dsa_api_t::hashVerify) (dsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const uint32_t
*p_domain, uint32_t num_words, uint32_t *p_signature, uint32_t *p_paddedHash)

DSA signature verification using given DSA public key.

Verify DSA signature from buffer p_signature using the given DSA public key p_key with domain
parameters from p_domain for the input message hash p_paddedHash

Parameters
[in] *p_ctrl pointer to DSA control

structure

[in] *p_key pointer to the DSA plain-text
key.

[in] *p_domain pointer to DSA domain
parameters.

[in] num_words data buffer size in words.
Each word is 4-bytes.
multiples of 4

[in] *p_signature signature data buffer to be
verified

[in] *p_paddedHash padded hash of the input
message

◆ open

uint32_t(* dsa_api_t::open) (dsa_ctrl_t *const p_ctrl, dsa_cfg_t const *const p_cfg)

DSA module open function. Must be called before performing any encrypt/decrypt operations.

Parameters
[in,out] p_ctrl pointer to control structure

for the DSA interface. Must
be declared by user.
Elements are set here.

[in] p_cfg pointer to control structure
for the DSA configuration. All
elements of this structure
must be set by user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,106 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > DSA Interface > dsa_api_t Struct Reference

◆ sign

uint32_t(* dsa_api_t::sign) (const uint32_t *p_key, const uint32_t *p_domain, uint32_t num_words,
uint32_t *p_paddedHash, uint32_t *p_dest)

DSA Signature generation using DSA private key.

Generate signature for the buffer p_paddedHash with the given DSA private key p_key for the
domain parameters p_domain. The result will be written to the buffer p_dest

Parameters
[in] *p_key DSA plain text private key

[in] *p_domain pointer to DSA domain
parameters.

[in] num_words data buffer size in words.
Each word is 4-bytes.
multiples of 4

[in] *p_paddedHash input data buffer

[out] *p_dest output data buffer

◆ verify

uint32_t(* dsa_api_t::verify) (const uint32_t *p_key, const uint32_t *p_domain, uint32_t num_words,
uint32_t *p_signature, uint32_t *p_paddedHash)

DSA signature verification using given DSA public key.

Verify DSA signature from buffer p_signature using the given DSA public key p_key with domain
parameters from p_domain for the input message hash p_paddedHash

Parameters
[in] *p_key pointer to the DSA plain-text

key.

[in] *p_domain pointer to DSA domain
parameters.

[in] num_words data buffer size in words.
Each word is 4-bytes.
multiples of 4

[in] *p_signature signature data buffer to be
verified

[in] *p_paddedHash padded hash of the input
message

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,107 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > DSA Interface > dsa_api_t Struct Reference

◆ versionGet

uint32_t(* dsa_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_dsa_api.h

 dsa_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » DSA Interface

#include <r_dsa_api.h>

Data Fields

dsa_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

dsa_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

dsa_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_dsa_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,108 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > DSA Interface > dsa_instance_t Struct Reference

 ECC Interface
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

ECC cryptographic functions for scalar multiplication, generate key, generate sign, verify sign and
version get. More...

Data Structures

struct ecc_ctrl_t

struct ecc_cfg_t

struct ecc_api_t

struct ecc_instance_t

Macros

#define ECC_API_VERSION_MAJOR (1U)

Variables

const ecc_api_t g_ecc192_on_sce

const ecc_api_t g_ecc192_on_sce_hrk

const ecc_api_t g_ecc224_on_sce

const ecc_api_t g_ecc224_on_sce_hrk

const ecc_api_t g_ecc256_on_sce

const ecc_api_t g_ecc256_on_sce_hrk

const ecc_api_t g_ecc384_on_sce

const ecc_api_t g_ecc384_on_sce_hrk

Detailed Description

ECC cryptographic functions for scalar multiplication, generate key, generate sign, verify sign and
version get.

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,109 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ECC Interface

◆ ECC_API_VERSION_MAJOR

#define ECC_API_VERSION_MAJOR (1U)

Register definitions, common services and error codes.

Variable Documentation

◆ g_ecc192_on_sce

const ecc_api_t g_ecc192_on_sce

ECC interface is only available on S7G2, S5D9 and S5D5.

Exported global variablesSCE/ECC implementation of ECC API.

◆ g_ecc192_on_sce_hrk

const ecc_api_t g_ecc192_on_sce_hrk

Exported global variablesSCE/ECC implementation of ECC API.

◆ g_ecc224_on_sce

const ecc_api_t g_ecc224_on_sce

Exported global variablesSCE/ECC implementation of ECC API.

◆ g_ecc224_on_sce_hrk

const ecc_api_t g_ecc224_on_sce_hrk

Exported global variablesSCE/ECC implementation of ECC API.

◆ g_ecc256_on_sce

const ecc_api_t g_ecc256_on_sce

Exported global variablesSCE/ECC implementation of ECC API.

◆ g_ecc256_on_sce_hrk

const ecc_api_t g_ecc256_on_sce_hrk

Exported global variablesSCE/ECC implementation of ECC API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,110 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ECC Interface

◆ g_ecc384_on_sce

const ecc_api_t g_ecc384_on_sce

Exported global variablesSCE/ECC implementation of ECC API.

◆ g_ecc384_on_sce_hrk

const ecc_api_t g_ecc384_on_sce_hrk

Exported global variablesSCE/ECC implementation of ECC API.

 ecc_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » ECC Interface

#include <r_ecc_api.h>

Data Fields

crypto_ctrl_t * p_crypto_ctrl

 Pointer to crypto engine control structure.

crypto_api_t const * p_crypto_api

 Pointer to crypto engine API.

Detailed Description

ECC Interface control structure.

The documentation for this struct was generated from the following file:

r_ecc_api.h

 ecc_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » ECC Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,111 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ECC Interface > ecc_cfg_t Struct Reference

#include <r_ecc_api.h>

Data Fields

crypto_api_t const * p_crypto_api

 Pointer to crypto engine API.

Detailed Description

ECC Interface configuration structure.

The documentation for this struct was generated from the following file:

r_ecc_api.h

 ecc_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » ECC Interface

#include <r_ecc_api.h>

Data Fields

ssp_err_t(* open)(ecc_ctrl_t *const p_ctrl, ecc_cfg_t const *const p_cfg)

 Open the ECC driver. This API must be called before performing any
ECC operations. More...

ssp_err_t(* close)(ecc_ctrl_t *const p_ctrl)

 Close the ECC module. More...

ssp_err_t(* scalarMultiplication)(ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t
*const p_domain, r_crypto_data_handle_t *const p_k,
r_crypto_data_handle_t *const p_p, r_crypto_data_handle_t *const
p_r)

 scalarMultiplication: This API calculates R=kP. More...

ssp_err_t(* keyCreate)(ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point,
r_crypto_data_handle_t *const p_key_private, r_crypto_data_handle_t
*const p_key_public)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,112 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ECC Interface > ecc_api_t Struct Reference

 keyCreate: This API generates key pair for ECC. More...

ssp_err_t(* sign)(ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point,
r_crypto_data_handle_t *const p_key_private, r_crypto_data_handle_t
*const msg_digest, r_crypto_data_handle_t *const signature_r,
r_crypto_data_handle_t *const signature_s)

 sign: This API generates signature of ECDSA More...

ssp_err_t(* verify)(ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point,
r_crypto_data_handle_t *const p_key_public, r_crypto_data_handle_t
*const msg_digest, r_crypto_data_handle_t *const signature_r,
r_crypto_data_handle_t *const signature_s)

 verify: This is a procedure for signature verification of ECDSA. More...

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

 versionGet: Gets version and stores it in provided pointer p_version.
More...

Detailed Description

ECC_Interface SCE functions implemented at the HAL layer will follow this API.

Field Documentation

◆ close

ssp_err_t(* ecc_api_t::close) (ecc_ctrl_t *const p_ctrl)

Close the ECC module.

Parameters
[in] p_ctrl Pointer to the control

structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,113 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ECC Interface > ecc_api_t Struct Reference

◆ keyCreate

ssp_err_t(* ecc_api_t::keyCreate) (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const p_domain,
r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const p_key_private,
r_crypto_data_handle_t *const p_key_public)

keyCreate: This API generates key pair for ECC.

Parameters
[in] p_ctrl Pointer to control structure

for the ECC interface.

[in] p_domain a||b||p||n - These are domain
parameters for ECC as
defined in FIPS186-3.

[in] p_generator_point Gx||Gy - Base point of the
curve, where, Gx and Gy are
x and y coordinates
respectively. This parameter
is one of the domain
parameters.

[in,out] p_key_private Private Key generated. Data
length in words is updated in
the output buffer data
handle.

[in,out] p_key_public Public Key generated. Data
length in words is updated in
the output buffer data
handle.

◆ open

ssp_err_t(* ecc_api_t::open) (ecc_ctrl_t *const p_ctrl, ecc_cfg_t const *const p_cfg)

Open the ECC driver. This API must be called before performing any ECC operations.

Parameters
[in] p_ctrl Pointer to control structure.

Must be allocated by user
before calling the API.
Elements are set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user before calling this API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,114 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ECC Interface > ecc_api_t Struct Reference

◆ scalarMultiplication

ssp_err_t(* ecc_api_t::scalarMultiplication) (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_k, r_crypto_data_handle_t *const p_p,
r_crypto_data_handle_t *const p_r)

scalarMultiplication: This API calculates R=kP.

Parameters
[in] p_ctrl Pointer to control structure

for the ECC interface.

[in] p_domain a||b||p - These are domain
parameters for ECC as
defined in IEEE1363.

[in] p_k Scalar.

[in] p_p Px||Py, where, Px and Py are
x and y coordinates
respectively.

[in,out] p_r Rx||Ry (R=kP), where, Rx
and Ry are x and y
coordinates respectively.
Data length in words is
updated in the output buffer
data handle.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,115 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ECC Interface > ecc_api_t Struct Reference

◆ sign

ssp_err_t(* ecc_api_t::sign) (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const p_domain,
r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const p_key_private,
r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const signature_r,
r_crypto_data_handle_t *const signature_s)

sign: This API generates signature of ECDSA

Parameters
[in] p_ctrl Pointer to control structure

for the ECC interface.

[in] p_domain a||b||p||n - These are domain
parameters for ECC as
defined in IEEE1363.

[in] p_generator_point Gx||Gy - Base point of the
curve, where, Gx and Gy are
x and y coordinates
respectively. This parameter
is one of the domain
parameters.

[in] p_key_private Private Key to process
signature generation.

[in] msg_digest Message Digest. Length of
this buffer must be equal to
the ECC curve size in words.

[in,out] signature_r Signature r generated. Data
length in words is updated in
the output buffer data
handle.

[in,out] signature_s Signature s generated. Data
length in words is updated in
the output buffer data
handle.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,116 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ECC Interface > ecc_api_t Struct Reference

◆ verify

ssp_err_t(* ecc_api_t::verify) (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const p_domain,
r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const p_key_public,
r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const signature_r,
r_crypto_data_handle_t *const signature_s)

verify: This is a procedure for signature verification of ECDSA.

Parameters
[in] p_ctrl Pointer to control structure

for the ECC interface.

[in] p_domain a||b||p||n - These are domain
parameters for ECC as
defined in IEEE1363.

[in] p_generator_point Gx||Gy - Base point of the
curve, where, Gx and Gy are
x and y coordinates
respectively. This parameter
is one of the domain
parameters.

[in] p_key_public Public Key for signature
verification.

[in] msg_digest Padded Message Digest.
Length of this buffer must be
equal to the ECC curve size
in words.

[in] signature_r Signature r.

[in] signature_s Signature s.

◆ versionGet

ssp_err_t(* ecc_api_t::versionGet) (ssp_version_t *const p_version)

versionGet: Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_ecc_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,117 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > ECC Interface > ecc_api_t Struct Reference

 ecc_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » ECC Interface

#include <r_ecc_api.h>

Data Fields

ecc_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

ecc_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

ecc_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_ecc_api.h

 HASH Algorithm Interface
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

HASH_Interface Hash algorithm APIs. More...

Data Structures

struct hash_cfg_t

struct hash_ctrl_t

struct hash_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,118 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > HASH Algorithm Interface

struct hash_instance_t

Macros

#define HASH_API_VERSION_MAJOR (1U)

Variables

const hash_api_t g_md5_hash_on_sce

const hash_api_t g_sha1_hash_on_sce

const hash_api_t g_sha256_hash_on_sce

Detailed Description

HASH_Interface Hash algorithm APIs.

Macro Definition Documentation

◆ HASH_API_VERSION_MAJOR

#define HASH_API_VERSION_MAJOR (1U)

Register definitions, common services and error codes.

Variable Documentation

◆ g_md5_hash_on_sce

const hash_api_t g_md5_hash_on_sce

HASH interface is only available on S7G2, S5D9 and S5D5.

MD5 implementation of HASH API.

◆ g_sha1_hash_on_sce

const hash_api_t g_sha1_hash_on_sce

SHA1 implementation of HASH API.

◆ g_sha256_hash_on_sce

const hash_api_t g_sha256_hash_on_sce

SHA256 implementation of HASH API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,119 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > HASH Algorithm Interface

 hash_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » HASH Algorithm
Interface

#include <r_hash_api.h>

Data Fields

crypto_ctrl_t * p_crypto_ctrl

 pointer to crypto engine control structure

crypto_api_t const * p_crypto_api

 pointer to crypto engine API structure

Detailed Description

HASH_Interface configuration structure

The documentation for this struct was generated from the following file:

r_hash_api.h

 hash_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » HASH Algorithm
Interface

#include <r_hash_api.h>

Data Fields

uint32_t msgbuf [HASH_MESSAGE_BLOCK_SIZE_WORDS]

 message buffer to be hashed

uint32_t hash [HASH_MAX_DIGEST_SIZE_WORDS]

 current hash value

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,120 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > HASH Algorithm Interface > hash_ctrl_t Struct Reference

uint64_t length

 64-bit message length (number of bits)

crypto_api_t const * p_crypto_api

 pointer to crypto engine API

Detailed Description

HASH_Interface control structure

The documentation for this struct was generated from the following file:

r_hash_api.h

 hash_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » HASH Algorithm
Interface

#include <r_hash_api.h>

Data Fields

uint32_t(* open)(hash_ctrl_t *const p_ctrl, hash_cfg_t const *const p_cfg)

uint32_t(* updateHash)(const uint32_t *p_source, uint32_t num_words,
uint32_t *p_dest)

uint32_t(* hashUpdate)(hash_ctrl_t *const p_ctrl, const uint32_t *p_source,
uint32_t num_words, uint32_t *p_dest)

uint32_t(* close)(hash_ctrl_t *const p_ctrl)

uint32_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

HASH_Interface SCE functions implemented at the HAL layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,121 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > HASH Algorithm Interface > hash_api_t Struct Reference

◆ close

uint32_t(* hash_api_t::close) (hash_ctrl_t *const p_ctrl)

Close the hash module.

Parameters
[in] p_ctrl Pointer to the hash_ctrl_t

control structure

◆ hashUpdate

uint32_t(* hash_api_t::hashUpdate) (hash_ctrl_t *const p_ctrl, const uint32_t *p_source, uint32_t
num_words, uint32_t *p_dest)

update hash for the num_words words from source buffer p_source.

Parameters
[in] p_ctrl pointer to hash_ctrl_t control

structure.

[in] p_source pointer to input message
buffer. size must be a
multiple of 64-bytes

[in] num_words number of words to be
hashed from the buffer
p_source

[in,out] p_dest pointer to the message
digest. on input contains
initialization value.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,122 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > HASH Algorithm Interface > hash_api_t Struct Reference

◆ open

uint32_t(* hash_api_t::open) (hash_ctrl_t *const p_ctrl, hash_cfg_t const *const p_cfg)

HASH_Interface: Initial configuration

Precondition
HASH_Interface: Peripheral clocks and any required output pins should be configured prior
to calling this function.

Parameters
[in,out] HASH_Interface p_ctrl Pointer to control

structure. Must be declared
by user. Elements set here.

[in] HASH_Interface p_cfg Pointer to
configuration structure. All
elements of this structure
must be set by user.

◆ updateHash

uint32_t(* hash_api_t::updateHash) (const uint32_t *p_source, uint32_t num_words, uint32_t
*p_dest)

update hash for the num_words words from source buffer p_source.

Parameters
[in] p_source pointer to input message

buffer. size must be a
multiple of 64-bytes

[in] num_words number of words to be
hashed from the buffer
p_source

[in,out] p_dest pointer to the message
digest. on input contains
initialization value.

◆ versionGet

uint32_t(* hash_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version Code and API version used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,123 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > HASH Algorithm Interface > hash_api_t Struct Reference

The documentation for this struct was generated from the following file:

r_hash_api.h

 hash_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » HASH Algorithm
Interface

#include <r_hash_api.h>

Data Fields

hash_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

hash_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

hash_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_hash_api.h

 KEY_INSTALLATION Interface
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

Key Installation functions for Key Installation procedure. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,124 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface

Data Structures

struct key_installation_key_t

struct key_installation_cfg_t

struct key_installation_api_t

struct key_installation_instance_t

Macros

#define SCE_KEY_INSTALLATION_API_VERSION_MAJOR (2U)

#define KEY_INSTALLATION_SESSION_KEY_SIZE_IN_WORDS (8U)

#define KEY_INSTALLATION_RSA1024_MODULUS_SIZE_IN_WORDS (32U)

#define KEY_INSTALLATION_RSA2048_MODULUS_SIZE_IN_WORDS (64U)

#define KEY_INSTALLATION_RSA1024_ENCRYPTED_KEY_SIZE_IN_WORDS
 (36U)

#define KEY_INSTALLATION_RSA2048_ENCRYPTED_KEY_SIZE_IN_WORDS
 (68U)

#define KEY_INSTALLATION_RSA1024_WRAPPED_PRIVKEY_SIZE_IN_WORDS
 (37U)

#define KEY_INSTALLATION_RSA2048_WRAPPED_PRIVKEY_SIZE_IN_WORDS
 (69U)

#define KEY_INSTALLATION_AES128_ENCRYPTED_KEY_SIZE_IN_WORDS (8U)

#define KEY_INSTALLATION_AES192_ENCRYPTED_KEY_SIZE_IN_WORDS
 (12U)

#define KEY_INSTALLATION_AES256_ENCRYPTED_KEY_SIZE_IN_WORDS
 (12U)

#define KEY_INSTALLATION_AES128_ENCRYPTED_XTS_KEY_SIZE_IN_WORDS
 (12U)

#define KEY_INSTALLATION_AES256_ENCRYPTED_XTS_KEY_SIZE_IN_WORDS
 (20U)

#define KEY_INSTALLATION_AES128_WRAPPED_KEY_SIZE_IN_WORDS (9U)

#define KEY_INSTALLATION_AES192_WRAPPED_KEY_SIZE_IN_WORDS (13U)

#define KEY_INSTALLATION_AES256_WRAPPED_KEY_SIZE_IN_WORDS (13U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,125 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface

#define KEY_INSTALLATION_AES128_WRAPPED_XTS_KEY_SIZE_IN_WORDS
 (13U)

#define KEY_INSTALLATION_AES256_WRAPPED_XTS_KEY_SIZE_IN_WORDS
 (21U)

#define KEY_INSTALLATION_ECC192_ENCRYPTED_KEY_SIZE_IN_WORDS
 (12U)

#define KEY_INSTALLATION_ECC224_ENCRYPTED_KEY_SIZE_IN_WORDS
 (12U)

#define KEY_INSTALLATION_ECC256_ENCRYPTED_KEY_SIZE_IN_WORDS
 (12U)

#define KEY_INSTALLATION_ECC384_ENCRYPTED_KEY_SIZE_IN_WORDS
 (16U)

#define KEY_INSTALLATION_ECC192_WRAPPED_KEY_SIZE_IN_WORDS (13U)

#define KEY_INSTALLATION_ECC224_WRAPPED_KEY_SIZE_IN_WORDS (13U)

#define KEY_INSTALLATION_ECC256_WRAPPED_KEY_SIZE_IN_WORDS (13U)

#define KEY_INSTALLATION_ECC384_WRAPPED_KEY_SIZE_IN_WORDS (17U)

Typedefs

typedef void key_installation_ctrl_t

Enumerations

enum key_installation_key_format_t {
 KEY_INSTALLATION_KEY_FORMAT_ENCRYPTED_RSA_PRIVATE_KEY,
KEY_INSTALLATION_KEY_FORMAT_WRAPPED_RSA_PRIVATE_KEY,
KEY_INSTALLATION_KEY_FORMAT_ENCRYPTED_AES_KEY,
KEY_INSTALLATION_KEY_FORMAT_WRAPPED_AES_KEY,
 KEY_INSTALLATION_KEY_FORMAT_ENCRYPTED_INSTALL_KEY,
KEY_INSTALLATION_KEY_FORMAT_ENCRYPTED_ECC_PRIVATE_KEY,
KEY_INSTALLATION_KEY_FORMAT_WRAPPED_ECC_PRIVATE_KEY,
KEY_INSTALLATION_KEY_FORMAT_ENCRYPTED_RSA_PRIVATE_CRT_KE
Y,

KEY_INSTALLATION_KEY_FORMAT_WRAPPED_RSA_PRIVATE_CRT_KEY,
KEY_INSTALLATION_KEY_FORMAT_SESSION_KEY
}

enum key_installation_key_size_t {
 KEY_INSTALLATION_KEY_SIZE_RSA_1024,
KEY_INSTALLATION_KEY_SIZE_RSA_2048,
KEY_INSTALLATION_KEY_SIZE_AES_128,
KEY_INSTALLATION_KEY_SIZE_AES_XTS_128,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,126 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface

 KEY_INSTALLATION_KEY_SIZE_AES_192,
KEY_INSTALLATION_KEY_SIZE_AES_256,
KEY_INSTALLATION_KEY_SIZE_AES_XTS_256,
KEY_INSTALLATION_KEY_SIZE_ENCRYPTED_INSTALL_416,
 KEY_INSTALLATION_KEY_SIZE_ECC_192,
KEY_INSTALLATION_KEY_SIZE_ECC_224,
KEY_INSTALLATION_KEY_SIZE_ECC_256,
KEY_INSTALLATION_KEY_SIZE_ECC_384,
 KEY_INSTALLATION_KEY_SIZE_SESSION
}

enum key_installation_key_shared_index_t {
 KEY_INSTALLATION_KEY_SHARED_INDEX_0,
KEY_INSTALLATION_KEY_SHARED_INDEX_1,
KEY_INSTALLATION_KEY_SHARED_INDEX_2,
KEY_INSTALLATION_KEY_SHARED_INDEX_3,
 KEY_INSTALLATION_KEY_SHARED_INDEX_4,
KEY_INSTALLATION_KEY_SHARED_INDEX_5,
KEY_INSTALLATION_KEY_SHARED_INDEX_6,
KEY_INSTALLATION_KEY_SHARED_INDEX_7,
 KEY_INSTALLATION_KEY_SHARED_INDEX_8,
KEY_INSTALLATION_KEY_SHARED_INDEX_9,
KEY_INSTALLATION_KEY_SHARED_INDEX_A,
KEY_INSTALLATION_KEY_SHARED_INDEX_B,
 KEY_INSTALLATION_KEY_SHARED_INDEX_C,
KEY_INSTALLATION_KEY_SHARED_INDEX_D,
KEY_INSTALLATION_KEY_SHARED_INDEX_E,
KEY_INSTALLATION_KEY_SHARED_INDEX_F
}

Detailed Description

Key Installation functions for Key Installation procedure.

Macro Definition Documentation

◆ KEY_INSTALLATION_AES128_ENCRYPTED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_AES128_ENCRYPTED_KEY_SIZE_IN_WORDS (8U)

Macro definitions for AES Key sizes AES Encrypted key size in words for a 128-bit AES Key

◆ KEY_INSTALLATION_AES128_ENCRYPTED_XTS_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_AES128_ENCRYPTED_XTS_KEY_SIZE_IN_WORDS (12U)

AES Encrypted key size in words for a 128-bit AES Key in XTS chaining mode

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,127 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface

◆ KEY_INSTALLATION_AES128_WRAPPED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_AES128_WRAPPED_KEY_SIZE_IN_WORDS (9U)

AES Wrapped (output) key size in words for a 128-bit AES Key

◆ KEY_INSTALLATION_AES128_WRAPPED_XTS_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_AES128_WRAPPED_XTS_KEY_SIZE_IN_WORDS (13U)

AES Wrapped (output) key size in words for a 128-bit AES Key in XTS chaining mode

◆ KEY_INSTALLATION_AES192_ENCRYPTED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_AES192_ENCRYPTED_KEY_SIZE_IN_WORDS (12U)

AES Encrypted key size in words for a 192-bit AES Key

◆ KEY_INSTALLATION_AES192_WRAPPED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_AES192_WRAPPED_KEY_SIZE_IN_WORDS (13U)

AES Wrapped (output) key size in words for a 192-bit AES Key

◆ KEY_INSTALLATION_AES256_ENCRYPTED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_AES256_ENCRYPTED_KEY_SIZE_IN_WORDS (12U)

AES Encrypted key size in words for a 256-bit AES Key

◆ KEY_INSTALLATION_AES256_ENCRYPTED_XTS_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_AES256_ENCRYPTED_XTS_KEY_SIZE_IN_WORDS (20U)

AES Encrypted key size in words for a 256-bit AES Key in XTS chaining mode

◆ KEY_INSTALLATION_AES256_WRAPPED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_AES256_WRAPPED_KEY_SIZE_IN_WORDS (13U)

AES Wrapped (output) key size in words for a 256-bit AES Key

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,128 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface

◆ KEY_INSTALLATION_AES256_WRAPPED_XTS_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_AES256_WRAPPED_XTS_KEY_SIZE_IN_WORDS (21U)

AES Wrapped (output) key size in words for a 256-bit AES Key in XTS chaining mode

◆ KEY_INSTALLATION_ECC192_ENCRYPTED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_ECC192_ENCRYPTED_KEY_SIZE_IN_WORDS (12U)

Macro definitions for ECC Key sizes ECC Encrypted key size in words for a 192-bit ECC Key

◆ KEY_INSTALLATION_ECC192_WRAPPED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_ECC192_WRAPPED_KEY_SIZE_IN_WORDS (13U)

ECC Wrapped (output) key size in words for a 192-bit ECC Key

◆ KEY_INSTALLATION_ECC224_ENCRYPTED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_ECC224_ENCRYPTED_KEY_SIZE_IN_WORDS (12U)

ECC Encrypted key size in words for a 224-bit ECC Key

◆ KEY_INSTALLATION_ECC224_WRAPPED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_ECC224_WRAPPED_KEY_SIZE_IN_WORDS (13U)

ECC Wrapped (output) key size in words for a 224-bit ECC Key

◆ KEY_INSTALLATION_ECC256_ENCRYPTED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_ECC256_ENCRYPTED_KEY_SIZE_IN_WORDS (12U)

ECC Encrypted key size in words for 256-bit ECC Key

◆ KEY_INSTALLATION_ECC256_WRAPPED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_ECC256_WRAPPED_KEY_SIZE_IN_WORDS (13U)

ECC Wrapped (output) key size in words for a 256-bit ECC Key

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,129 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface

◆ KEY_INSTALLATION_ECC384_ENCRYPTED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_ECC384_ENCRYPTED_KEY_SIZE_IN_WORDS (16U)

ECC Encrypted key size in words for a 384-bit ECC Key

◆ KEY_INSTALLATION_ECC384_WRAPPED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_ECC384_WRAPPED_KEY_SIZE_IN_WORDS (17U)

ECC Wrapped (output) key size in words for a 384-bit ECC Key

◆ KEY_INSTALLATION_RSA1024_ENCRYPTED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_RSA1024_ENCRYPTED_KEY_SIZE_IN_WORDS (36U)

RSA Encrypted key size in words for a 1024-bit RSA (private) Key

◆ KEY_INSTALLATION_RSA1024_MODULUS_SIZE_IN_WORDS

#define KEY_INSTALLATION_RSA1024_MODULUS_SIZE_IN_WORDS (32U)

Macro definitions for RSA Key sizes RSA Modulus size in words for a 1024-bit RSA Key

◆ KEY_INSTALLATION_RSA1024_WRAPPED_PRIVKEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_RSA1024_WRAPPED_PRIVKEY_SIZE_IN_WORDS (37U)

RSA Wrapped (output) private key size in words for a 1024-bit RSA Key

◆ KEY_INSTALLATION_RSA2048_ENCRYPTED_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_RSA2048_ENCRYPTED_KEY_SIZE_IN_WORDS (68U)

RSA Encrypted key size in words for a 2048-bit RSA (private) Key

◆ KEY_INSTALLATION_RSA2048_MODULUS_SIZE_IN_WORDS

#define KEY_INSTALLATION_RSA2048_MODULUS_SIZE_IN_WORDS (64U)

RSA Modulus size in words for a 2048-bit RSA Key

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,130 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface

◆ KEY_INSTALLATION_RSA2048_WRAPPED_PRIVKEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_RSA2048_WRAPPED_PRIVKEY_SIZE_IN_WORDS (69U)

RSA Wrapped (output) private key size in words for a 2048-bit RSA Key

◆ KEY_INSTALLATION_SESSION_KEY_SIZE_IN_WORDS

#define KEY_INSTALLATION_SESSION_KEY_SIZE_IN_WORDS (8U)

Macro definitions for universal KeyInstall Session/ IV Key sizes

◆ SCE_KEY_INSTALLATION_API_VERSION_MAJOR

#define SCE_KEY_INSTALLATION_API_VERSION_MAJOR (2U)

Register definitions, common services and error codes.

Typedef Documentation

◆ key_installation_ctrl_t

typedef void key_installation_ctrl_t

Key Installation control block. Allocate using driver instance control structure from driver instance
header file.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,131 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface

◆ key_installation_key_format_t

enum key_installation_key_format_t

A structure to handle data for Key Installation module operation Supported key format definitions

Enumerator

KEY_INSTALLATION_KEY_FORMAT_ENCRYPTED_R
SA_PRIVATE_KEY

Encrypted RSA Private key.

KEY_INSTALLATION_KEY_FORMAT_WRAPPED_RS
A_PRIVATE_KEY

RSA Private Key wrapped.

KEY_INSTALLATION_KEY_FORMAT_ENCRYPTED_A
ES_KEY

Encrypted AES Private key.

KEY_INSTALLATION_KEY_FORMAT_WRAPPED_AES
_KEY

AES Private Key wrapped.

KEY_INSTALLATION_KEY_FORMAT_ENCRYPTED_I
NSTALL_KEY

TO BE REMOVED w/ RSA/ ECC MODS.

KEY_INSTALLATION_KEY_FORMAT_ENCRYPTED_E
CC_PRIVATE_KEY

Encrypted ECC Private key.

KEY_INSTALLATION_KEY_FORMAT_WRAPPED_EC
C_PRIVATE_KEY

ECC Private Key wrapped.

KEY_INSTALLATION_KEY_FORMAT_ENCRYPTED_R
SA_PRIVATE_CRT_KEY

Encrypted RSA Private CRT key.

KEY_INSTALLATION_KEY_FORMAT_WRAPPED_RS
A_PRIVATE_CRT_KEY

RSA Private CRT Key wrapped.

KEY_INSTALLATION_KEY_FORMAT_SESSION_KEY Session key for keyInstall API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,132 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface

◆ key_installation_key_shared_index_t

enum key_installation_key_shared_index_t

Supported Shared Key Index values (for keyInstall)

Enumerator

KEY_INSTALLATION_KEY_SHARED_INDEX_0 Shared Key Index 0.

KEY_INSTALLATION_KEY_SHARED_INDEX_1 Shared Key Index 1.

KEY_INSTALLATION_KEY_SHARED_INDEX_2 Shared Key Index 2.

KEY_INSTALLATION_KEY_SHARED_INDEX_3 Shared Key Index 3.

KEY_INSTALLATION_KEY_SHARED_INDEX_4 Shared Key Index 4.

KEY_INSTALLATION_KEY_SHARED_INDEX_5 Shared Key Index 5.

KEY_INSTALLATION_KEY_SHARED_INDEX_6 Shared Key Index 6.

KEY_INSTALLATION_KEY_SHARED_INDEX_7 Shared Key Index 7.

KEY_INSTALLATION_KEY_SHARED_INDEX_8 Shared Key Index 8.

KEY_INSTALLATION_KEY_SHARED_INDEX_9 Shared Key Index 9.

KEY_INSTALLATION_KEY_SHARED_INDEX_A Shared Key Index 10.

KEY_INSTALLATION_KEY_SHARED_INDEX_B Shared Key Index 11.

KEY_INSTALLATION_KEY_SHARED_INDEX_C Shared Key Index 12.

KEY_INSTALLATION_KEY_SHARED_INDEX_D Shared Key Index 13.

KEY_INSTALLATION_KEY_SHARED_INDEX_E Shared Key Index 14.

KEY_INSTALLATION_KEY_SHARED_INDEX_F Shared Key Index 15.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,133 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface

◆ key_installation_key_size_t

enum key_installation_key_size_t

Supported key sizes

Enumerator

KEY_INSTALLATION_KEY_SIZE_RSA_1024 RSA 1024-bit key.

KEY_INSTALLATION_KEY_SIZE_RSA_2048 RSA 2048-bit key.

KEY_INSTALLATION_KEY_SIZE_AES_128 AES 128-bit key for CBC, CTR, ECB, GCM
chaining modes.

KEY_INSTALLATION_KEY_SIZE_AES_XTS_128 AES 128-bit key for XTS chaining mode only.

KEY_INSTALLATION_KEY_SIZE_AES_192 AES 192-bit key for CBC, CTR, ECB, GCM
chaining modes.

KEY_INSTALLATION_KEY_SIZE_AES_256 AES 256-bit key for CBC, CTR, ECB, GCM
chaining modes.

KEY_INSTALLATION_KEY_SIZE_AES_XTS_256 AES 256-bit key for XTS chaining mode only.

KEY_INSTALLATION_KEY_SIZE_ENCRYPTED_INST
ALL_416

Renesas provided install key size.

KEY_INSTALLATION_KEY_SIZE_ECC_192 ECC 192-bit key.

KEY_INSTALLATION_KEY_SIZE_ECC_224 ECC 224-bit key.

KEY_INSTALLATION_KEY_SIZE_ECC_256 ECC 256-bit key.

KEY_INSTALLATION_KEY_SIZE_ECC_384 ECC 384-bit key.

KEY_INSTALLATION_KEY_SIZE_SESSION Session Key size for all operations.

 key_installation_key_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface »
KEY_INSTALLATION Interface

#include <r_key_installation_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,134 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface > key_installation_key_t Struct Reference

key_installation_key_format_
t

key_format

 Indicates the key_format.

key_installation_key_size_t key_size

 Indicates the key_type.

uint32_t * p_data

uint32_t data_length

 The length of data in WORDS(32-bits), pointed by p_data.

Detailed Description

Definition for Key data structure for Key Installation API operations

Field Documentation

◆ p_data

uint32_t* key_installation_key_t::p_data

Pointer to input (encrypted user key (OR) output data buffer to hold the wrapped key)

The documentation for this struct was generated from the following file:

r_key_installation_api.h

 key_installation_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface »
KEY_INSTALLATION Interface

#include <r_key_installation_api.h>

Data Fields

crypto_api_t const * p_lower_lvl_crypto_api

 pointer to crypto engine api

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,135 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface > key_installation_cfg_t Struct Reference

void const * p_extend

 Extension parameter for hardware specific settings.

Detailed Description

Key Installation Interface configuration structure. User must fill in these values before invoking the
open() function

The documentation for this struct was generated from the following file:

r_key_installation_api.h

 key_installation_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface »
KEY_INSTALLATION Interface

#include <r_key_installation_api.h>

Data Fields

ssp_err_t(* open)(key_installation_ctrl_t *const p_ctrl, key_installation_cfg_t
const *const p_cfg)

ssp_err_t(* keyInstall)(key_installation_ctrl_t *const p_ctrl,
r_crypto_data_handle_t const *const p_user_key_rsa_modulus,
key_installation_key_t const *const p_user_key,
key_installation_key_shared_index_t const shared_index,
key_installation_key_t const *const p_session_key, uint32_t const
*const p_iv, key_installation_key_t *const p_key_data)

ssp_err_t(* close)(key_installation_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

KEY_INSTALLATION_Interface functions implemented at the HAL layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,136 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface > key_installation_api_t Struct Reference

◆ close

ssp_err_t(* key_installation_api_t::close) (key_installation_ctrl_t *const p_ctrl)

Close API function of Key Installation module.

Parameters
[in] p_ctrl Pointer to the control

structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,137 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface > key_installation_api_t Struct Reference

◆ keyInstall

ssp_err_t(* key_installation_api_t::keyInstall) (key_installation_ctrl_t *const p_ctrl,
r_crypto_data_handle_t const *const p_user_key_rsa_modulus, key_installation_key_t const *const
p_user_key, key_installation_key_shared_index_t const shared_index, key_installation_key_t const
*const p_session_key, uint32_t const *const p_iv, key_installation_key_t *const p_key_data)

Key installation API function that takes the user's encrypted key, a shared index, session key, and
an IV then returns wrapped key of the user's plain-text key.

Parameters
[in] p_ctrl Pointer to the control

structure.

[in] p_user_key_rsa_modulus Pointer to a user key's RSA
modulus. Only applicable for
Key Installation using RSA
keys. For other crypto
algorithms this parameter
should be NULL.

[in] p_user_key Pointer to a user's encrypted
key. In case of Key
Installation using RSA keys,
this will be the encrypted
exponent.

[in] shared_index Shared Key Index that is
returned by the DLM
Service, accompanied by the
Session Key that follows.

[in] p_session_key Pointer to the Session Key
returned by the DLM
Service, accompanied by the
previous Shared Key Index
parameter.

[in] p_iv Pointer to the IV used to
encrypt the User Key.

[in,out] p_key_data Pointer to output wrapped
output key. 'key_size' of
p_key_data structure is
UNUSED.

Note
For AES crypto algorithms, the buffer length required to hold the output wrapped key will be - 'Plaintext key word
length + 5'. Expected values are defined by macros for each supported key length/ mode, for example
KEY_INSTALLATION_AES128_WRAPPED_KEY_SIZE_IN_WORDS for 128-bit AES.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,138 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface > key_installation_api_t Struct Reference

◆ open

ssp_err_t(* key_installation_api_t::open) (key_installation_ctrl_t *const p_ctrl, key_installation_cfg_t
const *const p_cfg)

Key Installation module open API function. Must be called before invoking Key Installation
operation.

Parameters
[in,out] p_ctrl Pointer to control structure

for the KEY_INSTALLATION
interface. Must be declared
by user.

[in] p_cfg Pointer to configuration
structure for the
KEY_INSTALLATION
configuration. All elements
of this structure must be set
by user.

◆ versionGet

ssp_err_t(* key_installation_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_key_installation_api.h

 key_installation_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface »
KEY_INSTALLATION Interface

#include <r_key_installation_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,139 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > KEY_INSTALLATION Interface > key_installation_instance_t Struct Reference

key_installation_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

key_installation_cfg_t const
*

p_cfg

 Pointer to the configuration structure for this instance.

key_installation_api_t const
*

p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_key_installation_api.h

 RSA Interface
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

RSA cryptographic functions for signature generation, verification, encryption and decryption. More...

Data Structures

struct rsa_key_t

struct rsa_ctrl_t

struct rsa_cfg_t

struct rsa_api_t

struct rsa_instance_t

Macros

#define RSA_API_VERSION_MAJOR (1U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,140 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface

#define RSA_MODULUS_SIZE_BYTES(RSA_SIZE_BITS) ((RSA_SIZE_BITS)/8U)

#define RSA_PLAIN_TEXT_PUBLIC_KEY_SIZE_BYTES
(RSA_SIZE_BITS) (((uint32_t)32+(uint32_t)RSA_SIZE_BITS)/8U)

#define RSA_PLAIN_TEXT_PRIVATE_KEY_SIZE_BYTES
(RSA_SIZE_BITS) (((uint32_t)2*(uint32_t)RSA_SIZE_BITS)/8U)

#define RSA_PLAIN_TEXT_CRT_KEY_SIZE_BYTES
(RSA_SIZE_BITS) (((uint32_t)5*((uint32_t)RSA_SIZE_BITS))/16U)

#define RSA_WRAPPPED_PRIVATE_KEY_SIZE_BYTES
(RSA_SIZE_BITS) ((((uint32_t)2 *
(uint32_t)RSA_SIZE_BITS)+(uint32_t)160)/8U)

#define RSA_WRAPPPED_PRIVATE_CRT_KEY_SIZE_BYTES
(RSA_SIZE_BITS) ((RSA_PLAIN_TEXT_CRT_KEY_SIZE_BYTES
(RSA_SIZE_BITS))+20U)

Enumerations

enum rsa_key_format_t {
 RSA_KEY_FORMAT_PLAIN_TEXT_PUBLIC_KEY,
RSA_KEY_FORMAT_PLAIN_TEXT_PRIVATE_KEY,
RSA_KEY_FORMAT_PLAIN_TEXT_CRT_KEY,
RSA_KEY_FORMAT_WRAPPED_PRIVATE_KEY,
 RSA_KEY_FORMAT_WRAPPED_PRIVATE_CRT_KEY
}

Variables

const rsa_api_t g_rsa1024_on_sce

const rsa_api_t g_rsa1024_on_sce_hrk

const rsa_api_t g_rsa2048_on_sce_hrk

Detailed Description

RSA cryptographic functions for signature generation, verification, encryption and decryption.

Macro Definition Documentation

◆ RSA_API_VERSION_MAJOR

#define RSA_API_VERSION_MAJOR (1U)

Register definitions, common services and error codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,141 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface

◆ RSA_MODULUS_SIZE_BYTES

#define RSA_MODULUS_SIZE_BYTES (RSA_SIZE_BITS) ((RSA_SIZE_BITS)/8U)

Return RSA modulus size in bytes from the specified RSA modulus size in bits

◆ RSA_PLAIN_TEXT_CRT_KEY_SIZE_BYTES

#define RSA_PLAIN_TEXT_CRT_KEY_SIZE_BYTES (RSA_SIZE_BITS)
(((uint32_t)5*((uint32_t)RSA_SIZE_BITS))/16U)

Return RSA CRT private key size in bytes from the specified RSA modulus size in bits

◆ RSA_PLAIN_TEXT_PRIVATE_KEY_SIZE_BYTES

#define RSA_PLAIN_TEXT_PRIVATE_KEY_SIZE_BYTES (RSA_SIZE_BITS)
(((uint32_t)2*(uint32_t)RSA_SIZE_BITS)/8U)

Return RSA private key size in bytes from the specified RSA modulus size in bits

◆ RSA_PLAIN_TEXT_PUBLIC_KEY_SIZE_BYTES

#define RSA_PLAIN_TEXT_PUBLIC_KEY_SIZE_BYTES (RSA_SIZE_BITS)
(((uint32_t)32+(uint32_t)RSA_SIZE_BITS)/8U)

Return RSA public key size in bytes from the specified RSA modulus size in bits

◆ RSA_WRAPPPED_PRIVATE_CRT_KEY_SIZE_BYTES

#define RSA_WRAPPPED_PRIVATE_CRT_KEY_SIZE_BYTES (RSA_SIZE_BITS)
((RSA_PLAIN_TEXT_CRT_KEY_SIZE_BYTES(RSA_SIZE_BITS))+20U)

Return RSA wrapped private CRT key size in bytes from the specified RSA modulus size in bits

◆ RSA_WRAPPPED_PRIVATE_KEY_SIZE_BYTES

#define RSA_WRAPPPED_PRIVATE_KEY_SIZE_BYTES (RSA_SIZE_BITS) ((((uint32_t)2 *
(uint32_t)RSA_SIZE_BITS)+(uint32_t)160)/8U)

Return RSA wrapped private key size in bytes from the specified RSA modulus size in bits

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,142 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface

◆ rsa_key_format_t

enum rsa_key_format_t

RSA key format definitions

Enumerator

RSA_KEY_FORMAT_PLAIN_TEXT_PUBLIC_KEY RSA public key in plain text format.

RSA_KEY_FORMAT_PLAIN_TEXT_PRIVATE_KEY RSA private key in plain text format.

RSA_KEY_FORMAT_PLAIN_TEXT_CRT_KEY RSA CRT Key in plain text format.

RSA_KEY_FORMAT_WRAPPED_PRIVATE_KEY RSA private Key wrapped using device specific
key.

RSA_KEY_FORMAT_WRAPPED_PRIVATE_CRT_KEY RSA private CRT Key wrapped using device
specific key.

Variable Documentation

◆ g_rsa1024_on_sce

const rsa_api_t g_rsa1024_on_sce

RSA interface is only available on S7G2, S5D9 and S5D5.

SCE/RSA implementation of RSA API.

◆ g_rsa1024_on_sce_hrk

const rsa_api_t g_rsa1024_on_sce_hrk

SCE/RSA implementation of RSA API.

◆ g_rsa2048_on_sce_hrk

const rsa_api_t g_rsa2048_on_sce_hrk

SCE/RSA implementation of RSA API.

 rsa_key_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » RSA Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,143 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface > rsa_key_t Struct Reference

#include <r_rsa_api.h>

Data Fields

rsa_key_format_t key_format

 Indicates if the key is in plain-text format or encrypted using device
unique key.

uint32_t length

 Length in bytes of the p_data buffer.

uint8_t * p_data

 Buffer where the private key is stored.

Detailed Description

RSA key data structure

The documentation for this struct was generated from the following file:

r_rsa_api.h

 rsa_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » RSA Interface

#include <r_rsa_api.h>

Data Fields

crypto_ctrl_t * p_crypto_ctrl

 pointer to crypto engine control structure

crypto_api_t const * p_crypto_api

 pointer to crypto engine API

uint32_t stage_num

 processing stage

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,144 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface > rsa_ctrl_t Struct Reference

Detailed Description

RSA Interface control structure

The documentation for this struct was generated from the following file:

r_rsa_api.h

 rsa_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » RSA Interface

#include <r_rsa_api.h>

Data Fields

crypto_api_t const * p_crypto_api

 pointer to crypto engine api

Detailed Description

RSA Interface configuration structure. User must fill in these values before invoking the open()
function

The documentation for this struct was generated from the following file:

r_rsa_api.h

 rsa_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » RSA Interface

#include <r_rsa_api.h>

Data Fields

uint32_t(* open)(rsa_ctrl_t *const p_ctrl, rsa_cfg_t const *const p_cfg)

uint32_t(* encrypt)(rsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,145 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface > rsa_api_t Struct Reference

uint32_t *p_domain, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Encrypt source data from p_source using an RSA public key from
p_key and write the results to destination buffer p_dest. More...

uint32_t(* decrypt)(rsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const
uint32_t *p_domain, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Decrypt source data from p_source using an RSA private key from
p_key and write the results to destination buffer p_dest. The RSA
private key data p_key is specified in the standard format that
consists of private exponent and the RSA modulus. The size of the
private exponent and the RSA modulus is 1024-bits for the
g_rsa1024_on_sce implementation and 2048-bits for the
g_rsa2048_on_sce implementation. More...

uint32_t(* decryptCrt)(rsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const
uint32_t *p_domain, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Decrypt source data from p_source using an RSA private key from
p_key and write the results to destination buffer p_dest. RSA private
key data is specified in CRT format. The RSA CRT key consists of the
exponent2 || prime2 || exponent1 || prime1 || coefficient, starting
with exponent2 at index 0. The size of each of these parameter is
512-bits for the g_rsa1024_on_sce implementation and 1024-bits for
the g_rsa2048_on_sce implementation. More...

uint32_t(* verify)(rsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const uint32_t
*p_domain, uint32_t num_words, uint32_t *p_signature, uint32_t
*p_padded_hash)

 Verify signature given in buffer p_signature using the RSA public key
p_key for the given padded message hash from buffer
p_padded_hash. More...

uint32_t(* sign)(rsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const uint32_t
*p_domain, uint32_t num_words, uint32_t *p_padded_hash, uint32_t
*p_dest)

 Generate signature for the given padded hash buffer p_padded_hash
using the RSA private key p_key. Write the results to the buffer
p_dest. More...

uint32_t(* signCrt)(rsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const
uint32_t *p_domain, uint32_t num_words, uint32_t *p_padded_hash,
uint32_t *p_dest)

 Generate signature for the given padded hash buffer p_padded_hash

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,146 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface > rsa_api_t Struct Reference

using the RSA private key p_key. RSA private key p_key is assumed
to be in CRT format. Write the results to the buffer p_dest. The RSA
CRT key consists of the exponent2 || prime2 || exponent1 || prime1 ||
coefficient, starting with exponent2 at index 0. The size of each of
these parameter is 512-bits for the g_rsa1024_on_sce
implementation and 1024-bits for the g_rsa2048_on_sce
implementation. More...

uint32_t(* close)(rsa_ctrl_t *const p_ctrl)

uint32_t(* versionGet)(ssp_version_t *const p_version)

uint32_t(* keyCreate)(rsa_ctrl_t *const p_ctrl, rsa_key_t *p_private_key,
rsa_key_t *p_public_key)

Detailed Description

RSA_Interface SCE functions implemented at the HAL layer will follow this API.

Field Documentation

◆ close

uint32_t(* rsa_api_t::close) (rsa_ctrl_t *const p_ctrl)

Close the RSA module.

Parameters
[in] p_ctrl pointer to the control

structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,147 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface > rsa_api_t Struct Reference

◆ decrypt

uint32_t(* rsa_api_t::decrypt) (rsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const uint32_t
*p_domain, uint32_t num_words, uint32_t *p_source, uint32_t *p_dest)

Decrypt source data from p_source using an RSA private key from p_key and write the results to
destination buffer p_dest. The RSA private key data p_key is specified in the standard format that
consists of private exponent and the RSA modulus. The size of the private exponent and the RSA
modulus is 1024-bits for the g_rsa1024_on_sce implementation and 2048-bits for the
g_rsa2048_on_sce implementation.

Parameters
[in] *p_ctrl pointer to control structure

for RSA interface

[in] *p_key pointer to RSA plain-text
private key consisting of
private exponent and the
RSA modulus.

[in] *p_domain unused parameter for RSA
decryption. NULL value is
acceptable.

[in] num_words data buffer size in words.
Each word is 4-bytes.

[in] *p_source input data buffer to be
decrypted.

[out] *p_dest output destination data
buffer, decryption result will
be stored here.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,148 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface > rsa_api_t Struct Reference

◆ decryptCrt

uint32_t(* rsa_api_t::decryptCrt) (rsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const uint32_t
*p_domain, uint32_t num_words, uint32_t *p_source, uint32_t *p_dest)

Decrypt source data from p_source using an RSA private key from p_key and write the results to
destination buffer p_dest. RSA private key data is specified in CRT format. The RSA CRT key
consists of the exponent2 || prime2 || exponent1 || prime1 || coefficient, starting with exponent2 at
index 0. The size of each of these parameter is 512-bits for the g_rsa1024_on_sce implementation
and 1024-bits for the g_rsa2048_on_sce implementation.

Parameters
[in] *p_key pointer to RSA private key in

CRT format.

[in] *p_domain unused parameter for RSA
decryption. NULL value is
acceptable.

[in] num_words data buffer size in words.
Each word is 4-bytes.

[in] *p_source input data buffer to be
decrypted.

[out] *p_dest output destination data
buffer, decryption result will
be stored here.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,149 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface > rsa_api_t Struct Reference

◆ encrypt

uint32_t(* rsa_api_t::encrypt) (rsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const uint32_t
*p_domain, uint32_t num_words, uint32_t *p_source, uint32_t *p_dest)

Encrypt source data from p_source using an RSA public key from p_key and write the results to
destination buffer p_dest.

Parameters
[in] *p_ctrl pointer to control structure

for RSA interface

[in] *p_key pointer to the RSA plain-text
public key consisting of
32-bit public exponent and
RSA public modulus of size
either 1024-bits or
2048-bits.

[in] *p_domain unused parameter for RSA
encryption. NULL value is
acceptable.

[in] num_words data buffer size in words.
Each word is 4-bytes.

[in] *p_source source data buffer to be
encrypted.

[out] *p_dest destination data buffer,
encryption result will be
stored here.

◆ keyCreate

uint32_t(* rsa_api_t::keyCreate) (rsa_ctrl_t *const p_ctrl, rsa_key_t *p_private_key, rsa_key_t
*p_public_key)

Generates an RSA key. This is a blocking call

Parameters
[in] *p_ctrl pointer to control structure

for RSA interface

[in,out] *p_private_key pointer to a private key
structure

[in,out] *p_public_key pointer to a public key
structure

{

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,150 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface > rsa_api_t Struct Reference

 // The following code snippet gives an example for generating and using a 1024-bit

RSA key.

 // For simplicity, the below code snippet does not check return values.

 rsa_ctrl_t rsa_ctrl;

 rsa_cfg_t rsa_cfg;

 rsa_key_t rsa_secret_key;

 rsa_key_t rsa_public_key;

 uint8_t rsa_secret_key_data[RSA_PLAIN_TEXT_PRIVATE_KEY_SIZE_BYTES(1024)];

 uint8_t rsa_public_key_data[RSA_PLAIN_TEXT_PUBLIC_KEY_SIZE_BYTES(1024)];

 // This example shows generation of an RSA private key in standard format.

 // To generate a CRT key, the key_format field should be set to

RSA_KEY_FORMAT_PLAIN_TEXT_CRT_KEY

 // and define rsa_secret_key_data buffer to be of size

RSA_KEY_FORMAT_PLAIN_TEXT_CRT_KEY

 rsa_secret_key.key_format = RSA_KEY_FORMAT_PLAIN_TEXT_PRIVATE_KEY;

 rsa_secret_key.length = sizeof(rsa_secret_key_data);

 rsa_secret_key.p_data = rsa_secret_key_data;

 rsa_public_key.key_format = RSA_KEY_FORMAT_PLAIN_TEXT_PUBLIC_KEY;

 rsa_public_key.length = sizeof(rsa_public_key_data);

 rsa_publi_key.p_data = rsa_public_key_data;

 g_rsa1024_on_sce.open(&rsa_ctrl, &rsa_cfg);

 g_rsa1024_on_sce.keyCreate(p_ctrl, &rsa_secret_key, &rsa_public_key);

 // p_source is a pointer to a padded hash data. The computed signature will be

stored at p_dest

 // The example below uses an RSA private key in standard format.

 // To compute signature using an RSA CRT private key, use the signCrt() interface

function.

 g_rsa1024_on_sce.sign(p_ctrl, num_words, rsa_secret_key.p_data, p_source, p_dest)

 g_rsa1024_on_sce.verify(p_ctrl, num_words, rsa_public_key.p_data, p_dest, p_source);

}

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,151 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface > rsa_api_t Struct Reference

◆ open

uint32_t(* rsa_api_t::open) (rsa_ctrl_t *const p_ctrl, rsa_cfg_t const *const p_cfg)

RSA module open function. Must be called before performing any encrypt/decrypt or sign/verify
operations.

Parameters
[in,out] p_ctrl pointer to control structure

for the RSA interface. Must
be declared by user.
Elements are set here.

[in] p_cfg pointer to control structure
for the RSA configuration. All
elements of this structure
must be set by user.

◆ sign

uint32_t(* rsa_api_t::sign) (rsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const uint32_t *p_domain,
uint32_t num_words, uint32_t *p_padded_hash, uint32_t *p_dest)

Generate signature for the given padded hash buffer p_padded_hash using the RSA private key
p_key. Write the results to the buffer p_dest.

Parameters
[in] *p_ctrl pointer to control structure

for RSA interface

[in] *p_key pointer to RSA private key
consisting of private
exponent and the RSA
modulus.

[in] *p_domain unused parameter. NULL
value is acceptable.

[in] num_words data buffer size in words.
Each word is 4-bytes.
multiples of 4

[in] *p_padded_hash padded hash for the input
message for which an RSA
signature is desired

[out] *p_dest generated signature data
will be written here.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,152 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface > rsa_api_t Struct Reference

◆ signCrt

uint32_t(* rsa_api_t::signCrt) (rsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const uint32_t
*p_domain, uint32_t num_words, uint32_t *p_padded_hash, uint32_t *p_dest)

Generate signature for the given padded hash buffer p_padded_hash using the RSA private key
p_key. RSA private key p_key is assumed to be in CRT format. Write the results to the buffer
p_dest. The RSA CRT key consists of the exponent2 || prime2 || exponent1 || prime1 || coefficient,
starting with exponent2 at index 0. The size of each of these parameter is 512-bits for the
g_rsa1024_on_sce implementation and 1024-bits for the g_rsa2048_on_sce implementation.

Parameters
[in] *p_ctrl pointer to control structure

for RSA interface

[in] *p_key pointer to RSA private key in
CRT format.

[in] *p_domain unused parameter. NULL
value is acceptable.

[in] num_words data buffer size in words.
Each word is 4-bytes.
multiples of 4

[in] *p_padded_hash padded hash for the input
message for which an RSA
signature is desired

[out] *p_dest generated signature data
will be written here.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,153 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface > rsa_api_t Struct Reference

◆ verify

uint32_t(* rsa_api_t::verify) (rsa_ctrl_t *const p_ctrl, const uint32_t *p_key, const uint32_t
*p_domain, uint32_t num_words, uint32_t *p_signature, uint32_t *p_padded_hash)

Verify signature given in buffer p_signature using the RSA public key p_key for the given padded
message hash from buffer p_padded_hash.

Parameters
[in] *p_key pointer to the RSA plain-text

public key consisting of
32-bit public exponent and
RSA public modulus of size
either 1024-bits or
2048-bits.

[in] *p_domain unused parameter. NULL
value is acceptable.

[in] num_words data buffer size in words.
Each word is 4-bytes.

[in] *p_signature signature data that needs to
be verified

[in] *p_paddedHash padded hash value of the
input message buffer

◆ versionGet

uint32_t(* rsa_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_rsa_api.h

 rsa_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » RSA Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,154 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > RSA Interface > rsa_instance_t Struct Reference

#include <r_rsa_api.h>

Data Fields

rsa_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

rsa_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

rsa_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_rsa_api.h

 TDES Interface
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

TDES encryption and decryption APIs. More...

Data Structures

struct tdes_ctrl_t

struct tdes_cfg_t

struct tdes_api_t

struct tdes_instance_t

Macros

#define TDES_API_VERSION_MAJOR (1U)

Variables

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,155 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > TDES Interface

const tdes_api_t g_tdes192ecb_on_sce

Detailed Description

TDES encryption and decryption APIs.

Macro Definition Documentation

◆ TDES_API_VERSION_MAJOR

#define TDES_API_VERSION_MAJOR (1U)

Register definitions, common services and error codes.

Variable Documentation

◆ g_tdes192ecb_on_sce

const tdes_api_t g_tdes192ecb_on_sce

TDES interface is only available on S7G2 and S5D9.

SCE/TDES implementation of TDES API.

 tdes_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » TDES Interface

#include <r_tdes_api.h>

Data Fields

crypto_ctrl_t crypto_ctrl

 pointer to crypto control structure

crypto_api_t const * p_crypto_api

 pointer to crypto engine API

Detailed Description

TDES Interface control structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,156 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > TDES Interface > tdes_ctrl_t Struct Reference

The documentation for this struct was generated from the following file:

r_tdes_api.h

 tdes_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » TDES Interface

#include <r_tdes_api.h>

Data Fields

crypto_api_t const * p_crypto_api

 pointer to crypto engine api

Detailed Description

TDES Interface configuration structure. User must fill in these values before invoking the open()
function

The documentation for this struct was generated from the following file:

r_tdes_api.h

 tdes_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » TDES Interface

#include <r_tdes_api.h>

Data Fields

uint32_t(* open)(tdes_ctrl_t *const p_ctrl, tdes_cfg_t const *const p_cfg)

uint32_t(* encrypt)(tdes_ctrl_t *const p_ctrl, const uint32_t *p_key, uint32_t
*p_iv, uint32_t num_words, uint32_t *p_source, uint32_t *p_dest)

 TDES encryption. More...

uint32_t(* decrypt)(tdes_ctrl_t *const p_ctrl, const uint32_t *p_key, uint32_t
*p_iv, uint32_t num_words, uint32_t *p_source, uint32_t *p_dest)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,157 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > TDES Interface > tdes_api_t Struct Reference

 TDES decryption. More...

uint32_t(* close)(tdes_ctrl_t *const p_ctrl)

uint32_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

TDES_Interface SCE functions implemented at the HAL layer will follow this API.

Field Documentation

◆ close

uint32_t(* tdes_api_t::close) (tdes_ctrl_t *const p_ctrl)

Close the TDES module.

Parameters
[in] p_ctrl pointer to the control

structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,158 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > TDES Interface > tdes_api_t Struct Reference

◆ decrypt

uint32_t(* tdes_api_t::decrypt) (tdes_ctrl_t *const p_ctrl, const uint32_t *p_key, uint32_t *p_iv,
uint32_t num_words, uint32_t *p_source, uint32_t *p_dest)

TDES decryption.

Decrypt input data with a 192-bit TDES key and the chaining mode specified.

Parameters
[in] *p_key pointer to the 192-bit plain-

text key

[in,out] *p_iv pointer to initialization
vector. Should be 8 bytes
long. Unused for ECB mode.
Next IV value is returned on
successful completion.

[in] num_words Specifies the size of the
input data in words. Should
be multiples of 2. Note: 1
word is 4-bytes long.

[in] *p_source input data buffer - should be
at least num_words long.

[out] *p_dest output data buffer - should
be at least num_words long.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,159 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > TDES Interface > tdes_api_t Struct Reference

◆ encrypt

uint32_t(* tdes_api_t::encrypt) (tdes_ctrl_t *const p_ctrl, const uint32_t *p_key, uint32_t *p_iv,
uint32_t num_words, uint32_t *p_source, uint32_t *p_dest)

TDES encryption.

Encrypt input data with a 192-bit TDES key and the chaining mode specified.

Parameters
[in] *p_key pointer to the TDES plain-

text key.

[in,out] *p_iv pointer to initialization
vector. Should be 8 bytes
long. Unused for ECB mode.
Next IV value is returned on
successful completion.

[in] num_words Specifies the size of the
input data in words. Should
be multiples of 2. Note: 1
word is 4-bytes long.

[in] *p_source input data buffer - should be
at least num_words long.

[out] *p_dest output data buffer - should
be at least num_words long.

◆ open

uint32_t(* tdes_api_t::open) (tdes_ctrl_t *const p_ctrl, tdes_cfg_t const *const p_cfg)

TDES module open function. Must be called before performing any encrypt/decrypt operations.

Parameters
[in,out] p_ctrl pointer to control structure

for the TDES interface. Must
be declared by user.
Elements are set here.

[in] p_cfg pointer to control structure
for the TDES configuration.
All elements of this structure
must be set by user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,160 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > TDES Interface > tdes_api_t Struct Reference

◆ versionGet

uint32_t(* tdes_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_tdes_api.h

 tdes_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » TDES Interface

#include <r_tdes_api.h>

Data Fields

tdes_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

tdes_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

tdes_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_tdes_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,161 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > TDES Interface > tdes_instance_t Struct Reference

 Random number generation
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

RNG_Interface Random number generation. More...

Data Structures

struct trng_ctrl_t

struct trng_cfg_t

struct trng_api_t

struct trng_instance_t

Macros

#define TRNG_API_VERSION_MAJOR (1U)

Detailed Description

RNG_Interface Random number generation.

Macro Definition Documentation

◆ TRNG_API_VERSION_MAJOR

#define TRNG_API_VERSION_MAJOR (1U)

Register definitions, common services and error codes.

 trng_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » Random number
generation

#include <r_trng_api.h>

Data Fields

uint32_t nattempts

 number of retries

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,162 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > Random number generation > trng_ctrl_t Struct Reference

crypto_ctrl_t * p_crypto_ctrl

 pointer to crypto control structure

crypto_api_t const * p_crypto_api

 pointer to crypto-engine API

uint32_t prevbuf [TRNG_REGISTER_SIZE_WORDS]

 previous random data

uint32_t currbuf [TRNG_REGISTER_SIZE_WORDS]

 current random data

Detailed Description

TRNG_Interface control structure.

The documentation for this struct was generated from the following file:

r_trng_api.h

 trng_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » Random number
generation

#include <r_trng_api.h>

Data Fields

crypto_api_t const * p_crypto_api

 pointer to crypto API

uint32_t nattempts

 number of retries when a continuous test failure occurs

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,163 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > Random number generation > trng_cfg_t Struct Reference

Detailed Description

TRNG interface configuration parameters

The documentation for this struct was generated from the following file:

r_trng_api.h

 trng_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » Random number
generation

#include <r_trng_api.h>

Data Fields

uint32_t(* open)(trng_ctrl_t *const p_ctrl, trng_cfg_t const *const p_cfg)

uint32_t(* read)(trng_ctrl_t *const p_ctrl, uint32_t *const p_rngbuf, uint32_t
nwords)

uint32_t(* close)(trng_ctrl_t *const p_ctrl)

uint32_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

TRNG_Interface SCE functions implemented at the HAL layer will follow this API.

Field Documentation

◆ close

uint32_t(* trng_api_t::close) (trng_ctrl_t *const p_ctrl)

Close the TRNG interface driver

Parameters
[in] p_ctrl pointer to trng interface

control structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,164 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > Random number generation > trng_api_t Struct Reference

◆ open

uint32_t(* trng_api_t::open) (trng_ctrl_t *const p_ctrl, trng_cfg_t const *const p_cfg)

Open the TRNG driver for reading random data from the hardware TRNG module

Parameters
[in,out] p_ctrl Pointer to control structure.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ read

uint32_t(* trng_api_t::read) (trng_ctrl_t *const p_ctrl, uint32_t *const p_rngbuf, uint32_t nwords)

Generate nwords of random number words and store them in p_rngbuf buffer

Parameters
[in] p_ctrl pointer to trng control

structure

[out] p_rngbuf generated random numbers
will be stored to the buffer
p_rngbuf

[in] nwords number of random words to
generate

◆ versionGet

uint32_t(* trng_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_trng_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,165 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > Random number generation > trng_api_t Struct Reference

 trng_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface » Random number
generation

#include <r_trng_api.h>

Data Fields

trng_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

trng_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

trng_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_trng_api.h

 crypto_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

#include <r_crypto_api.h>

Data Fields

uint32_t state

 indicates state of the SCE/SCE-Lite driver e.g whether it is initialized

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,166 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > crypto_ctrl_t Struct Reference

Detailed Description

Crypto_Interface Add API definitions required by user here.

The documentation for this struct was generated from the following file:

r_crypto_api.h

 r_crypto_data_handle_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

#include <r_crypto_api.h>

Data Fields

uint32_t * p_data

 Pointer to data.

uint32_t data_length

 The length of data pointed by p_data.

Detailed Description

A structure to handle data among Crypto HAL modules

The documentation for this struct was generated from the following file:

r_crypto_api.h

 crypto_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

#include <r_crypto_api.h>

Data Fields

void(* p_sce_long_plg_end_callback)(void)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,167 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > crypto_cfg_t Struct Reference

crypto_word_endian_t endian_flag

void * p_sce_api_interfaces

Detailed Description

Crypto engine configuration parameters

Field Documentation

◆ endian_flag

crypto_word_endian_t crypto_cfg_t::endian_flag

Endian flag, indicates word endianness for the uint32_t[] array inputs used in Crypto APIs

◆ p_sce_api_interfaces

void* crypto_cfg_t::p_sce_api_interfaces

Pointer to the structure containing crypto API interfaces available to the selected MCU.

◆ p_sce_long_plg_end_callback

void(* crypto_cfg_t::p_sce_long_plg_end_callback) (void)

Callback provided when a ISR occurs. Set to NULL for no CPU interrupt.

The documentation for this struct was generated from the following file:

r_crypto_api.h

 crypto_interface_get_param_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

#include <r_crypto_api.h>

Detailed Description

Parameters for requesting HAL API interface object

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,168 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > crypto_interface_get_param_t Struct Reference

The documentation for this struct was generated from the following file:

r_crypto_api.h

 crypto_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

#include <r_crypto_api.h>

Data Fields

uint32_t(* open)(crypto_ctrl_t *const p_ctrl, crypto_cfg_t const *const p_cfg)

uint32_t(* close)(crypto_ctrl_t *const p_ctrl)

uint32_t(* interfaceGet)(crypto_interface_get_param_t *const interface_info,
void *const p_interface)

uint32_t(* statusGet)(uint32_t *p_status)

uint32_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Crypto_Interface SCE functions implemented at the HAL layer will follow this API.

Field Documentation

◆ close

uint32_t(* crypto_api_t::close) (crypto_ctrl_t *const p_ctrl)

Close the crypto interface module for the given control structure p_ctrl

Parameters
[in] p_ctrl pointer to control structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,169 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > crypto_api_t Struct Reference

◆ interfaceGet

uint32_t(* crypto_api_t::interfaceGet) (crypto_interface_get_param_t *const interface_info, void
*const p_interface)

Get API interface structure object based on the interface_info provided.

Parameters
[in] interface_info pointer to structure

containing requested
interface information.

[out] p_interface pointer whose value points
to interface structure object.

Note
p_interface must be of pointer type and its address must be passed in this API. Passing the pointer and not its
address may result in undefined behavior at run-time.
Value of p_interface is allowed to be passed as NULL at the time of API call.

◆ open

uint32_t(* crypto_api_t::open) (crypto_ctrl_t *const p_ctrl, crypto_cfg_t const *const p_cfg)

Open crypto module using the given configuration

Parameters
[in,out] p_ctrl pointer to control structure.

Must be declared by user.
Elements set here.

[in] p_cfg pointer to configuration
structure. All elements of
this structure must be set by
user

◆ statusGet

uint32_t(* crypto_api_t::statusGet) (uint32_t *p_status)

Get status of SCE initialization

Parameters
[out] p_status initialization status of SCE

module will be written to the
memory pointed to by
p_status

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,170 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > crypto_api_t Struct Reference

◆ versionGet

uint32_t(* crypto_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Parameters
[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_crypto_api.h

 crypto_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Crypto Interface

#include <r_crypto_api.h>

Data Fields

crypto_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

crypto_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

crypto_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_crypto_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,171 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Crypto Interface > crypto_instance_t Struct Reference

5.1.4.9 CTSU v2 Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for Capacitive Touch Controllers. More...

Data Structures

struct ctsu_callback_args_t

struct ctsu_element_cfg_t

struct ctsu_cfg_t

struct ctsu_api_t

struct ctsu_instance_t

Typedefs

typedef void ctsu_ctrl_t

Enumerations

enum ctsu_event_t { CTSU_EVENT_SCAN_COMPLETE = 0x00U,
CTSU_EVENT_OVERFLOW = 0x01U, CTSU_EVENT_ICOMP = 0x02U }

enum ctsu_cap_t { CTSU_CAP_SOFTWARE, CTSU_CAP_EXTERNAL }

enum ctsu_atune1_t { CTSU_ATUNE1_NORMAL = 0U, CTSU_ATUNE1_HIGH
}

enum ctsu_md_t { CTSU_MODE_SELF_MULTI_SCAN = 1U,
CTSU_MODE_MUTUAL_FULL_SCAN = 3U,
CTSU_MODE_DIAGNOSIS_SCAN = 33 }

enum ctsu_ssdiv_t {
 CTSU_SSDIV_4000, CTSU_SSDIV_2000, CTSU_SSDIV_1330,
CTSU_SSDIV_1000,
 CTSU_SSDIV_0800, CTSU_SSDIV_0670, CTSU_SSDIV_0570,
CTSU_SSDIV_0500,
 CTSU_SSDIV_0440, CTSU_SSDIV_0400, CTSU_SSDIV_0360,
CTSU_SSDIV_0330,
 CTSU_SSDIV_0310, CTSU_SSDIV_0290, CTSU_SSDIV_0270,
CTSU_SSDIV_0000
}

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,172 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CTSU v2 Interface

Detailed Description

Interface for Capacitive Touch Controllers.

Summary
The CTSU v2 interface provides the functionality necessary to open, close, run and control the CTSU
depending upon the configuration passed as arguments.

Implemented by: CTSU v2

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

CTSU v2 Interface description: CTSU v2 Driver

Typedef Documentation

◆ ctsu_ctrl_t

typedef void ctsu_ctrl_t

CTSU Control block. Allocate an instance specific control block to pass into the API calls.

Implemented as

ctsu_instance_ctrl_t

Enumeration Type Documentation

◆ ctsu_atune1_t

enum ctsu_atune1_t

CTSU Power Supply Capacity Adjustment

Enumerator

CTSU_ATUNE1_NORMAL Normal output (40uA)

CTSU_ATUNE1_HIGH High-current output (80uA)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,173 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CTSU v2 Interface

◆ ctsu_cap_t

enum ctsu_cap_t

CTSU Scan Start Trigger Select

Enumerator

CTSU_CAP_SOFTWARE Scan start by software trigger.

CTSU_CAP_EXTERNAL Scan start by external trigger.

◆ ctsu_event_t

enum ctsu_event_t

CTSU Events for callback function

Enumerator

CTSU_EVENT_SCAN_COMPLETE Normal end.

CTSU_EVENT_OVERFLOW Sensor counter overflow (CTSUST.CTSUSOVF
set)

CTSU_EVENT_ICOMP Abnormal TSCAP voltage
(CTSUERRS.CTSUICOMP set)

◆ ctsu_md_t

enum ctsu_md_t

CTSU Measurement Mode Select

Enumerator

CTSU_MODE_SELF_MULTI_SCAN Self-capacitance multi scan mode.

CTSU_MODE_MUTUAL_FULL_SCAN Mutual capacitance full scan mode.

CTSU_MODE_DIAGNOSIS_SCAN Diagnosis scan mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,174 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CTSU v2 Interface

◆ ctsu_ssdiv_t

enum ctsu_ssdiv_t

CTSU Spectrum Diffusion Frequency Division Setting

Enumerator

CTSU_SSDIV_4000 4.00 <= Base clock frequency (MHz)

CTSU_SSDIV_2000 2.00 <= Base clock frequency (MHz) < 4.00

CTSU_SSDIV_1330 1.33 <= Base clock frequency (MHz) < 2.00

CTSU_SSDIV_1000 1.00 <= Base clock frequency (MHz) < 1.33

CTSU_SSDIV_0800 0.80 <= Base clock frequency (MHz) < 1.00

CTSU_SSDIV_0670 0.67 <= Base clock frequency (MHz) < 0.80

CTSU_SSDIV_0570 0.57 <= Base clock frequency (MHz) < 0.67

CTSU_SSDIV_0500 0.50 <= Base clock frequency (MHz) < 0.57

CTSU_SSDIV_0440 0.44 <= Base clock frequency (MHz) < 0.50

CTSU_SSDIV_0400 0.40 <= Base clock frequency (MHz) < 0.44

CTSU_SSDIV_0360 0.36 <= Base clock frequency (MHz) < 0.40

CTSU_SSDIV_0330 0.33 <= Base clock frequency (MHz) < 0.36

CTSU_SSDIV_0310 0.31 <= Base clock frequency (MHz) < 0.33

CTSU_SSDIV_0290 0.29 <= Base clock frequency (MHz) < 0.31

CTSU_SSDIV_0270 0.27 <= Base clock frequency (MHz) < 0.29

CTSU_SSDIV_0000 0.00 <= Base clock frequency (MHz) < 0.27

 ctsu_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CTSU v2 Interface

#include <r_ctsuv2_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,175 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CTSU v2 Interface > ctsu_callback_args_t Struct Reference

Data Fields

ctsu_event_t event

 The event can be used to identify what caused the callback.

void const * p_context

 Placeholder for user data. Set in ctsu_api_t::open function in
ctsu_cfg_t.

Detailed Description

Callback function parameter data

The documentation for this struct was generated from the following file:

r_ctsuv2_api.h

 ctsu_element_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CTSU v2 Interface

#include <r_ctsuv2_api.h>

Data Fields

ctsu_ssdiv_t ssdiv

 CTSU Spectrum Diffusion Frequency Division Setting (CTSU Only)

uint16_t so

 CTSU Sensor Offset Adjustment.

uint8_t snum

 CTSU Measurement Count Setting.

uint8_t sdpa

 CTSU Base Clock Setting.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,176 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CTSU v2 Interface > ctsu_element_cfg_t Struct Reference

Detailed Description

CTSU Configuration parameters. Element Configuration

The documentation for this struct was generated from the following file:

r_ctsuv2_api.h

 ctsu_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CTSU v2 Interface

#include <r_ctsuv2_api.h>

Data Fields

ctsu_cap_t cap

 CTSU Scan Start Trigger Select.

ctsu_atune1_t atune1

 CTSU Power Supply Capacity Adjustment.

ctsu_md_t md

 CTSU Measurement Mode Select.

uint8_t ctsuchac0

 TS00-TS07 enable mask.

uint8_t ctsuchac1

 TS08-TS15 enable mask.

uint8_t ctsuchac2

 TS16-TS23 enable mask.

uint8_t ctsuchac3

 TS24-TS31 enable mask.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,177 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CTSU v2 Interface > ctsu_cfg_t Struct Reference

uint8_t ctsuchac4

 TS32-TS39 enable mask.

uint8_t ctsuchtrc0

 TS00-TS07 mutual-tx mask.

uint8_t ctsuchtrc1

 TS08-TS15 mutual-tx mask.

uint8_t ctsuchtrc2

 TS16-TS23 mutual-tx mask.

uint8_t ctsuchtrc3

 TS24-TS31 mutual-tx mask.

uint8_t ctsuchtrc4

 TS32-TS39 mutual-tx mask.

ctsu_element_cfg_t const * p_elements

 Pointer to elements configuration array.

uint8_t num_rx

 Number of receive terminals.

uint8_t num_tx

 Number of transmit terminals.

uint16_t num_moving_average

 Number of moving average for measurement data.

bool tunning_enable

 Initial offset tuning flag.

void(* p_callback)(ctsu_callback_args_t *p_args)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,178 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CTSU v2 Interface > ctsu_cfg_t Struct Reference

 Callback provided when CTSUFN ISR occurs.

transfer_instance_t const * p_transfer_tx

 DTC instance for transmit at CTSUWR. Set to NULL if unused.

transfer_instance_t const * p_transfer_rx

 DTC instance for receive at CTSURD. Set to NULL if unused.

IRQn_Type write_irq

 CTSU_CTSUWR interrupt vector.

IRQn_Type read_irq

 CTSU_CTSURD interrupt vector.

IRQn_Type end_irq

 CTSU_CTSUFN interrupt vector.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 Pointer to extended configuration by instance of interface.

uint16_t tuning_self_target_value

 Target self value for initial offset tuning.

uint16_t tuning_mutual_target_value

 Target mutual value for initial offset tuning.

Detailed Description

User configuration structure, used in open function

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,179 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CTSU v2 Interface > ctsu_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

r_ctsuv2_api.h

 ctsu_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CTSU v2 Interface

#include <r_ctsuv2_api.h>

Data Fields

ssp_err_t(* open)(ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const p_cfg)

ssp_err_t(* scanStart)(ctsu_ctrl_t *const p_ctrl)

ssp_err_t(* dataGet)(ctsu_ctrl_t *const p_ctrl, uint16_t *p_data)

ssp_err_t(* diagnosis)(ctsu_ctrl_t *const p_ctrl)

ssp_err_t(* callbackSet)(ctsu_ctrl_t *const p_api_ctrl,
void(*p_callback)(ctsu_callback_args_t *), void const *const
p_context, ctsu_callback_args_t *const p_callback_memory)

ssp_err_t(* close)(ctsu_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_data)

Detailed Description

Functions implemented at the HAL layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,180 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CTSU v2 Interface > ctsu_api_t Struct Reference

◆ callbackSet

ssp_err_t(* ctsu_api_t::callbackSet) (ctsu_ctrl_t *const p_api_ctrl,
void(*p_callback)(ctsu_callback_args_t *), void const *const p_context, ctsu_callback_args_t *const
p_callback_memory)

Specify callback function and optional context pointer and working memory pointer.

Implemented as

R_CTSU_CallbackSet()
Parameters

[in] p_ctrl Pointer to the CTSU control
block.

[in] p_callback Callback function

[in] p_context Pointer to send to callback
function

[in] p_working_memory Pointer to volatile memory
where callback structure can
be allocated. Callback
arguments allocated here
are only valid during the
callback.

◆ close

ssp_err_t(* ctsu_api_t::close) (ctsu_ctrl_t *const p_ctrl)

Close driver.

Implemented as

R_CTSU_Close()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,181 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CTSU v2 Interface > ctsu_api_t Struct Reference

◆ dataGet

ssp_err_t(* ctsu_api_t::dataGet) (ctsu_ctrl_t *const p_ctrl, uint16_t *p_data)

Data get.

Implemented as

R_CTSU_DataGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_data Pointer to get data array.

◆ diagnosis

ssp_err_t(* ctsu_api_t::diagnosis) (ctsu_ctrl_t *const p_ctrl)

Diagnosis.

Implemented as

R_CTSU_Diagnosis()
Parameters

[in] p_ctrl Pointer to control structure.

◆ open

ssp_err_t(* ctsu_api_t::open) (ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const p_cfg)

Open driver.

Implemented as

R_CTSU_Open()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,182 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CTSU v2 Interface > ctsu_api_t Struct Reference

◆ scanStart

ssp_err_t(* ctsu_api_t::scanStart) (ctsu_ctrl_t *const p_ctrl)

Scan start.

Implemented as

R_CTSU_ScanStart()
Parameters

[in] p_ctrl Pointer to control structure.

◆ versionGet

ssp_err_t(* ctsu_api_t::versionGet) (ssp_version_t *const p_data)

Return the version of the driver.

Implemented as

R_CTSU_VersionGet()
Parameters

[out] p_data Memory address to return
version information to.

The documentation for this struct was generated from the following file:

r_ctsuv2_api.h

 ctsu_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » CTSU v2 Interface

#include <r_ctsuv2_api.h>

Data Fields

ctsu_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

ctsu_cfg_t const * p_cfg

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,183 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > CTSU v2 Interface > ctsu_instance_t Struct Reference

 Pointer to the configuration structure for this instance.

ctsu_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_ctsuv2_api.h

5.1.4.10 DAC Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for D/A converters. More...

Data Structures

struct dac_info_t

struct dac_cfg_t

struct dac_api_t

struct dac_instance_t

Typedefs

typedef uint16_t dac_size_t

typedef void dac_ctrl_t

Enumerations

enum dac_data_format_t { DAC_DATA_FORMAT_FLUSH_RIGHT = 0,
DAC_DATA_FORMAT_FLUSH_LEFT = 1 }

Detailed Description

Interface for D/A converters.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,184 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DAC Interface

Summary
The DAC interface provides standard Digital/Analog Converter functionality. A DAC application writes
digital sample data to the device and generates analog output on the DAC output pin.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

DAC Interface description: DAC Driver

Typedef Documentation

◆ dac_ctrl_t

typedef void dac_ctrl_t

DAC control block. Allocate an instance specific control block to pass into the DAC API calls.

Implemented as

dac_instance_ctrl_t

◆ dac_size_t

typedef uint16_t dac_size_t

Data type to store DAC output value.

Enumeration Type Documentation

◆ dac_data_format_t

enum dac_data_format_t

DAC Open API AD/DA data format settings.

Enumerator

DAC_DATA_FORMAT_FLUSH_RIGHT LSB of data is flush to the right leaving the top
4 bits unused.

DAC_DATA_FORMAT_FLUSH_LEFT MSB of data is flush to the left leaving the
bottom 4 bits unused.

 dac_info_t Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,185 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DAC Interface > dac_info_t Struct Reference

Renesas Synergy Software Package Reference » HAL Interfaces » DAC Interface

#include <r_dac_api.h>

Data Fields

uint8_t bit_width

 Resolution of the DAC.

Detailed Description

DAC information structure to store various information for a DAC

The documentation for this struct was generated from the following file:

r_dac_api.h

 dac_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » DAC Interface

#include <r_dac_api.h>

Data Fields

uint8_t channel

 ID associated with this DAC channel.

bool ad_da_synchronized

 AD/DA synchronization.

dac_data_format_t data_format

 Data format.

bool output_amplifier_enabled

 Output amplifier enable.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,186 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DAC Interface > dac_cfg_t Struct Reference

Detailed Description

DAC Open API configuration parameter

The documentation for this struct was generated from the following file:

r_dac_api.h

 dac_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » DAC Interface

#include <r_dac_api.h>

Data Fields

ssp_err_t(* open)(dac_ctrl_t *p_ctrl, dac_cfg_t const *const p_cfg)

ssp_err_t(* close)(dac_ctrl_t *p_ctrl)

ssp_err_t(* write)(dac_ctrl_t *p_ctrl, dac_size_t value)

ssp_err_t(* start)(dac_ctrl_t *p_ctrl)

ssp_err_t(* stop)(dac_ctrl_t *p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *p_version)

ssp_err_t(* infoGet)(dac_info_t *const p_info)

Detailed Description

DAC driver structure. General DAC functions implemented at the HAL layer follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,187 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DAC Interface > dac_api_t Struct Reference

◆ close

ssp_err_t(* dac_api_t::close) (dac_ctrl_t *p_ctrl)

Close the D/A Converter.

Implemented as

R_DAC_Close()
R_DAC8_Close()

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

◆ infoGet

ssp_err_t(* dac_api_t::infoGet) (dac_info_t *const p_info)

Get information about DAC Resolution and store it in provided pointer p_info.

Implemented as

R_DAC_InfoGet()
R_DAC8_InfoGet()

Parameters
[out] p_info Collection of information for

this DAC.

◆ open

ssp_err_t(* dac_api_t::open) (dac_ctrl_t *p_ctrl, dac_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_DAC_Open()
R_DAC8_Open()

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,188 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DAC Interface > dac_api_t Struct Reference

◆ start

ssp_err_t(* dac_api_t::start) (dac_ctrl_t *p_ctrl)

Start the D/A Converter if it has not been started yet.

Implemented as

R_DAC_Start()
R_DAC8_Start()

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

◆ stop

ssp_err_t(* dac_api_t::stop) (dac_ctrl_t *p_ctrl)

Stop the D/A Converter if the converter is running.

Implemented as

R_DAC_Stop()
R_DAC8_Stop()

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

◆ versionGet

ssp_err_t(* dac_api_t::versionGet) (ssp_version_t *p_version)

Get version and store it in provided pointer p_version.

Implemented as

R_DAC_VersionGet()
R_DAC8_VersionGet()

Parameters
[out] p_version Code and API version used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,189 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DAC Interface > dac_api_t Struct Reference

◆ write

ssp_err_t(* dac_api_t::write) (dac_ctrl_t *p_ctrl, dac_size_t value)

Write sample value to the D/A Converter.

Implemented as

R_DAC_Write()
R_DAC8_Write()

Parameters
[in] p_ctrl Control block set in

dac_api_t::open call for this
timer.

[in] value Sample value to be written
to the D/A Converter.

The documentation for this struct was generated from the following file:

r_dac_api.h

 dac_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » DAC Interface

#include <r_dac_api.h>

Data Fields

dac_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

dac_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

dac_api_t const * p_api

 Pointer to the API structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,190 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DAC Interface > dac_instance_t Struct Reference

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_dac_api.h

5.1.4.11 Display Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for LCD panel displays. More...

Data Structures

struct display_timing_t

struct display_color_t

struct display_coordinate_t

struct display_brightness_t

struct display_contrast_t

struct display_correction_t

struct gamma_correction_t

struct display_gamma_correction_t

struct display_clut_t

struct display_input_cfg_t

struct display_output_cfg_t

struct display_layer_t

struct display_callback_args_t

struct display_cfg_t

struct display_runtime_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,191 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface

struct display_clut_cfg_t

struct display_status_t

struct display_api_t

struct display_instance_t

Typedefs

typedef void display_ctrl_t

Enumerations

enum display_frame_layer_t { DISPLAY_FRAME_LAYER_1 = 0,
DISPLAY_FRAME_LAYER_2 = 1 }

enum display_state_t { DISPLAY_STATE_CLOSED = 0,
DISPLAY_STATE_OPENED = 1, DISPLAY_STATE_DISPLAYING = 2 }

enum display_event_t { DISPLAY_EVENT_GR1_UNDERFLOW = 1,
DISPLAY_EVENT_GR2_UNDERFLOW = 2,
DISPLAY_EVENT_LINE_DETECTION = 3 }

enum display_in_format_t {
 DISPLAY_IN_FORMAT_32BITS_ARGB8888 = 0,
DISPLAY_IN_FORMAT_32BITS_RGB888 = 1,
DISPLAY_IN_FORMAT_16BITS_RGB565 = 2,
DISPLAY_IN_FORMAT_16BITS_ARGB1555 = 3,
 DISPLAY_IN_FORMAT_16BITS_ARGB4444 = 4,
DISPLAY_IN_FORMAT_CLUT8 = 5, DISPLAY_IN_FORMAT_CLUT4 = 6,
DISPLAY_IN_FORMAT_CLUT1 = 7
}

enum display_out_format_t { DISPLAY_OUT_FORMAT_24BITS_RGB888,
DISPLAY_OUT_FORMAT_18BITS_RGB666,
DISPLAY_OUT_FORMAT_16BITS_RGB565,
DISPLAY_OUT_FORMAT_8BITS_SERIAL }

enum display_endian_t { DISPLAY_ENDIAN_LITTLE, DISPLAY_ENDIAN_BIG }

enum display_color_order_t { DISPLAY_COLOR_ORDER_RGB,
DISPLAY_COLOR_ORDER_BGR }

enum display_signal_polarity_t { DISPLAY_SIGNAL_POLARITY_LOACTIVE,
DISPLAY_SIGNAL_POLARITY_HIACTIVE }

enum display_sync_edge_t { DISPLAY_SIGNAL_SYNC_EDGE_RISING,
DISPLAY_SIGNAL_SYNC_EDGE_FALLING }

enum display_fade_control_t { DISPLAY_FADE_CONTROL_NONE,
DISPLAY_FADE_CONTROL_FADEIN,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,192 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface

DISPLAY_FADE_CONTROL_FADEOUT }

enum display_fade_status_t { DISPLAY_FADE_STATUS_NOT_UNDERWAY,
DISPLAY_FADE_STATUS_FADING_UNDERWAY,
DISPLAY_FADE_STATUS_UNCERTAIN }

Detailed Description

Interface for LCD panel displays.

Summary
The display interface provides standard display functionality:

Signal timing configuration for LCD panels with RGB interface.
Dot clock source selection (internal or external) and frequency divider.
Blending of multiple graphics layers on the background screen.
Color correction (brightness/configuration/gamma correction).
Interrupts and callback function.

Implemented by: GLCDC

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Display Interface description: Display Driver

Typedef Documentation

◆ display_ctrl_t

typedef void display_ctrl_t

Display control block. Allocate an instance specific control block to pass into the display API calls.

Implemented as

glcd_instance_ctrl_tDisplay control block

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,193 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface

◆ display_color_order_t

enum display_color_order_t

RGB color order select

Enumerator

DISPLAY_COLOR_ORDER_RGB Color order RGB.

DISPLAY_COLOR_ORDER_BGR Color order BGR.

◆ display_endian_t

enum display_endian_t

Data endian select

Enumerator

DISPLAY_ENDIAN_LITTLE Little-endian.

DISPLAY_ENDIAN_BIG Big-endian.

◆ display_event_t

enum display_event_t

Display event codes

Enumerator

DISPLAY_EVENT_GR1_UNDERFLOW Graphics frame1 underflow occurs.

DISPLAY_EVENT_GR2_UNDERFLOW Graphics frame2 underflow occurs.

DISPLAY_EVENT_LINE_DETECTION Designated line is processed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,194 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface

◆ display_fade_control_t

enum display_fade_control_t

Fading control

Enumerator

DISPLAY_FADE_CONTROL_NONE Applying no fading control.

DISPLAY_FADE_CONTROL_FADEIN Applying fade-in control.

DISPLAY_FADE_CONTROL_FADEOUT Applying fade-out control.

◆ display_fade_status_t

enum display_fade_status_t

Fading status

Enumerator

DISPLAY_FADE_STATUS_NOT_UNDERWAY Fade-in/fade-out is not in progress.

DISPLAY_FADE_STATUS_FADING_UNDERWAY Fade-in or fade-out is in progress.

DISPLAY_FADE_STATUS_UNCERTAIN Fade-in/fade-out status is uncertain just before
hardware working.

◆ display_frame_layer_t

enum display_frame_layer_t

Display frame number

Enumerator

DISPLAY_FRAME_LAYER_1 Frame layer 1.

DISPLAY_FRAME_LAYER_2 Frame layer 2.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,195 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface

◆ display_in_format_t

enum display_in_format_t

Input format setting

Enumerator

DISPLAY_IN_FORMAT_32BITS_ARGB8888 ARGB8888, 32 bits.

DISPLAY_IN_FORMAT_32BITS_RGB888 RGB888, 32 bits.

DISPLAY_IN_FORMAT_16BITS_RGB565 RGB565, 16 bits.

DISPLAY_IN_FORMAT_16BITS_ARGB1555 ARGB1555, 16 bits.

DISPLAY_IN_FORMAT_16BITS_ARGB4444 ARGB4444, 16 bits.

DISPLAY_IN_FORMAT_CLUT8 CLUT8.

DISPLAY_IN_FORMAT_CLUT4 CLUT4.

DISPLAY_IN_FORMAT_CLUT1 CLUT1.

◆ display_out_format_t

enum display_out_format_t

Output format setting

Enumerator

DISPLAY_OUT_FORMAT_24BITS_RGB888 RGB888, 24 bits.

DISPLAY_OUT_FORMAT_18BITS_RGB666 RGB666, 18 bits.

DISPLAY_OUT_FORMAT_16BITS_RGB565 RGB565, 16 bits.

DISPLAY_OUT_FORMAT_8BITS_SERIAL SERIAL, 8 bits.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,196 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface

◆ display_signal_polarity_t

enum display_signal_polarity_t

Polarity of a signal select

Enumerator

DISPLAY_SIGNAL_POLARITY_LOACTIVE Low active signal.

DISPLAY_SIGNAL_POLARITY_HIACTIVE High active signal.

◆ display_state_t

enum display_state_t

Display interface operation state

Enumerator

DISPLAY_STATE_CLOSED Display closed.

DISPLAY_STATE_OPENED Display opened.

DISPLAY_STATE_DISPLAYING Displaying.

◆ display_sync_edge_t

enum display_sync_edge_t

Signal synchronization edge select

Enumerator

DISPLAY_SIGNAL_SYNC_EDGE_RISING Signal is synchronized to rising edge.

DISPLAY_SIGNAL_SYNC_EDGE_FALLING Signal is synchronized to falling edge.

 display_timing_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,197 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_timing_t Struct Reference

uint16_t total_cyc

 Total cycles in one line or total lines in one frame.

uint16_t display_cyc

 Active video cycles or lines.

uint16_t back_porch

 Back poach cycles or lines.

uint16_t sync_width

 Sync signal asserting width.

display_signal_polarity_t sync_polarity

 Sync signal polarity.

Detailed Description

Display signal timing setting

The documentation for this struct was generated from the following file:

r_display_api.h

 display_color_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Detailed Description

RGB Color setting

The documentation for this struct was generated from the following file:

r_display_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,198 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_coordinate_t Struct Reference

 display_coordinate_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

int16_t x

 Coordinate X, this allows to set signed value.

int16_t y

 Coordinate Y, this allows to set signed value.

Detailed Description

Contrast (gain) correction setting

The documentation for this struct was generated from the following file:

r_display_api.h

 display_brightness_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

bool enable

 Brightness Correction On/Off.

uint16_t r

 Brightness (DC) adjustment for R channel.

uint16_t g

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,199 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_brightness_t Struct Reference

 Brightness (DC) adjustment for G channel.

uint16_t b

 Brightness (DC) adjustment for B channel.

Detailed Description

Brightness (DC) correction setting

The documentation for this struct was generated from the following file:

r_display_api.h

 display_contrast_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

bool enable

 Contrast Correction On/Off.

uint8_t r

 Contrast (gain) adjustment for R channel.

uint8_t g

 Contrast (gain) adjustment for G channel.

uint8_t b

 Contrast (gain) adjustment for B channel.

Detailed Description

Contrast (gain) correction setting

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,200 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_contrast_t Struct Reference

The documentation for this struct was generated from the following file:

r_display_api.h

 display_correction_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

display_brightness_t brightness

 Brightness.

display_contrast_t contrast

 Contrast.

Detailed Description

Color correction setting

The documentation for this struct was generated from the following file:

r_display_api.h

 gamma_correction_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

bool enable

 Gamma Correction On/Off.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,201 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > gamma_correction_t Struct Reference

uint16_t gain [DISPLAY_GAMMA_CURVE_ELEMENT_NUM]

 Gain adjustment.

uint16_t threshold [DISPLAY_GAMMA_CURVE_ELEMENT_NUM]

 Start threshold.

Detailed Description

Gamma correction setting for each color

The documentation for this struct was generated from the following file:

r_display_api.h

 display_gamma_correction_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

gamma_correction_t r

 Gamma correction for R channel.

gamma_correction_t g

 Gamma correction for G channel.

gamma_correction_t b

 Gamma correction for B channel.

Detailed Description

Gamma correction setting

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,202 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_gamma_correction_t Struct Reference

r_display_api.h

 display_clut_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

uint32_t color_num

 The number of colors in CLUT.

const uint32_t * p_clut

 Address of the area storing the CLUT data (in ARGB8888 format)

Detailed Description

CLUT setting

The documentation for this struct was generated from the following file:

r_display_api.h

 display_input_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

uint32_t * p_base

 Base address to the frame buffer.

uint16_t hsize

 Horizontal pixel size in a line.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,203 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_input_cfg_t Struct Reference

uint16_t vsize

 Vertical pixel size in a frame.

uint32_t hstride

 Memory stride (bytes) in a line.

display_in_format_t format

 Input format setting.

bool line_descending_enable

 Line descending enable.

bool lines_repeat_enable

 Line repeat enable.

uint16_t lines_repeat_times

 Expected number of line repeating.

Detailed Description

Graphics plane input configuration structure

The documentation for this struct was generated from the following file:

r_display_api.h

 display_output_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

display_timing_t htiming

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,204 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_output_cfg_t Struct Reference

 Horizontal display cycle setting.

display_timing_t vtiming

 Vertical display cycle setting.

display_out_format_t format

 Output format setting.

display_endian_t endian

 Bit order of output data.

display_color_order_t color_order

 Color order in pixel.

display_signal_polarity_t data_enable_polarity

 Data Enable signal polarity.

display_sync_edge_t sync_edge

 Signal sync edge selection.

display_color_t bg_color

 Background color.

display_brightness_t brightness

 Brightness setting.

display_contrast_t contrast

 Contrast setting.

display_gamma_correction_t
*

p_gamma_correction

 Pointer to gamma correction setting.

bool dithering_on

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,205 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_output_cfg_t Struct Reference

 Dithering on/off.

Detailed Description

Display output configuration structure

The documentation for this struct was generated from the following file:

r_display_api.h

 display_layer_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

display_coordinate_t coordinate

 Blending location (starting point of image)

display_color_t bg_color

 Color outside region.

display_fade_control_t fade_control

 Layer fade-in/out control on/off.

uint8_t fade_speed

 Layer fade-in/out frame rate.

Detailed Description

Graphics layer blend setup parameter structure

The documentation for this struct was generated from the following file:

r_display_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,206 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_layer_t Struct Reference

 display_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

display_event_t event

 Event code.

void const * p_context

 Context provided to user during callback.

Detailed Description

Display callback parameter definition

The documentation for this struct was generated from the following file:

r_display_api.h

 display_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

display_input_cfg_t input [DISPLAY_FRAME_LAYER_2+1]

 Graphics input frame setting. More...

display_output_cfg_t output

 Graphics output frame setting.

display_layer_t layer [DISPLAY_FRAME_LAYER_2+1]

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,207 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_cfg_t Struct Reference

 Graphics layer blend setting.

uint8_t line_detect_ipl

 Line detect interrupt priority.

uint8_t underflow_1_ipl

 Underflow 1 interrupt priority.

uint8_t underflow_2_ipl

 Underflow 1 interrupt priority.

void(* p_callback)(display_callback_args_t *p_args)

 Pointer to callback function. More...

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 Display hardware dependent configuration. More...

Detailed Description

Display main configuration structure

Field Documentation

◆ input

display_input_cfg_t display_cfg_t::input[DISPLAY_FRAME_LAYER_2+1]

Graphics input frame setting.

Generic configuration for display devices

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,208 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_cfg_t Struct Reference

◆ p_callback

void(* display_cfg_t::p_callback) (display_callback_args_t *p_args)

Pointer to callback function.

Configuration for display event processing

◆ p_extend

void const* display_cfg_t::p_extend

Display hardware dependent configuration.

Pointer to display peripheral specific configuration

The documentation for this struct was generated from the following file:

r_display_api.h

 display_runtime_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

display_input_cfg_t input

 Graphics input frame setting. More...

display_layer_t layer

 Graphics layer alpha blending setting.

Detailed Description

Display main configuration structure

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,209 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_runtime_cfg_t Struct Reference

◆ input

display_input_cfg_t display_runtime_cfg_t::input

Graphics input frame setting.

Generic configuration for display devices

The documentation for this struct was generated from the following file:

r_display_api.h

 display_clut_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

uint32_t * p_base

 Pointer to CLUT source data.

uint16_t start

 Beginning of CLUT entry to be updated.

uint16_t size

 Size of CLUT entry to be updated.

Detailed Description

Display CLUT configuration structure

The documentation for this struct was generated from the following file:

r_display_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,210 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_status_t Struct Reference

 display_status_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

display_state_t state

 Status of GLCD module.

display_fade_status_t fade_status [DISPLAY_FRAME_LAYER_2+1]

 Status of fade-in/fade-out status.

Detailed Description

Display Status

The documentation for this struct was generated from the following file:

r_display_api.h

 display_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

ssp_err_t(* open)(display_ctrl_t *const p_ctrl, display_cfg_t const *const p_cfg)

ssp_err_t(* close)(display_ctrl_t *const p_ctrl)

ssp_err_t(* start)(display_ctrl_t *const p_ctrl)

ssp_err_t(* stop)(display_ctrl_t *const p_ctrl)

ssp_err_t(* layerChange)(display_ctrl_t const *const p_ctrl,
display_runtime_cfg_t const *const p_cfg, display_frame_layer_t
frame)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,211 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_api_t Struct Reference

ssp_err_t(* correction)(display_ctrl_t const *const p_ctrl, display_correction_t
const *const p_param)

ssp_err_t(* clut)(display_ctrl_t const *const p_ctrl, display_clut_cfg_t const
*const p_clut_cfg, display_frame_layer_t frame)

ssp_err_t(* statusGet)(display_ctrl_t const *const p_ctrl, display_status_t *const
p_status)

ssp_err_t(* versionGet)(ssp_version_t *p_version)

Detailed Description

Shared Interface definition for display peripheral

Field Documentation

◆ close

ssp_err_t(* display_api_t::close) (display_ctrl_t *const p_ctrl)

Close display device.

Implemented as

R_GLCD_Close()
Parameters

[in] p_ctrl Pointer to display interface
control block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,212 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_api_t Struct Reference

◆ clut

ssp_err_t(* display_api_t::clut) (display_ctrl_t const *const p_ctrl, display_clut_cfg_t const *const
p_clut_cfg, display_frame_layer_t frame)

Set CLUT for display device.

Implemented as

R_GLCD_ClutUpdate()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] p_clut_cfg Pointer to CLUT
configuration structure.

[in] frame Number of frame buffer
corresponding to the CLUT.

◆ correction

ssp_err_t(* display_api_t::correction) (display_ctrl_t const *const p_ctrl, display_correction_t const
*const p_param)

Color correction.

Implemented as

R_GLCD_ColorCorrection()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] param Pointer to color correction
configuration structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,213 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_api_t Struct Reference

◆ layerChange

ssp_err_t(* display_api_t::layerChange) (display_ctrl_t const *const p_ctrl, display_runtime_cfg_t
const *const p_cfg, display_frame_layer_t frame)

Change layer parameters at runtime.

Implemented as

R_GLCD_LayerChange()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] p_cfg Pointer to run-time layer
configuration structure.

[in] frame Number of graphic frames.

◆ open

ssp_err_t(* display_api_t::open) (display_ctrl_t *const p_ctrl, display_cfg_t const *const p_cfg)

Open display device.

Implemented as

R_GLCD_Open()
Parameters

[in,out] p_ctrl Pointer to display interface
control block. Must be
declared by user. Value set
here.

[in] p_cfg Pointer to display
configuration structure. All
elements of this structure
must be set by user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,214 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_api_t Struct Reference

◆ start

ssp_err_t(* display_api_t::start) (display_ctrl_t *const p_ctrl)

Display start.

Implemented as

R_GLCD_Start()
Parameters

[in] p_ctrl Pointer to display interface
control block.

◆ statusGet

ssp_err_t(* display_api_t::statusGet) (display_ctrl_t const *const p_ctrl, display_status_t *const
p_status)

Get status for display device.

Implemented as

R_GLCD_StatusGet()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] status Pointer to display interface
status structure.

◆ stop

ssp_err_t(* display_api_t::stop) (display_ctrl_t *const p_ctrl)

Display stop.

Implemented as

R_GLCD_Stop()
Parameters

[in] p_ctrl Pointer to display interface
control block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,215 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_api_t Struct Reference

◆ versionGet

ssp_err_t(* display_api_t::versionGet) (ssp_version_t *p_version)

Get version.

Implemented as

R_GLCD_VersionGet()
Parameters

[in] p_version Pointer to the memory to
store the version
information.

The documentation for this struct was generated from the following file:

r_display_api.h

 display_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Display Interface

#include <r_display_api.h>

Data Fields

display_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

display_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

display_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,216 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Display Interface > display_instance_t Struct Reference

The documentation for this struct was generated from the following file:

r_display_api.h

5.1.4.12 DOC Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for the Data Operation Circuit. More...

Data Structures

struct doc_callback_args_t

struct doc_data_t

struct doc_cfg_t

struct doc_api_t

struct doc_instance_t

Macros

#define DOC_API_VERSION_MAJOR (2U)

Typedefs

typedef uint16_t doc_size_t

typedef void doc_ctrl_t

Enumerations

enum doc_event_t { DOC_EVENT_COMPARISON_MISMATCH = 0x00,
DOC_EVENT_ADDITION = 0x01, DOC_EVENT_SUBTRACTION = 0x02,
DOC_EVENT_COMPARISON_MATCH = 0x04 }

enum doc_status_t { DOC_STATUS_CONDITION_FALSE = 0,
DOC_STATUS_CONDITION_TRUE = 1 }

Detailed Description

Interface for the Data Operation Circuit.

Defines the API and data structures for the DOC implementation of the Data Operation Circuit (DOC)
interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,217 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DOC Interface

Summary
This module implements the DOC_API using the Data Operation Circuit (DOC).

Implemented by: DOC

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

DOC Interface description: Data Operation Circuit Driver

Macro Definition Documentation

◆ DOC_API_VERSION_MAJOR

#define DOC_API_VERSION_MAJOR (2U)

Register definitions, common services and error codes.

Typedef Documentation

◆ doc_ctrl_t

typedef void doc_ctrl_t

DOC control block. Allocate an instance specific control block to pass into the DOC API calls.

Implemented as

doc_instance_ctrl_t

◆ doc_size_t

typedef uint16_t doc_size_t

Size of the comparison data supported by the Data Operation Circuit (DOC)

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,218 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DOC Interface

◆ doc_event_t

enum doc_event_t

Event that can trigger a callback function.

Enumerator

DOC_EVENT_COMPARISON_MISMATCH Comparison of data has resulted in a
mismatch.

DOC_EVENT_ADDITION Addition of data has resulted in a value greater
than H'FFFF.

DOC_EVENT_SUBTRACTION Subtraction of data has resulted in a value less
than H'0000.

DOC_EVENT_COMPARISON_MATCH Comparison of data has resulted in a match.

◆ doc_status_t

enum doc_status_t

Status of the data comparison operation.

Enumerator

DOC_STATUS_CONDITION_FALSE Data comparison condition NOT met (match or
mismatch), addition result NOT > H'FFFF,
subtraction result NOT < H'0000.

DOC_STATUS_CONDITION_TRUE Data comparison condition met (match or
mismatch), addition result > H'FFFF,
subtraction result < H'0000.

 doc_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » DOC Interface

#include <r_doc_api.h>

Data Fields

doc_event_t event

 The event is used to identify what caused the callback.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,219 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DOC Interface > doc_callback_args_t Struct Reference

void const * p_context

Detailed Description

Callback function parameter data.

Field Documentation

◆ p_context

void const* doc_callback_args_t::p_context

Placeholder for user data. Set in doc_api_t::open function in doc_cfg_t.

The documentation for this struct was generated from the following file:

r_doc_api.h

 doc_data_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » DOC Interface

#include <r_doc_api.h>

Data Fields

doc_size_t dodir

 Value to be written to the DOC DODIR.

doc_size_t dodsr

 Value to be written to the DOC DODSR.

Detailed Description

Data to be written to DOC register for comparison/addition/subtraction.

The documentation for this struct was generated from the following file:

r_doc_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,220 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DOC Interface > doc_data_t Struct Reference

 doc_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » DOC Interface

#include <r_doc_api.h>

Data Fields

doc_event_t event

 Select enumerated value from doc_event_t.

uint8_t irq_ipl

 DOC interrupt priority.

void(* p_callback)(doc_callback_args_t *p_args)

void const * p_context

Detailed Description

User configuration structure, used in the open function.

Field Documentation

◆ p_callback

void(* doc_cfg_t::p_callback) (doc_callback_args_t *p_args)

Callback provided when a DOC ISR occurs.

◆ p_context

void const* doc_cfg_t::p_context

Placeholder for user data. Passed to the user callback in doc_callback_args_t.

The documentation for this struct was generated from the following file:

r_doc_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,221 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DOC Interface > doc_api_t Struct Reference

 doc_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » DOC Interface

#include <r_doc_api.h>

Data Fields

ssp_err_t(* open)(doc_ctrl_t *const p_ctrl, doc_cfg_t const *const p_cfg)

ssp_err_t(* close)(doc_ctrl_t *const p_ctrl)

ssp_err_t(* statusGet)(doc_ctrl_t *const p_ctrl, doc_status_t *p_status)

ssp_err_t(* statusClear)(doc_ctrl_t *const p_ctrl)

ssp_err_t(* write)(doc_ctrl_t *const p_ctrl, doc_data_t *const p_data)

ssp_err_t(* inputRegisterWrite)(doc_ctrl_t *const p_ctrl, doc_size_t data)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Data Operation Circuit (DOC) API structure. DOC functions implemented at the HAL layer will follow
this API.

Field Documentation

◆ close

ssp_err_t(* doc_api_t::close) (doc_ctrl_t *const p_ctrl)

Allow the driver to be reconfigured. Will reduce power consumption.

Implemented as

R_DOC_Close()
Parameters

[in] p_ctrl Control block set in
doc_api_t::open call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,222 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DOC Interface > doc_api_t Struct Reference

◆ inputRegisterWrite

ssp_err_t(* doc_api_t::inputRegisterWrite) (doc_ctrl_t *const p_ctrl, doc_size_t data)

Write to the DODIR register.

Implemented as

R_DOC_InputRegisterWrite()
Precondition

Call doc_api_t::open to configure the DOC before using this function.
Parameters

[in] p_ctrl Control block set in
doc_api_t::open call.

[in] data Data to be written to DOC
DODIR register.

◆ open

ssp_err_t(* doc_api_t::open) (doc_ctrl_t *const p_ctrl, doc_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_DOC_Open()
Precondition

Peripheral clocks should be configured prior to calling this function.
Parameters

[in] p_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,223 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DOC Interface > doc_api_t Struct Reference

◆ statusClear

ssp_err_t(* doc_api_t::statusClear) (doc_ctrl_t *const p_ctrl)

Clear DOPCF status flag.

Implemented as

R_DOC_StatusClear()
Precondition

Call doc_api_t::open to configure the DOC before using this function.
Parameters

[in] p_ctrl Control block set in
doc_api_t::open call.

◆ statusGet

ssp_err_t(* doc_api_t::statusGet) (doc_ctrl_t *const p_ctrl, doc_status_t *p_status)

Get the DOC status and stores it in the provided pointer p_status.

Implemented as

R_DOC_StatusGet()
Precondition

Call doc_api_t::open to configure the DOC before using this function.
Parameters

[in] p_ctrl Control block set in
doc_api_t::open call.

[out] p_status Indicates the status of the co
mparison/addition/subtractio
n operation. Result will be
one of doc_status_t.

◆ versionGet

ssp_err_t(* doc_api_t::versionGet) (ssp_version_t *const p_version)

Get version and stores it in provided pointer p_version.

Implemented as

R_DOC_VersionGet()
Parameters

[out] p_version Code and API version used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,224 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DOC Interface > doc_api_t Struct Reference

◆ write

ssp_err_t(* doc_api_t::write) (doc_ctrl_t *const p_ctrl, doc_data_t *const p_data)

Write to the DODIR and DODSR registers.

Implemented as

R_DOC_Write()
Precondition

Call doc_api_t::open to configure the DOC before using this function.
Parameters

[in] p_ctrl Control block set in
doc_api_t::open call.

[in] p_data Pointer to data to be written
to DOC DODIR and DODSR
registers.

The documentation for this struct was generated from the following file:

r_doc_api.h

 doc_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » DOC Interface

#include <r_doc_api.h>

Data Fields

doc_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

doc_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

doc_api_t const * p_api

 Pointer to the API structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,225 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > DOC Interface > doc_instance_t Struct Reference

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_doc_api.h

5.1.4.13 events and peripheral definitions
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for the Event Link Controller. More...

Data Structures

struct elc_link_t

struct elc_cfg_t

struct elc_api_t

struct elc_instance_t

Enumerations

enum elc_software_event_t { ELC_SOFTWARE_EVENT_0,
ELC_SOFTWARE_EVENT_1 }

Detailed Description

Interface for the Event Link Controller.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Event Link Controller Interface description: ELC Driver

Related SSP architecture topics:

What is an SSP Interface? SSP Interfaces
What is a SSP Layer? SSP Predefined Layers
How to use SSP Interfaces and Modules? Using SSP Modules

Event Link Controller Interface description: ELC Driver

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,226 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > events and peripheral definitions

Enumeration Type Documentation

◆ elc_software_event_t

enum elc_software_event_t

Software event number

Enumerator

ELC_SOFTWARE_EVENT_0 Software event 0.

ELC_SOFTWARE_EVENT_1 Software event 1.

 elc_link_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » events and peripheral definitions

#include <r_elc_api.h>

Data Fields

elc_peripheral_t peripheral

 Peripheral to receive the signal.

elc_event_t event

 Signal that gets sent to the Peripheral.

Detailed Description

Individual event link. The actual peripheral definitions can be found in the MCU specific (ie.
/mcu/S124/bsp_elc.h) bsp_elc.h files.

The documentation for this struct was generated from the following file:

r_elc_api.h

 elc_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » events and peripheral definitions

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,227 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > events and peripheral definitions > elc_cfg_t Struct Reference

#include <r_elc_api.h>

Data Fields

bool autostart

 Start operation and enable interrupts during open().

uint32_t link_count

 Number of event links.

elc_link_t const * link_list

 Event links.

Detailed Description

Main configuration structure for the Event Link Controller

The documentation for this struct was generated from the following file:

r_elc_api.h

 elc_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » events and peripheral definitions

#include <r_elc_api.h>

Data Fields

ssp_err_t(* init)(elc_cfg_t const *const p_cfg)

ssp_err_t(* softwareEventGenerate)(elc_software_event_t event_num)

ssp_err_t(* linkSet)(elc_peripheral_t peripheral, elc_event_t signal)

ssp_err_t(* linkBreak)(elc_peripheral_t peripheral)

ssp_err_t(* enable)(void)

ssp_err_t(* disable)(void)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,228 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > events and peripheral definitions > elc_api_t Struct Reference

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

ELC driver structure. General ELC functions implemented at the HAL layer follow this API.

Field Documentation

◆ disable

ssp_err_t(* elc_api_t::disable) (void)

Disable the operation of the Event Link Controller.

Implemented as

R_ELC_Disable()

◆ enable

ssp_err_t(* elc_api_t::enable) (void)

Enable the operation of the Event Link Controller.

Implemented as

R_ELC_Enable()

◆ init

ssp_err_t(* elc_api_t::init) (elc_cfg_t const *const p_cfg)

Initialize all links in the Event Link Controller.

Implemented as

R_ELC_Init()
Parameters

[in] p_cfg Pointer to configuration
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,229 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > events and peripheral definitions > elc_api_t Struct Reference

◆ linkBreak

ssp_err_t(* elc_api_t::linkBreak) (elc_peripheral_t peripheral)

Break an event link.

Implemented as

R_ELC_LinkBreak()
Parameters

[in] peripheral The peripheral that should
no longer be linked.

◆ linkSet

ssp_err_t(* elc_api_t::linkSet) (elc_peripheral_t peripheral, elc_event_t signal)

Create a single event link.

Implemented as

R_ELC_LinkSet()
Parameters

[in] peripheral The peripheral block that will
receive the event signal.

[in] signal The event signal.

◆ softwareEventGenerate

ssp_err_t(* elc_api_t::softwareEventGenerate) (elc_software_event_t event_num)

Generate a software event in the Event Link Controller.

Implemented as

R_ELC_SoftwareEventGenerate()
Parameters

[in] eventNum Software event number to
be generated.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,230 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > events and peripheral definitions > elc_api_t Struct Reference

◆ versionGet

ssp_err_t(* elc_api_t::versionGet) (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Implemented as

R_ELC_VersionGet()
Parameters

[out] p_version is value returned.

The documentation for this struct was generated from the following file:

r_elc_api.h

 elc_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » events and peripheral definitions

#include <r_elc_api.h>

Data Fields

elc_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

elc_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_elc_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,231 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > External IRQ Interface

5.1.4.14 External IRQ Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for detecting external interrupts. More...

Data Structures

struct external_irq_callback_args_t

struct external_irq_cfg_t

struct external_irq_api_t

struct external_irq_instance_t

Macros

#define EXTERNAL_IRQ_API_VERSION_MAJOR (2U)

 EXTERNAL IRQ API version number (Major)

#define EXTERNAL_IRQ_API_VERSION_MINOR (0U)

 EXTERNAL IRQ API version number (Minor)

Typedefs

typedef void external_irq_ctrl_t

Enumerations

enum external_irq_trigger_t { EXTERNAL_IRQ_TRIG_FALLING = 0,
EXTERNAL_IRQ_TRIG_RISING = 1, EXTERNAL_IRQ_TRIG_BOTH_EDGE
= 2, EXTERNAL_IRQ_TRIG_LEVEL_LOW = 3 }

enum external_irq_pclk_div_t { EXTERNAL_IRQ_PCLK_DIV_BY_1 = 0,
EXTERNAL_IRQ_PCLK_DIV_BY_8 = 1, EXTERNAL_IRQ_PCLK_DIV_BY_32
= 2, EXTERNAL_IRQ_PCLK_DIV_BY_64 = 3 }

Detailed Description

Interface for detecting external interrupts.

Summary
The external IRQ interface supports external inputs, for example input from pins or capacitive touch
buttons. When an input trigger is detected, a user provided callback function will be called.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,232 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > External IRQ Interface

Implemented by: ICU

Related interfaces: Key Matrix Interface

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

External IRQ Interface description: External IRQ Driver

Typedef Documentation

◆ external_irq_ctrl_t

typedef void external_irq_ctrl_t

External IRQ control block. Allocate an instance specific control block to pass into the external IRQ
API calls.

Implemented as

icu_instance_ctrl_t

Enumeration Type Documentation

◆ external_irq_pclk_div_t

enum external_irq_pclk_div_t

External IRQ input pin digital filtering sample clock divisor settings.

Enumerator

EXTERNAL_IRQ_PCLK_DIV_BY_1 Filter using PCLK divided by 1.

EXTERNAL_IRQ_PCLK_DIV_BY_8 Filter using PCLK divided by 8.

EXTERNAL_IRQ_PCLK_DIV_BY_32 Filter using PCLK divided by 32.

EXTERNAL_IRQ_PCLK_DIV_BY_64 Filter using PCLK divided by 64.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,233 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > External IRQ Interface

◆ external_irq_trigger_t

enum external_irq_trigger_t

Trigger type: rising edge, falling edge, both edges, low level.

Enumerator

EXTERNAL_IRQ_TRIG_FALLING Falling edge trigger.

EXTERNAL_IRQ_TRIG_RISING Rising edge trigger.

EXTERNAL_IRQ_TRIG_BOTH_EDGE Both edges trigger.

EXTERNAL_IRQ_TRIG_LEVEL_LOW Low level trigger.

 external_irq_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » External IRQ Interface

#include <r_external_irq_api.h>

Data Fields

void const * p_context

uint32_t channel

 The physical hardware channel that caused the interrupt.

Detailed Description

Callback function parameter data

Field Documentation

◆ p_context

void const* external_irq_callback_args_t::p_context

Placeholder for user data. Set in external_irq_api_t::open function in external_irq_cfg_t.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,234 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > External IRQ Interface > external_irq_callback_args_t Struct Reference

The documentation for this struct was generated from the following file:

r_external_irq_api.h

 external_irq_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » External IRQ Interface

#include <r_external_irq_api.h>

Data Fields

uint8_t channel

 Hardware channel used.

uint8_t irq_ipl

 Interrupt priority.

external_irq_trigger_t trigger

 Trigger setting.

external_irq_pclk_div_t pclk_div

 Digital filter clock divisor setting.

bool autostart

 Start operation and enable interrupts during open().

bool filter_enable

 Digital filter enable/disable setting.

void(* p_callback)(external_irq_callback_args_t *p_args)

void const * p_context

void const * p_extend

 External IRQ hardware dependent configuration.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,235 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > External IRQ Interface > external_irq_cfg_t Struct Reference

Detailed Description

User configuration structure, used in open function

Field Documentation

◆ p_callback

void(* external_irq_cfg_t::p_callback) (external_irq_callback_args_t *p_args)

Callback provided external input trigger occurs.

◆ p_context

void const* external_irq_cfg_t::p_context

Placeholder for user data. Passed to the user callback in external_irq_callback_args_t.

The documentation for this struct was generated from the following file:

r_external_irq_api.h

 external_irq_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » External IRQ Interface

#include <r_external_irq_api.h>

Data Fields

ssp_err_t(* open)(external_irq_ctrl_t *const p_ctrl, external_irq_cfg_t const
*const p_cfg)

ssp_err_t(* enable)(external_irq_ctrl_t *const p_ctrl)

ssp_err_t(* disable)(external_irq_ctrl_t *const p_ctrl)

ssp_err_t(* triggerSet)(external_irq_ctrl_t *const p_ctrl, external_irq_trigger_t
const trigger)

ssp_err_t(* filterEnable)(external_irq_ctrl_t *const p_ctrl)

ssp_err_t(* filterDisable)(external_irq_ctrl_t *const p_ctrl)

ssp_err_t(* close)(external_irq_ctrl_t *const p_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,236 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > External IRQ Interface > external_irq_api_t Struct Reference

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

External interrupt driver structure. External interrupt functions implemented at the HAL layer will
follow this API.

Field Documentation

◆ close

ssp_err_t(* external_irq_api_t::close) (external_irq_ctrl_t *const p_ctrl)

Allow driver to be reconfigured. May reduce power consumption.

Implemented as

R_ICU_ExternalIrqClose()
Parameters

[in] p_ctrl Control block set in Open
call for this external
interrupt.

◆ disable

ssp_err_t(* external_irq_api_t::disable) (external_irq_ctrl_t *const p_ctrl)

Disable callback when external IRQ occurs.

Implemented as

R_ICU_ExternalIrqDisable()
Parameters

[in] p_ctrl Control block set in Open
call for this external
interrupt.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,237 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > External IRQ Interface > external_irq_api_t Struct Reference

◆ enable

ssp_err_t(* external_irq_api_t::enable) (external_irq_ctrl_t *const p_ctrl)

Enable callback when external IRQ occurs.

Implemented as

R_ICU_ExternalIrqEnable()
Parameters

[in] p_ctrl Control block set in Open
call for this external
interrupt.

◆ filterDisable

ssp_err_t(* external_irq_api_t::filterDisable) (external_irq_ctrl_t *const p_ctrl)

Disable noise filter.

Implemented as

R_ICU_ExternalIrqFilterDisable()
Parameters

[in] p_ctrl Control block set in Open
call for this external
interrupt.

◆ filterEnable

ssp_err_t(* external_irq_api_t::filterEnable) (external_irq_ctrl_t *const p_ctrl)

Enables noise filter.

Implemented as

R_ICU_ExternalIrqFilterEnable()
Parameters

[in] p_ctrl Control block set in Open
call for this external
interrupt.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,238 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > External IRQ Interface > external_irq_api_t Struct Reference

◆ open

ssp_err_t(* external_irq_api_t::open) (external_irq_ctrl_t *const p_ctrl, external_irq_cfg_t const
*const p_cfg)

Initial configuration.

Implemented as

R_ICU_ExternalIrqOpen()
Parameters

[out] p_ctrl Pointer to control block.
Must be declared by user.
Value set here.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

◆ triggerSet

ssp_err_t(* external_irq_api_t::triggerSet) (external_irq_ctrl_t *const p_ctrl, external_irq_trigger_t
const trigger)

Set trigger.

Implemented as

R_ICU_ExternalIrqTriggerSet()
Parameters

[in] p_ctrl Control block set in Open
call for this external
interrupt.

[in] trigger Trigger type

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,239 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > External IRQ Interface > external_irq_api_t Struct Reference

◆ versionGet

ssp_err_t(* external_irq_api_t::versionGet) (ssp_version_t *const p_version)

Get version and store it in provided pointer p_version.

Implemented as

R_ICU_ExternalIrqVersionGet()
Parameters

[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_external_irq_api.h

 external_irq_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » External IRQ Interface

#include <r_external_irq_api.h>

Data Fields

external_irq_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

external_irq_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

external_irq_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,240 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > External IRQ Interface > external_irq_instance_t Struct Reference

The documentation for this struct was generated from the following file:

r_external_irq_api.h

5.1.4.15 Flash Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for the flash controller. More...

Data Structures

struct flash_fmi_block_info_t

struct flash_fmi_regions_t

struct flash_info_t

struct flash_callback_args_t

struct flash_cfg_t

struct flash_api_t

struct flash_instance_t

Macros

#define FLASH_API_VERSION_MAJOR (2U)

#define FLASH_API_VERSION_MINOR (0U)

Typedefs

typedef void flash_ctrl_t

Enumerations

enum flash_result_t { FLASH_RESULT_BLANK, FLASH_RESULT_NOT_BLANK,
FLASH_RESULT_BGO_ACTIVE }

enum flash_startup_area_swap_t { FLASH_STARTUP_AREA_BLOCK1 = 0,
FLASH_STARTUP_AREA_BLOCK0, FLASH_STARTUP_AREA_BTFLG }

enum flash_event_t {
 FLASH_EVENT_ERASE_COMPLETE, FLASH_EVENT_WRITE_COMPLETE,
FLASH_EVENT_BLANK, FLASH_EVENT_NOT_BLANK,
 FLASH_EVENT_ERR_DF_ACCESS, FLASH_EVENT_ERR_CF_ACCESS,
FLASH_EVENT_ERR_CMD_LOCKED, FLASH_EVENT_ERR_FAILURE,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,241 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface

 FLASH_EVENT_ERR_ONE_BIT
}

enum flash_id_code_mode_t { FLASH_ID_CODE_MODE_UNLOCKED,
FLASH_ID_CODE_MODE_LOCKED_WITH_ALL_ERASE_SUPPORT,
FLASH_ID_CODE_MODE_LOCKED }

Detailed Description

Interface for the flash controller.

Summary
The Flash interface provides the functionality necessary to read, write, erase and blank check the
Flash memory. Additionally functions are provided to configure the access window and swap areas of
the flash memory.

Implemented by:

High-performance Flash
Low Power Flash

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Flash Interface description: Flash Driver

Macro Definition Documentation

◆ FLASH_API_VERSION_MAJOR

#define FLASH_API_VERSION_MAJOR (2U)

FLASH HAL API version number (Major)

◆ FLASH_API_VERSION_MINOR

#define FLASH_API_VERSION_MINOR (0U)

FLASH HAL API version number (Minor)

Typedef Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,242 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface

◆ flash_ctrl_t

typedef void flash_ctrl_t

Flash control block. Allocate an instance specific control block to pass into the flash API calls.

Implemented as

flash_lp_instance_ctrl_t
flash_hp_instance_ctrl_t

Enumeration Type Documentation

◆ flash_event_t

enum flash_event_t

Event types returned by the ISR callback when used in Data Flash BGO mode

Enumerator

FLASH_EVENT_ERASE_COMPLETE Erase operation successfully completed.

FLASH_EVENT_WRITE_COMPLETE Write operation successfully completed.

FLASH_EVENT_BLANK Blank check operation successfully completed.
Specified area is blank.

FLASH_EVENT_NOT_BLANK Blank check operation successfully completed.
Specified area is NOT blank.

FLASH_EVENT_ERR_DF_ACCESS Data Flash operation failed. Can occur when
writing an unerased section.

FLASH_EVENT_ERR_CF_ACCESS Code Flash operation failed. Can occur when
writing an unerased section.

FLASH_EVENT_ERR_CMD_LOCKED Operation failed, FCU is in Locked state (often
result of an illegal command)

FLASH_EVENT_ERR_FAILURE Erase or Program Operation failed.

FLASH_EVENT_ERR_ONE_BIT A 1-bit error has been corrected when reading
the flash memory area by the sequencer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,243 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface

◆ flash_id_code_mode_t

enum flash_id_code_mode_t

ID Code Modes for writing to ID code registers

Enumerator

FLASH_ID_CODE_MODE_UNLOCKED ID code is ignored.

FLASH_ID_CODE_MODE_LOCKED_WITH_ALL_ERA
SE_SUPPORT

ID code is checked. All erase is available.

FLASH_ID_CODE_MODE_LOCKED ID code is checked.

◆ flash_result_t

enum flash_result_t

Result type for certain operations

Enumerator

FLASH_RESULT_BLANK Return status for Blank Check Function.

FLASH_RESULT_NOT_BLANK Return status for Blank Check Function.

FLASH_RESULT_BGO_ACTIVE Flash is configured for BGO mode. Result is
returned in callback.

◆ flash_startup_area_swap_t

enum flash_startup_area_swap_t

Parameter for specifying the startup area swap being requested by startupAreaSelect()

Enumerator

FLASH_STARTUP_AREA_BLOCK1 Startup area will be set to Block 1.

FLASH_STARTUP_AREA_BLOCK0 Startup area will be set to Block 0.

FLASH_STARTUP_AREA_BTFLG Startup area will be set based on the value of
the BTFLG.

 flash_fmi_block_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Flash Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,244 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_fmi_block_info_t Struct Reference

#include <r_flash_api.h>

Data Fields

uint32_t block_section_st_addr

 starting address for this block section (blocks of this size)

uint32_t block_section_end_addr

 ending address for this block section (blocks of this size)

uint32_t block_size

 Flash erase block size.

uint32_t block_size_write

 Flash write block size.

Detailed Description

Flash block details stored in factory flash.

The documentation for this struct was generated from the following file:

r_flash_api.h

 flash_fmi_regions_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Flash Interface

#include <r_flash_api.h>

Data Fields

uint32_t num_regions

 Length of block info array.

flash_fmi_block_info_t const p_block_array

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,245 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_fmi_regions_t Struct Reference

*

 Block info array base address.

Detailed Description

Flash block details

The documentation for this struct was generated from the following file:

r_flash_api.h

 flash_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Flash Interface

#include <r_flash_api.h>

Data Fields

flash_fmi_regions_t code_flash

 Information about the code flash regions.

flash_fmi_regions_t data_flash

 Information about the code flash regions.

Detailed Description

Information about the flash blocks

The documentation for this struct was generated from the following file:

r_flash_api.h

 flash_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Flash Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,246 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_callback_args_t Struct Reference

#include <r_flash_api.h>

Data Fields

flash_event_t event

 Event can be used to identify what caused the callback (flash ready
or error).

void const * p_context

 Placeholder for user data. Set in flash_api_t::open function
in::flash_cfg_t.

Detailed Description

Callback function parameter data

The documentation for this struct was generated from the following file:

r_flash_api.h

 flash_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Flash Interface

#include <r_flash_api.h>

Data Fields

bool data_flash_bgo

 True if BGO (Background Operation) is enabled for Data Flash.

void(* p_callback)(flash_callback_args_t *p_args)

 Callback provided when a Flash interrupt ISR occurs.

void const * p_extend

 FLASH hardware dependent configuration.

void const * p_context

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,247 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_cfg_t Struct Reference

 Placeholder for user data. Passed to user callback in
flash_callback_args_t.

uint8_t irq_ipl

 Flash ready interrupt priority.

uint8_t err_irq_ipl

 Flash error interrupt priority (unused in r_flash_lp)

Detailed Description

FLASH Configuration

The documentation for this struct was generated from the following file:

r_flash_api.h

 flash_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Flash Interface

#include <r_flash_api.h>

Data Fields

ssp_err_t(* open)(flash_ctrl_t *const p_ctrl, flash_cfg_t const *const p_cfg)

ssp_err_t(* write)(flash_ctrl_t *const p_ctrl, uint32_t const src_address, uint32_t
const flash_address, uint32_t const num_bytes)

ssp_err_t(* read)(flash_ctrl_t *const p_ctrl, uint8_t *const p_dest_address,
uint32_t const flash_address, uint32_t const num_bytes)

ssp_err_t(* erase)(flash_ctrl_t *const p_ctrl, uint32_t const address, uint32_t
const num_blocks)

ssp_err_t(* blankCheck)(flash_ctrl_t *const p_ctrl, uint32_t const address,
uint32_t const num_bytes, flash_result_t *const
p_blank_check_result)

ssp_err_t(* infoGet)(flash_ctrl_t *const p_ctrl, flash_info_t *const p_info)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,248 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_api_t Struct Reference

ssp_err_t(* close)(flash_ctrl_t *const p_ctrl)

ssp_err_t(* statusGet)(flash_ctrl_t *const p_ctrl)

ssp_err_t(* accessWindowSet)(flash_ctrl_t *const p_ctrl, uint32_t const
start_addr, uint32_t const end_addr)

ssp_err_t(* accessWindowClear)(flash_ctrl_t *const p_ctrl)

ssp_err_t(* idCodeSet)(flash_ctrl_t *const p_ctrl, uint8_t const *const p_id_bytes,
flash_id_code_mode_t mode)

ssp_err_t(* reset)(flash_ctrl_t *const p_ctrl)

ssp_err_t(* updateFlashClockFreq)(flash_ctrl_t *const p_ctrl)

ssp_err_t(* startupAreaSelect)(flash_ctrl_t *const p_ctrl,
flash_startup_area_swap_t swap_type, bool is_temporary)

ssp_err_t(* versionGet)(ssp_version_t *p_version)

Detailed Description

Shared Interface definition for FLASH

Field Documentation

◆ accessWindowClear

ssp_err_t(* flash_api_t::accessWindowClear) (flash_ctrl_t *const p_ctrl)

Clear any existing Code Flash access window for FLASH device.

Implemented as

R_FLASH_LP_AccessWindowClear()
R_FLASH_HP_AccessWindowClear()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] start_addr Determines the Starting
block for the Code Flash
access window.

[in] end_addr Determines the Ending block
for the Code Flash access
window.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,249 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_api_t Struct Reference

◆ accessWindowSet

ssp_err_t(* flash_api_t::accessWindowSet) (flash_ctrl_t *const p_ctrl, uint32_t const start_addr,
uint32_t const end_addr)

Set Access Window for FLASH device.

Implemented as

R_FLASH_LP_AccessWindowSet()
R_FLASH_HP_AccessWindowSet()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] start_addr Determines the Starting
block for the Code Flash
access window.

[in] end_addr Determines the Ending block
for the Code Flash access
window.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,250 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_api_t Struct Reference

◆ blankCheck

ssp_err_t(* flash_api_t::blankCheck) (flash_ctrl_t *const p_ctrl, uint32_t const address, uint32_t
const num_bytes, flash_result_t *const p_blank_check_result)

Blank check FLASH device.

Implemented as

R_FLASH_LP_BlankCheck()
R_FLASH_HP_BlankCheck()

Parameters
[in] p_ctrl Control for the FLASH device

context.

[in] address The starting address of the
Flash area to blank check.

[in] num_bytes Specifies the number of
bytes that need to be
checked. See the specific
handler for details.

[out] p_blank_check_result Pointer that will be
populated by the API with
the results of the blank
check operation in non-BGO
(blocking) mode. In this case
the blank check operation
completes here and the
result is returned. In Data
Flash BGO mode the blank
check operation is only
started here and the result
obtained later when the
supplied callback routine is
called. In this case
FLASH_RESULT_BGO_ACTIVE
will be returned in
p_blank_check_result.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,251 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_api_t Struct Reference

◆ close

ssp_err_t(* flash_api_t::close) (flash_ctrl_t *const p_ctrl)

Close FLASH device.

Implemented as

R_FLASH_LP_Close()
R_FLASH_HP_Close()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

◆ erase

ssp_err_t(* flash_api_t::erase) (flash_ctrl_t *const p_ctrl, uint32_t const address, uint32_t const
num_blocks)

Erase FLASH device.

Implemented as
R_FLASH_LP_Erase() R_FLASH_HP_Erase()

Parameters
[in] p_ctrl Control for the FLASH

device.

[in] address The block containing this
address is the first block
erased.

[in] num_blocks Specifies the number of
blocks to be erased, the
starting block determined by
the block_erase_address.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,252 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_api_t Struct Reference

◆ idCodeSet

ssp_err_t(* flash_api_t::idCodeSet) (flash_ctrl_t *const p_ctrl, uint8_t const *const p_id_bytes,
flash_id_code_mode_t mode)

Set ID Code for FLASH device. Setting the ID code can restrict access to the device. The ID code will
be required to connect to the device. Bits 126 and 127 are set based on the mode. e.g. uint8_t
id_bytes[] = {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc,
0xdd, 0xee, 0x00}; with mode FLASH_ID_CODE_MODE_LOCKED_WITH_ALL_ERASE_SUPPORT will
result in an ID code of 00112233445566778899aabbccddeec0 and with mode
FLASH_ID_CODE_MODE_LOCKED will result in an ID code of 00112233445566778899aabbccddee80

Implemented as

R_FLASH_LP_IdCodeSet()
R_FLASH_HP_IdCodeSet()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] p_id_bytes Ponter to the ID Code to be
written.

[in] mode Mode used for checking the
ID code.

◆ infoGet

ssp_err_t(* flash_api_t::infoGet) (flash_ctrl_t *const p_ctrl, flash_info_t *const p_info)

Close FLASH device.

Implemented as

R_FLASH_LP_InfoGet()
R_FLASH_HP_InfoGet()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[out] p_info Pointer to FLASH info
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,253 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_api_t Struct Reference

◆ open

ssp_err_t(* flash_api_t::open) (flash_ctrl_t *const p_ctrl, flash_cfg_t const *const p_cfg)

Open FLASH device.

Implemented as

R_FLASH_LP_Open()
R_FLASH_HP_Open()

Parameters
[out] p_ctrl Pointer to FLASH device

control. Must be declared by
user. Value set here.

[in] flash_cfg_t Pointer to FLASH
configuration structure. All
elements of this structure
must be set by the user.

◆ read

ssp_err_t(* flash_api_t::read) (flash_ctrl_t *const p_ctrl, uint8_t *const p_dest_address, uint32_t
const flash_address, uint32_t const num_bytes)

Read FLASH device.

Implemented as

R_FLASH_LP_Read()
R_FLASH_HP_Read()

Parameters
[in] p_ctrl Control for the FLASH device

context.

[in] p_dest_address Pointer to caller's destination
buffer used to hold the data
read from Flash.

[in] flash_address Code Flash or Data Flash
starting address to read
from.

[in] num_bytes The number of bytes to read.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,254 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_api_t Struct Reference

◆ reset

ssp_err_t(* flash_api_t::reset) (flash_ctrl_t *const p_ctrl)

Reset function for FLASH device.

Implemented as

R_FLASH_LP_Reset()
R_FLASH_HP_Reset()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

◆ startupAreaSelect

ssp_err_t(* flash_api_t::startupAreaSelect) (flash_ctrl_t *const p_ctrl, flash_startup_area_swap_t
swap_type, bool is_temporary)

Select which block - Default (Block 0) or Alternate (Block 1) is used as the start-up area block.

Implemented as

R_FLASH_LP_StartUpAreaSelect()
R_FLASH_HP_StartUpAreaSelect()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

[in] swap_type FLASH_STARTUP_AREA_BLO
CK0, FLASH_STARTUP_AREA_
BLOCK1 or FLASH_STARTUP_
AREA_BTFLG.

[in] is_temporary True or false. See table
below.

swap_type | is_temporary | Operation FLASH_STARTUP_AREA_BLOCK0: false On next reset Startup
area will be Block 0.
FLASH_STARTUP_AREA_BLOCK0 | false | On next reset Startup area will be Block 0. Block 0.
FLASH_STARTUP_AREA_BLOCK1: false On next reset Startup area will be Block 1.
FLASH_STARTUP_AREA_BLOCK1 | true | Startup area is immediately, but temporarily switched to
Block 1. Block 1.
FLASH_STARTUP_AREA_BTFLG | true | Startup area is immediately, but temporarily switched to...
taken.
the Block determined by the Configuration BTFLG.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,255 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_api_t Struct Reference

◆ statusGet

ssp_err_t(* flash_api_t::statusGet) (flash_ctrl_t *const p_ctrl)

Get Status for FLASH device.

Implemented as

R_FLASH_LP_StatusGet()
R_FLASH_HP_StatusGet()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

◆ updateFlashClockFreq

ssp_err_t(* flash_api_t::updateFlashClockFreq) (flash_ctrl_t *const p_ctrl)

Update Flash clock frequency (FCLK) and recalculate timeout values

Implemented as

R_FLASH_LP_UpdateFlashClockFreq()
R_FLASH_HP_UpdateFlashClockFreq()

Parameters
[in] p_ctrl Pointer to FLASH device

control.

◆ versionGet

ssp_err_t(* flash_api_t::versionGet) (ssp_version_t *p_version)

Get Flash driver version.

Implemented as

R_FLASH_LP_VersionGet()
R_FLASH_HP_VersionGet()

Parameters
[out] p_version Returns version.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,256 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_api_t Struct Reference

◆ write

ssp_err_t(* flash_api_t::write) (flash_ctrl_t *const p_ctrl, uint32_t const src_address, uint32_t const
flash_address, uint32_t const num_bytes)

Write FLASH device.

Implemented as

R_FLASH_LP_Write()
R_FLASH_HP_Write()

Parameters
[in] p_ctrl Control for the FLASH device

context.

[in] src_address Address of the buffer
containing the data to write
to Flash.

[in] flash_address Code Flash or Data Flash
address to write. The
address must be on a
programming line boundary.

[in] num_bytes The number of bytes to
write. This number must be
a multiple of the
programming size. For Code
Flash this is
FLASH_MIN_PGM_SIZE_CF.
For Data Flash this is
FLASH_MIN_PGM_SIZE_DF.

Warning
Specifying a number that is not a multiple of the programming size will result in
SF_FLASH_ERR_BYTES being returned and no data written.

The documentation for this struct was generated from the following file:

r_flash_api.h

 flash_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Flash Interface

#include <r_flash_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,257 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Flash Interface > flash_instance_t Struct Reference

Data Fields

flash_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

flash_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

flash_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_flash_api.h

5.1.4.16 FMI Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for reading on-chip factory information. More...

Data Structures

struct fmi_api_t

struct fmi_instance_t

Macros

#define FMI_API_VERSION_MAJOR (2U)

Detailed Description

Interface for reading on-chip factory information.

Summary

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,258 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > FMI Interface

The FMI (Factory MCU Information) module provides a function for reading the Product Information
record.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

FMI Interface description: FMI Driver

Macro Definition Documentation

◆ FMI_API_VERSION_MAJOR

#define FMI_API_VERSION_MAJOR (2U)

Register definitions, common services and error codes.

 fmi_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » FMI Interface

#include <r_fmi_api.h>

Data Fields

ssp_err_t(* init)(void)

ssp_err_t(* productInfoGet)(fmi_product_info_t **pp_product_info)

ssp_err_t(* uniqueIdGet)(fmi_unique_id_t *p_unique_id)

ssp_err_t(* productFeatureGet)(ssp_feature_t const *const p_feature,
fmi_feature_info_t *const p_info)

ssp_err_t(* eventInfoGet)(ssp_feature_t const *const p_feature, ssp_signal_t
signal, fmi_event_info_t *const p_info)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

fmi driver structure. General fmi functions implemented at the HAL layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,259 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > FMI Interface > fmi_api_t Struct Reference

◆ eventInfoGet

ssp_err_t(* fmi_api_t::eventInfoGet) (ssp_feature_t const *const p_feature, ssp_signal_t signal,
fmi_event_info_t *const p_info)

Get event information and store it in p_info.

Parameters
[in] p_feature Definition of SSP feature.

[in] signal Feature signal ID.

[out] p_info Event information for feature
signal.

Implemented as

R_FMI_EventInfoGet()

◆ init

ssp_err_t(* fmi_api_t::init) (void)

Initialize the FMI base pointer.

Implemented as

R_FMI_Init()

◆ productFeatureGet

ssp_err_t(* fmi_api_t::productFeatureGet) (ssp_feature_t const *const p_feature, fmi_feature_info_t
*const p_info)

Get feature information and store it in p_info.

Parameters
[in] p_feature Definition of SSP feature.

[out] p_info Feature specific information.

Implemented as

R_FMI_ProductFeatureGet()

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,260 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > FMI Interface > fmi_api_t Struct Reference

◆ productInfoGet

ssp_err_t(* fmi_api_t::productInfoGet) (fmi_product_info_t **pp_product_info)

Get product information record address into caller's pointer.

Warning
fmi_product_info_t::unique_id is deprecated and will not contain a unique ID if the factory
MCU information is linked in by the application code. Use fmi_api_t::uniqueIdGet for the
unique ID.

Parameters
[in,out] pp_product_info Pointer to store pointer to

product info.

Implemented as

R_FMI_ProductInfoGet()

◆ uniqueIdGet

ssp_err_t(* fmi_api_t::uniqueIdGet) (fmi_unique_id_t *p_unique_id)

Copy unique ID into p_unique_id.

Parameters
[out] p_unique_id Pointer to unique ID.

Implemented as

R_FMI_UniqueIdGet()

◆ versionGet

ssp_err_t(* fmi_api_t::versionGet) (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Implemented as

R_FMI_VersionGet()

The documentation for this struct was generated from the following file:

r_fmi_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,261 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > FMI Interface > fmi_instance_t Struct Reference

 fmi_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » FMI Interface

#include <r_fmi_api.h>

Data Fields

fmi_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_fmi_api.h

5.1.4.17 I2C Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for I2C communication. More...

Data Structures

struct i2c_callback_args_t

struct i2c_cfg_t

struct i2c_api_master_t

struct i2c_api_slave_t

struct i2c_master_instance_t

struct i2c_slave_instance_t

Typedefs

typedef void i2c_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,262 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface

Enumerations

enum i2c_rate_t { I2C_RATE_STANDARD = 100000, I2C_RATE_FAST =
400000, I2C_RATE_FASTPLUS = 1000000 }

enum i2c_addr_mode_t { I2C_ADDR_MODE_7BIT = 1,
I2C_ADDR_MODE_10BIT }

enum i2c_event_t {
 I2C_EVENT_ABORTED = 1, I2C_EVENT_RX_COMPLETE = 2,
I2C_EVENT_TX_COMPLETE = 3, I2C_SLAVE_EVENT_RX_REQUEST = 4,
 I2C_SLAVE_EVENT_TX_REQUEST = 5,
I2C_SLAVE_EVENT_RX_MORE_REQUEST = 6,
I2C_SLAVE_EVENT_TX_MORE_REQUEST = 7
}

enum i2c_hw_err_event_t { I2C_HW_ERR_EVENT_TIMEOUT = 1,
I2C_HW_ERR_EVENT_ARBITRATION_LOSS = 2,
I2C_HW_ERR_EVENT_NACK = 16, I2C_HW_ERR_EVENT_UNDEFINED =
255 }

Detailed Description

Interface for I2C communication.

Summary
The I2C master interface provides a common API for I2C HAL drivers. The I2C master interface
supports:

Interrupt driven transmit/receive processing
Callback function support which can return an event code

Implemented by:

Simple I2C on SCI
IIC

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

I2C Interface description: I2C Master Driver and I2C Slave Driver

Typedef Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,263 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface

◆ i2c_ctrl_t

typedef void i2c_ctrl_t

I2C control block. Allocate an instance specific control block to pass into the I2C API calls.

Implemented as

sci_i2c_instance_ctrl_t
riic_instance_ctrl_t

Enumeration Type Documentation

◆ i2c_addr_mode_t

enum i2c_addr_mode_t

Addressing mode options

Enumerator

I2C_ADDR_MODE_7BIT Use 7-bit addressing mode.

I2C_ADDR_MODE_10BIT Use 10-bit addressing mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,264 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface

◆ i2c_event_t

enum i2c_event_t

Callback events

Enumerator

I2C_EVENT_ABORTED A transfer was aborted.

I2C_EVENT_RX_COMPLETE A receive operation was completed
successfully.

I2C_EVENT_TX_COMPLETE A transmit operation was completed
successfully.

I2C_SLAVE_EVENT_RX_REQUEST A read operation expected from slave.
Detected a write from master.

I2C_SLAVE_EVENT_TX_REQUEST A write operation expected from slave.
Detected a read from master.

I2C_SLAVE_EVENT_RX_MORE_REQUEST A read operation expected from slave. Master
sends out more data than configured to be
read in slave.

I2C_SLAVE_EVENT_TX_MORE_REQUEST A write operation expected from slave. Master
requests more data than configured to be
written by slave.

◆ i2c_hw_err_event_t

enum i2c_hw_err_event_t

RIIC master hardware error callback events

Enumerator

I2C_HW_ERR_EVENT_TIMEOUT Timeout generated during transfer.

I2C_HW_ERR_EVENT_ARBITRATION_LOSS Arbitration loss.

I2C_HW_ERR_EVENT_NACK NACK event generation.

I2C_HW_ERR_EVENT_UNDEFINED Error not defined.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,265 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface

◆ i2c_rate_t

enum i2c_rate_t

Communication speed options

Enumerator

I2C_RATE_STANDARD 100 kHz

I2C_RATE_FAST 400 kHz

I2C_RATE_FASTPLUS 1 MHz

 i2c_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I2C Interface

#include <r_i2c_api.h>

Data Fields

void const *const p_context

 Pointer to user-provided context.

uint32_t const bytes

 Number of received/transmitted bytes in buff.

i2c_event_t const event

 Event code.

i2c_hw_err_event_t const i2c_hw_err_event

 IIC Master hardware error events.

Detailed Description

I2C callback parameter definition

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,266 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface > i2c_callback_args_t Struct Reference

The documentation for this struct was generated from the following file:

r_i2c_api.h

 i2c_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I2C Interface

#include <r_i2c_api.h>

Data Fields

uint8_t channel

 Identifier recognizable by implementation. More...

i2c_rate_t rate

 Device's maximum clock rate from enum i2c_rate_t.

uint16_t slave

 The address of the slave device.

i2c_addr_mode_t addr_mode

 Indicates how slave fields should be interpreted.

uint16_t sda_delay

 The SDA output delay.

uint8_t rxi_ipl

 Receive interrupt priority.

uint8_t txi_ipl

 Transmit interrupt priority.

uint8_t tei_ipl

 Transmit end interrupt priority.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,267 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface > i2c_cfg_t Struct Reference

uint8_t eri_ipl

 Error interrupt priority.

transfer_instance_t const * p_transfer_tx

 DTC instance for I2C transmit.Set to NULL if unused. More...

transfer_instance_t const * p_transfer_rx

 DTC instance for I2C receive. Set to NULL if unused.

void(* p_callback)(i2c_callback_args_t *p_args)

 Pointer to callback function. More...

void const * p_context

 Pointer to the user-provided context.

void const * p_extend

 Any configuration data needed by the hardware. More...

Detailed Description

I2C configuration block

Field Documentation

◆ channel

uint8_t i2c_cfg_t::channel

Identifier recognizable by implementation.

Generic configuration

◆ p_callback

void(* i2c_cfg_t::p_callback) (i2c_callback_args_t *p_args)

Pointer to callback function.

Parameters to control software behavior

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,268 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface > i2c_cfg_t Struct Reference

◆ p_extend

void const* i2c_cfg_t::p_extend

Any configuration data needed by the hardware.

Implementation-specific configuration

◆ p_transfer_tx

transfer_instance_t const* i2c_cfg_t::p_transfer_tx

DTC instance for I2C transmit.Set to NULL if unused.

DTC/DMA support

The documentation for this struct was generated from the following file:

r_i2c_api.h

 i2c_api_master_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I2C Interface

#include <r_i2c_api.h>

Data Fields

ssp_err_t(* open)(i2c_ctrl_t *const p_ctrl, i2c_cfg_t const *const p_cfg)

ssp_err_t(* close)(i2c_ctrl_t *const p_ctrl)

ssp_err_t(* read)(i2c_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const
bytes, bool const restart)

ssp_err_t(* write)(i2c_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t const
bytes, bool const restart)

ssp_err_t(* reset)(i2c_ctrl_t *const p_ctrl)

ssp_err_t(* slaveAddressSet)(i2c_ctrl_t *const p_ctrl, uint16_t const slave,
i2c_addr_mode_t const addr_mode)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,269 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface > i2c_api_master_t Struct Reference

Detailed Description

Interface definition for I2C access as master

Field Documentation

◆ close

ssp_err_t(* i2c_api_master_t::close) (i2c_ctrl_t *const p_ctrl)

Closes the driver and releases the I2C device.

Implemented as

R_RIIC_MasterClose()
R_SCI_SIIC_MasterClose()

Parameters
[in] p_ctrl Pointer to control block set

in i2c_api_master_t::open
call.

◆ open

ssp_err_t(* i2c_api_master_t::open) (i2c_ctrl_t *const p_ctrl, i2c_cfg_t const *const p_cfg)

Opens the I2C driver and initializes the hardware.

Implemented as

R_RIIC_MasterOpen()
R_SCI_SIIC_MasterOpen()

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements are set here.

[in] p_cfg Pointer to configuration
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,270 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface > i2c_api_master_t Struct Reference

◆ read

ssp_err_t(* i2c_api_master_t::read) (i2c_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const
bytes, bool const restart)

Performs a read operation on an I2C device.

Implemented as

R_RIIC_MasterRead()
R_SCI_SIIC_MasterRead()

Parameters
[in] p_ctrl Pointer to control block set

in i2c_api_master_t::open
call.

[in] p_dest Pointer to the location to
store read data.

[in] bytes Number of bytes to read.

[in] restart Specify if the restart
condition should be issued
after reading.

◆ reset

ssp_err_t(* i2c_api_master_t::reset) (i2c_ctrl_t *const p_ctrl)

Performs a reset of the peripheral.

Implemented as

R_RIIC_MasterReset()
R_SCI_SIIC_MasterReset()

Parameters
[in] p_ctrl Pointer to control block set

in i2c_api_master_t::open
call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,271 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface > i2c_api_master_t Struct Reference

◆ slaveAddressSet

ssp_err_t(* i2c_api_master_t::slaveAddressSet) (i2c_ctrl_t *const p_ctrl, uint16_t const slave,
i2c_addr_mode_t const addr_mode)

Sets address of the slave device without reconfiguring the bus.

Implemented as

R_RIIC_MasterSlaveAddressSet()
R_SCI_SIIC_MasterSlaveAddressSet()

Parameters
[in] p_ctrl Pointer to control block set

in i2c_api_master_t::open
call.

[in] slave_address Address of the slave device.

[in] address_mode Addressing mode.

◆ versionGet

ssp_err_t(* i2c_api_master_t::versionGet) (ssp_version_t *const p_version)

Gets version information and stores it in the provided version struct.

Implemented as

R_RIIC_MasterVersionGet()
R_SCI_SIIC_MasterVersionGet()

Parameters
[out] p_version Code and API version used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,272 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface > i2c_api_master_t Struct Reference

◆ write

ssp_err_t(* i2c_api_master_t::write) (i2c_ctrl_t *const p_ctrl, uint8_t *const p_src, uint32_t const
bytes, bool const restart)

Performs a write operation on an I2C device.

Implemented as

R_RIIC_MasterWrite()
R_SCI_SIIC_MasterWrite()

Parameters
[in] p_ctrl Pointer to control block set

in i2c_api_master_t::open
call.

[in] p_src Pointer to the location to get
write data from.

[in] bytes Number of bytes to write.

[in] restart Specify if the restart
condition should be issued
after writing.

The documentation for this struct was generated from the following file:

r_i2c_api.h

 i2c_api_slave_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I2C Interface

#include <r_i2c_api.h>

Data Fields

ssp_err_t(* open)(i2c_ctrl_t *const p_ctrl, i2c_cfg_t const *const p_cfg)

ssp_err_t(* close)(i2c_ctrl_t *const p_ctrl)

ssp_err_t(* masterWriteSlaveRead)(i2c_ctrl_t *const p_ctrl, uint8_t *const
p_dest, uint32_t const bytes)

ssp_err_t(* masterReadSlaveWrite)(i2c_ctrl_t *const p_ctrl, uint8_t *const p_src,
uint32_t const bytes)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,273 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface > i2c_api_slave_t Struct Reference

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Interface definition for I2C access as slave

Field Documentation

◆ close

ssp_err_t(* i2c_api_slave_t::close) (i2c_ctrl_t *const p_ctrl)

Closes the driver and releases the I2C device.

Implemented as

R_RIIC_SlaveClose()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_api_slave_t::open call.

◆ masterReadSlaveWrite

ssp_err_t(* i2c_api_slave_t::masterReadSlaveWrite) (i2c_ctrl_t *const p_ctrl, uint8_t *const p_src,
uint32_t const bytes)

Performs a write operation on an I2C device.

Implemented as

R_RIIC_MasterReadSlaveWrite()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_api_slave_t::open call.

[in] p_src Pointer to the location to get
write data from.

[in] bytes Number of bytes to write.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,274 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface > i2c_api_slave_t Struct Reference

◆ masterWriteSlaveRead

ssp_err_t(* i2c_api_slave_t::masterWriteSlaveRead) (i2c_ctrl_t *const p_ctrl, uint8_t *const p_dest,
uint32_t const bytes)

Performs a read operation on an I2C device.

Implemented as

R_RIIC_MasterWriteSlaveRead()
Parameters

[in] p_ctrl Pointer to control block set
in i2c_api_slave_t::open call.

[in] p_dest Pointer to the location to
store read data.

[in] bytes Number of bytes to read.

◆ open

ssp_err_t(* i2c_api_slave_t::open) (i2c_ctrl_t *const p_ctrl, i2c_cfg_t const *const p_cfg)

Opens the I2C driver and initializes the hardware.

Implemented as

R_RIIC_SlaveOpen()
Parameters

[in] p_ctrl Pointer to control block.
Must be declared by user.
Elements are set here.

[in] p_cfg Pointer to configuration
structure.

◆ versionGet

ssp_err_t(* i2c_api_slave_t::versionGet) (ssp_version_t *const p_version)

Gets version information and stores it in the provided version struct.

Implemented as

R_RIIC_SlaveVersionGet()
Parameters

[out] p_version Code and API version used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,275 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface > i2c_api_slave_t Struct Reference

The documentation for this struct was generated from the following file:

r_i2c_api.h

 i2c_master_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I2C Interface

#include <r_i2c_api.h>

Data Fields

i2c_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

i2c_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

i2c_api_master_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_i2c_api.h

 i2c_slave_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I2C Interface

#include <r_i2c_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,276 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2C Interface > i2c_slave_instance_t Struct Reference

i2c_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

i2c_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

i2c_api_slave_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_i2c_api.h

5.1.4.18 I2S Interface
Renesas Synergy Software Package Reference » HAL Interfaces

The I2S (Inter-IC Sound) interface provides APIs and definitions for I2S audio communication. More...

Data Structures

struct i2s_callback_args_t

struct i2s_info_t

struct i2s_cfg_t

struct i2s_api_t

struct i2s_instance_t

Macros

#define I2S_API_VERSION_MAJOR (2U)

Typedefs

typedef void i2s_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,277 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface

Enumerations

enum i2s_pcm_width_t {
 I2S_PCM_WIDTH_8_BITS = 0, I2S_PCM_WIDTH_16_BITS = 1,
I2S_PCM_WIDTH_18_BITS = 2, I2S_PCM_WIDTH_20_BITS = 3,
 I2S_PCM_WIDTH_22_BITS = 4, I2S_PCM_WIDTH_24_BITS = 5
}

enum i2s_word_length_t { I2S_WORD_LENGTH_8_BITS = 0,
I2S_WORD_LENGTH_16_BITS = 1, I2S_WORD_LENGTH_24_BITS = 2,
I2S_WORD_LENGTH_32_BITS = 3 }

enum i2s_event_t { I2S_EVENT_IDLE, I2S_EVENT_TX_EMPTY,
I2S_EVENT_RX_FULL }

enum i2s_dir_t { I2S_DIR_TX, I2S_DIR_RX, I2S_DIR_TX_RX }

enum i2s_mode_t { I2S_MODE_SLAVE = 0, I2S_MODE_MASTER = 1 }

enum i2s_mute_t { I2S_MUTE_ON = 0, I2S_MUTE_OFF = 1 }

enum i2s_ws_continue_t { I2S_WS_CONTINUE_ON = 0,
I2S_WS_CONTINUE_OFF = 1 }

enum i2s_status_t { I2S_STATUS_IN_USE, I2S_STATUS_STOPPED }

Detailed Description

The I2S (Inter-IC Sound) interface provides APIs and definitions for I2S audio communication.

Summary
The I2S (Inter-IC Sound) interface provides APIs and definitions for I2S audio communication.

Known Implementations
SSI

Related modules
See also: I2S Audio Playback Framework

Macro Definition Documentation

◆ I2S_API_VERSION_MAJOR

#define I2S_API_VERSION_MAJOR (2U)

Register definitions, common services and error codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,278 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface

Typedef Documentation

◆ i2s_ctrl_t

typedef void i2s_ctrl_t

I2S control block. Allocate an instance specific control block to pass into the I2S API calls.

Implemented as

ssi_instance_ctrl_t

Enumeration Type Documentation

◆ i2s_dir_t

enum i2s_dir_t

I2S communication direction

Enumerator

I2S_DIR_TX Transmit direction only.

I2S_DIR_RX Receive direction only.

I2S_DIR_TX_RX Transmit and receive direction.

◆ i2s_event_t

enum i2s_event_t

Events that can trigger a callback function

Enumerator

I2S_EVENT_IDLE Communication is idle.

I2S_EVENT_TX_EMPTY Transmit buffer is below FIFO trigger level.

I2S_EVENT_RX_FULL Receive buffer is above FIFO trigger level.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,279 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface

◆ i2s_mode_t

enum i2s_mode_t

I2S communication mode

Enumerator

I2S_MODE_SLAVE Slave mode.

I2S_MODE_MASTER Master mode.

◆ i2s_mute_t

enum i2s_mute_t

Mute audio samples.

Enumerator

I2S_MUTE_ON Enable mute.

I2S_MUTE_OFF Disable mute.

◆ i2s_pcm_width_t

enum i2s_pcm_width_t

Audio PCM width

Enumerator

I2S_PCM_WIDTH_8_BITS Using 8-bit PCM.

I2S_PCM_WIDTH_16_BITS Using 16-bit PCM.

I2S_PCM_WIDTH_18_BITS Using 18-bit PCM.

I2S_PCM_WIDTH_20_BITS Using 20-bit PCM.

I2S_PCM_WIDTH_22_BITS Using 22-bit PCM.

I2S_PCM_WIDTH_24_BITS Using 24-bit PCM.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,280 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface

◆ i2s_status_t

enum i2s_status_t

Possible status values returned by i2s_api_t::infoGet.

Enumerator

I2S_STATUS_IN_USE I2S is in use.

I2S_STATUS_STOPPED I2S is stopped.

◆ i2s_word_length_t

enum i2s_word_length_t

Audio system word length.

Enumerator

I2S_WORD_LENGTH_8_BITS Using 8-bit system word length.

I2S_WORD_LENGTH_16_BITS Using 16-bit system word length.

I2S_WORD_LENGTH_24_BITS Using 24-bit system word length.

I2S_WORD_LENGTH_32_BITS Using 32-bit system word length.

◆ i2s_ws_continue_t

enum i2s_ws_continue_t

Whether to continue WS (word select line) transmission during idle state.

Enumerator

I2S_WS_CONTINUE_ON Enable WS continue mode.

I2S_WS_CONTINUE_OFF Disable WS continue mode.

 i2s_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I2S Interface

#include <r_i2s_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,281 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface > i2s_callback_args_t Struct Reference

Data Fields

void const * p_context

i2s_event_t event

 The event can be used to identify what caused the callback (overflow
or error).

Detailed Description

Callback function parameter data

Field Documentation

◆ p_context

void const* i2s_callback_args_t::p_context

Placeholder for user data. Set in i2s_api_t::open function in i2s_cfg_t.

The documentation for this struct was generated from the following file:

r_i2s_api.h

 i2s_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I2S Interface

#include <r_i2s_api.h>

Data Fields

uint32_t sampling_freq_hz

 Sampling frequency in Hertz.

Detailed Description

Timer information structure to store various information for an I2S instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,282 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface > i2s_info_t Struct Reference

The documentation for this struct was generated from the following file:

r_i2s_api.h

 i2s_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I2S Interface

#include <r_i2s_api.h>

Data Fields

uint8_t channel

i2s_pcm_width_t pcm_width

 Audio PCM data width.

i2s_word_length_t word_length

 Audio word length, bits must be >= i2s_cfg_t::pcm_width bits.

i2s_ws_continue_t ws_continue

 Whether to continue WS transmission during idle state.

uint32_t sampling_freq_hz

 Sampling frequency in Hertz.

i2s_mode_t operating_mode

 Operating mode selection (i.e., Master/Slave mode)

uint32_t audio_clk_freq_hz

timer_instance_t const * p_timer

transfer_instance_t const * p_transfer_tx

transfer_instance_t const * p_transfer_rx

void(* p_callback)(i2s_callback_args_t *p_args)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,283 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface > i2s_cfg_t Struct Reference

void const * p_context

void const * p_extend

 Extension parameter for hardware specific settings.

uint8_t rxi_ipl

 Receive interrupt priority.

uint8_t txi_ipl

 Transmit interrupt priority.

uint8_t idle_err_ipl

 Idle/Error interrupt priority.

Detailed Description

User configuration structure, used in open function

Field Documentation

◆ audio_clk_freq_hz

uint32_t i2s_cfg_t::audio_clk_freq_hz

Audio clock frequency in Hertz. Must be a multiple between 1 and 128 of (16 *
i2s_cfg_t::sampling_freq_hz * (i2s_cfg_t::word_length <enum_value> + 1)

◆ channel

uint8_t i2s_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

◆ p_callback

void(* i2s_cfg_t::p_callback) (i2s_callback_args_t *p_args)

Callback provided when an I2S ISR occurs. Set to NULL for no CPU interrupt.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,284 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface > i2s_cfg_t Struct Reference

◆ p_context

void const* i2s_cfg_t::p_context

Placeholder for user data. Passed to the user callback in i2s_callback_args_t.

◆ p_timer

timer_instance_t const* i2s_cfg_t::p_timer

To generate audio clock with GPT, link a timer instance here. Set to NULL if unused.

◆ p_transfer_rx

transfer_instance_t const* i2s_cfg_t::p_transfer_rx

To use DTC during read, link a DTC instance here. Set to NULL if unused.

◆ p_transfer_tx

transfer_instance_t const* i2s_cfg_t::p_transfer_tx

To use DTC during write, link a DTC instance here. Set to NULL if unused.

The documentation for this struct was generated from the following file:

r_i2s_api.h

 i2s_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I2S Interface

#include <r_i2s_api.h>

Data Fields

ssp_err_t(* open)(i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfg)

ssp_err_t(* stop)(i2s_ctrl_t *const p_ctrl, i2s_dir_t const dir)

ssp_err_t(* mute)(i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,285 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface > i2s_api_t Struct Reference

ssp_err_t(* write)(i2s_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint16_t
const bytes)

ssp_err_t(* read)(i2s_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint16_t const
bytes)

ssp_err_t(* writeRead)(i2s_ctrl_t *const p_ctrl, uint8_t const *const p_src,
uint8_t *const p_dest, uint16_t const bytes)

ssp_err_t(* infoGet)(i2s_ctrl_t *const p_ctrl, i2s_info_t *const p_info)

ssp_err_t(* close)(i2s_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

I2S functions implemented at the HAL layer will follow this API.

Field Documentation

◆ close

ssp_err_t(* i2s_api_t::close) (i2s_ctrl_t *const p_ctrl)

Allows driver to be reconfigured and may reduce power consumption.

Implemented as

R_SSI_Close()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,286 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface > i2s_api_t Struct Reference

◆ infoGet

ssp_err_t(* i2s_api_t::infoGet) (i2s_ctrl_t *const p_ctrl, i2s_info_t *const p_info)

Get instance specific information and store it in provided pointer p_info.

Implemented as

R_SSI_InfoGet()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[out] p_info Collection of information for
this instance.

◆ mute

ssp_err_t(* i2s_api_t::mute) (i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)

Enable or disable mute.

Implemented as

R_SSI_Mute()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[in] mute_enable Whether to enable or disable
mute.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,287 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface > i2s_api_t Struct Reference

◆ open

ssp_err_t(* i2s_api_t::open) (i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_SSI_Open()
Precondition

Peripheral clocks and any required output pins should be configured prior to calling this
function.

Note
To reconfigure after calling this function, call i2s_api_t::close first.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ read

ssp_err_t(* i2s_api_t::read) (i2s_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint16_t const bytes)

Read I2S data. Reception is complete when callback is called with I2S_EVENT_RX_EMPTY.

Implemented as

R_SSI_Read()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[in] p_dest Buffer to store PCM samples.
Must be 4 byte aligned.

[in] bytes Number of bytes in the
buffer. Recommended
requesting a multiple of 8
bytes. If not a multiple of 8,
receive will stop at the
multiple of 8 below
requested bytes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,288 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface > i2s_api_t Struct Reference

◆ stop

ssp_err_t(* i2s_api_t::stop) (i2s_ctrl_t *const p_ctrl, i2s_dir_t const dir)

Stop communication. Transmission is stopped when callback is called with I2S_EVENT_IDLE.
Reception is stopped when callback is called with I2S_EVENT_RX_EMPTY.

Implemented as

R_SSI_Stop()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[in] dir Direction of communication
to stop.

◆ versionGet

ssp_err_t(* i2s_api_t::versionGet) (ssp_version_t *const p_version)

Get version and store it in provided pointer p_version.

Implemented as

R_SSI_VersionGet()
Parameters

[out] p_version Code and API version used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,289 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface > i2s_api_t Struct Reference

◆ write

ssp_err_t(* i2s_api_t::write) (i2s_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint16_t const
bytes)

Write I2S data. All transmit data is queued when callback is called with I2S_EVENT_TX_EMPTY.
Transmission is complete when callback is called with I2S_EVENT_IDLE.

Implemented as

R_SSI_Write()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[in] p_src Buffer of PCM samples. Must
be 4 byte aligned.

[in] bytes Number of bytes in the
buffer. Recommended
requesting a multiple of 8
bytes. If not a multiple of 8,
padding 0s will be added to
transmission to make it a
multiple of 8.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,290 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface > i2s_api_t Struct Reference

◆ writeRead

ssp_err_t(* i2s_api_t::writeRead) (i2s_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint8_t *const
p_dest, uint16_t const bytes)

Simultaneously write and read I2S data. Transmission and reception are complete when callback is
called with I2S_EVENT_IDLE.

Implemented as

R_SSI_WriteRead()
Parameters

[in] p_ctrl Control block set in
i2s_api_t::open call for this
instance.

[in] p_src Buffer of PCM samples. Must
be 4 byte aligned.

[in] p_dest Buffer to store PCM samples.
Must be 4 byte aligned.

[in] bytes Number of bytes in the
buffers. Recommended
requesting a multiple of 8
bytes. If not a multiple of 8,
padding 0s will be added to
transmission to make it a
multiple of 8, and receive
will stop at the multiple of 8
below requested bytes.

The documentation for this struct was generated from the following file:

r_i2s_api.h

 i2s_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I2S Interface

#include <r_i2s_api.h>

Data Fields

i2s_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,291 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I2S Interface > i2s_instance_t Struct Reference

i2s_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

i2s_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_i2s_api.h

5.1.4.19 Input Capture Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for sampling input signals for pulse width. More...

Data Structures

struct input_capture_callback_args_t

struct input_capture_capture_t

struct input_capture_info_t

struct input_capture_cfg_t

struct input_capture_api_t

struct input_capture_instance_t

Macros

#define info_capture_info_t input_capture_info_t

Typedefs

typedef void input_capture_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,292 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Input Capture Interface

Enumerations

enum input_capture_mode_t { INPUT_CAPTURE_MODE_PULSE_WIDTH,
INPUT_CAPTURE_MODE_PERIOD,
INPUT_CAPTURE_MODE_PULSE_COUNT }

enum input_capture_signal_edge_t {
INPUT_CAPTURE_SIGNAL_EDGE_RISING,
INPUT_CAPTURE_SIGNAL_EDGE_FALLING }

enum input_capture_signal_level_t { INPUT_CAPTURE_SIGNAL_LEVEL_NONE
, INPUT_CAPTURE_SIGNAL_LEVEL_LOW,
INPUT_CAPTURE_SIGNAL_LEVEL_HIGH }

enum input_capture_repetition_t { INPUT_CAPTURE_REPETITION_PERIODIC,
INPUT_CAPTURE_REPETITION_ONE_SHOT }

enum input_capture_event_t { INPUT_CAPTURE_EVENT_MEASUREMENT,
INPUT_CAPTURE_EVENT_OVERFLOW }

enum input_capture_status_t { INPUT_CAPTURE_STATUS_IDLE,
INPUT_CAPTURE_STATUS_CAPTURING }

enum input_capture_variant_t { INPUT_CAPTURE_VARIANT_32_BIT,
INPUT_CAPTURE_VARIANT_16_BIT }

Detailed Description

Interface for sampling input signals for pulse width.

Summary
The input capture interface provides for sampling of input signals to determine the width of a pulse
(from one edge to the opposite edge). An interrupt can be triggered after each measurement is
captured.

Implemented by:

GPT Input Capture
AGT Input Capture

See also: Timer Interface

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,293 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Input Capture Interface

◆ info_capture_info_t

#define info_capture_info_t input_capture_info_t

Mapping of deprecated info_capture_info_t.

Typedef Documentation

◆ input_capture_ctrl_t

typedef void input_capture_ctrl_t

Input capture control block. Allocate an instance specific control block to pass into the input
capture API calls.

Implemented as

gpt_input_capture_instance_ctrl_t
agt_input_capture_instance_ctrl_t

Enumeration Type Documentation

◆ input_capture_event_t

enum input_capture_event_t

Events that can trigger a callback function

Enumerator

INPUT_CAPTURE_EVENT_MEASUREMENT A capture measurement has been captured.

INPUT_CAPTURE_EVENT_OVERFLOW A capture measurement overflowed the
counter.

◆ input_capture_mode_t

enum input_capture_mode_t

Input capture operational modes

Enumerator

INPUT_CAPTURE_MODE_PULSE_WIDTH Measure a signal pulse width.

INPUT_CAPTURE_MODE_PERIOD Measure a signal Cycle period.

INPUT_CAPTURE_MODE_PULSE_COUNT Measure a signal event count.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,294 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Input Capture Interface

◆ input_capture_repetition_t

enum input_capture_repetition_t

Specifies either a one-time or continuous measurements

Enumerator

INPUT_CAPTURE_REPETITION_PERIODIC Capture continuous measurements, until
explicitly stopped or disabled.

INPUT_CAPTURE_REPETITION_ONE_SHOT Capture a single measurement, then interrupts
are disabled.

◆ input_capture_signal_edge_t

enum input_capture_signal_edge_t

Input capture signal edge trigger

Enumerator

INPUT_CAPTURE_SIGNAL_EDGE_RISING The capture begins at the rising edge.

INPUT_CAPTURE_SIGNAL_EDGE_FALLING The capture begins at the falling edge.

◆ input_capture_signal_level_t

enum input_capture_signal_level_t

Input capture signal level, primarily used for the enable signal

Enumerator

INPUT_CAPTURE_SIGNAL_LEVEL_NONE Use this if signal_level is not applicable to a
particular measurement.

INPUT_CAPTURE_SIGNAL_LEVEL_LOW The capture is enabled at the low level.

INPUT_CAPTURE_SIGNAL_LEVEL_HIGH The capture is enabled at the high level.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,295 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Input Capture Interface

◆ input_capture_status_t

enum input_capture_status_t

Input capture status.

Enumerator

INPUT_CAPTURE_STATUS_IDLE The input capture timer is idle.

INPUT_CAPTURE_STATUS_CAPTURING A capture measurement is in progress.

◆ input_capture_variant_t

enum input_capture_variant_t

Input capture timer variant types.

Enumerator

INPUT_CAPTURE_VARIANT_32_BIT 32-bit timer

INPUT_CAPTURE_VARIANT_16_BIT 16-bit timer

 input_capture_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Input Capture Interface

#include <r_input_capture_api.h>

Data Fields

uint8_t channel

 The channel being used.

input_capture_event_t event

 The event that caused the interrupt and callback.

uint32_t counter

 The value of the timer captured at the time of interrupt.

uint32_t overflows

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,296 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Input Capture Interface > input_capture_callback_args_t Struct Reference

 The number of counter overflows that occurred during this
measurement.

void const * p_context

 Placeholder for user data, set in input_capture_cfg_t::p_context.

Detailed Description

Callback function parameter data

The documentation for this struct was generated from the following file:

r_input_capture_api.h

 input_capture_capture_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Input Capture Interface

#include <r_input_capture_api.h>

Data Fields

uint32_t counter

 The value of the timer captured at the time of interrupt.

uint32_t overflows

 The number of counter overflows that occurred during this
measurement.

Detailed Description

Capture data

The documentation for this struct was generated from the following file:

r_input_capture_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,297 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Input Capture Interface > input_capture_info_t Struct Reference

 input_capture_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Input Capture Interface

#include <r_input_capture_api.h>

Data Fields

input_capture_status_t status

 Whether or not a capture is in progress.

input_capture_variant_t variant

 Whether timer is 16 or 32 bits.

Detailed Description

Driver information

The documentation for this struct was generated from the following file:

r_input_capture_api.h

 input_capture_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Input Capture Interface

#include <r_input_capture_api.h>

Data Fields

uint8_t channel

 The channel in use.

uint8_t capture_irq_ipl

 Capture interrupt priority.

uint8_t overflow_irq_ipl

 Overflow interrupt priority.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,298 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Input Capture Interface > input_capture_cfg_t Struct Reference

input_capture_mode_t mode

 The mode of measurement to be performed.

input_capture_signal_edge_t edge

 The triggering edge to start a measurement (rise or fall).

input_capture_repetition_t repetition

 One-shot or periodic measurement.

bool autostart

 Specifies whether interrupts are enabled or not after open.

void const * p_extend

void(* p_callback)(input_capture_callback_args_t *p_args)

void const * p_context

 Pointer to user's context data, to be passed to the callback.

Detailed Description

User configuration structure, passed to input_capture_api_t::open function

Field Documentation

◆ p_callback

void(* input_capture_cfg_t::p_callback) (input_capture_callback_args_t *p_args)

Pointer to user's callback function, or NULL if no interrupt desired.

◆ p_extend

void const* input_capture_cfg_t::p_extend

REQUIRED. Pointer to peripheral-specific extension parameters. See gpt_input_capture_extend_t for
GPT.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,299 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Input Capture Interface > input_capture_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

r_input_capture_api.h

 input_capture_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Input Capture Interface

#include <r_input_capture_api.h>

Data Fields

ssp_err_t(* open)(input_capture_ctrl_t *const p_ctrl, input_capture_cfg_t const
*const p_cfg)

ssp_err_t(* disable)(input_capture_ctrl_t const *const p_ctrl)

ssp_err_t(* enable)(input_capture_ctrl_t const *const p_ctrl)

ssp_err_t(* infoGet)(input_capture_ctrl_t const *const p_ctrl,
input_capture_info_t *const p_info)

ssp_err_t(* lastCaptureGet)(input_capture_ctrl_t const *const p_ctrl,
input_capture_capture_t *const p_counter)

ssp_err_t(* close)(input_capture_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Input capture API structure. Functions implemented at the HAL layer will implement this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,300 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Input Capture Interface > input_capture_api_t Struct Reference

◆ close

ssp_err_t(* input_capture_api_t::close) (input_capture_ctrl_t *const p_ctrl)

Close the input capture operation. Allows driver to be reconfigured, and may reduce power
consumption.

Implemented as

R_GPT_InputCaptureClose()
R_AGT_InputCaptureClose()

Parameters
[in] p_ctrl Pointer to control block

initialized by
input_capture_api_t::open
call.

◆ disable

ssp_err_t(* input_capture_api_t::disable) (input_capture_ctrl_t const *const p_ctrl)

Disables input capture measurement.

Implemented as

R_GPT_InputCaptureDisable()
R_AGT_InputCaptureDisable()

Parameters
[in] p_ctrl Pointer to control block

initialized by
input_capture_api_t::open
call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,301 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Input Capture Interface > input_capture_api_t Struct Reference

◆ enable

ssp_err_t(* input_capture_api_t::enable) (input_capture_ctrl_t const *const p_ctrl)

Enables input capture measurement.

Implemented as

R_GPT_InputCaptureEnable()
R_AGT_InputCaptureEnable()

Parameters
[in] p_ctrl Pointer to control block

initialized by
input_capture_api_t::open
call.

Note
Interrupts may already be enabled if specified by input_capture_cfg_t::irq_enable.

◆ infoGet

ssp_err_t(* input_capture_api_t::infoGet) (input_capture_ctrl_t const *const p_ctrl,
input_capture_info_t *const p_info)

Gets the status (running or not) of the measurement counter.

Implemented as

R_GPT_InputCaptureInfoGet()
R_AGT_InputCaptureInfoGet()

Parameters
[in] p_ctrl Pointer to control block

initialized by
input_capture_api_t::open
call.

[out] p_info Pointer to returned status.
Result will be one of
input_capture_status_t.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,302 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Input Capture Interface > input_capture_api_t Struct Reference

◆ lastCaptureGet

ssp_err_t(* input_capture_api_t::lastCaptureGet) (input_capture_ctrl_t const *const p_ctrl,
input_capture_capture_t *const p_counter)

Gets the last captured timer/counter value

Implemented as

R_GPT_InputCaptureLastCaptureGet()
R_AGT_InputCaptureLastCaptureGet()

Parameters
[in] p_ctrl Pointer to control block

initialized by
input_capture_api_t::open
call.

[out] p_counter Pointer to location to store
last captured counter value.

◆ open

ssp_err_t(* input_capture_api_t::open) (input_capture_ctrl_t *const p_ctrl, input_capture_cfg_t const
*const p_cfg)

Initial configuration.

Implemented as

R_GPT_InputCaptureOpen()
R_AGT_InputCaptureOpen()

Note
To reconfigure after calling this function, call input_capture_api_t::close first.

Parameters
[in] p_ctrl Pointer to control block:

memory allocated by caller,
contents filled in by open.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,303 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Input Capture Interface > input_capture_api_t Struct Reference

◆ versionGet

ssp_err_t(* input_capture_api_t::versionGet) (ssp_version_t *const p_version)

Gets the version of this API and stores it in structure pointed to by p_version.

Implemented as

R_GPT_InputCaptureVersionGet()
R_AGT_InputCaptureVersionGet()

Parameters
[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_input_capture_api.h

 input_capture_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Input Capture Interface

#include <r_input_capture_api.h>

Data Fields

input_capture_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

input_capture_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

input_capture_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,304 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Input Capture Interface > input_capture_instance_t Struct Reference

The documentation for this struct was generated from the following file:

r_input_capture_api.h

5.1.4.20 I/O Port Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for accessing I/O ports and configuring I/O functionality. More...

Data Structures

struct ioport_pin_cfg_t

struct ioport_cfg_t

struct ioport_api_t

struct ioport_instance_t

Typedefs

typedef uint16_t ioport_size_t

 IO port size on this device. More...

Enumerations

enum ioport_level_t { IOPORT_LEVEL_LOW = 0, IOPORT_LEVEL_HIGH }

enum ioport_direction_t { IOPORT_DIRECTION_INPUT = 0,
IOPORT_DIRECTION_OUTPUT }

enum ioport_port_t {
 IOPORT_PORT_00 = 0x0000, IOPORT_PORT_01 = 0x0100,
IOPORT_PORT_02 = 0x0200, IOPORT_PORT_03 = 0x0300,
 IOPORT_PORT_04 = 0x0400, IOPORT_PORT_05 = 0x0500,
IOPORT_PORT_06 = 0x0600, IOPORT_PORT_07 = 0x0700,
 IOPORT_PORT_08 = 0x0800, IOPORT_PORT_09 = 0x0900,
IOPORT_PORT_10 = 0x0A00, IOPORT_PORT_11 = 0x0B00
}

enum ioport_port_pin_t {
 IOPORT_PORT_00_PIN_00 = 0x0000, IOPORT_PORT_00_PIN_01 =
0x0001, IOPORT_PORT_00_PIN_02 = 0x0002,
IOPORT_PORT_00_PIN_03 = 0x0003,
 IOPORT_PORT_00_PIN_04 = 0x0004, IOPORT_PORT_00_PIN_05 =
0x0005, IOPORT_PORT_00_PIN_06 = 0x0006,
IOPORT_PORT_00_PIN_07 = 0x0007,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,305 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

 IOPORT_PORT_00_PIN_08 = 0x0008, IOPORT_PORT_00_PIN_09 =
0x0009, IOPORT_PORT_00_PIN_10 = 0x000A,
IOPORT_PORT_00_PIN_11 = 0x000B,
 IOPORT_PORT_00_PIN_12 = 0x000C, IOPORT_PORT_00_PIN_13 =
0x000D, IOPORT_PORT_00_PIN_14 = 0x000E,
IOPORT_PORT_00_PIN_15 = 0x000F,
 IOPORT_PORT_01_PIN_00 = 0x0100, IOPORT_PORT_01_PIN_01 =
0x0101, IOPORT_PORT_01_PIN_02 = 0x0102,
IOPORT_PORT_01_PIN_03 = 0x0103,
 IOPORT_PORT_01_PIN_04 = 0x0104, IOPORT_PORT_01_PIN_05 =
0x0105, IOPORT_PORT_01_PIN_06 = 0x0106,
IOPORT_PORT_01_PIN_07 = 0x0107,
 IOPORT_PORT_01_PIN_08 = 0x0108, IOPORT_PORT_01_PIN_09 =
0x0109, IOPORT_PORT_01_PIN_10 = 0x010A,
IOPORT_PORT_01_PIN_11 = 0x010B,
 IOPORT_PORT_01_PIN_12 = 0x010C, IOPORT_PORT_01_PIN_13 =
0x010D, IOPORT_PORT_01_PIN_14 = 0x010E,
IOPORT_PORT_01_PIN_15 = 0x010F,
 IOPORT_PORT_02_PIN_00 = 0x0200, IOPORT_PORT_02_PIN_01 =
0x0201, IOPORT_PORT_02_PIN_02 = 0x0202,
IOPORT_PORT_02_PIN_03 = 0x0203,
 IOPORT_PORT_02_PIN_04 = 0x0204, IOPORT_PORT_02_PIN_05 =
0x0205, IOPORT_PORT_02_PIN_06 = 0x0206,
IOPORT_PORT_02_PIN_07 = 0x0207,
 IOPORT_PORT_02_PIN_08 = 0x0208, IOPORT_PORT_02_PIN_09 =
0x0209, IOPORT_PORT_02_PIN_10 = 0x020A,
IOPORT_PORT_02_PIN_11 = 0x020B,
 IOPORT_PORT_02_PIN_12 = 0x020C, IOPORT_PORT_02_PIN_13 =
0x020D, IOPORT_PORT_02_PIN_14 = 0x020E,
IOPORT_PORT_02_PIN_15 = 0x020F,
 IOPORT_PORT_03_PIN_00 = 0x0300, IOPORT_PORT_03_PIN_01 =
0x0301, IOPORT_PORT_03_PIN_02 = 0x0302,
IOPORT_PORT_03_PIN_03 = 0x0303,
 IOPORT_PORT_03_PIN_04 = 0x0304, IOPORT_PORT_03_PIN_05 =
0x0305, IOPORT_PORT_03_PIN_06 = 0x0306,
IOPORT_PORT_03_PIN_07 = 0x0307,
 IOPORT_PORT_03_PIN_08 = 0x0308, IOPORT_PORT_03_PIN_09 =
0x0309, IOPORT_PORT_03_PIN_10 = 0x030A,
IOPORT_PORT_03_PIN_11 = 0x030B,
 IOPORT_PORT_03_PIN_12 = 0x030C, IOPORT_PORT_03_PIN_13 =
0x030D, IOPORT_PORT_03_PIN_14 = 0x030E,
IOPORT_PORT_03_PIN_15 = 0x030F,
 IOPORT_PORT_04_PIN_00 = 0x0400, IOPORT_PORT_04_PIN_01 =
0x0401, IOPORT_PORT_04_PIN_02 = 0x0402,
IOPORT_PORT_04_PIN_03 = 0x0403,
 IOPORT_PORT_04_PIN_04 = 0x0404, IOPORT_PORT_04_PIN_05 =
0x0405, IOPORT_PORT_04_PIN_06 = 0x0406,
IOPORT_PORT_04_PIN_07 = 0x0407,
 IOPORT_PORT_04_PIN_08 = 0x0408, IOPORT_PORT_04_PIN_09 =
0x0409, IOPORT_PORT_04_PIN_10 = 0x040A,
IOPORT_PORT_04_PIN_11 = 0x040B,
 IOPORT_PORT_04_PIN_12 = 0x040C, IOPORT_PORT_04_PIN_13 =
0x040D, IOPORT_PORT_04_PIN_14 = 0x040E,
IOPORT_PORT_04_PIN_15 = 0x040F,
 IOPORT_PORT_05_PIN_00 = 0x0500, IOPORT_PORT_05_PIN_01 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,306 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

0x0501, IOPORT_PORT_05_PIN_02 = 0x0502,
IOPORT_PORT_05_PIN_03 = 0x0503,
 IOPORT_PORT_05_PIN_04 = 0x0504, IOPORT_PORT_05_PIN_05 =
0x0505, IOPORT_PORT_05_PIN_06 = 0x0506,
IOPORT_PORT_05_PIN_07 = 0x0507,
 IOPORT_PORT_05_PIN_08 = 0x0508, IOPORT_PORT_05_PIN_09 =
0x0509, IOPORT_PORT_05_PIN_10 = 0x050A,
IOPORT_PORT_05_PIN_11 = 0x050B,
 IOPORT_PORT_05_PIN_12 = 0x050C, IOPORT_PORT_05_PIN_13 =
0x050D, IOPORT_PORT_05_PIN_14 = 0x050E,
IOPORT_PORT_05_PIN_15 = 0x050F,
 IOPORT_PORT_06_PIN_00 = 0x0600, IOPORT_PORT_06_PIN_01 =
0x0601, IOPORT_PORT_06_PIN_02 = 0x0602,
IOPORT_PORT_06_PIN_03 = 0x0603,
 IOPORT_PORT_06_PIN_04 = 0x0604, IOPORT_PORT_06_PIN_05 =
0x0605, IOPORT_PORT_06_PIN_06 = 0x0606,
IOPORT_PORT_06_PIN_07 = 0x0607,
 IOPORT_PORT_06_PIN_08 = 0x0608, IOPORT_PORT_06_PIN_09 =
0x0609, IOPORT_PORT_06_PIN_10 = 0x060A,
IOPORT_PORT_06_PIN_11 = 0x060B,
 IOPORT_PORT_06_PIN_12 = 0x060C, IOPORT_PORT_06_PIN_13 =
0x060D, IOPORT_PORT_06_PIN_14 = 0x060E,
IOPORT_PORT_06_PIN_15 = 0x060F,
 IOPORT_PORT_07_PIN_00 = 0x0700, IOPORT_PORT_07_PIN_01 =
0x0701, IOPORT_PORT_07_PIN_02 = 0x0702,
IOPORT_PORT_07_PIN_03 = 0x0703,
 IOPORT_PORT_07_PIN_04 = 0x0704, IOPORT_PORT_07_PIN_05 =
0x0705, IOPORT_PORT_07_PIN_06 = 0x0706,
IOPORT_PORT_07_PIN_07 = 0x0707,
 IOPORT_PORT_07_PIN_08 = 0x0708, IOPORT_PORT_07_PIN_09 =
0x0709, IOPORT_PORT_07_PIN_10 = 0x070A,
IOPORT_PORT_07_PIN_11 = 0x070B,
 IOPORT_PORT_07_PIN_12 = 0x070C, IOPORT_PORT_07_PIN_13 =
0x070D, IOPORT_PORT_07_PIN_14 = 0x070E,
IOPORT_PORT_07_PIN_15 = 0x070F,
 IOPORT_PORT_08_PIN_00 = 0x0800, IOPORT_PORT_08_PIN_01 =
0x0801, IOPORT_PORT_08_PIN_02 = 0x0802,
IOPORT_PORT_08_PIN_03 = 0x0803,
 IOPORT_PORT_08_PIN_04 = 0x0804, IOPORT_PORT_08_PIN_05 =
0x0805, IOPORT_PORT_08_PIN_06 = 0x0806,
IOPORT_PORT_08_PIN_07 = 0x0807,
 IOPORT_PORT_08_PIN_08 = 0x0808, IOPORT_PORT_08_PIN_09 =
0x0809, IOPORT_PORT_08_PIN_10 = 0x080A,
IOPORT_PORT_08_PIN_11 = 0x080B,
 IOPORT_PORT_08_PIN_12 = 0x080C, IOPORT_PORT_08_PIN_13 =
0x080D, IOPORT_PORT_08_PIN_14 = 0x080E,
IOPORT_PORT_08_PIN_15 = 0x080F,
 IOPORT_PORT_09_PIN_00 = 0x0900, IOPORT_PORT_09_PIN_01 =
0x0901, IOPORT_PORT_09_PIN_02 = 0x0902,
IOPORT_PORT_09_PIN_03 = 0x0903,
 IOPORT_PORT_09_PIN_04 = 0x0904, IOPORT_PORT_09_PIN_05 =
0x0905, IOPORT_PORT_09_PIN_06 = 0x0906,
IOPORT_PORT_09_PIN_07 = 0x0907,
 IOPORT_PORT_09_PIN_08 = 0x0908, IOPORT_PORT_09_PIN_09 =
0x0909, IOPORT_PORT_09_PIN_10 = 0x090A,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,307 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

IOPORT_PORT_09_PIN_11 = 0x090B,
 IOPORT_PORT_09_PIN_12 = 0x090C, IOPORT_PORT_09_PIN_13 =
0x090D, IOPORT_PORT_09_PIN_14 = 0x090E,
IOPORT_PORT_09_PIN_15 = 0x090F,
 IOPORT_PORT_10_PIN_00 = 0x0A00, IOPORT_PORT_10_PIN_01 =
0x0A01, IOPORT_PORT_10_PIN_02 = 0x0A02,
IOPORT_PORT_10_PIN_03 = 0x0A03,
 IOPORT_PORT_10_PIN_04 = 0x0A04, IOPORT_PORT_10_PIN_05 =
0x0A05, IOPORT_PORT_10_PIN_06 = 0x0A06,
IOPORT_PORT_10_PIN_07 = 0x0A07,
 IOPORT_PORT_10_PIN_08 = 0x0A08, IOPORT_PORT_10_PIN_09 =
0x0A09, IOPORT_PORT_10_PIN_10 = 0x0A0A,
IOPORT_PORT_10_PIN_11 = 0x0A0B,
 IOPORT_PORT_10_PIN_12 = 0x0A0C, IOPORT_PORT_10_PIN_13 =
0x0A0D, IOPORT_PORT_10_PIN_14 = 0x0A0E,
IOPORT_PORT_10_PIN_15 = 0x0A0F,
 IOPORT_PORT_11_PIN_00 = 0x0B00, IOPORT_PORT_11_PIN_01 =
0x0B01, IOPORT_PORT_11_PIN_02 = 0x0B02,
IOPORT_PORT_11_PIN_03 = 0x0B03,
 IOPORT_PORT_11_PIN_04 = 0x0B04, IOPORT_PORT_11_PIN_05 =
0x0B05, IOPORT_PORT_11_PIN_06 = 0x0B06,
IOPORT_PORT_11_PIN_07 = 0x0B07,
 IOPORT_PORT_11_PIN_08 = 0x0B08, IOPORT_PORT_11_PIN_09 =
0x0B09, IOPORT_PORT_11_PIN_10 = 0x0B0A,
IOPORT_PORT_11_PIN_11 = 0x0B0B,
 IOPORT_PORT_11_PIN_12 = 0x0B0C, IOPORT_PORT_11_PIN_13 =
0x0B0D, IOPORT_PORT_11_PIN_14 = 0x0B0E,
IOPORT_PORT_11_PIN_15 = 0x0B0F
}

enum ioport_peripheral_t {
 IOPORT_PERIPHERAL_IO = 0x00, IOPORT_PERIPHERAL_DEBUG =
(0x00UL << IOPORT_PRV_PFS_PSEL_OFFSET),
IOPORT_PERIPHERAL_AGT = (0x01UL <<
IOPORT_PRV_PFS_PSEL_OFFSET), IOPORT_PERIPHERAL_GPT0 =
(0x02UL << IOPORT_PRV_PFS_PSEL_OFFSET),
 IOPORT_PERIPHERAL_GPT1 = (0x03UL <<
IOPORT_PRV_PFS_PSEL_OFFSET), IOPORT_PERIPHERAL_SCI0_2_4_6_8
= (0x04UL << IOPORT_PRV_PFS_PSEL_OFFSET),
IOPORT_PERIPHERAL_SCI1_3_5_7_9 = (0x05UL <<
IOPORT_PRV_PFS_PSEL_OFFSET), IOPORT_PERIPHERAL_RSPI =
(0x06UL << IOPORT_PRV_PFS_PSEL_OFFSET),
 IOPORT_PERIPHERAL_RIIC = (0x07UL <<
IOPORT_PRV_PFS_PSEL_OFFSET), IOPORT_PERIPHERAL_KEY =
(0x08UL << IOPORT_PRV_PFS_PSEL_OFFSET),
IOPORT_PERIPHERAL_CLKOUT_COMP_RTC = (0x09UL <<
IOPORT_PRV_PFS_PSEL_OFFSET), IOPORT_PERIPHERAL_CAC_AD =
(0x0AUL << IOPORT_PRV_PFS_PSEL_OFFSET),
 IOPORT_PERIPHERAL_BUS = (0x0BUL <<
IOPORT_PRV_PFS_PSEL_OFFSET), IOPORT_PERIPHERAL_CTSU =
(0x0CUL << IOPORT_PRV_PFS_PSEL_OFFSET),
IOPORT_PERIPHERAL_LCDC = (0x0DUL <<
IOPORT_PRV_PFS_PSEL_OFFSET), IOPORT_PERIPHERAL_DALI =
(0x0EUL << IOPORT_PRV_PFS_PSEL_OFFSET),
 IOPORT_PERIPHERAL_CAN = (0x10UL <<

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,308 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

IOPORT_PRV_PFS_PSEL_OFFSET), IOPORT_PERIPHERAL_QSPI =
(0x11UL << IOPORT_PRV_PFS_PSEL_OFFSET),
IOPORT_PERIPHERAL_SSI = (0x12UL <<
IOPORT_PRV_PFS_PSEL_OFFSET), IOPORT_PERIPHERAL_USB_FS =
(0x13UL << IOPORT_PRV_PFS_PSEL_OFFSET),
 IOPORT_PERIPHERAL_USB_HS = (0x14UL <<
IOPORT_PRV_PFS_PSEL_OFFSET), IOPORT_PERIPHERAL_SDHI_MMC =
(0x15UL << IOPORT_PRV_PFS_PSEL_OFFSET),
IOPORT_PERIPHERAL_ETHER_MII = (0x16UL <<
IOPORT_PRV_PFS_PSEL_OFFSET), IOPORT_PERIPHERAL_ETHER_RMII =
(0x17UL << IOPORT_PRV_PFS_PSEL_OFFSET),
 IOPORT_PERIPHERAL_PDC = (0x18UL <<
IOPORT_PRV_PFS_PSEL_OFFSET),
IOPORT_PERIPHERAL_LCD_GRAPHICS = (0x19UL <<
IOPORT_PRV_PFS_PSEL_OFFSET), IOPORT_PERIPHERAL_TRACE =
(0x1AUL << IOPORT_PRV_PFS_PSEL_OFFSET),
IOPORT_PERIPHERAL_END
}

enum ioport_ethernet_channel_t { IOPORT_ETHERNET_CHANNEL_0 = 0x10,
IOPORT_ETHERNET_CHANNEL_1 = 0x20,
IOPORT_ETHERNET_CHANNEL_END }

enum ioport_ethernet_mode_t { IOPORT_ETHERNET_MODE_MII = 0,
IOPORT_ETHERNET_MODE_RMII, IOPORT_ETHERNET_MODE_END }

enum ioport_cfg_options_t {
 IOPORT_CFG_PORT_DIRECTION_INPUT = 0x00000000,
IOPORT_CFG_PORT_DIRECTION_OUTPUT = 0x00000004,
IOPORT_CFG_PORT_OUTPUT_LOW = 0x00000000,
IOPORT_CFG_PORT_OUTPUT_HIGH = 0x00000001,
 IOPORT_CFG_PULLUP_ENABLE = 0x00000010,
IOPORT_CFG_PIM_TTL = 0x00000020, IOPORT_CFG_NMOS_ENABLE =
0x00000040, IOPORT_CFG_PMOS_ENABLE = 0x00000080,
 IOPORT_CFG_DRIVE_MID = 0x00000400,
IOPORT_CFG_DRIVE_MID_IIC = 0x00000C00,
IOPORT_CFG_DRIVE_HIGH = 0x00000C00,
IOPORT_CFG_EVENT_RISING_EDGE = 0x00001000,
 IOPORT_CFG_EVENT_FALLING_EDGE = 0x00002000,
IOPORT_CFG_EVENT_BOTH_EDGES = 0x00003000,
IOPORT_CFG_IRQ_ENABLE = 0x00004000,
IOPORT_CFG_ANALOG_ENABLE = 0x00008000,
 IOPORT_CFG_PERIPHERAL_PIN = 0x00010000
}

Detailed Description

Interface for accessing I/O ports and configuring I/O functionality.

The IOPort shared interface provides the ability to access the IOPorts of a device at both bit and port
level. Port and pin direction can be changed.

Related SSP architecture topics:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,309 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

IOPORT Interface description: I/O Port Driver

Typedef Documentation

◆ ioport_size_t

typedef uint16_t ioport_size_t

IO port size on this device.

IO port type used with ports

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,310 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

◆ ioport_cfg_options_t

enum ioport_cfg_options_t

Options to configure pin functions

Enumerator

IOPORT_CFG_PORT_DIRECTION_INPUT Sets the pin direction to input (default)

IOPORT_CFG_PORT_DIRECTION_OUTPUT Sets the pin direction to output.

IOPORT_CFG_PORT_OUTPUT_LOW Sets the pin level to low.

IOPORT_CFG_PORT_OUTPUT_HIGH Sets the pin level to high.

IOPORT_CFG_PULLUP_ENABLE Enables the pin's internal pull-up.

IOPORT_CFG_PIM_TTL Enables the pin's input mode.

IOPORT_CFG_NMOS_ENABLE Enables the pin's NMOS open-drain output.

IOPORT_CFG_PMOS_ENABLE Enables the pin's PMOS open-drain ouput.

IOPORT_CFG_DRIVE_MID Sets pin drive output to medium.

IOPORT_CFG_DRIVE_MID_IIC Sets pin to drive output needed for IIC on a
20mA port.

IOPORT_CFG_DRIVE_HIGH Sets pin drive output to high.

IOPORT_CFG_EVENT_RISING_EDGE Sets pin event trigger to rising edge.

IOPORT_CFG_EVENT_FALLING_EDGE Sets pin event trigger to falling edge.

IOPORT_CFG_EVENT_BOTH_EDGES Sets pin event trigger to both edges.

IOPORT_CFG_IRQ_ENABLE Sets pin as an IRQ pin.

IOPORT_CFG_ANALOG_ENABLE Enables pin to operate as an analog pin.

IOPORT_CFG_PERIPHERAL_PIN Enables pin to operate as a peripheral pin.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,311 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

◆ ioport_direction_t

enum ioport_direction_t

Direction of individual pins

Enumerator

IOPORT_DIRECTION_INPUT Input.

IOPORT_DIRECTION_OUTPUT Output.

◆ ioport_ethernet_channel_t

enum ioport_ethernet_channel_t

Superset of Ethernet channels.

Enumerator

IOPORT_ETHERNET_CHANNEL_0 Used to select Ethernet channel 0.

IOPORT_ETHERNET_CHANNEL_1 Used to select Ethernet channel 1.

IOPORT_ETHERNET_CHANNEL_END Marks end of enum - used by parameter
checking.

◆ ioport_ethernet_mode_t

enum ioport_ethernet_mode_t

Superset of Ethernet PHY modes.

Enumerator

IOPORT_ETHERNET_MODE_MII Ethernet PHY mode set to MII.

IOPORT_ETHERNET_MODE_RMII Ethernet PHY mode set to RMII.

IOPORT_ETHERNET_MODE_END Marks end of enum - used by parameter
checking.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,312 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

◆ ioport_level_t

enum ioport_level_t

Levels that can be set and read for individual pins

Enumerator

IOPORT_LEVEL_LOW Low.

IOPORT_LEVEL_HIGH High.

◆ ioport_peripheral_t

enum ioport_peripheral_t

Superset of all peripheral functions.

Enumerator

IOPORT_PERIPHERAL_IO Pin will functions as an IO pin.

IOPORT_PERIPHERAL_DEBUG Pin will function as a DEBUG pin.

IOPORT_PERIPHERAL_AGT Pin will function as an AGT.

IOPORT_PERIPHERAL_GPT0 Pin will function as a GPT.

IOPORT_PERIPHERAL_GPT1 Pin will function as a GPT.

IOPORT_PERIPHERAL_SCI0_2_4_6_8 Pin will function as an SCI.

IOPORT_PERIPHERAL_SCI1_3_5_7_9 Pin will function as an SCI.

IOPORT_PERIPHERAL_RSPI Pin will function as a RSPI.

IOPORT_PERIPHERAL_RIIC Pin will function as a RIIC.

IOPORT_PERIPHERAL_KEY Pin will function as a KEY.

IOPORT_PERIPHERAL_CLKOUT_COMP_RTC Pin will function as a.

IOPORT_PERIPHERAL_CAC_AD Pin will function as a CAC/ADC.

IOPORT_PERIPHERAL_BUS Pin will function as a BUS.

IOPORT_PERIPHERAL_CTSU Pin will function as a CTSU.

IOPORT_PERIPHERAL_LCDC Pin will function as a segment LCD.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,313 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

IOPORT_PERIPHERAL_DALI Pin will function as a DALI.

IOPORT_PERIPHERAL_CAN Pin will function as a CAN.

IOPORT_PERIPHERAL_QSPI Pin will function as a QSPI.

IOPORT_PERIPHERAL_SSI Pin will function as an SSI.

IOPORT_PERIPHERAL_USB_FS Pin will function as a USB.

IOPORT_PERIPHERAL_USB_HS Pin will function as a USB.

IOPORT_PERIPHERAL_SDHI_MMC Pin will function as an SD/MMC.

IOPORT_PERIPHERAL_ETHER_MII Pin will function as an Ethernet.

IOPORT_PERIPHERAL_ETHER_RMII Pin will function as an Ethernet.

IOPORT_PERIPHERAL_PDC Pin will function as a PDC.

IOPORT_PERIPHERAL_LCD_GRAPHICS Pin will function as a graphics.

IOPORT_PERIPHERAL_TRACE Pin will function as a debug trace.

IOPORT_PERIPHERAL_END Marks end of enum - used by.

◆ ioport_port_pin_t

enum ioport_port_pin_t

Superset list of all possible IO port pins.

Enumerator

IOPORT_PORT_00_PIN_00 IO port 0 pin 0.

IOPORT_PORT_00_PIN_01 IO port 0 pin 1.

IOPORT_PORT_00_PIN_02 IO port 0 pin 2.

IOPORT_PORT_00_PIN_03 IO port 0 pin 3.

IOPORT_PORT_00_PIN_04 IO port 0 pin 4.

IOPORT_PORT_00_PIN_05 IO port 0 pin 5.

IOPORT_PORT_00_PIN_06 IO port 0 pin 6.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,314 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

IOPORT_PORT_00_PIN_07 IO port 0 pin 7.

IOPORT_PORT_00_PIN_08 IO port 0 pin 8.

IOPORT_PORT_00_PIN_09 IO port 0 pin 9.

IOPORT_PORT_00_PIN_10 IO port 0 pin 10.

IOPORT_PORT_00_PIN_11 IO port 0 pin 11.

IOPORT_PORT_00_PIN_12 IO port 0 pin 12.

IOPORT_PORT_00_PIN_13 IO port 0 pin 13.

IOPORT_PORT_00_PIN_14 IO port 0 pin 14.

IOPORT_PORT_00_PIN_15 IO port 0 pin 15.

IOPORT_PORT_01_PIN_00 IO port 1 pin 0.

IOPORT_PORT_01_PIN_01 IO port 1 pin 1.

IOPORT_PORT_01_PIN_02 IO port 1 pin 2.

IOPORT_PORT_01_PIN_03 IO port 1 pin 3.

IOPORT_PORT_01_PIN_04 IO port 1 pin 4.

IOPORT_PORT_01_PIN_05 IO port 1 pin 5.

IOPORT_PORT_01_PIN_06 IO port 1 pin 6.

IOPORT_PORT_01_PIN_07 IO port 1 pin 7.

IOPORT_PORT_01_PIN_08 IO port 1 pin 8.

IOPORT_PORT_01_PIN_09 IO port 1 pin 9.

IOPORT_PORT_01_PIN_10 IO port 1 pin 10.

IOPORT_PORT_01_PIN_11 IO port 1 pin 11.

IOPORT_PORT_01_PIN_12 IO port 1 pin 12.

IOPORT_PORT_01_PIN_13 IO port 1 pin 13.

IOPORT_PORT_01_PIN_14 IO port 1 pin 14.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,315 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

IOPORT_PORT_01_PIN_15 IO port 1 pin 15.

IOPORT_PORT_02_PIN_00 IO port 2 pin 0.

IOPORT_PORT_02_PIN_01 IO port 2 pin 1.

IOPORT_PORT_02_PIN_02 IO port 2 pin 2.

IOPORT_PORT_02_PIN_03 IO port 2 pin 3.

IOPORT_PORT_02_PIN_04 IO port 2 pin 4.

IOPORT_PORT_02_PIN_05 IO port 2 pin 5.

IOPORT_PORT_02_PIN_06 IO port 2 pin 6.

IOPORT_PORT_02_PIN_07 IO port 2 pin 7.

IOPORT_PORT_02_PIN_08 IO port 2 pin 8.

IOPORT_PORT_02_PIN_09 IO port 2 pin 9.

IOPORT_PORT_02_PIN_10 IO port 2 pin 10.

IOPORT_PORT_02_PIN_11 IO port 2 pin 11.

IOPORT_PORT_02_PIN_12 IO port 2 pin 12.

IOPORT_PORT_02_PIN_13 IO port 2 pin 13.

IOPORT_PORT_02_PIN_14 IO port 2 pin 14.

IOPORT_PORT_02_PIN_15 IO port 2 pin 15.

IOPORT_PORT_03_PIN_00 IO port 3 pin 0.

IOPORT_PORT_03_PIN_01 IO port 3 pin 1.

IOPORT_PORT_03_PIN_02 IO port 3 pin 2.

IOPORT_PORT_03_PIN_03 IO port 3 pin 3.

IOPORT_PORT_03_PIN_04 IO port 3 pin 4.

IOPORT_PORT_03_PIN_05 IO port 3 pin 5.

IOPORT_PORT_03_PIN_06 IO port 3 pin 6.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,316 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

IOPORT_PORT_03_PIN_07 IO port 3 pin 7.

IOPORT_PORT_03_PIN_08 IO port 3 pin 8.

IOPORT_PORT_03_PIN_09 IO port 3 pin 9.

IOPORT_PORT_03_PIN_10 IO port 3 pin 10.

IOPORT_PORT_03_PIN_11 IO port 3 pin 11.

IOPORT_PORT_03_PIN_12 IO port 3 pin 12.

IOPORT_PORT_03_PIN_13 IO port 3 pin 13.

IOPORT_PORT_03_PIN_14 IO port 3 pin 14.

IOPORT_PORT_03_PIN_15 IO port 3 pin 15.

IOPORT_PORT_04_PIN_00 IO port 4 pin 0.

IOPORT_PORT_04_PIN_01 IO port 4 pin 1.

IOPORT_PORT_04_PIN_02 IO port 4 pin 2.

IOPORT_PORT_04_PIN_03 IO port 4 pin 3.

IOPORT_PORT_04_PIN_04 IO port 4 pin 4.

IOPORT_PORT_04_PIN_05 IO port 4 pin 5.

IOPORT_PORT_04_PIN_06 IO port 4 pin 6.

IOPORT_PORT_04_PIN_07 IO port 4 pin 7.

IOPORT_PORT_04_PIN_08 IO port 4 pin 8.

IOPORT_PORT_04_PIN_09 IO port 4 pin 9.

IOPORT_PORT_04_PIN_10 IO port 4 pin 10.

IOPORT_PORT_04_PIN_11 IO port 4 pin 11.

IOPORT_PORT_04_PIN_12 IO port 4 pin 12.

IOPORT_PORT_04_PIN_13 IO port 4 pin 13.

IOPORT_PORT_04_PIN_14 IO port 4 pin 14.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,317 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

IOPORT_PORT_04_PIN_15 IO port 4 pin 15.

IOPORT_PORT_05_PIN_00 IO port 5 pin 0.

IOPORT_PORT_05_PIN_01 IO port 5 pin 1.

IOPORT_PORT_05_PIN_02 IO port 5 pin 2.

IOPORT_PORT_05_PIN_03 IO port 5 pin 3.

IOPORT_PORT_05_PIN_04 IO port 5 pin 4.

IOPORT_PORT_05_PIN_05 IO port 5 pin 5.

IOPORT_PORT_05_PIN_06 IO port 5 pin 6.

IOPORT_PORT_05_PIN_07 IO port 5 pin 7.

IOPORT_PORT_05_PIN_08 IO port 5 pin 8.

IOPORT_PORT_05_PIN_09 IO port 5 pin 9.

IOPORT_PORT_05_PIN_10 IO port 5 pin 10.

IOPORT_PORT_05_PIN_11 IO port 5 pin 11.

IOPORT_PORT_05_PIN_12 IO port 5 pin 12.

IOPORT_PORT_05_PIN_13 IO port 5 pin 13.

IOPORT_PORT_05_PIN_14 IO port 5 pin 14.

IOPORT_PORT_05_PIN_15 IO port 5 pin 15.

IOPORT_PORT_06_PIN_00 IO port 6 pin 0.

IOPORT_PORT_06_PIN_01 IO port 6 pin 1.

IOPORT_PORT_06_PIN_02 IO port 6 pin 2.

IOPORT_PORT_06_PIN_03 IO port 6 pin 3.

IOPORT_PORT_06_PIN_04 IO port 6 pin 4.

IOPORT_PORT_06_PIN_05 IO port 6 pin 5.

IOPORT_PORT_06_PIN_06 IO port 6 pin 6.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,318 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

IOPORT_PORT_06_PIN_07 IO port 6 pin 7.

IOPORT_PORT_06_PIN_08 IO port 6 pin 8.

IOPORT_PORT_06_PIN_09 IO port 6 pin 9.

IOPORT_PORT_06_PIN_10 IO port 6 pin 10.

IOPORT_PORT_06_PIN_11 IO port 6 pin 11.

IOPORT_PORT_06_PIN_12 IO port 6 pin 12.

IOPORT_PORT_06_PIN_13 IO port 6 pin 13.

IOPORT_PORT_06_PIN_14 IO port 6 pin 14.

IOPORT_PORT_06_PIN_15 IO port 6 pin 15.

IOPORT_PORT_07_PIN_00 IO port 7 pin 0.

IOPORT_PORT_07_PIN_01 IO port 7 pin 1.

IOPORT_PORT_07_PIN_02 IO port 7 pin 2.

IOPORT_PORT_07_PIN_03 IO port 7 pin 3.

IOPORT_PORT_07_PIN_04 IO port 7 pin 4.

IOPORT_PORT_07_PIN_05 IO port 7 pin 5.

IOPORT_PORT_07_PIN_06 IO port 7 pin 6.

IOPORT_PORT_07_PIN_07 IO port 7 pin 7.

IOPORT_PORT_07_PIN_08 IO port 7 pin 8.

IOPORT_PORT_07_PIN_09 IO port 7 pin 9.

IOPORT_PORT_07_PIN_10 IO port 7 pin 10.

IOPORT_PORT_07_PIN_11 IO port 7 pin 11.

IOPORT_PORT_07_PIN_12 IO port 7 pin 12.

IOPORT_PORT_07_PIN_13 IO port 7 pin 13.

IOPORT_PORT_07_PIN_14 IO port 7 pin 14.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,319 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

IOPORT_PORT_07_PIN_15 IO port 7 pin 15.

IOPORT_PORT_08_PIN_00 IO port 8 pin 0.

IOPORT_PORT_08_PIN_01 IO port 8 pin 1.

IOPORT_PORT_08_PIN_02 IO port 8 pin 2.

IOPORT_PORT_08_PIN_03 IO port 8 pin 3.

IOPORT_PORT_08_PIN_04 IO port 8 pin 4.

IOPORT_PORT_08_PIN_05 IO port 8 pin 5.

IOPORT_PORT_08_PIN_06 IO port 8 pin 6.

IOPORT_PORT_08_PIN_07 IO port 8 pin 7.

IOPORT_PORT_08_PIN_08 IO port 8 pin 8.

IOPORT_PORT_08_PIN_09 IO port 8 pin 9.

IOPORT_PORT_08_PIN_10 IO port 8 pin 10.

IOPORT_PORT_08_PIN_11 IO port 8 pin 11.

IOPORT_PORT_08_PIN_12 IO port 8 pin 12.

IOPORT_PORT_08_PIN_13 IO port 8 pin 13.

IOPORT_PORT_08_PIN_14 IO port 8 pin 14.

IOPORT_PORT_08_PIN_15 IO port 8 pin 15.

IOPORT_PORT_09_PIN_00 IO port 9 pin 0.

IOPORT_PORT_09_PIN_01 IO port 9 pin 1.

IOPORT_PORT_09_PIN_02 IO port 9 pin 2.

IOPORT_PORT_09_PIN_03 IO port 9 pin 3.

IOPORT_PORT_09_PIN_04 IO port 9 pin 4.

IOPORT_PORT_09_PIN_05 IO port 9 pin 5.

IOPORT_PORT_09_PIN_06 IO port 9 pin 6.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,320 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

IOPORT_PORT_09_PIN_07 IO port 9 pin 7.

IOPORT_PORT_09_PIN_08 IO port 9 pin 8.

IOPORT_PORT_09_PIN_09 IO port 9 pin 9.

IOPORT_PORT_09_PIN_10 IO port 9 pin 10.

IOPORT_PORT_09_PIN_11 IO port 9 pin 11.

IOPORT_PORT_09_PIN_12 IO port 9 pin 12.

IOPORT_PORT_09_PIN_13 IO port 9 pin 13.

IOPORT_PORT_09_PIN_14 IO port 9 pin 14.

IOPORT_PORT_09_PIN_15 IO port 9 pin 15.

IOPORT_PORT_10_PIN_00 IO port 10 pin 0.

IOPORT_PORT_10_PIN_01 IO port 10 pin 1.

IOPORT_PORT_10_PIN_02 IO port 10 pin 2.

IOPORT_PORT_10_PIN_03 IO port 10 pin 3.

IOPORT_PORT_10_PIN_04 IO port 10 pin 4.

IOPORT_PORT_10_PIN_05 IO port 10 pin 5.

IOPORT_PORT_10_PIN_06 IO port 10 pin 6.

IOPORT_PORT_10_PIN_07 IO port 10 pin 7.

IOPORT_PORT_10_PIN_08 IO port 10 pin 8.

IOPORT_PORT_10_PIN_09 IO port 10 pin 9.

IOPORT_PORT_10_PIN_10 IO port 10 pin 10.

IOPORT_PORT_10_PIN_11 IO port 10 pin 11.

IOPORT_PORT_10_PIN_12 IO port 10 pin 12.

IOPORT_PORT_10_PIN_13 IO port 10 pin 13.

IOPORT_PORT_10_PIN_14 IO port 10 pin 14.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,321 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

IOPORT_PORT_10_PIN_15 IO port 10 pin 15.

IOPORT_PORT_11_PIN_00 IO port 11 pin 0.

IOPORT_PORT_11_PIN_01 IO port 11 pin 1.

IOPORT_PORT_11_PIN_02 IO port 11 pin 2.

IOPORT_PORT_11_PIN_03 IO port 11 pin 3.

IOPORT_PORT_11_PIN_04 IO port 11 pin 4.

IOPORT_PORT_11_PIN_05 IO port 11 pin 5.

IOPORT_PORT_11_PIN_06 IO port 11 pin 6.

IOPORT_PORT_11_PIN_07 IO port 11 pin 7.

IOPORT_PORT_11_PIN_08 IO port 11 pin 8.

IOPORT_PORT_11_PIN_09 IO port 11 pin 9.

IOPORT_PORT_11_PIN_10 IO port 11 pin 10.

IOPORT_PORT_11_PIN_11 IO port 11 pin 11.

IOPORT_PORT_11_PIN_12 IO port 11 pin 12.

IOPORT_PORT_11_PIN_13 IO port 11 pin 13.

IOPORT_PORT_11_PIN_14 IO port 11 pin 14.

IOPORT_PORT_11_PIN_15 IO port 11 pin 15.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,322 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface

◆ ioport_port_t

enum ioport_port_t

Superset list of all possible IO ports.

Enumerator

IOPORT_PORT_00 IO port 0.

IOPORT_PORT_01 IO port 1.

IOPORT_PORT_02 IO port 2.

IOPORT_PORT_03 IO port 3.

IOPORT_PORT_04 IO port 4.

IOPORT_PORT_05 IO port 5.

IOPORT_PORT_06 IO port 6.

IOPORT_PORT_07 IO port 7.

IOPORT_PORT_08 IO port 8.

IOPORT_PORT_09 IO port 9.

IOPORT_PORT_10 IO port 10.

IOPORT_PORT_11 IO port 11.

 ioport_pin_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I/O Port Interface

#include <r_ioport_api.h>

Data Fields

uint32_t pin_cfg

 Pin PFS configuration - Use ioport_cfg_options_t parameters to
configure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,323 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface > ioport_pin_cfg_t Struct Reference

ioport_port_pin_t pin

 Pin identifier.

Detailed Description

Pin identifier and pin PFS pin configuration value

The documentation for this struct was generated from the following file:

r_ioport_api.h

 ioport_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I/O Port Interface

#include <r_ioport_api.h>

Data Fields

uint16_t number_of_pins

 Number of pins for which there is configuration data.

ioport_pin_cfg_t const * p_pin_cfg_data

 Pin configuration data.

Detailed Description

Multiple pin configuration data for loading into PFS registers by R_IOPORT_Init()

The documentation for this struct was generated from the following file:

r_ioport_api.h

 ioport_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I/O Port Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,324 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface > ioport_api_t Struct Reference

#include <r_ioport_api.h>

Data Fields

ssp_err_t(* init)(const ioport_cfg_t *p_cfg)

ssp_err_t(* pinsCfg)(const ioport_cfg_t *p_cfg)

ssp_err_t(* pinCfg)(ioport_port_pin_t pin, uint32_t cfg)

ssp_err_t(* pinDirectionSet)(ioport_port_pin_t pin, ioport_direction_t direction)

ssp_err_t(* pinEventInputRead)(ioport_port_pin_t pin, ioport_level_t
*p_pin_event)

ssp_err_t(* pinEventOutputWrite)(ioport_port_pin_t pin, ioport_level_t pin_value)

ssp_err_t(* pinEthernetModeCfg)(ioport_ethernet_channel_t channel,
ioport_ethernet_mode_t mode)

ssp_err_t(* pinRead)(ioport_port_pin_t pin, ioport_level_t *p_pin_value)

ssp_err_t(* pinWrite)(ioport_port_pin_t pin, ioport_level_t level)

ssp_err_t(* portDirectionSet)(ioport_port_t port, ioport_size_t direction_values,
ioport_size_t mask)

ssp_err_t(* portEventInputRead)(ioport_port_t port, ioport_size_t *p_event_data)

ssp_err_t(* portEventOutputWrite)(ioport_port_t port, ioport_size_t event_data,
ioport_size_t mask_value)

ssp_err_t(* portRead)(ioport_port_t port, ioport_size_t *p_port_value)

ssp_err_t(* portWrite)(ioport_port_t port, ioport_size_t value, ioport_size_t mask)

ssp_err_t(* versionGet)(ssp_version_t *p_data)

Detailed Description

IOPort driver structure. IOPort functions implemented at the HAL layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,325 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface > ioport_api_t Struct Reference

◆ init

ssp_err_t(* ioport_api_t::init) (const ioport_cfg_t *p_cfg)

Initialize internal driver data and initial pin configurations. Called during startup. Do not call this API
during runtime. Use ioport_api_t::pinsCfg for runtime reconfiguration of multiple pins.

Implemented as

R_IOPORT_Init()
Parameters

[in] p_cfg Pointer to pin configuration
data array.

◆ pinCfg

ssp_err_t(* ioport_api_t::pinCfg) (ioport_port_pin_t pin, uint32_t cfg)

Configure settings for an individual pin.

Implemented as

R_IOPORT_PinCfg()
Parameters

[in] pin Pin to be read.

[in] cfg Configuration options for the
pin.

◆ pinDirectionSet

ssp_err_t(* ioport_api_t::pinDirectionSet) (ioport_port_pin_t pin, ioport_direction_t direction)

Set the pin direction of a pin.

Implemented as

R_IOPORT_PinDirectionSet()
Parameters

[in] pin Pin being configured.

[in] direction Direction to set pin to which
is a member of
ioport_direction_t.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,326 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface > ioport_api_t Struct Reference

◆ pinEthernetModeCfg

ssp_err_t(* ioport_api_t::pinEthernetModeCfg) (ioport_ethernet_channel_t channel,
ioport_ethernet_mode_t mode)

Configure the PHY mode of the Ethernet channels.

Implemented as

R_IOPORT_EthernetModeCfg()
Parameters

[in] channel Channel configuration will be
set for.

[in] mode PHY mode to set the channel
to.

◆ pinEventInputRead

ssp_err_t(* ioport_api_t::pinEventInputRead) (ioport_port_pin_t pin, ioport_level_t *p_pin_event)

Read the event input data of the specified pin and return the level.

Implemented as

R_IOPORT_PinEventInputRead()
Parameters

[in] pin Pin to be read.

[in] p_pin_event Pointer to return the event
data.

◆ pinEventOutputWrite

ssp_err_t(* ioport_api_t::pinEventOutputWrite) (ioport_port_pin_t pin, ioport_level_t pin_value)

Write pin event data.

Implemented as

R_IOPORT_PinEventOutputWrite()
Parameters

[in] pin Pin event data is to be
written to.

[in] pin_value Level to be written to pin
output event.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,327 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface > ioport_api_t Struct Reference

◆ pinRead

ssp_err_t(* ioport_api_t::pinRead) (ioport_port_pin_t pin, ioport_level_t *p_pin_value)

Read level of a pin.

Implemented as

R_IOPORT_PinRead()
Parameters

[in] pin Pin to be read.

[in] p_pin_value Pointer to return the pin
level.

◆ pinsCfg

ssp_err_t(* ioport_api_t::pinsCfg) (const ioport_cfg_t *p_cfg)

Configure multiple pins.

Implemented as

R_IOPORT_PinsCfg()
Parameters

[in] p_cfg Pointer to pin configuration
data array.

◆ pinWrite

ssp_err_t(* ioport_api_t::pinWrite) (ioport_port_pin_t pin, ioport_level_t level)

Write specified level to a pin.

Implemented as

R_IOPORT_PinWrite()
Parameters

[in] pin Pin to be written to.

[in] level State to be written to the
pin.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,328 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface > ioport_api_t Struct Reference

◆ portDirectionSet

ssp_err_t(* ioport_api_t::portDirectionSet) (ioport_port_t port, ioport_size_t direction_values,
ioport_size_t mask)

Set the direction of one or more pins on a port.

Implemented as

R_IOPORT_PortDirectionSet()
Parameters

[in] port Port being configured.

[in] direction_values Value controlling direction of
pins on port (1 - output, 0 -
input).

[in] mask Mask controlling which pins
on the port are to be
configured.

◆ portEventInputRead

ssp_err_t(* ioport_api_t::portEventInputRead) (ioport_port_t port, ioport_size_t *p_event_data)

Read captured event data for a port.

Implemented as

R_IOPORT_PortEventInputRead()
Parameters

[in] port Port to be read.

[in] p_event_data Pointer to return the event
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,329 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface > ioport_api_t Struct Reference

◆ portEventOutputWrite

ssp_err_t(* ioport_api_t::portEventOutputWrite) (ioport_port_t port, ioport_size_t event_data,
ioport_size_t mask_value)

Write event output data for a port.

Implemented as

R_IOPORT_PortEventOutputWrite()
Parameters

[in] port Port event data will be
written to.

[in] event_data Data to be written as event
data to specified port.

[in] mask_value Each bit set to 1 in the mask
corresponds to that bit's
value in event data. being
written to port.

◆ portRead

ssp_err_t(* ioport_api_t::portRead) (ioport_port_t port, ioport_size_t *p_port_value)

Read states of pins on the specified port.

Implemented as

R_IOPORT_PortRead()
Parameters

[in] port Port to be read.

[in] p_port_value Pointer to return the port
value.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,330 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface > ioport_api_t Struct Reference

◆ portWrite

ssp_err_t(* ioport_api_t::portWrite) (ioport_port_t port, ioport_size_t value, ioport_size_t mask)

Write to multiple pins on a port.

Implemented as

R_IOPORT_PortWrite()
Parameters

[in] port Port to be written to.

[in] value Value to be written to the
port.

[in] mask Mask controlling which pins
on the port are written to.

◆ versionGet

ssp_err_t(* ioport_api_t::versionGet) (ssp_version_t *p_data)

Return the version of the IOPort driver.

Implemented as

R_IOPORT_VersionGet()
Parameters

[out] p_data Memory address to return
version information to.

The documentation for this struct was generated from the following file:

r_ioport_api.h

 ioport_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » I/O Port Interface

#include <r_ioport_api.h>

Data Fields

ioport_cfg_t const * p_cfg

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,331 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > I/O Port Interface > ioport_instance_t Struct Reference

 Pointer to the configuration structure for this instance.

ioport_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_ioport_api.h

5.1.4.21 JPEG Decode Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for JPEG decode functions. More...

Data Structures

struct jpeg_decode_callback_args_t

struct jpeg_decode_cfg_t

struct jpeg_decode_api_t

struct jpeg_decode_instance_t

Macros

#define JPEG_DECODE_API_VERSION_MAJOR (2U)

Typedefs

typedef void jpeg_decode_ctrl_t

Enumerations

enum jpeg_decode_color_space_t {
JPEG_DECODE_COLOR_SPACE_YCBCR444 = 0,
JPEG_DECODE_COLOR_SPACE_YCBCR422 = 1,
JPEG_DECODE_COLOR_SPACE_YCBCR420 = 2,
JPEG_DECODE_COLOR_SPACE_YCBCR411 = 6 }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,332 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface

enum jpeg_decode_data_format_t {
 JPEG_DECODE_DATA_FORMAT_NORMAL = 0,
JPEG_DECODE_DATA_FORMAT_BYTE_SWAP,
JPEG_DECODE_DATA_FORMAT_WORD_SWAP,
JPEG_DECODE_DATA_FORMAT_WORD_BYTE_SWAP,
 JPEG_DECODE_DATA_FORMAT_LONGWORD_SWAP,
JPEG_DECODE_DATA_FORMAT_LONGWORD_BYTE_SWAP,
JPEG_DECODE_DATA_FORMAT_LONGWORD_WORD_SWAP,
JPEG_DECODE_DATA_FORMAT_LONGWORD_WORD_BYTE_SWAP
}

enum jpeg_decode_pixel_format_t {
JPEG_DECODE_PIXEL_FORMAT_ARGB8888 = 1,
JPEG_DECODE_PIXEL_FORMAT_RGB565 }

enum jpeg_decode_status_t {
 JPEG_DECODE_STATUS_FREE = 0x0, JPEG_DECODE_STATUS_IDLE =
0x1, JPEG_DECODE_STATUS_RUNNING = 0x2,
JPEG_DECODE_STATUS_DONE = 0x4,
 JPEG_DECODE_STATUS_INPUT_PAUSE = 0x8,
JPEG_DECODE_STATUS_OUTPUT_PAUSE = 0x10,
JPEG_DECODE_STATUS_IMAGE_SIZE_READY = 0x20,
JPEG_DECODE_STATUS_ERROR = 0x40,
 JPEG_DECODE_STATUS_HEADER_PROCESSING = 0x80
}

enum jpeg_decode_subsample_t { JPEG_DECODE_OUTPUT_NO_SUBSAMPLE
= 0, JPEG_DECODE_OUTPUT_SUBSAMPLE_HALF,
JPEG_DECODE_OUTPUT_SUBSAMPLE_ONE_QUARTER,
JPEG_DECODE_OUTPUT_SUBSAMPLE_ONE_EIGHTH }

enum jpeg_decode_count_enable_t { JPEG_DECODE_COUNT_DISABLE = 0,
JPEG_DECODE_COUNT_ENABLE }

enum jpeg_decode_resume_mode_t {
JPEG_DECODE_COUNT_MODE_ADDRESS_CONTINUE = 0,
JPEG_DECODE_COUNT_MODE_ADDRESS_REINITIALIZE }

Detailed Description

Interface for JPEG decode functions.

Summary
The JPEG DECODE interface provides JPEG decoder functionality. It allows application to convert a
JPEG image into bitmap data suitable for display frame buffer.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,333 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface

Using SSP Modules

JPEG DECODE Interface description: JPEG Decode Driver

Macro Definition Documentation

◆ JPEG_DECODE_API_VERSION_MAJOR

#define JPEG_DECODE_API_VERSION_MAJOR (2U)

Register definitions, common services and error codes. Configuration for this module

Typedef Documentation

◆ jpeg_decode_ctrl_t

typedef void jpeg_decode_ctrl_t

JPEG decode control block. Allocate an instance specific control block to pass into the JPEG decode
API calls.

Implemented as

jpeg_decode_instance_ctrl_t

Enumeration Type Documentation

◆ jpeg_decode_color_space_t

enum jpeg_decode_color_space_t

Image color space definitions

Enumerator

JPEG_DECODE_COLOR_SPACE_YCBCR444 Color Space YCbCr 444.

JPEG_DECODE_COLOR_SPACE_YCBCR422 Color Space YCbCr 422.

JPEG_DECODE_COLOR_SPACE_YCBCR420 Color Space YCbCr 420.

JPEG_DECODE_COLOR_SPACE_YCBCR411 Color Space YCbCr 411.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,334 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface

◆ jpeg_decode_count_enable_t

enum jpeg_decode_count_enable_t

Data type for decoding count mode enable.

Enumerator

JPEG_DECODE_COUNT_DISABLE Count mode disable.

JPEG_DECODE_COUNT_ENABLE Count mode enable.

◆ jpeg_decode_data_format_t

enum jpeg_decode_data_format_t

Multi-byte Data Format

Enumerator

JPEG_DECODE_DATA_FORMAT_NORMAL (1)(2)(3)(4)(5)(6)(7)(8) Normal byte order

JPEG_DECODE_DATA_FORMAT_BYTE_SWAP (2)(1)(4)(3)(6)(5)(8)(7) Byte Swap

JPEG_DECODE_DATA_FORMAT_WORD_SWAP (3)(4)(1)(2)(7)(8)(5)(6) Word Swap

JPEG_DECODE_DATA_FORMAT_WORD_BYTE_SWA
P

(4)(3)(2)(1)(8)(7)(6)(5) Word-Byte Swap

JPEG_DECODE_DATA_FORMAT_LONGWORD_SWA
P

(5)(6)(7)(8)(1)(2)(3)(4) Longword Swap

JPEG_DECODE_DATA_FORMAT_LONGWORD_BYTE
_SWAP

(6)(5)(8)(7)(2)(1)(4)(3) Longword Byte Swap

JPEG_DECODE_DATA_FORMAT_LONGWORD_WOR
D_SWAP

(7)(8)(5)(6)(3)(4)(1)(2) Longword Word Swap

JPEG_DECODE_DATA_FORMAT_LONGWORD_WOR
D_BYTE_SWAP

(8)(7)(6)(5)(4)(3)(2)(1) Longword Word Byte
Swap

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,335 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface

◆ jpeg_decode_pixel_format_t

enum jpeg_decode_pixel_format_t

Pixel Data Format

Enumerator

JPEG_DECODE_PIXEL_FORMAT_ARGB8888 Pixel Data ARGB8888 format.

JPEG_DECODE_PIXEL_FORMAT_RGB565 Pixel Data RGB565 format.

◆ jpeg_decode_resume_mode_t

enum jpeg_decode_resume_mode_t

Data type for decoding count mode enable.

Enumerator

JPEG_DECODE_COUNT_MODE_ADDRESS_CONTIN
UE

The data buffer address will not be initialized
when resuming image data lines.

JPEG_DECODE_COUNT_MODE_ADDRESS_REINITI
ALIZE

The data buffer address will be initialized when
resuming image data lines.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,336 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface

◆ jpeg_decode_status_t

enum jpeg_decode_status_t

JPEG HLD driver internal status information. The driver can simultaneously be in more than any one
status at the same time. Parse the status bit-fields using the definitions in this enum to determine
driver status

Enumerator

JPEG_DECODE_STATUS_FREE JPEG codec module is not yet open.

JPEG_DECODE_STATUS_IDLE JPEG Codec module is open, and is not
operational.

JPEG_DECODE_STATUS_RUNNING JPEG Codec is running.

JPEG_DECODE_STATUS_DONE JPEG Codec has successfully finished the
operation.

JPEG_DECODE_STATUS_INPUT_PAUSE JPEG Codec paused waiting for more input
data.

JPEG_DECODE_STATUS_OUTPUT_PAUSE JPEG Codec paused after decoded the number
of lines specified by user.

JPEG_DECODE_STATUS_IMAGE_SIZE_READY JPEG decoding operation obtained image size,
and paused.

JPEG_DECODE_STATUS_ERROR JPEG Codec module encountered an error.

JPEG_DECODE_STATUS_HEADER_PROCESSING JPEG Codec module is reading the JPEG header
information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,337 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface

◆ jpeg_decode_subsample_t

enum jpeg_decode_subsample_t

Data type for horizontal and vertical subsample settings. This setting applies only to the decoding
operation.

Enumerator

JPEG_DECODE_OUTPUT_NO_SUBSAMPLE No subsample. The image is decoded with no
reduction in size.

JPEG_DECODE_OUTPUT_SUBSAMPLE_HALF The output image size is reduced by half.

JPEG_DECODE_OUTPUT_SUBSAMPLE_ONE_QUAR
TER

The output image size is reduced to one-
quarter.

JPEG_DECODE_OUTPUT_SUBSAMPLE_ONE_EIGHT
H

The output image size is reduced to one-
eighth.

 jpeg_decode_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » JPEG Decode Interface

#include <r_jpeg_decode_api.h>

Data Fields

jpeg_decode_status_t status

 JPEG status.

void const * p_context

 Pointer to user-provided context.

Detailed Description

Callback status structure

The documentation for this struct was generated from the following file:

r_jpeg_decode_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,338 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface > jpeg_decode_callback_args_t Struct Reference

 jpeg_decode_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » JPEG Decode Interface

#include <r_jpeg_decode_api.h>

Data Fields

jpeg_decode_color_space_t color_space

 Color space.

jpeg_decode_data_format_t input_data_format

 Input data stream byte order.

jpeg_decode_data_format_t output_data_format

 Output data stream byte order.

jpeg_decode_pixel_format_t pixel_format

 Pixel format.

uint8_t alpha_value

 Alpha value to be applied to decoded pixel data. Only valid for
ARGB888 format.

uint8_t jdti_ipl

 Data transfer interrupt priority.

uint8_t jedi_ipl

 Decompression interrupt priority.

void(* p_callback)(jpeg_decode_callback_args_t *p_args)

 User-supplied callback functions.

void const * p_context

 Placeholder for user data. Passed to user callback in

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,339 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface > jpeg_decode_cfg_t Struct Reference

jpeg_decode_callback_args_t.

Detailed Description

User configuration structure, used in open function.

The documentation for this struct was generated from the following file:

r_jpeg_decode_api.h

 jpeg_decode_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » JPEG Decode Interface

#include <r_jpeg_decode_api.h>

Data Fields

ssp_err_t(* open)(jpeg_decode_ctrl_t *const p_ctrl, jpeg_decode_cfg_t const
*const p_cfg)

ssp_err_t(* outputBufferSet)(jpeg_decode_ctrl_t *const p_ctrl, void *p_buffer,
uint32_t buffer_size)

ssp_err_t(* horizontalStrideSet)(jpeg_decode_ctrl_t *const p_ctrl, uint32_t
horizontal_stride)

ssp_err_t(* imageSubsampleSet)(jpeg_decode_ctrl_t *const p_ctrl,
jpeg_decode_subsample_t horizontal_subsample,
jpeg_decode_subsample_t vertical_subsample)

ssp_err_t(* inputBufferSet)(jpeg_decode_ctrl_t *const p_ctrl, void *p_buffer,
uint32_t buffer_size)

ssp_err_t(* linesDecodedGet)(jpeg_decode_ctrl_t *const p_ctrl, uint32_t *const
p_lines)

ssp_err_t(* imageSizeGet)(jpeg_decode_ctrl_t *const p_ctrl, uint16_t
*p_horizontal_size, uint16_t *p_vertical_size)

ssp_err_t(* statusGet)(jpeg_decode_ctrl_t *const p_ctrl, jpeg_decode_status_t
*const p_status)

ssp_err_t(* close)(jpeg_decode_ctrl_t *const p_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,340 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface > jpeg_decode_api_t Struct Reference

ssp_err_t(* versionGet)(ssp_version_t *p_version)

ssp_err_t(* pixelFormatGet)(jpeg_decode_ctrl_t *const p_ctrl,
jpeg_decode_color_space_t *const p_color_space)

Detailed Description

JPEG functions implemented at the HAL layer will follow this API.

Field Documentation

◆ close

ssp_err_t(* jpeg_decode_api_t::close) (jpeg_decode_ctrl_t *const p_ctrl)

Cancel an outstanding operation.

Implemented as

R_JPEG_Decode_Close()
Precondition

the JPEG codec module must have been opened properly.
Note

If the encoding or the decoding operation is finished without errors, the HLD driver automatically closes the
device. In this case, application does not need to explicitly close the JPEG device.

Parameters
[in] p_ctrl Control block set in

jpeg_decode_api_t::Open
call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,341 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface > jpeg_decode_api_t Struct Reference

◆ horizontalStrideSet

ssp_err_t(* jpeg_decode_api_t::horizontalStrideSet) (jpeg_decode_ctrl_t *const p_ctrl, uint32_t
horizontal_stride)

Configure the horizontal stride value.

Implemented as

R_JPEG_Decode_HorizontalStrideSet()
Precondition

The JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_decode_api_t::open
call.

[in] horizontal_stride Horizontal stride value to be
used for the decoded image
data.

[in] buffer_size Size of the output buffer

◆ imageSizeGet

ssp_err_t(* jpeg_decode_api_t::imageSizeGet) (jpeg_decode_ctrl_t *const p_ctrl, uint16_t
*p_horizontal_size, uint16_t *p_vertical_size)

Retrieve image size during decoding operation.

Implemented as

R_JPEG_Decode_ImageSizeGet()
Precondition

the JPEG codec module must have been opened properly.
Note

If the encoding or the decoding operation is finished without errors, the HLD driver automatically closes the
device. In this case, application does not need to explicitly close the JPEG device.

Parameters
[in] p_ctrl Control block set in

jpeg_decode_api_t::open
call.

[out] p_horizontal_size Image horizontal size, in
number of pixels.

[out] p_vertical_size Image vertical size, in
number of pixels.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,342 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface > jpeg_decode_api_t Struct Reference

◆ imageSubsampleSet

ssp_err_t(* jpeg_decode_api_t::imageSubsampleSet) (jpeg_decode_ctrl_t *const p_ctrl,
jpeg_decode_subsample_t horizontal_subsample, jpeg_decode_subsample_t vertical_subsample)

Configure the horizontal and vertical subsample settings.

Implemented as

R_JPEG_Decode_ImageSubsampleSet()
Precondition

The JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_decode_api_t::open
call.

[in] horizontal_subsample Horizontal subsample value

[in] vertical_subsample Vertical subsample value

◆ inputBufferSet

ssp_err_t(* jpeg_decode_api_t::inputBufferSet) (jpeg_decode_ctrl_t *const p_ctrl, void *p_buffer,
uint32_t buffer_size)

Assign input data buffer to JPEG codec.

Implemented as

R_JPEG_Decode_InputBufferSet()
Precondition

the JPEG codec module must have been opened properly.
Note

The buffer starting address must be 8-byte aligned.
Parameters

[in] p_ctrl Control block set in
jpeg_decode_api_t::open
call.

[in] p_buffer Pointer to the input buffer
space

[in] buffer_size Size of the input buffer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,343 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface > jpeg_decode_api_t Struct Reference

◆ linesDecodedGet

ssp_err_t(* jpeg_decode_api_t::linesDecodedGet) (jpeg_decode_ctrl_t *const p_ctrl, uint32_t *const
p_lines)

Return the number of lines decoded into the output buffer.

Implemented as

R_JPEG_Decode_LinesDecodedGet()
Precondition

the JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_decode_api_t::open
call.

[out] p_lines Number of lines decoded

◆ open

ssp_err_t(* jpeg_decode_api_t::open) (jpeg_decode_ctrl_t *const p_ctrl, jpeg_decode_cfg_t const
*const p_cfg)

Initial configuration

Implemented as

R_JPEG_Decode_Open()
Precondition

none
Parameters

[in,out] p_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,344 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface > jpeg_decode_api_t Struct Reference

◆ outputBufferSet

ssp_err_t(* jpeg_decode_api_t::outputBufferSet) (jpeg_decode_ctrl_t *const p_ctrl, void *p_buffer,
uint32_t buffer_size)

Assign output buffer to JPEG codec for storing output data.

Implemented as

R_JPEG_Decode_OutputBufferSet()
Precondition

The JPEG codec module must have been opened properly.
Note

The buffer starting address must be 8-byte aligned. For the decoding process, the HLD driver automatically
computes the number of lines of the image to decoded so the output data fits into the given space. If the supplied
output buffer is not able to hold the entire frame, the application should call the Output Full Callback function so it
can be notified when additional buffer space is needed.

Parameters
[in] p_ctrl Control block set in

jpeg_decode_api_t::open
call.

[in] p_buffer Pointer to the output buffer
space

[in] buffer_size Size of the output buffer

◆ pixelFormatGet

ssp_err_t(* jpeg_decode_api_t::pixelFormatGet) (jpeg_decode_ctrl_t *const p_ctrl,
jpeg_decode_color_space_t *const p_color_space)

Get the input pixel format.

Implemented as

R_JPEG_Decode_PixelFormatGet()
Precondition

the JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_decode_api_t::open
call.

[out] p_color_space JPEG input format.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,345 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface > jpeg_decode_api_t Struct Reference

◆ statusGet

ssp_err_t(* jpeg_decode_api_t::statusGet) (jpeg_decode_ctrl_t *const p_ctrl, jpeg_decode_status_t
*const p_status)

Retrieve current status of the JPEG codec module.

Implemented as

R_JPEG_Decode_StatusGet()
Precondition

the JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_decode_api_t::open
call.

[out] p_status JPEG module status

◆ versionGet

ssp_err_t(* jpeg_decode_api_t::versionGet) (ssp_version_t *p_version)

Get version and store it in provided pointer p_version.

Implemented as

R_JPEG_Decode_VersionGet()
Parameters

[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_jpeg_decode_api.h

 jpeg_decode_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » JPEG Decode Interface

#include <r_jpeg_decode_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,346 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Decode Interface > jpeg_decode_instance_t Struct Reference

jpeg_decode_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

jpeg_decode_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

jpeg_decode_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_jpeg_decode_api.h

5.1.4.22 JPEG Encode Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for JPEG encode functions. More...

Data Structures

struct jpeg_encode_raw_image_parameters

struct jpeg_encode_callback_args_t

struct jpeg_encode_cfg_t

struct jpeg_encode_api_t

struct jpeg_encode_instance_t

Macros

#define JPEG_ENCODE_API_VERSION_MAJOR (2U)

Typedefs

typedef void jpeg_encode_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,347 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Encode Interface

Enumerations

enum jpeg_encode_data_format_t {
 JPEG_ENCODE_DATA_FORMAT_NORMAL = 0,
JPEG_ENCODE_DATA_FORMAT_BYTE_SWAP,
JPEG_ENCODE_DATA_FORMAT_WORD_SWAP,
JPEG_ENCODE_DATA_FORMAT_WORD_BYTE_SWAP,
 JPEG_ENCODE_DATA_FORMAT_LONGWORD_SWAP,
JPEG_ENCODE_DATA_FORMAT_LONGWORD_BYTE_SWAP,
JPEG_ENCODE_DATA_FORMAT_LONGWORD_WORD_SWAP,
JPEG_ENCODE_DATA_FORMAT_LONGWORD_WORD_BYTE_SWAP,
 JPEG_ENCODE_DATA_FORMAT_MAX
}

enum jpeg_encode_status_t {
 JPEG_ENCODE_STATUS_FREE = 0x0, JPEG_ENCODE_STATUS_IDLE =
0x1, JPEG_ENCODE_STATUS_RUNNING = 0x2,
JPEG_ENCODE_STATUS_DONE = 0x4,
 JPEG_ENCODE_STATUS_INPUT_PAUSE = 0x8
}

enum jpeg_encode_count_t { JPEG_ENCODE_COUNT_DISABLE = 0,
JPEG_ENCODE_COUNT_ENABLE }

enum jpeg_encode_resume_mode_t {
JPEG_ENCODE_COUNT_MODE_ADDRESS_CONTINUE = 0,
JPEG_ENCODE_COUNT_MODE_ADDRESS_REINITIALIZE }

Detailed Description

Interface for JPEG encode functions.

Summary
The JPEG ENCODE interface provides JPEG encoder functionality. It allows application to convert a
JPEG image into bitmap data suitable for display frame buffer.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

JPEG ENCODE Interface description: JPEG Encode Driver

Macro Definition Documentation

◆ JPEG_ENCODE_API_VERSION_MAJOR

#define JPEG_ENCODE_API_VERSION_MAJOR (2U)

Register definitions, common services and error codes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,348 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Encode Interface

Typedef Documentation

◆ jpeg_encode_ctrl_t

typedef void jpeg_encode_ctrl_t

JPEG encode control block. Allocate an instance specific control block to pass into the JPEG encode
API calls.

Implemented as

jpeg_encode_instance_ctrl_t

Enumeration Type Documentation

◆ jpeg_encode_count_t

enum jpeg_encode_count_t

Data type for encoding count mode enable.

Enumerator

JPEG_ENCODE_COUNT_DISABLE Count mode disable.

JPEG_ENCODE_COUNT_ENABLE Count mode enable.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,349 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Encode Interface

◆ jpeg_encode_data_format_t

enum jpeg_encode_data_format_t

Multi-byte Data Format

Enumerator

JPEG_ENCODE_DATA_FORMAT_NORMAL (1)(2)(3)(4)(5)(6)(7)(8) Normal byte order

JPEG_ENCODE_DATA_FORMAT_BYTE_SWAP (2)(1)(4)(3)(6)(5)(8)(7) Byte Swap

JPEG_ENCODE_DATA_FORMAT_WORD_SWAP (3)(4)(1)(2)(7)(8)(5)(6) Word Swap

JPEG_ENCODE_DATA_FORMAT_WORD_BYTE_SWA
P

(4)(3)(2)(1)(8)(7)(6)(5) Word-Byte Swap

JPEG_ENCODE_DATA_FORMAT_LONGWORD_SWA
P

(5)(6)(7)(8)(1)(2)(3)(4) Longword Swap

JPEG_ENCODE_DATA_FORMAT_LONGWORD_BYTE
_SWAP

(6)(5)(8)(7)(2)(1)(4)(3) Longword Byte Swap

JPEG_ENCODE_DATA_FORMAT_LONGWORD_WOR
D_SWAP

(7)(8)(5)(6)(3)(4)(1)(2) Longword Word Swap

JPEG_ENCODE_DATA_FORMAT_LONGWORD_WOR
D_BYTE_SWAP

(8)(7)(6)(5)(4)(3)(2)(1) Longword Word Byte
Swap

JPEG_ENCODE_DATA_FORMAT_MAX Maximum value of data format.

◆ jpeg_encode_resume_mode_t

enum jpeg_encode_resume_mode_t

Data type for encoding resume mode

Enumerator

JPEG_ENCODE_COUNT_MODE_ADDRESS_CONTIN
UE

The data buffer address will not be initialized
when resuming image data lines.

JPEG_ENCODE_COUNT_MODE_ADDRESS_REINITI
ALIZE

The data buffer address will be initialized when
resuming image data lines.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,350 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Encode Interface

◆ jpeg_encode_status_t

enum jpeg_encode_status_t

JPEG HLD driver internal status information. The driver can simultaneously be in more than any one
status at the same time. Parse the status bit-fields using the definitions in this enum to determine
driver status

Enumerator

JPEG_ENCODE_STATUS_FREE JPEG codec module is not yet open.

JPEG_ENCODE_STATUS_IDLE JPEG Codec module is open, and is not
operational.

JPEG_ENCODE_STATUS_RUNNING JPEG Codec is running.

JPEG_ENCODE_STATUS_DONE JPEG Codec has successfully finished the
operation.

JPEG_ENCODE_STATUS_INPUT_PAUSE JPEG Codec paused waiting for more input
data.

 jpeg_encode_raw_image_parameters Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » JPEG Encode Interface

#include <r_jpeg_encode_api.h>

Data Fields

uint16_t horizontal_stride

 Horizontal stride.

uint16_t horizontal_resolution

 Horizontal Resolution in pixel.

uint16_t vertical_resolution

 Vertical Resolution in pixel.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,351 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Encode Interface > jpeg_encode_raw_image_parameters Struct Reference

Image parameter structure

The documentation for this struct was generated from the following file:

r_jpeg_encode_api.h

 jpeg_encode_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » JPEG Encode Interface

#include <r_jpeg_encode_api.h>

Data Fields

volatile
jpeg_encode_status_t

status

 JPEG status.

uint32_t image_size

 JPEG image size.

void const * p_context

 Pointer to user-provided context.

Detailed Description

Callback status structure

The documentation for this struct was generated from the following file:

r_jpeg_encode_api.h

 jpeg_encode_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » JPEG Encode Interface

#include <r_jpeg_encode_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,352 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Encode Interface > jpeg_encode_cfg_t Struct Reference

Data Fields

jpeg_encode_data_format_t input_data_format

 Input data stream byte order.

jpeg_encode_data_format_t output_data_format

 Output data stream byte order.

uint16_t dri_marker

 DRI Marker setting 0 :- No DRI and RST marker.

uint8_t jdti_ipl

 Data transfer interrupt priority.

uint8_t jedi_ipl

 Decompression interrupt priority.

uint8_t quality_factor

 JPEG image quality.

uint16_t vertical_resolution

 vertical resolution of input image

uint16_t horizontal_resolution

 horizontal resolution of input image

uint8_t const * p_quant_luma_table

 Luma table.

uint8_t const * p_quant_croma_table

 croma table

uint8_t const * p_huffman_luma_ac_table

 Huffman AC table for luma.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,353 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Encode Interface > jpeg_encode_cfg_t Struct Reference

uint8_t const * p_huffman_luma_dc_table

 Huffman DC table for luma.

uint8_t const * p_huffman_croma_ac_table

 Huffman AC table for croma.

uint8_t const * p_huffman_croma_dc_table

 Huffman DC table for croma.

void(* p_callback)(jpeg_encode_callback_args_t *p_args)

 User-supplied callback functions.

void const * p_context

 Placeholder for user data. Passed to user callback in
jpeg_encode_callback_args_t.

Detailed Description

User configuration structure, used in open function.

The documentation for this struct was generated from the following file:

r_jpeg_encode_api.h

 jpeg_encode_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » JPEG Encode Interface

#include <r_jpeg_encode_api.h>

Data Fields

ssp_err_t(* open)(jpeg_encode_ctrl_t *const p_ctrl, jpeg_encode_cfg_t const
*const p_cfg)

ssp_err_t(* imageParameterSet)(jpeg_encode_ctrl_t *const p_ctrl,
jpeg_encode_raw_image_parameters *p_raw_image_parameters)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,354 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Encode Interface > jpeg_encode_api_t Struct Reference

ssp_err_t(* outputBufferSet)(jpeg_encode_ctrl_t *const p_ctrl, void *p_buffer)

ssp_err_t(* inputBufferSet)(jpeg_encode_ctrl_t *const p_ctrl, void *p_buffer,
uint32_t buffer_size)

ssp_err_t(* statusGet)(jpeg_encode_ctrl_t *const p_ctrl, volatile
jpeg_encode_status_t *p_status)

ssp_err_t(* close)(jpeg_encode_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *p_version)

Detailed Description

JPEG functions implemented at the HAL layer will follow this API.

Field Documentation

◆ close

ssp_err_t(* jpeg_encode_api_t::close) (jpeg_encode_ctrl_t *const p_ctrl)

Cancel an outstanding operation.

Implemented as

R_JPEG_Encode_Close()
Precondition

the JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_encode_api_t::Open
call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,355 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Encode Interface > jpeg_encode_api_t Struct Reference

◆ imageParameterSet

ssp_err_t(* jpeg_encode_api_t::imageParameterSet) (jpeg_encode_ctrl_t *const p_ctrl,
jpeg_encode_raw_image_parameters *p_raw_image_parameters)

Set image parameters to JPEG Codec

Implemented as

R_JPEG_Encode_ImageParameterSet()
Precondition

The JPEG codec module must have been opened properly.
Parameters

[in,out] p_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_raw_image_parameters Pointer to the RAW image
parameters

◆ inputBufferSet

ssp_err_t(* jpeg_encode_api_t::inputBufferSet) (jpeg_encode_ctrl_t *const p_ctrl, void *p_buffer,
uint32_t buffer_size)

Assign input data buffer to JPEG codec.

Implemented as

R_JPEG_Encode_InputBufferSet()
Precondition

the JPEG codec module must have been opened properly, output buffer and image
parameter must be set prior to call this function.

Note
The buffer starting address must be 8-byte aligned.

Parameters
[in] p_ctrl Control block set in

jpeg_encode_api_t::open
call.

[in] p_buffer Pointer to the input buffer
space

[in] buffer_size Size of the input buffer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,356 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Encode Interface > jpeg_encode_api_t Struct Reference

◆ open

ssp_err_t(* jpeg_encode_api_t::open) (jpeg_encode_ctrl_t *const p_ctrl, jpeg_encode_cfg_t const
*const p_cfg)

Initial configuration

Implemented as

R_JPEG_Encode_Open()
Precondition

none
Parameters

[in,out] p_ctrl Pointer to control block.
Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ outputBufferSet

ssp_err_t(* jpeg_encode_api_t::outputBufferSet) (jpeg_encode_ctrl_t *const p_ctrl, void *p_buffer)

Assign output buffer to JPEG codec for storing output data.

Implemented as

R_JPEG_Encode_OutputBufferSet()
Precondition

The JPEG codec module must have been opened properly.
Note

The buffer starting address must be 8-byte aligned.
Parameters

[in] p_ctrl Control block set in
jpeg_encode_api_t::open
call.

[in] p_buffer Pointer to the output buffer
space

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,357 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Encode Interface > jpeg_encode_api_t Struct Reference

◆ statusGet

ssp_err_t(* jpeg_encode_api_t::statusGet) (jpeg_encode_ctrl_t *const p_ctrl, volatile
jpeg_encode_status_t *p_status)

Retrieve current status of the JPEG codec module.

Implemented as

R_JPEG_Encode_StatusGet()
Precondition

the JPEG codec module must have been opened properly.
Parameters

[in] p_ctrl Control block set in
jpeg_encode_api_t::open
call.

[out] p_status JPEG module status

◆ versionGet

ssp_err_t(* jpeg_encode_api_t::versionGet) (ssp_version_t *p_version)

Get version and store it in provided pointer p_version.

Implemented as

R_JPEG_Encode_VersionGet()
Parameters

[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_jpeg_encode_api.h

 jpeg_encode_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » JPEG Encode Interface

#include <r_jpeg_encode_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,358 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > JPEG Encode Interface > jpeg_encode_instance_t Struct Reference

jpeg_encode_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

jpeg_encode_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

jpeg_encode_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_jpeg_encode_api.h

5.1.4.23 Key Matrix Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for key matrix functions. More...

Data Structures

struct keymatrix_callback_args_t

struct keymatrix_cfg_t

struct keymatrix_api_t

struct keymatrix_instance_t

Macros

#define KEYMATRIX_API_VERSION_MAJOR (2U)

 KEY MATRIX API version number (Major)

#define KEYMATRIX_API_VERSION_MINOR (0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,359 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Key Matrix Interface

 KEY MATRIX API version number (Minor)

Typedefs

typedef uint32_t keymatrix_channels_t

typedef void keymatrix_ctrl_t

Enumerations

enum keymatrix_trigger_t { KEYMATRIX_TRIG_FALLING = 0,
KEYMATRIX_TRIG_RISING = 1 }

Detailed Description

Interface for key matrix functions.

Summary
The KEYMATRIX interface provides standard KeyMatrix functionality including event generation on a
rising or falling edge for one or more channels at the same time. The generated event indicates all
channels that are active in that instant via a bit mask. This allows the interface to be used with a
matrix configuration or a one-to-one hardware implementation that is triggered on either a rising or
a falling edge.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Key Matrix Interface description: Key Matrix Driver

Typedef Documentation

◆ keymatrix_channels_t

typedef uint32_t keymatrix_channels_t

Channel definition. This is a bit mask with each bit from 0-7 representing channels 0-7
respectively.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,360 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Key Matrix Interface

◆ keymatrix_ctrl_t

typedef void keymatrix_ctrl_t

Key matrix control block. Allocate an instance specific control block to pass into the key matrix API
calls.

Implemented as

kint_instance_ctrl_t

Enumeration Type Documentation

◆ keymatrix_trigger_t

enum keymatrix_trigger_t

Trigger type: rising edge, falling edge

Enumerator

KEYMATRIX_TRIG_FALLING Falling edge trigger.

KEYMATRIX_TRIG_RISING Rising edge trigger.

 keymatrix_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Key Matrix Interface

#include <r_keymatrix_api.h>

Data Fields

void const * p_context

 Holder for user data. Set in keymatrix_api_t::open function in
keymatrix_cfg_t.

keymatrix_channels_t channels

Detailed Description

Callback function parameter data

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,361 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Key Matrix Interface > keymatrix_callback_args_t Struct Reference

Field Documentation

◆ channels

keymatrix_channels_t keymatrix_callback_args_t::channels

Bit vector representing the physical hardware channel(s) that caused the interrupt. The bit vector is
used for compatibility with matrix designs where more than one input will be active at once.

Note
Not all HAL drivers support matrix mode. See r_kint.h for details.

The documentation for this struct was generated from the following file:

r_keymatrix_api.h

 keymatrix_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Key Matrix Interface

#include <r_keymatrix_api.h>

Data Fields

keymatrix_channels_t channels

 Key Input channel(s). Bit mask of channels to open.

keymatrix_trigger_t trigger

 Key Input trigger setting.

bool autostart

 Start operation and enable interrupts during open().

void(* p_callback)(keymatrix_callback_args_t *p_args)

 Callback for key interrupt ISR.

void const * p_context

 Holder for user data. Passed to callback in keymatrix_user_cb_data_t.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,362 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Key Matrix Interface > keymatrix_cfg_t Struct Reference

void const * p_extend

 Extension parameter for hardware specific settings.

uint8_t irq_ipl

 Interrupt priority level.

Detailed Description

User configuration structure, used in open function

The documentation for this struct was generated from the following file:

r_keymatrix_api.h

 keymatrix_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Key Matrix Interface

#include <r_keymatrix_api.h>

Data Fields

ssp_err_t(* open)(keymatrix_ctrl_t *const p_ctrl, keymatrix_cfg_t const *const
p_cfg)

ssp_err_t(* enable)(keymatrix_ctrl_t *const p_ctrl)

ssp_err_t(* disable)(keymatrix_ctrl_t *const p_ctrl)

ssp_err_t(* triggerSet)(keymatrix_ctrl_t *const p_ctrl, keymatrix_trigger_t const
trigger)

ssp_err_t(* close)(keymatrix_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Key Matrix driver structure. Key Matrix functions implemented at the HAL layer will use this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,363 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Key Matrix Interface > keymatrix_api_t Struct Reference

◆ close

ssp_err_t(* keymatrix_api_t::close) (keymatrix_ctrl_t *const p_ctrl)

Allow driver to be reconfigured. May reduce power consumption.

Implemented as

R_KINT_KEYMATRIX_Close()
Parameters

[in] p_ctrl Control block pointer set in
Open call for this Key
interrupt.

◆ disable

ssp_err_t(* keymatrix_api_t::disable) (keymatrix_ctrl_t *const p_ctrl)

Disable Key interrupt.

Implemented as

R_KINT_KEYMATRIX_Disable()
Parameters

[in] p_ctrl Control block pointer set in
Open call for this Key
interrupt.

◆ enable

ssp_err_t(* keymatrix_api_t::enable) (keymatrix_ctrl_t *const p_ctrl)

Enable Key interrupt

Implemented as

R_KINT_KEYMATRIX_Enable()
Parameters

[in] p_ctrl Control block pointer set in
Open call for this Key
interrupt.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,364 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Key Matrix Interface > keymatrix_api_t Struct Reference

◆ open

ssp_err_t(* keymatrix_api_t::open) (keymatrix_ctrl_t *const p_ctrl, keymatrix_cfg_t const *const
p_cfg)

Initial configuration.

Implemented as

R_KINT_KEYMATRIX_Open()
Parameters

[out] p_ctrl Pointer to control block.
Must be declared by user.
Value set in this function.

[in] p_cfg Pointer to configuration
structure. All elements of the
structure must be set by
user.

◆ triggerSet

ssp_err_t(* keymatrix_api_t::triggerSet) (keymatrix_ctrl_t *const p_ctrl, keymatrix_trigger_t const
trigger)

Set trigger for Key interrupt.

Implemented as

R_KINT_KEYMATRIX_TriggerSet()
Parameters

[in] p_ctrl Control block pointer set in
Open call for this Key
interrupt.

[in] trigger Trigger source for key
interrupt; defined in
enumeration of
keymatrix_trigger_t.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,365 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Key Matrix Interface > keymatrix_api_t Struct Reference

◆ versionGet

ssp_err_t(* keymatrix_api_t::versionGet) (ssp_version_t *const p_version)

Get version and store it in provided pointer p_version.

Implemented as

R_KINT_VersionGet()
Parameters

[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_keymatrix_api.h

 keymatrix_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Key Matrix Interface

#include <r_keymatrix_api.h>

Data Fields

keymatrix_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

keymatrix_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

keymatrix_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,366 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Key Matrix Interface > keymatrix_instance_t Struct Reference

The documentation for this struct was generated from the following file:

r_keymatrix_api.h

5.1.4.24 Low Power Modes V2 Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for accessing low power modes. More...

Data Structures

struct lpmv2_cfg_t

struct lpmv2_api_t

struct lpmv2_instance_t

Macros

#define LPMV2_API_VERSION_MAJOR (3U)

Enumerations

enum lpmv2_low_power_mode_t { LPMV2_LOW_POWER_MODE_SLEEP,
LPMV2_LOW_POWER_MODE_STANDBY,
LPMV2_LOW_POWER_MODE_STANDBY_SNOOZE,
LPMV2_LOW_POWER_MODE_DEEP }

Detailed Description

Interface for accessing low power modes.

Summary
This section defines the API for the LPMV2 (Low Power Mode) Driver. The LPMV2 Driver provides
functions for controlling power consumption by configuring and transitioning to a low power mode.
The LPMV2 driver supports configuration of MCU low power modes using the LPMV2 hardware
peripheral. The LPMV2 driver supports low power modes deep standby, standby, sleep, and snooze.

Note
Not all low power modes are available on all MCUs.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,367 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Power Modes V2 Interface

LPMV2 Interface description: HAL LPMV2 Interface

Macro Definition Documentation

◆ LPMV2_API_VERSION_MAJOR

#define LPMV2_API_VERSION_MAJOR (3U)

Register definitions, common services and error codes.

Enumeration Type Documentation

◆ lpmv2_low_power_mode_t

enum lpmv2_low_power_mode_t

Low power modes

Enumerator

LPMV2_LOW_POWER_MODE_SLEEP Sleep mode.

LPMV2_LOW_POWER_MODE_STANDBY Software Standby mode.

LPMV2_LOW_POWER_MODE_STANDBY_SNOOZE Software Standby mode with Snooze mode
enabled.

LPMV2_LOW_POWER_MODE_DEEP Deep Software Standby mode.

 lpmv2_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Low Power Modes V2 Interface

#include <r_lpmv2_api.h>

Data Fields

lpmv2_low_power_mode_t low_power_mode

void const * p_extend

Detailed Description

User configuration structure, used in open function

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,368 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Power Modes V2 Interface > lpmv2_cfg_t Struct Reference

◆ low_power_mode

lpmv2_low_power_mode_t lpmv2_cfg_t::low_power_mode

Low Power Mode

◆ p_extend

void const* lpmv2_cfg_t::p_extend

MCU Specific configuration

The documentation for this struct was generated from the following file:

r_lpmv2_api.h

 lpmv2_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Low Power Modes V2 Interface

#include <r_lpmv2_api.h>

Data Fields

ssp_err_t(* init)(void)

ssp_err_t(* lowPowerCfg)(lpmv2_cfg_t const *const p_cfg)

ssp_err_t(* lowPowerModeEnter)(void)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

ssp_err_t(* clearIOKeep)(void)

Detailed Description

lpmv2 driver structure. General lpmv2 functions implemented at the HAL layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,369 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Power Modes V2 Interface > lpmv2_api_t Struct Reference

◆ clearIOKeep

ssp_err_t(* lpmv2_api_t::clearIOKeep) (void)

Clear the IOKEEP bit after deep software standby.

Implemented as

R_LPMV2_ClearIOKeep()

◆ init

ssp_err_t(* lpmv2_api_t::init) (void)

Initialization function

Implemented as

R_LPMV2_Init()

◆ lowPowerCfg

ssp_err_t(* lpmv2_api_t::lowPowerCfg) (lpmv2_cfg_t const *const p_cfg)

Configure a low power mode.

Implemented as

R_LPMV2_LowPowerConfigure()
Parameters

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ lowPowerModeEnter

ssp_err_t(* lpmv2_api_t::lowPowerModeEnter) (void)

Enter low power mode (sleep/standby/deep standby) using WFI macro. Function will return after
waking from low power mode.

Implemented as

R_LPMV2_LowPowerModeEnter()

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,370 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Power Modes V2 Interface > lpmv2_api_t Struct Reference

◆ versionGet

ssp_err_t(* lpmv2_api_t::versionGet) (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Implemented as

R_LPMV2_VersionGet()
Parameters

[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_lpmv2_api.h

 lpmv2_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Low Power Modes V2 Interface

#include <r_lpmv2_api.h>

Data Fields

lpmv2_cfg_t const *const p_cfg

 Pointer to the configuration structure for this instance.

lpmv2_api_t const *const p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_lpmv2_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,371 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Voltage Detection Interface

5.1.4.25 Low Voltage Detection Interface
Renesas Synergy Software Package Reference » HAL Interfaces

This section defines the API for the LVD (Low Voltage Detection) Driver. More...

Data Structures

struct lvd_status_t

struct lvd_callback_args_t

struct lvd_cfg_t

struct lvd_api_t

struct lvd_instance_t

Macros

#define LVD_API_VERSION_MAJOR (2U)

Typedefs

typedef void lvd_ctrl_t

Enumerations

enum lvd_threshold_t {
 LVD_THRESHOLD_MONITOR_1_LEVEL_0 = 0x0UL,
LVD_THRESHOLD_MONITOR_1_LEVEL_1 = 0x1UL,
LVD_THRESHOLD_MONITOR_1_LEVEL_2 = 0x2UL,
LVD_THRESHOLD_MONITOR_1_LEVEL_3 = 0x3UL,
 LVD_THRESHOLD_MONITOR_1_LEVEL_4 = 0x4UL,
LVD_THRESHOLD_MONITOR_1_LEVEL_5 = 0x5UL,
LVD_THRESHOLD_MONITOR_1_LEVEL_6 = 0x6UL,
LVD_THRESHOLD_MONITOR_1_LEVEL_7 = 0x7UL,
 LVD_THRESHOLD_MONITOR_1_LEVEL_8 = 0x8UL,
LVD_THRESHOLD_MONITOR_1_LEVEL_9 = 0x9UL,
LVD_THRESHOLD_MONITOR_1_LEVEL_A = 0xAUL,
LVD_THRESHOLD_MONITOR_1_LEVEL_B = 0xBUL,
 LVD_THRESHOLD_MONITOR_1_LEVEL_C = 0xCUL,
LVD_THRESHOLD_MONITOR_1_LEVEL_D = 0xDUL,
LVD_THRESHOLD_MONITOR_1_LEVEL_E = 0xEUL,
LVD_THRESHOLD_MONITOR_1_LEVEL_F = 0xFUL,
 LVD_THRESHOLD_MONITOR_1_LEVEL_11 = 0x11UL,
LVD_THRESHOLD_MONITOR_1_LEVEL_12 = 0x12UL,
LVD_THRESHOLD_MONITOR_1_LEVEL_13 = 0x13UL,
LVD_THRESHOLD_MONITOR_2_LEVEL_0 = 0x0UL,
 LVD_THRESHOLD_MONITOR_2_LEVEL_1 = 0x1UL,
LVD_THRESHOLD_MONITOR_2_LEVEL_2 = 0x2UL,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,372 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Voltage Detection Interface

LVD_THRESHOLD_MONITOR_2_LEVEL_3 = 0x3UL,
LVD_THRESHOLD_MONITOR_2_LEVEL_5 = 0x5UL,
 LVD_THRESHOLD_MONITOR_2_LEVEL_6 = 0x6UL,
LVD_THRESHOLD_MONITOR_2_LEVEL_7 = 0x7UL
}

enum lvd_response_t { LVD_RESPONSE_NMI, LVD_RESPONSE_INTERRUPT,
LVD_RESPONSE_RESET, LVD_RESPONSE_NONE }

enum lvd_voltage_slope_t { LVD_VOLTAGE_SLOPE_RISING = 0,
LVD_VOLTAGE_SLOPE_FALLING = 1, LVD_VOLTAGE_SLOPE_BOTH = 2
}

enum lvd_threshold_crossing_t {
LVD_THRESHOLD_CROSSING_NOT_DETECTED = 0,
LVD_THRESHOLD_CROSSING_DETECTED = 1 }

enum lvd_current_state_t { LVD_CURRENT_STATE_BELOW_THRESHOLD =
0, LVD_CURRENT_STATE_ABOVE_THRESHOLD = 1 }

Detailed Description

This section defines the API for the LVD (Low Voltage Detection) Driver.

The LVD driver provides functions for configuring the LVD hardware peripheral.

The process of configuring and enabling a Low Voltage Detection monitor has very specific timing
constraints and register write ordering. Because of these constraints, the entire process of
configuring and enabling a voltage monitor is most effectively performed by a single function. The
API function configure performs configuration and enables the monitor in order to properly enforce
the timing and register write ordering constraints.

The LVD driver configures all of the settings of the available configurable LVD monitors.

The settings include:

voltage_threshold: Determines the voltage detection threshold (i.e. 2.99 Volts).
sample_clock_divisor: Determines the sample clock rate of the digital filter, based on
division of the LOCO clock. Also disables or enables the digital filter if available on the MCU.
detection_response: Determines which event will occur, reset, interrupt, non-maskable
interrupt, or no response, when the voltage threshold is crossed
voltage_slope: Choose either rising or falling voltage as the trigger for a voltage detection
interrupt.
negation_delay: Determine whether timing of the negation of the voltage event is based
upon the reset event or based on the voltage event itself.
p_callback: Address of user defined function to be called when the voltage event interrupt
occurs.

Note
Low Voltage Monitor 0 (LVD0) is not configurable at runtime but can be configured by changing the OFS1 register
value on the BSP Properties tab of the Synergy Project Configurator in the e2 studio ISDE.
Digital filter is not to be used with standby modes. If software standby or deep standby mode is to be used, the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,373 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Voltage Detection Interface

digital filter should be disabled.

For details about the implementation of the driver functions see section LVD.

Macro Definition Documentation

◆ LVD_API_VERSION_MAJOR

#define LVD_API_VERSION_MAJOR (2U)

Register definitions, common services and error codes.

Typedef Documentation

◆ lvd_ctrl_t

typedef void lvd_ctrl_t

LVD control block. Allocate an instance specific control block to pass into the LVD API calls.

Implemented as

lvd_instance_ctrl_t

Enumeration Type Documentation

◆ lvd_current_state_t

enum lvd_current_state_t

Instantaneous status of VCC (above or below threshold)

Enumerator

LVD_CURRENT_STATE_BELOW_THRESHOLD VCC < threshold.

LVD_CURRENT_STATE_ABOVE_THRESHOLD VCC >= threshold or monitor is disabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,374 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Voltage Detection Interface

◆ lvd_response_t

enum lvd_response_t

Response types to a threshold crossing event, interrupt, reset, NMI...

Enumerator

LVD_RESPONSE_NMI Non-maskable interrupt.

LVD_RESPONSE_INTERRUPT Maskable interrupt.

LVD_RESPONSE_RESET Reset.

LVD_RESPONSE_NONE No response, status must be requested via
statusGet function.

◆ lvd_threshold_crossing_t

enum lvd_threshold_crossing_t

Threshold crossing detection (latched)

Enumerator

LVD_THRESHOLD_CROSSING_NOT_DETECTED Threshold crossing has not been detected.

LVD_THRESHOLD_CROSSING_DETECTED Threshold crossing has been detected.

◆ lvd_threshold_t

enum lvd_threshold_t

Voltage detection level The thresholds supported by each MCU is in the MCU User's Manual as well
as in the r_lvd module description on the threads tab of the Synergy project.

Enumerator

LVD_THRESHOLD_MONITOR_1_LEVEL_0 4.29V (Vdet1_0)

LVD_THRESHOLD_MONITOR_1_LEVEL_1 4.14V (Vdet1_1)

LVD_THRESHOLD_MONITOR_1_LEVEL_2 4.02V (Vdet1_2)

LVD_THRESHOLD_MONITOR_1_LEVEL_3 3.84V (Vdet1_3)

LVD_THRESHOLD_MONITOR_1_LEVEL_4 3.10V (Vdet1_4)

LVD_THRESHOLD_MONITOR_1_LEVEL_5 3.00V (Vdet1_5)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,375 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Voltage Detection Interface

LVD_THRESHOLD_MONITOR_1_LEVEL_6 2.90V (Vdet1_6)

LVD_THRESHOLD_MONITOR_1_LEVEL_7 2.79V (Vdet1_7)

LVD_THRESHOLD_MONITOR_1_LEVEL_8 2.68V (Vdet1_8)

LVD_THRESHOLD_MONITOR_1_LEVEL_9 2.58V (Vdet1_9)

LVD_THRESHOLD_MONITOR_1_LEVEL_A 2.48V (Vdet1_A)

LVD_THRESHOLD_MONITOR_1_LEVEL_B 2.20V (Vdet1_B)

LVD_THRESHOLD_MONITOR_1_LEVEL_C 1.96V (Vdet1_C)

LVD_THRESHOLD_MONITOR_1_LEVEL_D 1.86V (Vdet1_D)

LVD_THRESHOLD_MONITOR_1_LEVEL_E 1.75V (Vdet1_E)

LVD_THRESHOLD_MONITOR_1_LEVEL_F 1.65V (Vdet1_F)

LVD_THRESHOLD_MONITOR_1_LEVEL_11 2.99V (Vdet1_11)

LVD_THRESHOLD_MONITOR_1_LEVEL_12 2.92V (Vdet1_12)

LVD_THRESHOLD_MONITOR_1_LEVEL_13 2.85V (Vdet1_13)

LVD_THRESHOLD_MONITOR_2_LEVEL_0 4.29V (Vdet2_0)

LVD_THRESHOLD_MONITOR_2_LEVEL_1 4.14V (Vdet2_1)

LVD_THRESHOLD_MONITOR_2_LEVEL_2 4.02V (Vdet2_2)

LVD_THRESHOLD_MONITOR_2_LEVEL_3 3.84V (Vdet2_3)

LVD_THRESHOLD_MONITOR_2_LEVEL_5 2.99V (Vdet2_5)

LVD_THRESHOLD_MONITOR_2_LEVEL_6 2.92V (Vdet2_6)

LVD_THRESHOLD_MONITOR_2_LEVEL_7 2.85V (Vdet2_7)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,376 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Voltage Detection Interface

◆ lvd_voltage_slope_t

enum lvd_voltage_slope_t

Voltage slope, rising, falling, or both

Enumerator

LVD_VOLTAGE_SLOPE_RISING When VCC >= Vdet2 (rise) is detected.

LVD_VOLTAGE_SLOPE_FALLING When VCC < Vdet2 (drop) is detected.

LVD_VOLTAGE_SLOPE_BOTH When drop and rise are detected.

 lvd_status_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Low Voltage Detection Interface

#include <r_lvd_api.h>

Data Fields

lvd_threshold_crossing_t crossing_detected

lvd_current_state_t current_state

Detailed Description

Voltage monitor status structure, used with statusGet function and p_callback to provide current
state of the monitor, (threshold crossing detected, vcc currently within range).

Field Documentation

◆ crossing_detected

lvd_threshold_crossing_t lvd_status_t::crossing_detected

Threshold crossing detection (latched)

◆ current_state

lvd_current_state_t lvd_status_t::current_state

Instantaneous status of monitored voltage (above or below threshold)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,377 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Voltage Detection Interface > lvd_status_t Struct Reference

The documentation for this struct was generated from the following file:

r_lvd_api.h

 lvd_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Low Voltage Detection Interface

#include <r_lvd_api.h>

Data Fields

uint32_t monitor_number

 Monitor number.

lvd_status_t status

 Status of monitor.

void const * p_context

 Placeholder for user data.

Detailed Description

LVD callback parameter definition

The documentation for this struct was generated from the following file:

r_lvd_api.h

 lvd_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Low Voltage Detection Interface

#include <r_lvd_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,378 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Voltage Detection Interface > lvd_cfg_t Struct Reference

const uint32_t monitor_number

lvd_threshold_t voltage_threshold

lvd_response_t detection_response

lvd_voltage_slope_t voltage_slope

uint8_t monitor_ipl

void(* p_callback)(lvd_callback_args_t *p_args)

void const * p_context

void const * p_extend

Detailed Description

LVD configuration structure

Field Documentation

◆ detection_response

lvd_response_t lvd_cfg_t::detection_response

Response on detecting a threshold crossing

◆ monitor_ipl

uint8_t lvd_cfg_t::monitor_ipl

Interrupt priority level.

◆ monitor_number

const uint32_t lvd_cfg_t::monitor_number

Monitor number, 1, 2, ...

◆ p_callback

void(* lvd_cfg_t::p_callback) (lvd_callback_args_t *p_args)

User function to be called from interrupt

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,379 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Voltage Detection Interface > lvd_cfg_t Struct Reference

◆ p_context

void const* lvd_cfg_t::p_context

Placeholder for user data. Passed to the user callback in

◆ p_extend

void const* lvd_cfg_t::p_extend

Extension parameter for hardware specific settings

◆ voltage_slope

lvd_voltage_slope_t lvd_cfg_t::voltage_slope

Rising or falling voltage is to be detected

◆ voltage_threshold

lvd_threshold_t lvd_cfg_t::voltage_threshold

Threshold for out of range voltage detection

The documentation for this struct was generated from the following file:

r_lvd_api.h

 lvd_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Low Voltage Detection Interface

#include <r_lvd_api.h>

Data Fields

ssp_err_t(* open)(lvd_ctrl_t *const p_ctrl, lvd_cfg_t const *const p_cfg)

ssp_err_t(* statusGet)(lvd_ctrl_t *const p_ctrl, lvd_status_t *p_lvd_status)

ssp_err_t(* statusClear)(lvd_ctrl_t *const p_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,380 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Voltage Detection Interface > lvd_api_t Struct Reference

ssp_err_t(* close)(lvd_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

LVD driver API structure. LVD driver functions implemented at the HAL layer will adhere to this API.

Field Documentation

◆ close

ssp_err_t(* lvd_api_t::close) (lvd_ctrl_t *const p_ctrl)

Disables the LVD peripheral. Closes the driver instance.

Implemented as

R_LVD_Close()
Parameters

[in] p_ctrl Pointer to the control
structure for the driver
instance

◆ open

ssp_err_t(* lvd_api_t::open) (lvd_ctrl_t *const p_ctrl, lvd_cfg_t const *const p_cfg)

Initializes a low voltage detection driver according to the passed in configuration structure. Enables
an LVD peripheral based on configuration structure.

Implemented as

R_LVD_Open()
Parameters

[in] p_ctrl Pointer to monitor control
structure for the driver
instance

[in] p_cfg Pointer to the configuration
structure for the driver
instance

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,381 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Voltage Detection Interface > lvd_api_t Struct Reference

◆ statusClear

ssp_err_t(* lvd_api_t::statusClear) (lvd_ctrl_t *const p_ctrl)

Clears the latched status of the monitor. Must be used if the peripheral was initialized with
lvd_response_t set to LVD_RESPONSE_NONE.

Implemented as

R_LVD_StatusClear()
Parameters

[in] p_ctrl Pointer to the control
structure for the driver
instance

◆ statusGet

ssp_err_t(* lvd_api_t::statusGet) (lvd_ctrl_t *const p_ctrl, lvd_status_t *p_lvd_status)

Get the current state of the monitor, (threshold crossing detected, voltage currently within range)
Can be used to poll the state of the LVD monitor at any time. Must be used if the peripheral was
initialized with lvd_response_t set to LVD_RESPONSE_NONE.

Implemented as

R_LVD_StatusGet()
Parameters

[in] p_ctrl Pointer to the control
structure for the driver
instance

[in,out] p_lvd_status Pointer to an lvd_status_t
instance

◆ versionGet

ssp_err_t(* lvd_api_t::versionGet) (ssp_version_t *const p_version)

Returns the LVD driver version based on compile time macros.

Implemented as

R_LVD_VersionGet()
Parameters

[in,out] p_version Pointer to version structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,382 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Low Voltage Detection Interface > lvd_api_t Struct Reference

The documentation for this struct was generated from the following file:

r_lvd_api.h

 lvd_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Low Voltage Detection Interface

#include <r_lvd_api.h>

Data Fields

lvd_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

lvd_cfg_t const * p_cfg

 Pointer to the configuration structure for this interface instance.

lvd_api_t const * p_api

 Pointer to the API structure for this interface instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_lvd_api.h

5.1.4.26 OPAMP Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for Operational Amplifiers. More...

Data Structures

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,383 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > OPAMP Interface

struct opamp_trim_args_t

struct opamp_info_t

struct opamp_status_t

struct opamp_cfg_t

struct opamp_api_t

struct opamp_instance_t

Macros

#define OPAMP_API_VERSION_MAJOR (2U)

Typedefs

typedef void opamp_ctrl_t

Enumerations

enum opamp_trim_cmd_t { OPAMP_TRIM_CMD_START,
OPAMP_TRIM_CMD_NEXT_STEP, OPAMP_TRIM_CMD_CLEAR_BIT }

enum opamp_trim_input_t { OPAMP_TRIM_INPUT_PCH = 0U,
OPAMP_TRIM_INPUT_NCH = 1U }

Detailed Description

Interface for Operational Amplifiers.

Summary
The OPAMP interface provides standard operational amplifier functionality, including starting and
stopping the amplifier.

Implemented by: Operational Amplifier (OPAMP)

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

OPAMP Interface description: OPAMP Driver

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,384 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > OPAMP Interface

◆ OPAMP_API_VERSION_MAJOR

#define OPAMP_API_VERSION_MAJOR (2U)

Includes board and MCU related header files. Version Number of API.

Typedef Documentation

◆ opamp_ctrl_t

typedef void opamp_ctrl_t

OPAMP control block. Allocate using driver instance control structure from driver instance header
file.

Enumeration Type Documentation

◆ opamp_trim_cmd_t

enum opamp_trim_cmd_t

Trim command.

Enumerator

OPAMP_TRIM_CMD_START Initialize trim state machine.

OPAMP_TRIM_CMD_NEXT_STEP Move to next step in state machine.

OPAMP_TRIM_CMD_CLEAR_BIT Clear trim bit.

◆ opamp_trim_input_t

enum opamp_trim_input_t

Trim input.

Enumerator

OPAMP_TRIM_INPUT_PCH Trim non-inverting (+) input.

OPAMP_TRIM_INPUT_NCH Trim inverting (-) input.

 opamp_trim_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » OPAMP Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,385 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > OPAMP Interface > opamp_trim_args_t Struct Reference

#include <r_opamp_api.h>

Data Fields

uint8_t channel

 Channel.

opamp_trim_input_t input

 Which input of the channel above.

Detailed Description

OPAMP trim arguments.

The documentation for this struct was generated from the following file:

r_opamp_api.h

 opamp_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » OPAMP Interface

#include <r_opamp_api.h>

Data Fields

uint32_t min_stabilization_wait_us

 Minimum stabilization wait time in microseconds.

Detailed Description

OPAMP information.

The documentation for this struct was generated from the following file:

r_opamp_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,386 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > OPAMP Interface > opamp_status_t Struct Reference

 opamp_status_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » OPAMP Interface

#include <r_opamp_api.h>

Data Fields

uint32_t operating_channel_mask

 Bitmask of channels currently operating.

Detailed Description

OPAMP status.

The documentation for this struct was generated from the following file:

r_opamp_api.h

 opamp_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » OPAMP Interface

#include <r_opamp_api.h>

Data Fields

void const * p_extend

 Extension parameter for hardware specific settings.

Detailed Description

OPAMP general configuration.

The documentation for this struct was generated from the following file:

r_opamp_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,387 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > OPAMP Interface > opamp_api_t Struct Reference

 opamp_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » OPAMP Interface

#include <r_opamp_api.h>

Data Fields

ssp_err_t(* open)(opamp_ctrl_t *const p_ctrl, opamp_cfg_t const *const p_cfg)

ssp_err_t(* start)(opamp_ctrl_t *const p_ctrl, uint32_t const channel_mask)

ssp_err_t(* stop)(opamp_ctrl_t *const p_ctrl, uint32_t const channel_mask)

ssp_err_t(* trim)(opamp_ctrl_t *const p_ctrl, opamp_trim_cmd_t const cmd,
opamp_trim_args_t const *const p_args)

ssp_err_t(* infoGet)(opamp_ctrl_t *const p_ctrl, opamp_info_t *const p_info)

ssp_err_t(* statusGet)(opamp_ctrl_t *const p_ctrl, opamp_status_t *const
p_status)

ssp_err_t(* close)(opamp_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

OPAMP functions implemented at the HAL layer will follow this API.

Field Documentation

◆ close

ssp_err_t(* opamp_api_t::close) (opamp_ctrl_t *const p_ctrl)

Close the specified OPAMP unit by ending any scan in progress, disabling interrupts, and removing
power to the specified A/D unit.

Implemented as

R_OPAMP_Close()
Parameters

[in] p_ctrl Pointer to instance control
block

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,388 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > OPAMP Interface > opamp_api_t Struct Reference

◆ infoGet

ssp_err_t(* opamp_api_t::infoGet) (opamp_ctrl_t *const p_ctrl, opamp_info_t *const p_info)

Provide information such as the recommended minimum stabilization wait time.

Implemented as

R_OPAMP_InfoGet()
Parameters

[in] p_ctrl Pointer to instance control
block

[out] p_info OPAMP information stored
here

◆ open

ssp_err_t(* opamp_api_t::open) (opamp_ctrl_t *const p_ctrl, opamp_cfg_t const *const p_cfg)

Initialize the operational amplifier.

Implemented as

R_OPAMP_Open()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] p_cfg Pointer to configuration

◆ start

ssp_err_t(* opamp_api_t::start) (opamp_ctrl_t *const p_ctrl, uint32_t const channel_mask)

Start the op-amp(s).

Implemented as

R_OPAMP_Start()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] channel_mask Bitmask of channels to start

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,389 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > OPAMP Interface > opamp_api_t Struct Reference

◆ statusGet

ssp_err_t(* opamp_api_t::statusGet) (opamp_ctrl_t *const p_ctrl, opamp_status_t *const p_status)

Provide status of each op-amp channel.

Implemented as

R_OPAMP_StatusGet()
Parameters

[in] p_ctrl Pointer to instance control
block

[out] p_status Status stored here

◆ stop

ssp_err_t(* opamp_api_t::stop) (opamp_ctrl_t *const p_ctrl, uint32_t const channel_mask)

Stop the op-amp(s).

Implemented as

R_OPAMP_Stop()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] channel_mask Bitmask of channels to stop

◆ trim

ssp_err_t(* opamp_api_t::trim) (opamp_ctrl_t *const p_ctrl, opamp_trim_cmd_t const cmd,
opamp_trim_args_t const *const p_args)

Trim the op-amp(s). Not supported on all MCUs. See implementation for procedure details.

Implemented as

R_OPAMP_Trim()
Parameters

[in] p_ctrl Pointer to instance control
block

[in] cmd Trim command

[in] p_args Pointer to arguments for the
command

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,390 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > OPAMP Interface > opamp_api_t Struct Reference

◆ versionGet

ssp_err_t(* opamp_api_t::versionGet) (ssp_version_t *const p_version)

Retrieve the API version.

Implemented as

R_OPAMP_VersionGet()
Precondition

This function retrieves the API version.
Parameters

[in] p_version Pointer to version structure

The documentation for this struct was generated from the following file:

r_opamp_api.h

 opamp_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » OPAMP Interface

#include <r_opamp_api.h>

Data Fields

opamp_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

opamp_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

opamp_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,391 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > OPAMP Interface > opamp_instance_t Struct Reference

The documentation for this struct was generated from the following file:

r_opamp_api.h

5.1.4.27 PDC Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for PDC functions. More...

Data Structures

struct pdc_state_t

struct pdc_callback_args_t

struct pdc_cfg_t

struct pdc_api_t

struct pdc_instance_t

Macros

#define PDC_API_VERSION_MAJOR (2U)

Typedefs

typedef void pdc_ctrl_t

Enumerations

enum pdc_clock_division_t {
 PDC_CLOCK_DIVISION_2 = 0u, PDC_CLOCK_DIVISION_4 = 1u,
PDC_CLOCK_DIVISION_6 = 2u, PDC_CLOCK_DIVISION_8 = 3u,
 PDC_CLOCK_DIVISION_10 = 4u, PDC_CLOCK_DIVISION_12 = 5u,
PDC_CLOCK_DIVISION_14 = 6u, PDC_CLOCK_DIVISION_16 = 7u
}

enum pdc_endian_t { PDC_ENDIAN_LITTLE = 0u, PDC_ENDIAN_BIG = 1u }

enum pdc_hsync_polarity_t { PDC_HSYNC_POLARITY_HIGH = 0u,
PDC_HSYNC_POLARITY_LOW = 1u }

enum pdc_vsync_polarity_t { PDC_VSYNC_POLARITY_HIGH = 0u,
PDC_VSYNC_POLARITY_LOW = 1u }

enum pdc_event_t {
 PDC_EVENT_TRANSFER_COMPLETE = 0u,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,392 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PDC Interface

PDC_EVENT_RX_DATA_READY = 0x01u, PDC_EVENT_FRAME_END =
0x02u, PDC_EVENT_ERR_OVERRUN = 0x04u,
 PDC_EVENT_ERR_UNDERRUN = 0x08u, PDC_EVENT_ERR_V_SET =
0x10u, PDC_EVENT_ERR_H_SET = 0x20u
}

enum pdc_vsync_state_t { PDC_VSYNC_STATE_LOW = 0u,
PDC_VSYNC_STATE_HIGH = 1u }

enum pdc_hsync_state_t { PDC_HSYNC_STATE_LOW = 0u,
PDC_HSYNC_STATE_HIGH = 1u }

Detailed Description

Interface for PDC functions.

Summary
The PDC interface provides the functionality for capturing an image from a camera. When a capture
is complete a transfer complete interrupt is triggered.

Known Implementations
See also

PDC

Related SSP architecture topics:

What is an SSP Interface? SSP Interfaces
What is a SSP Layer? SSP Predefined Layers
How to use SSP Interfaces and Modules? Using SSP Modules

Macro Definition Documentation

◆ PDC_API_VERSION_MAJOR

#define PDC_API_VERSION_MAJOR (2U)

Register definitions, common services and error codes.

Typedef Documentation

◆ pdc_ctrl_t

typedef void pdc_ctrl_t

PDC control block. Allocate an instance specific control block to pass into the PDC API calls.

Implemented as

pdc_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,393 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PDC Interface

Enumeration Type Documentation

◆ pdc_clock_division_t

enum pdc_clock_division_t

Clock divider applied to PDC clock to provide PCKO output frequency

Enumerator

PDC_CLOCK_DIVISION_2 CLK / 2.

PDC_CLOCK_DIVISION_4 CLK / 4.

PDC_CLOCK_DIVISION_6 CLK / 6.

PDC_CLOCK_DIVISION_8 CLK / 8.

PDC_CLOCK_DIVISION_10 CLK / 10.

PDC_CLOCK_DIVISION_12 CLK / 12.

PDC_CLOCK_DIVISION_14 CLK / 14.

PDC_CLOCK_DIVISION_16 CLK / 16.

◆ pdc_endian_t

enum pdc_endian_t

Endian of captured data

Enumerator

PDC_ENDIAN_LITTLE Data is in little endian format.

PDC_ENDIAN_BIG Data is in big endian format.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,394 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PDC Interface

◆ pdc_event_t

enum pdc_event_t

PDC events

Enumerator

PDC_EVENT_TRANSFER_COMPLETE Complete frame transferred by DMAC/DTC.

PDC_EVENT_RX_DATA_READY Receive data ready interrupt.

PDC_EVENT_FRAME_END Frame end interrupt.

PDC_EVENT_ERR_OVERRUN Overrun interrupt.

PDC_EVENT_ERR_UNDERRUN Underrun interrupt.

PDC_EVENT_ERR_V_SET Vertical line setting error interrupt.

PDC_EVENT_ERR_H_SET Horizontal byte number setting error interrupt.

◆ pdc_hsync_polarity_t

enum pdc_hsync_polarity_t

Polarity of input HSYNC signal

Enumerator

PDC_HSYNC_POLARITY_HIGH HSYNC signal is active high.

PDC_HSYNC_POLARITY_LOW HSYNC signal is active low.

◆ pdc_hsync_state_t

enum pdc_hsync_state_t

HSYNC signal state

Enumerator

PDC_HSYNC_STATE_LOW HSYNC signal is low.

PDC_HSYNC_STATE_HIGH HSYNC signal is high.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,395 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PDC Interface

◆ pdc_vsync_polarity_t

enum pdc_vsync_polarity_t

Polarity of input VSYNC signal

Enumerator

PDC_VSYNC_POLARITY_HIGH VSYNC signal is active high.

PDC_VSYNC_POLARITY_LOW VSYNC signal is active low.

◆ pdc_vsync_state_t

enum pdc_vsync_state_t

VSYNC signal state

Enumerator

PDC_VSYNC_STATE_LOW VSYNC signal is low.

PDC_VSYNC_STATE_HIGH VSYNC signal is high.

 pdc_state_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PDC Interface

#include <r_pdc_api.h>

Data Fields

pdc_vsync_state_t vsync

 VSYNC signal state.

pdc_hsync_state_t hsync

 HSYNC signal state.

Detailed Description

PDC VSYNC/HSYNC state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,396 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PDC Interface > pdc_state_t Struct Reference

The documentation for this struct was generated from the following file:

r_pdc_api.h

 pdc_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PDC Interface

#include <r_pdc_api.h>

Data Fields

pdc_event_t event

 Event causing the callback.

uint8_t * p_buffer

 Pointer to buffer containing the captured data.

void const * p_context

 Placeholder for user data. Set in pdc_api_t::open function in
pdc_cfg_t.

Detailed Description

Callback function parameter data

The documentation for this struct was generated from the following file:

r_pdc_api.h

 pdc_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PDC Interface

#include <r_pdc_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,397 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PDC Interface > pdc_cfg_t Struct Reference

uint16_t x_capture_start_pixel

 Horizontal position to start capture.

uint16_t x_capture_pixels

 Number of horizontal pixels to capture.

uint16_t y_capture_start_pixel

 Vertical position to start capture.

uint16_t y_capture_pixels

 Number of vertical lines/pixels to capture.

pdc_clock_division_t clock_division

 Clock divider.

pdc_endian_t endian

 Endian of capture data.

pdc_hsync_polarity_t hsync_polarity

 Polarity of HSYNC input.

pdc_vsync_polarity_t vsync_polarity

 Polarity of VSYNC input.

uint8_t * p_buffer

 Pointer to buffer to write image into.

uint8_t bytes_per_pixel

 Number of bytes per pixel.

uint8_t frame_end_ipl

 Frame end interrupt priority.

uint8_t irq_ipl

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,398 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PDC Interface > pdc_cfg_t Struct Reference

 PDC interrupt priority.

transfer_instance_t const
*const

p_lower_lvl_transfer

 Pointer to the transfer instance the PDC should use.

void(* p_callback)(pdc_callback_args_t *p_args)

 Callback provided when a PDC transfer ISR occurs.

void const * p_context

void const * p_extend

Detailed Description

PDC configuration parameters.

Field Documentation

◆ p_context

void const* pdc_cfg_t::p_context

Placeholder for user data. Passed to the user callback in pdc_callback_args_t.

◆ p_extend

void const* pdc_cfg_t::p_extend

Extension parameter for hardware specific settings.

The documentation for this struct was generated from the following file:

r_pdc_api.h

 pdc_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PDC Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,399 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PDC Interface > pdc_api_t Struct Reference

#include <r_pdc_api.h>

Data Fields

ssp_err_t(* open)(pdc_ctrl_t *const p_ctrl, pdc_cfg_t const *const p_cfg)

ssp_err_t(* close)(pdc_ctrl_t *const p_ctrl)

ssp_err_t(* captureStart)(pdc_ctrl_t *const p_ctrl, uint8_t *const p_buffer)

ssp_err_t(* stateGet)(pdc_ctrl_t *const p_ctrl, pdc_state_t *p_state)

ssp_err_t(* versionGet)(ssp_version_t *const p_data)

Detailed Description

PDC functions implemented at the HAL layer will follow this API.

Field Documentation

◆ captureStart

ssp_err_t(* pdc_api_t::captureStart) (pdc_ctrl_t *const p_ctrl, uint8_t *const p_buffer)

Start a capture.

Implemented as

R_PDC_CaptureStart()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_buffer Pointer to store captured
image data.

◆ close

ssp_err_t(* pdc_api_t::close) (pdc_ctrl_t *const p_ctrl)

Closes the driver and allows reconfiguration. May reduce power consumption.

Implemented as

R_PDC_Close()
Parameters

[in] p_ctrl Pointer to control structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,400 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PDC Interface > pdc_api_t Struct Reference

◆ open

ssp_err_t(* pdc_api_t::open) (pdc_ctrl_t *const p_ctrl, pdc_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_PDC_Open()
Note

To reconfigure after calling this function, call pdc_api_t::close first.
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ stateGet

ssp_err_t(* pdc_api_t::stateGet) (pdc_ctrl_t *const p_ctrl, pdc_state_t *p_state)

Get the state of the VSYNC and HSYNC pins.

Implemented as

R_PDC_StateGet()
Parameters

[in] p_ctrl Pointer to control structure.

[in] p_state Pointer to store state data.

◆ versionGet

ssp_err_t(* pdc_api_t::versionGet) (ssp_version_t *const p_data)

Return the version of the driver.

Implemented as

R_PDC_VersionGet()
Parameters

[in] p_ctrl Pointer to control structure.

[out] p_data Memory address to return
version information to.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,401 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PDC Interface > pdc_api_t Struct Reference

The documentation for this struct was generated from the following file:

r_pdc_api.h

 pdc_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PDC Interface

#include <r_pdc_api.h>

Data Fields

pdc_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

pdc_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

pdc_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_pdc_api.h

5.1.4.28 PTP driver Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for PTP functions. More...

Data Structures

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,402 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface

struct UInt64_t

struct ptp_timestamp_t

struct ptp_address_t

union ptp_announce_flag_t

struct ptp_clock_quality_t

struct ptp_announce_message_t

struct ptp_message_reception_t

struct ptp_callback_args_t

struct ptp_cfg_t

struct ptp_api_t

struct ptp_instance_t

Typedefs

typedef void ptp_ctrl_t

Enumerations

enum ptp_device_t {
 PTP_DEVICE_DISABLED = 0xFFU, PTP_DEVICE_ORDINARY_CLOCK0 =
0U, PTP_DEVICE_ORDINARY_CLOCK1,
PTP_DEVICE_BOUNDARY_CLOCK,
 PTP_DEVICE_TRANSPARENT_CLOCK
}

enum ptp_delay_mechanism_t { PTP_DELAY_MECHANISM_DISABLED =
0xFFU, PTP_DELAY_MECHANISM_P2P = 0U,
PTP_DELAY_MECHANISM_E2E }

enum ptp_state_t { PTP_STATE_DISABLED = 0xFFU, PTP_STATE_MASTER =
0U, PTP_STATE_SLAVE, PTP_STATE_LISTENING }

enum ptp_stca_mode_t { PTP_STCA_MODE_1 = 0x00U,
PTP_STCA_MODE_2_HW = 0x02U, PTP_STCA_MODE_2_SW = 0x03U }

enum ptp_frame_format_t {
 PTP_FRAME_FORMAT_DISABLED = 0xFFU, PTP_FRAME_FORMAT_ETH
= 0x00U, PTP_FRAME_FORMAT_ETH_8023,
PTP_FRAME_FORMAT_UDP4,
 PTP_FRAME_FORMAT_UDP4_8023
}

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,403 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface

enum ptp_stca_timer_channel_t {
 PTP_STCA_TIMER_CHANNEL_0 = 0x01U,
PTP_STCA_TIMER_CHANNEL_1 = 0x02U,
PTP_STCA_TIMER_CHANNEL_2 = 0x04U,
PTP_STCA_TIMER_CHANNEL_3 = 0x08U,
 PTP_STCA_TIMER_CHANNEL_4 = 0x10U,
PTP_STCA_TIMER_CHANNEL_5 = 0x20U
}

enum ptp_stca_timer_pulse_edge_t {
PTP_STCA_TIMER_PULSE_EDGE_RISING = 0U,
PTP_STCA_TIMER_PULSE_EDGE_FALLING }

enum ptp_event_t {
 PTP_EVENT_TIMER = 0U, PTP_EVENT_STCA, PTP_EVENT_PRCTC,
PTP_EVENT_SYNFP0,
 PTP_EVENT_SYNFP1
}

Detailed Description

Interface for PTP functions.

Summary
The PTP interface provides time synchronization functionality.

The PTP interface can be implemented by:

PTP

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

PTP Interface description: PTP Driver on r_ptp

Typedef Documentation

◆ ptp_ctrl_t

typedef void ptp_ctrl_t

PTP control block. Allocate an instance specific control block to pass into the PTP API calls.

Implemented as

ptp_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,404 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface

Enumeration Type Documentation

◆ ptp_delay_mechanism_t

enum ptp_delay_mechanism_t

PTP Delay correction mechanism definitions

Enumerator

PTP_DELAY_MECHANISM_DISABLED Unsupported.

PTP_DELAY_MECHANISM_P2P Peer to peer delay mechanism.

PTP_DELAY_MECHANISM_E2E End to end delay mechanism.

◆ ptp_device_t

enum ptp_device_t

PTP Clock type definitions

Enumerator

PTP_DEVICE_DISABLED Unsupported.

PTP_DEVICE_ORDINARY_CLOCK0 Ordinary Clock Port 0.

PTP_DEVICE_ORDINARY_CLOCK1 Ordinary Clock Port 1.

PTP_DEVICE_BOUNDARY_CLOCK Boundary Clock.

PTP_DEVICE_TRANSPARENT_CLOCK Transparent Clock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,405 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface

◆ ptp_event_t

enum ptp_event_t

MINT interrupt register definitions

Enumerator

PTP_EVENT_TIMER Interrupt from Timer.

PTP_EVENT_STCA Interrupt from STCA.

PTP_EVENT_PRCTC Interrupt from PRC-TC.

PTP_EVENT_SYNFP0 Interrupt from SYNFP0.

PTP_EVENT_SYNFP1 Interrupt from SYNFP1.

◆ ptp_frame_format_t

enum ptp_frame_format_t

PTP message frame format definitions

Enumerator

PTP_FRAME_FORMAT_DISABLED Unsupported.

PTP_FRAME_FORMAT_ETH Ethernet II frame format.

PTP_FRAME_FORMAT_ETH_8023 Ethernet 802.3 frame format.

PTP_FRAME_FORMAT_UDP4 Ethernet II over UDP4 frame format.

PTP_FRAME_FORMAT_UDP4_8023 Ethernet 802.3 over UDP4 frame format.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,406 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface

◆ ptp_state_t

enum ptp_state_t

PTP clock state definitions

Enumerator

PTP_STATE_DISABLED Unsupported.

PTP_STATE_MASTER Master state.

PTP_STATE_SLAVE Slave state.

PTP_STATE_LISTENING Listening state.

◆ ptp_stca_mode_t

enum ptp_stca_mode_t

STCA mode and gradient setting definitions

Enumerator

PTP_STCA_MODE_1 Mode1 (not use STCA)

PTP_STCA_MODE_2_HW Mode2 (use STCA) and HW gradient setting.

PTP_STCA_MODE_2_SW Mode2 (use STCA) and SW gradient setting.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,407 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface

◆ ptp_stca_timer_channel_t

enum ptp_stca_timer_channel_t

STCA pulse output timer channel definitions

Enumerator

PTP_STCA_TIMER_CHANNEL_0 STCA pulse output timer 0.

PTP_STCA_TIMER_CHANNEL_1 STCA pulse output timer 1.

PTP_STCA_TIMER_CHANNEL_2 STCA pulse output timer 2.

PTP_STCA_TIMER_CHANNEL_3 STCA pulse output timer 3.

PTP_STCA_TIMER_CHANNEL_4 STCA pulse output timer 4.

PTP_STCA_TIMER_CHANNEL_5 STCA pulse output timer 5.

◆ ptp_stca_timer_pulse_edge_t

enum ptp_stca_timer_pulse_edge_t

STCA pulse output timer edge definitions

Enumerator

PTP_STCA_TIMER_PULSE_EDGE_RISING Rising edge.

PTP_STCA_TIMER_PULSE_EDGE_FALLING Falling edge.

 UInt64_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTP driver Interface

#include <r_ptp_api.h>

Detailed Description

PTP data type structure

The documentation for this struct was generated from the following file:

r_ptp_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,408 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > UInt64_t Struct Reference

 ptp_timestamp_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTP driver Interface

#include <r_ptp_api.h>

Detailed Description

PTP message timestamp structure

The documentation for this struct was generated from the following file:

r_ptp_api.h

 ptp_address_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTP driver Interface

#include <r_ptp_api.h>

Detailed Description

PTP channel related structure (MAC address, IP address)

The documentation for this struct was generated from the following file:

r_ptp_api.h

 ptp_announce_flag_t Union Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTP driver Interface

#include <r_ptp_api.h>

Detailed Description

Announce flagField type structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,409 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_announce_flag_t Union Reference

The documentation for this union was generated from the following file:

r_ptp_api.h

 ptp_clock_quality_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTP driver Interface

#include <r_ptp_api.h>

Detailed Description

PTP clock quality structure

The documentation for this struct was generated from the following file:

r_ptp_api.h

 ptp_announce_message_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTP driver Interface

#include <r_ptp_api.h>

Detailed Description

Announce message field type structure

The documentation for this struct was generated from the following file:

r_ptp_api.h

 ptp_message_reception_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTP driver Interface

#include <r_ptp_api.h>

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,410 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_message_reception_t Struct Reference

PTP message reception configuration field structure

The documentation for this struct was generated from the following file:

r_ptp_api.h

 ptp_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTP driver Interface

#include <r_ptp_api.h>

Data Fields

void const * p_context

 Context provided to user during callback.

ptp_event_t event

 The event can be used to identify what caused the callback.

ptp_stca_timer_channel_t timer_channel

 STCA pulse output timer channel.

Detailed Description

PTP callback arguments definition

The documentation for this struct was generated from the following file:

r_ptp_api.h

 ptp_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTP driver Interface

#include <r_ptp_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,411 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_cfg_t Struct Reference

Data Fields

ssp_err_t(* p_callback)(ptp_callback_args_t *p_args)

 Pointer to interrupt callback function.

void const * p_context

 User defined context passed into callback function.

uint8_t irq_ipl

 MINT interrupt IRQ number.

ptp_device_t device

 PTP clock type.

ptp_state_t state [2]

 PTP clock state.

ptp_delay_mechanism_t delay [2]

 Delay correction mechanism.

ptp_frame_format_t frame_format [2]

 PTP message frame format.

ptp_stca_mode_t stca_sync_mode

 STCA synchronous mode.

void const * p_extend

 Extension parameter for hardware specific settings.

Detailed Description

PTP user configuration structure

The documentation for this struct was generated from the following file:

r_ptp_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,412 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_cfg_t Struct Reference

 ptp_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTP driver Interface

#include <r_ptp_api.h>

Data Fields

ssp_err_t(* open)(ptp_ctrl_t *const p_ctrl, ptp_cfg_t const *const p_cfg)

ssp_err_t(* close)(ptp_ctrl_t *const p_ctrl)

ssp_err_t(* configure)(ptp_ctrl_t *const p_ctrl, uint32_t *p_ip_address, uint32_t
*p_physical_address_msw, uint32_t *p_physical_address_lsw)

ssp_err_t(* setExtPromiscuous)(ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel,
bool is_set)

ssp_err_t(* setLocalClock)(ptp_ctrl_t *const p_ctrl, ptp_timestamp_t *p_clock)

ssp_err_t(* getLocalClock)(ptp_ctrl_t *const p_ctrl, ptp_timestamp_t *p_clock,
uint32_t wait_option)

ssp_err_t(* getMasterPortID)(ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel,
uint32_t *p_clock, uint16_t *p_port)

ssp_err_t(* setMasterPortID)(ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel,
uint32_t *p_clock, uint16_t *p_port)

ssp_err_t(* getSyncInfo)(ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel,
ptp_timeInterval_t *p_master_offset, ptp_timeInterval_t
*p_path_delay)

ssp_err_t(* start)(ptp_ctrl_t *const p_ctrl, uint32_t wait_option)

ssp_err_t(* stop)(ptp_ctrl_t *const p_ctrl, uint32_t wait_option)

ssp_err_t(* setWorst10Values)(ptp_ctrl_t *const p_ctrl, uint8_t interval)

ssp_err_t(* checkWorst10Values)(ptp_ctrl_t *const p_ctrl, uint32_t wait_option)

ssp_err_t(* getWorst10Values)(ptp_ctrl_t *const p_ctrl, uint32_t
*p_positive_worst10, uint32_t *p_negative_worst10, uint32_t
wait_option)

ssp_err_t(* setGradientLimit)(ptp_ctrl_t *const p_ctrl, uint32_t *p_positive_limit,
uint32_t *p_negative_limit)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,413 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

ssp_err_t(* updateClockID)(ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel, int8_t
*p_clock_id)

ssp_err_t(* updateDomainNumber)(ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel,
uint8_t domain_num)

ssp_err_t(* updateAnnounceFlags)(ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel,
ptp_announce_flag_t *p_flag)

ssp_err_t(* updateAnnounceMsgs)(ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel,
ptp_announce_message_t *p_message)

ssp_err_t(* updateSyncAnnounceMsgInterval)(ptp_ctrl_t *const p_ctrl, uint8_t
ptp_channel, int8_t *p_sync_interval, int8_t *p_announce_interval)

ssp_err_t(* updateDelayMsgInterval)(ptp_ctrl_t *const p_ctrl, uint8_t
ptp_channel, int8_t *p_interval, uint32_t *p_timeout)

ssp_err_t(* getMessageReceptionConfig)(ptp_ctrl_t *const p_ctrl, uint8_t
ptp_channel, ptp_message_reception_t *p_ptp_message_reception)

ssp_err_t(* setMessageReceptionConfig)(ptp_ctrl_t *const p_ctrl, uint8_t
ptp_channel, ptp_message_reception_t *p_ptp_message_reception)

ssp_err_t(* disableTimer)(ptp_ctrl_t *const p_ctrl, ptp_stca_timer_channel_t
timer_channel)

ssp_err_t(* indicateEvent)(ptp_ctrl_t *const p_ctrl, ptp_stca_timer_channel_t
timer_channel, ptp_stca_timer_pulse_edge_t timer_pulse_edge, bool
is_set)

ssp_err_t(* autoClearEvent)(ptp_ctrl_t *const p_ctrl, ptp_stca_timer_channel_t
timer_channel, ptp_stca_timer_pulse_edge_t timer_pulse_edge, bool
is_set)

ssp_err_t(* setTimer)(ptp_ctrl_t *const p_ctrl, uint8_t timer_channel, UInt64_t
event, uint32_t cycle, uint32_t pulse_width)

ssp_err_t(* setMINTevent)(ptp_ctrl_t *const p_ctrl, ptp_event_t ptp_reg, uint32_t
event, bool is_set)

ssp_err_t(* enableINFABTnotification)(ptp_ctrl_t *const p_ctrl, uint8_t
ptp_channel)

ssp_err_t(* disableINFABTnotification)(ptp_ctrl_t *const p_ctrl, uint8_t
ptp_channel)

ssp_err_t(* checkINFABTstatus)(ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel,
uint8_t *p_status)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,414 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

ssp_err_t(* clearINFABTstatus)(ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

PTP functions implemented at the HAL layer follow this API.

Field Documentation

◆ autoClearEvent

ssp_err_t(* ptp_api_t::autoClearEvent) (ptp_ctrl_t *const p_ctrl, ptp_stca_timer_channel_t
timer_channel, ptp_stca_timer_pulse_edge_t timer_pulse_edge, bool is_set)

Set/clear auto clear mode for enabling one time output of ELC event.

Implemented as

R_PTP_AutoClearEvent()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] timer_channel STCA pulse output timer
channel

[in] timer_pulse_edge STCA pulse output timer
edge

[in] is_set Enable or disable automatic
clearing of event

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,415 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ checkINFABTstatus

ssp_err_t(* ptp_api_t::checkINFABTstatus) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel, uint8_t
*p_status)

Checks the status of INFABT flag

Implemented as

R_PTP_CheckINFABTstatus()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

[out] p_status Returns status of INFABT
flag

◆ checkWorst10Values

ssp_err_t(* ptp_api_t::checkWorst10Values) (ptp_ctrl_t *const p_ctrl, uint32_t wait_option)

Checks worst 10 values by hardware and set as gradient limits.

Implemented as

R_PTP_CheckWorst10Values()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] wait_option Timeout interval

◆ clearINFABTstatus

ssp_err_t(* ptp_api_t::clearINFABTstatus) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel)

Clear INFABT interrupt occurrence flag.

Implemented as

R_PTP_ClearINFABTstatus()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,416 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ close

ssp_err_t(* ptp_api_t::close) (ptp_ctrl_t *const p_ctrl)

Close the PTP driver module.

Implemented as

R_PTP_Close()
Parameters

[in] p_ctrl Pointer to the control
structure

◆ configure

ssp_err_t(* ptp_api_t::configure) (ptp_ctrl_t *const p_ctrl, uint32_t *p_ip_address, uint32_t
*p_physical_address_msw, uint32_t *p_physical_address_lsw)

Configures the PTP driver module.

Implemented as

R_PTP_Configure()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] p_ip_address Pointer to the IP address

[in] p_physical_address_msw Pointer to the higher bits of
physical address

[in] p_physical_address_lsw Pointer to the lower bits of
physical address

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,417 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ disableINFABTnotification

ssp_err_t(* ptp_api_t::disableINFABTnotification) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel)

Disable EPTPC INFABT notification

Implemented as

R_PTP_DisableINFABTnotification()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

◆ disableTimer

ssp_err_t(* ptp_api_t::disableTimer) (ptp_ctrl_t *const p_ctrl, ptp_stca_timer_channel_t
timer_channel)

Disable timer event interrupt.

Implemented as

R_PTP_DisableTimer()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] timer_channel STCA pulse output timer
channel

◆ enableINFABTnotification

ssp_err_t(* ptp_api_t::enableINFABTnotification) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel)

Enable EPTPC INFABT notification

Implemented as

R_PTP_EnableINFABTnotification()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,418 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ getLocalClock

ssp_err_t(* ptp_api_t::getLocalClock) (ptp_ctrl_t *const p_ctrl, ptp_timestamp_t *p_clock, uint32_t
wait_option)

Gets local clock counter

Implemented as

R_PTP_GetLocalClock()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] wait_option Time out interval

[out] p_clock Pointer to local clock counter

◆ getMasterPortID

ssp_err_t(* ptp_api_t::getMasterPortID) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel, uint32_t
*p_clock, uint16_t *p_port)

Gets master port ID

Implemented as

R_PTP_GetMasterPortID()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

[out] p_clock Pointer to local clock counter

[out] p_port Pointer to master port

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,419 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ getMessageReceptionConfig

ssp_err_t(* ptp_api_t::getMessageReceptionConfig) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel,
ptp_message_reception_t *p_ptp_message_reception)

Get message reception configuration

Implemented as

R_PTP_GetMessageReceptionConfig()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

[out] p_ptp_message_reception Pointer to SYNFP message
reception configuration
structure

◆ getSyncInfo

ssp_err_t(* ptp_api_t::getSyncInfo) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel, ptp_timeInterval_t
*p_master_offset, ptp_timeInterval_t *p_path_delay)

Get current offsetFromMaster and meanPathDelay.

Implemented as

R_PTP_GetSyncInfo()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

[out] p_master_offset Returns the offset from
master

[out] p_path_delay Returns the mean path delay

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,420 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ getWorst10Values

ssp_err_t(* ptp_api_t::getWorst10Values) (ptp_ctrl_t *const p_ctrl, uint32_t *p_positive_worst10,
uint32_t *p_negative_worst10, uint32_t wait_option)

Get worst 10 values by software.

Implemented as

R_PTP_GetWorst10Values()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] wait_option Timeout interval

[out] p_positive_worst10 Returns the positive worst
10 values

[out] p_negative_worst10 Returns the negative worst
10 values

◆ indicateEvent

ssp_err_t(* ptp_api_t::indicateEvent) (ptp_ctrl_t *const p_ctrl, ptp_stca_timer_channel_t
timer_channel, ptp_stca_timer_pulse_edge_t timer_pulse_edge, bool is_set)

Set/clear interrupt indication to ELC output on generation of pulse produced by pulse output timer.

Implemented as

R_PTP_IndicateEvent()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] timer_channel STCA pulse output timer
channel

[in] timer_pulse_edge STCA pulse output timer
pulse edge

[in] is_set Set or clear indication of

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,421 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ open

ssp_err_t(* ptp_api_t::open) (ptp_ctrl_t *const p_ctrl, ptp_cfg_t const *const p_cfg)

Open the PTP driver module.

Implemented as

R_PTP_Open()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] p_cfg Pointer to a configuration
structure

◆ setExtPromiscuous

ssp_err_t(* ptp_api_t::setExtPromiscuous) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel, bool is_set)

Sets or clears the extended promiscuous mode

Implemented as

R_PTP_SetExtPromiscuous()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

[in] is_set Set/clear extended
promiscuous mode

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,422 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ setGradientLimit

ssp_err_t(* ptp_api_t::setGradientLimit) (ptp_ctrl_t *const p_ctrl, uint32_t *p_positive_limit, uint32_t
*p_negative_limit)

Set the gradient limits for positive and negative worst 10 values.

Implemented as

R_PTP_SetGradientLimit()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] p_positive_limit Positive limit of worst 10
values

[in] p_negative_limit Negative limit of worst 10
values

◆ setLocalClock

ssp_err_t(* ptp_api_t::setLocalClock) (ptp_ctrl_t *const p_ctrl, ptp_timestamp_t *p_clock)

Sets local clock counter

Implemented as

R_PTP_SetLocalClock()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] p_clock Pointer to local clock counter

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,423 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ setMasterPortID

ssp_err_t(* ptp_api_t::setMasterPortID) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel, uint32_t
*p_clock, uint16_t *p_port)

Sets master port ID

Implemented as

R_PTP_SetMasterPortID()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

[in] p_clock Pointer to local clock counter

[in] p_port Pointer to master port

◆ setMessageReceptionConfig

ssp_err_t(* ptp_api_t::setMessageReceptionConfig) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel,
ptp_message_reception_t *p_ptp_message_reception)

Set message reception configuration.

Implemented as

R_PTP_SetMessageReceptionConfig()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

[in] p_ptp_message_reception Pointer to SYNFP message
reception config structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,424 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ setMINTevent

ssp_err_t(* ptp_api_t::setMINTevent) (ptp_ctrl_t *const p_ctrl, ptp_event_t ptp_reg, uint32_t event,
bool is_set)

Set MINT interrupt event to enable notification for change in state of modules.

Implemented as

R_PTP_SetMINTevent()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_reg MINT interrupt register

[in] event Interrupt element

[in] is_set Set or clear MINT event

◆ setTimer

ssp_err_t(* ptp_api_t::setTimer) (ptp_ctrl_t *const p_ctrl, uint8_t timer_channel, UInt64_t event,
uint32_t cycle, uint32_t pulse_width)

Sets start time, pulse period and pulse width for the pulse output timer.

Implemented as

R_PTP_SetTimer()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] timer_channel STCA pulse output timer
channel

[in] event Timer event start time

[in] cycle Pulse output cycle interval

[in] pulse_width Width of the high level of the
pulse signal

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,425 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ setWorst10Values

ssp_err_t(* ptp_api_t::setWorst10Values) (ptp_ctrl_t *const p_ctrl, uint8_t interval)

Sets the time interval for collecting worst 10 values

Implemented as

R_PTP_SetWorst10Values()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] interval Time interval to collect worst
10 values

◆ start

ssp_err_t(* ptp_api_t::start) (ptp_ctrl_t *const p_ctrl, uint32_t wait_option)

Starts the time synchronization.

Implemented as

R_PTP_Start()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] wait_option Timeout interval

◆ stop

ssp_err_t(* ptp_api_t::stop) (ptp_ctrl_t *const p_ctrl, uint32_t wait_option)

Stops the time synchronization.

Implemented as

R_PTP_Stop()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] wait_option Timeout interval

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,426 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ updateAnnounceFlags

ssp_err_t(* ptp_api_t::updateAnnounceFlags) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel,
ptp_announce_flag_t *p_flag)

Update the announce message's flag field.

Implemented as

R_PTP_UpdateAnnounceFlags()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

[in] p_flag Pointer to announce
message flag field

◆ updateAnnounceMsgs

ssp_err_t(* ptp_api_t::updateAnnounceMsgs) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel,
ptp_announce_message_t *p_message)

Update the announce message's message field.

Implemented as

R_PTP_UpdateAnnounceMsgs()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

[in] p_message Pointer to announce
message field

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,427 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ updateClockID

ssp_err_t(* ptp_api_t::updateClockID) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel, int8_t
*p_clock_id)

Update the clock identity field.

Implemented as

R_PTP_UpdateClockID()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

[in] p_clock_id Pointer to clock ID

◆ updateDelayMsgInterval

ssp_err_t(* ptp_api_t::updateDelayMsgInterval) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel, int8_t
*p_interval, uint32_t *p_timeout)

Update transmission interval, logMessageInterval and timeout values of Delay messages.

Implemented as

R_PTP_UpdateDelayMsgInterval()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

[in] p_interval Case of master: Delay_Resp
logMessageInterval Case of
slave:
Delay_Req/Pdelay_Req
transmission interval

[in] p_timeout Delay_Resp/Pdelay_Resp
receiving timeout

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,428 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ updateDomainNumber

ssp_err_t(* ptp_api_t::updateDomainNumber) (ptp_ctrl_t *const p_ctrl, uint8_t ptp_channel, uint8_t
domain_num)

Update the domain number field in the message header.

Implemented as

R_PTP_UpdateDomainNumber()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

[in] domain_num Domain number

◆ updateSyncAnnounceMsgInterval

ssp_err_t(* ptp_api_t::updateSyncAnnounceMsgInterval) (ptp_ctrl_t *const p_ctrl, uint8_t
ptp_channel, int8_t *p_sync_interval, int8_t *p_announce_interval)

Update transmission interval and logMessageInterval of Sync and Announce messages.

Implemented as

R_PTP_UpdateSyncAnnounceMsgInterval()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] ptp_channel EPTPC channel

[in] p_sync_interval Pointer to sync message
interval

[in] p_announce_interval Pointer to announce
message interval

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,429 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_api_t Struct Reference

◆ versionGet

ssp_err_t(* ptp_api_t::versionGet) (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Implemented as

R_PTP_VersionGet()
Parameters

[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_ptp_api.h

 ptp_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTP driver Interface

#include <r_ptp_api.h>

Data Fields

ptp_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

ptp_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

ptp_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,430 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTP driver Interface > ptp_instance_t Struct Reference

The documentation for this struct was generated from the following file:

r_ptp_api.h

5.1.4.29 PTPEDMAC driver Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for PTPEDMAC functions. More...

Data Structures

struct ptpedmac_descriptor_t

struct ptpedmac_callback_args_t

struct ptpedmac_cfg_t

struct ptpedmac_api_t

struct ptpedmac_instance_t

Typedefs

typedef void ptpedmac_ctrl_t

Enumerations

enum ptpedmac_event_t { PTPEDMAC_EVENT_READ = 0,
PTPEDMAC_EVENT_WRITE, PTPEDMAC_EVENT_ERR }

enum ptpedmac_trans_t { PTPEDMAC_TRANS_FLAG_OFF = 0,
PTPEDMAC_TRANS_FLAG_ON = 1 }

Detailed Description

Interface for PTPEDMAC functions.

Summary
The PTPEDMAC interface supports PTP host interface to receive PTP message.

The PTPEDMAC interface can be implemented by:

PTPEDMAC

Related SSP architecture topics:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,431 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTPEDMAC driver Interface

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

PTPEDMAC Interface description: PTPEDMAC Driver on r_ptpedmac

Typedef Documentation

◆ ptpedmac_ctrl_t

typedef void ptpedmac_ctrl_t

PTPEDMAC control block. Allocate an instance specific control block to pass into the PTPEDMAC API
calls.

Implemented as

ptpedmac_instance_ctrl_t

Enumeration Type Documentation

◆ ptpedmac_event_t

enum ptpedmac_event_t

PTPEDMAC interrupt event definitions

Enumerator

PTPEDMAC_EVENT_READ Frame reception interrupt (FR)

PTPEDMAC_EVENT_WRITE Frame transmission interrupt (TC)

PTPEDMAC_EVENT_ERR Error interrupt (MACE, RFOF, RDE, TFUF, TDE,
ADE and RFCOF)

◆ ptpedmac_trans_t

enum ptpedmac_trans_t

Enumeration to specify the status of transfer flag

Enumerator

PTPEDMAC_TRANS_FLAG_OFF Transfer disable.

PTPEDMAC_TRANS_FLAG_ON Transfer enable.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,432 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTPEDMAC driver Interface > ptpedmac_descriptor_t Struct Reference

 ptpedmac_descriptor_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTPEDMAC driver Interface

#include <r_ptpedmac_api.h>

Detailed Description

PTPEDMAC descriptor structure

The documentation for this struct was generated from the following file:

r_ptpedmac_api.h

 ptpedmac_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTPEDMAC driver Interface

#include <r_ptpedmac_api.h>

Data Fields

uint16_t channel

 Device channel number.

uint32_t ether_frame_type

 Ethernet PTP message type.

void const * p_context

 Context provided to user during callback.

ptpedmac_event_t event

 The event can be used to identify what caused the callback.

Detailed Description

PTPEDMAC callback arguments definition

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,433 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTPEDMAC driver Interface > ptpedmac_callback_args_t Struct Reference

The documentation for this struct was generated from the following file:

r_ptpedmac_api.h

 ptpedmac_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTPEDMAC driver Interface

#include <r_ptpedmac_api.h>

Data Fields

ssp_err_t(* p_callback)(ptpedmac_callback_args_t *p_args)

 Pointer to interrupt callback function.

void const * p_context

 User defined context passed into callback function.

uint8_t irq_ipl

 PINT interrupt IRQ number.

Detailed Description

PTPEDMAC configuration block. Allocate an instance specific control block to pass into the PTPEDMAC
API calls.

The documentation for this struct was generated from the following file:

r_ptpedmac_api.h

 ptpedmac_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTPEDMAC driver Interface

#include <r_ptpedmac_api.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,434 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTPEDMAC driver Interface > ptpedmac_api_t Struct Reference

ssp_err_t(* open)(ptpedmac_ctrl_t *const p_ctrl, ptpedmac_cfg_t const *const
p_cfg)

ssp_err_t(* linkProcess)(ptpedmac_ctrl_t *const p_api_ctrl)

ssp_err_t(* linkCheck)(ptpedmac_ctrl_t *const p_ctrl)

ssp_err_t(* read)(ptpedmac_ctrl_t *const p_ctrl, uint32_t *p_channel, void
*const p_buffer, int32_t *p_num_received)

ssp_err_t(* close)(ptpedmac_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

PTPEDMAC functions implemented at the HAL layer will follow this API.

Field Documentation

◆ close

ssp_err_t(* ptpedmac_api_t::close) (ptpedmac_ctrl_t *const p_ctrl)

Close the PTPEDMAC driver module.

Implemented as

R_PTPEDMAC_Close()
Parameters

[in] p_ctrl Pointer to the control
structure

◆ linkCheck

ssp_err_t(* ptpedmac_api_t::linkCheck) (ptpedmac_ctrl_t *const p_ctrl)

Checks host interface communication status

Implemented as

R_PTPEDMAC_CheckLink()
Parameters

[in] p_ctrl Pointer to the control
structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,435 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTPEDMAC driver Interface > ptpedmac_api_t Struct Reference

◆ linkProcess

ssp_err_t(* ptpedmac_api_t::linkProcess) (ptpedmac_ctrl_t *const p_api_ctrl)

Sets host interface to transfer PTP messages

Implemented as

R_PTPEDMAC_LinkProcess()
Parameters

[in] p_ctrl Pointer to the control
structure

◆ open

ssp_err_t(* ptpedmac_api_t::open) (ptpedmac_ctrl_t *const p_ctrl, ptpedmac_cfg_t const *const
p_cfg)

Open the PTPEDMAC driver module for reception of PTP messages.

Implemented as

R_PTPEDMAC_Open()
Parameters

[in] p_ctrl Pointer to the control
structure

[in] p_cfg Pointer to configuration
structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,436 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTPEDMAC driver Interface > ptpedmac_api_t Struct Reference

◆ read

ssp_err_t(* ptpedmac_api_t::read) (ptpedmac_ctrl_t *const p_ctrl, uint32_t *p_channel, void *const
p_buffer, int32_t *p_num_received)

Receives PTP message

Implemented as

R_PTPEDMAC_Read()
Parameters

[in] p_ctrl Pointer to the control
structure

[out] p_channel Pointer to received channel

[out] p_buffer Pointer to received data
buffer

[out] p_num_received Pointer to number of
received data

◆ versionGet

ssp_err_t(* ptpedmac_api_t::versionGet) (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Implemented as

R_PTPEDMAC_VersionGet()
Parameters

[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_ptpedmac_api.h

 ptpedmac_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » PTPEDMAC driver Interface

#include <r_ptpedmac_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,437 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > PTPEDMAC driver Interface > ptpedmac_instance_t Struct Reference

Data Fields

ptpedmac_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

ptpedmac_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

ptpedmac_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_ptpedmac_api.h

5.1.4.30 Quad SPI Flash Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for accessing external SPI flash devices. More...

Data Structures

struct qspi_cfg_t

struct qspi_info_t

struct qspi_api_t

struct qspi_instance_t

Typedefs

typedef void qspi_ctrl_t

Enumerations

enum qspi_address_mode_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,438 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Quad SPI Flash Interface

Detailed Description

Interface for accessing external SPI flash devices.

Summary
The QSPI module provides an interface that writes and erases sectors in quad SPI flash devices
connected to the QSPI interface.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

QSPI Interface description: QSPI Driver

Typedef Documentation

◆ qspi_ctrl_t

typedef void qspi_ctrl_t

QSPI control block. Allocate an instance specific control block to pass into the QSPI API calls.

Implemented as

qspi_instance_ctrl_t

Enumeration Type Documentation

◆ qspi_address_mode_t

enum qspi_address_mode_t

User configuration structure used for selecting addressing mode

 qspi_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Quad SPI Flash Interface

#include <r_qspi_api.h>

Data Fields

void * p_extend

 place holder for future development

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,439 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Quad SPI Flash Interface > qspi_cfg_t Struct Reference

Detailed Description

User configuration structure used by the open function

The documentation for this struct was generated from the following file:

r_qspi_api.h

 qspi_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Quad SPI Flash Interface

#include <r_qspi_api.h>

Data Fields

uint32_t total_size_bytes

 Size of this QSPI in bytes.

uint32_t min_program_size_bytes

 Minimum program size in bytes.

uint32_t * p_erase_sizes_bytes

 Array of available erase sizes. Each entry is in bytes.

uint8_t num_erase_sizes

 Number of available erase sizes.

Detailed Description

QSPI information structure to store information specific to the currently used QSPI.

The documentation for this struct was generated from the following file:

r_qspi_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,440 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Quad SPI Flash Interface > qspi_api_t Struct Reference

 qspi_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Quad SPI Flash Interface

#include <r_qspi_api.h>

Data Fields

ssp_err_t(* open)(qspi_ctrl_t *p_ctrl, qspi_cfg_t const *const p_cfg)

ssp_err_t(* close)(qspi_ctrl_t *p_ctrl)

ssp_err_t(* read)(qspi_ctrl_t *p_ctrl, uint8_t *p_device_address, uint8_t
*p_memory_address, uint32_t byte_count)

ssp_err_t(* pageProgram)(qspi_ctrl_t *p_ctrl, uint8_t *p_device_address, uint8_t
*p_memory_address, uint32_t byte_count)

ssp_err_t(* erase)(qspi_ctrl_t *p_ctrl, uint8_t *p_device_address, uint32_t
byte_count)

ssp_err_t(* infoGet)(qspi_ctrl_t *const p_ctrl, qspi_info_t *const p_info)

ssp_err_t(* sectorErase)(qspi_ctrl_t *p_ctrl, uint8_t *p_device_address)

ssp_err_t(* statusGet)(qspi_ctrl_t *p_ctrl, bool *p_write_in_progress)

ssp_err_t(* bankSelect)(uint32_t bank)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

QSPI functions implemented at the HAL layer follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,441 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Quad SPI Flash Interface > qspi_api_t Struct Reference

◆ bankSelect

ssp_err_t(* qspi_api_t::bankSelect) (uint32_t bank)

Select the bank to access.

Implemented as

R_QSPI_BankSelect()
Parameters

[in] bank The bank number

◆ close

ssp_err_t(* qspi_api_t::close) (qspi_ctrl_t *p_ctrl)

Close the QSPI driver module.

Implemented as

R_QSPI_Close()
Parameters

[in] p_ctrl Pointer to a driver handle

◆ erase

ssp_err_t(* qspi_api_t::erase) (qspi_ctrl_t *p_ctrl, uint8_t *p_device_address, uint32_t byte_count)

Erase a certain number of bytes of the flash.

Implemented as

R_QSPI_Erase()
Parameters

[in] p_ctrl Pointer to a driver handle

[in] p_device_address The location in the flash
device address space to
start the erase from

[in] byte_count The number of bytes to
erase

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,442 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Quad SPI Flash Interface > qspi_api_t Struct Reference

◆ infoGet

ssp_err_t(* qspi_api_t::infoGet) (qspi_ctrl_t *const p_ctrl, qspi_info_t *const p_info)

Get information about this specific QSPI flash.

Implemented as

R_QSPI_InfoGet()
Parameters

[in] p_ctrl Control block set in
qspi_api_t::open call for this
timer.

[out] p_info Collection of information for
this QSPI.

◆ open

ssp_err_t(* qspi_api_t::open) (qspi_ctrl_t *p_ctrl, qspi_cfg_t const *const p_cfg)

Open the QSPI driver module.

Implemented as

R_QSPI_Open()
Parameters

[in] p_ctrl Pointer to a driver handle

[in] p_cfg Pointer to a configuration
structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,443 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Quad SPI Flash Interface > qspi_api_t Struct Reference

◆ pageProgram

ssp_err_t(* qspi_api_t::pageProgram) (qspi_ctrl_t *p_ctrl, uint8_t *p_device_address, uint8_t
*p_memory_address, uint32_t byte_count)

Program a page of data to the flash.

Implemented as

R_QSPI_PageProgram()
Parameters

[in] p_ctrl Pointer to a driver handle

[in] p_device_address The location in the flash
device address space to
write the data to

[in] p_memory_address The memory address of the
data to write to the flash
device

[in] byte_count The number of bytes to write

◆ read

ssp_err_t(* qspi_api_t::read) (qspi_ctrl_t *p_ctrl, uint8_t *p_device_address, uint8_t
*p_memory_address, uint32_t byte_count)

Read a block of data from the flash.

Implemented as

R_QSPI_Read()
Parameters

[in] p_ctrl Pointer to a driver handle

[in] p_device_address The location in the flash
device address space to
read

[in] p_memory_address The memory address of a
buffer to place the read data
in

[in] byte_count The number of bytes to read

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,444 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Quad SPI Flash Interface > qspi_api_t Struct Reference

◆ sectorErase

ssp_err_t(* qspi_api_t::sectorErase) (qspi_ctrl_t *p_ctrl, uint8_t *p_device_address)

Erase a sector of the flash.

Implemented as

R_QSPI_SectorErase()
Parameters

[in] p_ctrl Pointer to a driver handle

[in] p_device_address The location in the flash
device address space to
start the erase from

◆ statusGet

ssp_err_t(* qspi_api_t::statusGet) (qspi_ctrl_t *p_ctrl, bool *p_write_in_progress)

Get the write or erase status of the flash.

Implemented as

R_QSPI_StatusGet()
Parameters

[in] p_ctrl Pointer to a driver handle

[in] p_write_in_progress The write or erase status -
TRUE = write/erase in
progress

◆ versionGet

ssp_err_t(* qspi_api_t::versionGet) (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Implemented as

R_QSPI_VersionGet()
Parameters

[out] p_version Code and API version used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,445 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Quad SPI Flash Interface > qspi_api_t Struct Reference

The documentation for this struct was generated from the following file:

r_qspi_api.h

 qspi_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Quad SPI Flash Interface

#include <r_qspi_api.h>

Data Fields

qspi_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

qspi_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

qspi_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_qspi_api.h

5.1.4.31 RTC Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for accessing the Realtime Clock. More...

Data Structures

struct rtc_callback_args_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,446 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface

struct rtc_error_adjustment_cfg_t

struct rtc_error_adjustment_mode_cfg_t

struct rtc_alarm_time_t

struct rtc_info_t

struct rtc_cfg_t

struct rtc_api_t

struct rtc_instance_t

Macros

#define RTC_API_VERSION_MAJOR (2U)

Typedefs

typedef struct tm rtc_time_t

typedef void rtc_ctrl_t

Enumerations

enum rtc_event_t { RTC_EVENT_ALARM_IRQ, RTC_EVENT_PERIODIC_IRQ,
RTC_EVENT_CARRY_IRQ }

enum rtc_clock_source_t { RTC_CLOCK_SOURCE_SUBCLK = 0,
RTC_CLOCK_SOURCE_LOCO = 1 }

enum rtc_status_t { RTC_STATUS_STOPPED = 0, RTC_STATUS_RUNNING =
1 }

enum rtc_error_adjustment_t { RTC_ERROR_ADJUSTMENT_NONE = 0,
RTC_ERROR_ADJUSTMENT_ADD_PRESCALER = 1,
RTC_ERROR_ADJUSTMENT_SUBTRACT_PRESCALER = 2 }

enum rtc_error_adjustment_mode_t {
RTC_ERROR_ADJUSTMENT_MODE_MANUAL = 0,
RTC_ERROR_ADJUSTMENT_MODE_AUTOMATIC = 1 }

enum rtc_error_adjustment_period_t {
RTC_ERROR_ADJUSTMENT_PERIOD_1_MINUTE = 0,
RTC_ERROR_ADJUSTMENT_PERIOD_10_SECOND = 1,
RTC_ERROR_ADJUSTMENT_PERIOD_NONE = 2 }

enum rtc_periodic_irq_select_t {
 RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_256_SECOND = 6,
RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_128_SECOND,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,447 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_64_SECOND,
RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_32_SECOND,
 RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_16_SECOND,
RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_8_SECOND,
RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_4_SECOND,
RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_2_SECOND,
 RTC_PERIODIC_IRQ_SELECT_1_SECOND,
RTC_PERIODIC_IRQ_SELECT_2_SECONDS
}

Detailed Description

Interface for accessing the Realtime Clock.

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

RTC description: RTC Driver

Macro Definition Documentation

◆ RTC_API_VERSION_MAJOR

#define RTC_API_VERSION_MAJOR (2U)

Use of time structure, tm

Typedef Documentation

◆ rtc_ctrl_t

typedef void rtc_ctrl_t

RTC control block. Allocate an instance specific control block to pass into the RTC API calls.

Implemented as

rtc_instance_ctrl_t

◆ rtc_time_t

typedef struct tm rtc_time_t

Date and time structure defined in C standard library <time.h>

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,448 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface

◆ rtc_clock_source_t

enum rtc_clock_source_t

Clock source for the RTC block

Enumerator

RTC_CLOCK_SOURCE_SUBCLK Sub-clock oscillator.

RTC_CLOCK_SOURCE_LOCO Low power On Chip Oscillator.

◆ rtc_error_adjustment_mode_t

enum rtc_error_adjustment_mode_t

Time error adjustment mode settings

Enumerator

RTC_ERROR_ADJUSTMENT_MODE_MANUAL Adjustment mode is set to manual.

RTC_ERROR_ADJUSTMENT_MODE_AUTOMATIC Adjustment mode is set to automatic.

◆ rtc_error_adjustment_period_t

enum rtc_error_adjustment_period_t

Time error adjustment period settings

Enumerator

RTC_ERROR_ADJUSTMENT_PERIOD_1_MINUTE Adjustment period is set to every one minute.

RTC_ERROR_ADJUSTMENT_PERIOD_10_SECOND Adjustment period is set to every ten second.

RTC_ERROR_ADJUSTMENT_PERIOD_NONE Adjustment period not supported in manual
mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,449 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface

◆ rtc_error_adjustment_t

enum rtc_error_adjustment_t

Time error adjustment settings

Enumerator

RTC_ERROR_ADJUSTMENT_NONE Adjustment is not performed.

RTC_ERROR_ADJUSTMENT_ADD_PRESCALER Adjustment is performed by the addition to the
prescaler.

RTC_ERROR_ADJUSTMENT_SUBTRACT_PRESCALE
R

Adjustment is performed by the subtraction
from the prescaler.

◆ rtc_event_t

enum rtc_event_t

Events that can trigger a callback function

Enumerator

RTC_EVENT_ALARM_IRQ Real Time Clock ALARM IRQ.

RTC_EVENT_PERIODIC_IRQ Real Time Clock PERIODIC IRQ.

RTC_EVENT_CARRY_IRQ Real Time Clock CARRY IRQ.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,450 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface

◆ rtc_periodic_irq_select_t

enum rtc_periodic_irq_select_t

Periodic Interrupt select

Enumerator

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_256_SECO
ND

A periodic irq is generated every 1/256
second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_128_SECO
ND

A periodic irq is generated every 1/128
second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_64_SECO
ND

A periodic irq is generated every 1/64 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_32_SECO
ND

A periodic irq is generated every 1/32 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_16_SECO
ND

A periodic irq is generated every 1/16 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_8_SECON
D

A periodic irq is generated every 1/8 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_4_SECON
D

A periodic irq is generated every 1/4 second.

RTC_PERIODIC_IRQ_SELECT_1_DIV_BY_2_SECON
D

A periodic irq is generated every 1/2 second.

RTC_PERIODIC_IRQ_SELECT_1_SECOND A periodic irq is generated every 1 second.

RTC_PERIODIC_IRQ_SELECT_2_SECONDS A periodic irq is generated every 2 seconds.

◆ rtc_status_t

enum rtc_status_t

RTC run state

Enumerator

RTC_STATUS_STOPPED RTC counter is stopped.

RTC_STATUS_RUNNING RTC counter is running.

 rtc_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » RTC Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,451 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface > rtc_callback_args_t Struct Reference

#include <r_rtc_api.h>

Data Fields

rtc_event_t event

 The event can be used to identify what caused the callback
(compare match or error).

void const * p_context

 Placeholder for user data. Set in r_timer_t::open function in
timer_cfg_t.

Detailed Description

Callback function parameter data

The documentation for this struct was generated from the following file:

r_rtc_api.h

 rtc_error_adjustment_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » RTC Interface

#include <r_rtc_api.h>

Data Fields

rtc_error_adjustment_t adjustment_type

 Time error adjustment type setting.

uint8_t adjustment_value

 Time error adjustment value.

Detailed Description

Time error adjustment value configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,452 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface > rtc_error_adjustment_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

r_rtc_api.h

 rtc_error_adjustment_mode_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » RTC Interface

#include <r_rtc_api.h>

Data Fields

rtc_error_adjustment_mode_
t

adjustment_mode

 Time error adjustment mode setting.

rtc_error_adjustment_period
_t

adjustment_period

 Time error adjustment period setting.

Detailed Description

Time error adjustment mode and period configuration

The documentation for this struct was generated from the following file:

r_rtc_api.h

 rtc_alarm_time_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » RTC Interface

#include <r_rtc_api.h>

Data Fields

rtc_time_t time

 Time structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,453 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface > rtc_alarm_time_t Struct Reference

bool sec_match

 Enable the alarm based on a match of the seconds field.

bool min_match

 Enable the alarm based on a match of the minutes field.

bool hour_match

 Enable the alarm based on a match of the hours field.

bool mday_match

 Enable the alarm based on a match of the days field.

bool mon_match

 Enable the alarm based on a match of the months field.

bool year_match

 Enable the alarm based on a match of the years field.

bool dayofweek_match

 Enable the alarm based on a match of the dayofweek field.

Detailed Description

Alarm time setting structure

The documentation for this struct was generated from the following file:

r_rtc_api.h

 rtc_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » RTC Interface

#include <r_rtc_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,454 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface > rtc_info_t Struct Reference

Data Fields

rtc_clock_source_t clock_source

 Clock source for the RTC block.

rtc_status_t status

 RTC run status.

Detailed Description

RTC Information Structure for information returned by infoGet()

The documentation for this struct was generated from the following file:

r_rtc_api.h

 rtc_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » RTC Interface

#include <r_rtc_api.h>

Data Fields

rtc_clock_source_t clock_source

 Clock source for the RTC block.

bool hw_cfg

 Initialize RTC in Open()

uint32_t error_adjustment_value

 Value of the prescaler for error adjustment.

rtc_error_adjustment_t error_adjustment_type

 How the prescaler value is applied.

uint8_t alarm_ipl

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,455 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface > rtc_cfg_t Struct Reference

 Alarm interrupt priority.

uint8_t periodic_ipl

 Periodic interrupt priority.

uint8_t carry_ipl

 Carry interrupt priority.

void(* p_callback)(rtc_callback_args_t *p_args)

 Called from the ISR.

void const * p_context

 Passed to the callback.

void const * p_extend

 RTC hardware dependant configuration.

Detailed Description

User configuration structure, used in open function

The documentation for this struct was generated from the following file:

r_rtc_api.h

 rtc_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » RTC Interface

#include <r_rtc_api.h>

Data Fields

ssp_err_t(* open)(rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

ssp_err_t(* close)(rtc_ctrl_t *const p_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,456 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface > rtc_api_t Struct Reference

ssp_err_t(* configure)(rtc_ctrl_t *const p_ctrl, void *const p_extend)

ssp_err_t(* calendarTimeSet)(rtc_ctrl_t *const p_ctrl, rtc_time_t *p_time, bool
clock_start)

ssp_err_t(* calendarTimeGet)(rtc_ctrl_t *const p_ctrl, rtc_time_t *p_time)

ssp_err_t(* calendarAlarmSet)(rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t
*p_alarm, bool irq_enable_flag)

ssp_err_t(* calendarAlarmGet)(rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t
*p_alarm)

ssp_err_t(* calendarCounterStart)(rtc_ctrl_t *const p_ctrl)

ssp_err_t(* calendarCounterStop)(rtc_ctrl_t *const p_ctrl)

ssp_err_t(* irqEnable)(rtc_ctrl_t *const p_ctrl, rtc_event_t irq)

ssp_err_t(* irqDisable)(rtc_ctrl_t *const p_ctrl, rtc_event_t irq)

ssp_err_t(* periodicIrqRateSet)(rtc_ctrl_t *const p_ctrl, rtc_periodic_irq_select_t
rate)

ssp_err_t(* infoGet)(rtc_ctrl_t *p_ctrl, rtc_info_t *p_rtc_info)

ssp_err_t(* errorAdjustmentModeSet)(rtc_ctrl_t *p_ctrl,
rtc_error_adjustment_mode_cfg_t *p_error_adjustment_mode)

ssp_err_t(* errorAdjustmentSet)(rtc_ctrl_t *p_ctrl, rtc_error_adjustment_cfg_t
*p_error_adjustment_config)

ssp_err_t(* versionGet)(ssp_version_t *version)

Detailed Description

RTC driver structure. General RTC functions implemented at the HAL layer follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,457 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface > rtc_api_t Struct Reference

◆ calendarAlarmGet

ssp_err_t(* rtc_api_t::calendarAlarmGet) (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *p_alarm)

Get the calendar alarm time.

Implemented as

R_RTC_CalendarAlarmGet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[out] p_alarm Pointer to an alarm structure
to fill up with the alarm time

◆ calendarAlarmSet

ssp_err_t(* rtc_api_t::calendarAlarmSet) (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t *p_alarm, bool
irq_enable_flag)

Set the calendar alarm time.

Implemented as

R_RTC_CalendarAlarmSet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[in] p_alarm Pointer to an alarm structure
that contains the alarm time
to set

[in] irq_enable_flag Enable the ALARM irq if set

◆ calendarCounterStart

ssp_err_t(* rtc_api_t::calendarCounterStart) (rtc_ctrl_t *const p_ctrl)

Start the calendar counter.

Implemented as

R_RTC_CalendarCounterStart()
Parameters

[in] p_ctrl Pointer to RTC device handle

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,458 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface > rtc_api_t Struct Reference

◆ calendarCounterStop

ssp_err_t(* rtc_api_t::calendarCounterStop) (rtc_ctrl_t *const p_ctrl)

Stop the calendar counter.

Implemented as

R_RTC_CalendarCounterStop()
Parameters

[in] p_ctrl Pointer to RTC device handle

◆ calendarTimeGet

ssp_err_t(* rtc_api_t::calendarTimeGet) (rtc_ctrl_t *const p_ctrl, rtc_time_t *p_time)

Get the calendar time.

Implemented as

R_RTC_CalendarTimeGet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[out] p_time Pointer to a time structure
that contains the time to get

◆ calendarTimeSet

ssp_err_t(* rtc_api_t::calendarTimeSet) (rtc_ctrl_t *const p_ctrl, rtc_time_t *p_time, bool clock_start)

Set the calendar time.

Implemented as

R_RTC_CalendarTimeSet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[in] p_time Pointer to a time structure
that contains the time to set

[in] clock_start Flag that starts the clock
right after it is set

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,459 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface > rtc_api_t Struct Reference

◆ close

ssp_err_t(* rtc_api_t::close) (rtc_ctrl_t *const p_ctrl)

Close the RTC driver.

Implemented as

R_RTC_Close()
Parameters

[in] p_ctrl Pointer to RTC device
handle.

◆ configure

ssp_err_t(* rtc_api_t::configure) (rtc_ctrl_t *const p_ctrl, void *const p_extend)

Configure the RTC driver.

Implemented as

R_RTC_Configure()
Parameters

[in] p_ctrl Pointer to RTC device
handle.

[in] p_extend Currently not implemented,
pass NULL.

◆ errorAdjustmentModeSet

ssp_err_t(* rtc_api_t::errorAdjustmentModeSet) (rtc_ctrl_t *p_ctrl, rtc_error_adjustment_mode_cfg_t
*p_error_adjustment_mode)

Set time error adjustment mode.

Implemented as

R_RTC_ErrorAdjustmentModeSet()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] p_error_adjustment_mode Pointer to error adjustment
mode configuration structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,460 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface > rtc_api_t Struct Reference

◆ errorAdjustmentSet

ssp_err_t(* rtc_api_t::errorAdjustmentSet) (rtc_ctrl_t *p_ctrl, rtc_error_adjustment_cfg_t
*p_error_adjustment_config)

Set time error adjustment.

Implemented as

R_RTC_ErrorAdjustmentSet()
Parameters

[in] p_ctrl Pointer to control handle
structure

[in] p_error_adjustment_config Pointer to error adjustment
structure

◆ infoGet

ssp_err_t(* rtc_api_t::infoGet) (rtc_ctrl_t *p_ctrl, rtc_info_t *p_rtc_info)

Return the currently configure clock source for the RTC

Implemented as

R_RTC_InfoGet()
Parameters

[in] p_ctrl Pointer to control handle
structure

[out] p_rtc_info Pointer to RTC information
structure

◆ irqDisable

ssp_err_t(* rtc_api_t::irqDisable) (rtc_ctrl_t *const p_ctrl, rtc_event_t irq)

Disable the alarm irq.

Implemented as

R_RTC_IrqDisable()
Parameters

[in] p_ctrl Pointer to RTC device handle

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,461 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface > rtc_api_t Struct Reference

◆ irqEnable

ssp_err_t(* rtc_api_t::irqEnable) (rtc_ctrl_t *const p_ctrl, rtc_event_t irq)

Enable the alarm irq.

Implemented as

R_RTC_IrqEnable()
Parameters

[in] p_ctrl Pointer to RTC device handle

◆ open

ssp_err_t(* rtc_api_t::open) (rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

Open the RTC driver.

Implemented as

R_RTC_Open()
Parameters

[in] p_ctrl Pointer to RTC device handle

[in] p_cfg Pointer to the configuration
structure

◆ periodicIrqRateSet

ssp_err_t(* rtc_api_t::periodicIrqRateSet) (rtc_ctrl_t *const p_ctrl, rtc_periodic_irq_select_t rate)

Set the periodic irq rate

Implemented as

R_RTC_PeriodicIrqRateSet()
Parameters

[in] p_ctrl Pointer to RTC device handle

[in] rate Rate of periodic interrupts

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,462 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface > rtc_api_t Struct Reference

◆ versionGet

ssp_err_t(* rtc_api_t::versionGet) (ssp_version_t *version)

Gets version and stores it in provided pointer p_version.

Implemented as

R_RTC_VersionGet()
Parameters

[out] p_version Code and API version used

The documentation for this struct was generated from the following file:

r_rtc_api.h

 rtc_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » RTC Interface

#include <r_rtc_api.h>

Data Fields

rtc_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

rtc_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

rtc_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,463 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > RTC Interface > rtc_instance_t Struct Reference

The documentation for this struct was generated from the following file:

r_rtc_api.h

5.1.4.32 SD/MMC Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for accessing SD, eMMC, and SDIO devices. More...

Data Structures

struct sdmmc_hw_t

struct sdmmc_info_t

struct sdmmc_callback_args_t

struct sdmmc_cfg_t

struct sdmmc_api_t

struct sdmmc_instance_t

Typedefs

typedef void sdmmc_ctrl_t

Enumerations

enum sdmmc_ready_status_t { SDMMC_STATUS_CARD_NOT_READY =
0x00, SDMMC_STATUS_CARD_READY }

enum sdmmc_card_type_t { SDMMC_CARD_TYPE_MMC,
SDMMC_CARD_TYPE_SD }

enum sdmmc_media_type_t { SDMMC_MEDIA_TYPE_EMBEDDED,
SDMMC_MEDIA_TYPE_CARD }

enum sdmmc_bus_width_t { SDMMC_BUS_WIDTH_1_BIT = 1,
SDMMC_BUS_WIDTH_4_BITS = 4, SDMMC_BUS_WIDTH_8_BITS = 8 }

enum sdmmc_io_transfer_mode_t { SDMMC_IO_MODE_TRANSFER_BYTE =
0, SDMMC_IO_MODE_TRANSFER_BLOCK }

enum sdmmc_io_address_mode_t { SDMMC_IO_ADDRESS_MODE_FIXED =
0, SDMMC_IO_ADDRESS_MODE_INCREMENT }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,464 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface

enum sdmmc_io_write_mode_t { SDMMC_IO_WRITE_MODE_NO_READ = 0,
SDMMC_IO_WRITE_READ_AFTER_WRITE }

enum sdmmc_event_t {
 SDMMC_EVENT_CARD_REMOVED = 0x01,
SDMMC_EVENT_CARD_INSERTED = 0x02, SDMMC_EVENT_ACCESS =
0x04, SDMMC_EVENT_SDIO = 0x08,
 SDMMC_EVENT_TRANSFER_COMPLETE = 0x10,
SDMMC_EVENT_TRANSFER_ERROR = 0x20, SDMMC_EVENT_NONE =
0x00
}

Detailed Description

Interface for accessing SD, eMMC, and SDIO devices.

Summary
The r_sdmmc interface provides standard SD and eMMC media functionality. A complete file system
can be implemented with FileX, sf_el_fx, sf_block_media_sdmmc and r_sdmmc modules. This driver
also supports SDIO. The SD/MMC interface is implemented by:

SDMMC

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

SD/MMC description: SD/MMC Driver and SDIO Driver

Typedef Documentation

◆ sdmmc_ctrl_t

typedef void sdmmc_ctrl_t

SD/MMC control block. Allocate an instance specific control block to pass into the SD/MMC API
calls.

Implemented as

sdmmc_instance_ctrl_t

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,465 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface

◆ sdmmc_bus_width_t

enum sdmmc_bus_width_t

SD/MMC data bus is 1, 4 or 8 bits wide.

Enumerator

SDMMC_BUS_WIDTH_1_BIT Data bus is 1 bit wide.

SDMMC_BUS_WIDTH_4_BITS Data bus is 4 bits wide.

SDMMC_BUS_WIDTH_8_BITS Data bus is 8 bits wide.

◆ sdmmc_card_type_t

enum sdmmc_card_type_t

SD/MMC media uses SD protocol or MMC protocol.

Enumerator

SDMMC_CARD_TYPE_MMC The media is an eMMC device.

SDMMC_CARD_TYPE_SD The media is an SD card.

◆ sdmmc_event_t

enum sdmmc_event_t

Events that can trigger a callback function

Enumerator

SDMMC_EVENT_CARD_REMOVED Card removed event.

SDMMC_EVENT_CARD_INSERTED Card inserted event.

SDMMC_EVENT_ACCESS Access event.

SDMMC_EVENT_SDIO IO event.

SDMMC_EVENT_TRANSFER_COMPLETE Read or write complete.

SDMMC_EVENT_TRANSFER_ERROR Read or write failed.

SDMMC_EVENT_NONE No event.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,466 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface

◆ sdmmc_io_address_mode_t

enum sdmmc_io_address_mode_t

SDIO address mode, configurable in SDIO read/write extended commands.

Enumerator

SDMMC_IO_ADDRESS_MODE_FIXED Write all data to the same address.

SDMMC_IO_ADDRESS_MODE_INCREMENT Increment destination address after each
write.

◆ sdmmc_io_transfer_mode_t

enum sdmmc_io_transfer_mode_t

SDIO transfer mode, configurable in SDIO read/write extended commands.

Enumerator

SDMMC_IO_MODE_TRANSFER_BYTE SDIO byte transfer mode.

SDMMC_IO_MODE_TRANSFER_BLOCK SDIO block transfer mode.

◆ sdmmc_io_write_mode_t

enum sdmmc_io_write_mode_t

Controls the RAW (read after write) flag of CMD52. Used to read back the status after writing a
control register.

Enumerator

SDMMC_IO_WRITE_MODE_NO_READ Write only (do not read back)

SDMMC_IO_WRITE_READ_AFTER_WRITE Read back the register after write.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,467 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface

◆ sdmmc_media_type_t

enum sdmmc_media_type_t

SD/MMC media is embedded or it can be inserted and removed.

Enumerator

SDMMC_MEDIA_TYPE_EMBEDDED The media is an embedded card, or eMMC
device.

SDMMC_MEDIA_TYPE_CARD The media is an pluggable card.

◆ sdmmc_ready_status_t

enum sdmmc_ready_status_t

SD/MMC status

Enumerator

SDMMC_STATUS_CARD_NOT_READY SD card or eMMC device has not been
initialized.

SDMMC_STATUS_CARD_READY SD card or eMMC device has been initialized
and is ready to access.

 sdmmc_hw_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » SD/MMC Interface

#include <r_sdmmc_api.h>

Data Fields

uint8_t channel

 Channel of SD/MMC host interface.

sdmmc_media_type_t media_type

 Embedded or pluggable card.

sdmmc_bus_width_t bus_width

 Device bus width is 1, 4 or 8 bits wide.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,468 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_hw_t Struct Reference

Detailed Description

Channel, media type, bus width defined by the hardware.

The documentation for this struct was generated from the following file:

r_sdmmc_api.h

 sdmmc_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » SD/MMC Interface

#include <r_sdmmc_api.h>

Data Fields

sdmmc_card_type_t card_type

 SD or eMMC.

bool ready

bool hc

 true = Card is High Capacity card

bool sdio

 true = SDIO present

bool write_protected

 true = Card is write protected

bool transfer_in_progress

 true = Card is busy

uint8_t csd_version

 CSD version.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,469 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_info_t Struct Reference

uint8_t device_type

 Speed and data rate (eMMC)

sdmmc_bus_width_t bus_width

 Current media bus width.

uint8_t hs_timing

 High Speed status.

uint32_t sdhi_rca

 Relative Card Address.

uint32_t max_clock_rate

 Maximum clock rate for media card.

uint32_t clock_rate

 Current clock rate.

uint32_t sector_size

 Sector size.

uint32_t sector_count

 Sector count.

uint32_t erase_sector_count

 Minimum erasable unit (in 512 byte sectors)

Detailed Description

Status and other information obtained from the media device.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,470 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_info_t Struct Reference

◆ ready

bool sdmmc_info_t::ready

False if card was removed (only applies if MCU supports card detection and SDnCD pin is
connected).

True otherwise.

If ready is false, the driver must be closed, then reopened with a card inserted.

The documentation for this struct was generated from the following file:

r_sdmmc_api.h

 sdmmc_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » SD/MMC Interface

#include <r_sdmmc_api.h>

Data Fields

sdmmc_event_t event

 The event can be used to identify what caused the callback.

void const * p_context

 Placeholder for user data.

Detailed Description

Callback function parameter data

The documentation for this struct was generated from the following file:

r_sdmmc_api.h

 sdmmc_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » SD/MMC Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,471 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_cfg_t Struct Reference

#include <r_sdmmc_api.h>

Data Fields

sdmmc_hw_t hw

 Channel, media type, bus width defined by the hardware.

transfer_instance_t const * p_lower_lvl_transfer

 Transfer instance used to move data with DMA or DTC.

void(* p_callback)(sdmmc_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 SD/MMC hardware dependent configuration.

uint8_t access_ipl

 Access interrupt priority.

uint8_t sdio_ipl

 SDIO interrupt priority.

uint8_t card_ipl

 Card interrupt priority.

uint8_t dma_req_ipl

 DMA request interrupt priority.

Detailed Description

SD/MMC Configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,472 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

r_sdmmc_api.h

 sdmmc_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » SD/MMC Interface

#include <r_sdmmc_api.h>

Data Fields

ssp_err_t(* open)(sdmmc_ctrl_t *const p_ctrl, sdmmc_cfg_t const *const p_cfg)

ssp_err_t(* close)(sdmmc_ctrl_t *const p_ctrl)

ssp_err_t(* read)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const start_sector, uint32_t const sector_count)

ssp_err_t(* write)(sdmmc_ctrl_t *const p_ctrl, uint8_t const *const p_source,
uint32_t const start_sector, uint32_t const sector_count)

ssp_err_t(* control)(sdmmc_ctrl_t *const p_ctrl, ssp_command_t const
command, void *p_data)

ssp_err_t(* readIo)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t
const function, uint32_t const address)

ssp_err_t(* writeIo)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t
const function, uint32_t const address, sdmmc_io_write_mode_t
const read_after_write)

ssp_err_t(* readIoExt)(sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest,
uint32_t const function, uint32_t const address, uint32_t *const
count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

ssp_err_t(* writeIoExt)(sdmmc_ctrl_t *const p_ctrl, uint8_t const *const
p_source, uint32_t const function, uint32_t const address, uint32_t
const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

ssp_err_t(* IoIntEnable)(sdmmc_ctrl_t *const p_ctrl, bool enable)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

ssp_err_t(* infoGet)(sdmmc_ctrl_t *const p_ctrl, sdmmc_info_t *const p_info)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,473 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_api_t Struct Reference

ssp_err_t(* erase)(sdmmc_ctrl_t *const p_ctrl, uint32_t const start_sector,
uint32_t const sector_count)

Detailed Description

SD/MMC functions implemented at the HAL layer API.

Field Documentation

◆ close

ssp_err_t(* sdmmc_api_t::close) (sdmmc_ctrl_t *const p_ctrl)

Close open SD/MMC device.

Implemented as
R_SDMMC_Close()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,474 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_api_t Struct Reference

◆ control

ssp_err_t(* sdmmc_api_t::control) (sdmmc_ctrl_t *const p_ctrl, ssp_command_t const command,
void *p_data)

The Control function sends control commands to and receives info from the SD/MMC port.

Implemented as
R_SDMMC_Control()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in] command Command to execute. The
list of supported commands
is below.

[in,out] p_data Pointer to data in or out. For
each command, this data
should be cast as follows:

SSP_COMMAND_GET_
SECTOR_COUNT :
[out] (uint32_t *)
p_data
SSP_COMMAND_GET_
SECTOR_SIZE : [out]
(uint32_t *) p_data
SSP_COMMAND_GET_
WRITE_PROTECTED :
[out] (bool *) p_data
SSP_COMMAND_SET_
BLOCK_SIZE : [in]
(uint32_t *) p_data

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,475 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_api_t Struct Reference

◆ erase

ssp_err_t(* sdmmc_api_t::erase) (sdmmc_ctrl_t *const p_ctrl, uint32_t const start_sector, uint32_t
const sector_count)

Erase SD/MMC sectors. The sector size for erase is fixed at 512 bytes. This API is not supported for
SDIO devices.

Implemented as
R_SDMMC_Erase

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in] start_sector First sector to erase. Must be
a multiple of
sdmmc_info_t::erase_sector_
count.

[in] sector_count Number of sectors to erase.
Must be a multiple of
sdmmc_info_t::erase_sector_
count. All sectors must be in
the range of
sdmmc_info_t::sector_count.

◆ infoGet

ssp_err_t(* sdmmc_api_t::infoGet) (sdmmc_ctrl_t *const p_ctrl, sdmmc_info_t *const p_info)

Get SD/MMC device info.

Implemented as
R_SDMMC_InfoGet()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[out] p_info Pointer to return device
information to.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,476 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_api_t Struct Reference

◆ IoIntEnable

ssp_err_t(* sdmmc_api_t::IoIntEnable) (sdmmc_ctrl_t *const p_ctrl, bool enable)

Enables SDIO interrupt for SD/MMC instance. This API is not supported for SD or eMMC memory
devices.

Implemented as
R_SDMMC_IoIntEnable

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in] enable Interrupt enable = true,
interrupt disable = false.

◆ open

ssp_err_t(* sdmmc_api_t::open) (sdmmc_ctrl_t *const p_ctrl, sdmmc_cfg_t const *const p_cfg)

Open an SD/MMC device. If the device is a card, the card must be plugged in prior to calling this
API. This API blocks until the device initialization procedure is complete.

Implemented as
R_SDMMC_Open()

Parameters
[in] p_ctrl Pointer to SD/MMC instance

control block.

[in] p_cfg Pointer to SD/MMC instance
configuration structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,477 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_api_t Struct Reference

◆ read

ssp_err_t(* sdmmc_api_t::read) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t const
start_sector, uint32_t const sector_count)

Read data from an SD/MMC channel. This API is not supported for SDIO devices.

Implemented as
R_SDMMC_Read()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[out] p_dest Pointer to data buffer to read
data to.

[in] start_sector First sector address to read.

[in] sector_count Number of sectors to read.
All sectors must be in the
range of
sdmmc_info_t::sector_count.

◆ readIo

ssp_err_t(* sdmmc_api_t::readIo) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t const
function, uint32_t const address)

Read one byte of I/O data from an SDIO device. This API is not supported for SD or eMMC memory
devices.

Implemented as
R_SDMMC_ReadIo()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[out] p_data Pointer to location to store
data byte.

[in] function SDIO Function Number.

[in] address SDIO register address.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,478 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_api_t Struct Reference

◆ readIoExt

ssp_err_t(* sdmmc_api_t::readIoExt) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_dest, uint32_t
const function, uint32_t const address, uint32_t *const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Read multiple bytes or blocks of I/O data from an SDIO device. This API is not supported for SD or
eMMC memory devices.

Implemented as
R_SDMMC_ReadIoExt()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[out] p_dest Pointer to data buffer to read
data to.

[in] function SDIO Function Number.

[in] address SDIO register address.

[in] count Number of bytes or blocks to
read, maximum 512 bytes or
511 blocks.

[in] transfer_mode Byte or block mode

[in] address_mode Fixed or incrementing
address mode

◆ versionGet

ssp_err_t(* sdmmc_api_t::versionGet) (ssp_version_t *const p_version)

Returns the version of the SD/MMC driver.

Implemented as
R_SDMMC_VersionGet()

Parameters
[out] p_version Pointer to return version

information to.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,479 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_api_t Struct Reference

◆ write

ssp_err_t(* sdmmc_api_t::write) (sdmmc_ctrl_t *const p_ctrl, uint8_t const *const p_source, uint32_t
const start_sector, uint32_t const sector_count)

Write data to SD/MMC channel. This API is not supported for SDIO devices.

Implemented as
R_SDMMC_Write()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in] p_source Pointer to data buffer to
write data from.

[in] start_sector First sector address to write
to.

[in] sector_count Number of sectors to write.
All sectors must be in the
range of
sdmmc_info_t::sector_count.

◆ writeIo

ssp_err_t(* sdmmc_api_t::writeIo) (sdmmc_ctrl_t *const p_ctrl, uint8_t *const p_data, uint32_t const
function, uint32_t const address, sdmmc_io_write_mode_t const read_after_write)

Write one byte of I/O data to an SDIO device. This API is not supported for SD or eMMC memory
devices.

Implemented as
R_SDMMC_WriteIo()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in,out] p_data Pointer to data byte to write.
Read data is also provided
here if read_after_write is
true.

[in] function SDIO Function Number.

[in] address SDIO register address.

[in] read_after_write Whether or not to read back
the same register after
writing

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,480 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_api_t Struct Reference

◆ writeIoExt

ssp_err_t(* sdmmc_api_t::writeIoExt) (sdmmc_ctrl_t *const p_ctrl, uint8_t const *const p_source,
uint32_t const function, uint32_t const address, uint32_t const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Write multiple bytes or blocks of I/O data to an SDIO device. This API is not supported for SD or
eMMC memory devices.

Implemented as
R_SDMMC_WriteIoExt()

Parameters
[in] p_ctrl Pointer to an open SD/MMC

instance control block.

[in] p_source Pointer to data buffer to
write data from.

[in] function_number SDIO Function Number.

[in] address SDIO register address.

[in] count Number of bytes or blocks to
write, maximum 512 bytes
or 511 blocks.

[in] transfer_mode Byte or block mode

[in] address_mode Fixed or incrementing
address mode

The documentation for this struct was generated from the following file:

r_sdmmc_api.h

 sdmmc_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » SD/MMC Interface

#include <r_sdmmc_api.h>

Data Fields

sdmmc_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,481 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SD/MMC Interface > sdmmc_instance_t Struct Reference

sdmmc_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

sdmmc_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_sdmmc_api.h

5.1.4.33 SLCDC Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for Segment LCD controllers. More...

Data Structures

struct slcdc_cfg_t

struct slcdc_api_t

struct slcdc_instance_t

Macros

#define SLCDC_API_VERSION_MAJOR (2U)

Typedefs

typedef uint8_t slcdc_size_t

typedef void slcdc_ctrl_t

Enumerations

enum slcdc_display_state_t { SLCDC_DISPLAY_STATE_CLOSED = 0,
SLCDC_DISPLAY_STATE_OPENED = 1 }

enum slcdc_bias_method_t { SLCDC_BIAS_2 = 0, SLCDC_BIAS_3,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,482 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface

SLCDC_BIAS_4 }

enum slcdc_time_slice_t {
 SLCDC_STATIC = 0, SLCDC_SLICE_2 = 1, SLCDC_SLICE_3 = 2,
SLCDC_SLICE_4 = 3,
 SLCDC_SLICE_8 = 5
}

enum slcdc_wave_form_t { SLCDC_WAVE_A = 0, SLCDC_WAVE_B }

enum slcdc_drive_volt_gen_t { SLCDC_VOLT_EXTERNAL = 0,
SLCDC_VOLT_INTERNAL, SLCDC_VOLT_CAPACITOR }

enum slcdc_display_area_control_blink_t { SLCDC_NOT_BLINKING = 0,
SLCDC_BLINKING }

enum slcdc_display_area_t { SLCDC_DISP_A = 0, SLCDC_DISP_B,
SLCDC_DISP_BLINK }

enum slcdc_display_on_off_t { SLCDC_DISP_OFF = 0, SLCDC_DISP_ON }

enum slcdc_display_enable_disable_t { SLCDC_DISP_DISABLE = 0,
SLCDC_DISP_ENABLE }

enum slcdc_display_clock_t { SLCDC_CLOCK_LOCO = 0x00,
SLCDC_CLOCK_SOSC = 0x01, SLCDC_CLOCK_MOSC = 0x02,
SLCDC_CLOCK_HOCO = 0x03 }

enum slcdc_clk_div_t {
 SLCDC_CLK_DIVISOR_LOCO_4 = 1, SLCDC_CLK_DIVISOR_LOCO_8,
SLCDC_CLK_DIVISOR_LOCO_16, SLCDC_CLK_DIVISOR_LOCO_32,
 SLCDC_CLK_DIVISOR_LOCO_64, SLCDC_CLK_DIVISOR_LOCO_128,
SLCDC_CLK_DIVISOR_LOCO_256, SLCDC_CLK_DIVISOR_LOCO_512,
 SLCDC_CLK_DIVISOR_LOCO_1024, SLCDC_CLK_DIVISOR_HOCO_256
= 17, SLCDC_CLK_DIVISOR_HOCO_512,
SLCDC_CLK_DIVISOR_HOCO_1024,
 SLCDC_CLK_DIVISOR_HOCO_2048,
SLCDC_CLK_DIVISOR_HOCO_4096, SLCDC_CLK_DIVISOR_HOCO_8192
, SLCDC_CLK_DIVISOR_HOCO_16384,
 SLCDC_CLK_DIVISOR_HOCO_32768,
SLCDC_CLK_DIVISOR_HOCO_65536,
SLCDC_CLK_DIVISOR_HOCO_131072,
SLCDC_CLK_DIVISOR_HOCO_262144,
 SLCDC_CLK_DIVISOR_HOCO_524288
}

Detailed Description

Interface for Segment LCD controllers.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,483 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface

Summary
This driver uses the Segment LCD controller (SLCDC) to display data on a Segment LCD.

Implemented by: SLCDC

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

SLCDC Interface description: Segment LCD Driver

Macro Definition Documentation

◆ SLCDC_API_VERSION_MAJOR

#define SLCDC_API_VERSION_MAJOR (2U)

Register definitions, common services and error codes.

Typedef Documentation

◆ slcdc_ctrl_t

typedef void slcdc_ctrl_t

SLCDC control block. Allocate an instance specific control block to pass into the SLCDC API calls.

Implemented as

slcdc_instance_ctrl_tSLCDC control block

◆ slcdc_size_t

typedef uint8_t slcdc_size_t

Size definition for slcdc

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,484 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface

◆ slcdc_bias_method_t

enum slcdc_bias_method_t

LCD display bias method.

Enumerator

SLCDC_BIAS_2 1/2 bias method

SLCDC_BIAS_3 1/3 bias method

SLCDC_BIAS_4 1/4 bias method

◆ slcdc_clk_div_t

enum slcdc_clk_div_t

LCD clock settings

Enumerator

SLCDC_CLK_DIVISOR_LOCO_4 LOCO Clock/4.

SLCDC_CLK_DIVISOR_LOCO_8 LOCO Clock/8.

SLCDC_CLK_DIVISOR_LOCO_16 LOCO Clock/16.

SLCDC_CLK_DIVISOR_LOCO_32 LOCO Clock/32.

SLCDC_CLK_DIVISOR_LOCO_64 LOCO Clock/64.

SLCDC_CLK_DIVISOR_LOCO_128 LOCO Clock/128.

SLCDC_CLK_DIVISOR_LOCO_256 LOCO Clock/256.

SLCDC_CLK_DIVISOR_LOCO_512 LOCO Clock/512.

SLCDC_CLK_DIVISOR_LOCO_1024 LOCO Clock/1024.

SLCDC_CLK_DIVISOR_HOCO_256 HOCO Clock/256.

SLCDC_CLK_DIVISOR_HOCO_512 HOCO Clock/512.

SLCDC_CLK_DIVISOR_HOCO_1024 HOCO Clock/1024.

SLCDC_CLK_DIVISOR_HOCO_2048 HOCO Clock/2048.

SLCDC_CLK_DIVISOR_HOCO_4096 HOCO Clock/4096.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,485 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface

SLCDC_CLK_DIVISOR_HOCO_8192 HOCO Clock/8192.

SLCDC_CLK_DIVISOR_HOCO_16384 HOCO Clock/16384.

SLCDC_CLK_DIVISOR_HOCO_32768 HOCO Clock/32768.

SLCDC_CLK_DIVISOR_HOCO_65536 HOCO Clock/65536.

SLCDC_CLK_DIVISOR_HOCO_131072 HOCO Clock/131072.

SLCDC_CLK_DIVISOR_HOCO_262144 HOCO Clock/262144.

SLCDC_CLK_DIVISOR_HOCO_524288 HOCO Clock/524288.

◆ slcdc_display_area_control_blink_t

enum slcdc_display_area_control_blink_t

Display Data Area Control

Enumerator

SLCDC_NOT_BLINKING Alternately displaying A-pattern and B-pattern
area data.

SLCDC_BLINKING Displaying an A-pattern or B-pattern area
data.

◆ slcdc_display_area_t

enum slcdc_display_area_t

Display Area data

Enumerator

SLCDC_DISP_A Displaying an A-pattern area data.

SLCDC_DISP_B Displaying an B-pattern area data.

SLCDC_DISP_BLINK Alternatively displaying A-pattern and B-
pattern area data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,486 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface

◆ slcdc_display_clock_t

enum slcdc_display_clock_t

LCD Display clock selection

Enumerator

SLCDC_CLOCK_LOCO Display clock source LOCO.

SLCDC_CLOCK_SOSC Display clock source SOSC.

SLCDC_CLOCK_MOSC Display clock source MOSC.

SLCDC_CLOCK_HOCO Display clock source HOCO.

◆ slcdc_display_enable_disable_t

enum slcdc_display_enable_disable_t

LCD Display output enable

Enumerator

SLCDC_DISP_DISABLE Output ground level to segment/common pin.

SLCDC_DISP_ENABLE Output enable.

◆ slcdc_display_on_off_t

enum slcdc_display_on_off_t

LCD Display Enable/Disable

Enumerator

SLCDC_DISP_OFF Display off.

SLCDC_DISP_ON Display on.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,487 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface

◆ slcdc_display_state_t

enum slcdc_display_state_t

Display interface operation state

Enumerator

SLCDC_DISPLAY_STATE_CLOSED Display closed.

SLCDC_DISPLAY_STATE_OPENED Display opened.

◆ slcdc_drive_volt_gen_t

enum slcdc_drive_volt_gen_t

LCD Drive Voltage Generator Select.

Enumerator

SLCDC_VOLT_EXTERNAL External resistance division method.

SLCDC_VOLT_INTERNAL Internal voltage boosting method.

SLCDC_VOLT_CAPACITOR Capacitor split method.

◆ slcdc_time_slice_t

enum slcdc_time_slice_t

Time slice of LCD display.

Enumerator

SLCDC_STATIC Static.

SLCDC_SLICE_2 2-time slice

SLCDC_SLICE_3 3-time slice

SLCDC_SLICE_4 4-time slice

SLCDC_SLICE_8 8-time slice

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,488 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface

◆ slcdc_wave_form_t

enum slcdc_wave_form_t

LCD display waveform select.

Enumerator

SLCDC_WAVE_A Waveform A.

SLCDC_WAVE_B Waveform B.

 slcdc_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » SLCDC Interface

#include <r_slcdc_api.h>

Data Fields

slcdc_display_clock_t slcdc_clock

 LCD clock source (LCDSCKSEL)

slcdc_clk_div_t slcdc_clock_setting

 LCD clock setting (LCDC0)

slcdc_bias_method_t bias_method

 LCD display bias method select (LBAS bit).

slcdc_time_slice_t time_slice

 Time slice of LCD display select (LDTY bit)

slcdc_wave_form_t wave_form

 LCD display waveform select (LWAVE bit).

slcdc_drive_volt_gen_t drive_volt_gen

 LCD Drive Voltage Generator Select (MDSTET bit).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,489 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface > slcdc_cfg_t Struct Reference

Detailed Description

SLCDC configuration block

The documentation for this struct was generated from the following file:

r_slcdc_api.h

 slcdc_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » SLCDC Interface

#include <r_slcdc_api.h>

Data Fields

ssp_err_t(* open)(slcdc_ctrl_t *const p_ctrl, slcdc_cfg_t const *const p_cfg)

ssp_err_t(* write)(slcdc_ctrl_t *const p_ctrl, slcdc_size_t const start_segment,
slcdc_size_t const *const p_data, slcdc_size_t const segment_count)

ssp_err_t(* modify)(slcdc_ctrl_t *const p_ctrl, slcdc_size_t const segment,
slcdc_size_t const data_mask, slcdc_size_t const data)

ssp_err_t(* start)(slcdc_ctrl_t *const p_ctrl)

ssp_err_t(* stop)(slcdc_ctrl_t *const p_ctrl)

ssp_err_t(* contrastIncrease)(slcdc_ctrl_t *const p_ctrl)

ssp_err_t(* contrastDecrease)(slcdc_ctrl_t *const p_ctrl)

ssp_err_t(* setdisplayArea)(slcdc_ctrl_t *const p_ctrl, slcdc_display_area_t const
display_area)

ssp_err_t(* close)(slcdc_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *p_version)

Detailed Description

SLCDC functions implemented at the HAL layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,490 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface > slcdc_api_t Struct Reference

◆ close

ssp_err_t(* slcdc_api_t::close) (slcdc_ctrl_t *const p_ctrl)

Close display device.

Implemented as

R_SLCDC_Close()
Parameters

[in] p_ctrl Pointer to display interface
control block.

◆ contrastDecrease

ssp_err_t(* slcdc_api_t::contrastDecrease) (slcdc_ctrl_t *const p_ctrl)

Decrease the display contrast. Decrease by 1 unit. This function can be selected when the internal
voltage boosting method is used for the drive voltage generator

Implemented as

R_SLCDC_ContrastDecrease()
Parameters

[in] p_ctrl Pointer to display interface
control block.

◆ contrastIncrease

ssp_err_t(* slcdc_api_t::contrastIncrease) (slcdc_ctrl_t *const p_ctrl)

Increase the display contrast. Increase by 1 unit. This function can be selected when the internal
voltage boosting method is used for the drive voltage generator

Implemented as

R_SLCDC_ContrastIncrease()
Parameters

[in] p_ctrl Pointer to display interface
control block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,491 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface > slcdc_api_t Struct Reference

◆ modify

ssp_err_t(* slcdc_api_t::modify) (slcdc_ctrl_t *const p_ctrl, slcdc_size_t const segment, slcdc_size_t
const data_mask, slcdc_size_t const data)

Rewrite data in the SLCD segment. Rewrites the LCD display data in 1-bit units. If a bit is not
specified for rewriting, the value stored in the bit is held as it is. Specifies the data to rewrite

Implemented as

R_SLCDC_Modify()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] seg Specify the segment to be
written.

[in] data_mask Mask the data being
displayed. Set 0 to the bit to
be rewritten and set 1 to the
other bits. Multiple bits can
be rewritten. Setting value
of data_mask, Bit 3 - 0xf7 Bit
2 - 0xfb Bit 1 - 0xfd Bit 0 -
0xfe

[in] data Specify display data to
rewrite to the specified
segment.

◆ open

ssp_err_t(* slcdc_api_t::open) (slcdc_ctrl_t *const p_ctrl, slcdc_cfg_t const *const p_cfg)

Open SLCD device.

Implemented as

R_SLCDC_Open()
Parameters

[in,out] p_ctrl Pointer to display interface
control block. Must be
declared by user. Value set
here.

[in] p_cfg Pointer to display
configuration structure. All
elements of this structure
must be set by user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,492 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface > slcdc_api_t Struct Reference

◆ setdisplayArea

ssp_err_t(* slcdc_api_t::setdisplayArea) (slcdc_ctrl_t *const p_ctrl, slcdc_display_area_t const
display_area)

Set LCD display area. This function sets a specified display area, A-pattern or B-pattern. This
function can be used to set blink on where A-pattern and B-pattern area data will be alternately
displayed.

When using blinking, the RTC is required to operate before this function is executed. To configure
the RTC, follow the steps below. 1) Open RTC 2) Set Periodic interrupt request, 1/2 second 3) Start
RTC counter 4) Enable IRQ, RTC_EVENT_PERIODIC_IRQ Refer to the User’s Manual: Hardware for the
detailed procedure.

Implemented as

R_SLCDC_SetdisplayArea()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] display_area Display area to be used, A-
pattern or B-pattern area.

◆ start

ssp_err_t(* slcdc_api_t::start) (slcdc_ctrl_t *const p_ctrl)

Enable display on the SLCD. Displays the specified data on the LCD. Before that data should be
written to the segments.

Implemented as

R_SLCDC_Start()
Parameters

[in] p_ctrl Pointer to display interface
control block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,493 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface > slcdc_api_t Struct Reference

◆ stop

ssp_err_t(* slcdc_api_t::stop) (slcdc_ctrl_t *const p_ctrl)

Disable display on the SLCD. Stops displaying data on the SLCD.

Implemented as

R_SLCDC_Stop()
Parameters

[in] p_ctrl Pointer to display interface
control block.

◆ versionGet

ssp_err_t(* slcdc_api_t::versionGet) (ssp_version_t *p_version)

Get version.

Implemented as

R_SLCDC_VersionGet()
Parameters

[in] p_version Pointer to the memory to
store the version
information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,494 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface > slcdc_api_t Struct Reference

◆ write

ssp_err_t(* slcdc_api_t::write) (slcdc_ctrl_t *const p_ctrl, slcdc_size_t const start_segment,
slcdc_size_t const *const p_data, slcdc_size_t const segment_count)

Write data to SLCD segment. Specifies the initial display data. Except for 8-time slice, store values
in the lower 4 bits when writing to the A-pattern area, and in the upper 4 bits when writing to the B-
pattern area. The display data is stored in the display data register.

Implemented as

R_SLCDC_Write()
Parameters

[in] p_ctrl Pointer to display interface
control block.

[in] start_segment Specify the start segment
number to be written.

[in] p_data pointer to the display data to
be written to the specified
segments

[in] segment_count Number of segments to be
written

The documentation for this struct was generated from the following file:

r_slcdc_api.h

 slcdc_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » SLCDC Interface

#include <r_slcdc_api.h>

Data Fields

slcdc_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

slcdc_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,495 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SLCDC Interface > slcdc_instance_t Struct Reference

slcdc_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_slcdc_api.h

5.1.4.34 SPI Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for SPI communications. More...

Data Structures

struct spi_callback_args_t

struct spi_cfg_t

struct spi_api_t

struct spi_instance_t

Typedefs

typedef void spi_ctrl_t

Enumerations

enum spi_bit_width_t { SPI_BIT_WIDTH_8_BITS = (1),
SPI_BIT_WIDTH_16_BITS = (2), SPI_BIT_WIDTH_32_BITS = (4) }

enum spi_mode_t { SPI_MODE_MASTER, SPI_MODE_SLAVE }

enum spi_clk_phase_t { SPI_CLK_PHASE_EDGE_ODD,
SPI_CLK_PHASE_EDGE_EVEN }

enum spi_clk_polarity_t { SPI_CLK_POLARITY_LOW,
SPI_CLK_POLARITY_HIGH }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,496 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SPI Interface

enum spi_mode_fault_t { SPI_MODE_FAULT_ERROR_ENABLE,
SPI_MODE_FAULT_ERROR_DISABLE }

enum spi_bit_order_t { SPI_BIT_ORDER_MSB_FIRST,
SPI_BIT_ORDER_LSB_FIRST }

enum spi_event_t {
 SPI_EVENT_TRANSFER_COMPLETE = 1,
SPI_EVENT_TRANSFER_ABORTED, SPI_EVENT_ERR_MODE_FAULT,
SPI_EVENT_ERR_READ_OVERFLOW,
 SPI_EVENT_ERR_PARITY, SPI_EVENT_ERR_OVERRUN,
SPI_EVENT_ERR_FRAMING, SPI_EVENT_ERR_MODE_UNDERRUN
}

enum spi_operation_t { SPI_OPERATION_DO_TX = 0x1,
SPI_OPERATION_DO_RX = 0x2, SPI_OPERATION_DO_TX_RX = 0x3 }

Detailed Description

Interface for SPI communications.

Summary
The SPI Interface provides access to the SPI bus API. The Interface implements the Simple SPI on SCI
HAL layer driver module.

Implemented by:

SPI
Simple SPI on SCI

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

SPI Interface description: SPI Driver

Typedef Documentation

◆ spi_ctrl_t

typedef void spi_ctrl_t

SPI control block. Allocate an instance specific control block to pass into the SPI API calls.

Implemented as

sci_spi_instance_ctrl_t
rspi_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,497 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SPI Interface

Enumeration Type Documentation

◆ spi_bit_order_t

enum spi_bit_order_t

Bit-order

Enumerator

SPI_BIT_ORDER_MSB_FIRST Send MSB first in transmission.

SPI_BIT_ORDER_LSB_FIRST Send LSB first in transmission.

◆ spi_bit_width_t

enum spi_bit_width_t

Data bit width

Enumerator

SPI_BIT_WIDTH_8_BITS Data bit width is 8 bits byte.

SPI_BIT_WIDTH_16_BITS Data bit width is 16 bits word.

SPI_BIT_WIDTH_32_BITS Data bit width is 32 bits long word.

◆ spi_clk_phase_t

enum spi_clk_phase_t

Clock phase

Enumerator

SPI_CLK_PHASE_EDGE_ODD 0: Data sampling on odd edge, data variation
on even edge

SPI_CLK_PHASE_EDGE_EVEN 1: Data variation on odd edge, data sampling
on even edge

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,498 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SPI Interface

◆ spi_clk_polarity_t

enum spi_clk_polarity_t

Clock polarity

Enumerator

SPI_CLK_POLARITY_LOW 0: Clock polarity is low when idle

SPI_CLK_POLARITY_HIGH 1: Clock polarity is high when idle

◆ spi_event_t

enum spi_event_t

SPI events

Enumerator

SPI_EVENT_TRANSFER_COMPLETE The data transfer was completed.

SPI_EVENT_TRANSFER_ABORTED The data transfer was aborted.

SPI_EVENT_ERR_MODE_FAULT Mode fault error.

SPI_EVENT_ERR_READ_OVERFLOW Read overflow error.

SPI_EVENT_ERR_PARITY Parity error.

SPI_EVENT_ERR_OVERRUN Overrun error.

SPI_EVENT_ERR_FRAMING Framing error.

SPI_EVENT_ERR_MODE_UNDERRUN Underrun error.

◆ spi_mode_fault_t

enum spi_mode_fault_t

Mode fault error flag. This error occurs when the device is setup as a master, but the SSLA line
does not seem to be controlled by the master. This usually happens when the connecting device is
also acting as master. A similar situation can also happen when configured as a slave.

Enumerator

SPI_MODE_FAULT_ERROR_ENABLE Mode fault error flag on.

SPI_MODE_FAULT_ERROR_DISABLE Mode fault error flag off.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,499 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SPI Interface

◆ spi_mode_t

enum spi_mode_t

Master or slave operating mode

Enumerator

SPI_MODE_MASTER Channel operates as SPI master.

SPI_MODE_SLAVE Channel operates as SPI slave.

◆ spi_operation_t

enum spi_operation_t

Used by control block only.

Enumerator

SPI_OPERATION_DO_TX perform SPI transmission operation

SPI_OPERATION_DO_RX perform SPI reception operation

SPI_OPERATION_DO_TX_RX perform SPI Transmission and reception
operation

 spi_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » SPI Interface

#include <r_spi_api.h>

Data Fields

uint32_t channel

 Device channel number.

spi_event_t event

 Event code.

void const * p_context

 Context provided to user during callback.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,500 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SPI Interface > spi_callback_args_t Struct Reference

Detailed Description

Common callback parameter definition

The documentation for this struct was generated from the following file:

r_spi_api.h

 spi_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » SPI Interface

#include <r_spi_api.h>

Data Fields

uint8_t channel

 Channel number to be used.

uint8_t rxi_ipl

 Receive interrupt priority.

uint8_t txi_ipl

 Transmit interrupt priority.

uint8_t tei_ipl

 Transmit end interrupt priority.

uint8_t eri_ipl

 Error interrupt priority.

spi_mode_t operating_mode

 Select master or slave operating mode.

spi_clk_phase_t clk_phase

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,501 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SPI Interface > spi_cfg_t Struct Reference

 Data sampling on odd or even clock edge.

spi_clk_polarity_t clk_polarity

 Clock level when idle.

spi_mode_fault_t mode_fault

 Mode fault error (master/slave conflict) flag.

spi_bit_order_t bit_order

 Select to transmit MSB/LSB first.

uint32_t bitrate

 Bits Per Second.

transfer_instance_t const * p_transfer_tx

 To use SPI DTC/DMA write transfer, link a DTC/DMA instance here.
Set to NULL if unused.

transfer_instance_t const * p_transfer_rx

 To use SPI DTC/DMA read transfer, link a DTC/DMA instance here. Set
to NULL if unused.

void(* p_callback)(spi_callback_args_t *p_args)

 Pointer to user callback function.

void const * p_context

 User defined context passed to callback function.

void const * p_extend

 Extended SPI hardware dependent configuration.

Detailed Description

SPI interface configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,502 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SPI Interface > spi_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

r_spi_api.h

 spi_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » SPI Interface

#include <r_spi_api.h>

Data Fields

ssp_err_t(* open)(spi_ctrl_t *p_ctrl, spi_cfg_t const *const p_cfg)

ssp_err_t(* read)(spi_ctrl_t *const p_ctrl, void const *p_dest, uint32_t const
length, spi_bit_width_t const bit_width)

ssp_err_t(* write)(spi_ctrl_t *const p_ctrl, void const *p_src, uint32_t const
length, spi_bit_width_t const bit_width)

ssp_err_t(* writeRead)(spi_ctrl_t *const p_ctrl, void const *p_src, void const
*p_dest, uint32_t const length, spi_bit_width_t const bit_width)

ssp_err_t(* close)(spi_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *p_version)

Detailed Description

Shared Interface definition for SPI

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,503 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SPI Interface > spi_api_t Struct Reference

◆ close

ssp_err_t(* spi_api_t::close) (spi_ctrl_t *const p_ctrl)

Remove power to the SPI channel designated by the handle and disable the associated interrupts.

Implemented as

R_RSPI_Close()
R_SCI_SPI_Close()

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

◆ open

ssp_err_t(* spi_api_t::open) (spi_ctrl_t *p_ctrl, spi_cfg_t const *const p_cfg)

Initialize a channel for SPI communication mode.

Implemented as

R_RSPI_Open()
R_SCI_SPI_Open()

Parameters
[in,out] p_ctrl Pointer to user-provided

storage for the control block.

[in] p_cfg Pointer to SPI configuration
structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,504 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SPI Interface > spi_api_t Struct Reference

◆ read

ssp_err_t(* spi_api_t::read) (spi_ctrl_t *const p_ctrl, void const *p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

Receive data from an SPI device.

Implemented as

R_RSPI_Read()
R_SCI_SPI_Read()

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

[in] length Number of units of data to
be transferred (unit size
specified by the bit_width).

[in] bit_width Data bit width to be
transferred.

[out] p_dest Pointer to destination buffer
into which data will be
copied that is received from
a SPI device. It is the
responsibility of the caller to
ensure that adequate space
is available to hold the
requested data count.

◆ versionGet

ssp_err_t(* spi_api_t::versionGet) (ssp_version_t *p_version)

Get the version information of the underlying driver.

Implemented as

R_RSPI_VersionGet()
R_SCI_SPI_VersionGet()

Parameters
[out] p_version pointer to memory location

to return version number

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,505 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SPI Interface > spi_api_t Struct Reference

◆ write

ssp_err_t(* spi_api_t::write) (spi_ctrl_t *const p_ctrl, void const *p_src, uint32_t const length,
spi_bit_width_t const bit_width)

Transmit data to an SPI device.

Implemented as

R_RSPI_Write()
R_SCI_SPI_Write()

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

[in] p_src Pointer to a source data
buffer from which data will
be transmitted to a SPI
device. The argument must
not be NULL.

[in] length Number of units of data to
be transferred (unit size
specified by the bit_width).

[in] bit_width Data bit width to be
transferred.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,506 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SPI Interface > spi_api_t Struct Reference

◆ writeRead

ssp_err_t(* spi_api_t::writeRead) (spi_ctrl_t *const p_ctrl, void const *p_src, void const *p_dest,
uint32_t const length, spi_bit_width_t const bit_width)

Simultaneously transmit data to an SPI device while receiving data from a SPI device (full duplex).

Implemented as

R_RSPI_WriteRead()
R_SCI_SPI_WriteRead()

Parameters
[in] p_ctrl Pointer to the control block

for the channel.

[in] p_src Pointer to a source data
buffer from which data will
be transmitted to a SPI
device. The argument must
not be NULL.

[out] p_dest Pointer to destination buffer
into which data will be
copied that is received from
a SPI device. It is the
responsibility of the caller to
ensure that adequate space
is available to hold the
requested data count. The
argument must not be NULL.

[in] length Number of units of data to
be transferred (unit size
specified by the bit_width).

[in] bit_width Data bit width to be
transferred.

The documentation for this struct was generated from the following file:

r_spi_api.h

 spi_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » SPI Interface

#include <r_spi_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,507 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > SPI Interface > spi_instance_t Struct Reference

Data Fields

spi_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

spi_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

spi_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_spi_api.h

5.1.4.35 Timer Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for timer functions. More...

Data Structures

struct timer_callback_args_t

struct timer_info_t

struct timer_cfg_t

struct timer_api_t

struct timer_instance_t

Typedefs

typedef uint32_t timer_size_t

typedef void timer_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,508 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface

typedef timer_size_t timer_period_t

Enumerations

enum timer_event_t { TIMER_EVENT_EXPIRED }

enum timer_variant_t { TIMER_VARIANT_32_BIT, TIMER_VARIANT_16_BIT }

enum timer_status_t { TIMER_STATUS_COUNTING,
TIMER_STATUS_STOPPED }

enum timer_mode_t { TIMER_MODE_PERIODIC, TIMER_MODE_ONE_SHOT,
TIMER_MODE_PWM }

enum timer_unit_t {
 TIMER_UNIT_PERIOD_RAW_COUNTS, TIMER_UNIT_PERIOD_NSEC,
TIMER_UNIT_PERIOD_USEC, TIMER_UNIT_PERIOD_MSEC,
 TIMER_UNIT_PERIOD_SEC, TIMER_UNIT_FREQUENCY_HZ,
TIMER_UNIT_FREQUENCY_KHZ
}

enum timer_pwm_unit_t { TIMER_PWM_UNIT_RAW_COUNTS,
TIMER_PWM_UNIT_PERCENT, TIMER_PWM_UNIT_PERCENT_X_1000 }

enum timer_direction_t { TIMER_DIRECTION_DOWN = 0,
TIMER_DIRECTION_UP = 1 }

Detailed Description

Interface for timer functions.

Summary
The general timer interface provides standard timer functionality including periodic mode, one-shot
mode, and free-running timer mode. After each timer cycle (overflow or underflow), an interrupt can
be triggered.

If an instance supports output compare mode, it is provided in the extension configuration
timer_on_<instance>_cfg_t defined in r_<instance>.h.

Implemented by:

GPT
AGT

See also: Input Capture Interface

Related SSP architecture topics:

SSP Interfaces

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,509 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface

SSP Predefined Layers
Using SSP Modules

Timer Interface description: Timer Driver on r_agt and Timer Driver on r_gpt

Typedef Documentation

◆ timer_ctrl_t

typedef void timer_ctrl_t

Timer control block. Allocate an instance specific control block to pass into the timer API calls.

Implemented as

gpt_instance_ctrl_t
agt_instance_ctrl_t

◆ timer_period_t

typedef timer_size_t timer_period_t

DEPRECATED: Recommend using timer_size_t for period.

◆ timer_size_t

typedef uint32_t timer_size_t

Largest supported timer size. Currently up to 32-bit timers are supported. If a 16-bit timer is used,
only the bottom 16 bits of any timer_size_t parameter can be used. Passing in values larger than 16
bits would result in an error.

Enumeration Type Documentation

◆ timer_direction_t

enum timer_direction_t

Direction of timer count

Enumerator

TIMER_DIRECTION_DOWN Timer count goes up.

TIMER_DIRECTION_UP Timer count goes down.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,510 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface

◆ timer_event_t

enum timer_event_t

Events that can trigger a callback function

Enumerator

TIMER_EVENT_EXPIRED Requested timer delay has expired or timer
has wrapped around.

◆ timer_mode_t

enum timer_mode_t

Timer operational modes

Enumerator

TIMER_MODE_PERIODIC Timer will restart after delay periods.

TIMER_MODE_ONE_SHOT Timer will stop after delay periods.

TIMER_MODE_PWM Timer generate PWM output.

◆ timer_pwm_unit_t

enum timer_pwm_unit_t

Units of timer duty cycle value.

Enumerator

TIMER_PWM_UNIT_RAW_COUNTS Period in clock counts.

TIMER_PWM_UNIT_PERCENT Percent unit used for duty cycle.

TIMER_PWM_UNIT_PERCENT_X_1000 Percent multiplied by 1000 for extra
resolution.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,511 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface

◆ timer_status_t

enum timer_status_t

Possible status values returned by timer_api_t::infoGet.

Enumerator

TIMER_STATUS_COUNTING Timer is running.

TIMER_STATUS_STOPPED Timer is stopped.

◆ timer_unit_t

enum timer_unit_t

Units of timer period value.

Enumerator

TIMER_UNIT_PERIOD_RAW_COUNTS Period in clock counts.

TIMER_UNIT_PERIOD_NSEC Period in nanoseconds.

TIMER_UNIT_PERIOD_USEC Period in microseconds.

TIMER_UNIT_PERIOD_MSEC Period in milliseconds.

TIMER_UNIT_PERIOD_SEC Period in seconds.

TIMER_UNIT_FREQUENCY_HZ Frequency in Hz.

TIMER_UNIT_FREQUENCY_KHZ Frequency in kHz.

◆ timer_variant_t

enum timer_variant_t

Timer variant types.

Enumerator

TIMER_VARIANT_32_BIT 32-bit timer

TIMER_VARIANT_16_BIT 16-bit timer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,512 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface > timer_callback_args_t Struct Reference

 timer_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Timer Interface

#include <r_timer_api.h>

Data Fields

void const * p_context

timer_event_t event

 The event can be used to identify what caused the callback (overflow
or error).

Detailed Description

Callback function parameter data

Field Documentation

◆ p_context

void const* timer_callback_args_t::p_context

Placeholder for user data. Set in timer_api_t::open function in timer_cfg_t.

The documentation for this struct was generated from the following file:

r_timer_api.h

 timer_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Timer Interface

#include <r_timer_api.h>

Data Fields

timer_direction_t count_direction

 Clock counting direction of the timer resource.

uint32_t clock_frequency

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,513 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface > timer_info_t Struct Reference

 Clock frequency of the timer resource.

timer_size_t period_counts

 Time in clock counts until timer will expire.

elc_event_t elc_event

 ELC event associated with the count operation of the timer resource.

Detailed Description

Timer information structure to store various information for a timer resource

The documentation for this struct was generated from the following file:

r_timer_api.h

 timer_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Timer Interface

#include <r_timer_api.h>

Data Fields

timer_mode_t mode

 Select enumerated value from timer_mode_t.

uint32_t period

timer_unit_t unit

 Units of timer_cfg_t::period.

timer_size_t duty_cycle

 Duty cycle in units timer_cfg_t::duty_cycle_unit.

timer_pwm_unit_t duty_cycle_unit

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,514 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface > timer_cfg_t Struct Reference

 Units of timer_cfg_t::duty_cycle.

uint8_t channel

uint8_t irq_ipl

 Timer interrupt priority.

bool autostart

void(* p_callback)(timer_callback_args_t *p_args)

void const * p_context

void const * p_extend

 Extension parameter for hardware specific settings.

Detailed Description

User configuration structure, used in open function

Field Documentation

◆ autostart

bool timer_cfg_t::autostart

Whether to start during Open call or not. True: Start during open. False: Don't start during open.

◆ channel

uint8_t timer_cfg_t::channel

Select a channel corresponding to the channel number of the hardware.

◆ p_callback

void(* timer_cfg_t::p_callback) (timer_callback_args_t *p_args)

Callback provided when a timer ISR occurs. Set to NULL for no CPU interrupt.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,515 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface > timer_cfg_t Struct Reference

◆ p_context

void const* timer_cfg_t::p_context

Placeholder for user data. Passed to the user callback in timer_callback_args_t.

◆ period

uint32_t timer_cfg_t::period

Defines when the timer should expire. For a free running counter, set to TIMER_MAX_CLOCK with
unit TIMER_UNIT_PERIOD_RAW_COUNTS

The documentation for this struct was generated from the following file:

r_timer_api.h

 timer_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Timer Interface

#include <r_timer_api.h>

Data Fields

ssp_err_t(* open)(timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

ssp_err_t(* stop)(timer_ctrl_t *const p_ctrl)

ssp_err_t(* start)(timer_ctrl_t *const p_ctrl)

ssp_err_t(* reset)(timer_ctrl_t *const p_ctrl)

ssp_err_t(* counterGet)(timer_ctrl_t *const p_ctrl, timer_size_t *const p_value)

ssp_err_t(* periodSet)(timer_ctrl_t *const p_ctrl, timer_size_t const period,
timer_unit_t const unit)

ssp_err_t(* dutyCycleSet)(timer_ctrl_t *const p_ctrl, timer_size_t const
duty_cycle, timer_pwm_unit_t const duty_cycle_unit, uint8_t const
pin)

ssp_err_t(* infoGet)(timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,516 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface > timer_api_t Struct Reference

ssp_err_t(* close)(timer_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

Detailed Description

Timer API structure. General timer functions implemented at the HAL layer follow this API.

Field Documentation

◆ close

ssp_err_t(* timer_api_t::close) (timer_ctrl_t *const p_ctrl)

Allows driver to be reconfigured and may reduce power consumption.

Implemented as

R_GPT_Close()
R_AGT_Close()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ counterGet

ssp_err_t(* timer_api_t::counterGet) (timer_ctrl_t *const p_ctrl, timer_size_t *const p_value)

Get current counter value and store it in provided pointer p_value.

Implemented as

R_GPT_CounterGet()
R_AGT_CounterGet()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[out] p_value Pointer to store current
counter value.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,517 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface > timer_api_t Struct Reference

◆ dutyCycleSet

ssp_err_t(* timer_api_t::dutyCycleSet) (timer_ctrl_t *const p_ctrl, timer_size_t const duty_cycle,
timer_pwm_unit_t const duty_cycle_unit, uint8_t const pin)

Sets the time until the duty cycle expires.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[in] duty_cycle Time until duty cycle should
expire.

[in] duty_cycle_unit Units of duty_cycle
parameter.

[in] pin Which output pin to update.
Enter the pin number or if
pins are identified by letters,
enter 0 for A, 1 for B, 2 for C,
etc.

◆ infoGet

ssp_err_t(* timer_api_t::infoGet) (timer_ctrl_t *const p_ctrl, timer_info_t *const p_info)

Get the time until the timer expires in clock counts and store it in provided pointer
p_period_counts.

Implemented as

R_GPT_InfoGet()
R_AGT_InfoGet()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[out] p_info Collection of information for
this timer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,518 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface > timer_api_t Struct Reference

◆ open

ssp_err_t(* timer_api_t::open) (timer_ctrl_t *const p_ctrl, timer_cfg_t const *const p_cfg)

Initial configuration.

Implemented as

R_GPT_TimerOpen()
R_AGT_TimerOpen()

Note
To reconfigure after calling this function, call timer_api_t::close first.

Parameters
[in] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

◆ periodSet

ssp_err_t(* timer_api_t::periodSet) (timer_ctrl_t *const p_ctrl, timer_size_t const period, timer_unit_t
const unit)

Set the time until the timer expires.

Implemented as

R_GPT_PeriodSet()
R_AGT_PeriodSet()

Note
Timer expiration may or may not generate a CPU interrupt based on how the timer is configured in
timer_api_t::open.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

[in] period Time until timer should
expire.

[in] unit Units of period parameter.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,519 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface > timer_api_t Struct Reference

◆ reset

ssp_err_t(* timer_api_t::reset) (timer_ctrl_t *const p_ctrl)

Reset the counter to the initial value.

Implemented as

R_GPT_Reset()
R_AGT_Reset()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ start

ssp_err_t(* timer_api_t::start) (timer_ctrl_t *const p_ctrl)

Start the counter.

Implemented as

R_GPT_Start()
R_AGT_Start()

Note
The counter can also be started in the timer_api_t::open function if timer_cfg_t::autostart is true.

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

◆ stop

ssp_err_t(* timer_api_t::stop) (timer_ctrl_t *const p_ctrl)

Stop the counter.

Implemented as

R_GPT_Stop()
R_AGT_Stop()

Parameters
[in] p_ctrl Control block set in

timer_api_t::open call for this
timer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,520 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface > timer_api_t Struct Reference

◆ versionGet

ssp_err_t(* timer_api_t::versionGet) (ssp_version_t *const p_version)

Get version and store it in provided pointer p_version.

Implemented as

R_GPT_VersionGet()
R_AGT_VersionGet()

Parameters
[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_timer_api.h

 timer_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Timer Interface

#include <r_timer_api.h>

Data Fields

timer_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

timer_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

timer_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,521 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Timer Interface > timer_instance_t Struct Reference

The documentation for this struct was generated from the following file:

r_timer_api.h

5.1.4.36 Transfer Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for data transfer functions. More...

Data Structures

struct transfer_properties_t

struct transfer_info_t

struct transfer_callback_args_t

struct transfer_cfg_t

struct transfer_api_t

struct transfer_instance_t

Typedefs

typedef void transfer_ctrl_t

Enumerations

enum transfer_mode_t { TRANSFER_MODE_NORMAL = 0,
TRANSFER_MODE_REPEAT = 1, TRANSFER_MODE_BLOCK = 2 }

enum transfer_size_t { TRANSFER_SIZE_1_BYTE = 0,
TRANSFER_SIZE_2_BYTE = 1, TRANSFER_SIZE_4_BYTE = 2 }

enum transfer_addr_mode_t { TRANSFER_ADDR_MODE_FIXED = 0,
TRANSFER_ADDR_MODE_OFFSET = 1,
TRANSFER_ADDR_MODE_INCREMENTED = 2,
TRANSFER_ADDR_MODE_DECREMENTED = 3 }

enum transfer_repeat_area_t { TRANSFER_REPEAT_AREA_DESTINATION =
0, TRANSFER_REPEAT_AREA_SOURCE = 1 }

enum transfer_chain_mode_t { TRANSFER_CHAIN_MODE_DISABLED = 0,
TRANSFER_CHAIN_MODE_EACH = 2, TRANSFER_CHAIN_MODE_END =
3 }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,522 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface

enum transfer_irq_t { TRANSFER_IRQ_END = 0, TRANSFER_IRQ_EACH = 1 }

enum transfer_start_mode_t { TRANSFER_START_MODE_SINGLE = 0,
TRANSFER_START_MODE_REPEAT = 1 }

Detailed Description

Interface for data transfer functions.

Summary
The transfer interface supports background data transfer (no CPU intervention).

The transfer interface can be implemented by:

DTC
DMAC

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

Transfer Interface description: Transfer Driver on r_dtc and Transfer Driver on r_dmac

Typedef Documentation

◆ transfer_ctrl_t

typedef void transfer_ctrl_t

Transfer control block. Allocate an instance specific control block to pass into the transfer API calls.

Implemented as

dtc_instance_ctrl_t
dmac_instance_ctrl_t

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,523 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface

◆ transfer_addr_mode_t

enum transfer_addr_mode_t

Address mode specifies whether to modify (increment or decrement) pointer after each transfer.

Enumerator

TRANSFER_ADDR_MODE_FIXED Address pointer remains fixed after each
transfer.

TRANSFER_ADDR_MODE_OFFSET Address pointer changes as per the configured
value of offset_byte.

TRANSFER_ADDR_MODE_INCREMENTED Address pointer is incremented by associated
transfer_size_t after each transfer.

TRANSFER_ADDR_MODE_DECREMENTED Address pointer is decremented by associated
transfer_size_t after each transfer.

◆ transfer_chain_mode_t

enum transfer_chain_mode_t

Chain transfer mode options.

Note
Only applies for DTC.

Enumerator

TRANSFER_CHAIN_MODE_DISABLED Chain mode not used.

TRANSFER_CHAIN_MODE_EACH Switch to next transfer after a single transfer
from this transfer_info_t.

TRANSFER_CHAIN_MODE_END Complete the entire transfer defined in this
transfer_info_t before chaining to next
transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,524 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface

◆ transfer_irq_t

enum transfer_irq_t

Interrupt options.

Enumerator

TRANSFER_IRQ_END Interrupt occurs only after last transfer. If this
transfer is chained to a subsequent transfer,
the interrupt will occur only after subsequent
chained transfer(s) are complete.

Warning
DTC triggers the interrupt of the
activation source. Choosing
TRANSFER_IRQ_END with DTC will
prevent activation source interrupts until
the transfer is complete.

TRANSFER_IRQ_EACH Interrupt occurs after each transfer.

Note
Not available in all HAL drivers. See HAL driver
for details.

Warning
This will prevent chained transfers that
would have happened after this one until
the next activation source.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,525 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface

◆ transfer_mode_t

enum transfer_mode_t

Transfer mode describes what will happen when a transfer request occurs.

Enumerator

TRANSFER_MODE_NORMAL In normal mode, each transfer request causes
a transfer of transfer_size_t from the source
pointer to the destination pointer. The transfer
length is decremented and the source and
address pointers are updated according to
transfer_addr_mode_t. After the transfer length
reaches 0, transfer requests will not cause any
further transfers.

TRANSFER_MODE_REPEAT Repeat mode is like normal mode, except that
when the transfer length reaches 0, the pointer
to the repeat area and the transfer length will
be reset to their initial values. If DMAC is used,
the transfer repeats only
transfer_info_t::num_blocks times. After the
transfer repeats transfer_info_t::num_blocks
times, transfer requests will not cause any
further transfers. If DTC is used, the transfer
repeats continuously (no limit to the number of
repeat transfers).

TRANSFER_MODE_BLOCK In block mode, each transfer request causes
transfer_info_t::length transfers of
transfer_size_t. After each individual transfer,
the source and destination pointers are
updated according to transfer_addr_mode_t.
After the block transfer is complete,
transfer_info_t::num_blocks is decremented.
After the transfer_info_t::num_blocks reaches
0, transfer requests will not cause any further
transfers.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,526 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface

◆ transfer_repeat_area_t

enum transfer_repeat_area_t

Repeat area options (source or destination). In TRANSFER_MODE_REPEAT, the selected pointer
returns to its original value after transfer_info_t::length transfers. In TRANSFER_MODE_BLOCK, the
selected pointer returns to its original value after each transfer.

Enumerator

TRANSFER_REPEAT_AREA_DESTINATION Destination area repeated in
TRANSFER_MODE_REPEAT or
TRANSFER_MODE_BLOCK.

TRANSFER_REPEAT_AREA_SOURCE Source area repeated in
TRANSFER_MODE_REPEAT or
TRANSFER_MODE_BLOCK.

◆ transfer_size_t

enum transfer_size_t

Transfer size specifies the size of each individual transfer. Total transfer length = transfer_size_t *
transfer_length_t

Enumerator

TRANSFER_SIZE_1_BYTE Each transfer transfers an 8-bit value.

TRANSFER_SIZE_2_BYTE Address pointer is incremented after each
transfer.

TRANSFER_SIZE_4_BYTE Address pointer is incremented after each
transfer.

◆ transfer_start_mode_t

enum transfer_start_mode_t

Select whether to start single or repeated transfer with software start.

Enumerator

TRANSFER_START_MODE_SINGLE Software start triggers single transfer.

TRANSFER_START_MODE_REPEAT Software start transfer continues until transfer
is complete.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,527 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_properties_t Struct Reference

 transfer_properties_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Transfer Interface

#include <r_transfer_api.h>

Data Fields

uint32_t transfer_length_max

 Maximum number of transfers.

uint16_t transfer_length_remaining

 Number of transfers remaining.

bool in_progress

 Whether or not this transfer is in progress.

Detailed Description

Driver specific information.

The documentation for this struct was generated from the following file:

r_transfer_api.h

 transfer_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Transfer Interface

#include <r_transfer_api.h>

Data Fields

transfer_addr_mode_t dest_addr_mode: 2

transfer_repeat_area_t repeat_area: 1

transfer_irq_t irq: 1

transfer_chain_mode_t chain_mode: 2

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,528 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_info_t Struct Reference

transfer_addr_mode_t src_addr_mode: 2

transfer_size_t size: 2

transfer_mode_t mode: 2

void const *volatile p_src

 Source pointer.

void *volatile p_dest

 Destination pointer.

volatile uint16_t num_blocks

volatile uint16_t length

Detailed Description

This structure specifies the properties of the transfer.

Warning
When using DTC, this structure corresponds to the descriptor block registers required by
the DTC. The following components may be modified by the driver: p_src, p_dest,
num_blocks, and length.
When using DTC, do NOT reuse this structure to configure multiple transfers. Each transfer
must have a unique transfer_info_t.
When using DTC, this structure must not be allocated in a temporary location. Any instance
of this structure must remain in scope until the transfer it is used for is closed.

Note
When using DTC, consider placing instances of this structure in a protected section of memory.

Field Documentation

◆ chain_mode

transfer_chain_mode_t transfer_info_t::chain_mode

Select when the chain transfer ends.

◆ dest_addr_mode

transfer_addr_mode_t transfer_info_t::dest_addr_mode

Select what happens to destination pointer after each transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,529 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_info_t Struct Reference

◆ irq

transfer_irq_t transfer_info_t::irq

Select if interrupts should occur after each individual transfer or after the completion of all planned
transfers.

◆ length

volatile uint16_t transfer_info_t::length

Length of each transfer. Range limited for TRANSFER_MODE_BLOCK and TRANSFER_MODE_REPEAT,
see HAL driver for details.

◆ mode

transfer_mode_t transfer_info_t::mode

Select mode from transfer_mode_t.

◆ num_blocks

volatile uint16_t transfer_info_t::num_blocks

Number of blocks to transfer when using TRANSFER_MODE_BLOCK (both DTC an DMAC) and
TRANSFER_MODE_REPEAT (DMAC only), unused in other modes.

◆ repeat_area

transfer_repeat_area_t transfer_info_t::repeat_area

Select to repeat source or destination area, unused in TRANSFER_MODE_NORMAL.

◆ size

transfer_size_t transfer_info_t::size

Select number of bytes to transfer at once.

See also
transfer_info_t::length.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,530 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_info_t Struct Reference

◆ src_addr_mode

transfer_addr_mode_t transfer_info_t::src_addr_mode

Select what happens to source pointer after each transfer.

The documentation for this struct was generated from the following file:

r_transfer_api.h

 transfer_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Transfer Interface

#include <r_transfer_api.h>

Data Fields

void const * p_context

 Placeholder for user data. Set in r_transfer_t::open function in
transfer_cfg_t.

Detailed Description

Callback function parameter data.

The documentation for this struct was generated from the following file:

r_transfer_api.h

 transfer_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Transfer Interface

#include <r_transfer_api.h>

Data Fields

transfer_info_t * p_info

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,531 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_cfg_t Struct Reference

elc_event_t activation_source

bool auto_enable

uint8_t irq_ipl

void(* p_callback)(transfer_callback_args_t *p_args)

void const * p_context

void const * p_extend

 Extension parameter for hardware specific settings.

Detailed Description

Driver configuration set in transfer_api_t::open. All elements except p_extend are required and must
be initialized.

Field Documentation

◆ activation_source

elc_event_t transfer_cfg_t::activation_source

Select which event will trigger the transfer.

Note
Select ELC_EVENT_ELC_SOFTWARE_EVENT_0 or ELC_EVENT_ELC_SOFTWARE_EVENT_0 for software
activation. When using DTC, these events may only be used once each. DMAC uses internal software start when
either of these events are selected.

◆ auto_enable

bool transfer_cfg_t::auto_enable

Select whether the transfer should be enabled after open.

◆ irq_ipl

uint8_t transfer_cfg_t::irq_ipl

Interrupt priority level.

Warning
Unsupported for DTC except when ELC software events are used. DTC transfers trigger the
interrupt associated with the activation source.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,532 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_cfg_t Struct Reference

◆ p_callback

void(* transfer_cfg_t::p_callback) (transfer_callback_args_t *p_args)

Callback for transfer end interrupt. Set to NULL for no CPU interrupt.

Warning
Unsupported for DTC except when ELC software events are used. DTC transfers trigger the
interrupt associated with the activation source.

◆ p_context

void const* transfer_cfg_t::p_context

Placeholder for user data. Passed to the user p_callback in transfer_callback_args_t.

◆ p_info

transfer_info_t* transfer_cfg_t::p_info

Pointer to transfer configuration options. If using chain transfer (DTC only), this can be a pointer to
an array of chained transfers that will be completed in order.

The documentation for this struct was generated from the following file:

r_transfer_api.h

 transfer_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Transfer Interface

#include <r_transfer_api.h>

Data Fields

ssp_err_t(* open)(transfer_ctrl_t *const p_ctrl, transfer_cfg_t const *const p_cfg)

ssp_err_t(* reset)(transfer_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint16_t const num_transfers)

ssp_err_t(* enable)(transfer_ctrl_t *const p_ctrl)

ssp_err_t(* disable)(transfer_ctrl_t *const p_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,533 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_api_t Struct Reference

ssp_err_t(* start)(transfer_ctrl_t *const p_ctrl, transfer_start_mode_t mode)

ssp_err_t(* stop)(transfer_ctrl_t *const p_ctrl)

ssp_err_t(* infoGet)(transfer_ctrl_t *const p_ctrl, transfer_properties_t *const
p_info)

ssp_err_t(* close)(transfer_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *const p_version)

ssp_err_t(* blockReset)(transfer_ctrl_t *const p_ctrl, void const *p_src, void
*p_dest, uint16_t const length, transfer_size_t size, uint16_t const
num_transfers)

ssp_err_t(* Stop_ActivationRequest)(transfer_ctrl_t *const p_ctrl)

Detailed Description

Transfer functions implemented at the HAL layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,534 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_api_t Struct Reference

◆ blockReset

ssp_err_t(* transfer_api_t::blockReset) (transfer_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint16_t const length, transfer_size_t size, uint16_t const num_transfers)

Reset source address pointer, destination address pointer, and/or length, for block transfer keeping
all other settings the same. Enable the transfer if p_src, p_dest, and length are valid.

Implemented as

R_DMAC_BlockReset()
R_DTC_BlockReset()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

[in] p_src Pointer to source. Set to
NULL if source pointer
should not change.

[in] p_dest Pointer to destination. Set to
NULL if destination pointer
should not change.

[in] length Transfer length in block
mode.In DMAC only.

[in] size Transfer size in block mode.
In DMAC only.

[in] num_transfers number of blocks in block
mode. In DMAC only.

◆ close

ssp_err_t(* transfer_api_t::close) (transfer_ctrl_t *const p_ctrl)

Releases hardware lock. This allows a transfer to be reconfigured using transfer_api_t::open.

Implemented as

R_DTC_Close()
R_DMAC_Close()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,535 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_api_t Struct Reference

◆ disable

ssp_err_t(* transfer_api_t::disable) (transfer_ctrl_t *const p_ctrl)

Disable transfer. Transfers do not occur after the transfer_info_t::activation source event (or when
transfer_api_t::start is called if ELC_EVENT_ELC_SOFTWARE_EVENT_0 or
ELC_EVENT_ELC_SOFTWARE_EVENT_0 is chosen as transfer_info_t::activation_source).

Note
If a transfer is in progress, it will be completed. Subsequent transfer requests do not cause a transfer.

Implemented as

R_DMAC_Disable()
R_DTC_Disable()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

◆ enable

ssp_err_t(* transfer_api_t::enable) (transfer_ctrl_t *const p_ctrl)

Enable transfer. Transfers occur after the activation source event (or when transfer_api_t::start is
called if ELC_EVENT_ELC_SOFTWARE_EVENT_0 or ELC_EVENT_ELC_SOFTWARE_EVENT_0 is chosen
as activation source).

Implemented as

R_DMAC_Enable()
R_DTC_Enable()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,536 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_api_t Struct Reference

◆ infoGet

ssp_err_t(* transfer_api_t::infoGet) (transfer_ctrl_t *const p_ctrl, transfer_properties_t *const p_info)

Provides information about this transfer.

Implemented as

R_DTC_InfoGet()
R_DMAC_InfoGet()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

[out] p_info Driver specific information.

◆ open

ssp_err_t(* transfer_api_t::open) (transfer_ctrl_t *const p_ctrl, transfer_cfg_t const *const p_cfg)

Initial configuration. Enables the transfer if auto_enable is true and p_src, p_dest, and length are
valid. Transfers can also be enabled using transfer_api_t::enable or transfer_api_t::reset.

Implemented as

R_DTC_Open()
R_DMAC_Open()

Parameters
[in,out] p_ctrl Pointer to control block.

Must be declared by user.
Elements set here.

[in] p_cfg Pointer to configuration
structure. All elements of
this structure must be set by
user.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,537 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_api_t Struct Reference

◆ reset

ssp_err_t(* transfer_api_t::reset) (transfer_ctrl_t *const p_ctrl, void const *p_src, void *p_dest,
uint16_t const num_transfers)

Reset source address pointer, destination address pointer, and/or length, keeping all other settings
the same. Enable the transfer if p_src, p_dest, and length are valid.

Implemented as

R_DTC_Reset()
R_DMAC_Reset()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

[in] p_src Pointer to source. Set to
NULL if source pointer
should not change.

[in] p_dest Pointer to destination. Set to
NULL if destination pointer
should not change.

[in] num_transfers Transfer length in normal
mode or number of blocks in
block mode. In DMAC only,
resets number of repeats
(initially stored in
transfer_info_t::num_blocks)
in repeat mode. Not used in
repeat mode for DTC.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,538 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_api_t Struct Reference

◆ start

ssp_err_t(* transfer_api_t::start) (transfer_ctrl_t *const p_ctrl, transfer_start_mode_t mode)

Start transfer in software.

Warning
Only works if ELC_EVENT_ELC_SOFTWARE_EVENT_0 or
ELC_EVENT_ELC_SOFTWARE_EVENT_0 is chosen as transfer_info_t::activation_source.

Note
DTC only supports TRANSFER_START_MODE_SINGLE. DTC does not support
TRANSFER_START_MODE_REPEAT.

Implemented as

R_DMAC_Start()
R_DTC_Start()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

[in] mode Select mode from
transfer_start_mode_t.

◆ stop

ssp_err_t(* transfer_api_t::stop) (transfer_ctrl_t *const p_ctrl)

Stop transfer in software. The transfer will stop after completion of the current transfer.

Note
Not supported for DTC.
Only applies for transfers started with TRANSFER_START_MODE_REPEAT.

Warning
Only works if ELC_EVENT_ELC_SOFTWARE_EVENT_0 or
ELC_EVENT_ELC_SOFTWARE_EVENT_0 is chosen as transfer_info_t::activation_source.

Implemented as

R_DMAC_Stop()
Parameters

[in] p_ctrl Control block set in
transfer_api_t::open call for
this transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,539 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_api_t Struct Reference

◆ Stop_ActivationRequest

ssp_err_t(* transfer_api_t::Stop_ActivationRequest) (transfer_ctrl_t *const p_ctrl)

Clears the DMA activation request with a DMA dummy transfer as per flowchart in the hardware
manual. Implements transfer_api_t::Stop_ActivationRequest.

Note
This function to be used only in scenario when a DMA activation request source might occur in the next request
after a DMA transfer completes. If this happens, the DMA transfer starts and the DMA activation request is held in
DMAC.

Implemented as

R_DMAC_Stop_ActivationRequest()
R_DTC_Stop_ActivationRequest()

Parameters
[in] p_ctrl Control block set in

transfer_api_t::open call for
this transfer.

◆ versionGet

ssp_err_t(* transfer_api_t::versionGet) (ssp_version_t *const p_version)

Gets version and stores it in provided pointer p_version.

Implemented as

R_DTC_VersionGet()
R_DMAC_VersionGet()

Parameters
[out] p_version Code and API version used.

The documentation for this struct was generated from the following file:

r_transfer_api.h

 transfer_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » Transfer Interface

#include <r_transfer_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,540 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > Transfer Interface > transfer_instance_t Struct Reference

Data Fields

transfer_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

transfer_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

transfer_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_transfer_api.h

5.1.4.37 UART Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for UART communications. More...

Data Structures

struct uart_info_t

struct uart_callback_args_t

struct uart_cfg_t

struct uart_api_t

struct uart_instance_t

Typedefs

typedef void uart_ctrl_t

Enumerations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,541 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > UART Interface

enum uart_event_t {
 UART_EVENT_RX_COMPLETE = (1UL << 0),
UART_EVENT_TX_COMPLETE = (1UL << 1),
UART_EVENT_ERR_PARITY = (1UL << 2),
UART_EVENT_ERR_FRAMING = (1UL << 3),
 UART_EVENT_BREAK_DETECT = (1UL << 4),
UART_EVENT_ERR_OVERFLOW = (1UL << 5),
UART_EVENT_ERR_RXBUF_OVERFLOW = (1UL << 6),
UART_EVENT_RX_CHAR = (1UL << 7),
 UART_EVENT_TX_DATA_EMPTY = (1UL << 8)
}

enum uart_data_bits_t { UART_DATA_BITS_8, UART_DATA_BITS_7,
UART_DATA_BITS_9 }

enum uart_parity_t { UART_PARITY_OFF = 0U, UART_PARITY_EVEN = 2U,
UART_PARITY_ODD = 3U }

enum uart_stop_bits_t { UART_STOP_BITS_1 = 0U, UART_STOP_BITS_2 =
1U }

enum uart_dir_t { UART_DIR_RX_TX = 0U, UART_DIR_RX = 1U,
UART_DIR_TX = 2U }

enum uart_mode_t { UART_MODE_RS232 = 0U, UART_MODE_RS485 = 1U }

enum uart_rs485_type_t { UART_RS485_HD = 0U, UART_RS485_FD = 1U }

Detailed Description

Interface for UART communications.

Summary
The UART interface provides common APIs for UART HAL drivers. The UART interface supports the
following features:

Full-duplex UART communication
Generic UART parameter setting
Interrupt driven transmit/receive processing
Callback function with returned event code
Runtime baud-rate change
Hardware resource locking during a transaction
CTS/RTS hardware flow control support (with an associated IOPORT pin)
Circular buffer support
Runtime Transmit/Receive circular buffer flushing

Implemented by:

UART on SCI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,542 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > UART Interface

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

UART Interface description: UART Driver

Typedef Documentation

◆ uart_ctrl_t

typedef void uart_ctrl_t

UART control block. Allocate an instance specific control block to pass into the UART API calls.

Implemented as

sci_uart_instance_ctrl_t

Enumeration Type Documentation

◆ uart_data_bits_t

enum uart_data_bits_t

UART Data bit length definition

Enumerator

UART_DATA_BITS_8 Data bits 8-bit.

UART_DATA_BITS_7 Data bits 7-bit.

UART_DATA_BITS_9 Data bits 9-bit.

◆ uart_dir_t

enum uart_dir_t

UART transaction definition

Enumerator

UART_DIR_RX_TX Both RX and TX.

UART_DIR_RX Only RX.

UART_DIR_TX Only TX.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,543 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > UART Interface

◆ uart_event_t

enum uart_event_t

UART Event codes

Enumerator

UART_EVENT_RX_COMPLETE Receive complete event.

UART_EVENT_TX_COMPLETE Transmit complete event.

UART_EVENT_ERR_PARITY Parity error event.

UART_EVENT_ERR_FRAMING Mode fault error event.

UART_EVENT_BREAK_DETECT Break detect error event.

UART_EVENT_ERR_OVERFLOW FIFO Overflow error event.

UART_EVENT_ERR_RXBUF_OVERFLOW DEPRECATED: Receive buffer overflow error
event.

UART_EVENT_RX_CHAR Character received.

UART_EVENT_TX_DATA_EMPTY Last byte is transmitting, ready for more data.

◆ uart_mode_t

enum uart_mode_t

UART communication mode definition

Enumerator

UART_MODE_RS232 Enables RS232 communication mode.

UART_MODE_RS485 Enables RS485 communication mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,544 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > UART Interface

◆ uart_parity_t

enum uart_parity_t

UART Parity definition

Enumerator

UART_PARITY_OFF No parity.

UART_PARITY_EVEN Even parity.

UART_PARITY_ODD Odd parity.

◆ uart_rs485_type_t

enum uart_rs485_type_t

UART RS485 communication channel type definition

Enumerator

UART_RS485_HD Uses RS485 half duplex communication
channel.

UART_RS485_FD Uses RS485 full duplex communication
channel.

◆ uart_stop_bits_t

enum uart_stop_bits_t

UART Stop bits definition

Enumerator

UART_STOP_BITS_1 Stop bit 1-bit.

UART_STOP_BITS_2 Stop bits 2-bit.

 uart_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » UART Interface

#include <r_uart_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,545 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > UART Interface > uart_info_t Struct Reference

Data Fields

uint32_t write_bytes_max

uint32_t read_bytes_max

Detailed Description

UART driver specific information

Field Documentation

◆ read_bytes_max

uint32_t uart_info_t::read_bytes_max

Maximum bytes that are available to read at one time. Only applies if uart_cfg_t::p_transfer_rx is
not NULL.

◆ write_bytes_max

uint32_t uart_info_t::write_bytes_max

Maximum bytes that can be written at this time. Only applies if uart_cfg_t::p_transfer_tx is not
NULL.

The documentation for this struct was generated from the following file:

r_uart_api.h

 uart_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » UART Interface

#include <r_uart_api.h>

Data Fields

uint32_t channel

 Device channel number.

uart_event_t event

 Event code.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,546 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > UART Interface > uart_callback_args_t Struct Reference

uint32_t data

void const * p_context

 Context provided to user during callback.

Detailed Description

UART Callback parameter definition

Field Documentation

◆ data

uint32_t uart_callback_args_t::data

Contains the next character received for the events UART_EVENT_RX_CHAR,
UART_EVENT_ERR_PARITY, UART_EVENT_ERR_FRAMING, or UART_EVENT_ERR_OVERFLOW.
Otherwise unused.

The documentation for this struct was generated from the following file:

r_uart_api.h

 uart_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » UART Interface

#include <r_uart_api.h>

Data Fields

uint8_t channel

 Select a channel corresponding to the channel number of the
hardware.

uint32_t baud_rate

 Baud rate, i.e. 9600, 19200, 115200.

uart_data_bits_t data_bits

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,547 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > UART Interface > uart_cfg_t Struct Reference

 Data bit length (8 or 7 or 9)

uart_parity_t parity

 Parity type (none or odd or even)

uart_stop_bits_t stop_bits

 Stop bit length (1 or 2)

bool ctsrts_en

 CTS/RTS hardware flow control enable.

uint8_t rxi_ipl

 Receive interrupt priority.

uint8_t txi_ipl

 Transmit interrupt priority.

uint8_t tei_ipl

 Transmit end interrupt priority.

uint8_t eri_ipl

 Error interrupt priority.

transfer_instance_t const * p_transfer_rx

transfer_instance_t const * p_transfer_tx

void(* p_callback)(uart_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 User defined context passed into callback function.

void const * p_extend

 UART hardware dependent configuration.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,548 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > UART Interface > uart_cfg_t Struct Reference

Detailed Description

UART Configuration

Field Documentation

◆ p_transfer_rx

transfer_instance_t const* uart_cfg_t::p_transfer_rx

Optional transfer instance used to receive multiple bytes without interrupts. Set to NULL if unused.
If NULL, the number of bytes allowed in the read API is limited to one byte at a time.

◆ p_transfer_tx

transfer_instance_t const* uart_cfg_t::p_transfer_tx

Optional transfer instance used to send multiple bytes without interrupts. Set to NULL if unused. If
NULL, the number of bytes allowed in the write APIs is limited to one byte at a time.

The documentation for this struct was generated from the following file:

r_uart_api.h

 uart_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » UART Interface

#include <r_uart_api.h>

Data Fields

ssp_err_t(* open)(uart_ctrl_t *const p_ctrl, uart_cfg_t const *const p_cfg)

ssp_err_t(* read)(uart_ctrl_t *const p_ctrl, uint8_t const *const p_dest, uint32_t
const bytes)

ssp_err_t(* write)(uart_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint32_t
const bytes)

ssp_err_t(* baudSet)(uart_ctrl_t *const p_ctrl, uint32_t const baudrate)

ssp_err_t(* infoGet)(uart_ctrl_t *const p_ctrl, uart_info_t *const p_info)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,549 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > UART Interface > uart_api_t Struct Reference

ssp_err_t(* close)(uart_ctrl_t *const p_ctrl)

ssp_err_t(* versionGet)(ssp_version_t *p_version)

ssp_err_t(* communicationAbort)(uart_ctrl_t *const p_ctrl, uart_dir_t
communication_to_abort)

Detailed Description

Shared Interface definition for UART

Field Documentation

◆ baudSet

ssp_err_t(* uart_api_t::baudSet) (uart_ctrl_t *const p_ctrl, uint32_t const baudrate)

Change baud rate.

Warning
Calling this API aborts any in-progress transmission and disables reception until the new
baud settings have been applied.

Implemented as

R_SCI_UartBaudSet()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in] baudrate Baud rate in bps.

◆ close

ssp_err_t(* uart_api_t::close) (uart_ctrl_t *const p_ctrl)

Close UART device.

Implemented as

R_SCI_UartClose()
Parameters

[in] p_ctrl Pointer to the UART control
block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,550 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > UART Interface > uart_api_t Struct Reference

◆ communicationAbort

ssp_err_t(* uart_api_t::communicationAbort) (uart_ctrl_t *const p_ctrl, uart_dir_t
communication_to_abort)

Abort ongoing transfer.

Implemented as

R_SCI_UartAbort()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in] communication_to_abort Type of abort request.

◆ infoGet

ssp_err_t(* uart_api_t::infoGet) (uart_ctrl_t *const p_ctrl, uart_info_t *const p_info)

Get the driver specific information.

Implemented as

R_SCI_UartInfoGet()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in] baudrate Baud rate in bps.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,551 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > UART Interface > uart_api_t Struct Reference

◆ open

ssp_err_t(* uart_api_t::open) (uart_ctrl_t *const p_ctrl, uart_cfg_t const *const p_cfg)

Open UART device.

Implemented as

R_SCI_UartOpen()
Parameters

[in,out] p_ctrl Pointer to the UART control
block Must be declared by
user. Value set here.

[in] uart_cfg_t Pointer to UART
configuration structure. All
elements of this structure
must be set by user.

◆ read

ssp_err_t(* uart_api_t::read) (uart_ctrl_t *const p_ctrl, uint8_t const *const p_dest, uint32_t const
bytes)

Read from UART device. If a transfer instance is used for reception, the received bytes are stored
directly in the read input buffer. When a transfer is complete, the callback is called with event
UART_EVENT_RX_COMPLETE. Bytes received outside an active transfer are received in the callback
function with event UART_EVENT_RX_CHAR. The maximum transfer size is reported by infoGet().

Implemented as

R_SCI_UartRead()
Parameters

[in] p_ctrl Pointer to the UART control
block for the channel.

[in] p_dest Destination address to read
data from.

[in] bytes Read data length. Only
applicable if
uart_cfg_t::p_transfer_rx is
not NULL. Otherwise all read
bytes will be provided
through the callback set in
uart_cfg_t::p_callback.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,552 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > UART Interface > uart_api_t Struct Reference

◆ versionGet

ssp_err_t(* uart_api_t::versionGet) (ssp_version_t *p_version)

Get version.

Implemented as

R_SCI_UartVersionGet()
Parameters

[in] p_version Pointer to the memory to
store the version
information.

◆ write

ssp_err_t(* uart_api_t::write) (uart_ctrl_t *const p_ctrl, uint8_t const *const p_src, uint32_t const
bytes)

Write to UART device. The write buffer is used until write is complete. Do not overwrite write buffer
contents until the write is finished. When the write is complete (all bytes are fully transmitted on
the wire), the callback called with event UART_EVENT_TX_COMPLETE. The maximum transfer size is
reported by infoGet().

Implemented as

R_SCI_UartWrite()
Parameters

[in] p_ctrl Pointer to the UART control
block.

[in] p_src Source address to write data
to.

[in] bytes Write data length.

The documentation for this struct was generated from the following file:

r_uart_api.h

 uart_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » UART Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,553 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > UART Interface > uart_instance_t Struct Reference

#include <r_uart_api.h>

Data Fields

uart_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

uart_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

uart_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_uart_api.h

5.1.4.38 WDT Interface
Renesas Synergy Software Package Reference » HAL Interfaces

Interface for watch dog timer functions. More...

Data Structures

struct wdt_callback_args_t

struct wdt_timeout_values_t

struct wdt_cfg_t

struct wdt_api_t

struct wdt_instance_t

Typedefs

typedef void wdt_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,554 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface

Enumerations

enum wdt_timeout_t {
 WDT_TIMEOUT_128 = 0, WDT_TIMEOUT_512, WDT_TIMEOUT_1024,
WDT_TIMEOUT_2048,
 WDT_TIMEOUT_4096, WDT_TIMEOUT_8192, WDT_TIMEOUT_16384
}

enum wdt_clock_division_t {
 WDT_CLOCK_DIVISION_1 = 0x0000u, WDT_CLOCK_DIVISION_4 =
0x0010u, WDT_CLOCK_DIVISION_16 = 0x0020u,
WDT_CLOCK_DIVISION_32 = 0x0030u,
 WDT_CLOCK_DIVISION_64 = 0x0040u, WDT_CLOCK_DIVISION_128
= 0x00F0u, WDT_CLOCK_DIVISION_256 = 0x0050u,
WDT_CLOCK_DIVISION_512 = 0x0060u,
 WDT_CLOCK_DIVISION_2048 = 0x0070u,
WDT_CLOCK_DIVISION_8192 = 0x0080u
}

enum wdt_window_start_t { WDT_WINDOW_START_25 = 0x0000u,
WDT_WINDOW_START_50 = 0x1000u, WDT_WINDOW_START_75 =
0x2000u, WDT_WINDOW_START_100 = 0x3000u }

enum wdt_window_end_t { WDT_WINDOW_END_75 = 0x0000u,
WDT_WINDOW_END_50 = 0x0100u, WDT_WINDOW_END_25 =
0x0200u, WDT_WINDOW_END_0 = 0x0300u }

enum wdt_reset_control_t { WDT_RESET_CONTROL_NMI = 0x00u,
WDT_RESET_CONTROL_RESET = 0x80u }

enum wdt_stop_control_t { WDT_STOP_CONTROL_DISABLE = 0x00u,
WDT_STOP_CONTROL_ENABLE = 0x80u }

enum wdt_status_t { WDT_STATUS_NO_ERROR = 0x00u,
WDT_STATUS_UNDERFLOW_ERROR = 0x01u,
WDT_STATUS_REFRESH_ERROR = 0x02u,
WDT_STATUS_UNDERFLOW_AND_REFRESH_ERROR = 0x03u }

enum wdt_start_mode_t { WDT_START_MODE_REGISTER = 0,
WDT_START_MODE_AUTO, WDT_START_MODE_DISABLED }

Detailed Description

Interface for watch dog timer functions.

Summary
The WDT interface for the Watchdog Timer (WDT) peripheral provides watchdog functionality
including resetting the device or generating an interrupt.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,555 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface

See Also WDT Interface and Thread Monitor Framework Interface

The watchdog timer interface can be implemented by:

WDT
IWDT

Related SSP architecture topics:

SSP Interfaces
SSP Predefined Layers
Using SSP Modules

WDT Interface description: Watchdog Driver

Typedef Documentation

◆ wdt_ctrl_t

typedef void wdt_ctrl_t

WDT control block. Allocate an instance specific control block to pass into the WDT API calls.

Implemented as

wdt_instance_ctrl_t
iwdt_instance_ctrl_t

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,556 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface

◆ wdt_clock_division_t

enum wdt_clock_division_t

WDT clock division ratio.

Enumerator

WDT_CLOCK_DIVISION_1 CLK/1.

WDT_CLOCK_DIVISION_4 CLK/4.

WDT_CLOCK_DIVISION_16 CLK/16.

WDT_CLOCK_DIVISION_32 CLK/32.

WDT_CLOCK_DIVISION_64 CLK/64.

WDT_CLOCK_DIVISION_128 CLK/128.

WDT_CLOCK_DIVISION_256 CLK/256.

WDT_CLOCK_DIVISION_512 CLK/512.

WDT_CLOCK_DIVISION_2048 CLK/2048.

WDT_CLOCK_DIVISION_8192 CLK/8192.

◆ wdt_reset_control_t

enum wdt_reset_control_t

WDT Counter underflow and refresh error control.

Enumerator

WDT_RESET_CONTROL_NMI NMI request when counter underflows.

WDT_RESET_CONTROL_RESET Reset request when counter underflows.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,557 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface

◆ wdt_start_mode_t

enum wdt_start_mode_t

WDT start mode. Used to check the WDT is configured correctly.

Enumerator

WDT_START_MODE_REGISTER WDT is to be configured using the WDT
registers.

WDT_START_MODE_AUTO WDT is to be configured using OFS0 hardware
register.

WDT_START_MODE_DISABLED WDT is disabled.

◆ wdt_status_t

enum wdt_status_t

WDT status

Enumerator

WDT_STATUS_NO_ERROR No status flags set.

WDT_STATUS_UNDERFLOW_ERROR Underflow flag set.

WDT_STATUS_REFRESH_ERROR Refresh error flag set. Refresh outside of
permitted.

WDT_STATUS_UNDERFLOW_AND_REFRESH_ERR
OR

Underflow and refresh error flags set.

◆ wdt_stop_control_t

enum wdt_stop_control_t

WDT Counter operation in sleep mode.

Enumerator

WDT_STOP_CONTROL_DISABLE Count will not stop when device enters sleep
mode.

WDT_STOP_CONTROL_ENABLE Count will automatically stop when device
enters sleep mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,558 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface

◆ wdt_timeout_t

enum wdt_timeout_t

WDT time-out periods.

Enumerator

WDT_TIMEOUT_128 128 clock cycles

WDT_TIMEOUT_512 512 clock cycles

WDT_TIMEOUT_1024 1024 clock cycles

WDT_TIMEOUT_2048 2048 clock cycles

WDT_TIMEOUT_4096 4096 clock cycles

WDT_TIMEOUT_8192 8192 clock cycles

WDT_TIMEOUT_16384 16384 clock cycles

◆ wdt_window_end_t

enum wdt_window_end_t

WDT refresh permitted period window end position.

Enumerator

WDT_WINDOW_END_75 End position = 75%.

WDT_WINDOW_END_50 End position = 50%.

WDT_WINDOW_END_25 End position = 25%.

WDT_WINDOW_END_0 End position = 0%.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,559 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface

◆ wdt_window_start_t

enum wdt_window_start_t

WDT refresh permitted period window start position.

Enumerator

WDT_WINDOW_START_25 Start position = 25%.

WDT_WINDOW_START_50 Start position = 50%.

WDT_WINDOW_START_75 Start position = 75%.

WDT_WINDOW_START_100 Start position = 100%.

 wdt_callback_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » WDT Interface

#include <r_wdt_api.h>

Data Fields

void const * p_context

 Placeholder for user data. Set in wdt_api_t::open function in
wdt_cfg_t.

Detailed Description

Callback function parameter data

The documentation for this struct was generated from the following file:

r_wdt_api.h

 wdt_timeout_values_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » WDT Interface

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,560 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface > wdt_timeout_values_t Struct Reference

#include <r_wdt_api.h>

Data Fields

uint32_t clock_frequency_hz

 Frequency of watchdog clock after divider.

uint32_t timeout_clocks

 Timeout period in units of watchdog clock ticks.

Detailed Description

WDT timeout data. Used to return frequency of WDT clock and timeout period

The documentation for this struct was generated from the following file:

r_wdt_api.h

 wdt_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » WDT Interface

#include <r_wdt_api.h>

Data Fields

wdt_start_mode_t start_mode

 The expected start mode for the WDT.

bool autostart

wdt_timeout_t timeout

 Timeout period.

wdt_clock_division_t clock_division

 Clock divider.

wdt_window_start_t window_start

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,561 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface > wdt_cfg_t Struct Reference

 Refresh permitted window start position.

wdt_window_end_t window_end

 Refresh permitted window end position.

wdt_reset_control_t reset_control

 Select NMI or reset generated on underflow.

wdt_stop_control_t stop_control

 Select whether counter operates in sleep mode.

void(* p_callback)(wdt_callback_args_t *p_args)

 Callback provided when a WDT NMI ISR occurs.

void const * p_context

void const * p_extend

 Placeholder for user extension.

Detailed Description

WDT configuration parameters.

Field Documentation

◆ autostart

bool wdt_cfg_t::autostart

When true the WDT is started as part of its configuration (register start mode). If false the WDT
needs to be started manually by calling the refresh API.

◆ p_context

void const* wdt_cfg_t::p_context

Placeholder for user data. Passed to the user callback in wdt_callback_args_t.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,562 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface > wdt_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

r_wdt_api.h

 wdt_api_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » WDT Interface

#include <r_wdt_api.h>

Data Fields

ssp_err_t(* cfgGet)(wdt_ctrl_t *const p_ctrl, wdt_cfg_t *const p_cfg)

ssp_err_t(* open)(wdt_ctrl_t *const p_ctrl, wdt_cfg_t const *const p_cfg)

ssp_err_t(* refresh)(wdt_ctrl_t *const p_ctrl)

ssp_err_t(* statusGet)(wdt_ctrl_t *const p_ctrl, wdt_status_t *const p_status)

ssp_err_t(* statusClear)(wdt_ctrl_t *const p_ctrl, const wdt_status_t status)

ssp_err_t(* counterGet)(wdt_ctrl_t *const p_ctrl, uint32_t *const p_count)

ssp_err_t(* timeoutGet)(wdt_ctrl_t *const p_ctrl, wdt_timeout_values_t *const
p_timeout)

ssp_err_t(* versionGet)(ssp_version_t *const p_data)

Detailed Description

WDT functions implemented at the HAL layer will follow this API.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,563 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface > wdt_api_t Struct Reference

◆ cfgGet

ssp_err_t(* wdt_api_t::cfgGet) (wdt_ctrl_t *const p_ctrl, wdt_cfg_t *const p_cfg)

Initialize the WDT in register start mode. In auto-start mode with NMI output it registers the NMI
callback.

Implemented as

R_WDT_CfgGet()
R_IWDT_CfgGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_cfg Pointer to pin configuration
structure for reading WDT
configuration.

◆ counterGet

ssp_err_t(* wdt_api_t::counterGet) (wdt_ctrl_t *const p_ctrl, uint32_t *const p_count)

Read the current WDT counter value.

Implemented as

R_WDT_CounterGet()
R_IWDT_CounterGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_count Pointer to variable to return
current WDT counter value.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,564 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface > wdt_api_t Struct Reference

◆ open

ssp_err_t(* wdt_api_t::open) (wdt_ctrl_t *const p_ctrl, wdt_cfg_t const *const p_cfg)

Initialize the WDT in register start mode. In auto-start mode with NMI output it registers the NMI
callback.

Implemented as

R_WDT_Open()
R_IWDT_Open()

Parameters
[in] p_ctrl Pointer to control structure.

[in] p_cfg Pointer to pin configuration
structure.

◆ refresh

ssp_err_t(* wdt_api_t::refresh) (wdt_ctrl_t *const p_ctrl)

Refresh the watchdog timer.

Implemented as

R_WDT_Refresh()
R_IWDT_Refresh()

Precondition
If the WDT is in auto-start mode ensure the OFS0 register is configured before using this
function.

Warning
Calling this function in register-start mode before calling R_WDT_Open will start the WDT in
it's default state and further changes to the configuration will not be possible.

Parameters
[in] p_ctrl Pointer to control structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,565 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface > wdt_api_t Struct Reference

◆ statusClear

ssp_err_t(* wdt_api_t::statusClear) (wdt_ctrl_t *const p_ctrl, const wdt_status_t status)

Clear the status flags of the WDT.

Implemented as

R_WDT_StatusClear()
R_IWDT_StatusClear()

Parameters
[in] p_ctrl Pointer to control structure.

[in] status Status condition(s) to clear.

◆ statusGet

ssp_err_t(* wdt_api_t::statusGet) (wdt_ctrl_t *const p_ctrl, wdt_status_t *const p_status)

Read the status of the WDT.

Implemented as

R_WDT_StatusGet()
R_IWDT_StatusGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_status Pointer to variable to return
status information through.

◆ timeoutGet

ssp_err_t(* wdt_api_t::timeoutGet) (wdt_ctrl_t *const p_ctrl, wdt_timeout_values_t *const p_timeout)

Read the watchdog timeout values.

Implemented as

R_WDT_TimeoutGet()
R_IWDT_TimeoutGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_timeout Pointer to structure to return
timeout values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,566 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface > wdt_api_t Struct Reference

◆ versionGet

ssp_err_t(* wdt_api_t::versionGet) (ssp_version_t *const p_data)

Return the version of the IOPort driver.

Implemented as

R_WDT_VersionGet()
R_IWDT_VersionGet()

Parameters
[in] p_ctrl Pointer to control structure.

[out] p_data Memory address to return
version information to.

The documentation for this struct was generated from the following file:

r_wdt_api.h

 wdt_instance_t Struct Reference
Renesas Synergy Software Package Reference » HAL Interfaces » WDT Interface

#include <r_wdt_api.h>

Data Fields

wdt_ctrl_t * p_ctrl

 Pointer to the control structure for this instance.

wdt_cfg_t const * p_cfg

 Pointer to the configuration structure for this instance.

wdt_api_t const * p_api

 Pointer to the API structure for this instance.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,567 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Interfaces > WDT Interface > wdt_instance_t Struct Reference

This structure encompasses everything that is needed to use an instance of this interface.

The documentation for this struct was generated from the following file:

r_wdt_api.h

5.1.5 HAL Layer
Renesas Synergy Software Package Reference

Modules

High-Speed Analog Comparator

 Driver for the High-Speed Analog Comparator.

Low Power Analog Comparator

 Driver for the Low Power Analog Comparator.

ADC

 Driver for the 14-Bit A/D Converter (ADC14) and 12-bit A/D Converter
(ADC12).

AGT

 Driver for the Asynchronous General Purpose Timer (AGT).

AGT Input Capture

 Driver for the Asynchronous General-Purpose Timer (AGT) with Input
Capture.

Analog Connections

 Driver for internal analog connections.

CAC

 Driver for the Clock Frequency Accuracy Measurement Circuit (CAC).

CAN

 Driver for CAN, Controller Area Network.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,568 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer

CGC

 Driver for the Clock Generation Circuit.

CRC

 Driver for the CRC Calculator (CRC).

CTSU v2

 Driver for the Capacitive Touch Sensing Unit (CTSU).

DAC

 Driver for the 12-Bit D/C Converter (DAC12).

DAC8

 Driver for the 8-Bit D/C Converter (DAC8).

DMAC

 DMA Controller (DMAC).

DOC

 Driver for the Data Operation Circuit (DOC).

DTC

 Driver for the Data Transfer Controller (DTC).

ELC

 Driver for the Event Link Controller (ELC).

High-performance Flash

 Driver for the High-performance Flash Memory (S7G2 and S5D9).

Low Power Flash

 Driver for the Low power Flash Memory (S3A7 and S124).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,569 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer

FMI

 Driver for accessing Factory MCU Information (FMI).

GLCDC

 Driver for the Graphics LCD Controller (GLCDC).

GPT

 Driver for the General PWM Timer (GPT).

GPT Input Capture

 Driver for the General PWM Timer (GPT) with Input Capture.

ICU

 Driver for the Interrupt Controller Unit (ICU) External pin interrupts
function.

IOPORT

 Driver for the I/O Ports.

IWDT

 Driver for the Independent Watchdog Timer (IWDT).

JPEG CODEC

 Driver for the JPEG CODEC.

JPEG ENCODE

 Driver for the JPEG CODEC.

Key Interrupts

 Driver for the Key Interrupt Function.

LPMV2 S124

 Driver for Low Power Modes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,570 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer

LPMV2 S128

 Driver for Low Power Modes.

LPMV2 S1JA

 Driver for Low Power Modes.

LPMV2 S3A1

 Driver for Low Power Modes.

LPMV2 S3A3

 Driver for Low Power Modes.

LPMV2 S3A6

 Driver for Low Power Modes.

LPMV2 S3A7

 Driver for Low Power Modes.

LPMV2 S5D3

 Driver for Low Power Modes.

LPMV2 S5D5

 Driver for Low Power Modes.

LPMV2 S5D9

 Driver for Low Power Modes.

LPMV2 S7G2

 Driver for Low Power Modes.

LVD

 Driver for Low Voltage Detection.

Operational Amplifier (OPAMP)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,571 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer

 Driver for the Operational Amplifier (OPAMP).

PDC

 Driver for the Parallel Data Capture Unit (PDC).

PTP

 Driver for the Precision time protocol(PTP).

PTPEDMAC

 DMA controller for PTP driver.

QSPI

 Driver for the Quad Serial Peripheral Interface (QSPI).

IIC

 Driver for the I2C Bus Interface (IIC).

IIC Slave

 Driver for the I2C Bus Slave Interface (IIC Slave).

SPI

 Driver for the Serial Peripheral Interface (SPI).

RTC

 Driver for the Realtime Clock (RTC).

Simple I2C on SCI

 Driver for the Simple IIC on SCI.

Simple SPI on SCI

 Driver for the Simple SPI on SCI.

UART on SCI

 Driver for the UART on SCI.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,572 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer

Sigma Delta ADC (SDADC)

 Driver for the 24-bit Sigma Delta A/D Converter (SDADC).

SDMMC

 Driver for the SD/MMC Host Interface (SDHI).

SLCDC

 Driver for the Segment LCD Controller (SLCDC).

SSI

 Driver for the Serial Sound Interface (SSI).

WDT

 Driver for the Watchdog Timer (WDT).

SCE Module

 Primitive cryptographic functions.

Detailed Description

The hardware abstraction layer provides drivers for Renesas peripherals. HAL drivers typically
implement Interfaces and provide additional hardware specific APIs.

5.1.5.1 High-Speed Analog Comparator
Renesas Synergy Software Package Reference » HAL Layer

Driver for the High-Speed Analog Comparator. More...

Data Structures

struct acmphs_instance_ctrl_t

Functions

ssp_err_t R_ACMPHS_Open (comparator_ctrl_t *const p_api_ctrl,
comparator_cfg_t const *const p_cfg)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,573 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-Speed Analog Comparator

 Configures the comparator and starts operation. Callbacks and pin
output are not active until outputEnable() is called.
comparator_api_t::outputEnable() should be called after the output
has stabilized. Implements comparator_api_t::open(). More...

ssp_err_t R_ACMPHS_InfoGet (comparator_ctrl_t *const p_api_ctrl,
comparator_info_t *const p_info)

 Provides the minimum stabilization wait time in microseconds.
Implements comparator_api_t::infoGet(). More...

ssp_err_t R_ACMPHS_OutputEnable (comparator_ctrl_t *const p_api_ctrl)

 Enables the comparator output, which can be polled using
comparator_api_t::statusGet(). Also enables pin output and
interrupts as configured during comparator_api_t::open().
Implements comparator_api_t::outputEnable(). More...

ssp_err_t R_ACMPHS_StatusGet (comparator_ctrl_t *const p_api_ctrl,
comparator_status_t *const p_status)

 Provides the operating status of the comparator. Implements
comparator_api_t::statusGet(). More...

ssp_err_t R_ACMPHS_Close (comparator_ctrl_t *p_api_ctrl)

 Stops the comparator. Implements comparator_api_t::close(). More...

ssp_err_t R_ACMPHS_VersionGet (ssp_version_t *const p_version)

 Gets the API and code version. Implements
comparator_api_t::versionGet(). More...

Detailed Description

Driver for the High-Speed Analog Comparator.

Summary
Extends COMPARATOR Interface.

This module implements the COMPARATOR Interface using the high-speed analog comparator.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,574 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-Speed Analog Comparator

◆ R_ACMPHS_Close()

ssp_err_t R_ACMPHS_Close (comparator_ctrl_t * p_api_ctrl)

Stops the comparator. Implements comparator_api_t::close().

Return values
SSP_SUCCESS Instance control block closed successfully.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Perform parameter checking

Mark driver as closed

Disable interrupts.

Stop the comparator and disable output to VCOUT.

Enter the module-stop state.

Release the hardware lock

◆ R_ACMPHS_InfoGet()

ssp_err_t R_ACMPHS_InfoGet (comparator_ctrl_t *const p_api_ctrl, comparator_info_t *const
p_info)

Provides the minimum stabilization wait time in microseconds. Implements
comparator_api_t::infoGet().

Return values
SSP_SUCCESS Information stored in p_info.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Perform parameter checking

Get the base stabilization time.

Add 4 filter clocks if the filter is enabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,575 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-Speed Analog Comparator

◆ R_ACMPHS_Open()

ssp_err_t R_ACMPHS_Open (comparator_ctrl_t *const p_api_ctrl, comparator_cfg_t const *const
p_cfg)

Configures the comparator and starts operation. Callbacks and pin output are not active until
outputEnable() is called. comparator_api_t::outputEnable() should be called after the output has
stabilized. Implements comparator_api_t::open().

Comparator inputs must be configured in the application code prior to calling this function.

Return values
SSP_SUCCESS Open successful.

SSP_ERR_ASSERTION An input pointer is NULL

SSP_ERR_INVALID_ARGUMENT An argument is invalid. Window mode
(COMPARATOR_MODE_WINDOW) and filter
of 1 (COMPARATOR_FILTER_1) are not
supported in this implementation.

SSP_ERR_IN_USE The control block is already open or the
hardware lock is taken.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
Verify the control block has not already been initialized.

Configure interrupt priority. The interrupt is disabled until comparator_api_t::outputEnable() is
called.

Enable clocks to the ACMPHS hardware.

Set registers controlled by this driver to their default values.

Configure the output polarity.

Configure the trigger edge.

Configure the hardware debounce filter.

Enable the comparator.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,576 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-Speed Analog Comparator

◆ R_ACMPHS_OutputEnable()

ssp_err_t R_ACMPHS_OutputEnable (comparator_ctrl_t *const p_api_ctrl)

Enables the comparator output, which can be polled using comparator_api_t::statusGet(). Also
enables pin output and interrupts as configured during comparator_api_t::open(). Implements
comparator_api_t::outputEnable().

Return values
SSP_SUCCESS Comparator output is enabled.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Enable the ACMPHS output.

Set the VCOUT output setting for this channel (enabled or disabled).

Enable interrupts for this channel.

◆ R_ACMPHS_StatusGet()

ssp_err_t R_ACMPHS_StatusGet (comparator_ctrl_t *const p_api_ctrl, comparator_status_t *const
p_status)

Provides the operating status of the comparator. Implements comparator_api_t::statusGet().

Return values
SSP_SUCCESS Operating status of the comparator is

provided in p_status.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

SSP_ERR_TIMEOUT The debounce filter is off and 2 consecutive
matching values were not read within 1024
attempts.

Read the operating status of the comparator.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,577 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-Speed Analog Comparator

◆ R_ACMPHS_VersionGet()

ssp_err_t R_ACMPHS_VersionGet (ssp_version_t *const p_version)

Gets the API and code version. Implements comparator_api_t::versionGet().

Return values
SSP_SUCCESS Version information available in p_version.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Return the version number

 acmphs_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » High-Speed Analog Comparator

#include <r_acmphs.h>

Detailed Description

Channel instance control block. DO NOT INITIALIZE. Initialization occurs in comparator_api_t::open.

The documentation for this struct was generated from the following file:

r_acmphs.h

5.1.5.2 Low Power Analog Comparator
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Low Power Analog Comparator. More...

Data Structures

struct acmplp_instance_ctrl_t

Functions

ssp_err_t R_ACMPLP_Open (comparator_ctrl_t *const p_api_ctrl,
comparator_cfg_t const *const p_cfg)

 Configures the comparator and starts operation. Callbacks and pin
output are not active until outputEnable() is called.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,578 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Analog Comparator

comparator_api_t::outputEnable() should be called after the output
has stabilized. Implements comparator_api_t::open(). More...

ssp_err_t R_ACMPLP_InfoGet (comparator_ctrl_t *const p_api_ctrl,
comparator_info_t *const p_info)

 Provides the minimum stabilization wait time in microseconds.
Implements comparator_api_t::infoGet(). More...

ssp_err_t R_ACMPLP_OutputEnable (comparator_ctrl_t *const p_api_ctrl)

 Enables the comparator output, which can be polled using
comparator_api_t::statusGet(). Also enables pin output and
interrupts as configured during comparator_api_t::open().
Implements comparator_api_t::outputEnable(). More...

ssp_err_t R_ACMPLP_StatusGet (comparator_ctrl_t *const p_api_ctrl,
comparator_status_t *const p_status)

 Provides the operating status of the comparator. Implements
comparator_api_t::statusGet(). More...

ssp_err_t R_ACMPLP_Close (comparator_ctrl_t *p_api_ctrl)

 Stops the comparator. Implements comparator_api_t::close(). More...

ssp_err_t R_ACMPLP_VersionGet (ssp_version_t *const p_version)

 Gets the API and code version. Implements
comparator_api_t::versionGet(). More...

Detailed Description

Driver for the Low Power Analog Comparator.

Summary
Extends COMPARATOR Interface.

This module implements the COMPARATOR Interface using the low power analog comparator.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,579 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Analog Comparator

◆ R_ACMPLP_Close()

ssp_err_t R_ACMPLP_Close (comparator_ctrl_t * p_api_ctrl)

Stops the comparator. Implements comparator_api_t::close().

Return values
SSP_SUCCESS Instance control block closed successfully.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Perform parameter checking

Mark driver as closed

Disable interrupts.

Stop the comparator and disable output to VCOUT.

Enter the module-stop state.

Release the hardware lock

◆ R_ACMPLP_InfoGet()

ssp_err_t R_ACMPLP_InfoGet (comparator_ctrl_t *const p_api_ctrl, comparator_info_t *const
p_info)

Provides the minimum stabilization wait time in microseconds. Implements
comparator_api_t::infoGet().

Return values
SSP_SUCCESS Information stored in p_info.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Perform parameter checking

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,580 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Analog Comparator

◆ R_ACMPLP_Open()

ssp_err_t R_ACMPLP_Open (comparator_ctrl_t *const p_api_ctrl, comparator_cfg_t const *const
p_cfg)

Configures the comparator and starts operation. Callbacks and pin output are not active until
outputEnable() is called. comparator_api_t::outputEnable() should be called after the output has
stabilized. Implements comparator_api_t::open().

Comparator inputs must be configured in the application code prior to calling this function.

Return values
SSP_SUCCESS Open successful.

SSP_ERR_ASSERTION An input pointer is NULL

SSP_ERR_INVALID_ARGUMENT An argument is invalid. Window mode
(COMPARATOR_MODE_WINDOW) and filter
of 1 (COMPARATOR_FILTER_1) are not
supported in this implementation.

SSP_ERR_IN_USE The control block is already open or the
hardware lock is taken.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
Verify the control block has not already been initialized.

Configure interrupt priority. The interrupt is disabled until comparator_api_t::outputEnable() is
called.

Enable clocks to the ACMPLP hardware.

Set registers controlled by this channel to their default values.

Set the mode.

Configure the output polarity.

Configure the trigger edge.

Configure the hardware debounce filter.

Enable the comparator.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,581 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Analog Comparator

◆ R_ACMPLP_OutputEnable()

ssp_err_t R_ACMPLP_OutputEnable (comparator_ctrl_t *const p_api_ctrl)

Enables the comparator output, which can be polled using comparator_api_t::statusGet(). Also
enables pin output and interrupts as configured during comparator_api_t::open(). Implements
comparator_api_t::outputEnable().

Return values
SSP_SUCCESS Comparator output is enabled.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Set the VCOUT output setting for this channel (enabled or disabled).

Enable interrupts for this channel.

◆ R_ACMPLP_StatusGet()

ssp_err_t R_ACMPLP_StatusGet (comparator_ctrl_t *const p_api_ctrl, comparator_status_t *const
p_status)

Provides the operating status of the comparator. Implements comparator_api_t::statusGet().

Return values
SSP_SUCCESS Operating status of the comparator is

provided in p_status.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Read the operating status of the comparator.

◆ R_ACMPLP_VersionGet()

ssp_err_t R_ACMPLP_VersionGet (ssp_version_t *const p_version)

Gets the API and code version. Implements comparator_api_t::versionGet().

Return values
SSP_SUCCESS Version information available in p_version.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Return the version number

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,582 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Analog Comparator

 acmplp_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » Low Power Analog Comparator

#include <r_acmplp.h>

Detailed Description

Channel instance control block. DO NOT INITIALIZE. Initialization occurs in comparator_api_t::open.

The documentation for this struct was generated from the following file:

r_acmplp.h

5.1.5.3 ADC
Renesas Synergy Software Package Reference » HAL Layer

Driver for the 14-Bit A/D Converter (ADC14) and 12-bit A/D Converter (ADC12). More...

Data Structures

struct adc_instance_ctrl_t

Macros

#define ADC_CODE_VERSION_MAJOR (2U)

#define ADC_SAMPLE_STATE_COUNT_MIN (7U)

#define ADC_SAMPLE_STATE_HOLD_COUNT_MIN (4U)

#define ADC_SAMPLE_STATE_HOLD_COUNT_DEFAULT (24U)

#define ADC_MASK_CHANNEL_0 (1U<<0U)

#define ADC_SAMPLE_HOLD_CHANNELS (0x07U)

Functions

ssp_err_t R_ADC_Open (adc_ctrl_t *p_api_ctrl, adc_cfg_t const *const p_cfg)

 The Open function applies power to the A/D peripheral, sets the
operational mode, trigger sources, interrupt priority, and
configurations for the peripheral as a whole. If interrupt priority is

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,583 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

non-zero in BSP_IRQ_Cfg.h, the function takes a callback function
pointer for notifying the user at interrupt level whenever a scan has
completed. On MCUs where calibration is possible, this function will
only return after calibration is completed if enabled in the user
configuration. The calibration times vary depending on PCLKB and
ADCLK. More...

ssp_err_t R_ADC_SetSampleStateCount (adc_ctrl_t *p_api_ctrl,
adc_sample_state_t *p_sample)

 Set the sample state count for individual channels. This only needs
to be set for special use cases. Normally, use the default values out
of Reset. More...

ssp_err_t R_ADC_ScanConfigure (adc_ctrl_t *p_api_ctrl, adc_channel_cfg_t
const *const p_channel_cfg)

 Configure the ADC scan parameters. Channel specific settings are
set in this function. More...

ssp_err_t R_ADC_InfoGet (adc_ctrl_t *p_api_ctrl, adc_info_t *p_adc_info)

 This function returns the address of the lowest number configured
channel and the total number of bytes to be read in order to read the
results of the configured channels and return the ELC Event name. If
no channels are configured, then a length of 0 is returned. This
function retrieves the temperature sensor slope. It also returns the
calibration data for the sensor if available on this MCU otherwise an
invalid calibration data of 0xFFFFFFFF will be returned. More...

ssp_err_t R_ADC_ScanStart (adc_ctrl_t *p_api_ctrl)

 This function starts a software scan or enables the hardware trigger
for a scan depending on how the triggers were configured in the
Open() call. If the Unit was configured for hardware triggering, then
this function simply allows the trigger signal (hardware or software)
to get to the ADC Unit. The function is not able to control the
generation of the trigger itself. If the Unit was configured for
software triggering, then this function starts the software triggered
scan. More...

ssp_err_t R_ADC_ScanStop (adc_ctrl_t *p_api_ctrl)

 This function stops the software scan or disables the Unit from being
triggered by the hardware trigger (internal or external) based on
what type of trigger the unit was configured for in the Open()
function. Stopping a hardware triggered scan via this function does
not abort an ongoing scan, but prevents the next scan from
occurring. Stopping a software triggered scan aborts an ongoing
scan. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,584 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

ssp_err_t R_ADC_CheckScanDone (adc_ctrl_t *p_api_ctrl)

 This function returns the status of any scan process that was started.
On supported MCUs, the status of the ADC calibration is returned.
More...

ssp_err_t R_ADC_Read (adc_ctrl_t *p_api_ctrl, adc_register_t const reg_id,
adc_data_size_t *const p_data)

 This function reads conversion results from a single channel or
sensor register. More...

ssp_err_t R_ADC_Read32 (adc_ctrl_t *p_api_ctrl, adc_register_t const reg_id,
uint32_t *const p_data)

 This function reads conversion results from a single channel or
sensor register into a 32-bit result. More...

ssp_err_t R_ADC_Close (adc_ctrl_t *p_api_ctrl)

 This function ends any scan in progress, disables interrupts, and
removes power to the A/D peripheral. More...

ssp_err_t R_ADC_VersionGet (ssp_version_t *const p_version)

 Retrieve the API version number. More...

ssp_err_t R_ADC_Calibrate (adc_ctrl_t *const p_api_ctrl, void *const p_extend)

 This function initiates calibration of the ADC on supported MCUs.
Calibration will take a minimum of 24 milliseconds at 32 MHz PCLKB
and ADCLK. If ADC interrupts are enabled, a notification is provided
via callback when calibration is complete. Otherwise, if the ADC
interrupts are disabled then no notification will be provided and the
application must check calibration status using infoGet() to
determine if the calibration is complete before using the ADC
API.Interrupts are enabled in adc_api_t::scanStatusGet(). More...

ssp_err_t R_ADC_OffsetSet (adc_ctrl_t *const p_api_ctrl, adc_register_t const
reg_id, int32_t offset)

Detailed Description

Driver for the 14-Bit A/D Converter (ADC14) and 12-bit A/D Converter (ADC12).

This module supports the ADC14 and ADC12 peripherals. It implements the following interfaces:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,585 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

ADC Interface

Macro Definition Documentation

◆ ADC_CODE_VERSION_MAJOR

#define ADC_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

◆ ADC_MASK_CHANNEL_0

#define ADC_MASK_CHANNEL_0 (1U<<0U)

For ADC Scan configuration adc_channel_cfg_t::scan_mask, scan_mask_group_b, add_mask and
sample_hold_mask Use bitwise OR to combine these masks for desired channels and sensors.

◆ ADC_SAMPLE_HOLD_CHANNELS

#define ADC_SAMPLE_HOLD_CHANNELS (0x07U)

Sample and hold Channel mask. Sample and hold is only available for channel 0,1,2

◆ ADC_SAMPLE_STATE_COUNT_MIN

#define ADC_SAMPLE_STATE_COUNT_MIN (7U)

Typical values that can be used to modify the sample states. The minimum sample state count
value is either 6 or 7 depending on the clock ratios. It is fixed to 7 based on the fact that at the
lowest ADC conversion clock supported (1 MHz) this extra state will lead to at worst a "1
microsecond" increase in conversion time. At 60 MHz the extra sample state will add 16.7 ns to the
conversion time.

◆ ADC_SAMPLE_STATE_HOLD_COUNT_DEFAULT

#define ADC_SAMPLE_STATE_HOLD_COUNT_DEFAULT (24U)

Default sample and hold states

◆ ADC_SAMPLE_STATE_HOLD_COUNT_MIN

#define ADC_SAMPLE_STATE_HOLD_COUNT_MIN (4U)

Typical values that can be used for the sample and hold counts for the channels 0-2 Minimum
sample and hold states

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,586 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

◆ R_ADC_Calibrate()

ssp_err_t R_ADC_Calibrate (adc_ctrl_t *const p_api_ctrl, void *const p_extend)

This function initiates calibration of the ADC on supported MCUs. Calibration will take a minimum of
24 milliseconds at 32 MHz PCLKB and ADCLK. If ADC interrupts are enabled, a notification is
provided via callback when calibration is complete. Otherwise, if the ADC interrupts are disabled
then no notification will be provided and the application must check calibration status using
infoGet() to determine if the calibration is complete before using the ADC API.Interrupts are
enabled in adc_api_t::scanStatusGet().

Parameters
[in] p_api_ctrl Pointer to control handle

structure

[in] p_extend Unused argument. Pass
NULL.

Return values
SSP_SUCCESS Calibration successfully initiated.

SSP_ERR_INVALID_HW_CONDITION Hardware is in invalid state to perform
calibration due to ongoing scan or scan
trigger is enabled.

SSP_ERR_UNSUPPORTED Calibration not supported on this MCU.

SSP_ERR_ASSERTION The parameter p_api_ctrl is NULL.

Perform parameter checking

ADC Calibration can only happen if there is no ongoing scan and if the scan trigger is disabled

Set the normal mode interrupt request to occur when calibration is complete

Initiate calibration

Return the unsupported error.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,587 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

◆ R_ADC_CheckScanDone()

ssp_err_t R_ADC_CheckScanDone (adc_ctrl_t * p_api_ctrl)

This function returns the status of any scan process that was started. On supported MCUs, the
status of the ADC calibration is returned.

Return values
SSP_SUCCESS Successful; the scan is complete.

SSP_ERR_ASSERTION The parameter p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_IN_USE Running scan or calibration is still in
progress.

Note
If the peripheral was configured in single scan mode, then the return value of this function is an indication of the
scan status. However, if the peripheral was configured in group mode, then the return value of this function could
be an indication of either the group A or group B scan state. This is because the ADST bit is set when a scan is
ongoing and cleared when the scan is done. This function should normally only be used when using software
trigger in single scan mode.

Perform parameter checking

Ensure ADC Unit is already open

Read status of ADC calibration and return busy status if calibration is ongoing

Read the status of the ADST bit

Return the error code

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,588 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

◆ R_ADC_Close()

ssp_err_t R_ADC_Close (adc_ctrl_t * p_api_ctrl)

This function ends any scan in progress, disables interrupts, and removes power to the A/D
peripheral.

Return values
SSP_SUCCESS Call successful.

SSP_ERR_ASSERTION The parameter p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Unit is not open.

Perform parameter checking

Verify that the ADC is already open

Mark driver as closed

Perform hardware stop for the specific unit

Release the lock

Return the error code

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,589 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

◆ R_ADC_InfoGet()

ssp_err_t R_ADC_InfoGet (adc_ctrl_t * p_api_ctrl, adc_info_t * p_adc_info)

This function returns the address of the lowest number configured channel and the total number of
bytes to be read in order to read the results of the configured channels and return the ELC Event
name. If no channels are configured, then a length of 0 is returned. This function retrieves the
temperature sensor slope. It also returns the calibration data for the sensor if available on this MCU
otherwise an invalid calibration data of 0xFFFFFFFF will be returned.

Return values
SSP_SUCCESS Call successful.

SSP_ERR_ASSERTION The parameter p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::eventInfoGet
Note

: Currently this function call does not support Group Mode operation.

Verify the parameters are valid

Return an error if the parameter check failed

Get a pointer to the base register for the current unit

Retrieve the scan mask of active channels from the control structure

If at least one channel is configured, determine the highest and lowest configured channels

Determine the lowest channel that is configured

Determine the highest channel that is configured

Determine the size of data that must be read to read all the channels between and including the
highest and lowest channels.

If no channels are configured, set the return length 0

Specify the peripheral name in the ELC list

Verify the return value from fmi event information

Set Temp Sensor calibration data to invalid value

If calibration register is available, retrieve it from the MCU

Provide the previously retrieved slope information

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,590 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

◆ R_ADC_OffsetSet()

ssp_err_t R_ADC_OffsetSet (adc_ctrl_t *const p_api_ctrl, adc_register_t const reg_id, int32_t
offset)

adc_api_t::offsetSet is not supported on the ADC.

Return the unsupported error.

◆ R_ADC_Open()

ssp_err_t R_ADC_Open (adc_ctrl_t * p_api_ctrl, adc_cfg_t const *const p_cfg)

The Open function applies power to the A/D peripheral, sets the operational mode, trigger sources,
interrupt priority, and configurations for the peripheral as a whole. If interrupt priority is non-zero in
BSP_IRQ_Cfg.h, the function takes a callback function pointer for notifying the user at interrupt
level whenever a scan has completed. On MCUs where calibration is possible, this function will only
return after calibration is completed if enabled in the user configuration. The calibration times vary
depending on PCLKB and ADCLK.

Return values
SSP_SUCCESS Call successful.

SSP_ERR_ASSERTION The parameter p_api_ctrl or p_cfg is NULL.

SSP_ERR_INVALID_ARGUMENT Mode or element of p_cfg structure has
invalid value or is illegal based on mode.

SSP_ERR_IN_USE Calibration timed out.

Perform parameter checking

Verify this unit has not already been initialized

Set all p_ctrl fields prior to using it in any functions

Save callback function pointer

Store the Unit number into the control structure

Store the user context into the control structure

Store the mode into the control structure

Store the alignment into the control structure

Save the regular mode/Group A trigger in the internal control block

Save the context

Store the voltage reference into the control structure

Store the over_current into the control structure

pga0 setting

pga1 setting

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,591 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

pga2 setting

Confirm the requested unit exists on this MCU and record available channels.

Lock specified ADC channel

Retrieve temperature sensor information into control block

Set ADC and Temperature sensors to a stop state

Initialize the hardware based on the configuration

Set ADC and Temperature sensors to a stop state

Configure PGA for the supported MCU's

Invalid scan mask (initialized for later).

Mark driver as opened by initializing it to "RADC" in its ASCII equivalent for this unit.

Return the error code

◆ R_ADC_Read()

ssp_err_t R_ADC_Read (adc_ctrl_t * p_api_ctrl, adc_register_t const reg_id, adc_data_size_t *const
p_data)

This function reads conversion results from a single channel or sensor register.

Return values
SSP_SUCCESS Call successful.

SSP_ERR_ASSERTION The parameter p_api_ctrl is NULL.

SSP_ERR_INVALID_POINTER The parameter p_data is NULL.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

Perform parameter checking

Verify that the ADC is already open

Get pointer to appropriate base address. This is repeated here in case parameter checking is
disabled.

Read the data from the requested ADC conversion register and return it

Return the error code

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,592 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

◆ R_ADC_Read32()

ssp_err_t R_ADC_Read32 (adc_ctrl_t * p_api_ctrl, adc_register_t const reg_id, uint32_t *const
p_data)

This function reads conversion results from a single channel or sensor register into a 32-bit result.

Return values
SSP_SUCCESS Call successful.

SSP_ERR_ASSERTION The parameter p_api_ctrl is NULL.

SSP_ERR_INVALID_POINTER The parameter p_data is NULL.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

Read the 16-bit result.

Left shift the result into the upper 16 bits if the unit is configured for left alignment.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,593 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

◆ R_ADC_ScanConfigure()

ssp_err_t R_ADC_ScanConfigure (adc_ctrl_t * p_api_ctrl, adc_channel_cfg_t const *const
p_channel_cfg)

Configure the ADC scan parameters. Channel specific settings are set in this function.

Return values
SSP_SUCCESS Call successful.

SSP_ERR_ASSERTION The parameter p_api_ctrl or p_channel_cfg
is NULL.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

Note
If the Group Mode Priority configuration is set to ADC_GROUP_A_GROUP_B_CONTINUOUS_SCAN, then since
Group B will be scanning continuously, Group B Interrupts are disabled and the application will not receive a
callback for Group B scan completion even if a callback is provided. The application will still receive a callback
for Group A scan completion if a callback is provided.
If the ADC conversion clock is faster than 50 MHz, the Temperature and Voltage sensor will not be accurate across
the operating temperature range, so an error is returned.

Perform parameter checking

Ensure ADC Unit is already open

Configure the hardware based on the configuration

Save the scan mask locally; this is required for the infoGet function

Return the error code

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,594 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

◆ R_ADC_ScanStart()

ssp_err_t R_ADC_ScanStart (adc_ctrl_t * p_api_ctrl)

This function starts a software scan or enables the hardware trigger for a scan depending on how
the triggers were configured in the Open() call. If the Unit was configured for hardware triggering,
then this function simply allows the trigger signal (hardware or software) to get to the ADC Unit.
The function is not able to control the generation of the trigger itself. If the Unit was configured for
software triggering, then this function starts the software triggered scan.

Return values
SSP_SUCCESS Call successful.

SSP_ERR_ASSERTION The parameter p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_IN_USE Running scan is still in progress

Perform parameter checking

Ensure ADC Unit is already open

If the the normal/GroupA trigger is not set to software, then that the Unit is configured for hardware
triggering

Otherwise, enable software triggering

Check to see if there is an ongoing scan else start the scan

Return the error code

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,595 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

◆ R_ADC_ScanStop()

ssp_err_t R_ADC_ScanStop (adc_ctrl_t * p_api_ctrl)

This function stops the software scan or disables the Unit from being triggered by the hardware
trigger (internal or external) based on what type of trigger the unit was configured for in the Open()
function. Stopping a hardware triggered scan via this function does not abort an ongoing scan, but
prevents the next scan from occurring. Stopping a software triggered scan aborts an ongoing scan.

Return values
SSP_SUCCESS Call successful.

SSP_ERR_ASSERTION The parameter p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Unit is not open.

Note
Stopping a software scan results in immediate stoppage of the scan irrespective of current state of of the scan.
Stopping the hardware scan results in disabling the trigger to prevent future scans from starting but does not affect
the current scan.

Perform parameter checking

Ensure ADC Unit is already open

If the trigger is not software scan, then disallow hardware triggering

Otherwise, disable software triggering

Return the error code

◆ R_ADC_SetSampleStateCount()

ssp_err_t R_ADC_SetSampleStateCount (adc_ctrl_t * p_api_ctrl, adc_sample_state_t * p_sample)

Set the sample state count for individual channels. This only needs to be set for special use cases.
Normally, use the default values out of Reset.

Return values
SSP_SUCCESS Call successful.

SSP_ERR_ASSERTION The parameter p_api_ctrl or p_sample is
NULL.

SSP_ERR_NOT_OPEN Unit is not open.

SSP_ERR_INVALID_ARGUMENT Parameter has invalid value.

Perform parameter checking

Ensure ADC Unit is already open

Set the sample state count for the specified register

Return the error code

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,596 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC

◆ R_ADC_VersionGet()

ssp_err_t R_ADC_VersionGet (ssp_version_t *const p_version)

Retrieve the API version number.

Return values
SSP_SUCCESS Successful return.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Return the version number

 adc_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » ADC

#include <r_adc.h>

Data Fields

uint16_t unit

 ADC Unit in use.

int16_t slope_microvolts

 Temperature sensor slope in microvolts/°C.

adc_mode_t mode

 operational mode

adc_alignment_t alignment

 alignment

uint8_t max_resolution

 ADC max resolution: 8, 10, 12, or 14-bit.

uint8_t pga_available

 PGA available or not on MCU.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,597 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC > adc_instance_ctrl_t Struct Reference

uint8_t tsn_ctrl_available

 Availability of TSN control register.

uint8_t tsn_calib_available

 Availability of TSn calibration register.

uint8_t adc_calib_available

 Availability of ADC calibration feature.

R_TSN_Control_Type * p_tsn_ctrl_regs

 Pointer to temperature control register.

R_TSN_Calibration_Type * p_tsn_calib_regs

 Pointer to temperature calibration register.

void const * p_context

 Placeholder for user data.

void * p_reg

 Base register for this unit.

void(* callback)(adc_callback_args_t *p_args)

 User callback pointer.

adc_trigger_t trigger

 Trigger defined for normal mode.

uint32_t opened

 Boolean to verify that the Unit has been initialized.

uint32_t scan_mask

 Scan mask used for Normal scan.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,598 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ADC > adc_instance_ctrl_t Struct Reference

IRQn_Type scan_end_irq

 Scan end IRQ number.

IRQn_Type scan_end_b_irq

 Scan end group B IRQ number.

adc_voltage_reference_t voltage_ref

 ADC reference voltage selection. Default is VREF.

adc_over_current_t over_current

 ADC reference voltage selection. Default is Over current.

adc_pga_t pga0

 PGA0 setting.

adc_pga_t pga1

 PGA1 setting.

adc_pga_t pga2

 PGA2 setting.

Detailed Description

ADC instance control block. DO NOT INITIALIZE. Initialized in adc_api_t::open().

The documentation for this struct was generated from the following file:

r_adc.h

5.1.5.4 AGT
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Asynchronous General Purpose Timer (AGT). More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,599 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT

Data Structures

struct agt_instance_ctrl_t

struct timer_on_agt_cfg_t

Enumerations

enum agt_count_source_t {
 AGT_CLOCK_PCLKB = 0, AGT_CLOCK_PCLKB_DIV_8 = 1,
AGT_CLOCK_PCLKB_DIV_2 = 3, AGT_CLOCK_LOCO = 4,
 AGT_CLOCK_AGT0_UNDERFLOW = 5, AGT_CLOCK_FSUB = 6
}

Functions

ssp_err_t R_AGT_TimerOpen (timer_ctrl_t *const p_api_ctrl, timer_cfg_t const
*const p_cfg)

 Open the AGT channel as a timer, handles required initialization
described in hardware manual. Implements timer_api_t::open.
More...

ssp_err_t R_AGT_Close (timer_ctrl_t *const p_api_ctrl)

ssp_err_t R_AGT_CounterGet (timer_ctrl_t *const p_api_ctrl, timer_size_t *const
p_value)

ssp_err_t R_AGT_PeriodSet (timer_ctrl_t *const p_api_ctrl, timer_size_t const
period, timer_unit_t const unit)

ssp_err_t R_AGT_DutyCycleSet (timer_ctrl_t *const p_api_ctrl, timer_size_t
const duty_cycle, timer_pwm_unit_t const unit, uint8_t const pin)

ssp_err_t R_AGT_Reset (timer_ctrl_t *const p_api_ctrl)

ssp_err_t R_AGT_Start (timer_ctrl_t *const p_api_ctrl)

ssp_err_t R_AGT_InfoGet (timer_ctrl_t *const p_api_ctrl, timer_info_t *const
p_info)

 Get timer information and store it in provided pointer p_info.
Implements timer_api_t::infoGet. More...

ssp_err_t R_AGT_Stop (timer_ctrl_t *const p_api_ctrl)

ssp_err_t R_AGT_VersionGet (ssp_version_t *const p_version)

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,600 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT

Driver for the Asynchronous General Purpose Timer (AGT).

Summary
Extends Timer Interface.

HAL High-Level Driver for accessing and configuring AGT timer modes.

The AGT timer functions are used by the Timer to provide timer services.

Enumeration Type Documentation

◆ agt_count_source_t

enum agt_count_source_t

Count source

Enumerator

AGT_CLOCK_PCLKB Counter clock source is PCLKB when
AGT_CLOCK_PCLKB, AGT_CLOCK_PCLKB_DIV_2,
or AGT_CLOCK_PCLKB_DIV_8 is selected. The
PCLKB divisor is selected automatically at
runtime to the optimal value of PCLKB/1,
PCLKB/2, or PCLKB/8. If the timer_cfg_t::unit is
TIMER_UNIT_PERIOD_RAW_COUNTS, the
timer_cfg_t::period should be the desired value
in PCLKB counts, even if the value would
exceed 16 bits. For example, if a period of
0x30000 counts is requested, a divisor of
PCLKB/8 is be selected and the counter
underflows after 0x6000 counts.

AGT_CLOCK_PCLKB_DIV_8 Superseded: See AGT_CLOCK_PCLKB.

AGT_CLOCK_PCLKB_DIV_2 Superseded: See AGT_CLOCK_PCLKB.

AGT_CLOCK_LOCO Divided clock LOCO specified y bits CKS[2:0] in
the AGTMR2 register.

AGT_CLOCK_AGT0_UNDERFLOW Underflow event signal from AGT0.

AGT_CLOCK_FSUB Divided clock fSUB specified by bits CKS[2:0] in
the AGTMR2 register.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,601 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT

◆ R_AGT_Close()

ssp_err_t R_AGT_Close (timer_ctrl_t *const p_api_ctrl)

Stops counter, disables interrupts, disables output pins, and clears internal driver data. Implements
timer_api_t::close.

Return values
SSP_SUCCESS The AGT Timer channel is successfully

closed.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

SSP_ERR_NOT_OPEN The AGT channel is not opened.

Cleanup the device: Stop counter, disable interrupts, and power down if no other channels are in
use.

Clear the TOE (output enable) bit

Clear the TEDGSEL bit

Unlock channel

◆ R_AGT_CounterGet()

ssp_err_t R_AGT_CounterGet (timer_ctrl_t *const p_api_ctrl, timer_size_t *const p_value)

Retrieve and store counter value in provided p_value pointer. Implements timer_api_t::counterGet.

Return values
SSP_SUCCESS Counter value read, p_value is valid.

SSP_ERR_ASSERTION The p_ctrl or p_value parameter was null

SSP_ERR_NOT_OPEN The channel is not opened.

Read counter value

Increment retrieved counter value by one, as counter counts till zero

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,602 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT

◆ R_AGT_DutyCycleSet()

ssp_err_t R_AGT_DutyCycleSet (timer_ctrl_t *const p_api_ctrl, timer_size_t const duty_cycle,
timer_pwm_unit_t const unit, uint8_t const pin)

Setting duty cycle is not supported by this driver. Implements timer_api_t::dutyCycleSet.

Return values
SSP_SUCCESS Once duty cycle set successfully.

SSP_ERR_INVALID_ARGUMENT If any of the argument is invalid

SSP_ERR_NOT_OPEN The channel is not opened.

Set duty cycle.

◆ R_AGT_InfoGet()

ssp_err_t R_AGT_InfoGet (timer_ctrl_t *const p_api_ctrl, timer_info_t *const p_info)

Get timer information and store it in provided pointer p_info. Implements timer_api_t::infoGet.

Return values
SSP_SUCCESS Period, status, count direction, frequency

value written to caller's structure
successfully.

SSP_ERR_ASSERTION The p_ctrl or p_period_counts parameter
was null.

SSP_ERR_NOT_OPEN The channel is not opened.

SSP_ERR_INVALID_HW_CONDITION Invalid hardware setting is detected.

Get and store period

Get and store clock frequency

AGT supports only counting down direction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,603 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT

◆ R_AGT_PeriodSet()

ssp_err_t R_AGT_PeriodSet (timer_ctrl_t *const p_api_ctrl, timer_size_t const period, timer_unit_t
const unit)

Sets period value provided. Implements timer_api_t::periodSet.

Return values
SSP_SUCCESS Period value written successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_INVALID_ARG One of the following is invalid:

p_period->unit: must be one of the
options from timer_size_t::unit
p_period->value: must result in a
period supported by the clock
source specified during the Open
call.

SSP_ERR_NOT_OPEN The channel is not opened.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
cgc_api_t::systemClockFreqGet

Make sure period is valid, then set period

◆ R_AGT_Reset()

ssp_err_t R_AGT_Reset (timer_ctrl_t *const p_api_ctrl)

Resets the counter value to the period that was originally set. Implements timer_api_t::reset.

Return values
SSP_SUCCESS Counter value written successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Save running status for restart, if already running.

Set AGT counter for given period value.

Restart the AGT channel if it was running.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,604 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT

◆ R_AGT_Start()

ssp_err_t R_AGT_Start (timer_ctrl_t *const p_api_ctrl)

Starts timer. Implements timer_api_t::start.

Return values
SSP_SUCCESS Timer successfully started.

SSP_ERR_ASSERTION The p_ctrl parameter is null.

SSP_ERR_NOT_OPEN The channel is not opened.

Start timer

◆ R_AGT_Stop()

ssp_err_t R_AGT_Stop (timer_ctrl_t *const p_api_ctrl)

Stops the AGT channel specified by the handle (control block). This API implements
timer_api_t::stop. This API does not reset the channel or power it down.

Return values
SSP_SUCCESS Timer successfully stopped.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

◆ R_AGT_TimerOpen()

ssp_err_t R_AGT_TimerOpen (timer_ctrl_t *const p_api_ctrl, timer_cfg_t const *const p_cfg)

Open the AGT channel as a timer, handles required initialization described in hardware manual.
Implements timer_api_t::open.

The Timer Open function configures a single AGT channel for timer mode with parameters specified
in the timer Configuration structure. It also sets up the control block for use with subsequent AGT
Timer APIs.

This function must be called once prior to calling any other AGT API functions. After a channel is
opened, the Open function should not be called again for the same channel without first calling the
associated Close function.

The AGT hardware does not support one-shot functionality natively. The one-shot feature is
therefore implemented in the AGT HAL layer. For a timer configured as a one-shot timer, the timer
is stopped upon the first timer expiration.

The AGT implementation of the general timer can accept an optional timer_on_agt_cfg_t extension
parameter. For AGT, the extension specifies the clock to be used as timer source and the output
pin configurations. If the extension parameter is not specified (NULL), the default clock PCLKB is

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,605 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT

used and the output pins are disabled.

The clock divider is selected based on the source clock frequency and the timer period supplied by
the caller.

Return values
SSP_SUCCESS Initialization was successful and timer has

started.

SSP_ERR_ASSERTION One of the following parameters may be
NULL: p_cfg, p_ctrl, or the configuration
channel ID exceeds AGT_MAX_CH, or the
configuration mode is invalid.

SSP_ERR_IN_USE The channel specified has already been
opened.

SSP_ERR_IRQ_BSP_DISABLED A required interrupt has not been enabled in
the BSP.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet
cgc_api_t::systemClockFreqGet
cgc_api_t::clockCheck

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

Check agt count source to throw an error.

Verify channel is not already used

Power on the AGT channel.

Wait for counter to stop.

Clear AGTO output

Clear TEDGSEL bit to normal output.

Set the AGT mode based on agt_mode value.

Make sure period is valid, then set period

Start the timer if requested by user

All done.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,606 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT

◆ R_AGT_VersionGet()

ssp_err_t R_AGT_VersionGet (ssp_version_t *const p_version)

Sets driver version based on compile time macros. Implements timer_api_t::versionGet.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

 agt_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » AGT

#include <r_agt.h>

Data Fields

void(* p_callback)(timer_callback_args_t *p_args)

void const * p_context

void * p_reg

 Base register for this channel.

uint32_t open

 Whether or not channel is open.

uint16_t period

 Current timer period (counts)

uint8_t channel

 Channel number.

IRQn_Type irq

 Counter overflow IRQ number.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,607 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT > agt_instance_ctrl_t Struct Reference

timer_mode_t mode

 Timer mode.

Detailed Description

Channel control block. DO NOT INITIALIZE. Initialization occurs when timer_api_t::open is called.

Field Documentation

◆ p_callback

void(* agt_instance_ctrl_t::p_callback) (timer_callback_args_t *p_args)

Callback provided when a timer ISR occurs. NULL indicates no CPU interrupt.

◆ p_context

void const* agt_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in timer_callback_args_t.

The documentation for this struct was generated from the following file:

r_agt.h

 timer_on_agt_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » AGT

#include <r_agt.h>

Data Fields

agt_count_source_t count_source

 AGT channel clock source. Valid values are: AGT_CLOCK_PCLKB,
AGT_CLOCK_LOCO, AGT_CLOCK_FSUB.

bool agto_output_enabled

 AGTO pin is enabled for output compare (true, false)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,608 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT > timer_on_agt_cfg_t Struct Reference

bool agtio_output_enabled

 AGTIO pin is enabled for output compare (true, false)

bool output_inverted

 Output inverted (true, false)

bool agtoa_output_enable

 Enable comparator A output pin (true, false)

bool agtob_output_enable

 Enable comparator B output pin (true, false)

Detailed Description

Optional AGT extension data structure.

The documentation for this struct was generated from the following file:

r_agt.h

5.1.5.5 AGT Input Capture
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Asynchronous General-Purpose Timer (AGT) with Input Capture. More...

Data Structures

struct agt_input_capture_extend_t

 Extension configuration struct for AGT Input Capture. More...

struct agt_input_capture_instance_ctrl_t

Enumerations

enum agt_input_capture_count_source_t {
 AGT_INPUT_CAPTURE_CLOCK_PCLKB = 0U,
AGT_INPUT_CAPTURE_CLOCK_PCLKB_DIV_8 = 1U,
AGT_INPUT_CAPTURE_CLOCK_PCLKB_DIV_2 = 3U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,609 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT Input Capture

AGT_INPUT_CAPTURE_CLOCK_LOCO = 4U,
 AGT_CLOCK_INPUT_CAPTURE_FSUB = 6U
}

enum agt_input_capture_count_edges_t {
INPUT_CAPTURE_SIGNAL_SINGLE_EDGE,
INPUT_CAPTURE_SIGNAL_BOTH_EDGE }

enum agt_input_capture_signal_filter_t {
AGT_INPUT_CAPTURE_SIGNAL_FILTER_NONE,
AGT_INPUT_CAPTURE_SIGNAL_FILTER_1,
AGT_INPUT_CAPTURE_SIGNAL_FILTER_8,
AGT_INPUT_CAPTURE_SIGNAL_FILTER_32 }

enum agt_input_capture_clock_divider_t {
 AGT_INPUT_CAPTURE_CLOCK_DIVIDER_1,
AGT_INPUT_CAPTURE_CLOCK_DIVIDER_2,
AGT_INPUT_CAPTURE_CLOCK_DIVIDER_4,
AGT_INPUT_CAPTURE_CLOCK_DIVIDER_8,
 AGT_INPUT_CAPTURE_CLOCK_DIVIDER_16,
AGT_INPUT_CAPTURE_CLOCK_DIVIDER_32,
AGT_INPUT_CAPTURE_CLOCK_DIVIDER_64,
AGT_INPUT_CAPTURE_CLOCK_DIVIDER_128
}

enum agt_input_capture_event_flag_t {
AGT_INPUT_CAPTURE_ACTIVE_EDGE_FLAG = 16U,
AGT_INPUT_CAPTURE_UNDERFLOW_FLAG = 32U,
AGT_INPUT_CAPTURE_COMPARE_A_FLAG = 64U,
AGT_INPUT_CAPTURE_COMPARE_B_FLAG = 128U }

enum agt_input_capture_mode_t {
AGT_INPUT_CAPTURE_MODE_PULSE_WIDTH = 3U,
AGT_INPUT_CAPTURE_MODE_PERIOD = 4U,
AGT_INPUT_CAPTURE_MODE_PULSE_COUNT = 2U }

enum agt_input_capture_pin_select_t { AGT_INPUT_CAPTURE_PIN_AGTIO_A
= 0U, AGT_INPUT_CAPTURE_PIN_AGTIO_B = 2U,
AGT_INPUT_CAPTURE_PIN_AGTIO_C = 3U }

Functions

ssp_err_t R_AGT_InputCaptureOpen (input_capture_ctrl_t *const p_api_ctrl,
input_capture_cfg_t const *const p_cfg)

 Open an AGT Timer for Input Capture. Implements
input_capture_api_t::open. More...

ssp_err_t R_AGT_InputCaptureClose (input_capture_ctrl_t *const p_api_ctrl)

 Close a AGT Timer Channel for Input Capture. Implements
input_capture_api_t::close. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,610 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT Input Capture

ssp_err_t R_AGT_InputCaptureVersionGet (ssp_version_t *const p_version)

 Gets driver version based on compile time macros. Implements
input_capture_api_t::versionGet. More...

ssp_err_t R_AGT_InputCaptureDisable (input_capture_ctrl_t const *const
p_api_ctrl)

 Stops the Input capture and disables its interrupts for specified
channel at NVIC. Implements input_capture_api_t::disable. More...

ssp_err_t R_AGT_InputCaptureEnable (input_capture_ctrl_t const *const
p_api_ctrl)

 Enables its interrupts for specified channel at NVIC, and starts the
Input capture. Implements input_capture_api_t::enable. More...

ssp_err_t R_AGT_InputCaptureInfoGet (input_capture_ctrl_t const *const
p_api_ctrl, input_capture_info_t *const p_info)

 Gets status into provided p_info pointer. Implements
input_capture_api_t::infoGet. More...

ssp_err_t R_AGT_InputCaptureLastCaptureGet (input_capture_ctrl_t const
*const p_api_ctrl, input_capture_capture_t *const p_capture)

 Update the last captured value and overflow count, in provided
p_capture pointer. Implements input_capture_api_t::lastCaptureGet.
More...

Detailed Description

Driver for the Asynchronous General-Purpose Timer (AGT) with Input Capture.

Summary
Extends Input Capture Interface.

This module implements the Input Capture Interface for the Asynchronous General-Purpose Timer
(AGT) peripherals.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,611 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT Input Capture

◆ agt_input_capture_clock_divider_t

enum agt_input_capture_clock_divider_t

AGT Input capture AGT LOCO or AGT FSUB divider.

Enumerator

AGT_INPUT_CAPTURE_CLOCK_DIVIDER_1 / 1

AGT_INPUT_CAPTURE_CLOCK_DIVIDER_2 / 2

AGT_INPUT_CAPTURE_CLOCK_DIVIDER_4 / 4

AGT_INPUT_CAPTURE_CLOCK_DIVIDER_8 / 8

AGT_INPUT_CAPTURE_CLOCK_DIVIDER_16 / 16

AGT_INPUT_CAPTURE_CLOCK_DIVIDER_32 / 32

AGT_INPUT_CAPTURE_CLOCK_DIVIDER_64 / 64

AGT_INPUT_CAPTURE_CLOCK_DIVIDER_128 / 128

◆ agt_input_capture_count_edges_t

enum agt_input_capture_count_edges_t

AGT Input capture signal edge polarity for event counter mode

Enumerator

INPUT_CAPTURE_SIGNAL_SINGLE_EDGE Counts only one edge of the pulse.

INPUT_CAPTURE_SIGNAL_BOTH_EDGE Counts both edges of the pulse.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,612 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT Input Capture

◆ agt_input_capture_count_source_t

enum agt_input_capture_count_source_t

Count source

Enumerator

AGT_INPUT_CAPTURE_CLOCK_PCLKB Clock AGT_CLOCK_PCLKB.

AGT_INPUT_CAPTURE_CLOCK_PCLKB_DIV_8 Superseded: See AGT_CLOCK_PCLKB.

AGT_INPUT_CAPTURE_CLOCK_PCLKB_DIV_2 Superseded: See AGT_CLOCK_PCLKB.

AGT_INPUT_CAPTURE_CLOCK_LOCO Divided clock LOCO specified by bits CKS[2:0]
in the AGTMR2 register.

AGT_CLOCK_INPUT_CAPTURE_FSUB Divided clock fSUB specified by bits CKS[2:0] in
the AGTMR2 register.

◆ agt_input_capture_event_flag_t

enum agt_input_capture_event_flag_t

AGT Input capture Event flags.

Enumerator

AGT_INPUT_CAPTURE_ACTIVE_EDGE_FLAG Measurement event flag.

AGT_INPUT_CAPTURE_UNDERFLOW_FLAG Underflow event flag.

AGT_INPUT_CAPTURE_COMPARE_A_FLAG Compare match A event flag.

AGT_INPUT_CAPTURE_COMPARE_B_FLAG Compare match B event flag.

◆ agt_input_capture_mode_t

enum agt_input_capture_mode_t

AGT Input capture modes.

Enumerator

AGT_INPUT_CAPTURE_MODE_PULSE_WIDTH Measure a signal pulse width.

AGT_INPUT_CAPTURE_MODE_PERIOD Measure a signal cycle period.

AGT_INPUT_CAPTURE_MODE_PULSE_COUNT Measure a signal event count.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,613 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT Input Capture

◆ agt_input_capture_pin_select_t

enum agt_input_capture_pin_select_t

AGT Input capture AGTIO Pin Select.

Enumerator

AGT_INPUT_CAPTURE_PIN_AGTIO_A Selects the pin AGTIO_A for input capture.

AGT_INPUT_CAPTURE_PIN_AGTIO_B Selects the pin AGTIO_B for input capture.

AGT_INPUT_CAPTURE_PIN_AGTIO_C Selects the pin AGTIO_C for input capture.

◆ agt_input_capture_signal_filter_t

enum agt_input_capture_signal_filter_t

Input capture signal noise filter (debounce) setting. Only available for input signals in AGTIO pins.
The noise filter samples the external signal at intervals of the PCLK divided by one of the values.
When 3 consecutive samples are at the same level (high or low), then that level is passed on as the
observed state of the signal. See "Noise Filter Function" in the hardware manual, AGT section.

Enumerator

AGT_INPUT_CAPTURE_SIGNAL_FILTER_NONE NO FILTER.

AGT_INPUT_CAPTURE_SIGNAL_FILTER_1 PCLK/1.

AGT_INPUT_CAPTURE_SIGNAL_FILTER_8 PCLK/8.

AGT_INPUT_CAPTURE_SIGNAL_FILTER_32 PCLK/32.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,614 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT Input Capture

◆ R_AGT_InputCaptureClose()

ssp_err_t R_AGT_InputCaptureClose (input_capture_ctrl_t *const p_api_ctrl)

Close a AGT Timer Channel for Input Capture. Implements input_capture_api_t::close.

Clears Timer settings, disables interrupts, and clears internal driver data.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

SSP_ERR_NOT_OPEN The channel is not opened.

Cleanup. Disable interrupts and stop measurements.

Unlock channel

Clear stored internal driver data

◆ R_AGT_InputCaptureDisable()

ssp_err_t R_AGT_InputCaptureDisable (input_capture_ctrl_t const *const p_api_ctrl)

Stops the Input capture and disables its interrupts for specified channel at NVIC. Implements
input_capture_api_t::disable.

Return values
SSP_SUCCESS Interrupt disabled successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Disable interrupts

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,615 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT Input Capture

◆ R_AGT_InputCaptureEnable()

ssp_err_t R_AGT_InputCaptureEnable (input_capture_ctrl_t const *const p_api_ctrl)

Enables its interrupts for specified channel at NVIC, and starts the Input capture. Implements
input_capture_api_t::enable.

Return values
SSP_SUCCESS Interrupt enabled successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Enabling the measurement overflow and compare match interrupt.

◆ R_AGT_InputCaptureInfoGet()

ssp_err_t R_AGT_InputCaptureInfoGet (input_capture_ctrl_t const *const p_api_ctrl,
input_capture_info_t *const p_info)

Gets status into provided p_info pointer. Implements input_capture_api_t::infoGet.

Return values
SSP_SUCCESS Success.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Gets the input capture status.

◆ R_AGT_InputCaptureLastCaptureGet()

ssp_err_t R_AGT_InputCaptureLastCaptureGet (input_capture_ctrl_t const *const p_api_ctrl,
input_capture_capture_t *const p_capture)

Update the last captured value and overflow count, in provided p_capture pointer. Implements
input_capture_api_t::lastCaptureGet.

Return values
SSP_SUCCESS Period value written successfully.

SSP_ERR_ASSERTION The p_ctrl or p_value parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Gets the captured value

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,616 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT Input Capture

◆ R_AGT_InputCaptureOpen()

ssp_err_t R_AGT_InputCaptureOpen (input_capture_ctrl_t *const p_api_ctrl, input_capture_cfg_t
const *const p_cfg)

Open an AGT Timer for Input Capture. Implements input_capture_api_t::open.

The Open function configures a single AGT channel for input capture and provides a handle for use
with the other Input Capture API functions. This function must be called once prior to calling any
other Input Capture API function. After a channel is opened, the Open function should not be called
again for the same channel without first calling the associated Close function.

Return values
SSP_SUCCESS Initialization was successful.

SSP_ERR_ASSERTION One of the parameters is NULL: p_cfg,
p_ctrl, p_extend.

SSP_ERR_IRQ_BSP_DISABLED A required interrupt does not exist in the
vector table.

SSP_ERR_IN_USE The channel specified has already been
opened. No configurations were changed.
Call the associated Close function or use
associated Control commands to
reconfigure the channel.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

Get fmi feature information for AGT.

If count source clock is not operational, return error.

Verify channel is not already used

Get fmi measurement and overflow event information for AGT.

Set measurement and overflow event interrupt priority and vector info.

Get fmi compare match event information for AGT.

Set compare match event interrupt priority and vector info.

Initialize control block.

Perform hardware initializations based on configuration.

Mark channel as open, by initializing it to R_AIC ASCII equivalent.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,617 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT Input Capture

◆ R_AGT_InputCaptureVersionGet()

ssp_err_t R_AGT_InputCaptureVersionGet (ssp_version_t *const p_version)

Gets driver version based on compile time macros. Implements input_capture_api_t::versionGet.

Return values
SSP_SUCCESS Success.

SSP_ERR_ASSERTION The parameter p_version is NULL.

 agt_input_capture_extend_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » AGT Input Capture

Extension configuration struct for AGT Input Capture. More...

#include <r_agt_input_capture.h>

Data Fields

uint16_t pulse_count_value

 Selects the pulse count value for pulse count capture.

agt_input_capture_signal_filt
er_t

signal_filter

 Selects the input signal filter.

agt_input_capture_count_so
urce_t

count_source

 Selects the input count clock source.

agt_input_capture_clock_divi
der_t

clock_divider

 Selects the AGT LOCO or AGT FSUB divider.

agt_input_capture_count_ed
ges_t

count_edge

 Selects the count edge for pulse count capture.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,618 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT Input Capture > agt_input_capture_extend_t Struct Reference

agt_input_capture_pin_selec
t_t

pin_select

 Selects the pin for agt input capture.

Detailed Description

Extension configuration struct for AGT Input Capture.

Pointed to by input_capture_cfg_t.p_extend

The documentation for this struct was generated from the following file:

r_agt_input_capture.h

 agt_input_capture_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » AGT Input Capture

#include <r_agt_input_capture.h>

Data Fields

uint32_t open

 Whether or not channel is open.

uint8_t channel

 The channel in use.

uint8_t flags

 Input capture Event flags.

input_capture_mode_t mode

 The mode of measurement being performed.

input_capture_repetition_t repetition

 One-shot or periodic measurement.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,619 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > AGT Input Capture > agt_input_capture_instance_ctrl_t Struct Reference

volatile uint32_t capture_count

 The value of the timer captured at the time of interrupt.

volatile uint32_t overflows_current

 Running count of overflows in current measurement.

void(* p_callback)(input_capture_callback_args_t *p_args)

 Pointer to user callback.

void const * p_context

 Pointer to user's context data, to be passed to the callback function.

void * p_reg

 AGT base register for this channel.

IRQn_Type capture_irq

 Capture IRQ number.

IRQn_Type overflow_irq

 Overflow IRQ number.

volatile bool pulse_period_first_edge

 Whether the first edge in period has received.

Detailed Description

Channel control block. DO NOT INITIALIZE. Initialization occurs when input_capture_api_t::open is
called.

The documentation for this struct was generated from the following file:

r_agt_input_capture.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,620 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Analog Connections

5.1.5.6 Analog Connections
Renesas Synergy Software Package Reference » HAL Layer

Driver for internal analog connections. More...

Functions

ssp_err_t R_ANALOG_CONNECT_Init (analog_connect_cfg_t const *const p_cfg)

ssp_err_t R_ANALOG_CONNECT_Connect (analog_connect_t const connection)

ssp_err_t R_ANALOG_CONNECT_ConnectMultiple (analog_connect_table_t
const *const p_table)

ssp_err_t R_ANALOG_CONNECT_VersionGet (ssp_version_t *const p_version)

Detailed Description

Driver for internal analog connections.

Summary
Extends Analog Connect Interface.

This module implements the Analog Connect Interface.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,621 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Analog Connections

◆ R_ANALOG_CONNECT_Connect()

ssp_err_t R_ANALOG_CONNECT_Connect (analog_connect_t const connection)

Makes an internal analog connection.

For ACMPHS connections, output and interrupts are disabled while the connection is configured,
then the output and interrupts are restored to their original state. Since this function enables
output if it was enabled before, R_ACMPHS_Close() should not be called during this function.

ACMPLP connections must be made prior to enabling output.

OPAMP connections can be reconfigured while the OPAMP is operating. If an OPAMP connection is
already set and a new connection is made, the new connection overwrites the existing connection.
OPAMP connections can be OR'd together if they are for the same signal:

Valid example: ANALOG_CONNECT_OPAMP0_PLUS_TO_PIN_AMP0_PLUS |
ANALOG_CONNECT_OPAMP0_PLUS_TO_PIN_AMP1_PLUS

Both start with ANALOG_CONNECT_OPAMP0_PLUS
Invalid example: ANALOG_CONNECT_OPAMP0_PLUS_TO_PIN_AMP0_PLUS |
ANALOG_CONNECT_OPAMP0_MINUS_TO_PIN_AMP0_MINUS

Do not mix PLUS and MINUS
Invalid example: ANALOG_CONNECT_OPAMP0_PLUS_TO_PIN_AMP0_PLUS |
ANALOG_CONNECT_OPAMP1_PLUS_TO_PIN_AMP1_PLUS

Do not mix channels 0 and 1
If AVCC0 < 2.7 V, MOCO must be enabled to make OPAMP connections because the internal OPAMP
switches require a charge pump, and the MOCO is required for charge pump operation. When using
the charge pump for the amplifier:

Turn on no more than a total of 5 connections for OPAMP0.
Turn on no more than a total of 5 connections for OPAMP1.
Turn on no more than a total of 2 connections for OPAMP2.

Return values
SSP_SUCCESS Connection made.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,622 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Analog Connections

◆ R_ANALOG_CONNECT_ConnectMultiple()

ssp_err_t R_ANALOG_CONNECT_ConnectMultiple (analog_connect_table_t const *const p_table)

Makes all connections in the table.

See R_ANALOG_CONNECT_Connect() for modules specific usage notes regarding connections.

Return values
SSP_SUCCESS All connections made.

SSP_ERR_ASSERTION Data table pointer is NULL or size is 0.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet

◆ R_ANALOG_CONNECT_Init()

ssp_err_t R_ANALOG_CONNECT_Init (analog_connect_cfg_t const *const p_cfg)

Placeholder function for analog connection initialization code. Currently unused.

Return values
SSP_SUCCESS Init successful.

◆ R_ANALOG_CONNECT_VersionGet()

ssp_err_t R_ANALOG_CONNECT_VersionGet (ssp_version_t *const p_version)

Gets the API and code version. Implements analog_connect_api_t::versionGet().

Return values
SSP_SUCCESS Version information available in p_version.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Return the version number

5.1.5.7 CAC
Renesas Synergy Software Package Reference » HAL Layer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,623 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAC

Driver for the Clock Frequency Accuracy Measurement Circuit (CAC). More...

Data Structures

struct cac_instance_ctrl_t

Functions

ssp_err_t R_CAC_Open (cac_ctrl_t *const p_api_ctrl, cac_cfg_t const *const
p_cfg)

 Initialize the CAC peripheral. More...

ssp_err_t R_CAC_Close (cac_ctrl_t *const p_api_ctrl)

 Release any resources that were allocated by the Open() or any
subsequent CAC operations. Implements r_cac_t::close. More...

ssp_err_t R_CAC_StopMeasurement (cac_ctrl_t *const p_api_ctrl)

 Stop the CAC measurement process. Implements
r_cac_t::stopMeasurement. More...

ssp_err_t R_CAC_StartMeasurement (cac_ctrl_t *const p_api_ctrl)

 Start the CAC measurement process. Implements
r_cac_t::startMeasurement. More...

ssp_err_t R_CAC_Reset (cac_ctrl_t *const p_api_ctrl)

 Resets the Overflow, Measurement End and Frequency Error
interrupt flags. This will clear any of the CASTR status bits that have
been set, but only if the CFME bit is off (Not measuring). Implements
r_cac_t::reset. More...

ssp_err_t R_CAC_Read (cac_ctrl_t *const p_api_ctrl, uint8_t *const p_status,
uint16_t *const p_counter)

 Read and return the CAC status and counter registers. Implements
r_cac_t::read. More...

ssp_err_t R_CAC_VersionGet (ssp_version_t *const p_version)

 Get the API and code version information. More...

Detailed Description

Driver for the Clock Frequency Accuracy Measurement Circuit (CAC).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,624 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAC

Summary
This module supports the CAC peripheral.

Function Documentation

◆ R_CAC_Close()

ssp_err_t R_CAC_Close (cac_ctrl_t *const p_ctrl)

Release any resources that were allocated by the Open() or any subsequent CAC operations.
Implements r_cac_t::close.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg.

SSP_ERR_NOT_OPEN R_CAC_Open() has not been successfully
called.

// Example code

// Create a variable for the error

ssp_err_t err;

// Define a control block structure used in the API calls.

cac_ctrl_t ctrl;

err = R_CAC_Close(&ctrl);

Eliminate warning if parameter checking is disabled.

Disable interrupts in the peripheral and NVIC

Disable interrupts in NVIC.

Disable the CAC ints.

Stop measuring.

Power down peripheral.

Return the hardware lock for the CAC.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,625 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAC

◆ R_CAC_Open()

ssp_err_t R_CAC_Open (cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfg)

Initialize the CAC peripheral.

The Open function applies power to the CAC peripheral, checks/sets the interrupt priority, and
configures the CAC based on the provided user configuration settings. If a user defined callback
function has been provided in the configuration, then the CAC interrupt(s) will be enabled and the
user callback function called accordingly. Implements r_cac_t::open.

Return values
SSP_SUCCESS CAC is available and available for

measurement(s).

SSP_ERR_ASSERTION Null Pointer.

SSP_ERR_INVALID_ARGUMENT One or more configuration options are
invalid.

SSP_ERR_HW_LOCKED Hardware lock for CAC peripheral is already
taken.

SSP_ERR_INVALID_CAC_REF_CLOCK Measured clock rate smaller than reference
clock rate.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Note
There is only a single CAC peripheral. It is not reentrant.

// Example code

// Create a variable for the error

ssp_err_t err;

// Define a control block structure used in the API calls.

cac_ctrl_t ctrl;

// Define a configuration structure used in the API calls.

cac_cfg_t g_cac_example_cfg;

// Init the CGC and start the HOCO and LOCO clocks.

err = R_CGC_Init();

err = R_CGC_ClockStart(CGC_CLOCK_HOCO, &clock_config);

err = R_CGC_ClockStart(CGC_CLOCK_LOCO, &clock_config);

// Specify the parameters we are using

g_cac_example_cfg.callback = NULL,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,626 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAC

g_cac_example_cfg.p_context = 0,

g_cac_example_cfg.p_extend = NULL,

g_cac_example_cfg.continuous_mode = false, // measurement does not continuously

restart after completing.

g_cac_example_cfg.mei_interrupt_enabled = false; // Measurement complete interrupt

disabled

g_cac_example_cfg.ovf_interrupt_enabled = false; // Overflow interrupt is disabled

g_cac_example_cfg.ferr_interrupt_enabled = false; // Frequency Error interrupt is

disabled

g_cac_example_cfg.cac_ref_clock.digfilter = CAC_REF_DIGF_OFF; // No digital filter

g_cac_example_cfg.cac_ref_clock.edge = CAC_REF_EDGE_RISE; // Rising edge detect

g_cac_example_cfg.cac_meas_clock.clock = CAC_CLOCK_SOURCE_HOCO; // We want to measure

HOCO (24 MHz)

g_cac_example_cfg.cac_meas_clock.divider = CAC_MEAS_DIV_1; // No divisor on the

measurement clock

g_cac_example_cfg.cac_ref_clock.clock = CAC_CLOCK_SOURCE_LOCO; // Our reference

clock will LOCO (32.768 kHz)

g_cac_example_cfg.cac_ref_clock.divider = CAC_REF_DIV_32; // Minimum divider is

32, so effective freq = 1024 Hz

 err = R_CAC_Open(&ctrl, &g_cac_example_cfg);

g_cac_version is accessed by the ASSERT macro only and so compiler toolchain can issue a warning
that they are not accessed. The code below eliminates this warning and also ensures these data
structures are not optimised away.

Eliminate warning if parameter checking is disabled.

Take the hardware lock for the CAC.

Setup the interrupt vectors and priorities

Return the hardware lock for the CAC.

Apply power to the peripheral

Configure the CAC per the configuration.

Store the callback and context information

Mark driver as open by initializing it to "CAC" - its ASCII equivalent.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,627 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAC

◆ R_CAC_Read()

ssp_err_t R_CAC_Read (cac_ctrl_t *const p_ctrl, uint8_t *const p_status, uint16_t *const
p_counter)

Read and return the CAC status and counter registers. Implements r_cac_t::read.

Return values
SSP_SUCCESS CAC read successful.

SSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg.

SSP_ERR_NOT_OPEN R_CAC_Open() has not been successfully
called.

// Example code

// Create a variable for the error and storage for the CAC count and status

ssp_err_t err;

uint8_t cac_status;

uint16_t cac_counter;

// Define a control block structure used in the API calls.

cac_ctrl_t ctrl;

err = R_CAC_Read(&ctrl, &cac_status, &cac_counter);

Eliminate warning if parameter checking is disabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,628 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAC

◆ R_CAC_Reset()

ssp_err_t R_CAC_Reset (cac_ctrl_t *const p_ctrl)

Resets the Overflow, Measurement End and Frequency Error interrupt flags. This will clear any of
the CASTR status bits that have been set, but only if the CFME bit is off (Not measuring).
Implements r_cac_t::reset.

Return values
SSP_SUCCESS CAC reset completed.

SSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg.

SSP_ERR_NOT_OPEN R_CAC_Open() has not been successfully
called.

// Example code

// Create a variable for the error

ssp_err_t err;

// Define a control block structure used in the API calls.

 cac_ctrl_t ctrl;

// Start the measurement process

err = R_CAC_Reset(&ctrl);

Eliminate warning if parameter checking is disabled.

Reset the CAC.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,629 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAC

◆ R_CAC_StartMeasurement()

ssp_err_t R_CAC_StartMeasurement (cac_ctrl_t *const p_ctrl)

Start the CAC measurement process. Implements r_cac_t::startMeasurement.

Return values
SSP_SUCCESS CAC measurement started.

SSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg.

SSP_ERR_NOT_OPEN R_CAC_Open() has not been successfully
called.

SSP_ERR_CLOCK_INACTIVE Either the provided Measurement or
Reference clock is not running

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

cgc_api_t::clockCheck
// Example code

// Create a variable for the error

ssp_err_t err;

// Define a control block structure used in the API calls.

 cac_ctrl_t ctrl;

// Start the measurement process

err = R_CAC_StartMeasurement(&ctrl);

Eliminate warnings if parameter checking is disabled.

Start measuring.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,630 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAC

◆ R_CAC_StopMeasurement()

ssp_err_t R_CAC_StopMeasurement (cac_ctrl_t *const p_ctrl)

Stop the CAC measurement process. Implements r_cac_t::stopMeasurement.

Return values
SSP_SUCCESS CAC measuring has been stopped.

SSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg.

SSP_ERR_NOT_OPEN R_CAC_Open() has not been successfully
called.

// Example code

// Create a variable for the error

ssp_err_t err;

// Define a control block structure used in the API calls.

 cac_ctrl_t ctrl;

// Stop the measurement process

err = R_CAC_StopMeasurement(&ctrl);

Eliminate warning if parameter checking is disabled.

Stop measuring.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,631 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAC

◆ R_CAC_VersionGet()

ssp_err_t R_CAC_VersionGet (ssp_version_t *const p_version)

Get the API and code version information.

Return values
SSP_SUCCESS Version info returned.

Note
This function is reentrant.

// Example code

// Create a variable for the error

ssp_err_t err;

// Create a variable for the version information

ssp_version_t version;

// Get the current counter value

err = R_CAC_VersionGet(&version);

 cac_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » CAC

#include <r_cac.h>

Data Fields

void * p_reg

 Pointer to register base address.

void(* p_callback)(cac_callback_args_t *cb_data)

 Called from the ISR.

void const * p_context

 Passed to the callback.

IRQn_Type frequency_error_irq

 Frequency error IRQ number.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,632 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAC > cac_instance_ctrl_t Struct Reference

IRQn_Type measurement_end_irq

 Measurement end IRQ number.

IRQn_Type overflow_irq

 Overflow IRQ number.

uint32_t cac_api_open

 Set to "CAC" once API has been successfully opened.

bool cac_continous_mode

 Set as a result of the Open() call.

bsp_lock_t cac_lock

 CAC commands software lock.

cac_clock_source_t measurement_clock

 Clock specified in Open() as the measurement clock.

cac_clock_source_t reference_clock

 Clock specified in Open() as the reference clock.

Detailed Description

CAC instance control block. DO NOT INITIALIZE.

The documentation for this struct was generated from the following file:

r_cac.h

5.1.5.8 CAN
Renesas Synergy Software Package Reference » HAL Layer

Driver for CAN, Controller Area Network. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,633 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAN

Data Structures

struct can_instance_ctrl_t

struct can_extended_cfg_t

Functions

ssp_err_t R_CAN_Open (can_ctrl_t *const p_ctrl, can_cfg_t const *const p_cfg)

 Open and configure the CAN channel for operation. Implements
can_api_t::open() More...

ssp_err_t R_CAN_Close (can_ctrl_t *const p_ctrl)

 Close the CAN channel. Implements can_api_t::close() More...

ssp_err_t R_CAN_Read (can_ctrl_t *const p_ctrl, uint32_t mailbox, can_frame_t
*const p_frame)

 Read data from the CAN channel. Return up to eight bytes read from
the channel mailbox. Implements can_api_t::read() More...

ssp_err_t R_CAN_Write (can_ctrl_t *const p_ctrl, uint32_t mailbox, can_frame_t
*const p_frame)

 Write data to the CAN channel. Write up to eight bytes to the
channel mailbox. Implements can_api_t::write() More...

ssp_err_t R_CAN_Control (can_ctrl_t *const p_ctrl, can_command_t const
command, void *p_data)

 CAN Control is used to control extended features. Implements
can_api_t::control() More...

ssp_err_t R_CAN_InfoGet (can_ctrl_t *const p_ctrl, can_info_t *const p_info)

 Get CAN state and status information for the channel. Implements
can_api_t::infoGet() More...

ssp_err_t R_CAN_VersionGet (ssp_version_t *const p_version)

 Get CAN module code and API versions. Implements
can_api_t::versionGet() More...

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,634 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAN

Driver for CAN, Controller Area Network.

This module supports the Controller Area Network peripheral. It implements the following interfaces:

CAN Interface

Function Documentation

◆ R_CAN_Close()

ssp_err_t R_CAN_Close (can_ctrl_t *const p_ctrl)

Close the CAN channel. Implements can_api_t::close()

Return values
SSP_SUCCESS Channel closed successfully.

SSP_ERR_NOT_OPEN Control block not open.

SSP_ERR_ASSERTION Null pointer presented.

Mark the channel not open so other APIs cannot use it.

Disable transmit, receive and error interrupts

Enable module stop for the CAN channel

Unlock the CAN channel

◆ R_CAN_Control()

ssp_err_t R_CAN_Control (can_ctrl_t *const p_ctrl, can_command_t const command, void *
p_data)

CAN Control is used to control extended features. Implements can_api_t::control()

Return values
SSP_SUCCESS Operation succeeded.

SSP_ERR_NOT_OPEN Control block not open.

SSP_ERR_INVALID_ARGUMENT Invalid command.

SSP_ERR_ASSERTION Null pointer presented

SSP_ERR_CAN_MODE_SWITCH_FAILED Switching modes failed.

Verify command is CAN_COMMAND_MODE_SWITCH

Change operating mode. Returns false if invalid mode or mode switch failed.

Save mode for diagnostic purposes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,635 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAN

◆ R_CAN_InfoGet()

ssp_err_t R_CAN_InfoGet (can_ctrl_t *const p_ctrl, can_info_t *const p_info)

Get CAN state and status information for the channel. Implements can_api_t::infoGet()

Return values
SSP_SUCCESS Operation succeeded.

SSP_ERR_NOT_OPEN Control block not open.

SSP_ERR_CAN_DATA_UNAVAILABLE Channel failed to return info.

SSP_ERR_ASSERTION Null pointer presented

Get status for channel.

Error encountered when retrieving info.

Save the operation mode

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,636 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAN

◆ R_CAN_Open()

ssp_err_t R_CAN_Open (can_ctrl_t *const p_ctrl, can_cfg_t const *const p_cfg)

Open and configure the CAN channel for operation. Implements can_api_t::open()

Return values
SSP_SUCCESS Channel opened successfully

SSP_ERR_INVALID_ARGUMENT Invalid channel passed as argument.

SSP_ERR_HW_LOCKED Lock already owned by another user.

SSP_ERR_CAN_MODE_SWITCH_FAILED Channel failed to switch modes.

SSP_ERR_CAN_INIT_FAILED Channel failed to initialize.

SSP_ERR_ASSERTION Null pointer presented.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet
cgc_api_t::clockCheck

Check for valid parameters.

Make sure the feature exists on this MCU.

Return if failed to get feature information.

Try to get channel lock.

Return if channel is already open so return error

Enter module start state.

Disable interrupts while initializing

Initialize and configure CAN module to run.

Set channel, callback function, context, id mode, mailbox count, message mode, op mode and
opened status.

If successful, Lookup and store IRQ numbers. Enable interrupts.

If successful, Mark the control block as open

If the device failed to initialize, disable interrupts, stop and unlock the hardware and mark the
control block as closed.

Process errors before returning.

Log error or assertion.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,637 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAN

◆ R_CAN_Read()

ssp_err_t R_CAN_Read (can_ctrl_t *const p_ctrl, uint32_t mailbox, can_frame_t *const p_frame)

Read data from the CAN channel. Return up to eight bytes read from the channel mailbox.
Implements can_api_t::read()

Return values
SSP_SUCCESS Data successfully read.

SSP_ERR_NOT_OPEN Control block not open.

SSP_ERR_CAN_DATA_UNAVAILABLE No data available.

SSP_ERR_CAN_TRANSMIT_MAILBOX Mailbox is not setup for receive.

SSP_ERR_ASSERTION Null pointer presented.

Check for receive data

Get frame data.

Check for other mailboxes in an overrun state.

Check for other mailboxes with received messages pending.

◆ R_CAN_VersionGet()

ssp_err_t R_CAN_VersionGet (ssp_version_t *const p_version)

Get CAN module code and API versions. Implements can_api_t::versionGet()

Return values
SSP_SUCCESS Operation succeeded.

SSP_ERR_ASSERTION Null pointer presented note This function is
reentrant.

Return module version information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,638 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAN

◆ R_CAN_Write()

ssp_err_t R_CAN_Write (can_ctrl_t *const p_ctrl, uint32_t mailbox, can_frame_t *const p_frame)

Write data to the CAN channel. Write up to eight bytes to the channel mailbox. Implements
can_api_t::write()

Return values
SSP_SUCCESS Operation succeeded.

SSP_ERR_NOT_OPEN Control block not open.

SSP_ERR_CAN_TRANSMIT_NOT_READY Transmit in progress, cannot write data at
this time.

SSP_ERR_CAN_RECEIVE_MAILBOX Mailbox is setup for receive and cannot
send.

SSP_ERR_INVALID_ARGUMENT Data length or frame type invalid.

SSP_ERR_ASSERTION Null pointer presented

Check transmit ready flag.

Transmit ready flag is not set, return error/status.

Transmit ready flag set, so clear it.

Send transmit frame.

 can_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » CAN

#include <r_can.h>

Data Fields

uint32_t channel

 Channel number. More...

uint32_t open

 Open status of channel.

can_mode_t operation_mode

 Can operation mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,639 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAN > can_instance_ctrl_t Struct Reference

can_id_mode_t id_mode

 Standard or Extended ID mode.

uint32_t mailbox_count

 Number of mailboxes.

can_mailbox_t * p_mailbox

 Pointer to mailboxes.

can_message_mode_t message_mode

 Overwrite message or overrun.

can_clock_source_t clock_source

 Clock source. CANMCLK or PCLKB.

void(* p_callback)(can_callback_args_t *p_args)

 Pointer to callback function. More...

void const * p_context

 Pointer to the higher level device context.

void * p_reg

 Pointer to register base address.

IRQn_Type error_irq

 Error IRQ number.

IRQn_Type mailbox_rx_irq

 Receive mailbox IRQ number.

IRQn_Type mailbox_tx_irq

 Transmit mailbox IRQ number.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,640 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAN > can_instance_ctrl_t Struct Reference

Detailed Description

CAN Instance Control Block

Field Documentation

◆ channel

uint32_t can_instance_ctrl_t::channel

Channel number.

Parameters to control CAN peripheral device

◆ p_callback

void(* can_instance_ctrl_t::p_callback) (can_callback_args_t *p_args)

Pointer to callback function.

Parameters to process CAN Event

The documentation for this struct was generated from the following file:

r_can.h

 can_extended_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » CAN

#include <r_can.h>

Data Fields

can_clock_source_t clock_source

 Source of the CAN clock.

uint32_t * p_mailbox_mask

 Mailbox mask, one for every 4 mailboxes.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,641 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CAN > can_extended_cfg_t Struct Reference

CAN clock configuration and mailbox mask to be pointed to by p_extend.

The documentation for this struct was generated from the following file:

r_can.h

5.1.5.9 CGC
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Clock Generation Circuit. More...

Functions

ssp_err_t R_CGC_Init (void)

 Initialize the CGC API. More...

ssp_err_t R_CGC_ClocksCfg (cgc_clocks_cfg_t const *const p_clock_cfg)

 Reconfigure all main system clocks. More...

ssp_err_t R_CGC_ClockStart (cgc_clock_t clock_source, cgc_clock_cfg_t
*p_clock_cfg)

 Start the specified clock if it is not currently active. More...

ssp_err_t R_CGC_ClockStop (cgc_clock_t clock_source)

 Stop the specified clock if it is active and not configured as the
system clock. More...

ssp_err_t R_CGC_SystemClockSet (cgc_clock_t clock_source,
cgc_system_clock_cfg_t const *const p_clock_cfg)

 Set the specified clock as the system clock and configure the internal
dividers for ICLK, PCLKA, PCLKB, PCLKC, PCLKD and FCLK. More...

ssp_err_t R_CGC_SystemClockGet (cgc_clock_t *clock_source,
cgc_system_clock_cfg_t *p_set_clock_cfg)

 Return the current system clock source and configuration. More...

ssp_err_t R_CGC_SystemClockFreqGet (cgc_system_clocks_t clock, uint32_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,642 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

*p_freq_hz)

 Return the requested internal clock frequency in Hz. More...

ssp_err_t R_CGC_ClockCheck (cgc_clock_t clock_source)

 Check the specified clock for stability. More...

ssp_err_t R_CGC_OscStopDetect (void(*p_callback)(cgc_callback_args_t
*p_args), bool enable)

 Enable or disable the oscillation stop detection for the main clock.
The MCU will automatically switch the system clock to MOCO when a
stop is detected if Main Clock is the system clock. If the system clock
is the PLL, then the clock source will not be changed and the PLL free
running frequency will be the system clock frequency. More...

ssp_err_t R_CGC_OscStopStatusClear (void)

 Clear the Oscillation Stop Detection Status register. More...

ssp_err_t R_CGC_BusClockOutCfg (cgc_bclockout_dividers_t divider)

 Configure the secondary dividers for BCLKOUT. The primary divider
is set using the bsp clock configuration and the
R_CGC_SystemClockSet function. More...

ssp_err_t R_CGC_BusClockOutEnable (void)

 Enable the BCLKOUT output. More...

ssp_err_t R_CGC_BusClockOutDisable (void)

 Disable the BCLKOUT output. More...

ssp_err_t R_CGC_ClockOutCfg (cgc_clock_t clock, cgc_clockout_dividers_t
divider)

 Configure the dividers for CLKOUT. More...

ssp_err_t R_CGC_ClockOutEnable (void)

 Enable the CLKOUT output. More...

ssp_err_t R_CGC_ClockOutDisable (void)

 Disable the CLKOUT output. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,643 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

ssp_err_t R_CGC_LCDClockCfg (cgc_clock_t clock)

 Configure the source for the segment LCDCLK. More...

ssp_err_t R_CGC_LCDClockEnable (void)

 Enable the segment LCDCLK output. More...

ssp_err_t R_CGC_LCDClockDisable (void)

 Disable the segment LCDCLK output. More...

ssp_err_t R_CGC_SDADCClockCfg (cgc_clock_t clock)

 Configure the source for the SDADCCLK. More...

ssp_err_t R_CGC_SDADCClockEnable (void)

 Enable the SDADCCLK output. More...

ssp_err_t R_CGC_SDADCClockDisable (void)

 Disable the SDADCCLK output. More...

ssp_err_t R_CGC_SDRAMClockOutEnable (void)

 Enable the SDCLK output. More...

ssp_err_t R_CGC_SDRAMClockOutDisable (void)

 Disable the SDCLK output. More...

ssp_err_t R_CGC_USBClockCfg (cgc_usb_clock_div_t divider)

 Configure the dividers for UCLK. More...

ssp_err_t R_CGC_SystickUpdate (uint32_t period_count,
cgc_systick_period_units_t units)

 Re-Configure the systick based on the provided period and current
system clock frequency. More...

ssp_err_t R_CGC_VersionGet (ssp_version_t *const p_version)

 Return the driver version. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,644 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

bool r_cgc_clock_run_state_get (R_SYSTEM_Type *p_system_reg,
cgc_clock_t clock)

 This function returns the run state of the selected clock. More...

cgc_operating_modes_t r_cgc_operating_mode_get (R_SYSTEM_Type *p_system_reg)

 This function checks the MCU for High Speed Mode. More...

void r_cgc_operating_hw_modeset (R_SYSTEM_Type *p_system_reg,
cgc_operating_modes_t operating_mode)

 This function changes the operating power control mode. More...

void r_cgc_hoco_wait_control_set (R_SYSTEM_Type *p_system_reg, uint8_t
hoco_wait)

 This function sets the HOCO wait time register. More...

Detailed Description

Driver for the Clock Generation Circuit.

Clock Generation Circuit Hardware Functions.

This module supports the Clock Generation Circuit. It implements the following interfaces:

CGC Interface

Function Documentation

◆ R_CGC_BusClockOutCfg()

ssp_err_t R_CGC_BusClockOutCfg (cgc_bclockout_dividers_t divider)

Configure the secondary dividers for BCLKOUT. The primary divider is set using the bsp clock
configuration and the R_CGC_SystemClockSet function.

Return values
SSP_SUCCESS Operation performed successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,645 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ R_CGC_BusClockOutDisable()

ssp_err_t R_CGC_BusClockOutDisable (void)

Disable the BCLKOUT output.

Return values
SSP_SUCCESS Operation performed successfully.

◆ R_CGC_BusClockOutEnable()

ssp_err_t R_CGC_BusClockOutEnable (void)

Enable the BCLKOUT output.

Return values
SSP_SUCCESS Operation performed successfully.

◆ r_cgc_clock_run_state_get()

bool r_cgc_clock_run_state_get (R_SYSTEM_Type * p_system_reg, cgc_clock_t clock)

This function returns the run state of the selected clock.

Parameters
[in] clock the clock to check

[in] p_system_reg pointer to system register
structure

[in] clock - the clock to check

Return values
bool true if clock is running, false if stopped

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,646 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ R_CGC_ClockCheck()

ssp_err_t R_CGC_ClockCheck (cgc_clock_t clock_source)

Check the specified clock for stability.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_NOT_STABILIZED Clock not stabilized.

SSP_ERR_CLOCK_ACTIVE Clock active but not able to check for
stability.

SSP_ERR_CLOCK_INACTIVE Clock not turned on.

SSP_ERR_INVALID_ARGUMENT Illegal parameter passed.

SSP_ERR_STABILIZED Clock stabilized.

◆ R_CGC_ClockOutCfg()

ssp_err_t R_CGC_ClockOutCfg (cgc_clock_t clock, cgc_clockout_dividers_t divider)

Configure the dividers for CLKOUT.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_INVALID_ARGUMENT return error if PLL is used as source for clock
out

SSP_ERR_CLOCK_INACTIVE return error if sub clock is not started prior
to using it for clock out

◆ R_CGC_ClockOutDisable()

ssp_err_t R_CGC_ClockOutDisable (void)

Disable the CLKOUT output.

Return values
SSP_SUCCESS Operation performed successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,647 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ R_CGC_ClockOutEnable()

ssp_err_t R_CGC_ClockOutEnable (void)

Enable the CLKOUT output.

Return values
SSP_SUCCESS Operation performed successfully.

◆ R_CGC_ClocksCfg()

ssp_err_t R_CGC_ClocksCfg (cgc_clocks_cfg_t const *const p_clock_cfg)

Reconfigure all main system clocks.

Return values
SSP_SUCCESS Clock initialized successfully.

SSP_ERR_INVALID_ARGUMENT Invalid argument used.

SSP_ERR_MAIN_OSC_INACTIVE PLL Initialization attempted with Main OCO
turned off/unstable.

SSP_ERR_CLOCK_ACTIVE Active clock source specified for
modification. This applies specifically to the
PLL dividers/multipliers which cannot be
modified if the PLL is active. It has to be
stopped first before modification.

SSP_ERR_NOT_STABILIZED The Clock source is not stabilized after
being turned off.

SSP_ERR_CLKOUT_EXCEEDED The main oscillator can be only 8 or 16 MHz.

SSP_ERR_ASSERTION A NULL is passed for configuration data
when PLL is the clock_source.

SSP_ERR_INVALID_MODE Attempt to start a clock in a restricted
operating power control mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,648 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ R_CGC_ClockStart()

ssp_err_t R_CGC_ClockStart (cgc_clock_t clock_source, cgc_clock_cfg_t * p_clock_cfg)

Start the specified clock if it is not currently active.

Configures the following when starting the Main Clock Oscillator:

MainClock drive capacity (Configured based on external clock frequency)
MainClock stabilization wait time (Compile time configurable: CGC_CFG_MAIN_OSC_WAIT)
To update the subclock driven capacity, stop the subclock first before calling this function.

Return values
SSP_SUCCESS Clock initialized successfully.

SSP_ERR_INVALID_ARGUMENT Invalid argument used.

SSP_ERR_MAIN_OSC_INACTIVE PLL Initialization attempted with Main OCO
turned off/unstable.

SSP_ERR_CLOCK_ACTIVE Active clock source specified for
modification. This applies specifically to the
PLL dividers/multipliers which cannot be
modified if the PLL is active. It has to be
stopped first before modification.

SSP_ERR_NOT_STABILIZED The Clock source is not stabilized after
being turned off.

SSP_ERR_CLKOUT_EXCEEDED The main oscillator can be only 8 or 16 MHz.

SSP_ERR_ASSERTION A NULL is passed for configuration data
when PLL is the clock_source.

SSP_ERR_INVALID_MODE Attempt to start a clock in a restricted
operating power control mode.

SSP_ERR_HARDWARE_TIMEOUT Hardware timed out.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,649 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ R_CGC_ClockStop()

ssp_err_t R_CGC_ClockStop (cgc_clock_t clock_source)

Stop the specified clock if it is active and not configured as the system clock.

Return values
SSP_SUCCESS Clock stopped successfully.

SSP_ERR_CLOCK_ACTIVE Current System clock source specified for
stopping. This is not allowed.

SSP_ERR_OSC_STOP_DET_ENABLED Illegal attempt to stop MOCO when
Oscillation stop is enabled.

SSP_ERR_NOT_STABILIZED Clock not stabilized after starting. A finite
stabilization time after starting the clock
has to elapse before it can be stopped.

SSP_ERR_INVALID_ARGUMENT Invalid argument used.

SSP_ERR_HARDWARE_TIMEOUT Hardware timed out.

◆ r_cgc_hoco_wait_control_set()

void r_cgc_hoco_wait_control_set (R_SYSTEM_Type * p_system_reg, uint8_t hoco_wait)

This function sets the HOCO wait time register.

Parameters
[in] hoco_wait HOCOWTCR HSTS setting

[in] p_system_reg pointer to system register
structure

Return values
none

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,650 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ R_CGC_Init()

ssp_err_t R_CGC_Init (void)

Initialize the CGC API.

Configures the following for the clock generator module -If
CGC_CFG_SUBCLOCK_AT_RESET_ENABLE is set to true:

SubClock drive capacity (Compile time configurable: CGC_CFG_SUBCLOCK_DRIVE)
Initial setting for the SubClock

THIS FUNCTION MUST BE EXECUTED ONCE AT STARTUP BEFORE ANY OF THE OTHER CGC
FUNCTIONS CAN BE USED OR THE CLOCK SOURCE IS CHANGED FROM THE MOCO.

Return values
SSP_SUCCESS Clock initialized successfully.

SSP_ERR_HARDWARE_TIMEOUT Hardware timed out.

SubClock will stop only if configurable setting is Enabled

◆ R_CGC_LCDClockCfg()

ssp_err_t R_CGC_LCDClockCfg (cgc_clock_t clock)

Configure the source for the segment LCDCLK.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_TIMEOUT Timed out.

SSP_ERR_INVALID_ARGUMENT lcd_clock settings are invalid

SSP_ERR_UNSUPPORTED lcd_clock configuration is not supported on
this device

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,651 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ R_CGC_LCDClockDisable()

ssp_err_t R_CGC_LCDClockDisable (void)

Disable the segment LCDCLK output.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_TIMEOUT Timed out.

SSP_ERR_UNSUPPORTED lcd_clock is not supported on this device

◆ R_CGC_LCDClockEnable()

ssp_err_t R_CGC_LCDClockEnable (void)

Enable the segment LCDCLK output.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_TIMEOUT Timed out.

SSP_ERR_UNSUPPORTED lcd_clock is not supported on this device

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,652 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ r_cgc_operating_hw_modeset()

void r_cgc_operating_hw_modeset (R_SYSTEM_Type * p_system_reg, cgc_operating_modes_t
operating_mode)

This function changes the operating power control mode.

Parameters
[in] p_system_reg pointer to system register

structure

[in] operating_mode Operating power control
mode

Enable writing to OPCCR and SOPCCR registers.

Wait for transition to complete.

Disable writing to OPCCR and SOPCCR registers.

The Sub-osc bit has to be cleared first.

Wait for transition to complete.

Set OPCCR.

Wait for transition to complete.

Set SOPCCR.

Wait for transition to complete.

Disable writing to OPCCR and SOPCCR registers.

◆ r_cgc_operating_mode_get()

cgc_operating_modes_t r_cgc_operating_mode_get (R_SYSTEM_Type * p_system_reg)

This function checks the MCU for High Speed Mode.

Parameters
[in] p_system_reg pointer to system register

structure

Return values
operating_mode current mode of operation read from OPCCR

register

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,653 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ R_CGC_OscStopDetect()

ssp_err_t R_CGC_OscStopDetect (void(*)(cgc_callback_args_t *p_args) p_callback, bool enable)

Enable or disable the oscillation stop detection for the main clock. The MCU will automatically
switch the system clock to MOCO when a stop is detected if Main Clock is the system clock. If the
system clock is the PLL, then the clock source will not be changed and the PLL free running
frequency will be the system clock frequency.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_OSC_STOP_DETECTED The Oscillation stop detect status flag is set.
Under this condition it is not possible to
disable the Oscillation stop detection
function.

SSP_ERR_ASSERTION Null pointer passed for callback function
when the second argument is "true".

SSP_ERR_ASSERTION Cannot enable oscillator stop detect in sub-
osc speed mode

SSP_ERR_ASSERTION Invalid peripheral clock divisions for
oscillator stop detect

SSP_ERR_INVALID_MODE Invalid peripheral clock divider setting.
Frequencies of peripherals should follow
certain conditions.

add callback function to BSP

◆ R_CGC_OscStopStatusClear()

ssp_err_t R_CGC_OscStopStatusClear (void)

Clear the Oscillation Stop Detection Status register.

This register is not cleared automatically if the stopped clock is restarted. This function blocks for
about 3 ICLK cycles until the status register is cleared.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_OSC_STOP_CLOCK_ACTIVE The Oscillation Detect Status flag cannot be
cleared if the Main Osc or PLL is set as the
system clock. Change the system clock
before attempting to clear this bit.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,654 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ R_CGC_SDADCClockCfg()

ssp_err_t R_CGC_SDADCClockCfg (cgc_clock_t clock)

Configure the source for the SDADCCLK.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_UNSUPPORTED sdadc_clock configuration is not supported
on this device

SSP_ERR_INVALID_ARGUMENT Invalid clock used

◆ R_CGC_SDADCClockDisable()

ssp_err_t R_CGC_SDADCClockDisable (void)

Disable the SDADCCLK output.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_UNSUPPORTED sdadc_clock is not supported on this device

◆ R_CGC_SDADCClockEnable()

ssp_err_t R_CGC_SDADCClockEnable (void)

Enable the SDADCCLK output.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_UNSUPPORTED sdadc_clock is not supported on this device

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,655 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ R_CGC_SDRAMClockOutDisable()

ssp_err_t R_CGC_SDRAMClockOutDisable (void)

Disable the SDCLK output.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_UNSUPPORTED sdram_clock is not supported on this device

◆ R_CGC_SDRAMClockOutEnable()

ssp_err_t R_CGC_SDRAMClockOutEnable (void)

Enable the SDCLK output.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_UNSUPPORTED sdram_clock is not supported on this device

◆ R_CGC_SystemClockFreqGet()

ssp_err_t R_CGC_SystemClockFreqGet (cgc_system_clocks_t clock, uint32_t * p_freq_hz)

Return the requested internal clock frequency in Hz.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_INVALID_ARGUMENT Invalid clock specified.

SSP_ERR_ASSERTION A NULL is passed for frequency data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,656 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ R_CGC_SystemClockGet()

ssp_err_t R_CGC_SystemClockGet (cgc_clock_t * clock_source, cgc_system_clock_cfg_t *
p_set_clock_cfg)

Return the current system clock source and configuration.

Return values
SSP_SUCCESS Parameters returned successfully.

SSP_ERR_ASSERTION A NULL is passed for configuration data.

SSP_ERR_ASSERTION A NULL is passed for clock source.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,657 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ R_CGC_SystemClockSet()

ssp_err_t R_CGC_SystemClockSet (cgc_clock_t clock_source, cgc_system_clock_cfg_t const *const
p_clock_cfg)

Set the specified clock as the system clock and configure the internal dividers for ICLK, PCLKA,
PCLKB, PCLKC, PCLKD and FCLK.

THIS FUNCTION DOES NOT CHECK TO SEE IF THE OPERATING MODE SUPPORTS THE SPECIFIED
CLOCK SOURCE AND DIVIDER VALUES. SETTING A CLOCK SOURCE AND DVIDER OUTSIDE THE
RANGE SUPPORTED BY THE CURRENT OPERATING MODE WILL RESULT IN UNDEFINED OPERATION.

IF THE LOCO MOCO OR SUBCLOCK ARE CHOSEN AS THE SYSTEM CLOCK, THIS FUNCTION WILL SET
THOSE AS THE SYSTEM CLOCK WITHOUT CHECKING FOR STABILIZATION. IT IS UP TO THE USER TO
ENSURE THAT LOCO, MOCO OR SUBCLOCK ARE STABLE BEFORE USING THEM AS THE SYSTEM
CLOCK.

Additionally this function sets the RAM and ROM wait states for the MCU. For the S7 MCU the
ROMWT register controls ROM wait states. For the S3 MCU the MEMWAIT register controls ROM wait
states.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_CLOCK_INACTIVE The specified clock source is inactive.

SSP_ERR_ASSERTION The p_clock_cfg parameter is NULL.

SSP_ERR_NOT_STABILIZED The clock source has not stabilized

SSP_ERR_INVALID_ARGUMENT Invalid argument used. ICLK is not set as
the fastest clock.

SSP_ERR_INVALID_MODE Peripheral divisions are not valid in sub-osc
mode

SSP_ERR_INVALID_MODE Oscillator stop detect not allowed in sub-osc
mode

In order to correctly set the ROM and RAM wait state registers we need to know the current (S3A7
only) and requested iclk frequencies.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,658 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CGC

◆ R_CGC_SystickUpdate()

ssp_err_t R_CGC_SystickUpdate (uint32_t period_count, cgc_systick_period_units_t units)

Re-Configure the systick based on the provided period and current system clock frequency.

Parameters
[in] period_count The duration for the systick

period.

[in] units The units for the provided
period.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_INVALID_ARGUMENT Invalid period specified.

SSP_ERR_ABORTED Attempt to update systick timer failed.

◆ R_CGC_USBClockCfg()

ssp_err_t R_CGC_USBClockCfg (cgc_usb_clock_div_t divider)

Configure the dividers for UCLK.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_INVALID_ARGUMENT Invalid usb_clock divider specified

◆ R_CGC_VersionGet()

ssp_err_t R_CGC_VersionGet (ssp_version_t *const p_version)

Return the driver version.

Return values
SSP_SUCCESS Operation performed successfully.

SSP_ERR_ASSERTION The parameter p_version is NULL..

5.1.5.10 CRC
Renesas Synergy Software Package Reference » HAL Layer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,659 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CRC

Driver for the CRC Calculator (CRC). More...

Data Structures

struct crc_instance_ctrl_t

Functions

ssp_err_t R_CRC_Open (crc_ctrl_t *const p_api_ctrl, crc_cfg_t const *const
p_cfg)

 Open the CRC driver module. More...

ssp_err_t R_CRC_Close (crc_ctrl_t *const p_api_ctrl)

 Close the CRC module driver. More...

ssp_err_t R_CRC_CalculatedValueGet (crc_ctrl_t *const p_api_ctrl, uint32_t
*calculatedValue)

 Return the current calculated value. More...

ssp_err_t R_CRC_SnoopEnable (crc_ctrl_t *const p_api_ctrl, uint32_t crc_seed)

 Enable snooping. More...

ssp_err_t R_CRC_SnoopDisable (crc_ctrl_t *const p_api_ctrl)

 Disable snooping. More...

ssp_err_t R_CRC_SnoopCfg (crc_ctrl_t *const p_api_ctrl, crc_snoop_cfg_t *const
p_snoop_cfg)

 Configure the snoop channel and direction. More...

ssp_err_t R_CRC_Calculate (crc_ctrl_t *const p_api_ctrl, void *inputBuffer,
uint32_t length, uint32_t crc_seed, uint32_t *calculatedValue)

 Perform a CRC calculation on a block of 8-bit/32-bit(for 32-bit
polynomial) data. More...

ssp_err_t R_CRC_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,660 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CRC

Detailed Description

Driver for the CRC Calculator (CRC).

This module supports the CRC Calculator (CRC). It implements the following interface:

CRC Interface

Function Documentation

◆ R_CRC_Calculate()

ssp_err_t R_CRC_Calculate (crc_ctrl_t *const p_api_ctrl, void * inputBuffer, uint32_t length,
uint32_t crc_seed, uint32_t * calculatedValue)

Perform a CRC calculation on a block of 8-bit/32-bit(for 32-bit polynomial) data.

Implements crc_api_t::calculate

This function performs a CRC calculation on an array of 8-bit/32-bit(for 32-bit polynomial) values
and returns an 8-bit/32-bit(for 32-bit polynomial) calculated value

Return values
SSP_SUCCESS Calculation successful.

SSP_ERR_ASSERTION Either p_ctrl, inputBuffer, or calculatedValue
is NULL.

SSP_ERR_INVALID_ARGUMENT length value is NULL.

SSP_ERR_NOT_OPEN The driver is not opened.

SSP_ERR_IN_USE CRC peripheral is currently in use by
another instance of the driver.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
Lock the peripheral during calculation

Set the bit order

Set CRC polynomial

Calculate CRC value for the input buffer

Release the hardware lock

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,661 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CRC

◆ R_CRC_CalculatedValueGet()

ssp_err_t R_CRC_CalculatedValueGet (crc_ctrl_t *const p_api_ctrl, uint32_t * calculatedValue)

Return the current calculated value.

Implements crc_api_t::crcResultGet

CRC calculation operates on a running value. This function returns the current calculated value.

Return values
SSP_SUCCESS Return of calculated value successful.

SSP_ERR_ASSERTION Either p_ctrl or calculatedValue is NULL.

SSP_ERR_NOT_OPEN The driver is not opened.

Based on the selected polynomial, return the calculated CRC value

◆ R_CRC_Close()

ssp_err_t R_CRC_Close (crc_ctrl_t *const p_api_ctrl)

Close the CRC module driver.

Implements crc_api_t::close

Return values
SSP_SUCCESS Configuration was successful.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN The driver is not opened.

Release the CRC Hardware Resource

Mark driver as closed

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,662 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CRC

◆ R_CRC_Open()

ssp_err_t R_CRC_Open (crc_ctrl_t *const p_api_ctrl, crc_cfg_t const *const p_cfg)

Open the CRC driver module.

Implements crc_api_t::open

Open the CRC driver module and initialize the driver control block according to the passed-in
configuration structure.

Return values
SSP_SUCCESS Configuration was successful.

SSP_ERR_ASSERTION p_ctrl or p_cfg is NULL.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
Mark driver as initialized by setting the open value to the ASCII equivalent of "CRC"

Enable clocks to the CRC peripheral.

◆ R_CRC_SnoopCfg()

ssp_err_t R_CRC_SnoopCfg (crc_ctrl_t *const p_api_ctrl, crc_snoop_cfg_t *const p_snoop_cfg)

Configure the snoop channel and direction.

Implements crc_api_t::snoopCfg

The CRC calculator can operate on reads and writes over any of the first ten SCI channels. For
example, if set to channel 0, transmit, every byte written out SCI channel 0 is also sent to the CRC
calculator as if the value was explicitly written directly to the CRC calculator.

Return values
SSP_SUCCESS Snoop configured successfully.

SSP_ERR_ASSERTION - This is due to below conditions

Either p_ctrl or p_snoop_cfg is NULL
snoop_channel is greater than or
equal to
CRC_SNOOP_MAX_CHANNEL.

SSP_ERR_NOT_OPEN The driver is not opened.

Set the bit order

Set CRC polynomial

Set CRC snoop channel and direction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,663 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CRC

◆ R_CRC_SnoopDisable()

ssp_err_t R_CRC_SnoopDisable (crc_ctrl_t *const p_api_ctrl)

Disable snooping.

Implements crc_api_t::snoopDisable

Return values
SSP_SUCCESS Snoop disabled.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN The driver is not opened.

Disable the snoop operation

◆ R_CRC_SnoopEnable()

ssp_err_t R_CRC_SnoopEnable (crc_ctrl_t *const p_api_ctrl, uint32_t crc_seed)

Enable snooping.

Implements crc_api_t::snoopEnable

Return values
SSP_SUCCESS Snoop enabled.

SSP_ERR_ASSERTION Either p_ctrl or crc_seed is NULL.

SSP_ERR_NOT_OPEN The driver is not opened.

Based on the selected polynomial, set the initial CRC seed value

Enable the snoop operation

◆ R_CRC_VersionGet()

ssp_err_t R_CRC_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Implements crc_api_t::versionGet

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,664 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CRC > crc_instance_ctrl_t Struct Reference

 crc_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » CRC

#include <r_crc.h>

Data Fields

R_CRC_Type * p_reg

 Pointer to register base address.

uint32_t open

 Whether or not channel is open.

crc_polynomial_t polynomial

 CRC Generating Polynomial Switching (GPS).

crc_bit_order_t bit_order

 CRC Calculation Switching (LMS).

bool fifo_mode

 FIFO Mode selection for sci_uart in CRC snoop operation.

Detailed Description

Driver instance control structure.

The documentation for this struct was generated from the following file:

r_crc.h

5.1.5.11 CTSU v2
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Capacitive Touch Sensing Unit (CTSU). More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,665 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2

Data Structures

struct ctsu_ctsuwr_t

struct ctsu_self_buf_t

struct ctsu_mutual_buf_t

struct ctsu_correction_info_t

struct ctsu_instance_ctrl_t

Enumerations

enum ctsu_state_t { CTSU_STATE_INIT, CTSU_STATE_IDLE,
CTSU_STATE_SCANNING, CTSU_STATE_SCANNED }

enum ctsu_tuning_t { CTSU_TUNING_INCOMPLETE,
CTSU_TUNING_COMPLETE }

enum ctsu_correction_status_t { CTSU_CORRECTION_INIT,
CTSU_CORRECTION_RUN, CTSU_CORRECTION_COMPLETE,
CTSU_CORRECTION_ERROR }

Functions

ssp_err_t R_CTSU_Open (ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const
p_cfg)

 Opens and configures the CTSU driver module. Implements
ctsu_api_t::open. More...

ssp_err_t R_CTSU_ScanStart (ctsu_ctrl_t *const p_ctrl)

 This function should be called each time a periodic timer expires. If
initial offset tuning is enabled, The first several calls are used to
tuning for the sensors. Before starting the next scan, first get the
data with R_CTSU_DataGet(). If a different control block scan should
be run, check the scan is complete before executing. Implements
ctsu_api_t::scanStart. More...

ssp_err_t R_CTSU_DataGet (ctsu_ctrl_t *const p_ctrl, uint16_t *p_data)

 This function gets the sensor values as scanned by the CTSU. If initial
offset tuning is enabled, The first several calls are used to tuning for
the sensors. Implements ctsu_api_t::dataGet. More...

ssp_err_t R_CTSU_CallbackSet (ctsu_ctrl_t *const p_api_ctrl,
void(*p_callback)(ctsu_callback_args_t *), void const *const
p_context, ctsu_callback_args_t *const p_callback_memory)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,666 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2

ssp_err_t R_CTSU_Close (ctsu_ctrl_t *const p_ctrl)

 Disables specified CTSU control block. Implements ctsu_api_t::close.
More...

ssp_err_t R_CTSU_VersionGet (ssp_version_t *const p_version)

 Return CTSU HAL driver version. Implements ctsu_api_t::versionGet.
More...

ssp_err_t R_CTSU_Diagnosis (ctsu_ctrl_t *const p_ctrl)

 Diagnosis the CTSU peripheral. Implements ctsu_api_t::diagnosis.
More...

Detailed Description

Driver for the Capacitive Touch Sensing Unit (CTSU).

Enumeration Type Documentation

◆ ctsu_correction_status_t

enum ctsu_correction_status_t

CTSU Correction status

Enumerator

CTSU_CORRECTION_INIT Correction initial status.

CTSU_CORRECTION_RUN Correction scan running.

CTSU_CORRECTION_COMPLETE Correction complete.

CTSU_CORRECTION_ERROR Correction error.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,667 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2

◆ ctsu_state_t

enum ctsu_state_t

CTSU run state

Enumerator

CTSU_STATE_INIT Not open.

CTSU_STATE_IDLE Opened.

CTSU_STATE_SCANNING Scanning now.

CTSU_STATE_SCANNED Scan end.

◆ ctsu_tuning_t

enum ctsu_tuning_t

CTSU Initial offset tuning status

Enumerator

CTSU_TUNING_INCOMPLETE Initial offset tuning incomplete.

CTSU_TUNING_COMPLETE Initial offset tuning complete.

Function Documentation

◆ R_CTSU_CallbackSet()

ssp_err_t R_CTSU_CallbackSet (ctsu_ctrl_t *const p_api_ctrl, void(*)(ctsu_callback_args_t *)
p_callback, void const *const p_context, ctsu_callback_args_t *const p_callback_memory)

Updates the user callback and has option of providing memory for callback structure. Implements
ctsu_api_t::callbackSet

Return values
SSP_SUCCESS Callback updated successfully.

SSP_ERR_ASSERTION A required pointer is NULL.

SSP_ERR_NOT_OPEN The control block has not been opened.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,668 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2

◆ R_CTSU_Close()

ssp_err_t R_CTSU_Close (ctsu_ctrl_t *const p_ctrl)

Disables specified CTSU control block. Implements ctsu_api_t::close.

Return values
SSP_SUCCESS CTSU successfully configured.

SSP_ERR_ASSERTION Null pointer passed as a parameter.

SSP_ERR_NOT_OPEN Module is not open.

Stops peripheral and clears any internal state to allow driver to be reconfigured.

◆ R_CTSU_DataGet()

ssp_err_t R_CTSU_DataGet (ctsu_ctrl_t *const p_ctrl, uint16_t * p_data)

This function gets the sensor values as scanned by the CTSU. If initial offset tuning is enabled, The
first several calls are used to tuning for the sensors. Implements ctsu_api_t::dataGet.

Return values
SSP_SUCCESS CTSU successfully configured.

SSP_ERR_ASSERTION Null pointer passed as a parameter.

SSP_ERR_NOT_OPEN Module is not open.

SSP_ERR_CTSU_SCANNING Scanning this instance.

SSP_ERR_CTSU_INCOMPLETE_TUNING Incomplete initial offset tuning.

SSP_ERR_CTSU_DIAG_NOT_YET Diagnosis of data collected no yet.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,669 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2

◆ R_CTSU_Diagnosis()

ssp_err_t R_CTSU_Diagnosis (ctsu_ctrl_t *const p_ctrl)

Diagnosis the CTSU peripheral. Implements ctsu_api_t::diagnosis.

Return values
SSP_SUCCESS CTSU successfully configured.

SSP_ERR_ASSERTION Null pointer passed as a parameter.

SSP_ERR_NOT_OPEN Module is not open.

SSP_ERR_NOT_ENABLED Diagnosis is not enabled in S7 Series

SSP_ERR_CTSU_NOT_GET_DATA The previous data has not been retrieved by
DataGet.

SSP_ERR_CTSU_DIAG_LDO_OVER_VOLTAGE Diagnosis of LDO over voltage failed.

SSP_ERR_CTSU_DIAG_CCO_HIGH Diagnosis of CCO into 19.2uA failed.

SSP_ERR_CTSU_DIAG_CCO_LOW Diagnosis of CCO into 2.4uA failed.

SSP_ERR_CTSU_DIAG_SSCG Diagnosis of SSCG frequency failed.

SSP_ERR_CTSU_DIAG_DAC Diagnosis of non-touch count value failed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,670 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2

◆ R_CTSU_Open()

ssp_err_t R_CTSU_Open (ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const p_cfg)

Opens and configures the CTSU driver module. Implements ctsu_api_t::open.

Return values
SSP_SUCCESS CTSU successfully configured.

SSP_ERR_ASSERTION Null pointer, or one or more configuration
options is invalid.

SSP_ERR_ALREADY_OPEN Module is already open. This module can
only be opened once.

SSP_ERR_INVALID_ARGUMENT Configuration parameter error.

SSP_ERR_IN_USE Control block has already been opened or
channel is being used by another instance.
Call close() then open() to reconfigure.

SSP_ERR_IRQ_BSP_DISABLED A required interrupt does not exist in the
vector table

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet
cgc_api_t::systemClockFreqGet
transfer_api_t::open

Note
In the first Open, measurement for correction works, and it takes several tens of milliseconds.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,671 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2

◆ R_CTSU_ScanStart()

ssp_err_t R_CTSU_ScanStart (ctsu_ctrl_t *const p_ctrl)

This function should be called each time a periodic timer expires. If initial offset tuning is enabled,
The first several calls are used to tuning for the sensors. Before starting the next scan, first get the
data with R_CTSU_DataGet(). If a different control block scan should be run, check the scan is
complete before executing. Implements ctsu_api_t::scanStart.

Return values
SSP_SUCCESS CTSU successfully configured.

SSP_ERR_ASSERTION Null pointer passed as a parameter.

SSP_ERR_NOT_OPEN Module is not open.

SSP_ERR_CTSU_SCANNING Scanning this instance or other.

SSP_ERR_CTSU_NOT_GET_DATA The previous data has not been retrieved by
DataGet.

< CTSU_STRT

◆ R_CTSU_VersionGet()

ssp_err_t R_CTSU_VersionGet (ssp_version_t *const p_version)

Return CTSU HAL driver version. Implements ctsu_api_t::versionGet.

Return values
SSP_SUCCESS Version information successfully read.

SSP_ERR_ASSERTION Null pointer passed as a parameter

 ctsu_ctsuwr_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » CTSU v2

#include <r_ctsuv2.h>

Data Fields

uint16_t ctsussc

 Copy from (ssdiv << 8) by Open API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,672 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2 > ctsu_ctsuwr_t Struct Reference

uint16_t ctsuso0

 Copy from ((snum << 10) | so) by Open API.

uint16_t ctsuso1

 Copy from (sdpa << 8) by Open API. ICOG and RICOA is set
recommend value.

Detailed Description

CTSUWR write register value

The documentation for this struct was generated from the following file:

r_ctsuv2.h

 ctsu_self_buf_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » CTSU v2

#include <r_ctsuv2.h>

Data Fields

uint16_t sen

 Sensor counter data.

uint16_t ref

 Reference counter data (Not used)

Detailed Description

Scan buffer data formats (Self)

The documentation for this struct was generated from the following file:

r_ctsuv2.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,673 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2 > ctsu_mutual_buf_t Struct Reference

 ctsu_mutual_buf_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » CTSU v2

#include <r_ctsuv2.h>

Data Fields

uint16_t pri_sen

 Primary sensor data.

uint16_t pri_ref

 Primary reference data (Not used)

uint16_t snd_sen

 Secondary sensor data.

uint16_t snd_ref

 Secondary reference data (Not used)

Detailed Description

Scan buffer data formats (Mutual)

The documentation for this struct was generated from the following file:

r_ctsuv2.h

 ctsu_correction_info_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » CTSU v2

#include <r_ctsuv2.h>

Data Fields

ctsu_correction_status_t status

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,674 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2 > ctsu_correction_info_t Struct Reference

 Correction status.

ctsu_ctsuwr_t ctsuwr

 Correction scan parameter.

volatile ctsu_self_buf_t scanbuf

 Correction scan buffer.

uint16_t first_val

 1st correction value

uint16_t second_val

 2nd correction value

uint32_t first_coefficient

 1st correction coefficient

uint32_t second_coefficient

 2nd correction coefficient

uint32_t ctsu_clock

 CTSU clock [MHz].

Detailed Description

Correction information

The documentation for this struct was generated from the following file:

r_ctsuv2.h

 ctsu_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » CTSU v2

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,675 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2 > ctsu_instance_ctrl_t Struct Reference

#include <r_ctsuv2.h>

Data Fields

uint32_t open

 Whether or not driver is open.

ctsu_state_t state

 CTSU run state.

ctsu_md_t md

 CTSU Measurement Mode Select(copy to cfg)

ctsu_tuning_t tuning

 CTSU Initial offset tuning status.

uint16_t num_elements

 Number of elements to scan.

uint16_t wr_index

 Word index into ctsuwr register array.

uint16_t rd_index

 Word index into scan data buffer.

uint8_t * p_tuning_count

 Pointer to tuning count of each element. g_ctsu_tuning_count[] is set
by Open API.

int32_t * p_tuning_diff

 Pointer to difference from base value of each element.
g_ctsu_tuning_diff[] is set by Open API.

uint16_t average

 CTSU Moving average counter.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,676 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2 > ctsu_instance_ctrl_t Struct Reference

uint16_t num_moving_average

 Copy from config by Open API.

uint8_t ctsucr1

 Copy from (atune1 << 3, md << 6) by Open API. CLK, ATUNE0, CSW,
and PON is set by HAL driver.

ctsu_ctsuwr_t * p_ctsuwr

 CTSUWR write register value. g_ctsu_ctsuwr[] is set by Open API.

ctsu_self_buf_t * p_self_raw

 Pointer to Self raw data. g_ctsu_self_raw[] is set by Open API.

uint16_t * p_self_data

 Pointer to Self moving average data. g_ctsu_self_data[] is set by
Open API.

ctsu_mutual_buf_t * p_mutual_raw

 Pointer to Mutual raw data. g_ctsu_mutual_raw[] is set by Open API.

uint16_t * p_mutual_pri_data

 Pointer to Mutual primary moving average data.
g_ctsu_mutual_pri_data[] is set by Open API.

uint16_t * p_mutual_snd_data

 Pointer to Mutual secondary moving average data.
g_ctsu_mutual_snd_data[] is set by Open API.

ctsu_correction_info_t * p_correction_info

 Pointer to correction info.

uint8_t ctsuchac0

 TS00-TS07 enable mask.

uint8_t ctsuchac1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,677 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2 > ctsu_instance_ctrl_t Struct Reference

 TS08-TS15 enable mask.

uint8_t ctsuchac2

 TS16-TS23 enable mask.

uint8_t ctsuchac3

 TS24-TS31 enable mask.

uint8_t ctsuchac4

 TS32-TS39 enable mask.

uint8_t ctsuchtrc0

 TS00-TS07 mutual-tx mask.

uint8_t ctsuchtrc1

 TS08-TS15 mutual-tx mask.

uint8_t ctsuchtrc2

 TS16-TS23 mutual-tx mask.

uint8_t ctsuchtrc3

 TS24-TS31 mutual-tx mask.

uint8_t ctsuchtrc4

 TS32-TS39 mutual-tx mask.

ctsu_cfg_t const * p_ctsu_cfg

 Pointer to initial configurations.

IRQn_Type write_irq

 Copy from config by Open API. CTSU_CTSUWR interrupt vector.

IRQn_Type read_irq

 Copy from config by Open API. CTSU_CTSURD interrupt vector.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,678 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > CTSU v2 > ctsu_instance_ctrl_t Struct Reference

IRQn_Type end_irq

 Copy from config by Open API. CTSU_CTSUFN interrupt vector.

void(* p_callback)(ctsu_callback_args_t *)

 Callback provided when a CTSUFN occurs.

ctsu_callback_args_t * p_callback_memory

 Pointer to non-secure memory that can be used to pass arguments
to a callback in non-secure memory.

void const * p_context

 Placeholder for user data.

R_CTSU_Type * p_reg

 Pointer to base register address.

uint16_t tuning_self_target_value

 Target self value for initial offset tuning.

uint16_t tuning_mutual_target_value

 Target mutual value for initial offset tuning.

Detailed Description

CTSU private control block. DO NOT MODIFY. Initialization occurs when R_CTSU_Open() is called.

The documentation for this struct was generated from the following file:

r_ctsuv2.h

5.1.5.12 DAC
Renesas Synergy Software Package Reference » HAL Layer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,679 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DAC

Driver for the 12-Bit D/C Converter (DAC12). More...

Data Structures

struct dac_instance_ctrl_t

struct dac_extended_cfg_t

Functions

ssp_err_t R_DAC_Open (dac_ctrl_t *p_api_ctrl, dac_cfg_t const *const p_cfg)

 Perform required initialization described in hardware manual.
Implements dac_api_t::open. Configures a single DAC channel, starts
the channel, and provides a handle for use with the DAC API Write
and Close functions. Must be called once prior to calling any other
DAC API functions. After a channel is opened, Open should not be
called again for the same channel without calling Close first. More...

ssp_err_t R_DAC_Close (dac_ctrl_t *p_api_ctrl)

 Stop the D/A conversion, stop output, and close the DAC channel.
More...

ssp_err_t R_DAC_Write (dac_ctrl_t *p_api_ctrl, dac_size_t value)

 Write data to the D/A converter and enable the output if it has not
been enabled. More...

ssp_err_t R_DAC_Start (dac_ctrl_t *p_api_ctrl)

 Start the D/A conversion output if it has not been started. More...

ssp_err_t R_DAC_Stop (dac_ctrl_t *p_api_ctrl)

 Stop the D/A conversion and disable the output signal. More...

ssp_err_t R_DAC_VersionGet (ssp_version_t *p_version)

 Get version and store it in provided pointer p_version. More...

ssp_err_t R_DAC_InfoGet (dac_info_t *const p_info)

 Get information about DAC Resolution and store it in provided
pointer p_info. More...

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,680 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DAC

Driver for the 12-Bit D/C Converter (DAC12).

Summary
This module implements the following interface: DAC Interface.

Name of module used by error logger macro

Function Documentation

◆ R_DAC_Close()

ssp_err_t R_DAC_Close (dac_ctrl_t * p_api_ctrl)

Stop the D/A conversion, stop output, and close the DAC channel.

Return values
SSP_SUCCESS The channel is successfully closed.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

Validate that the channel is opened.

Stop the channel

Update the channel state information.

Unlock the DAC Hardware Resource

Power down the DAC device.

Unlock the DAC Hardware Resource

◆ R_DAC_InfoGet()

ssp_err_t R_DAC_InfoGet (dac_info_t *const p_info)

Get information about DAC Resolution and store it in provided pointer p_info.

Return values
SSP_SUCCESS Value of DAC resolution written to caller's

structure successfully.

SSP_ERR_ASSERTION The p_info parameter was null.

Assigning DAC bit resolution as 12bit.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,681 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DAC

◆ R_DAC_Open()

ssp_err_t R_DAC_Open (dac_ctrl_t * p_api_ctrl, dac_cfg_t const *const p_cfg)

Perform required initialization described in hardware manual. Implements dac_api_t::open.
Configures a single DAC channel, starts the channel, and provides a handle for use with the DAC
API Write and Close functions. Must be called once prior to calling any other DAC API functions.
After a channel is opened, Open should not be called again for the same channel without calling
Close first.

Return values
SSP_SUCCESS The channel was successfully opened.

SSP_ERR_ASSERTION One or both of the following parameters
may be NULL: p_api_ctrl or p_cfg Channel ID
requested in p_cfg may not available on the
device selected in r_bsp_config.h
data_format value in p_cfg is out of range.
ad_da_synchronized value in p_cfg is out of
range.

SSP_ERR_IN_USE DAC resource is locked.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
Note

This function is reentrant for different channels. It is not reentrant for the same channel.

Validate the input parameter.

Make sure the peripheral exists.

Lock the DAC Hardware Resource.

Power on the DAC device.

Stop the channel.

Configure data format: left or right justified.

Configure D/A-A/D Synchronous Start Control Register(DAADSCR).

Set output amplifier configuration for the channel.

Set the reference voltage.

If charge pump has supported by MCU, configures the register(DAPC)

Initialize the channel state information.

All done. Return.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,682 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DAC

◆ R_DAC_Start()

ssp_err_t R_DAC_Start (dac_ctrl_t * p_api_ctrl)

Start the D/A conversion output if it has not been started.

Return values
SSP_SUCCESS The channel is started successfully.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

Validate that the channel is opened.

Enable the output.

Update the internal state.

◆ R_DAC_Stop()

ssp_err_t R_DAC_Stop (dac_ctrl_t * p_api_ctrl)

Stop the D/A conversion and disable the output signal.

Return values
SSP_SUCCESS The control is successfully stopped.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

Validate that the channel is opened.

Disable the output.

Mark the internal state.

◆ R_DAC_VersionGet()

ssp_err_t R_DAC_VersionGet (ssp_version_t * p_version)

Get version and store it in provided pointer p_version.

Return values
SSP_SUCCESS Successfully retrieved version information.

SSP_ERR_ASSERTION p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,683 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DAC

◆ R_DAC_Write()

ssp_err_t R_DAC_Write (dac_ctrl_t * p_api_ctrl, dac_size_t value)

Write data to the D/A converter and enable the output if it has not been enabled.

Return values
SSP_SUCCESS Data is successfully written to the D/A

Converter.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

Note
Write function automatically starts the D/A conversion after data is successfully written to the channel.

Validate that the channel is opened.

Write the value to D/A converter.

Start the converter if it has been idle.

Start the channel

 dac_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » DAC

#include <r_dac.h>

Data Fields

void * p_reg

 Pointer to DAC base register.

uint8_t channel

 ID associated with this DAC channel.

uint8_t channel_started

 DAC operation on channel started.

uint8_t channel_opened

 DAC channel open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,684 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DAC > dac_instance_ctrl_t Struct Reference

Detailed Description

DAC instance control block. DO NOT INITIALIZE.

The documentation for this struct was generated from the following file:

r_dac.h

 dac_extended_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » DAC

#include <r_dac.h>

Data Fields

bool enable_charge_pump

 Enable DAC charge pump.

Detailed Description

DAC extended configuration

The documentation for this struct was generated from the following file:

r_dac.h

5.1.5.13 DAC8
Renesas Synergy Software Package Reference » HAL Layer

Driver for the 8-Bit D/C Converter (DAC8). More...

Data Structures

struct dac8_instance_ctrl_t

struct dac8_extended_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,685 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DAC8

Enumerations

enum dac8_mode_t { DAC8_MODE_NORMAL, DAC8_MODE_REAL_TIME }

Functions

ssp_err_t R_DAC8_Open (dac_ctrl_t *p_api_ctrl, dac_cfg_t const *const p_cfg)

 Perform required initialization described in hardware manual.
Implements dac_api_t::open. Configures a single DAC channel, starts
the channel, and provides a handle for use with the DAC API Write
and Close functions. Must be called once prior to calling any other
DAC API functions. After a channel is opened, Open should not be
called again for the same channel without calling Close first. More...

ssp_err_t R_DAC8_Close (dac_ctrl_t *p_api_ctrl)

 Stop the D/A conversion, stop output, and close the DAC channel.
More...

ssp_err_t R_DAC8_Write (dac_ctrl_t *p_api_ctrl, dac_size_t value)

 Write data to the D/A converter and enable the output if it has not
been enabled. More...

ssp_err_t R_DAC8_Start (dac_ctrl_t *p_api_ctrl)

 Start the D/A conversion output. More...

ssp_err_t R_DAC8_Stop (dac_ctrl_t *p_api_ctrl)

 Stop the D/A conversion and disable the output signal. More...

ssp_err_t R_DAC8_VersionGet (ssp_version_t *p_version)

 Get version and store it in provided pointer p_version. More...

ssp_err_t R_DAC8_InfoGet (dac_info_t *const p_info)

 Get information about DAC Resolution and store it in provided
pointer p_info. More...

Detailed Description

Driver for the 8-Bit D/C Converter (DAC8).

Summary

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,686 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DAC8

This module implements the following interface: DAC Interface.

Name of module used by error logger macro

Enumeration Type Documentation

◆ dac8_mode_t

enum dac8_mode_t

DAC8 mode

Enumerator

DAC8_MODE_NORMAL DAC Normal mode.

DAC8_MODE_REAL_TIME DAC Real-time (event link) mode.

Function Documentation

◆ R_DAC8_Close()

ssp_err_t R_DAC8_Close (dac_ctrl_t * p_api_ctrl)

Stop the D/A conversion, stop output, and close the DAC channel.

Return values
SSP_SUCCESS The channel is successfully closed.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

Stop the channel

Update the channel state information.

Update DAC Hardware Resource information.

Unlock the DAC Hardware Resource

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,687 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DAC8

◆ R_DAC8_InfoGet()

ssp_err_t R_DAC8_InfoGet (dac_info_t *const p_info)

Get information about DAC Resolution and store it in provided pointer p_info.

Return values
SSP_SUCCESS Value of DAC resolution written to caller's

structure successfully.

SSP_ERR_ASSERTION The p_info parameter was null.

Update DAC resolution as 8-bit

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,688 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DAC8

◆ R_DAC8_Open()

ssp_err_t R_DAC8_Open (dac_ctrl_t * p_api_ctrl, dac_cfg_t const *const p_cfg)

Perform required initialization described in hardware manual. Implements dac_api_t::open.
Configures a single DAC channel, starts the channel, and provides a handle for use with the DAC
API Write and Close functions. Must be called once prior to calling any other DAC API functions.
After a channel is opened, Open should not be called again for the same channel without calling
Close first.

Return values
SSP_SUCCESS The channel was successfully opened.

SSP_ERR_ASSERTION One or both of the following parameters
may be NULL: p_api_ctrl or p_cfg

SSP_ERR_IN_USE DAC8 resource is locked.

SSP_ERR_IP_CHANNEL_NOT_PRESENT An invalid channel was requested.

SSP_ERR_UNSUPPORTED Output amplifier is not supported. Real time
mode is not supported. Charge pump is not
supported. A/D - D/A synchronization is not
supported.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
Note

This function is reentrant for different channels. It is not reentrant for the same channel.

Validate the input parameter.

Make sure the peripheral exists.

Lock the DAC Hardware Resource.

Power on the DAC device.

Stop the channel.

Set defaults.

Configure the charge pump.

Configure the DAC mode.

Configure DA/AD mode.

Initialize the channel state information.

All done. Return.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,689 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DAC8

◆ R_DAC8_Start()

ssp_err_t R_DAC8_Start (dac_ctrl_t * p_api_ctrl)

Start the D/A conversion output.

Return values
SSP_SUCCESS The channel is started successfully.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

Enable the output.

Update the internal state.

◆ R_DAC8_Stop()

ssp_err_t R_DAC8_Stop (dac_ctrl_t * p_api_ctrl)

Stop the D/A conversion and disable the output signal.

Return values
SSP_SUCCESS The control is successfully stopped.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

Disable the output.

Mark the internal state.

◆ R_DAC8_VersionGet()

ssp_err_t R_DAC8_VersionGet (ssp_version_t * p_version)

Get version and store it in provided pointer p_version.

Return values
SSP_SUCCESS Successfully retrieved version information.

SSP_ERR_ASSERTION p_version is NULL.

Return the version number

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,690 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DAC8

◆ R_DAC8_Write()

ssp_err_t R_DAC8_Write (dac_ctrl_t * p_api_ctrl, dac_size_t value)

Write data to the D/A converter and enable the output if it has not been enabled.

Return values
SSP_SUCCESS Data is successfully written to the D/A

Converter.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN Channel associated with p_ctrl has not been
opened.

SSP_ERR_OVERFLOW Data overflow when data value exceeds
8-bit limit.

Note
Write function automatically starts the D/A conversion after data is successfully written to the channel.

Handle data format.

Convert to 8 bits.

Write the value to D/A converter.

Start the converter if it has been idle.

Start the channel

 dac8_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » DAC8

#include <r_dac8.h>

Data Fields

void * p_reg

 Pointer to DAC base register.

uint8_t channel

 ID associated with this DAC channel.

uint8_t channel_started

 DAC operation on channel started.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,691 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DAC8 > dac8_instance_ctrl_t Struct Reference

uint32_t channel_opened

 DAC channel open.

dac_data_format_t data_format

 DAC data format.

Detailed Description

DAC8 instance control block. DO NOT INITIALIZE.

The documentation for this struct was generated from the following file:

r_dac8.h

 dac8_extended_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » DAC8

#include <r_dac8.h>

Data Fields

bool enable_charge_pump

 Enable DAC charge pump.

dac8_mode_t dac_mode

 DAC mode.

Detailed Description

DAC8 extended configuration

The documentation for this struct was generated from the following file:

r_dac8.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,692 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DMAC

5.1.5.14 DMAC
Renesas Synergy Software Package Reference » HAL Layer

DMA Controller (DMAC). More...

Data Structures

struct dmac_instance_ctrl_t

struct transfer_on_dmac_cfg_t

Macros

#define DMAC_REPEAT_BLOCK_MAX_LENGTH (0x400)

#define DMAC_NORMAL_MAX_LENGTH (0xFFFF)

#define DUMMY_ADDRESS ((void *) 0x40005500)

Functions

ssp_err_t R_DMAC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const
*const p_cfg)

 Initialize transfer and enables transfer in ICU. Implements
transfer_api_t::open. More...

ssp_err_t R_DMAC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile
p_src, void *volatile p_dest, uint16_t const num_transfers)

 Reset transfer source, destination, and number of transfers. More...

ssp_err_t R_DMAC_Start (transfer_ctrl_t *const p_api_ctrl,
transfer_start_mode_t mode)

 Start transfer. Implements transfer_api_t::start. More...

ssp_err_t R_DMAC_Stop (transfer_ctrl_t *const p_api_ctrl)

 Stop transfer. Implements transfer_api_t::stop. More...

ssp_err_t R_DMAC_Enable (transfer_ctrl_t *const p_api_ctrl)

 Enable transfer. Implements transfer_api_t::enable. More...

ssp_err_t R_DMAC_Disable (transfer_ctrl_t *const p_api_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,693 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DMAC

 Disable transfer. Implements transfer_api_t::disable. More...

ssp_err_t R_DMAC_InfoGet (transfer_ctrl_t *const p_api_ctrl,
transfer_properties_t *const p_info)

 Set driver specific information in provided pointer. Implements
transfer_api_t::infoGet. More...

ssp_err_t R_DMAC_Close (transfer_ctrl_t *const p_api_ctrl)

 Disable transfer and clean up internal data. Implements
transfer_api_t::close. More...

ssp_err_t R_DMAC_VersionGet (ssp_version_t *const p_version)

 Set driver version based on compile time macros. More...

ssp_err_t R_DMAC_BlockReset (transfer_ctrl_t *const p_api_ctrl, void const
*volatile p_src, void *volatile p_dest, uint16_t const length,
transfer_size_t size, uint16_t const num_transfers)

 Reset transfer source, destination, length and number of transfers
for block transfer. More...

ssp_err_t R_DMAC_Stop_ActivationRequest (transfer_ctrl_t *const p_api_ctrl)

 Clears the DMA activation request with a DMA dummy transfer as
per flowchart in the hardware manual. Implements
transfer_api_t::Stop_ActivationRequest. This function to be used only
in scenario when a DMA activation request source might occur in the
next request after a DMA transfer completes. If this happens, the
DMA transfer starts and the DMA activation request is held in DMAC.
More...

Detailed Description

DMA Controller (DMAC).

Summary
Extends the Transfer Interface.

The Direct Memory Access (DMA) Controller allows data transfers to occur in place of or in addition to
any interrupt. It also supports data transfers using software start.

Note
The transfer length is limited to 1024 (10 bits) in TRANSFER_MODE_BLOCK and TRANSFER_MODE_REPEAT.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,694 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DMAC

This driver supports only TRANSFER_IRQ_END from transfer_irq_t.

Macro Definition Documentation

◆ DMAC_NORMAL_MAX_LENGTH

#define DMAC_NORMAL_MAX_LENGTH (0xFFFF)

Length limited to 65535 transfers for normal mode

◆ DMAC_REPEAT_BLOCK_MAX_LENGTH

#define DMAC_REPEAT_BLOCK_MAX_LENGTH (0x400)

Length limited to 1024 transfers for repeat and block mode

◆ DUMMY_ADDRESS

#define DUMMY_ADDRESS ((void *) 0x40005500)

Reserved memory area for dummy write transfer as per Hardware user manual

Function Documentation

◆ R_DMAC_BlockReset()

ssp_err_t R_DMAC_BlockReset (transfer_ctrl_t *const p_api_ctrl, void const *volatile p_src, void
*volatile p_dest, uint16_t const length, transfer_size_t size, uint16_t const num_transfers)

Reset transfer source, destination, length and number of transfers for block transfer.

Return values
SSP_SUCCESS Transfer reset successfully.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_IN_USE Transfer is in progress. Wait for transfer to
complete.

SSP_ERR_NOT_ENABLED DMAC is not enabled. A valid source and
destination must be provided in either
open() or blockReset().

Enables transfers on this activation source.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,695 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DMAC

◆ R_DMAC_Close()

ssp_err_t R_DMAC_Close (transfer_ctrl_t *const p_api_ctrl)

Disable transfer and clean up internal data. Implements transfer_api_t::close.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

SSP_ERR_IN_USE Transfer is in progress. Wait for transfer to
complete.

Disable DMAC transfers, disable DMAC interrupts, and remove DMAC trigger from ICU register.

Clear ID so control block can be reused.

Release BSP hardware lock on this channel

◆ R_DMAC_Disable()

ssp_err_t R_DMAC_Disable (transfer_ctrl_t *const p_api_ctrl)

Disable transfer. Implements transfer_api_t::disable.

Return values
SSP_SUCCESS Counter value written successfully.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

Disable transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,696 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DMAC

◆ R_DMAC_Enable()

ssp_err_t R_DMAC_Enable (transfer_ctrl_t *const p_api_ctrl)

Enable transfer. Implements transfer_api_t::enable.

Return values
SSP_SUCCESS Counter value written successfully.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

Enable transfer.

◆ R_DMAC_InfoGet()

ssp_err_t R_DMAC_InfoGet (transfer_ctrl_t *const p_api_ctrl, transfer_properties_t *const p_info)

Set driver specific information in provided pointer. Implements transfer_api_t::infoGet.

Return values
SSP_SUCCESS Counter value written successfully.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

SSP_ERR_ASSERTION An input parameter is invalid.

If a transfer is active, store it in p_in_progress.

Store maximum transfer length.

Store remaining transfer length.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,697 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DMAC

◆ R_DMAC_Open()

ssp_err_t R_DMAC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const *const p_cfg)

Initialize transfer and enables transfer in ICU. Implements transfer_api_t::open.

Return values
SSP_SUCCESS Successful open. Transfer is configured and

will start when trigger occurs.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_ENABLED Auto-enable was requested, but enable
failed.

SSP_ERR_IRQ_BSP_DISABLED The IRQ associated with the activation
source is not enabled in the BSP.

SSP_ERR_INVALID_SIZE Invalid offset value.

SSP_ERR_IN_USE The BSP hardware lock for the DMAC is not
available.

Returns
See Common Error Codes for other possible return codes.This function calls

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Get the IRQ vectors, event info and set the NVIC priority for dmac.

Acquire BSP hardware lock for channel used.

Configure the DMAC according to the flowchart "Activating the DMAC" in chapter 16.3.7 of
hardware manual NoSecurity_r01uh0488ej0040_sc32.pdf.

Set the offset value in offset addressing mode.

Configure DMA transfer and sources

Note
Transfer escape interrupts not supported.

Update internal variables.

Mark driver as open by initializing "DMAC" in its ASCII equivalent.

If auto_enable is true, enable transfer and ELC events if software start is used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,698 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DMAC

◆ R_DMAC_Reset()

ssp_err_t R_DMAC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile p_src, void
*volatile p_dest, uint16_t const num_transfers)

Reset transfer source, destination, and number of transfers.

Return values
SSP_SUCCESS Transfer reset successfully.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_ENABLED DMAC is not enabled. A valid source and
destination must be provided in either
open() or reset().

SSP_ERR_IN_USE Transfer is in progress. Wait for transfer to
complete.

Enables transfers on this activation source.

◆ R_DMAC_Start()

ssp_err_t R_DMAC_Start (transfer_ctrl_t *const p_api_ctrl, transfer_start_mode_t mode)

Start transfer. Implements transfer_api_t::start.

Return values
SSP_SUCCESS Transfer started written successfully.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

SSP_ERR_UNSUPPORTED Handle was not configured for software
activation.

Set autoclear bit and software start bit.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,699 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DMAC

◆ R_DMAC_Stop()

ssp_err_t R_DMAC_Stop (transfer_ctrl_t *const p_api_ctrl)

Stop transfer. Implements transfer_api_t::stop.

Return values
SSP_SUCCESS Transfer stopped written successfully.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

Reset auto clear bit and clear software transfer request.

◆ R_DMAC_Stop_ActivationRequest()

ssp_err_t R_DMAC_Stop_ActivationRequest (transfer_ctrl_t *const p_api_ctrl)

Clears the DMA activation request with a DMA dummy transfer as per flowchart in the hardware
manual. Implements transfer_api_t::Stop_ActivationRequest. This function to be used only in
scenario when a DMA activation request source might occur in the next request after a DMA
transfer completes. If this happens, the DMA transfer starts and the DMA activation request is held
in DMAC.

Return values
SSP_SUCCESS Successful transfer.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

Clear the DMA activation request with a DMA dummy transfer as per flowchart in the hardware
manual.

Disable DMAC transfer.

Disable the IRQ pin as a DMACm request source

Set the DMAC transfer size

Set source and destination address to 4000_5500 as per hardware manual.

Set number of transfer operations

Disable DMAC transfer.

Wait for the DMAC transfer end

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,700 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DMAC

◆ R_DMAC_VersionGet()

ssp_err_t R_DMAC_VersionGet (ssp_version_t *const p_version)

Set driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION An input parameter is invalid.

 dmac_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » DMAC

#include <r_dmac.h>

Data Fields

uint32_t id

 Driver ID.

elc_event_t trigger

 Transfer activation event. Matches event returned by
transfer_api_t::infoGet.

IRQn_Type irq

 Transfer activation IRQ.

uint8_t channel

 Channel number.

uint8_t ir_flag_stat

 Status of IR bit in DELSR register.

int32_t offset_byte

 Value of offset in bytes for offset addressing mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,701 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DMAC > dmac_instance_ctrl_t Struct Reference

void(* p_callback)(transfer_callback_args_t *cb_data)

void const * p_context

void * p_reg

Detailed Description

Control block used by driver. DO NOT INITIALIZE - this structure will be initialized in
transfer_api_t::open.

Field Documentation

◆ p_callback

void(* dmac_instance_ctrl_t::p_callback) (transfer_callback_args_t *cb_data)

Callback for transfer end interrupt.

◆ p_context

void const* dmac_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user p_callback in transfer_callback_args_t.

◆ p_reg

void* dmac_instance_ctrl_t::p_reg

Pointer to base register.

The documentation for this struct was generated from the following file:

r_dmac.h

 transfer_on_dmac_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » DMAC

#include <r_dmac.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,702 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DMAC > transfer_on_dmac_cfg_t Struct Reference

uint8_t channel

 Channel number, does not apply to all HAL drivers.

int32_t offset_byte

 Value of offset in bytes for offset addressing mode.

Detailed Description

DMAC transfer configuration extension. This extension is required.

The documentation for this struct was generated from the following file:

r_dmac.h

5.1.5.15 DOC
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Data Operation Circuit (DOC). More...

Data Structures

struct doc_instance_ctrl_t

Functions

ssp_err_t R_DOC_Open (doc_ctrl_t *const p_api_ctrl, doc_cfg_t const *const
p_cfg)

 Configure the Data Operation Circuit (DOC) in comparison, addition
or subtraction mode. Implements doc_api_t::open. More...

ssp_err_t R_DOC_Close (doc_ctrl_t *const p_api_ctrl)

 Close the module driver. Enable module stop mode. Implements
doc_api_t::close. More...

ssp_err_t R_DOC_StatusGet (doc_ctrl_t *const p_api_ctrl, doc_status_t
*p_status)

 Return the comparison/addition/subtraction status. Implements
doc_api_t::statusGet. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,703 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DOC

ssp_err_t R_DOC_StatusClear (doc_ctrl_t *const p_api_ctrl)

 Clear the DOPCF status flag at the hardware layer. This flag indicates
the result of a DOC operation. Implements doc_api_t::statusClear.
More...

ssp_err_t R_DOC_Write (doc_ctrl_t *const p_api_ctrl, doc_data_t *const p_data)

 Write to the DODIR and DODSR registers. Implements
doc_api_t::write,. More...

ssp_err_t R_DOC_InputRegisterWrite (doc_ctrl_t *const p_api_ctrl, doc_size_t
data)

 Write to the DODIR register. Implements
doc_api_t::inputRegisterWrite,. More...

ssp_err_t R_DOC_VersionGet (ssp_version_t *const p_version)

 Return DOC HAL driver version. Implements doc_api_t::versionGet.
More...

Detailed Description

Driver for the Data Operation Circuit (DOC).

Summary
This module implements the DOC Interface using the Data Operation Circuit (DOC).

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,704 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DOC

◆ R_DOC_Close()

ssp_err_t R_DOC_Close (doc_ctrl_t *const p_api_ctrl)

Close the module driver. Enable module stop mode. Implements doc_api_t::close.

To close the DOC it must have been opened via the open API. When opened a control structure of
type doc_ctrl_t is passed to the open API. The same control structure must be passed to the close
API.

Return values
SSP_SUCCESS Module successfully closed.

SSP_ERR_NOT_OPEN Driver not open.

SSP_ERR_ASSERTION Pointer pointing to NULL.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::eventInfoGet
Note

This function is reentrant.
This function will disable the DOC interrupt in the NVIC.

Validate the parameter and check if the module is initialized

Disable the IRQ in the NVIC in case it has been left enabled.

Clear DOPCF in DOCR

Mark driver as closed.

Unlock the DOC Hardware Resource

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,705 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DOC

◆ R_DOC_InputRegisterWrite()

ssp_err_t R_DOC_InputRegisterWrite (doc_ctrl_t *const p_api_ctrl, doc_size_t data)

Write to the DODIR register. Implements doc_api_t::inputRegisterWrite,.

Writes to the DODIR register only.

Return values
SSP_SUCCESS Value successfully written to the DODIR

register.

SSP_ERR_NOT_OPEN Driver not open.

SSP_ERR_ASSERTION One or more pointers point to NULL.

Note
This function is reentrant.

Validate the parameter and check if the module is intialized

Writes the user supplied data to the DODIR register for data operation in Comparison, Addition and
subtraction modes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,706 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DOC

◆ R_DOC_Open()

ssp_err_t R_DOC_Open (doc_ctrl_t *const p_api_ctrl, doc_cfg_t const *const p_cfg)

Configure the Data Operation Circuit (DOC) in comparison, addition or subtraction mode.
Implements doc_api_t::open.

If callback is not NULL in the configuration structure the DOC IRQ will be enabled.

Return values
SSP_SUCCESS DOC successfully configured.

SSP_ERR_IN_USE Module already open.

SSP_ERR_ASSERTION One or more pointers point to NULL.

SSP_ERR_INVALID_ARGUMENT ISR is not enabled. Enable the ISR in
bsp_irq_cfg.h.

SSP_ERR_HW_LOCKED DOC resource is locked.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Note
This function is reentrant.

Validate the parameters and check if the module is initialized

Make sure the DOC exists on this part.

Lock the DOC Hardware Resource

Configure the DOC via DOCR register.

If callback parameter is not NULL configure the IRQ

Mark driver as open by initializing it to "DOCO" in its ASCII equivalent.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,707 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DOC

◆ R_DOC_StatusClear()

ssp_err_t R_DOC_StatusClear (doc_ctrl_t *const p_api_ctrl)

Clear the DOPCF status flag at the hardware layer. This flag indicates the result of a DOC operation.
Implements doc_api_t::statusClear.

Return values
SSP_SUCCESS Interrupt successfully cleared.

SSP_ERR_NOT_OPEN Driver not open.

SSP_ERR_ASSERTION Pointer pointing to NULL.

Note
This function is reentrant.

Validate the parameter and check if the module is initialized

Clear the hardware status flag

◆ R_DOC_StatusGet()

ssp_err_t R_DOC_StatusGet (doc_ctrl_t *const p_api_ctrl, doc_status_t * p_status)

Return the comparison/addition/subtraction status. Implements doc_api_t::statusGet.

The status is read from the Data Operation Circuit Flag (DOPCF).

Return values
SSP_SUCCESS Status successfully read.

SSP_ERR_NOT_OPEN Driver not open.

SSP_ERR_ASSERTION One or more pointers point to NULL.

Note
This function is reentrant.

Validate the parameters and check if the module is intialized

Read the comparison or addition or subtraction status from the register and store in the user
supplied location

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,708 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DOC

◆ R_DOC_VersionGet()

ssp_err_t R_DOC_VersionGet (ssp_version_t *const p_version)

Return DOC HAL driver version. Implements doc_api_t::versionGet.

Return values
SSP_SUCCESS Version information successfully read.

SSP_ERR_ASSERTION Pointer pointing to NULL.

Note
This function is reentrant.

Validate the parameter

Store the version id from version data structure to the user supplied location

◆ R_DOC_Write()

ssp_err_t R_DOC_Write (doc_ctrl_t *const p_api_ctrl, doc_data_t *const p_data)

Write to the DODIR and DODSR registers. Implements doc_api_t::write,.

In comparison mode the 16-bit reference data is written to the DODSR register and the data for the
comparison written to the DODIR. In addition mode the initial data is written to the DODSR and the
data to be added to the DODIR. In subtraction mode the initial data is written to the DODSR and the
data to be subtracted to the DODIR.

When changing both the DODSR and DODIR the DODSR should be updated first.

Return values
SSP_SUCCESS Values successfully written to the registers.

SSP_ERR_NOT_OPEN Driver not open.

SSP_ERR_ASSERTION One or more pointers point to NULL.

Note
This function is reentrant.

Validate the parameters and check if the module is initialized

Writes the user supplied data to the DODIR(DOC Data Input Register) and DODSR(DOC Data
Setting Register) registers

 doc_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » DOC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,709 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DOC > doc_instance_ctrl_t Struct Reference

#include <r_doc.h>

Data Fields

uint32_t open

 Used by driver to check if the control structure is valid.

void(* p_callback)(doc_callback_args_t *p_args)

doc_event_t event

 The event DOC is configured for. Passed in ISR callback.

void const * p_context

void * p_reg

 Base register.

Detailed Description

DOC instance control block. Do not initialize. Initialization occurs when the doc_api_t::open function
is called.

Field Documentation

◆ p_callback

void(* doc_instance_ctrl_t::p_callback) (doc_callback_args_t *p_args)

Callback provided when a DOC ISR occurs. NULL indicates no CPU interrupt.

◆ p_context

void const* doc_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in doc_callback_args_t.

The documentation for this struct was generated from the following file:

r_doc.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,710 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC

5.1.5.16 DTC
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Data Transfer Controller (DTC). More...

Data Structures

struct dtc_instance_ctrl_t

struct dtc_reg_t

Macros

#define DTC_REPEAT_BLOCK_MAX_LENGTH (0x100)

#define DTC_NORMAL_MAX_LENGTH (0x10000)

Functions

ssp_err_t R_DTC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const
*const p_cfg)

 Set transfer data in the vector table and enable transfer in ICU.
Implements transfer_api_t::open. More...

ssp_err_t R_DTC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile
p_src, void *volatile p_dest, uint16_t const num_transfers)

 Reset transfer source, destination, and number of transfers.
Implements transfer_api_t::reset. More...

ssp_err_t R_DTC_Start (transfer_ctrl_t *const p_api_ctrl, transfer_start_mode_t
mode)

 Start transfer. Implements transfer_api_t::start. More...

ssp_err_t R_DTC_Stop (transfer_ctrl_t *const p_ctrl)

 Placeholder for unsupported stop function. Implements
transfer_api_t::stop. More...

ssp_err_t R_DTC_Enable (transfer_ctrl_t *const p_api_ctrl)

 Enable transfer and ELC events if they are used for software start.
Implements transfer_api_t::enable. More...

ssp_err_t R_DTC_Disable (transfer_ctrl_t *const p_api_ctrl)

 Disable transfer. Implements transfer_api_t::disable. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,711 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC

ssp_err_t R_DTC_InfoGet (transfer_ctrl_t *const p_api_ctrl, transfer_properties_t
*const p_info)

 Set driver specific information. Implements transfer_api_t::infoGet.
More...

ssp_err_t R_DTC_Close (transfer_ctrl_t *const p_api_ctrl)

 Disables transfer in the ICU, then clears transfer data from the DTC
vector table. Implements transfer_api_t::close. More...

ssp_err_t R_DTC_VersionGet (ssp_version_t *const p_version)

 Set driver version based on compile time macros. Implements
transfer_api_t::versionGet. More...

ssp_err_t R_DTC_BlockReset (transfer_ctrl_t *const p_api_ctrl, void const
*volatile p_src, void *volatile p_dest, uint16_t const length,
transfer_size_t size, uint16_t const num_transfers)

 BlockReset transfer source, destination, length and number of
transfers. Implements transfer_api_t::blockReset. More...

ssp_err_t R_DTC_Stop_ActivationRequest (transfer_ctrl_t *const p_api_ctrl)

 Placeholder for unsupported DummyTransfer function. Implements
transfer_api_t::Stop_ActivationRequest. More...

Detailed Description

Driver for the Data Transfer Controller (DTC).

Summary
Extends Transfer Interface.

The Data Transfer Controller allows data transfers to occur in place of or in addition to any interrupt.
It does not support data transfers using software start.

Note
The transfer length is limited to 256 (8 bits) in TRANSFER_MODE_BLOCK and TRANSFER_MODE_REPEAT.

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,712 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC

◆ DTC_NORMAL_MAX_LENGTH

#define DTC_NORMAL_MAX_LENGTH (0x10000)

Length limited to 65536 transfers for normal mode

◆ DTC_REPEAT_BLOCK_MAX_LENGTH

#define DTC_REPEAT_BLOCK_MAX_LENGTH (0x100)

Length limited to 256 transfers for repeat and block mode

Function Documentation

◆ R_DTC_BlockReset()

ssp_err_t R_DTC_BlockReset (transfer_ctrl_t *const p_api_ctrl, void const *volatile p_src, void
*volatile p_dest, uint16_t const length, transfer_size_t size, uint16_t const num_transfers)

BlockReset transfer source, destination, length and number of transfers. Implements
transfer_api_t::blockReset.

Return values
SSP_SUCCESS Transfer reset successfully.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

SSP_ERR_UNSUPPORTED If mode is other than Block Transfer Mode.

SSP_ERR_NOT_ENABLED Enable failed due to an invalid input
parameter:

Transfer source must not be NULL.
Transfer destination must not be
NULL.

Disable transfers on this activation source.

Disable read skip prior to modifying settings. It will be enabled later.

Reset transfer based on input parameters.

Enables transfers on this activation source.

Enable read skip after all settings are complete.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,713 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC

◆ R_DTC_Close()

ssp_err_t R_DTC_Close (transfer_ctrl_t *const p_api_ctrl)

Disables transfer in the ICU, then clears transfer data from the DTC vector table. Implements
transfer_api_t::close.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

SSP_ERR_IRQ_BSP_DISABLED The IRQ associated with the p_ctrl is not
enabled in the BSP.

Clear DTC enable bit in ICU.

Clear pointer in vector table.

◆ R_DTC_Disable()

ssp_err_t R_DTC_Disable (transfer_ctrl_t *const p_api_ctrl)

Disable transfer. Implements transfer_api_t::disable.

Return values
SSP_SUCCESS Counter value written successfully.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

Disable transfer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,714 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC

◆ R_DTC_Enable()

ssp_err_t R_DTC_Enable (transfer_ctrl_t *const p_api_ctrl)

Enable transfer and ELC events if they are used for software start. Implements
transfer_api_t::enable.

Return values
SSP_SUCCESS Counter value written successfully.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

SSP_ERR_IRQ_BSP_DISABLED The IRQ associated with the p_ctrl is not
enabled in the BSP.

Enable transfer.

◆ R_DTC_InfoGet()

ssp_err_t R_DTC_InfoGet (transfer_ctrl_t *const p_api_ctrl, transfer_properties_t *const p_info)

Set driver specific information. Implements transfer_api_t::infoGet.

Return values
SSP_SUCCESS Counter value written successfully.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

If a transfer is active, store it in p_in_progress.

Transfer information for the activation source is taken from DTC vector table.

Mask out the high byte in case of repeat transfer.

Store maximum transfer length.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,715 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC

◆ R_DTC_Open()

ssp_err_t R_DTC_Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg_t const *const p_cfg)

Set transfer data in the vector table and enable transfer in ICU. Implements transfer_api_t::open.

Return values
SSP_SUCCESS Successful open. Transfer is configured and

will start when trigger occurs.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_IN_USE The BSP hardware lock for the DTC is not
available, or the index for this IRQ in the
DTC vector table is already configured.

SSP_ERR_HW_LOCKED DTC hardware resource is locked.

SSP_ERR_IRQ_BSP_DISABLED The IRQ associated with the activation
source is not enabled in the BSP.

SSP_ERR_NOT_ENABLED Auto-enable was requested, but enable
failed due to an invalid input parameter.

Make sure the activation source is mapped in the ICU.

Make sure the activation source is not already being used by the DTC.

Configure the DTC transfer. See the hardware manual for details.

Update internal variables.

Mark driver as open by initializing it to "DTC" in its ASCII equivalent.

If auto_enable is true, enable transfer and ELC events if software start is used.

Enable read skip after all settings are complete.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,716 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC

◆ R_DTC_Reset()

ssp_err_t R_DTC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile p_src, void *volatile
p_dest, uint16_t const num_transfers)

Reset transfer source, destination, and number of transfers. Implements transfer_api_t::reset.

Return values
SSP_SUCCESS Transfer reset successfully.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DTC_Open to
initialize the control block.

SSP_ERR_NOT_ENABLED Transfer length must not be 0 for repeat
and block mode, or enable failed due to an
invalid input parameter:

Transfer source must not be NULL.
Transfer destination must not be
NULL.

Disable transfers on this activation source.

Disable read skip prior to modifying settings. It will be enabled later.

Reset transfer based on input parameters.

Enables transfers on this activation source.

Enable read skip after all settings are complete.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,717 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC

◆ R_DTC_Start()

ssp_err_t R_DTC_Start (transfer_ctrl_t *const p_api_ctrl, transfer_start_mode_t mode)

Start transfer. Implements transfer_api_t::start.

Return values
SSP_SUCCESS Transfer started successfully.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_NOT_OPEN Handle is not initialized. Call R_DMAC_Open
to initialize the control block.

SSP_ERR_UNSUPPORTED One of the following is invalid:

Handle was not configured for
software activation.
Mode not set to
TRANSFER_START_MODE_SINGLE.
DTC_SOFTWARE_START_ENABLE set
to 0 (disabled) in
ssp_cfg/driver/r_dtc_cfg.h.

◆ R_DTC_Stop()

ssp_err_t R_DTC_Stop (transfer_ctrl_t *const p_ctrl)

Placeholder for unsupported stop function. Implements transfer_api_t::stop.

Return values
SSP_ERR_UNSUPPORTED DTC software start is not supported.

Mark the input parameter as unused since this function isn't supported.

◆ R_DTC_Stop_ActivationRequest()

ssp_err_t R_DTC_Stop_ActivationRequest (transfer_ctrl_t *const p_api_ctrl)

Placeholder for unsupported DummyTransfer function. Implements
transfer_api_t::Stop_ActivationRequest.

Return values
SSP_ERR_UNSUPPORTED R_DTC_Stop_ActivationRequest function is

not implemented, Its just a placeholder .

Mark the input parameter as unused since this function isn't supported.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,718 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC

◆ R_DTC_VersionGet()

ssp_err_t R_DTC_VersionGet (ssp_version_t *const p_version)

Set driver version based on compile time macros. Implements transfer_api_t::versionGet.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION An input parameter is invalid.

Set driver version based on compile time macros

 dtc_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » DTC

#include <r_dtc.h>

Data Fields

uint32_t id

 Driver ID.

elc_event_t trigger

 Transfer activation event. Matches event returned by
transfer_api_t::infoGet.

IRQn_Type irq

 Transfer activation IRQ, does not apply to all HAL drivers.

void(* p_callback)(transfer_callback_args_t *cb_data)

void const * p_context

Detailed Description

Control block used by driver. DO NOT INITIALIZE - this structure will be initialized in
transfer_api_t::open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,719 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC > dtc_instance_ctrl_t Struct Reference

Field Documentation

◆ p_callback

void(* dtc_instance_ctrl_t::p_callback) (transfer_callback_args_t *cb_data)

Callback for transfer end interrupt used for ELC software trigger.

◆ p_context

void const* dtc_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user p_callback in transfer_callback_args_t.

The documentation for this struct was generated from the following file:

r_dtc.h

 dtc_reg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » DTC

#include <r_dtc.h>

Data Fields

struct {

 union {

 uint8_t MRB

 struct {

 uint8_t DM: 2

 Transfer Destination Address mode.

 uint8_t DTS: 1

 DTC Transfer Mode Select.

 uint8_t DISEL: 1

 DTC Interrupt Select.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,720 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC > dtc_reg_t Struct Reference

 uint8_t CHNS: 1

 DTC Chain Transfer Select.

 uint8_t CHNE: 1

 DTC CHain Transfer Enable.

 } MRB_b

 }

 union {

 uint8_t MRA

 struct {

 uint8_t SM: 2

 Transfer Source Address mode.

 uint8_t SZ: 2

 DTC Data Transfer Size.

 uint8_t MD: 2

 DTC Transfer Mode Select.

 } MRA_b

 }

};

void *volatile SAR

 Source address register.

void *volatile DAR

struct {

 volatile uint16_t CRB

 union {

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,721 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC > dtc_reg_t Struct Reference

 uint16_t CRA

 struct {

 uint8_t CRAL

 Transfer counter A lower register.

 uint8_t CRAH

 Transfer counter B upper register.

 } CRA_b

 }

};

Detailed Description

DTC Registers. Same as transfer_info_t, but uses register names. Provided as service to typecast
transfer_info_t.

Field Documentation

◆ @11

struct { ... }

Mode registers */

◆ @13

struct { ... }

Transfer count registers */

◆ CRA

uint16_t dtc_reg_t::CRA

Transfer count register A

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,722 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC > dtc_reg_t Struct Reference

◆ CRA_b

struct { ... } dtc_reg_t::CRA_b

bits */

◆ CRB

volatile uint16_t dtc_reg_t::CRB

Transfer count register B

◆ DAR

void* volatile dtc_reg_t::DAR

Destination address register

◆ MRA

uint8_t dtc_reg_t::MRA

Mode Register A

◆ MRA_b

struct { ... } dtc_reg_t::MRA_b

MRA bits */

◆ MRB

uint8_t dtc_reg_t::MRB

Mode Register B

◆ MRB_b

struct { ... } dtc_reg_t::MRB_b

MRB bits */

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,723 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > DTC > dtc_reg_t Struct Reference

The documentation for this struct was generated from the following file:

r_dtc.h

5.1.5.17 ELC
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Event Link Controller (ELC). More...

Functions

ssp_err_t R_ELC_Init (elc_cfg_t const *const p_cfg)

 Initialize all the links in the Event Link Controller. More...

ssp_err_t R_ELC_SoftwareEventGenerate (elc_software_event_t event_number)

 Generate a software event in the Event Link Controller. More...

ssp_err_t R_ELC_LinkSet (elc_peripheral_t peripheral, elc_event_t signal)

 Create a single event link. More...

ssp_err_t R_ELC_LinkBreak (elc_peripheral_t peripheral)

 Break an event link. More...

ssp_err_t R_ELC_Enable (void)

 Enable the operation of the Event Link Controller. More...

ssp_err_t R_ELC_Disable (void)

 Disable the operation of the Event Link Controller. More...

ssp_err_t R_ELC_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

Detailed Description

Driver for the Event Link Controller (ELC).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,724 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ELC

This module supports the Event Link Controller (ELC). It implements the following interface: events
and peripheral definitions

Function Documentation

◆ R_ELC_Disable()

ssp_err_t R_ELC_Disable (void)

Disable the operation of the Event Link Controller.

Implements elc_api_t::disable

Return values
SSP_SUCCESS ELC disabled.

Disable the Event Link Controller block.

◆ R_ELC_Enable()

ssp_err_t R_ELC_Enable (void)

Enable the operation of the Event Link Controller.

Implements elc_api_t::enable

Return values
SSP_SUCCESS ELC enabled.

Enable the Event Link Controller block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,725 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ELC

◆ R_ELC_Init()

ssp_err_t R_ELC_Init (elc_cfg_t const *const p_cfg)

Initialize all the links in the Event Link Controller.

Implements elc_api_t::init

The configuration structure passed in to this function includes links for every event source included
in the ELC and sets them all at once. To set an individual link use R_ELC_LinkSet()

Return values
SSP_SUCCESS Initialization was successful

SSP_ERR_ASSERTION p_config was NULL

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
Power on ELC

Enable the operation of the Event Link Controller

◆ R_ELC_LinkBreak()

ssp_err_t R_ELC_LinkBreak (elc_peripheral_t peripheral)

Break an event link.

Implements elc_api_t::linkBreak

Return values
SSP_SUCCESS Event link broken

Break a link between a signal and a peripheral.

◆ R_ELC_LinkSet()

ssp_err_t R_ELC_LinkSet (elc_peripheral_t peripheral, elc_event_t signal)

Create a single event link.

Implements elc_api_t::linkSet

Return values
SSP_SUCCESS Initialization was successful

Make a link between a signal and a peripheral.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,726 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ELC

◆ R_ELC_SoftwareEventGenerate()

ssp_err_t R_ELC_SoftwareEventGenerate (elc_software_event_t event_number)

Generate a software event in the Event Link Controller.

Implements elc_api_t::softwareEventGenerate

Return values
SSP_SUCCESS Initialization was successful

SSP_ERR_ASSERTION Invalid event number

Generate a software event in the Event Link Controller.

◆ R_ELC_VersionGet()

ssp_err_t R_ELC_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Implements elc_api_t::versionGet

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION p_version is NULL.

5.1.5.18 High-performance Flash
Renesas Synergy Software Package Reference » HAL Layer

Driver for the High-performance Flash Memory (S7G2 and S5D9). More...

Data Structures

struct flash_hp_instance_ctrl_t

Functions

ssp_err_t R_FLASH_HP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const
*const p_cfg)

 Initializes the flash peripheral. Implements flash_api_t::open. More...

ssp_err_t R_FLASH_HP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,727 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

src_address, uint32_t flash_address, uint32_t const num_bytes)

 Writes to the specified Code or Data Flash memory area. Implements
flash_api_t::write. More...

ssp_err_t R_FLASH_HP_Read (flash_ctrl_t *const p_api_ctrl, uint8_t
*p_dest_address, uint32_t const flash_address, uint32_t const
num_bytes)

 Reads the requested number of bytes from the supplied Data or
Code Flash memory address. Implements flash_api_t::read. More...

ssp_err_t R_FLASH_HP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const
address, uint32_t const num_blocks)

 Erases the specified Code or Data Flash blocks. Implements
flash_api_t::erase by the block_erase_address. More...

ssp_err_t R_FLASH_HP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t
const address, uint32_t num_bytes, flash_result_t
*p_blank_check_result)

 Performs a blank check on the specified address area. Implements
flash_api_t::blankCheck. More...

ssp_err_t R_FLASH_HP_StatusGet (flash_ctrl_t *const p_api_ctrl)

 Query the FLASH peripheral for its status. Implements
flash_api_t::statusGet. More...

ssp_err_t R_FLASH_HP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const
*const p_id_code, flash_id_code_mode_t mode)

 Implements flash_api_t::idCodeSet. More...

ssp_err_t R_FLASH_HP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl,
uint32_t const start_addr, uint32_t const end_addr)

 Configure an access window for the Code Flash memory using the
provided start and end address. An access window defines a
contiguous area in Code Flash for which programming/erase is
enabled. This area is on block boundaries. The block containing
start_addr is the first block. The block containing end_addr is the last
block. The access window then becomes first block –> last block
inclusive. Anything outside this range of Code Flash is then write
protected. More...

ssp_err_t R_FLASH_HP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,728 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

 Remove any access window that is currently configured in the Code
Flash. Subsequent to this call all Code Flash is writable. Implements
flash_api_t::accessWindowClear. More...

ssp_err_t R_FLASH_HP_Reset (flash_ctrl_t *const p_api_ctrl)

 Resets the FLASH peripheral. Implements flash_api_t::reset. No
attempt is made to grab the Flash software lock before executing the
reset since the assumption is that a reset will terminate any existing
operation. More...

ssp_err_t R_FLASH_HP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl,
flash_startup_area_swap_t swap_type, bool is_temporary)

 Selects which block - Default (Block 0) or Alternate (Block 1) is used
as the startup area block. The provided parameters determine which
block will become the active startup block and whether that action
will be immediate (but temporary), or permanent subsequent to the
next reset. Doing a temporary switch might appear to have limited
usefulness. If there is an access window in place such that Block 0 is
write protected, then one could do a temporary switch, update the
block and switch them back without having to touch the access
window. Implements flash_api_t::startupAreaSelect. More...

ssp_err_t R_FLASH_HP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

 Indicate to the already open Flash API, that the FCLK has changed
since the Open(). This could be the case if the application has
changed the system clock, and therefore the FCLK. Failure to call this
function subsequent to changing the FCLK could result in damage to
the flash macro. This function uses R_CGC_SystemClockFreqGet() to
get the current FCLK frequency. Implements
flash_api_t::updateFlashClockFreq. More...

ssp_err_t R_FLASH_HP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t
*const p_info)

 Returns the information about the flash regions. Implements
flash_api_t::infoGet. More...

ssp_err_t R_FLASH_HP_Close (flash_ctrl_t *const p_api_ctrl)

 Releases any resources that were allocated by the Open() or any
subsequent Flash operations. Implements flash_api_t::close. More...

ssp_err_t R_FLASH_HP_VersionGet (ssp_version_t *const p_version)

 This function gets FLASH HAL driver version. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,729 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

Detailed Description

Driver for the High-performance Flash Memory (S7G2 and S5D9).

This module supports the Flash interface for the High Performance FLASH peripheral.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,730 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

◆ R_FLASH_HP_AccessWindowClear()

ssp_err_t R_FLASH_HP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

Remove any access window that is currently configured in the Code Flash. Subsequent to this call
all Code Flash is writable. Implements flash_api_t::accessWindowClear.

Return values
SSP_SUCCESS Access window successfully removed.

SSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

SSP_ERR_ASSERTION NULL provided for p_ctrl.

SSP_ERR_INVALID_ARGUMENT Code Flash Programming is not enabled.

SSP_ERR_NOT_OPEN Flash API has not yet been opened.

SSP_ERR_INVALID_HW_CONDITION The configuration area cannot be written
while DTC/DMAC, EDMAC, LCDC/2DG/JPEG
are enabled. This is to prevent prohibited
memory accesses while the flash sequencer
is running. Refer to the technical update
number TN-SY*-A033A/E. This check can be
disabled by defining
R_FLASH_HP_CHECK_MODULE_STOP_BITS to
0. To disable DMAC/DTC, close all modules
using DMAC/DTC and call the following:
ssp_err_t err; ssp_feature_t ssp_feature =
{{(ssp_ip_t) 0U}}; ssp_feature.id =
SSP_IP_DTC; err =
R_BSP_ModuleStopAlways(&ssp_feature);

SSP_ERR_INVALID_LINKED_ADDRESS HW_FLASH_HP_configurationSet is linked to
an invalid region of memory. This function
must not reside in prohibited regions of
memory. It is recommended that the
following changes be made to the linker
script. For information about prohibited
regions refer to the S5 series flash technical
update. Technical Update number TN-
SY*-A033A/E Recommended Changes: For
GCC: Add the following immediately after
"__data_start__ = .": . = ALIGN(4);
__Code_In_RAM_Start = .;
KEEP(*(.code_in_ram*)) __Code_In_RAM_End
= .; For IAR: Change: place at start of
RAM_region { block START_OF_RAM }; To:
define block START_OF_RAM with fixed
order { rw section .ssp_dtc_vector_table,
block RAM_CODE }; place at start of
RAM_region { block START_OF_RAM };

< For consistency with _LP API we return error if Code Flash not enabled

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,731 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

◆ R_FLASH_HP_AccessWindowSet()

ssp_err_t R_FLASH_HP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl, uint32_t const start_addr,
uint32_t const end_addr)

Configure an access window for the Code Flash memory using the provided start and end address.
An access window defines a contiguous area in Code Flash for which programming/erase is
enabled. This area is on block boundaries. The block containing start_addr is the first block. The
block containing end_addr is the last block. The access window then becomes first block –> last
block inclusive. Anything outside this range of Code Flash is then write protected.

Note
If the start address and end address are set to the same value, then the access window is effectively removed. This
accomplishes the same functionality as R_FLASH_HP_AccessWindowClear().

Implements flash_api_t::accessWindowSet.

Return values
SSP_SUCCESS Access window successfully configured.

SSP_ERR_INVALID_ADDRESS Invalid settings for start_addr and/or
end_addr.

SSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

SSP_ERR_ASSERTION NULL provided for p_ctrl.

SSP_ERR_INVALID_ARGUMENT Code Flash Programming is not enabled.

SSP_ERR_NOT_OPEN Flash API has not yet been opened.

SSP_ERR_INVALID_HW_CONDITION The configuration area cannot be written
while DTC/DMAC, EDMAC, LCDC/2DG/JPEG
are enabled. This is to prevent prohibited
memory accesses while the flash sequencer
is running. Refer to the technical update
number TN-SY*-A033A/E. This check can be
disabled by defining
R_FLASH_HP_CHECK_MODULE_STOP_BITS to
0. To disable DMAC/DTC, close all modules
using DMAC/DTC and call the following:
ssp_err_t err; ssp_feature_t ssp_feature =
{{(ssp_ip_t) 0U}}; ssp_feature.id =
SSP_IP_DTC; err =
R_BSP_ModuleStopAlways(&ssp_feature);

SSP_ERR_INVALID_LINKED_ADDRESS HW_FLASH_HP_configurationSet is linked to
an invalid region of memory. This function
must not reside in prohibited regions of
memory. It is recommended that the
following changes be made to the linker
script. For information about prohibited
regions refer to the S5 series flash technical
update. Technical Update number TN-
SY*-A033A/E Recommended Changes: For

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,732 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

GCC: Add the following immediately after
"__data_start__ = .": . = ALIGN(4);
__Code_In_RAM_Start = .;
KEEP(*(.code_in_ram*)) __Code_In_RAM_End
= .; For IAR: Change: place at start of
RAM_region { block START_OF_RAM }; To:
define block START_OF_RAM with fixed
order { rw section .ssp_dtc_vector_table,
block RAM_CODE }; place at start of
RAM_region { block START_OF_RAM };

< For consistency with _LP API we return error if Code Flash not enabled

Return status.

◆ R_FLASH_HP_BlankCheck()

ssp_err_t R_FLASH_HP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t const address,
uint32_t num_bytes, flash_result_t * p_blank_check_result)

Performs a blank check on the specified address area. Implements flash_api_t::blankCheck.

Return values
SSP_SUCCESS Blankcheck operation completed with result

in p_blank_check_result, or blankcheck
started and in-progess (BGO mode).

SSP_ERR_INVALID_ADDRESS Invalid data flash address was input.

SSP_ERR_INVALID_SIZE 'num_bytes' was either too large or not
aligned for the CF/DF boundary size.

SSP_ERR_IN_USE Other flash operation in progress or API not
initialized.

SSP_ERR_ASSERTION NULL provided for p_ctrl.

Get the block information for this address. If failure return error.

Setup blank check. If failure return error.

Initiate the Blank Check operation

Complete the flash operation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,733 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

◆ R_FLASH_HP_Close()

ssp_err_t R_FLASH_HP_Close (flash_ctrl_t *const p_api_ctrl)

Releases any resources that were allocated by the Open() or any subsequent Flash operations.
Implements flash_api_t::close.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg.

Return the hardware lock for the Flash

Disable interrupts

Release the lock

Close the API

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,734 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

◆ R_FLASH_HP_Erase()

ssp_err_t R_FLASH_HP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const address, uint32_t const
num_blocks)

Erases the specified Code or Data Flash blocks. Implements flash_api_t::erase by the
block_erase_address.

Return values
SSP_SUCCESS Successful open.

SSP_ERR_INVALID_BLOCKS Invalid number of blocks specified

SSP_ERR_INVALID_ADDRESS Invalid address specified

SSP_ERR_IN_USE Other flash operation in progress, or API not
initialized

SSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of attempting to Erase an area that is
protected by an Access Window.

SSP_ERR_ASSERTION NULL provided for p_ctrl

SSP_ERR_NOT_OPEN The Flash API is not Open.

SSP_ERR_INVALID_ARGUMENT Code Flash Programming is not enabled and
a request to erase CF was requested.

Get the block information for this address. If failure return error.

Update Flash state and enter the respective Code or Data Flash P/E mode, may return
SSP_ERR_IN_USE. If failure return error.

Configure current operation parameters based on user input.

Erase the Blocks. If not a DF BGO erase then exit PE mode and return status.

Complete the flash operation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,735 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

◆ R_FLASH_HP_IdCodeSet()

ssp_err_t R_FLASH_HP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const *const p_id_code,
flash_id_code_mode_t mode)

Implements flash_api_t::idCodeSet.

Return values
SSP_SUCCESS ID Code successfully configured.

SSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

SSP_ERR_ASSERTION NULL provided for p_ctrl.

SSP_ERR_INVALID_ARGUMENT Code Flash Programming is not enabled.

SSP_ERR_NOT_OPEN Flash API has not yet been opened.

SSP_ERR_INVALID_HW_CONDITION The configuration area cannot be written
while DTC/DMAC, EDMAC, LCDC/2DG/JPEG
are enabled. This is to prevent prohibited
memory accesses while the flash sequencer
is running. Refer to the technical update
number TN-SY*-A033A/E. This check can be
disabled by defining
R_FLASH_HP_CHECK_MODULE_STOP_BITS to
0. To disable DMAC/DTC, close all modules
using DMAC/DTC and call the following:
ssp_err_t err; ssp_feature_t ssp_feature =
{{(ssp_ip_t) 0U}}; ssp_feature.id =
SSP_IP_DTC; err =
R_BSP_ModuleStopAlways(&ssp_feature);

SSP_ERR_INVALID_LINKED_ADDRESS HW_FLASH_HP_configurationSet is linked to
an invalid region of memory. This function
must not reside in prohibited regions of
memory. It is recommended that the
following changes be made to the linker
script. For information about prohibited
regions refer to the S5 series flash technical
update. Technical Update number TN-
SY*-A033A/E Recommended Changes: For
GCC: Add the following immediately after
"__data_start__ = .": . = ALIGN(4);
__Code_In_RAM_Start = .;
KEEP(*(.code_in_ram*)) __Code_In_RAM_End
= .; For IAR: Change: place at start of
RAM_region { block START_OF_RAM }; To:
define block START_OF_RAM with fixed
order { rw section .ssp_dtc_vector_table,
block RAM_CODE }; place at start of
RAM_region { block START_OF_RAM };

Return status.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,736 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

◆ R_FLASH_HP_InfoGet()

ssp_err_t R_FLASH_HP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t *const p_info)

Returns the information about the flash regions. Implements flash_api_t::infoGet.

Return values
SSP_SUCCESS Successful retrieved the request

information.

SSP_ERR_ASSERTION NULL provided for p_ctrl or p_info.

Eliminate warning if parameter checking is disabled.

Copy information about the code and data flash to the user structure.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,737 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

◆ R_FLASH_HP_Open()

ssp_err_t R_FLASH_HP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const *const p_cfg)

Initializes the flash peripheral. Implements flash_api_t::open.

The Open function initializes the Flash. It first copies the FCU firmware to FCURAM and sets the FCU
Clock based on the current FCLK frequency. In addition, if Code Flash programming is enabled, the
API code responsible for Code Flash programming will be copied to RAM.

This function must be called once prior to calling any other FLASH API functions. If a user supplied
callback function is supplied, then the Flash Ready and Error interrupts will be configured to call the
users callback routine with an Event type describing the source of the interrupt.

Note
Providing a callback function in the supplied p_cfg->callback field, automatically configures the Flash for Data
Flash to operate in non-blocking (BGO) mode.

Subsequent to a successful Open(), the Flash is ready to process additional Flash commands.

Return values
SSP_SUCCESS Initialization was successful and timer has

started.

SSP_FLASH_ERR_FAILURE Failed to successfully enter
Programming/Erase mode.

SSP_ERR_TIMEOUT Timed out waiting for FCU to be ready.

SSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg or problem
getting FMI info.

SSP_ERR_IRQ_BSP_DISABLED Caller is requesting BGO but the Flash
interrupts are not enabled.

SSP_ERR_FCLK FCLK must be a minimum of 4 MHz for Flash
operations.

SSP_ERR_HW_LOCKED FLASH peripheral has already been
initialized and is in use.

Setup the flash FMI and acquire the hardware lock. If failure return error.

Allow Initialization if not initialized or if no operation is ongoing and re-initialization is desired

Acquire the flash hp software lock.

Set the parameters struct based on the user supplied settings

If BGO is enabled for data flash configure the callback and enable flash iterrupts. Otherwise disable
interrupts.

Flash open setup.

Save callback function pointer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,738 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

◆ R_FLASH_HP_Read()

ssp_err_t R_FLASH_HP_Read (flash_ctrl_t *const p_api_ctrl, uint8_t * p_dest_address, uint32_t
const flash_address, uint32_t const num_bytes)

Reads the requested number of bytes from the supplied Data or Code Flash memory address.
Implements flash_api_t::read.

Note
This function is provided simply for the purposes of maintaining a complete interface. It is possible (and
recommended), to read Flash memory directly.

Return values
SSP_SUCCESS Operation successful.

SSP_ERR_INVALID_ADDRESS Invalid Flash address was supplied.

SSP_ERR_ASSERTION NULL provided for p_ctrl or p_dest_address

Eliminate warning if parameter checking is disabled.

Copy data to the destination buffer.

◆ R_FLASH_HP_Reset()

ssp_err_t R_FLASH_HP_Reset (flash_ctrl_t *const p_api_ctrl)

Resets the FLASH peripheral. Implements flash_api_t::reset. No attempt is made to grab the Flash
software lock before executing the reset since the assumption is that a reset will terminate any
existing operation.

Return values
SSP_SUCCESS Flash circuit successfully reset.

SSP_ERR_ASSERTION NULL provided for p_ctrl.

Reset the flash.

Release the flash.

◆ R_FLASH_HP_StartUpAreaSelect()

ssp_err_t R_FLASH_HP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl, flash_startup_area_swap_t
 swap_type, bool is_temporary)

Selects which block - Default (Block 0) or Alternate (Block 1) is used as the startup area block. The
provided parameters determine which block will become the active startup block and whether that
action will be immediate (but temporary), or permanent subsequent to the next reset. Doing a
temporary switch might appear to have limited usefulness. If there is an access window in place
such that Block 0 is write protected, then one could do a temporary switch, update the block and
switch them back without having to touch the access window. Implements
flash_api_t::startupAreaSelect.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,739 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

Return values
SSP_SUCCESS Start-up area successfully toggled.

SSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

SSP_ERR_ASSERTION NULL provided for p_ctrl.

SSP_ERR_INVALID_HW_CONDITION The configuration area cannot be written
while DTC/DMAC, EDMAC, LCDC/2DG/JPEG
are enabled. This is to prevent prohibited
memory accesses while the flash sequencer
is running. Refer to the technical update
number TN-SY*-A033A/E. This check can be
disabled by defining
R_FLASH_HP_CHECK_MODULE_STOP_BITS to
0. To disable DMAC/DTC, close all modules
using DMAC/DTC and call the following:
ssp_err_t err; ssp_feature_t ssp_feature =
{{(ssp_ip_t) 0U}}; ssp_feature.id =
SSP_IP_DTC; err =
R_BSP_ModuleStopAlways(&ssp_feature);

SSP_ERR_INVALID_LINKED_ADDRESS HW_FLASH_HP_configurationSet is linked to
an invalid region of memory. This function
must not reside in prohibited regions of
memory. It is recommended that the
following changes be made to the linker
script. For information about prohibited
regions refer to the S5 series flash technical
update. Technical Update number TN-
SY*-A033A/E Recommended Changes: For
GCC: Add the following immediately after
"__data_start__ = .": . = ALIGN(4);
__Code_In_RAM_Start = .;
KEEP(*(.code_in_ram*)) __Code_In_RAM_End
= .; For IAR: Change: place at start of
RAM_region { block START_OF_RAM }; To:
define block START_OF_RAM with fixed
order { rw section .ssp_dtc_vector_table,
block RAM_CODE }; place at start of
RAM_region { block START_OF_RAM };

Enter PE Mode.

Swap the block temporarily or permantly based on caller.

If failure reset the flash.

Release the flash and return status.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,740 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

◆ R_FLASH_HP_StatusGet()

ssp_err_t R_FLASH_HP_StatusGet (flash_ctrl_t *const p_api_ctrl)

Query the FLASH peripheral for its status. Implements flash_api_t::statusGet.

Return values
SSP_SUCCESS FLASH peripheral is ready to use.

SSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

SSP_ERR_ASSERTION NULL provided for p_ctrl.

Eliminate warning if parameter checking is disabled.

Return flash status

◆ R_FLASH_HP_UpdateFlashClockFreq()

ssp_err_t R_FLASH_HP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

Indicate to the already open Flash API, that the FCLK has changed since the Open(). This could be
the case if the application has changed the system clock, and therefore the FCLK. Failure to call
this function subsequent to changing the FCLK could result in damage to the flash macro. This
function uses R_CGC_SystemClockFreqGet() to get the current FCLK frequency. Implements
flash_api_t::updateFlashClockFreq.

Return values
SSP_SUCCESS Start-up area successfully toggled.

SSP_ERR_IN_USE Flash is busy with an on-going operation.

SSP_ERR_ASSERTION NULL provided for p_ctrl

SSP_ERR_NOT_OPEN Flash API has not yet been opened.

Lock the flash state. If failure return error.

Flash Setup

Release the flash.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,741 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

◆ R_FLASH_HP_VersionGet()

ssp_err_t R_FLASH_HP_VersionGet (ssp_version_t *const p_version)

This function gets FLASH HAL driver version.

Return values
SSP_SUCCESS - operation performed successfully

Note
This function is reentrant.

Copy the version information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,742 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash

◆ R_FLASH_HP_Write()

ssp_err_t R_FLASH_HP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const src_address, uint32_t
flash_address, uint32_t const num_bytes)

Writes to the specified Code or Data Flash memory area. Implements flash_api_t::write.

Return values
SSP_SUCCESS Operation successful. If BGO is enabled this

means the operation was started
successfully.

SSP_ERR_IN_USE The Flash peripheral is busy with a prior on-
going transaction.

SSP_ERR_NOT_OPEN The Flash API is not Open.

SSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of attempting to Write an area that is
protected by an Access Window.

SSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation. This may be
returned if the requested Flash area is not
blank.

SSP_ERR_TIMEOUT Timed out waiting for FCU operation to
complete.

SSP_ERR_INVALID_SIZE Number of bytes provided was not a
multiple of the programming size or
exceeded the maximum range.

SSP_ERR_INVALID_ADDRESS Invalid address was input or address not on
programming boundary.

SSP_ERR_ASSERTION NULL provided for p_ctrl.

SSP_ERR_INVALID_ARGUMENT Code Flash Programming is not enabled and
a request to write CF was requested.

Get the block information for this address. If failure return error.

Initiate the write operation, may return SSP_ERR_IN_USE via setup_for_pe_mode()

Execute a reset if any error, release the state if not BGO

 flash_hp_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » High-performance Flash

#include <r_flash_hp.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,743 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > High-performance Flash > flash_hp_instance_ctrl_t Struct Reference

Data Fields

uint32_t opened

 To check whether api has been opened or not.

R_FACI_Type * p_reg

 Base address of flash registers.

bsp_cache_state_t cache_state

 User Callback function. More...

IRQn_Type irq

 Flash ready interrupt number.

IRQn_Type err_irq

 Flash error interrupt number.

Detailed Description

Flash HP instance control block. DO NOT INITIALIZE.

Field Documentation

◆ cache_state

bsp_cache_state_t flash_hp_instance_ctrl_t::cache_state

User Callback function.

Used to disable and then restore Flash Cache while API is open.

The documentation for this struct was generated from the following file:

r_flash_hp.h

5.1.5.19 Low Power Flash
Renesas Synergy Software Package Reference » HAL Layer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,744 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash

Driver for the Low power Flash Memory (S3A7 and S124). More...

Data Structures

struct flash_lp_instance_ctrl_t

Functions

ssp_err_t R_FLASH_LP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const
*const p_cfg)

 Initialize the Low Power flash peripheral. Implements
flash_api_t::open. More...

ssp_err_t R_FLASH_LP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const
src_address, uint32_t flash_address, uint32_t const num_bytes)

 Write to the specified Code or Data Flash memory area. Implements
flash_api_t::write. More...

ssp_err_t R_FLASH_LP_Read (flash_ctrl_t *const p_api_ctrl, uint8_t
*p_dest_address, uint32_t const flash_address, uint32_t const
num_bytes)

 Read the requested number of bytes from the supplied Data or Code
Flash address. Implements flash_api_t::read. More...

ssp_err_t R_FLASH_LP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const
address, uint32_t const num_blocks)

 Erase the specified Code or Data Flash blocks. Implements
flash_api_t::erase. More...

ssp_err_t R_FLASH_LP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t
const address, uint32_t num_bytes, flash_result_t
*p_blank_check_result)

 Perform a blank check on the specified address area. Implements
flash_api_t::blankCheck. More...

ssp_err_t R_FLASH_LP_StatusGet (flash_ctrl_t *const p_api_ctrl)

 Query the FLASH for its status. Implements flash_api_t::statusGet.
More...

ssp_err_t R_FLASH_LP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl,
uint32_t const start_addr, uint32_t const end_addr)

 Configure an access window for the Code Flash memory. Implements
flash_api_t::accessWindowSet. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,745 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash

ssp_err_t R_FLASH_LP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

 Remove any access window that is configured in the Code Flash.
Implements flash_api_t::accessWindowClear. On successful return
from this call all Code Flash is writable. More...

ssp_err_t R_FLASH_LP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const
*const p_id_code, flash_id_code_mode_t mode)

 Write the ID code provided to the id code registers. Implements
flash_api_t::idCodeSet. More...

ssp_err_t R_FLASH_LP_Reset (flash_ctrl_t *const p_api_ctrl)

 Reset the FLASH peripheral. Implements flash_api_t::reset. More...

ssp_err_t R_FLASH_LP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl,
flash_startup_area_swap_t swap_type, bool is_temporary)

 Select which block is used as the startup area block. Implements
flash_api_t::startupAreaSelect. More...

ssp_err_t R_FLASH_LP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

 Indicate to the already open Flash API that the FCLK has changed.
Implements r_flash_t::updateFlashClockFreq. More...

ssp_err_t R_FLASH_LP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t *const
p_info)

 Returns the information about the flash regions. Implements
flash_api_t::infoGet. More...

ssp_err_t R_FLASH_LP_Close (flash_ctrl_t *const p_api_ctrl)

 Release any resources that were allocated by the Flash API.
Implements flash_api_t::close. More...

ssp_err_t R_FLASH_LP_VersionGet (ssp_version_t *const p_version)

 Get FLASH HAL driver version. More...

Detailed Description

Driver for the Low power Flash Memory (S3A7 and S124).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,746 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash

This module supports the Flash interface for the Low-power FLASH peripheral.

Function Documentation

◆ R_FLASH_LP_AccessWindowClear()

ssp_err_t R_FLASH_LP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

Remove any access window that is configured in the Code Flash. Implements
flash_api_t::accessWindowClear. On successful return from this call all Code Flash is writable.

Return values
SSP_SUCCESS Access window successfully removed.

SSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

SSP_ERR_ASSERTION NULL provided for p_ctrl.

SSP_ERR_INVALID_ARGUMENT Code Flash Programming is not enabled.

SSP_ERR_NOT_OPEN Flash API has not yet been opened.

< Return error if Code Flash not enabled

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,747 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash

◆ R_FLASH_LP_AccessWindowSet()

ssp_err_t R_FLASH_LP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl, uint32_t const start_addr,
uint32_t const end_addr)

Configure an access window for the Code Flash memory. Implements flash_api_t::accessWindowSet
.

An access window defines a contiguous area in Code Flash for which programming/erase is
enabled. This area is on block boundaries. The block containing start_addr is the first block. The
block containing end_addr is the last block. The access window then becomes first block –> last
block inclusive. Anything outside this range of Code Flash is then write protected. As an example, if
you wanted to place an accesswindow on Code Flash Blocks 0 and 1, such that only those two
blocks were writable, you would need to specify (address in block 0, address in block 2) as the
respective start and end address.

Note
If the start address and end address are set to the same value, then the access window is effectively removed. This
accomplishes the same functionality as R_FLASH_LP_AccessWindowClear().

The invalid address and programming boundaries supported and enforced by this function are
dependent on the MCU in use as well as the part package size. Please see the User manual and/or
requirements document for additional information.

Return values
SSP_SUCCESS Access window successfully configured.

SSP_ERR_INVALID_ADDRESS Invalid settings for start_addr and/or
end_addr.

SSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

SSP_ERR_ASSERTION NULL provided for p_ctrl.

SSP_ERR_INVALID_ARGUMENT Code Flash Programming is not enabled.

SSP_ERR_NOT_OPEN Flash API has not yet been opened.

If not code flash return error.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,748 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash

◆ R_FLASH_LP_BlankCheck()

ssp_err_t R_FLASH_LP_BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t const address, uint32_t
num_bytes, flash_result_t * p_blank_check_result)

Perform a blank check on the specified address area. Implements flash_api_t::blankCheck.

The minimum/maximum number of bytes, as well as the invalid address and programming
boundaries supported and enforced by this function are dependent on the MCU in use as well as
the part package size. Please see the User manual and/or requirements document for additional
information. The number of bytes for Data Flash blank checking must be between (1 and
FLASH_DATA_BLANK_CHECK_MAX). The number of bytes for Code Flash blank checking must be
between (1 and FLASH_CODE_BLANK_CHECK_MAX).

Return values
SSP_SUCCESS Blankcheck operation completed with result

in p_blank_check_result, or blankcheck
started and in-progess (BGO mode).

SSP_ERR_INVALID_ADDRESS Invalid data flash address was input

SSP_ERR_INVALID_SIZE 'num_bytes' was either too large or not
aligned for the CF/DF boundary size.

SSP_ERR_IN_USE Flash is busy with an on-going operation.

SSP_ERR_ASSERTION NULL provided for p_ctrl

SSP_ERR_NOT_OPEN Flash API has not yet been opened.

SSP_ERR_INVALID_ARGUMENT Code Flash Programming is not enabled and
a request to Blank Check CF was requested.

Get the block information for this address. If failure return error.

Update Flash state and enter the respective Code or Data Flash P/E mode, may return
SSP_ERR_IN_USE

Initiate the Blank Check operation

If failure reset the flash.

If the current operation is not a BGO blank check release the flash.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,749 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash

◆ R_FLASH_LP_Close()

ssp_err_t R_FLASH_LP_Close (flash_ctrl_t *const p_api_ctrl)

Release any resources that were allocated by the Flash API. Implements flash_api_t::close.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg.

Unlock the flash hardware.

Disable the flash interrupt.

Mark the control block as closed.

Release the lock

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,750 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash

◆ R_FLASH_LP_Erase()

ssp_err_t R_FLASH_LP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const address, uint32_t const
num_blocks)

Erase the specified Code or Data Flash blocks. Implements flash_api_t::erase.

The minimum/maximum number of blocks, as well as the invalid address and programming
boundaries supported and enforced by this function are dependent on the MCU in use as well as
the part package size. Please see the User manual and/or requirements document for additional
information.

Return values
SSP_SUCCESS Successful open.

SSP_ERR_INVALID_BLOCKS Invalid number of blocks specified

SSP_ERR_INVALID_ADDRESS Invalid address specified

SSP_ERR_IN_USE Other flash operation in progress, or API not
initialized

SSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of attempting to Erase an area that is
protected by an Access Window.

SSP_ERR_ASSERTION NULL provided for p_ctrl

SSP_ERR_NOT_OPEN The Flash API is not Open.

SSP_ERR_INVALID_ARGUMENT Code Flash Programming is not enabled and
a request to erase CF was requested.

Get the block information for this address. If failure return error.

Update Flash state and enter the respective Code or Data Flash P/E mode, may return
SSP_ERR_IN_USE

If successful

Configure the current parameters based on if the operation is for code flash or data flash.

If this is a request to erase Data Flash configure BGO mode if it is enabled.

Initiate the flash erase.

If in non-BGO mode, the current operation is complete. Exit PE mode and return status

Complete the flash operation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,751 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash

◆ R_FLASH_LP_IdCodeSet()

ssp_err_t R_FLASH_LP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8_t const *const p_id_code,
flash_id_code_mode_t mode)

Write the ID code provided to the id code registers. Implements flash_api_t::idCodeSet.

Return values
SSP_SUCCESS ID code successfully configured.

SSP_ERR_IN_USE FLASH peripheral is busy with a prior
operation.

SSP_ERR_ASSERTION NULL provided for p_ctrl.

SSP_ERR_INVALID_ARGUMENT Code Flash Programming is not enabled.

SSP_ERR_NOT_OPEN Flash API has not yet been opened.

SSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation.

SSP_ERR_TIMEOUT Timed out waiting for completion of extra
command.

Return status.

◆ R_FLASH_LP_InfoGet()

ssp_err_t R_FLASH_LP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t *const p_info)

Returns the information about the flash regions. Implements flash_api_t::infoGet.

Return values
SSP_SUCCESS Successful retrieved the request

information.

SSP_ERR_ASSERTION NULL provided for p_ctrl or p_info.

Copy the region data to the info structure.

◆ R_FLASH_LP_Open()

ssp_err_t R_FLASH_LP_Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const *const p_cfg)

Initialize the Low Power flash peripheral. Implements flash_api_t::open.

The Open function initializes the Flash. It first copies the FCU firmware to FCURAM and sets the FCU
Clock based on the current FCLK frequency. In addition, if Code Flash programming is enabled, the
API code responsible for Code Flash programming will be copied to RAM.

This function must be called once prior to calling any other FLASH API functions. If a user supplied

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,752 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash

callback function is supplied, then the Flash Ready interrupt will be configured to call the users
callback routine with an Event type describing the source of the interrupt for Data Flash operations.
Subsequent to successfully completing this call p_ctrl->opened will be true.

Note
Providing a callback function in the supplied p_cfg->callback field, automatically configures the Flash for Data
Flash to operate in non-blocking (BGO) mode.

Subsequent to a successful Open(), the Flash is ready to process additional Flash commands.

Return values
SSP_SUCCESS Initialization was successful and timer has

started.

SSP_FLASH_ERR_FAILURE Failed to successfully enter
Programming/Erase mode.

SSP_ERR_TIMEOUT Timed out waiting for FCU to be ready.

SSP_ERR_ASSERTION NULL provided for p_ctrl or p_cfg or problem
getting FMI info.

SSP_ERR_IRQ_BSP_DISABLED Caller is requesting BGO but the Flash
interrupts are not enabled.

SSP_ERR_FCLK FCLK must be a minimum of 1 MHz for Flash
operations.

SSP_ERR_IN_USE Flash Open() has already been called.

SSP_ERR_HW_LOCKED Flash module unable to get the Hardware
lock for the Flash LP Periperhal.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

If null pointers return error.

If open return error.

Setup flash FMI. If failure return error.

Allow Initialization if not initialized or if no operation is ongoing and re-initialization is desired

Acquire the software lock. If failure return error.

Set the parameters struct based on the user supplied settings

Setup the Flash interrupt callback based on the caller's info. If the Flash interrupt is not enabled in
the BSP then this will return SSP_ERR_IRQ_BSP_DISABLED

Make sure Flash interrupts are disabled, they are only used in BGO mode

Setup the flash.

Save callback function pointer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,753 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash

◆ R_FLASH_LP_Read()

ssp_err_t R_FLASH_LP_Read (flash_ctrl_t *const p_api_ctrl, uint8_t * p_dest_address, uint32_t
const flash_address, uint32_t const num_bytes)

Read the requested number of bytes from the supplied Data or Code Flash address. Implements
flash_api_t::read.

The minimum/maximum number of blocks, as well as the invalid address and programming
boundaries supported and enforced by this function are dependent on the MCU in use as well as
the part package size. Please see the User manual and/or requirements document for additional
information.

Note
This function is provided simply for the purposes of maintaining a complete interface. It is possible (and
recommended), to read Flash memory directly.

Return values
SSP_SUCCESS Operation successful.

SSP_ERR_INVALID_ADDRESS Invalid Flash address was supplied.

SSP_ERR_ASSERTION NULL provided for p_ctrl or p_dest_address

SSP_ERR_NOT_OPEN Flash API has not yet been opened.

Copy the data to the destination buffer.

◆ R_FLASH_LP_Reset()

ssp_err_t R_FLASH_LP_Reset (flash_ctrl_t *const p_api_ctrl)

Reset the FLASH peripheral. Implements flash_api_t::reset.

No attempt is made to grab the Flash software lock before executing the reset since the
assumption is that a reset will terminate any existing operation.

Return values
SSP_SUCCESS Flash circuit successfully reset.

SSP_ERR_ASSERTION NULL provided for p_ctrl

SSP_ERR_NOT_OPEN Flash API has not yet been opened.

Reset the flash.

Release the flash.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,754 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash

◆ R_FLASH_LP_StartUpAreaSelect()

ssp_err_t R_FLASH_LP_StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl, flash_startup_area_swap_t
swap_type, bool is_temporary)

Select which block is used as the startup area block. Implements flash_api_t::startupAreaSelect.

Selects which block - Default (Block 0) or Alternate (Block 1) is used as the startup area block. The
provided parameters determine which block will become the active startup block and whether that
action will be immediate (but temporary), or permanent subsequent to the next reset. Doing a
temporary switch might appear to have limited usefulness. If there is an access window in place
such that Block 0 is write protected, then one could do a temporary switch, update the block and
switch them back without having to touch the access window.

Return values
SSP_SUCCESS Start-up area successfully toggled.

SSP_ERR_IN_USE Flash is busy with an on-going operation.

SSP_ERR_ASSERTION NULL provided for p_ctrl

SSP_ERR_NOT_OPEN Flash API has not yet been opened.

If the swap type is BTFLG and the operation is temporary there's nothing to do. Return success.

Update Flash state and enter the respective Code or Data Flash P/E mode.

If successful call the temporary or boot startup area set functions depending on the users flag.

If successful return to read mode otherwise reset the flash.

Release the flash.

◆ R_FLASH_LP_StatusGet()

ssp_err_t R_FLASH_LP_StatusGet (flash_ctrl_t *const p_api_ctrl)

Query the FLASH for its status. Implements flash_api_t::statusGet.

Return values
SSP_SUCCESS Flash is ready and available to accept

commands.

SSP_ERR_IN_USE Flash is busy with an on-going operation.

SSP_ERR_ASSERTION NULL provided for p_ctrl

SSP_ERR_NOT_OPEN Flash API has not yet been opened.

Return flash status

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,755 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash

◆ R_FLASH_LP_UpdateFlashClockFreq()

ssp_err_t R_FLASH_LP_UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

Indicate to the already open Flash API that the FCLK has changed. Implements
r_flash_t::updateFlashClockFreq.

This could be the case if the application has changed the system clock, and therefore the FCLK.
Failure to call this function subsequent to changing the FCLK could result in damage to the flash
macro. This function uses R_CGC_SystemClockFreqGet() to get the current FCLK frequency.

Return values
SSP_SUCCESS Start-up area successfully toggled.

SSP_ERR_IN_USE Flash is busy with an on-going operation.

SSP_ERR_ASSERTION NULL provided for p_ctrl

SSP_ERR_NOT_OPEN Flash API has not yet been opened.

Lock the flash state. If failure return error.

Setup the Flash.

Release the flash.

◆ R_FLASH_LP_VersionGet()

ssp_err_t R_FLASH_LP_VersionGet (ssp_version_t *const p_version)

Get FLASH HAL driver version.

Return values
SSP_SUCCESS - operation performed successfully

Note
This function is reentrant.

Return the version id of the flash lp module.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,756 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash

◆ R_FLASH_LP_Write()

ssp_err_t R_FLASH_LP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const src_address, uint32_t
flash_address, uint32_t const num_bytes)

Write to the specified Code or Data Flash memory area. Implements flash_api_t::write.

The minimum/maximum number of bytes, as well as the invalid address and programming
boundaries supported and enforced by this function are dependent on the MCU in use as well as
the part package size. Please see the User manual and/or requirements document for additional
information.

Return values
SSP_SUCCESS Operation successful. If BGO is enabled this

means the operation was started
successfully.

SSP_ERR_IN_USE The Flash peripheral is busy with a prior on-
going transaction.

SSP_ERR_NOT_OPEN The Flash API is not Open.

SSP_ERR_CMD_LOCKED FCU is in locked state, typically as a result
of attempting to Write an area that is
protected by an Access Window.

SSP_ERR_WRITE_FAILED Status is indicating a Programming error for
the requested operation. This may be
returned if the requested Flash area is not
blank.

SSP_ERR_TIMEOUT Timed out waiting for FCU operation to
complete.

SSP_ERR_INVALID_SIZE Number of bytes provided was not a
multiple of the programming size or
exceeded the maximum range.

SSP_ERR_INVALID_ADDRESS Invalid address was input or address not on
programming boundary.

SSP_ERR_ASSERTION NULL provided for p_ctrl.

SSP_ERR_INVALID_ARGUMENT Code Flash Programming is not enabled and
a request to write CF was requested.

Get the block information for this address. If failure return error.

Initiate the write operation.

Return status.

 flash_lp_instance_ctrl_t Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,757 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Low Power Flash > flash_lp_instance_ctrl_t Struct Reference

Renesas Synergy Software Package Reference » HAL Layer » Low Power Flash

#include <r_flash_lp.h>

Data Fields

uint32_t opened

 To check whether api has been opened or not.

void * p_reg

 Base address of flash registers.

bsp_cache_state_t cache_state

 Used to disable and then restore Flash Cache while API is open.

IRQn_Type irq

 Flash ready interrupt number.

Detailed Description

Flash instance control block. DO NOT INITIALIZE.

The documentation for this struct was generated from the following file:

r_flash_lp.h

5.1.5.20 FMI
Renesas Synergy Software Package Reference » HAL Layer

Driver for accessing Factory MCU Information (FMI). More...

Detailed Description

Driver for accessing Factory MCU Information (FMI).

Read Factory MCU Information flash memory.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,758 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

5.1.5.21 GLCDC
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Graphics LCD Controller (GLCDC). More...

Data Structures

struct glcd_instance_ctrl_t

struct glcd_cfg_t

struct glcd_ctrl_t

Enumerations

enum glcd_clk_src_t { GLCD_CLK_SRC_INTERNAL,
GLCD_CLK_SRC_EXTERNAL }

enum glcd_panel_clk_div_t {
 GLCD_PANEL_CLK_DIVISOR_1 = 1, GLCD_PANEL_CLK_DIVISOR_2 =
2, GLCD_PANEL_CLK_DIVISOR_3 = 3, GLCD_PANEL_CLK_DIVISOR_4 =
4,
 GLCD_PANEL_CLK_DIVISOR_5 = 5, GLCD_PANEL_CLK_DIVISOR_6 =
6, GLCD_PANEL_CLK_DIVISOR_7 = 7, GLCD_PANEL_CLK_DIVISOR_8 =
8,
 GLCD_PANEL_CLK_DIVISOR_9 = 9, GLCD_PANEL_CLK_DIVISOR_12 =
12, GLCD_PANEL_CLK_DIVISOR_16 = 16,
GLCD_PANEL_CLK_DIVISOR_24 = 24,
 GLCD_PANEL_CLK_DIVISOR_32 = 32
}

enum glcd_tcon_pin_t {
 GLCD_TCON_PIN_NONE = -1, GLCD_TCON_PIN_0,
GLCD_TCON_PIN_1, GLCD_TCON_PIN_2,
 GLCD_TCON_PIN_3
}

enum glcd_bus_arbitration_t { GLCD_BUS_ARBITRATION_ROUNDROBIN,
GLCD_BUS_ARBITRATION_FIX_PRIORITY }

enum glcd_correction_proc_order_t {
GLCD_CORRECTION_PROC_ORDER_BRIGHTNESS_CONTRAST2GAMMA
,
GLCD_CORRECTION_PROC_ORDER_GAMMA2BRIGHTNESS_CONTRAST
}

enum glcd_tcon_signal_select_t {
 GLCD_TCON_SIGNAL_SELECT_STVA_VS = 0,
GLCD_TCON_SIGNAL_SELECT_STVB_VE = 1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,759 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

GLCD_TCON_SIGNAL_SELECT_STHA_HS = 2,
GLCD_TCON_SIGNAL_SELECT_STHB_HE = 3,
 GLCD_TCON_SIGNAL_SELECT_DE = 7
}

enum glcd_clut_plane_t { GLCD_CLUT_PLANE_0 = 0, GLCD_CLUT_PLANE_1
= 1 }

enum glcd_dithering_mode_t { GLCD_DITHERING_MODE_TRUNCATE = 0,
GLCD_DITHERING_MODE_ROUND_OFF = 1,
GLCD_DITHERING_MODE_2X2PATTERN = 2,
GLCD_DITHERING_MODE_SETTING_MAX }

enum glcd_dithering_pattern_t { GLCD_DITHERING_PATTERN_00 = 0,
GLCD_DITHERING_PATTERN_01 = 1, GLCD_DITHERING_PATTERN_10
= 2, GLCD_DITHERING_PATTERN_11 = 3 }

enum glcd_input_interface_format_t {
 GLCD_INPUT_INTERFACE_FORMAT_RGB565 = 0,
GLCD_INPUT_INTERFACE_FORMAT_RGB888 = 1,
GLCD_INPUT_INTERFACE_FORMAT_ARGB1555 = 2,
GLCD_INPUT_INTERFACE_FORMAT_ARGB4444 = 3,
 GLCD_INPUT_INTERFACE_FORMAT_ARGB8888 = 4,
GLCD_INPUT_INTERFACE_FORMAT_CLUT8 = 5,
GLCD_INPUT_INTERFACE_FORMAT_CLUT4 = 6,
GLCD_INPUT_INTERFACE_FORMAT_CLUT1 = 7
}

enum glcd_output_interface_format_t {
GLCD_OUTPUT_INTERFACE_FORMAT_RGB888 = 0,
GLCD_OUTPUT_INTERFACE_FORMAT_RGB666 = 1,
GLCD_OUTPUT_INTERFACE_FORMAT_RGB565 = 2,
GLCD_OUTPUT_INTERFACE_FORMAT_SERIAL_RGB = 3 }

enum glcd_dithering_output_format_t {
GLCD_DITHERING_OUTPUT_FORMAT_RGB888 = 0,
GLCD_DITHERING_OUTPUT_FORMAT_RGB666 = 1,
GLCD_DITHERING_OUTPUT_FORMAT_RGB565 = 2 }

Functions

ssp_err_t R_GLCD_Open (display_ctrl_t *const p_api_ctrl, display_cfg_t const
*const p_cfg)

 Open GLCDC module. More...

ssp_err_t R_GLCD_Close (display_ctrl_t *const p_api_ctrl)

 Close GLCDC module. More...

ssp_err_t R_GLCD_Start (display_ctrl_t *const p_api_ctrl)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,760 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

 Start GLCDC module. More...

ssp_err_t R_GLCD_Stop (display_ctrl_t *const p_api_ctrl)

 Stop GLCDC module. More...

ssp_err_t R_GLCD_LayerChange (display_ctrl_t const *const p_api_ctrl,
display_runtime_cfg_t const *const p_cfg, display_frame_layer_t
frame)

 Change layer parameters of GLCDC module at runtime. More...

ssp_err_t R_GLCD_ColorCorrection (display_ctrl_t const *const p_api_ctrl,
display_correction_t const *const p_correction)

 Perform color correction by GLCDC module. More...

ssp_err_t R_GLCD_ClutUpdate (display_ctrl_t const *const p_api_ctrl,
display_clut_cfg_t const *const p_clut_cfg, display_frame_layer_t
frame)

 Update Color Look Up Table of GLCDC module. More...

ssp_err_t R_GLCD_StatusGet (display_ctrl_t const *const p_api_ctrl,
display_status_t *const p_status)

 Get status of GLCDC module. More...

ssp_err_t R_GLCD_VersionGet (ssp_version_t *p_version)

 Get version of R_GLCDC module. More...

Detailed Description

Driver for the Graphics LCD Controller (GLCDC).

Summary
Implements Display Interface. This module supports the Graphics LCD Controller (GLCDC). It
implements the display interface and drives LCD panels connected to the GLCDC pins.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,761 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

◆ glcd_bus_arbitration_t

enum glcd_bus_arbitration_t

Bus Arbitration setting

Enumerator

GLCD_BUS_ARBITRATION_ROUNDROBIN Round robin.

GLCD_BUS_ARBITRATION_FIX_PRIORITY Fixed.

◆ glcd_clk_src_t

enum glcd_clk_src_t

Clock source select

Enumerator

GLCD_CLK_SRC_INTERNAL Internal.

GLCD_CLK_SRC_EXTERNAL External.

◆ glcd_clut_plane_t

enum glcd_clut_plane_t

Clock phase adjustment for serial RGB output

Enumerator

GLCD_CLUT_PLANE_0 GLCD CLUT plane 0.

GLCD_CLUT_PLANE_1 GLCD CLUT plane 1.

◆ glcd_correction_proc_order_t

enum glcd_correction_proc_order_t

Correction circuit sequence control

Enumerator

GLCD_CORRECTION_PROC_ORDER_BRIGHTNESS
_CONTRAST2GAMMA

Brightness -> contrast -> gamma correction.

GLCD_CORRECTION_PROC_ORDER_GAMMA2BRI
GHTNESS_CONTRAST

Gamma correction -> brightness -> contrast.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,762 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

◆ glcd_dithering_mode_t

enum glcd_dithering_mode_t

Dithering mode

Enumerator

GLCD_DITHERING_MODE_TRUNCATE No dithering (truncate)

GLCD_DITHERING_MODE_ROUND_OFF Dithering with round off.

GLCD_DITHERING_MODE_2X2PATTERN Dithering with 2x2 pattern.

GLCD_DITHERING_MODE_SETTING_MAX Setting prohibited.

◆ glcd_dithering_output_format_t

enum glcd_dithering_output_format_t

Dithering output format

Enumerator

GLCD_DITHERING_OUTPUT_FORMAT_RGB888 Dithering output format RGB888.

GLCD_DITHERING_OUTPUT_FORMAT_RGB666 Dithering output format RGB666.

GLCD_DITHERING_OUTPUT_FORMAT_RGB565 Dithering output format RGB565.

◆ glcd_dithering_pattern_t

enum glcd_dithering_pattern_t

Dithering mode

Enumerator

GLCD_DITHERING_PATTERN_00 2x2 pattern '00'

GLCD_DITHERING_PATTERN_01 2x2 pattern '01'

GLCD_DITHERING_PATTERN_10 2x2 pattern '10'

GLCD_DITHERING_PATTERN_11 2x2 pattern '11'

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,763 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

◆ glcd_input_interface_format_t

enum glcd_input_interface_format_t

Output interface format

Enumerator

GLCD_INPUT_INTERFACE_FORMAT_RGB565 Input interface format RGB565.

GLCD_INPUT_INTERFACE_FORMAT_RGB888 Input interface format RGB888.

GLCD_INPUT_INTERFACE_FORMAT_ARGB1555 Input interface format ARGB1555.

GLCD_INPUT_INTERFACE_FORMAT_ARGB4444 Input interface format ARGB4444.

GLCD_INPUT_INTERFACE_FORMAT_ARGB8888 Input interface format ARGB8888.

GLCD_INPUT_INTERFACE_FORMAT_CLUT8 Input interface format CLUT8.

GLCD_INPUT_INTERFACE_FORMAT_CLUT4 Input interface format CLUT4.

GLCD_INPUT_INTERFACE_FORMAT_CLUT1 Input interface format CLUT1.

◆ glcd_output_interface_format_t

enum glcd_output_interface_format_t

Output interface format

Enumerator

GLCD_OUTPUT_INTERFACE_FORMAT_RGB888 Output interface format RGB888.

GLCD_OUTPUT_INTERFACE_FORMAT_RGB666 Output interface format RGB666.

GLCD_OUTPUT_INTERFACE_FORMAT_RGB565 Output interface format RGB565.

GLCD_OUTPUT_INTERFACE_FORMAT_SERIAL_RG
B

Output interface format Serial RGB.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,764 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

◆ glcd_panel_clk_div_t

enum glcd_panel_clk_div_t

Clock frequency division ratio

Enumerator

GLCD_PANEL_CLK_DIVISOR_1 Division Ratio 1/1.

GLCD_PANEL_CLK_DIVISOR_2 Division Ratio 1/2.

GLCD_PANEL_CLK_DIVISOR_3 Division Ratio 1/3.

GLCD_PANEL_CLK_DIVISOR_4 Division Ratio 1/4.

GLCD_PANEL_CLK_DIVISOR_5 Division Ratio 1/5.

GLCD_PANEL_CLK_DIVISOR_6 Division Ratio 1/6.

GLCD_PANEL_CLK_DIVISOR_7 Division Ratio 1/7.

GLCD_PANEL_CLK_DIVISOR_8 Division Ratio 1/8.

GLCD_PANEL_CLK_DIVISOR_9 Division Ratio 1/9.

GLCD_PANEL_CLK_DIVISOR_12 Division Ratio 1/12.

GLCD_PANEL_CLK_DIVISOR_16 Division Ratio 1/16.

GLCD_PANEL_CLK_DIVISOR_24 Division Ratio 1/24.

GLCD_PANEL_CLK_DIVISOR_32 Division Ratio 1/32.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,765 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

◆ glcd_tcon_pin_t

enum glcd_tcon_pin_t

LCD TCON output pin select

Enumerator

GLCD_TCON_PIN_NONE No output.

GLCD_TCON_PIN_0 LCD_TCON0.

GLCD_TCON_PIN_1 LCD_TCON1.

GLCD_TCON_PIN_2 LCD_TCON2.

GLCD_TCON_PIN_3 LCD_TCON3.

◆ glcd_tcon_signal_select_t

enum glcd_tcon_signal_select_t

Timing signals for driving the LCD panel

Enumerator

GLCD_TCON_SIGNAL_SELECT_STVA_VS STVA/VS.

GLCD_TCON_SIGNAL_SELECT_STVB_VE STVB/VE.

GLCD_TCON_SIGNAL_SELECT_STHA_HS STH/SP/HS.

GLCD_TCON_SIGNAL_SELECT_STHB_HE STB/LP/HE.

GLCD_TCON_SIGNAL_SELECT_DE DE.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,766 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

◆ R_GLCD_Close()

ssp_err_t R_GLCD_Close (display_ctrl_t *const p_api_ctrl)

Close GLCDC module.

Implements

display_api_t::close.
Return values

SSP_SUCCESS Device was closed successfully.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_NOT_OPEN The function call is performed when the
driver state is not equal to
DISPLAY_STATE_CLOSED.

SSP_ERR_INVALID_UPDATE_TIMING A function call is performed when the GLCD
is updating register values internally.

Note
This API can be called when the driver is not in DISPLAY_STATE_CLOSED state. It returns an error if the
register update operation for the background screen generation block is being held.

Disable the GLCD interrupts

Reset the GLCD hardware

Halt the peripheral clock to the GLCD module

Unlock the GLCD resource

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,767 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

◆ R_GLCD_ClutUpdate()

ssp_err_t R_GLCD_ClutUpdate (display_ctrl_t const *const p_api_ctrl, display_clut_cfg_t const
*const p_clut_cfg, display_frame_layer_t frame)

Update Color Look Up Table of GLCDC module.

Implements

display_api_t::clut.
Return values

SSP_SUCCESS CLUT updated successfully.

SSP_ERR_ASSERTION Pointer to the control block or CLUT source
data is NULL.

SSP_ERR_INVALID_CLUT_ACCESS Illegal CLUT entry or size is specified.

Note
This API can be called any time.

Check the CLUT table current used

Copy the new CLUT data on the source memory to the CLUT SRAM in the GLCD module

Make the GLCD module read the new CLUT table data from the next frame

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,768 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

◆ R_GLCD_ColorCorrection()

ssp_err_t R_GLCD_ColorCorrection (display_ctrl_t const *const p_api_ctrl, display_correction_t
const *const p_correction)

Perform color correction by GLCDC module.

Implements

display_api_t::correction.
Return values

SSP_SUCCESS Color correction by GLCDC module was
performed successfully.

SSP_ERR_ASSERTION Pointer to the control block or the display
correction structure is NULL.

SSP_ERR_INVALID_MODE Function call is performed when the driver
state is not DISPLAY_STATE_DISPLAYING.

SSP_ERR_INVALID_UPDATE_TIMING A function call is performed while the
GLCDC is updating registers internally.

Note
This API can be called when the driver is in the DISPLAY_STATE_DISPLAYING state. It returns an error if the
register update operation for the background screen generation blocks or the output control block is being held.

Configure the brightness and contrast correction register setting.

Update the Output block register setting.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,769 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

◆ R_GLCD_LayerChange()

ssp_err_t R_GLCD_LayerChange (display_ctrl_t const *const p_api_ctrl, display_runtime_cfg_t const
*const p_cfg, display_frame_layer_t frame)

Change layer parameters of GLCDC module at runtime.

Implements

display_api_t::layerChange.
Return values

SSP_SUCCESS Changed layer parameters of GLCDC
module successfully.

SSP_ERR_ASSERTION Pointer to the control block or the
configuration structure is NULL.

SSP_ERR_INVALID_MODE A function call is performed when the driver
state is not DISPLAY_STATE_DISPLAYING.

SSP_ERR_INVALID_ARGUMENT An invalid parameter is found in the
argument.

SSP_ERR_INVALID_UPDATE_TIMING A function call is performed while the GLCD
is updating register values internally.

Note
This API can be called when the driver is in DISPLAY_STATE_DISPLAYING state. It returns an error if the
register update operation for the background screen generation blocks or the graphics data I/F block is being held.

Configure the graphics plane layers

Reflect the graphics module register value to the GLCD internal operations (at the timing of the
next Vsync assertion)

◆ R_GLCD_Open()

ssp_err_t R_GLCD_Open (display_ctrl_t *const p_api_ctrl, display_cfg_t const *const p_cfg)

Open GLCDC module.

Implements

display_api_t::open.
Return values

SSP_SUCCESS Device was opened successfully.

SSP_ERR_ASSERTION Pointer to the control block or the
configuration structure is NULL.

SSP_ERR_INVALID_ARGUMENT Invalid parameter in the argument.

SSP_ERR_HW_LOCKED GLCDC resource is locked.

SSP_ERR_CLOCK_GENERATION Dot clock cannot be generated from clock

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,770 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

source.

SSP_ERR_INVALID_TIMING_SETTING Invalid panel timing parameter.

SSP_ERR_INVALID_LAYER_SETTING Invalid layer setting found.

SSP_ERR_INVALID_LAYER_FORMAT Invalid format is specified.

SSP_ERR_INVALID_GAMMA_SETTING Invalid gamma correction setting found.

Note
PCLKA must be supplied to Graphics LCD Controller (GLCDC) and GLCDC pins must be set in IOPORT before
calling this API.

Lock the GLCD resource

Supply the peripheral clock to the GLCD module

Release GLCD from a SW reset status.

Set the dot clock frequency

Set the panel signal timing

Configure the background screen

Store back poach position to the control block (needed to define the layer blending position later)

Configure the graphics plane layers

Configure the output control block

Configure the color correction setting (brightness, brightness and gamma correction)

Change GLCD driver state

Save callback function

Save user defined context

Save the display interface context into GLCD HAL control block

Set the line number which is suppose to happen the line detect interrupt

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,771 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

◆ R_GLCD_Start()

ssp_err_t R_GLCD_Start (display_ctrl_t *const p_api_ctrl)

Start GLCDC module.

Implements

display_api_t::start.
Return values

SSP_SUCCESS Device was started successfully.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_MODE Function call is performed when the driver
state is not DISPLAY_STATE_OPENED.

Note
This API can be called when the driver is not in DISPLAY_STATE_OPENED status.

Start to output the vertical and horizontal synchronization signals and screen data.

Enable Line detect function

◆ R_GLCD_StatusGet()

ssp_err_t R_GLCD_StatusGet (display_ctrl_t const *const p_api_ctrl, display_status_t *const
p_status)

Get status of GLCDC module.

Implements

display_api_t::statusGet.
Return values

SSP_SUCCESS Got status successfully.

SSP_ERR_ASSERTION Pointer to the control block or the status
structure is NULL.

Note
The GLCD hardware starts the fading processing at the first Vsync after the previous LayerChange() call is held.
Due to this behavior of the hardware, this API may not return DISPLAY_FADE_STATUS_FADING_UNDERWAY
as the fading status, if it is called before the first Vsync after LayerChange() is called. In this case, the API returns
DISPLAY_FADE_STATUS_UNCERTAIN, instead of DISPLAY_FADE_STATUS_NOT_UNDERWAY.

Return the GLCD HAL driver state

Return the fading status for the layers

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,772 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC

◆ R_GLCD_Stop()

ssp_err_t R_GLCD_Stop (display_ctrl_t *const p_api_ctrl)

Stop GLCDC module.

Implements

display_api_t::stop.
Return values

SSP_SUCCESS Device was stopped successfully

SSP_ERR_ASSERTION Pointer to the control block is NULL

SSP_ERR_INVALID_MODE Function call is performed when the driver
state is not DISPLAY_STATE_DISPLAYING.

SSP_ERR_INVALID_UPDATE_TIMING The function call is performed while the
GLCD is updating register values internally.

Note
This API can be called when the driver is in the DISPLAY_STATE_DISPLAYING state. It returns an error if the
register update operation for the background screen generation blocks, the graphics data I/F blocks, or the output
control block is being held.

Stop outputting the vertical and horizontal synchronization signals and screen data.

◆ R_GLCD_VersionGet()

ssp_err_t R_GLCD_VersionGet (ssp_version_t * p_version)

Get version of R_GLCDC module.

Implements

display_api_t::versionGet.
Parameters

p_version The version number

Return values
SSP_SUCCESS Version information available in p_version.

SSP_ERR_ASSERTION NULL pointer is passed to function.

Note
This function is re-entrant.

 glcd_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » GLCDC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,773 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC > glcd_instance_ctrl_t Struct Reference

#include <r_glcd.h>

Data Fields

display_state_t state

 Status of GLCD module.

void(* p_callback)(display_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 Pointer to the higher level device context.

R_GLCDC_Type * p_reg

 Base register address.

Detailed Description

Display control block. DO NOT INITIALIZE.

The documentation for this struct was generated from the following file:

r_glcd.h

 glcd_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » GLCDC

#include <r_glcd.h>

Data Fields

glcd_tcon_pin_t tcon_hsync

 GLCD TCON output pin select.

glcd_tcon_pin_t tcon_vsync

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,774 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC > glcd_cfg_t Struct Reference

 GLCD TCON output pin select.

glcd_tcon_pin_t tcon_de

 GLCD TCON output pin select.

glcd_correction_proc_order_t correction_proc_order

 Correction control route select.

glcd_clk_src_t clksrc

 Clock Source selection.

glcd_panel_clk_div_t clock_div_ratio

 Clock divide ratio for dot clock.

glcd_dithering_mode_t dithering_mode

 Dithering mode.

glcd_dithering_pattern_t dithering_pattern_A

 Dithering pattern A.

glcd_dithering_pattern_t dithering_pattern_B

 Dithering pattern B.

glcd_dithering_pattern_t dithering_pattern_C

 Dithering pattern C.

glcd_dithering_pattern_t dithering_pattern_D

 Dithering pattern D.

Detailed Description

GLCD hardware specific configuration

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,775 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC > glcd_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

r_glcd.h

 glcd_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » GLCDC

#include <r_glcd.h>

Data Fields

display_coordinate_t back_porch

 Zero coordinate for graphics plane(Bach porch End)

uint16_t hsize

 Horizontal pixel size in a line.

uint16_t vsize

 Vertical pixel size in a frame.

bsp_lock_t resource_lock

 Resource lock.

void * p_context

Detailed Description

GLCD hardware specific control block

Field Documentation

◆ p_context

void* glcd_ctrl_t::p_context

Pointer to the function level device context (e.g. display_ctrl_t type data)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,776 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GLCDC > glcd_ctrl_t Struct Reference

The documentation for this struct was generated from the following file:

r_glcd.h

5.1.5.22 GPT
Renesas Synergy Software Package Reference » HAL Layer

Driver for the General PWM Timer (GPT). More...

Data Structures

struct gpt_output_pin_t

struct gpt_instance_ctrl_t

struct timer_on_gpt_cfg_t

Enumerations

enum gpt_pin_level_t { GPT_PIN_LEVEL_LOW = 0, GPT_PIN_LEVEL_HIGH =
1, GPT_PIN_LEVEL_RETAINED = 2 }

enum gpt_shortest_level_t { GPT_SHORTEST_LEVEL_OFF = 0,
GPT_SHORTEST_LEVEL_ON = 1 }

enum gpt_trigger_t {
 GPT_TRIGGER_NONE = 0,
GPT_TRIGGER_GTIOCA_RISING_WHILE_GTIOCB_LOW = (1UL << 8),
GPT_TRIGGER_GTIOCA_RISING_WHILE_GTIOCB_HIGH = (1UL << 9),
GPT_TRIGGER_GTIOCA_FALLING_WHILE_GTIOCB_LOW = (1UL <<
10),
 GPT_TRIGGER_GTIOCA_FALLING_WHILE_GTIOCB_HIGH = (1UL <<
11), GPT_TRIGGER_GTIOCB_RISING_WHILE_GTIOCA_LOW = (1UL <<
12), GPT_TRIGGER_GTIOCB_RISING_WHILE_GTIOCA_HIGH = (1UL <<
13), GPT_TRIGGER_GTIOCB_FALLING_WHILE_GTIOCA_LOW = (1UL
<< 14),
 GPT_TRIGGER_GTIOCB_FALLING_WHILE_GTIOCA_HIGH = (1UL <<
15), GPT_TRIGGER_SOURCE_REGISTER_ENABLE = (1UL << 31)
}

enum gpt_output_t { GPT_OUTPUT_RETAINED = 0, GPT_OUTPUT_LOW = 1,
GPT_OUTPUT_HIGH = 2, GPT_OUTPUT_TOGGLED = 3 }

Functions

ssp_err_t R_GPT_TimerOpen (timer_ctrl_t *const p_api_ctrl, timer_cfg_t const
*const p_cfg)

 Powers on GPT, handles required initialization described in hardware

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,777 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT

manual. Implements timer_api_t::open. More...

ssp_err_t R_GPT_Stop (timer_ctrl_t *const p_api_ctrl)

 Stops timer. Implements timer_api_t::stop. More...

ssp_err_t R_GPT_Start (timer_ctrl_t *const p_api_ctrl)

 Starts timer. Implements timer_api_t::start. More...

ssp_err_t R_GPT_CounterGet (timer_ctrl_t *const p_api_ctrl, timer_size_t *const
p_value)

 Sets counter value in provided p_value pointer. Implements
timer_api_t::counterGet. More...

ssp_err_t R_GPT_Reset (timer_ctrl_t *const p_api_ctrl)

 Resets the counter value to 0. Implements timer_api_t::reset. More...

ssp_err_t R_GPT_PeriodSet (timer_ctrl_t *const p_api_ctrl, timer_size_t const
period, timer_unit_t const unit)

 Sets period value provided. Implements timer_api_t::periodSet.
More...

ssp_err_t R_GPT_DutyCycleSet (timer_ctrl_t *const p_api_ctrl, timer_size_t
const duty_cycle, timer_pwm_unit_t const unit, uint8_t const pin)

 Sets status in provided p_status pointer. Implements
pwm_api_t::dutyCycleSet. More...

ssp_err_t R_GPT_InfoGet (timer_ctrl_t *const p_api_ctrl, timer_info_t *const
p_info)

 Get timer information and store it in provided pointer p_info.
Implements timer_api_t::infoGet. More...

ssp_err_t R_GPT_Close (timer_ctrl_t *const p_api_ctrl)

 Stops counter, disables output pins, and clears internal driver data.
More...

ssp_err_t R_GPT_VersionGet (ssp_version_t *const p_version)

 Sets driver version based on compile time macros. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,778 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT

Detailed Description

Driver for the General PWM Timer (GPT).

Summary
Extends Timer Interface.

This module implements the Timer Interface using the General PWM Timer (GPT) peripherals
GPT32EH, GPT32E, GPT32. It also provides an output compare extension to output the timer signal to
the GTIOC pin.

Enumeration Type Documentation

◆ gpt_output_t

enum gpt_output_t

Output level used when selecting what happens at compare match or cycle end.

Enumerator

GPT_OUTPUT_RETAINED Output retained.

GPT_OUTPUT_LOW Output low.

GPT_OUTPUT_HIGH Output high.

GPT_OUTPUT_TOGGLED Output toggled.

◆ gpt_pin_level_t

enum gpt_pin_level_t

Level of GPT pin

Enumerator

GPT_PIN_LEVEL_LOW Pin level low.

GPT_PIN_LEVEL_HIGH Pin level high.

GPT_PIN_LEVEL_RETAINED Pin level retained.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,779 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT

◆ gpt_shortest_level_t

enum gpt_shortest_level_t

GPT PWM shortest pin level

Enumerator

GPT_SHORTEST_LEVEL_OFF 1 extra PCLK in ON time. Minimum ON time will
be limited to 2 PCLK raw counts.

GPT_SHORTEST_LEVEL_ON 1 extra PCLK in OFF time. Minimum ON time
will be limited to 1 PCLK raw counts.

◆ gpt_trigger_t

enum gpt_trigger_t

Sources can be used to start the timer, stop the timer, count up, or count down.

Enumerator

GPT_TRIGGER_NONE No action performed.

GPT_TRIGGER_GTIOCA_RISING_WHILE_GTIOCB_L
OW

Action performed when GTIOCA input rises
while GTIOCB is low.

GPT_TRIGGER_GTIOCA_RISING_WHILE_GTIOCB_H
IGH

Action performed when GTIOCA input rises
while GTIOCB is high.

GPT_TRIGGER_GTIOCA_FALLING_WHILE_GTIOCB_
LOW

Action performed when GTIOCA input falls
while GTIOCB is low.

GPT_TRIGGER_GTIOCA_FALLING_WHILE_GTIOCB_
HIGH

Action performed when GTIOCA input falls
while GTIOCB is high.

GPT_TRIGGER_GTIOCB_RISING_WHILE_GTIOCA_L
OW

Action performed when GTIOCB input rises
while GTIOCA is low.

GPT_TRIGGER_GTIOCB_RISING_WHILE_GTIOCA_H
IGH

Action performed when GTIOCB input rises
while GTIOCA is high.

GPT_TRIGGER_GTIOCB_FALLING_WHILE_GTIOCA_
LOW

Action performed when GTIOCB input falls
while GTIOCA is low.

GPT_TRIGGER_GTIOCB_FALLING_WHILE_GTIOCA_
HIGH

Action performed when GTIOCB input falls
while GTIOCA is high.

GPT_TRIGGER_SOURCE_REGISTER_ENABLE Enables settings in the Source Select Register.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,780 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT

Function Documentation

◆ R_GPT_Close()

ssp_err_t R_GPT_Close (timer_ctrl_t *const p_api_ctrl)

Stops counter, disables output pins, and clears internal driver data.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

SSP_ERR_NOT_OPEN The channel is not opened.

Cleanup. Stop counter and disable output.

Unlock channel

Clear stored internal driver data

◆ R_GPT_CounterGet()

ssp_err_t R_GPT_CounterGet (timer_ctrl_t *const p_api_ctrl, timer_size_t *const p_value)

Sets counter value in provided p_value pointer. Implements timer_api_t::counterGet.

Return values
SSP_SUCCESS Counter value read, p_value is valid.

SSP_ERR_ASSERTION The p_ctrl or p_value parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Read counter value

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,781 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT

◆ R_GPT_DutyCycleSet()

ssp_err_t R_GPT_DutyCycleSet (timer_ctrl_t *const p_api_ctrl, timer_size_t const duty_cycle,
timer_pwm_unit_t const unit, uint8_t const pin)

Sets status in provided p_status pointer. Implements pwm_api_t::dutyCycleSet.

Return values
SSP_SUCCESS Counter value written successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

SSP_ERR_INVALID_ARGUMENT The pin value is out of range; Should be
either 0 (for GTIOCA) or 1 (for GTIOCB).

Converted duty cycle to PCLK counts before it can be set in registers

Set duty cycle.

◆ R_GPT_InfoGet()

ssp_err_t R_GPT_InfoGet (timer_ctrl_t *const p_api_ctrl, timer_info_t *const p_info)

Get timer information and store it in provided pointer p_info. Implements timer_api_t::infoGet.

Return values
SSP_SUCCESS Period, count direction, frequency, and

status value written to caller's structure
successfully.

SSP_ERR_ASSERTION The p_ctrl or p_info parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Get and store period

Get and store clock frequency

Get and store clock counting direction

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,782 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT

◆ R_GPT_PeriodSet()

ssp_err_t R_GPT_PeriodSet (timer_ctrl_t *const p_api_ctrl, timer_size_t const period, timer_unit_t
const unit)

Sets period value provided. Implements timer_api_t::periodSet.

Return values
SSP_SUCCESS Period value written successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_INVALID_ARGUMENT One of the following is invalid:

p_period->unit: must be one of the
options from timer_unit_t
p_period->value: must result in a
period in the following range:

Lower bound: (1 / (PCLK
frequency))
Upper bound: (0xFFFFFFFF *
1024 / (PCLK frequency))

SSP_ERR_NOT_OPEN The channel is not opened.

Delay must be converted to PCLK counts before it can be set in registers

Make sure period is valid.

Store current status, then stop timer before setting divisor register

Reset counter in case new cycle is less than current count value, then restore state (counting or
stopped).

◆ R_GPT_Reset()

ssp_err_t R_GPT_Reset (timer_ctrl_t *const p_api_ctrl)

Resets the counter value to 0. Implements timer_api_t::reset.

Return values
SSP_SUCCESS Counter value written successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Write the counter value

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,783 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT

◆ R_GPT_Start()

ssp_err_t R_GPT_Start (timer_ctrl_t *const p_api_ctrl)

Starts timer. Implements timer_api_t::start.

Return values
SSP_SUCCESS Timer successfully started.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Start timer

◆ R_GPT_Stop()

ssp_err_t R_GPT_Stop (timer_ctrl_t *const p_api_ctrl)

Stops timer. Implements timer_api_t::stop.

Return values
SSP_SUCCESS Timer successfully stopped.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Stop timer

◆ R_GPT_TimerOpen()

ssp_err_t R_GPT_TimerOpen (timer_ctrl_t *const p_api_ctrl, timer_cfg_t const *const p_cfg)

Powers on GPT, handles required initialization described in hardware manual. Implements
timer_api_t::open.

The Open function configures a single GPT channel, starts the channel, and provides a handle for
use with the GPT API Control and Close functions. This function must be called once prior to calling
any other GPT API functions. After a channel is opened, the Open function should not be called
again for the same channel without first calling the associated Close function.

GPT hardware does not support one-shot functionality natively. When using one-shot mode, the
timer will be stopped in an ISR after the requested period has elapsed.

The GPT implementation of the general timer can accept a timer_on_gpt_cfg_t extension
parameter.

Return values
SSP_SUCCESS Initialization was successful and timer has

started.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,784 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT

SSP_ERR_ASSERTION One of the following parameters is incorrect.
Either

p_cfg is NULL, OR
p_ctrl is NULL, OR

SSP_ERR_INVALID_ARGUMENT One of the following parameters is invalid:

p_cfg->period: must be in the
following range:

Lower bound: (1 / (PCLK
frequency)
Upper bound: (0xFFFFFFFF *
1024 / (PCLK frequency))

p_cfg->p_callback not NULL, but ISR
is not enabled. ISR must be enabled
to use callback function. Enable
channel's overflow ISR in
bsp_irq_cfg.h.

SSP_ERR_IN_USE The channel specified has already been
opened. No configurations were changed.
Call the associated Close function or use
associated Control commands to
reconfigure the channel.

SSP_ERR_IRQ_BSP_DISABLED - p_cfg->mode is TIMER_MODE_ONE_SHOT,
but ISR is not enabled. ISR must be enabled
to use one-shot mode.

SSP_ERR_IP_CHANNEL_NOT_PRESENT - The channel requested in the p_cfg
parameter is not available on this device.

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

Calculate period and store internal variables

Save the configuration

Calculate duty cycle

Verify channel is not already used

Power on GPT before setting any hardware registers. Make sure the counter is stopped before
setting mode register, PCLK divisor register, and counter register.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,785 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT

◆ R_GPT_VersionGet()

ssp_err_t R_GPT_VersionGet (ssp_version_t *const p_version)

Sets driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

 gpt_output_pin_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » GPT

#include <r_gpt.h>

Data Fields

bool output_enabled

 Set to true to enable output, false to disable output.

gpt_pin_level_t stop_level

 Select a stop level from gpt_pin_level_t.

Detailed Description

Configurations for output pins.

The documentation for this struct was generated from the following file:

r_gpt.h

 gpt_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » GPT

#include <r_gpt.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,786 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT > gpt_instance_ctrl_t Struct Reference

Data Fields

void(* p_callback)(timer_callback_args_t *p_args)

void const * p_context

void * p_reg

 Base register for this channel.

uint32_t open

 Whether or not channel is open.

uint8_t channel

 Channel number.

bool one_shot

 Whether or not timer is in one shot mode.

bool gtioca_output_enabled

 Set to true to enable gtioca pin output.

bool gtiocb_output_enabled

 Set to true to enable gtiocb pin output.

IRQn_Type irq

 Counter overflow IRQ number.

timer_variant_t variant

 Timer variant.

gpt_shortest_level_t shortest_pwm_signal

 Shortest PWM signal level.

Detailed Description

Channel control block. DO NOT INITIALIZE. Initialization occurs when timer_api_t::open is called.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,787 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT > gpt_instance_ctrl_t Struct Reference

Field Documentation

◆ p_callback

void(* gpt_instance_ctrl_t::p_callback) (timer_callback_args_t *p_args)

Callback provided when a timer ISR occurs. NULL indicates no CPU interrupt.

◆ p_context

void const* gpt_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in timer_callback_args_t.

The documentation for this struct was generated from the following file:

r_gpt.h

 timer_on_gpt_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » GPT

#include <r_gpt.h>

Data Fields

gpt_output_pin_t gtioca

 Configuration for GPT I/O pin A.

gpt_output_pin_t gtiocb

 Configuration for GPT I/O pin B.

gpt_shortest_level_t shortest_pwm_signal

 Shortest PWM signal level.

Detailed Description

GPT extension configures the output pins for GPT.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,788 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT > timer_on_gpt_cfg_t Struct Reference

The documentation for this struct was generated from the following file:

r_gpt.h

5.1.5.23 GPT Input Capture
Renesas Synergy Software Package Reference » HAL Layer

Driver for the General PWM Timer (GPT) with Input Capture. More...

Data Structures

struct gpt_input_capture_extend_t

 Extension configuration struct for TU Input Capture. More...

struct gpt_input_capture_instance_ctrl_t

Macros

#define GPT_INPUT_CAPTURE_CODE_VERSION_MAJOR (2U)

#define GPT_INPUT_CAPTURE_MAX_COUNT (0xFFFFFFFFUL)

 Maximum value of GPT counter.

Enumerations

enum gpt_input_capture_signal_t {
GPT_INPUT_CAPTURE_SIGNAL_PIN_GTIOCA,
GPT_INPUT_CAPTURE_SIGNAL_PIN_GTIOCB }

enum gpt_input_capture_signal_filter_t {
GPT_INPUT_CAPTURE_SIGNAL_FILTER_1,
GPT_INPUT_CAPTURE_SIGNAL_FILTER_4,
GPT_INPUT_CAPTURE_SIGNAL_FILTER_16,
GPT_INPUT_CAPTURE_SIGNAL_FILTER_64 }

enum gpt_input_capture_clock_divider_t {
 GPT_INPUT_CAPTURE_CLOCK_DIVIDER_1,
GPT_INPUT_CAPTURE_CLOCK_DIVIDER_4,
GPT_INPUT_CAPTURE_CLOCK_DIVIDER_16,
GPT_INPUT_CAPTURE_CLOCK_DIVIDER_64,
 GPT_INPUT_CAPTURE_CLOCK_DIVIDER_256,
GPT_INPUT_CAPTURE_CLOCK_DIVIDER_1024
}

Functions

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,789 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT Input Capture

ssp_err_t R_GPT_InputCaptureOpen (input_capture_ctrl_t *const p_api_ctrl,
input_capture_cfg_t const *const p_cfg)

 Open a GPT Timer for Input Capture. Implements
input_capture_api_t::open. More...

ssp_err_t R_GPT_InputCaptureClose (input_capture_ctrl_t *const p_api_ctrl)

 Close a GPT Timer Channel for Input Capture. Implements
input_capture_api_t::close. More...

ssp_err_t R_GPT_InputCaptureVersionGet (ssp_version_t *const p_version)

 Gets driver version based on compile time macros. Implements
input_capture_api_t::versionGet. More...

ssp_err_t R_GPT_InputCaptureDisable (input_capture_ctrl_t const *const
p_api_ctrl)

 Disables GPT Input Capture RegA interrupt for specified channel at
NVIC. Implements input_capture_api_t::disable. More...

ssp_err_t R_GPT_InputCaptureEnable (input_capture_ctrl_t const *const
p_api_ctrl)

 Enables GPT Input Capture RegA interrupt for specified channel at
NVIC. Implements input_capture_api_t::enable. More...

ssp_err_t R_GPT_InputCaptureInfoGet (input_capture_ctrl_t const *const
p_api_ctrl, input_capture_info_t *const p_info)

 Gets status into provided p_info pointer. Implements
input_capture_api_t::infoGet. More...

ssp_err_t R_GPT_InputCaptureLastCaptureGet (input_capture_ctrl_t const
*const p_api_ctrl, input_capture_capture_t *const p_capture)

 Update the last captured value and overflow count, in provided
p_capture pointer. Implements input_capture_api_t::lastCaptureGet.
More...

Detailed Description

Driver for the General PWM Timer (GPT) with Input Capture.

Summary

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,790 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT Input Capture

Extends Input Capture Interface.

This module implements the Input Capture Interface for the General PWM Timer (GPT) peripherals
GPT32EH, GPT32E, GPT32.

Macro Definition Documentation

◆ GPT_INPUT_CAPTURE_CODE_VERSION_MAJOR

#define GPT_INPUT_CAPTURE_CODE_VERSION_MAJOR (2U)

Includes

Enumeration Type Documentation

◆ gpt_input_capture_clock_divider_t

enum gpt_input_capture_clock_divider_t

Input capture PCLK divider. Used to scale the timer counter.

Enumerator

GPT_INPUT_CAPTURE_CLOCK_DIVIDER_1 / 1

GPT_INPUT_CAPTURE_CLOCK_DIVIDER_4 / 4

GPT_INPUT_CAPTURE_CLOCK_DIVIDER_16 / 16

GPT_INPUT_CAPTURE_CLOCK_DIVIDER_64 / 64

GPT_INPUT_CAPTURE_CLOCK_DIVIDER_256 / 256

GPT_INPUT_CAPTURE_CLOCK_DIVIDER_1024 / 1024

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,791 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT Input Capture

◆ gpt_input_capture_signal_filter_t

enum gpt_input_capture_signal_filter_t

Input capture signal noise filter (debounce) setting. Only available for input signals GTIOCxA and
GTIOCxB. The noise filter samples the external signal at intervals of the PCLK divided by one of the
values. When 3 consecutive samples are at the same level (high or low), then that level is passed
on as the observed state of the signal. See "Noise Filter Function" in the hardware manual, GPT
section.

Enumerator

GPT_INPUT_CAPTURE_SIGNAL_FILTER_1 PCLK/1 - fast sampling.

GPT_INPUT_CAPTURE_SIGNAL_FILTER_4 PCLK/4.

GPT_INPUT_CAPTURE_SIGNAL_FILTER_16 PCLK/16.

GPT_INPUT_CAPTURE_SIGNAL_FILTER_64 PCLK/64 - slow sampling.

◆ gpt_input_capture_signal_t

enum gpt_input_capture_signal_t

Input capture signal selection

Enumerator

GPT_INPUT_CAPTURE_SIGNAL_PIN_GTIOCA GTIOCxA pin, where x is channel number.

GPT_INPUT_CAPTURE_SIGNAL_PIN_GTIOCB GTIOCxB pin, where x is channel number.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,792 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT Input Capture

◆ R_GPT_InputCaptureClose()

ssp_err_t R_GPT_InputCaptureClose (input_capture_ctrl_t *const p_api_ctrl)

Close a GPT Timer Channel for Input Capture. Implements input_capture_api_t::close.

Clears Timer settings, disables interrupts, and clears internal driver data.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

SSP_ERR_NOT_OPEN The channel is not opened.

Cleanup. Disable interrupts and stop measurements.

Unlock channel

Clear stored internal driver data

◆ R_GPT_InputCaptureDisable()

ssp_err_t R_GPT_InputCaptureDisable (input_capture_ctrl_t const *const p_api_ctrl)

Disables GPT Input Capture RegA interrupt for specified channel at NVIC. Implements
input_capture_api_t::disable.

Return values
SSP_SUCCESS Interrupt disabled successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Disable interrupts

Clearing the input capture source select registers.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,793 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT Input Capture

◆ R_GPT_InputCaptureEnable()

ssp_err_t R_GPT_InputCaptureEnable (input_capture_ctrl_t const *const p_api_ctrl)

Enables GPT Input Capture RegA interrupt for specified channel at NVIC. Implements
input_capture_api_t::enable.

Return values
SSP_SUCCESS Interrupt enabled successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Configuring the input capture source select registers.

Enabling the overflow and capture registers.

◆ R_GPT_InputCaptureInfoGet()

ssp_err_t R_GPT_InputCaptureInfoGet (input_capture_ctrl_t const *const p_api_ctrl,
input_capture_info_t *const p_info)

Gets status into provided p_info pointer. Implements input_capture_api_t::infoGet.

Return values
SSP_SUCCESS Success.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

◆ R_GPT_InputCaptureLastCaptureGet()

ssp_err_t R_GPT_InputCaptureLastCaptureGet (input_capture_ctrl_t const *const p_api_ctrl,
input_capture_capture_t *const p_capture)

Update the last captured value and overflow count, in provided p_capture pointer. Implements
input_capture_api_t::lastCaptureGet.

Return values
SSP_SUCCESS Period value written successfully.

SSP_ERR_ASSERTION The p_ctrl or p_value parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Set capture value

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,794 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT Input Capture

◆ R_GPT_InputCaptureOpen()

ssp_err_t R_GPT_InputCaptureOpen (input_capture_ctrl_t *const p_api_ctrl, input_capture_cfg_t
const *const p_cfg)

Open a GPT Timer for Input Capture. Implements input_capture_api_t::open.

The Open function configures a single GPT channel for input capture and provides a handle for use
with the other Input Capture API functions. This function must be called once prior to calling any
other Input Capture API function. After a channel is opened, the Open function should not be called
again for the same channel without first calling the associated Close function.

Return values
SSP_SUCCESS Initialization was successful.

SSP_ERR_ASSERTION One of the parameters is NULL: p_cfg,
p_ctrl, p_extend.

SSP_ERR_IRQ_BSP_DISABLED A required interrupt does not exist in the
vector table.

SSP_ERR_IN_USE The channel specified has already been
opened. No configurations were changed.
Call the associated Close function or use
associated Control commands to
reconfigure the channel.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

Verify channel is not already used

◆ R_GPT_InputCaptureVersionGet()

ssp_err_t R_GPT_InputCaptureVersionGet (ssp_version_t *const p_version)

Gets driver version based on compile time macros. Implements input_capture_api_t::versionGet.

Return values
SSP_SUCCESS Success.

SSP_ERR_ASSERTION The parameter p_version is NULL.

 gpt_input_capture_extend_t Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,795 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT Input Capture > gpt_input_capture_extend_t Struct Reference

Renesas Synergy Software Package Reference » HAL Layer » GPT Input Capture

Extension configuration struct for TU Input Capture. More...

#include <r_gpt_input_capture.h>

Data Fields

gpt_input_capture_signal_t signal

 One of gpt_input_capture_signal_t.

gpt_input_capture_signal_filt
er_t

signal_filter

 One of gpt_input_capture_signal_filter_t.

gpt_input_capture_clock_divi
der_t

clock_divider

 One of gpt_input_capture_clock_divider_t.

input_capture_signal_level_t enable_level

bool enable_filter

 One of gpt_input_capture_signal_filter_t.

Detailed Description

Extension configuration struct for TU Input Capture.

Pointed to by input_capture_cfg_t.p_extend

Field Documentation

◆ enable_level

input_capture_signal_level_t gpt_input_capture_extend_t::enable_level

The unused GTIOCx pin can be used as an enable signal to enable captures. If the Input Capture
Signal Pin is GTIOCA, then the enable pin is GTIOCB. The enable level is set here if used.

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,796 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT Input Capture > gpt_input_capture_extend_t Struct Reference

r_gpt_input_capture.h

 gpt_input_capture_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » GPT Input Capture

#include <r_gpt_input_capture.h>

Data Fields

uint32_t open

 Whether or not channel is open.

uint8_t channel

 The channel in use.

input_capture_mode_t mode

 The mode of measurement being performed.

input_capture_repetition_t repetition

 One-shot or periodic measurement.

uint32_t capture_count

 The value of the timer captured at the time of interrupt.

uint32_t overflows_last

 Overflow count that occurred during last measurement.

uint32_t overflows_current

 Running count of overflows in current measurement.

void(* p_callback)(input_capture_callback_args_t *p_args)

 Pointer to user callback.

void const * p_context

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,797 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > GPT Input Capture > gpt_input_capture_instance_ctrl_t Struct Reference

 Pointer to user's context data, to be passed to the callback function.

void * p_reg

 GPT base register for this channel.

IRQn_Type capture_irq

 Capture IRQ number.

IRQn_Type overflow_irq

 Overflow IRQ number.

input_capture_variant_t variant

 Timer variant.

uint32_t start_bitmask

 Start and Clear bitmask for input capture.

uint32_t stop_bitmask

 Stop and capture bitmask for input capture.

Detailed Description

Channel control block. DO NOT INITIALIZE. Initialization occurs when input_capture_api_t::open is
called.

The documentation for this struct was generated from the following file:

r_gpt_input_capture.h

5.1.5.24 ICU
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Interrupt Controller Unit (ICU) External pin interrupts function. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,798 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ICU

Data Structures

struct icu_instance_ctrl_t

Functions

ssp_err_t R_ICU_ExternalIrqOpen (external_irq_ctrl_t *const p_api_ctrl,
external_irq_cfg_t const *const p_cfg)

 Configure an external input pin for use with the button interface.
Implements external_irq_api_t::open. More...

ssp_err_t R_ICU_ExternalIrqEnable (external_irq_ctrl_t *const p_api_ctrl)

 Enable external interrupt for specified channel at NVIC. Implements
external_irq_api_t::enable. More...

ssp_err_t R_ICU_ExternalIrqDisable (external_irq_ctrl_t *const p_api_ctrl)

 Disable external interrupt for specified channel at NVIC. Implements
external_irq_api_t::disable. More...

ssp_err_t R_ICU_ExternalIrqTriggerSet (external_irq_ctrl_t *const p_api_ctrl,
external_irq_trigger_t hw_trigger)

 Set trigger value provided. Implements external_irq_api_t::triggerSet.
More...

ssp_err_t R_ICU_ExternalIrqFilterEnable (external_irq_ctrl_t *const p_api_ctrl)

 Enable external interrupt digital filter for specified channel.
Implements external_irq_api_t::filterEnable. More...

ssp_err_t R_ICU_ExternalIrqFilterDisable (external_irq_ctrl_t *const p_api_ctrl)

 Enable external interrupt digital filter for specified channel.
Implements external_irq_api_t::filterDisable. More...

ssp_err_t R_ICU_ExternalIrqVersionGet (ssp_version_t *const p_version)

 Set driver version based on compile time macros. Implements
external_irq_api_t::versionGet. More...

ssp_err_t R_ICU_ExternalIrqClose (external_irq_ctrl_t *const p_api_ctrl)

 Disable external interrupt. Implements external_irq_api_t::close.
More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,799 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ICU

Detailed Description

Driver for the Interrupt Controller Unit (ICU) External pin interrupts function.

Summary
Extends External IRQ Interface.

This module implements the External IRQ Interface using the external input pins in the Interrupt
Controller Unit (ICU).

Function Documentation

◆ R_ICU_ExternalIrqClose()

ssp_err_t R_ICU_ExternalIrqClose (external_irq_ctrl_t *const p_api_ctrl)

Disable external interrupt. Implements external_irq_api_t::close.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

SSP_ERR_NOT_OPEN The channel is not opened.

Cleanup. Disable interrupt

Disable the interrupt, and then clear the interrupt pending bits and interrupt status.

Release BSP hardware lock

◆ R_ICU_ExternalIrqDisable()

ssp_err_t R_ICU_ExternalIrqDisable (external_irq_ctrl_t *const p_api_ctrl)

Disable external interrupt for specified channel at NVIC. Implements external_irq_api_t::disable.

Return values
SSP_SUCCESS Interrupt disabled successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

SSP_ERR_INTERNAL Requested IRQ is not defined in this system

Disable the interrupt, and then clear the interrupt pending bits and interrupt status.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,800 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ICU

◆ R_ICU_ExternalIrqEnable()

ssp_err_t R_ICU_ExternalIrqEnable (external_irq_ctrl_t *const p_api_ctrl)

Enable external interrupt for specified channel at NVIC. Implements external_irq_api_t::enable.

Return values
SSP_SUCCESS Interrupt Enabled successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

SSP_ERR_INTERNAL Requested IRQ is not defined in this system

Clear the interrupt status and Pending bits, before the interrupt is enabled.

◆ R_ICU_ExternalIrqFilterDisable()

ssp_err_t R_ICU_ExternalIrqFilterDisable (external_irq_ctrl_t *const p_api_ctrl)

Enable external interrupt digital filter for specified channel. Implements
external_irq_api_t::filterDisable.

Return values
SSP_SUCCESS External interrupt digital filter disabled

successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Disable external interrupt digital filter

◆ R_ICU_ExternalIrqFilterEnable()

ssp_err_t R_ICU_ExternalIrqFilterEnable (external_irq_ctrl_t *const p_api_ctrl)

Enable external interrupt digital filter for specified channel. Implements
external_irq_api_t::filterEnable.

Return values
SSP_SUCCESS External interrupt digital filter enabled

successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Enable external interrupt digital filter

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,801 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ICU

◆ R_ICU_ExternalIrqOpen()

ssp_err_t R_ICU_ExternalIrqOpen (external_irq_ctrl_t *const p_api_ctrl, external_irq_cfg_t const
*const p_cfg)

Configure an external input pin for use with the button interface. Implements
external_irq_api_t::open.

The Open function is responsible for preparing an external input pin for operation. After completion
of the Open function the external input pin shall be enabled and ready to service interrupts. This
function must be called once prior to calling any other external input pin API functions. Once
successfully completed, the status of the selected external input pin will be set to "open". After that
this function should not be called again for the same external input pin without first performing a
"close" by calling R_ICU_ExternalIrqClose().

Return values
SSP_SUCCESS Open successful.

SSP_ERR_ASSERTION One of the following is invalid:

p_ctrl or p_cfg is NULL
The channel requested in p_cfg is
not available on the device selected
in r_bsp_cfg.h.

SSP_ERR_INVALID_ARGUMENT p_cfg->p_callback is not NULL, but ISR is not
enabled. ISR must be enabled to use
callback function. Enable channel's overflow
ISR in bsp_irq_cfg.h.

SSP_ERR_IN_USE The channel specified has already been
opened. No configurations were changed.
Call the associated Close function to
reconfigure the channel.

SSP_ERR_IP_CHANNEL_NOT_PRESENT Requested channel does not exist on this
device.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

Get fmi feature information for ICU.

Acquire hardware lock for this specific external IRQ channel of the ICU

Initialize control block.

Configure interrupt if enabled

Perform hardware initializations based on configuration.

Mark the control block as open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,802 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ICU

◆ R_ICU_ExternalIrqTriggerSet()

ssp_err_t R_ICU_ExternalIrqTriggerSet (external_irq_ctrl_t *const p_api_ctrl, external_irq_trigger_t
hw_trigger)

Set trigger value provided. Implements external_irq_api_t::triggerSet.

Return values
SSP_SUCCESS Period value written successfully.

SSP_ERR_ASSERTION The p_ctrl or p_period parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Set trigger value provided

◆ R_ICU_ExternalIrqVersionGet()

ssp_err_t R_ICU_ExternalIrqVersionGet (ssp_version_t *const p_version)

Set driver version based on compile time macros. Implements external_irq_api_t::versionGet.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Read the driver version

 icu_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » ICU

#include <r_icu.h>

Data Fields

uint32_t open

 Used to determine if channel control block is in use.

R_ICU_Type * p_reg

 Pointer to register base address.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,803 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > ICU > icu_instance_ctrl_t Struct Reference

void(* p_callback)(external_irq_callback_args_t *p_args)

void const * p_context

IRQn_Type irq

 NVIC interrupt number.

uint8_t channel

 Channel.

Detailed Description

Channel instance control block. DO NOT INITIALIZE. Initialization occurs in external_irq_api_t::open.

Field Documentation

◆ p_callback

void(* icu_instance_ctrl_t::p_callback) (external_irq_callback_args_t *p_args)

Callback provided when a external IRQ ISR occurs. Set to NULL for no CPU interrupt.

◆ p_context

void const* icu_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in external_irq_callback_args_t.

The documentation for this struct was generated from the following file:

r_icu.h

5.1.5.25 IOPORT
Renesas Synergy Software Package Reference » HAL Layer

Driver for the I/O Ports. More...

Functions

ssp_err_t R_IOPORT_Init (const ioport_cfg_t *p_cfg)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,804 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IOPORT

 Initializes internal driver data, then calls R_IOPORT_PinsCfg to
configure pins. More...

ssp_err_t R_IOPORT_PinsCfg (const ioport_cfg_t *p_cfg)

 Configures the functions of multiple pins by loading configuration
data into pin PFS registers. Implements ioport_api_t::pinsCfg. More...

ssp_err_t R_IOPORT_PinCfg (ioport_port_pin_t pin, uint32_t cfg)

 Configures the settings of a pin. Implements ioport_api_t::pinCfg.
More...

ssp_err_t R_IOPORT_PinRead (ioport_port_pin_t pin, ioport_level_t
*p_pin_value)

 Reads the level on a pin. Implements ioport_api_t::pinRead. More...

ssp_err_t R_IOPORT_PortRead (ioport_port_t port, ioport_size_t *p_port_value)

 Reads the value on an IO port. Implements ioport_api_t::portRead.
More...

ssp_err_t R_IOPORT_PortWrite (ioport_port_t port, ioport_size_t value,
ioport_size_t mask)

 Writes to multiple pins on a port. Implements ioport_api_t::portWrite.
More...

ssp_err_t R_IOPORT_PinWrite (ioport_port_pin_t pin, ioport_level_t level)

 Sets a pin's output either high or low. Implements
ioport_api_t::pinWrite. More...

ssp_err_t R_IOPORT_PortDirectionSet (ioport_port_t port, ioport_size_t
direction_values, ioport_size_t mask)

 Sets the direction of individual pins on a port. Implements
ioport_api_t::portDirectionSet(). More...

ssp_err_t R_IOPORT_PinDirectionSet (ioport_port_pin_t pin, ioport_direction_t
direction)

 Sets the direction of an individual pin on a port. Implements
ioport_api_t::pinDirectionSet. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,805 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IOPORT

ssp_err_t R_IOPORT_PortEventInputRead (ioport_port_t port, ioport_size_t
*p_event_data)

 Reads the value of the event input data. Implements
ioport_api_t::portEventInputRead(). More...

ssp_err_t R_IOPORT_PinEventInputRead (ioport_port_pin_t pin, ioport_level_t
*p_pin_event)

 Reads the value of the event input data of a specific pin. Implements
ioport_api_t::pinEventInputRead. More...

ssp_err_t R_IOPORT_PortEventOutputWrite (ioport_port_t port, ioport_size_t
event_data, ioport_size_t mask_value)

 This function writes the set and reset event output data for a port.
Implements ioport_api_t::portEventOutputWrite. More...

ssp_err_t R_IOPORT_PinEventOutputWrite (ioport_port_pin_t pin, ioport_level_t
pin_value)

 This function writes the event output data value to a pin. Implements
ioport_api_t::pinEventOutputWrite. More...

ssp_err_t R_IOPORT_VersionGet (ssp_version_t *p_data)

 Returns IOPort HAL driver version. Implements
ioport_api_t::versionGet. More...

ssp_err_t R_IOPORT_EthernetModeCfg (ioport_ethernet_channel_t channel,
ioport_ethernet_mode_t mode)

 Configures Ethernet channel PHY mode. Implements
ioport_api_t::ethModeCfg. More...

Detailed Description

Driver for the I/O Ports.

The IOPort HAL drivers provide the ability to access the I/O Ports of a device at both bit and port
level. Port and pin direction can be changed. In addition a number of configuration APIs are provided
to change the functionality of individual pins.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,806 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IOPORT

◆ R_IOPORT_EthernetModeCfg()

ssp_err_t R_IOPORT_EthernetModeCfg (ioport_ethernet_channel_t channel,
ioport_ethernet_mode_t mode)

Configures Ethernet channel PHY mode. Implements ioport_api_t::ethModeCfg.

Return values
SSP_SUCCESS Ethernet PHY mode set.

SSP_ERR_INVALID_ARGUMENT Channel or mode not valid.

SSP_ERR_UNSUPPORTED Ethernet configuration not supported on this
device.

Note
This function is not re-entrant.

◆ R_IOPORT_Init()

ssp_err_t R_IOPORT_Init (const ioport_cfg_t * p_cfg)

Initializes internal driver data, then calls R_IOPORT_PinsCfg to configure pins.

Return values
SSP_SUCCESS Pin configuration data written to PFS

register(s)

SSP_ERR_ASSERTION NULL pointer

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet

◆ R_IOPORT_PinCfg()

ssp_err_t R_IOPORT_PinCfg (ioport_port_pin_t pin, uint32_t cfg)

Configures the settings of a pin. Implements ioport_api_t::pinCfg.

Return values
SSP_SUCCESS Pin configured.

SSP_ERR_INVALID_ARGUMENT Invalid pin

Note
This function is re-entrant for different pins. This function will change the configuration of the pin with the new
configuration. For example it is not possible with this function to change the drive strength of a pin while leaving
all the other pin settings unchanged. To achieve this the original settings with the required change will need to be
written using this function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,807 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IOPORT

◆ R_IOPORT_PinDirectionSet()

ssp_err_t R_IOPORT_PinDirectionSet (ioport_port_pin_t pin, ioport_direction_t direction)

Sets the direction of an individual pin on a port. Implements ioport_api_t::pinDirectionSet.

Return values
SSP_SUCCESS Pin direction updated.

SSP_ERR_INVALID_ARGUMENT The pin and/or direction not valid.

Note
This function is re-entrant for different pins.

◆ R_IOPORT_PinEventInputRead()

ssp_err_t R_IOPORT_PinEventInputRead (ioport_port_pin_t pin, ioport_level_t * p_pin_event)

Reads the value of the event input data of a specific pin. Implements
ioport_api_t::pinEventInputRead.

The pin event data is captured in response to a trigger from the ELC. This function enables this
data to be read. Using the event system allows the captured data to be stored when it occurs and
then read back at a later time.

Return values
SSP_SUCCESS Pin read.

SSP_ERR_INVALID_ARGUMENT Pin not valid.

SSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,808 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IOPORT

◆ R_IOPORT_PinEventOutputWrite()

ssp_err_t R_IOPORT_PinEventOutputWrite (ioport_port_pin_t pin, ioport_level_t pin_value)

This function writes the event output data value to a pin. Implements
ioport_api_t::pinEventOutputWrite.

Using the event system enables a pin state to be stored by this function in advance of being output
on the pin. The output to the pin will occur when the ELC event occurs.

Return values
SSP_SUCCESS Pin event data written.

SSP_ERR_INVALID_ARGUMENT Pin or value not valid.

Note
This function is re-entrant for different ports.

◆ R_IOPORT_PinRead()

ssp_err_t R_IOPORT_PinRead (ioport_port_pin_t pin, ioport_level_t * p_pin_value)

Reads the level on a pin. Implements ioport_api_t::pinRead.

Return values
SSP_SUCCESS Pin read.

SSP_ERR_INVALID_ARGUMENT Invalid argument

SSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant for different pins.

◆ R_IOPORT_PinsCfg()

ssp_err_t R_IOPORT_PinsCfg (const ioport_cfg_t * p_cfg)

Configures the functions of multiple pins by loading configuration data into pin PFS registers.
Implements ioport_api_t::pinsCfg.

This function initializes the supplied list of PmnPFS registers with the supplied values. This data can
be generated by the ISDE pin configurator or manually by the developer. Different pin
configurations can be loaded for different situations such as low power modes and test.*

Return values
SSP_SUCCESS Pin configuration data written to PFS

register(s)

SSP_ERR_ASSERTION NULL pointer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,809 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IOPORT

◆ R_IOPORT_PinWrite()

ssp_err_t R_IOPORT_PinWrite (ioport_port_pin_t pin, ioport_level_t level)

Sets a pin's output either high or low. Implements ioport_api_t::pinWrite.

Return values
SSP_SUCCESS Pin written to.

SSP_ERR_INVALID_ARGUMENT The pin and/or level not valid.

Note
This function is re-entrant for different pins. This function makes use of the PCNTR3 register to atomically modify
the level on the specified pin on a port.

◆ R_IOPORT_PortDirectionSet()

ssp_err_t R_IOPORT_PortDirectionSet (ioport_port_t port, ioport_size_t direction_values,
ioport_size_t mask)

Sets the direction of individual pins on a port. Implements ioport_api_t::portDirectionSet().

Multiple pins on a port can be set to inputs or outputs at once. Each bit in the mask parameter
corresponds to a pin on the port. For example, bit 7 corresponds to pin 7, bit 6 to pin 6, and so on.
If a bit is set to 1 then the corresponding pin will be changed to an input or an output as specified
by the direction values. If a mask bit is set to 0 then the direction of the pin will not be changed.

Return values
SSP_SUCCESS Port direction updated.

SSP_ERR_INVALID_ARGUMENT The port and/or mask not valid.

Note
This function is re-entrant for different ports.

High bits

Low bits

New value to write to port direction register

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,810 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IOPORT

◆ R_IOPORT_PortEventInputRead()

ssp_err_t R_IOPORT_PortEventInputRead (ioport_port_t port, ioport_size_t * p_event_data)

Reads the value of the event input data. Implements ioport_api_t::portEventInputRead().

The event input data for the port will be read. Each bit in the returned value corresponds to a pin
on the port. For example, bit 7 corresponds to pin 7, bit 6 to pin 6, and so on.

The port event data is captured in response to a trigger from the ELC. This function enables this
data to be read. Using the event system allows the captured data to be stored when it occurs and
then read back at a later time.

Return values
SSP_SUCCESS Port read.

SSP_ERR_INVALID_ARGUMENT Port not valid.

SSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant for different ports.

◆ R_IOPORT_PortEventOutputWrite()

ssp_err_t R_IOPORT_PortEventOutputWrite (ioport_port_t port, ioport_size_t event_data,
ioport_size_t mask_value)

This function writes the set and reset event output data for a port. Implements
ioport_api_t::portEventOutputWrite.

Using the event system enables a port state to be stored by this function in advance of being
output on the port. The output to the port will occur when the ELC event occurs.

The input value will be written to the specified port when an ELC event configured for that port
occurs. Each bit in the value parameter corresponds to a bit on the port. For example, bit 7
corresponds to pin 7, bit 6 to pin 6, and so on. Each bit in the mask parameter corresponds to a pin
on the port.

Return values
SSP_SUCCESS Port event data written.

SSP_ERR_INVALID_ARGUMENT Port and/or mask not valid.

Note
This function is re-entrant for different ports.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,811 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IOPORT

◆ R_IOPORT_PortRead()

ssp_err_t R_IOPORT_PortRead (ioport_port_t port, ioport_size_t * p_port_value)

Reads the value on an IO port. Implements ioport_api_t::portRead.

The specified port will be read, and the levels for all the pins will be returned. Each bit in the
returned value corresponds to a pin on the port. For example, bit 7 corresponds to pin 7, bit 6 to
pin 6, and so on. *

Return values
SSP_SUCCESS Port read.

SSP_ERR_INVALID_ARGUMENT Port not valid.

SSP_ERR_ASSERTION NULL pointer

Note
This function is re-entrant for different ports.

◆ R_IOPORT_PortWrite()

ssp_err_t R_IOPORT_PortWrite (ioport_port_t port, ioport_size_t value, ioport_size_t mask)

Writes to multiple pins on a port. Implements ioport_api_t::portWrite.

The input value will be written to the specified port. Each bit in the value parameter corresponds to
a bit on the port. For example, bit 7 corresponds to pin 7, bit 6 to pin 6, and so on. Each bit in the
mask parameter corresponds to a pin on the port.

Only the bits with the corresponding bit in the mask value set will be updated. e.g. value = 0xFFFF,
mask = 0x0003 results in only bits 0 and 1 being updated.

Return values
SSP_SUCCESS Port written to.

SSP_ERR_INVALID_ARGUMENT The port and/or mask not valid.

Note
This function is re-entrant for different ports. This function makes use of the PCNTR3 register to atomically modify
the levels on the specified pins on a port.

High bits

Low bits

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,812 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IOPORT

◆ R_IOPORT_VersionGet()

ssp_err_t R_IOPORT_VersionGet (ssp_version_t * p_data)

Returns IOPort HAL driver version. Implements ioport_api_t::versionGet.

Return values
SSP_SUCCESS Version information read.

SSP_ERR_ASSERTION The parameter p_data is NULL.

Note
This function is reentrant.

5.1.5.26 IWDT
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Independent Watchdog Timer (IWDT). More...

Data Structures

struct iwdt_instance_ctrl_t

Functions

ssp_err_t R_IWDT_Open (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t const *const
p_cfg)

 Register the IWDT NMI callback. More...

ssp_err_t R_IWDT_CfgGet (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t *const p_cfg)

 Read the configuration of the IWDT. Implements wdt_api_t::cfgGet.
More...

ssp_err_t R_IWDT_Refresh (wdt_ctrl_t *const p_api_ctrl)

 Refresh the Independent Watchdog Timer. Implements
wdt_api_t::refresh. More...

ssp_err_t R_IWDT_StatusGet (wdt_ctrl_t *const p_api_ctrl, wdt_status_t *const
p_status)

 Read the IWDT status flags. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,813 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IWDT

ssp_err_t R_IWDT_StatusClear (wdt_ctrl_t *const p_api_ctrl, const wdt_status_t
status)

 Clear the IWDT status and error flags. Implements
wdt_api_t::statusClear. More...

ssp_err_t R_IWDT_CounterGet (wdt_ctrl_t *const p_api_ctrl, uint32_t *const
p_count)

 Read the current count value of the IWDT. Implements
wdt_api_t::counterGet. More...

ssp_err_t R_IWDT_TimeoutGet (wdt_ctrl_t *const p_api_ctrl,
wdt_timeout_values_t *const p_timeout)

 Read timeout information for the watchdog timer. Implements
wdt_api_t::timeoutGet. More...

ssp_err_t R_IWDT_VersionGet (ssp_version_t *const p_data)

 Return IWDT HAL driver version. Implements wdt_api_t::versionGet.
More...

Detailed Description

Driver for the Independent Watchdog Timer (IWDT).

Summary
This module supports the Independent Watchdog Timer (IWDT). It implements the WDT Interface.
Extends WDT_API HAL layer drivers for interfacing with the Independent Watchdog Timer (IWDT)
peripheral.

The IWDT HAL APIs provide the ability to refresh the independent watchdog, read the timer value
and read and clear status flags. When used in NMI output mode the callback to be called by the NMI
ISR can be registered.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,814 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IWDT

◆ R_IWDT_CfgGet()

ssp_err_t R_IWDT_CfgGet (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t *const p_cfg)

Read the configuration of the IWDT. Implements wdt_api_t::cfgGet.

Return values
SSP_SUCCESS IWDT configuration successfully read.

SSP_ERR_ASSERTION Null Pointer.

SSP_ERR_INVALID_ARGUMENT One or more configuration options is invalid.

Note
This function is reentrant.

Get timeout value from OFS0 register.

◆ R_IWDT_CounterGet()

ssp_err_t R_IWDT_CounterGet (wdt_ctrl_t *const p_api_ctrl, uint32_t *const p_count)

Read the current count value of the IWDT. Implements wdt_api_t::counterGet.

Return values
SSP_SUCCESS IWDT current count successfully read.

SSP_ERR_ASSERTION Null pointer passed as a parameter.

SSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

Note
This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,815 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IWDT

◆ R_IWDT_Open()

ssp_err_t R_IWDT_Open (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t const *const p_cfg)

Register the IWDT NMI callback.

Return values
SSP_SUCCESS IWDT NMI callback successfully configured.

SSP_ERR_ASSERTION Null Pointer.

SSP_ERR_INVALID_MODE An attempt to open the IWDT when the
OFS0 register is not configured for auto-
start mode.

SSP_ERR_HW_LOCKED IWDT module has already been called.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
Note

This function is not reentrant.

g_iwdt_version is accessed by the ASSERT macro only and so compiler toolchain can issue a
warning that it is not accessed. The code below eliminates this warning and also ensures these
data structures are not optimized away.

Eliminate toolchain warning when NMI output is not being used.

Lock the IWDT Hardware Resource

Initialize global pointer to WDT for NMI callback use.

Check for NMI output mode

NMI output mode

Enable the IWDT underflow/refresh error interrupt (will generate an NMI).

◆ R_IWDT_Refresh()

ssp_err_t R_IWDT_Refresh (wdt_ctrl_t *const p_api_ctrl)

Refresh the Independent Watchdog Timer. Implements wdt_api_t::refresh.

Return values
SSP_SUCCESS IWDT successfully refreshed.

SSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

Note
This function is reentrant. This function only returns SSP_SUCCESS. If the refresh fails due to being performed
outside of the permitted refresh period the device will either reset or trigger an NMI ISR to run.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,816 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IWDT

◆ R_IWDT_StatusClear()

ssp_err_t R_IWDT_StatusClear (wdt_ctrl_t *const p_api_ctrl, const wdt_status_t status)

Clear the IWDT status and error flags. Implements wdt_api_t::statusClear.

Return values
SSP_SUCCESS IWDT flag(s) successfully cleared.

SSP_ERR_ASSERTION Null pointer as a parameter.

SSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

Note
This function is reentrant.

Write zero to clear flags

◆ R_IWDT_StatusGet()

ssp_err_t R_IWDT_StatusGet (wdt_ctrl_t *const p_api_ctrl, wdt_status_t *const p_status)

Read the IWDT status flags.

Indicates both status and error conditions.

Return values
SSP_SUCCESS IWDT status successfully read.

SSP_ERR_ASSERTION Null pointer as a parameter.

SSP_ERR_NOT_OPEN The driver has not been opened. Perform
R_IWDT_Open() first.

Note
This function is reentrant. When the IWDT is configured to output a reset on underflow or refresh error reading the
status and error flags can be read after reset to establish if the IWDT caused the reset. Reading the status and error
flags in NMI output mode indicates whether the IWDT generated the NMI interrupt.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,817 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IWDT

◆ R_IWDT_TimeoutGet()

ssp_err_t R_IWDT_TimeoutGet (wdt_ctrl_t *const p_api_ctrl, wdt_timeout_values_t *const
p_timeout)

Read timeout information for the watchdog timer. Implements wdt_api_t::timeoutGet.

Return values
SSP_SUCCESS WDT successfully refreshed.

SSP_ERR_ASSERTION Null Pointer.

SSP_ERR_ABORTED Invalid clock divider for this watchdog

Note
This function is reentrant. This function must not be called before calling R_WDT_Open().

◆ R_IWDT_VersionGet()

ssp_err_t R_IWDT_VersionGet (ssp_version_t *const p_data)

Return IWDT HAL driver version. Implements wdt_api_t::versionGet.

Return values
SSP_SUCCESS Call successful.

SSP_ERR_ASSERTION Null pointer passed as a parameter.

Note
This function is reentrant.

 iwdt_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » IWDT

#include <r_iwdt.h>

Data Fields

uint32_t iwdt_open

void const * p_context

R_IWDT_Type * p_reg

 Pointer to register base address.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,818 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IWDT > iwdt_instance_ctrl_t Struct Reference

void(* p_callback)(wdt_callback_args_t *p_args)

 Callback provided when a WDT NMI ISR occurs.

Detailed Description

WDT control block. DO NOT INITIALIZE. Initialization occurs when wdt_api_t::open is called.

Field Documentation

◆ iwdt_open

uint32_t iwdt_instance_ctrl_t::iwdt_open

Indicates whether the open() API has been successfully called.

◆ p_context

void const* iwdt_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in wdt_callback_args_t.

The documentation for this struct was generated from the following file:

r_iwdt.h

5.1.5.27 JPEG CODEC
Renesas Synergy Software Package Reference » HAL Layer

Driver for the JPEG CODEC. More...

Data Structures

struct jpeg_decode_instance_ctrl_t

Functions

ssp_err_t R_JPEG_Decode_Open (jpeg_decode_ctrl_t *const p_api_ctrl,
jpeg_decode_cfg_t const *const p_cfg)

 Initialize the JPEG Codec module. This function configures the JPEG
Codec for decoding operation, sets up the registers for data format
and pixel format based on user-supplied configuration parameters.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,819 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG CODEC

Interrupts are enabled to support image size read operation and
callback functions. More...

ssp_err_t R_JPEG_Decode_OutputBufferSet (jpeg_decode_ctrl_t *p_api_ctrl, void
*p_output_buffer, uint32_t output_buffer_size)

 Assign output buffer to the JPEG Codec for storing output data.
More...

ssp_err_t R_JPEG_Decode_LinesDecodedGet (jpeg_decode_ctrl_t *p_api_ctrl,
uint32_t *p_lines)

 Returns the number of lines decoded into the output buffer. More...

ssp_err_t R_JPEG_Decode_InputBufferSet (jpeg_decode_ctrl_t *const p_api_ctrl,
void *p_data_buffer, uint32_t data_buffer_size)

 Assign input data buffer to JPEG codec for processing. More...

ssp_err_t R_JPEG_Decode_ImageSubsampleSet (jpeg_decode_ctrl_t *const
p_api_ctrl, jpeg_decode_subsample_t horizontal_subsample,
jpeg_decode_subsample_t vertical_subsample)

 Configure horizontal and vertical subsample. More...

ssp_err_t R_JPEG_Decode_HorizontalStrideSet (jpeg_decode_ctrl_t *p_api_ctrl,
uint32_t horizontal_stride)

 Configure horizontal stride setting. More...

ssp_err_t R_JPEG_Decode_Close (jpeg_decode_ctrl_t *p_api_ctrl)

 Cancel an outstanding JPEG codec operation and close the device.
More...

ssp_err_t R_JPEG_Decode_ImageSizeGet (jpeg_decode_ctrl_t *p_api_ctrl,
uint16_t *p_horizontal_size, uint16_t *p_vertical_size)

 Obtain the size of the image. This operation is valid during JPEG
decoding operation. More...

ssp_err_t R_JPEG_Decode_StatusGet (jpeg_decode_ctrl_t *p_api_ctrl,
jpeg_decode_status_t *p_status)

 Get the status of the JPEG codec. This function can also be used to
poll the device. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,820 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG CODEC

ssp_err_t R_JPEG_Decode_PixelFormatGet (jpeg_decode_ctrl_t *p_api_ctrl,
jpeg_decode_color_space_t *p_color_space)

 Get the input pixel format. More...

ssp_err_t R_JPEG_Decode_VersionGet (ssp_version_t *p_version)

 Get version of the display interface and GLCD HAL code. More...

Detailed Description

Driver for the JPEG CODEC.

Function Documentation

◆ R_JPEG_Decode_Close()

ssp_err_t R_JPEG_Decode_Close (jpeg_decode_ctrl_t * p_api_ctrl)

Cancel an outstanding JPEG codec operation and close the device.

Return values
SSP_SUCCESS The input data buffer is properly assigned to

JPEG Codec device.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_NOT_OPEN JPEG not opened.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::eventInfoGet
Clear JPEG JINTE0 interrupt and JINTE1 interrupt.

Disable JEDI and JDTI at NVIC

Power off the JPEG codec.

Reset the jpeg status flag in the driver.

Unlock module at BSP level.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,821 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG CODEC

◆ R_JPEG_Decode_HorizontalStrideSet()

ssp_err_t R_JPEG_Decode_HorizontalStrideSet (jpeg_decode_ctrl_t * p_api_ctrl, uint32_t
horizontal_stride)

Configure horizontal stride setting.

Note
Use when the horizontal stride needs to match the image width and the image size is unknown when opening the
JPEG driver. (If the image size is known prior to the open call, pass the horizontal stride value in the jpef_cfg_t
structure.) After the image size becomes available, use this function to update the horizontal stride value. If the
driver must decode one line at a time, the horizontal stride can be set to zero.

Return values
SSP_SUCCESS Horizontal Stride value is properly

configured.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_ALIGNMENT Horizontal stride is zero or not 8-byte
aligned.

SSP_ERR_NOT_OPEN JPEG not opened.

Record the horizontal stride value in the control block

Set the horizontal stride.

If the parameters all are set, resume the core to decode.

For the given buffer size, compute number of lines to decode.

◆ R_JPEG_Decode_ImageSizeGet()

ssp_err_t R_JPEG_Decode_ImageSizeGet (jpeg_decode_ctrl_t * p_api_ctrl, uint16_t *
p_horizontal_size, uint16_t * p_vertical_size)

Obtain the size of the image. This operation is valid during JPEG decoding operation.

Return values
SSP_SUCCESS The image size is available and the

horizontal and vertical values are stored in
the memory pointed to by p_horizontal_size
and p_vertical_size.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_IMAGE_SIZE_UNKNOWN The image size is unknown. More input data
may be needed.

SSP_ERR_INVALID_MODE JPEG Codec module is not decoding.

SSP_ERR_NOT_OPEN JPEG is not opened.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,822 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG CODEC

◆ R_JPEG_Decode_ImageSubsampleSet()

ssp_err_t R_JPEG_Decode_ImageSubsampleSet (jpeg_decode_ctrl_t *const p_api_ctrl,
jpeg_decode_subsample_t horizontal_subsample, jpeg_decode_subsample_t vertical_subsample)

Configure horizontal and vertical subsample.

Note
Use for scaling the decoded image.

Return values
SSP_SUCCESS Horizontal Stride value is properly

configured.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_ARGUMENT Sub-sample setting is invalid.

SSP_ERR_NOT_OPEN JPEG not opened.

Update horizontal sub-sample setting.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,823 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG CODEC

◆ R_JPEG_Decode_InputBufferSet()

ssp_err_t R_JPEG_Decode_InputBufferSet (jpeg_decode_ctrl_t *const p_api_ctrl, void *
p_data_buffer, uint32_t data_buffer_size)

Assign input data buffer to JPEG codec for processing.

Note
After the amount of data is processed, the JPEG driver triggers a callback function with the flag
JPEG_OPERATION_INPUT_PAUSE set. The application supplies the next chunk of data to the driver so JPEG
decoding can resume.

The JPEG decoding operation automatically starts after both the input buffer and the output buffer
are set, and the output buffer is big enough to hold at least one line of decoded image data.

Return values
SSP_SUCCESS The input data buffer is properly assigned to

JPEG Codec device.

SSP_ERR_ASSERTION Pointer to the control block is NULL, or the
pointer to the input_buffer is NULL, or the
input_buffer_size is 0.

SSP_ERR_INVALID_ALIGNMENT Buffer starting address is not 8-byte
aligned.

SSP_ERR_NOT_OPEN JPEG not opened.

Configure the input buffer address.

If the system is idle, start the JPEG engine. This allows the system to obtain image information
(image size and input pixel format). This information is needed to drive the decode process later
on.

Based on buffer size, detect the in count mode setting. The driver is able to read input data in
chunks. However the size of each chunk is limited to BUFFER_MAX_SIZE. Therefore, if the input
data size is larger than BUFFER_MAX_SIZE, the driver assumes the entire input data is present, and
can be decoded without additional input data. Otherwise, the driver enables input stream feature.
This works even if the entire input size is smaller than BUFFER_MAX_SIZE.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,824 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG CODEC

◆ R_JPEG_Decode_LinesDecodedGet()

ssp_err_t R_JPEG_Decode_LinesDecodedGet (jpeg_decode_ctrl_t * p_api_ctrl, uint32_t * p_lines)

Returns the number of lines decoded into the output buffer.

Note
Use this function to retrieve number of image lines written to the output buffer after JPEG decoded a partial image.
Combined with the horizontal stride settings and the output pixel format, the application can compute the amount
of data to read from the output buffer.

Return values
SSP_SUCCESS The output buffer is properly assigned to

JPEG codec device.

SSP_ERR_ASSERTION Pointer to the control block is NULL, or the
pointer to the output_buffer. is NULL, or the
output_buffer_size is 0.

SSP_ERR_NOT_OPEN JPEG not opened.

◆ R_JPEG_Decode_Open()

ssp_err_t R_JPEG_Decode_Open (jpeg_decode_ctrl_t *const p_api_ctrl, jpeg_decode_cfg_t const
*const p_cfg)

Initialize the JPEG Codec module. This function configures the JPEG Codec for decoding operation,
sets up the registers for data format and pixel format based on user-supplied configuration
parameters. Interrupts are enabled to support image size read operation and callback functions.

Return values
SSP_SUCCESS JPEG Codec module is properly configured

and is ready to take input data.

SSP_ERR_IN_USE JPEG Codec is already in use.

SSP_ERR_ASSERTION Pointer to the control block or the
configuration structure is NULL.

SSP_ERR_HW_LOCKED JPEG Codec resource is locked.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Verify JPEG Codec is not already used.

Update the common control parameter with the control and JEDI and JDTI callback handler for JPEG
decode, the handlers will be called from r_jpeg_common, which implements JPEG JDTI and JEDI ISR
for r_jpeg_decode and r_jpeg_encode driver.

Record the configuration settings.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,825 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG CODEC

Initialize horizontal stride value.

Initialize output buffer size.

Initialize total_lines_decoded

Initialize horizontal sub-sample setting.

Provide power to the JPEG module.

Clear the image horizontal and vertical size, before starting the JPEG decode

Perform bus reset

Reset the destination buffer address.

Reset the source buffer address.

Reset the horizontal stride.

Configure the JPEG module for decode operation.

Set image format for the decoded image.

If the output pixel format is ARGB8888, also configure the alpha value.

Set the alpha value for the decoded image.

Set the output data format.

The following interrupts are enabled: Interrupt on all errors Interrupt on Image Size

Record user supplied callback routine.

Set the driver status.

All done. Return success.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,826 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG CODEC

◆ R_JPEG_Decode_OutputBufferSet()

ssp_err_t R_JPEG_Decode_OutputBufferSet (jpeg_decode_ctrl_t * p_api_ctrl, void *
p_output_buffer, uint32_t output_buffer_size)

Assign output buffer to the JPEG Codec for storing output data.

Note
The number of image lines to be decoded depends on the size of the buffer and the horizontal stride settings. Once
the output buffer size is known, the horizontal stride value is known, and the input pixel format is known (the input
pixel format is obtained by the JPEG decoder from the JPEG headers), the driver automatically computes the
number of lines that can be decoded into the output buffer. After these lines are decoded, the JPEG engine pauses
and a callback function is triggered, so the application is able to provide the next buffer for the JPEG module to
resume the operation.

The JPEG decoding operation automatically starts after both the input buffer and the output buffer
are set, and the output buffer is big enough to hold at least eight lines of decoded image data.

Return values
SSP_SUCCESS The output buffer is properly assigned to

JPEG codec device.

SSP_ERR_ASSERTION Pointer to the control block is NULL, or the
pointer to the output_buffer. is NULL, or the
output_buffer_size is 0.

SSP_ERR_INVALID_ALIGNMENT Buffer starting address is not 8-byte
aligned.

SSP_ERR_NOT_OPEN JPEG not opened.

SSP_ERR_JPEG_BUFFERSIZE_NOT_ENOUGH Invalid buffer size

Set the decoding destination address.

Record the size of the output buffer.

If the image size is not ready yet, the driver does not know the input pixel format. Without that
information, the driver is unable to compute the number of lines of image to decode. In this case,
the driver would record the output buffer size. Once all the information is ready, the driver would
attempt to start the decoding process.

For a given buffer size, compute number of lines to decode if the image size acquisition is known.

If the driver status is IMAGE_SIZE_READY with no other flags, that means the driver just received
IMAGE_SIZE. It has not started the decoding process yet.

If Input buffer is set, output buffer is set, and horizontal stride is set, the driver is able to determine
the number of lines to decode, and start the decoding operation.

If the current status is OUTPUT_PAUSE, the driver needs to resume the operation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,827 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG CODEC

◆ R_JPEG_Decode_PixelFormatGet()

ssp_err_t R_JPEG_Decode_PixelFormatGet (jpeg_decode_ctrl_t * p_api_ctrl,
jpeg_decode_color_space_t * p_color_space)

Get the input pixel format.

Return values
SSP_SUCCESS The status information is successfully

retrieved.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_NOT_OPEN JPEG is not opened.

HW does not report error. Return internal status information.

◆ R_JPEG_Decode_StatusGet()

ssp_err_t R_JPEG_Decode_StatusGet (jpeg_decode_ctrl_t * p_api_ctrl, jpeg_decode_status_t *
p_status)

Get the status of the JPEG codec. This function can also be used to poll the device.

Return values
SSP_SUCCESS The status information is successfully

retrieved.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_NOT_OPEN JPEG is not opened.

HW does not report error. Return internal status information.

◆ R_JPEG_Decode_VersionGet()

ssp_err_t R_JPEG_Decode_VersionGet (ssp_version_t * p_version)

Get version of the display interface and GLCD HAL code.

Return values
SSP_SUCCESS Version number

SSP_ERR_ASSERTION The parameter p_version is NULL.

Note
This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,828 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG CODEC > jpeg_decode_instance_ctrl_t Struct Reference

 jpeg_decode_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » JPEG CODEC

#include <r_jpeg_decode.h>

Data Fields

jpeg_decode_status_t status

 JPEG Codec module status.

ssp_err_t error_code

 JPEG Codec error code (if any).

void(* p_callback)(jpeg_decode_callback_args_t *p_args)

 User-supplied callback functions.

void const * p_extend

 JPEG Codec hardware dependent configuration */.

void const * p_context

 Placeholder for user data. Passed to user callback in
jpeg_decode_callback_args_t.

R_JPEG_Type * p_reg

 Pointer to register base address.

jpeg_decode_pixel_format_t pixel_format

 Pixel format.

uint32_t horizontal_stride

 Horizontal Stride settings.

uint32_t outbuffer_size

 out buffer size

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,829 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG CODEC > jpeg_decode_instance_ctrl_t Struct Reference

uint16_t total_lines_decoded

 Track the number of lines decoded so far.

jpeg_decode_subsample_t horizontal_subsample

 Horizontal sub-sample setting.

Detailed Description

JPEG Codec module control block. DO NOT INITIALIZE. Initialization occurs when jpep_api_t::open is
called.

The documentation for this struct was generated from the following file:

r_jpeg_decode.h

5.1.5.28 JPEG ENCODE
Renesas Synergy Software Package Reference » HAL Layer

Driver for the JPEG CODEC. More...

Data Structures

struct jpeg_encode_instance_ctrl_t

Macros

#define JPEG_ENCODE_CODE_VERSION_MAJOR (2U)

Functions

ssp_err_t R_JPEG_Encode_Open (jpeg_encode_ctrl_t *const p_api_ctrl,
jpeg_encode_cfg_t const *const p_cfg)

 Initialize the JPEG Codec module. This function configures the JPEG
Codec for encoding operation, sets up the registers for data format,
pixel format, vertical and horizontal resolution stride based on user-
supplied configuration parameters. More...

ssp_err_t R_JPEG_Encode_OutputBufferSet (jpeg_encode_ctrl_t *p_api_ctrl, void
*p_output_buffer)

 Assign output buffer to the JPEG Codec for storing output data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,830 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG ENCODE

More...

ssp_err_t R_JPEG_Encode_InputBufferSet (jpeg_encode_ctrl_t *const p_api_ctrl,
void *p_data_buffer, uint32_t data_buffer_size)

 Assign input data buffer to JPEG codec for processing. More...

ssp_err_t R_JPEG_Encode_ImageParameterSet (jpeg_encode_ctrl_t *const
p_api_ctrl, jpeg_encode_raw_image_parameters
*p_image_parameters)

 Setup the image parameters to JPEG Codec device. More...

ssp_err_t R_JPEG_Encode_StatusGet (jpeg_encode_ctrl_t *p_api_ctrl, volatile
jpeg_encode_status_t *p_status)

 Get the status of the JPEG codec. This function can also be used to
poll the device. More...

ssp_err_t R_JPEG_Encode_Close (jpeg_encode_ctrl_t *p_api_ctrl)

 Cancel an outstanding JPEG codec operation and close the device.
More...

ssp_err_t R_JPEG_Encode_VersionGet (ssp_version_t *p_version)

 Get version of the display interface and GLCD HAL code. More...

Detailed Description

Driver for the JPEG CODEC.

Macro Definition Documentation

◆ JPEG_ENCODE_CODE_VERSION_MAJOR

#define JPEG_ENCODE_CODE_VERSION_MAJOR (2U)

Configuration for this module

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,831 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG ENCODE

◆ R_JPEG_Encode_Close()

ssp_err_t R_JPEG_Encode_Close (jpeg_encode_ctrl_t * p_api_ctrl)

Cancel an outstanding JPEG codec operation and close the device.

Return values
SSP_SUCCESS The input data buffer is properly assigned to

JPEG Codec device.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_NOT_OPEN JPEG not opened.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::eventInfoGet
Clear JPEG JINTE0 interrupt and JINTE1 interrupt.

Disable JEDI and JDTI at NVIC

Power off the JPEG codec.

Reset the jpeg status flag in the driver.

Unlock module at BSP level.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,832 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG ENCODE

◆ R_JPEG_Encode_ImageParameterSet()

ssp_err_t R_JPEG_Encode_ImageParameterSet (jpeg_encode_ctrl_t *const p_api_ctrl,
jpeg_encode_raw_image_parameters * p_image_parameters)

Setup the image parameters to JPEG Codec device.

Note
Image parameters needs to be set before the setting the input buffer.DO NOT call this function during the JPEG
Codec operation.

Return values
SSP_SUCCESS Image parameter is properly assigned to

JPEG Codec device.

SSP_ERR_ASSERTION Pointer to the control block is NULL,

SSP_ERR_INVALID_ALIGNMENT Horizontal stride is not 8-byte aligned.

SSP_ERR_INVALID_ARGUMENT Horizontal and Vertical resolution is invalid
or zero.

SSP_ERR_NOT_OPEN JPEG not opened.

SSP_ERR_INVALID_CALL An invalid call has been made.

Do not change the JPEG Codec image setting while JPEG Codec is in progress

Record the horizontal stride and vertical size value in the control block

Set the horizontal stride.

Set the image horizontal and vertical size.

◆ R_JPEG_Encode_InputBufferSet()

ssp_err_t R_JPEG_Encode_InputBufferSet (jpeg_encode_ctrl_t *const p_api_ctrl, void *
p_data_buffer, uint32_t data_buffer_size)

Assign input data buffer to JPEG codec for processing.

Note
1.After the amount of data is processed, the JPEG driver triggers a callback function with the flag
JPEG_OPERATION_INPUT_PAUSE set. The application supplies the next chunk of data to the driver so JPEG
encoding can resume. 2.Image size should be greater or equal to minimum coded unit (MCU) for YCbCr422 (only
supported color space) the MCU is 8 lines by 16 pixel (where 1 pixel = 2 bytes) hence size can not be less than
8x16x2 = 256

The JPEG encoding operation automatically starts after setting the input buffer.

Return values
SSP_SUCCESS The input data buffer is properly assigned to

JPEG Codec device.

SSP_ERR_ASSERTION Pointer to the control block is NULL, or the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,833 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG ENCODE

pointer to the p_data_buffer is NULL.

SSP_ERR_INVALID_ALIGNMENT Buffer starting address or image line to
encode or size of buffer is not 8-byte
aligned.

SSP_ERR_NOT_OPEN JPEG not opened.

SSP_ERR_INVALID_CALL An invalid call has been made, set output
buffer first

SSP_ERR_JPEG_IMAGE_SIZE_ERROR Image size is not supported by JPEG Codec

Validate the the size : JPEG Codec can process minimum up to 8 lines by 16 pixel for YCbCr422
meaning 8x16x2 = 256

Calculate the number of lines to be encode

JPEG Codec required Lines to be byte aligned

Check, If output image buffer is set or not

Configure the input buffer address.

if JPEG is just opened or completed one image, make DONE and IDLE status flag zero to encode
next image

Remove the Done and IDLE status flag

Set the driver status to JPEG_ENCODE_STATUS_RUNNING.

Start the encoder

JPEG is PAUSE for next chunk of image

Clear internal status information.

Set RUNNING status

Resume the count mode

JPEG is running Notify the user, return error

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,834 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG ENCODE

◆ R_JPEG_Encode_Open()

ssp_err_t R_JPEG_Encode_Open (jpeg_encode_ctrl_t *const p_api_ctrl, jpeg_encode_cfg_t const
*const p_cfg)

Initialize the JPEG Codec module. This function configures the JPEG Codec for encoding operation,
sets up the registers for data format, pixel format, vertical and horizontal resolution stride based on
user-supplied configuration parameters.

Return values
SSP_SUCCESS JPEG Codec module is properly configured

and is ready to take input data.

SSP_ERR_IN_USE JPEG Codec is already in use.

SSP_ERR_ASSERTION Pointer to the control block or the
configuration structure is NULL.

SSP_ERR_HW_LOCKED JPEG Codec resource is locked.

SSP_ERR_INVALID_ARGUMENT Invalid parameter is passed.

SSP_ERR_INVALID_ALIGNMENT Horizontal stride is not 8-byte aligned.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Verify JPEG Codec is not already used.

Update the common control parameter with the control and JDEI and JDTI callback handler for JPEG
encode, the handlers will be called from r_jpeg_common, which implements JPEG JDTI and JDEI ISR
for r_jpeg_decode and r_jpeg_encode driver.

Get the JDTI event information from FMI

Get the vector table information of JDTI event

Record the JPEG Encoder ctrl and internal ISR callback handler to JDTI event vector table

Get the JEDI event information from FMI

Get the vector table information of JEDI event

Record the JPEG Encoder ctrl and internal ISR callback handler to JEDI event vector table

Provide power to the JPEG module.

Perform bus reset

Reset the destination buffer address.

Reset the source buffer address.

Set the horizontal stride.

Set the image horizontal and vertical size.

Configure the JPEG module for encode operation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,835 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG ENCODE

Set the output data format.

Set input pixel format for JPEG Encoder NOTE : only ycbcr422 is valid for encoder

Quantization table setting NOTE: Table 0(zero) is used for Luminance and Table 1(one) is used for
Chrominance - Cr and Cb component

Upload Luminance and Chrominance table to JPEG Codec

Huffman table setting

Upload the Huffman table to JPEG Codec

Reset Marker setting

Record image parameters to ctrl

Set the driver status.

Record the user context information

Record user supplied callback routine.

Enabled JPEG Compression data transfer complete interrupt and Count mode Interrupt

Enable the JDTI and JDEI interrupts

All done. Return success.

◆ R_JPEG_Encode_OutputBufferSet()

ssp_err_t R_JPEG_Encode_OutputBufferSet (jpeg_encode_ctrl_t * p_api_ctrl, void *
p_output_buffer)

Assign output buffer to the JPEG Codec for storing output data.

Note
Buffer size should be sufficient to hold the encoded jpeg image.

Return values
SSP_SUCCESS The output buffer is properly assigned to

JPEG codec device.

SSP_ERR_ASSERTION Pointer to the control block is NULL, or the
pointer to the output_buffer. is NULL, or the
output_buffer_size is 0.

SSP_ERR_INVALID_ALIGNMENT Buffer starting address is not 8-byte
aligned.

SSP_ERR_NOT_OPEN JPEG not opened.

SSP_ERR_INVALID_CALL An invalid call has been made, Codec output
buffer address is attempted to changed
during codec operation

Output buffer cannot be change during codec operation

Set the encoding destination address.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,836 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG ENCODE

◆ R_JPEG_Encode_StatusGet()

ssp_err_t R_JPEG_Encode_StatusGet (jpeg_encode_ctrl_t * p_api_ctrl, volatile jpeg_encode_status_t
* p_status)

Get the status of the JPEG codec. This function can also be used to poll the device.

Return values
SSP_SUCCESS The status information is successfully

retrieved.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

HW does not report error. Return internal status information.

◆ R_JPEG_Encode_VersionGet()

ssp_err_t R_JPEG_Encode_VersionGet (ssp_version_t * p_version)

Get version of the display interface and GLCD HAL code.

Return values
SSP_SUCCESS Version number

SSP_ERR_ASSERTION The parameter p_version is NULL.

Note
This function is reentrant.

 jpeg_encode_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » JPEG ENCODE

#include <r_jpeg_encode.h>

Data Fields

volatile
jpeg_encode_status_t

status

 JPEG Codec module status.

void(* p_callback)(jpeg_encode_callback_args_t *p_args)

 User-supplied callback functions.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,837 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > JPEG ENCODE > jpeg_encode_instance_ctrl_t Struct Reference

void const * p_extend

 JPEG Codec hardware dependent configuration */.

void const * p_context

 Placeholder for user data. Passed to user callback in
jpeg_encode_callback_args_t.

R_JPEG_Type * p_reg

 Pointer to register base address.

uint32_t horizontal_stride

 Horizontal Stride settings (Line offset).

uint32_t output_buffer_size

 out buffer size

uint16_t lines_to_encoded

 Number of lines to encode.

uint16_t vertical_resolution

 vertical size

uint16_t encoded_lines

 Number of lines encoded.

Detailed Description

JPEG Codec module control block. DO NOT INITIALIZE. Initialization occurs when jpep_api_t::open is
called.

The documentation for this struct was generated from the following file:

r_jpeg_encode.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,838 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Key Interrupts

5.1.5.29 Key Interrupts
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Key Interrupt Function. More...

Data Structures

struct kint_instance_ctrl_t

Functions

ssp_err_t R_KINT_KEYMATRIX_Open (keymatrix_ctrl_t *const p_api_ctrl,
keymatrix_cfg_t const *const p_cfg)

 Power on KINT, handle required initialization described in hardware
manual. Implements keymatrix_api_t::open. More...

ssp_err_t R_KINT_KEYMATRIX_Close (keymatrix_ctrl_t *const p_api_ctrl)

 Disable KINT. Implements keymatrix_api_t::close. More...

ssp_err_t R_KINT_KEYMATRIX_Enable (keymatrix_ctrl_t *const p_api_ctrl)

 Enable external irq for all the specified channel by
R_KINT_KEYMATRIX_Open. Implements keymatrix_api_t::enable.
More...

ssp_err_t R_KINT_KEYMATRIX_Disable (keymatrix_ctrl_t *const p_api_ctrl)

 Disable external irq for all the specified channel by
R_KINT_KEYMATRIX_Open. Implements keymatrix_api_t::disable.
More...

ssp_err_t R_KINT_KEYMATRIX_TriggerSet (keymatrix_ctrl_t *const p_api_ctrl,
keymatrix_trigger_t hw_trigger)

 Set trigger edge (falling or rising) provided. Implements
keymatrix_api_t::triggerSet. More...

ssp_err_t R_KINT_VersionGet (ssp_version_t *const p_version)

 Set driver version based on compile time macros. More...

Detailed Description

Driver for the Key Interrupt Function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,839 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Key Interrupts

The Key input driver can be used for one to eight channels or in a matrix format. This module
implements the following interface: Key Matrix Interface.

Function Documentation

◆ R_KINT_KEYMATRIX_Close()

ssp_err_t R_KINT_KEYMATRIX_Close (keymatrix_ctrl_t *const p_api_ctrl)

Disable KINT. Implements keymatrix_api_t::close.

End of function R_KINT_KEYMATRIX_Open The Close function disables the interrupts in the
peripheral and the NVIC and clears any pending interrupt requests. It also releases the hardware
lock on the API.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

SSP_ERR_NOT_OPEN The channel is not opened.

Disable interrupt in ICU

Disable interrupts in the KINT peripheral

Clear any pending interrupt requests in the KINT peripheral

Clear the Interrupt Request bit

Clear stored internal driver data

Release the lock

◆ R_KINT_KEYMATRIX_Disable()

ssp_err_t R_KINT_KEYMATRIX_Disable (keymatrix_ctrl_t *const p_api_ctrl)

Disable external irq for all the specified channel by R_KINT_KEYMATRIX_Open. Implements
keymatrix_api_t::disable.

This function disables interrupts for the KINT peripheral both at the interrupt level and in the NVIC.
All the channels specified by R_KINT_KEYMATRIX_Open are disabled.

Return values
SSP_SUCCESS Interrupt disabled successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Disable interrupts in the KINT peripheral

Clear any pending interrupt requests in the KINT peripheral

Disable interrupt in the ICU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,840 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Key Interrupts

◆ R_KINT_KEYMATRIX_Enable()

ssp_err_t R_KINT_KEYMATRIX_Enable (keymatrix_ctrl_t *const p_api_ctrl)

Enable external irq for all the specified channel by R_KINT_KEYMATRIX_Open. Implements
keymatrix_api_t::enable.

This function enables interrupts for the KINT peripheral both at the interrupt level and in the NVIC
after clearing any pending requests in the KINT and ICU peripheral. All the channels specified by
R_KINT_KEYMATRIX_Open are enabled.

Return values
SSP_SUCCESS Interrupt enabled successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_NOT_OPEN The peripheral is not opened.

Clear any pending interrupt requests in the KINT peripheral

Clear the Interrupt Request Flag in the ICU

Enable interrupt for the selected channels after casting since KRM is an 8 bit register

Enable interrupt

◆ R_KINT_KEYMATRIX_Open()

ssp_err_t R_KINT_KEYMATRIX_Open (keymatrix_ctrl_t *const p_api_ctrl, keymatrix_cfg_t const
*const p_cfg)

Power on KINT, handle required initialization described in hardware manual. Implements
keymatrix_api_t::open.

The Open function configures all the Key Input (KINT) channels and provides a handle for use with
the rest of the KINT API functions. This function must be called at least once prior to calling any
other KINT API functions. After the peripheral is initialized, the Open function should not be called
again without first calling the Close function.

Return values
SSP_SUCCESS Initialization was successful.

SSP_ERR_ASSERTION One of the following parameters may be
NULL: p_cfg, or p_ctrl or the callback.

SSP_ERR_INVALID_ARGUMENT One of the following may be invalid:

p_cfg->channel: must be between 0
and KINT_MAX_NUM_CHANNELS
p_cfg->trigger not a valid value.

SSP_ERR_HW_LOCKED The API has already been opened. It must
be closed before it can be opened again.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,841 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Key Interrupts

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Note
This function is not reentrant.

Check to see that the arguments passed are not null pointers

Grab the hardware lock. If successful this indicates that the open was not previously called.

Disable interrupts in the KINT peripheral

Clear any pending interrupt requests in the KINT peripheral

Clear the Interrupt Request in the ICU

Configure the trigger edge. The trigger edge can be modified in the TriggerSet function later if
desired

KEYMATRIX_TRIG_RISING condition

Configure the usage of key interrupt flags

Store the callback and context information

If interrupts are to be enabled now, set it up for the selected channels. The channels can be
changed later in the enable function but to modify the callback and context, the API has to be
closed and reopened with the new callback and context.

Note
The KINT hardware only supports a single interrupt for all channels

Enable interrupt for the selected channels after casting since KRM is an 8 bit register

Enable interrupt

Store number of channels for use to the control block to use it later

Mark driver as open by initializing it to "KINT" in its ASCII equivalent.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,842 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Key Interrupts

◆ R_KINT_KEYMATRIX_TriggerSet()

ssp_err_t R_KINT_KEYMATRIX_TriggerSet (keymatrix_ctrl_t *const p_api_ctrl, keymatrix_trigger_t
hw_trigger)

Set trigger edge (falling or rising) provided. Implements keymatrix_api_t::triggerSet.

This function changes trigger sense at run-time. The change is applied to all the channels specified
by R_KINT_KEYMATRIX_Open.

Return values
SSP_SUCCESS Trigger value written successfully.

SSP_ERR_ASSERTION The p_ctrl parameter was null.

SSP_ERR_INVALID_ARGUMENT Trigger input invalid. hw_trigger must be
one of the options from button_trigger_t.

SSP_ERR_NOT_OPEN The channel is not opened.

Note
This function expects to be called when the driver is disabled (the driver state before
R_KINT_KEYMATRIX_Enable is called if the driver is opened in the non-auto start mode, or after
R_KINT_KEYMATRIX_Disable is called if the driver is opened in the auto start mode). The driver does not restrict
to call this API when the driver is enabled but users need to make sure the edge detection sense is instantly
changed by this API call.

Configure the trigger edge

KEYMATRIX_TRIG_RISING condition

Configure the usage of key interrupt flags

◆ R_KINT_VersionGet()

ssp_err_t R_KINT_VersionGet (ssp_version_t *const p_version)

Set driver version based on compile time macros.

Return values
SSP_SUCCESS Successful return.

SSP_ERR_ASSERTION The parameter p_version is NULL.

 kint_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » Key Interrupts

#include <r_kint.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,843 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Key Interrupts > kint_instance_ctrl_t Struct Reference

Data Fields

R_KINT_Type * p_reg

 Pointer to register base address.

keymatrix_channels_t channels

 Channel bitmask.

IRQn_Type irq

 Interrupt priority number.

uint32_t open

 Flag to determine if the device is open.

Detailed Description

Channel instance control block. DO NOT INITIALIZE. Initialization occurs when keymatrix_api_t::open
is called.

The documentation for this struct was generated from the following file:

r_kint.h

5.1.5.30 LPMV2 S124
Renesas Synergy Software Package Reference » HAL Layer

Driver for Low Power Modes. More...

Modules

Build Time Configurations

Data Structures

struct lpmv2_mcu_cfg_t

Enumerations

enum lpmv2_snooze_request_t { ,
 LPMV2_SNOOZE_REQUEST_ACMPLP = 0x00800000U ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,844 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S124

LPMV2_SNOOZE_REQUEST_RXD0_FALLING = 0x00000000U,
LPMV2_SNOOZE_REQUEST_IRQ0 = 0x00000001U,
LPMV2_SNOOZE_REQUEST_IRQ1 = 0x00000002U,
 LPMV2_SNOOZE_REQUEST_IRQ2 = 0x00000004U,
LPMV2_SNOOZE_REQUEST_IRQ3 = 0x00000008U,
LPMV2_SNOOZE_REQUEST_IRQ4 = 0x00000010U,
LPMV2_SNOOZE_REQUEST_IRQ5 = 0x00000020U,
 LPMV2_SNOOZE_REQUEST_IRQ6 = 0x00000040U,
LPMV2_SNOOZE_REQUEST_IRQ7 = 0x00000080U,
LPMV2_SNOOZE_REQUEST_IRQ8 = 0x00000100U,
LPMV2_SNOOZE_REQUEST_IRQ9 = 0x00000200U,
 LPMV2_SNOOZE_REQUEST_IRQ10 = 0x00000400U,
LPMV2_SNOOZE_REQUEST_IRQ11 = 0x00000800U,
LPMV2_SNOOZE_REQUEST_IRQ12 = 0x00001000U,
LPMV2_SNOOZE_REQUEST_IRQ13 = 0x00002000U,
 LPMV2_SNOOZE_REQUEST_IRQ14 = 0x00004000U,
LPMV2_SNOOZE_REQUEST_IRQ15 = 0x00008000U,
LPMV2_SNOOZE_REQUEST_KEY = 0x00020000U,
LPMV2_SNOOZE_REQUEST_ACMPHS0 = 0x00400000U,
 LPMV2_SNOOZE_REQUEST_RTC_ALARM = 0x01000000U,
LPMV2_SNOOZE_REQUEST_RTC_PERIOD = 0x02000000U,
LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW = 0x10000000U,
LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A = 0x20000000U,
 LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B = 0x40000000U
}

enum lpmv2_snooze_end_t { ,
 LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATCH = 0x80U ,
LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCES = 0x00U,
LPMV2_SNOOZE_END_AGT1_UNDERFLOW = 0x01U,
LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE = 0x02U,
 LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_NEGATED = 0x04U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH = 0x08U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATCH = 0x10U,
LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH = 0x20U,
 LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATCH = 0x40U,
LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH = 0x80U
}

enum lpmv2_snooze_cancel_t { ,
 LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM = (79),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM = (80),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPM = (85),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPUM = (86),
 LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM = (376),
LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR_ERI = (377),
LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE = (41),
LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI = (134),
 LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUFN = (18)
}

enum lpmv2_snooze_dtc_t { , LPMV2_SNOOZE_DTC_DISABLE = 0U,
LPMV2_SNOOZE_DTC_ENABLE = 1U }

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,845 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S124

enum lpmv2_standby_wake_source_t { ,
 LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 = 0x00800000U ,
LPMV2_STANDBY_WAKE_SOURCE_VBATT = 0x00100000U ,
LPMV2_STANDBY_WAKE_SOURCE_IRQ0 = 0x00000001U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ1 = 0x00000002U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ2 = 0x00000004U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ3 = 0x00000008U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ4 = 0x00000010U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ5 = 0x00000020U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ6 = 0x00000040U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ7 = 0x00000080U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ8 = 0x00000100U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ9 = 0x00000200U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ10 = 0x00000400U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ11 = 0x00000800U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ12 = 0x00001000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ13 = 0x00002000U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ14 = 0x00004000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ15 = 0x00008000U,
LPMV2_STANDBY_WAKE_SOURCE_IWDT = 0x00010000U,
LPMV2_STANDBY_WAKE_SOURCE_KEY = 0x00020000U,
 LPMV2_STANDBY_WAKE_SOURCE_LVD1 = 0x00040000U,
LPMV2_STANDBY_WAKE_SOURCE_LVD2 = 0x00080000U,
LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 = 0x00400000U,
LPMV2_STANDBY_WAKE_SOURCE_RTCALM = 0x01000000U,
 LPMV2_STANDBY_WAKE_SOURCE_RTCPRD = 0x02000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBHS = 0x04000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBFS = 0x08000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1UD = 0x10000000U,
 LPMV2_STANDBY_WAKE_SOURCE_AGT1CA = 0x20000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1CB = 0x40000000U,
LPMV2_STANDBY_WAKE_SOURCE_IIC0 = 0x80000000U
}

Functions

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

ssp_err_t R_LPMV2_Init (void)

 Perform any necessary initialization. More...

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

 Configure a low power mode. More...

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

 Enter low power mode (sleep/standby/deep standby) using WFI
macro. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,846 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S124

ssp_err_t R_LPMV2_ClearIOKeep (void)

 Clear the IOKEEP bit after deep software stand by. More...

Detailed Description

Driver for Low Power Modes.

The LPMV2 driver supports low power modes deep standby, standby, sleep, and snooze.

Note
Not all low power modes are available on all MCU's.

Enumeration Type Documentation

◆ lpmv2_snooze_cancel_t

enum lpmv2_snooze_cancel_t

Snooze cancel control

Enumerator

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
M

ADC Channel 0 window compare match (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
UM

ADC Channel 0 window compare mismatch (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
M

ADC Channel 1 window compare match (S5D3,
S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
UM

ADC Channel 1 window compare mismatch
(S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM SCI0 address match event (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR
_ERI

SCI0 receive error (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLE
TE

DTC transfer completion (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt (all Synergy
MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUF
N

CTSU measurement end interrupt (all Synergy
MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,847 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S124

◆ lpmv2_snooze_dtc_t

enum lpmv2_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPMV2_SNOOZE_DTC_DISABLE Disable DTC operation (all Synergy MCUs).

LPMV2_SNOOZE_DTC_ENABLE Enable DTC operation (all Synergy MCUs).

◆ lpmv2_snooze_end_t

enum lpmv2_snooze_end_t

Snooze end control

Enumerator

LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATC
H

SCI0 address mismatch (S5D3)

LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCE
S

Transition from Snooze to Normal mode
directly (all Synergy MCUs).

LPMV2_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow (all Synergy MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion (all Synergy
MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_N
EGATED

Not Last DTC transmission completion (all
Synergy MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATC
H

ADC Channel 0 compare mismatch (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATC
H

ADC 1 compare mismatch (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch (S124, S128, S1JA,
S3A1, S3A3, S3A6, S3A7, S5D5, S5D9, S7G2)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,848 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S124

◆ lpmv2_snooze_request_t

enum lpmv2_snooze_request_t

Snooze request sources

Enumerator

LPMV2_SNOOZE_REQUEST_ACMPLP Enable Low-speed analog comparator snooze
request (S124, S128, S1JA, S3A1, S3A3, S3A6,
S3A7).

LPMV2_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request
(S124, S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).
Enable RXD0/DALI falling edge snooze request
(S128, S1JA).

LPMV2_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,849 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S124

LPMV2_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request (S3A1, S3A3,
S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_KEY Enable KR snooze request (all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request (S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request (all
Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze request
(all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze request
(all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,850 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S124

◆ lpmv2_standby_wake_source_t

enum lpmv2_standby_wake_source_t

Wake from standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt
(S124, S128, S1JA, S3A1, S3A3, S3A6, S3A7).

LPMV2_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt (S3A1, S3A3, S3A6,
S3A7).

LPMV2_STANDBY_WAKE_SOURCE_IRQ0 IRQ0 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ1 IRQ1 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ2 IRQ2 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ3 IRQ3 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ4 IRQ4 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ5 IRQ5 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ6 IRQ6 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ7 IRQ7 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ8 IRQ8 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ9 IRQ9 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ10 IRQ10 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ11 IRQ11 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ12 IRQ12 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ13 IRQ13 (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ14 IRQ14 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,851 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S124

LPMV2_STANDBY_WAKE_SOURCE_IRQ15 IRQ15 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_KEY Key interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 Analog Comparator High-speed 0 interrupt
(S5D3, S5D5, S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt (S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1UD AGT1 underflow interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CA AGT1 compare match A interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CB AGT1 compare match B interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt (all Synergy MCUs).

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,852 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S124

◆ R_LPMV2_ClearIOKeep()

ssp_err_t R_LPMV2_ClearIOKeep (void)

Clear the IOKEEP bit after deep software stand by.

Return values
SSP_SUCCESS DSPBYCR_b.IOKEEP bit cleared Successfully.

SSP_ERR_UNSUPPORTED Deep stand by mode not supported on this
MCU.

◆ R_LPMV2_Init()

ssp_err_t R_LPMV2_Init (void)

Perform any necessary initialization.

Return values
SSP_SUCCESS LPMV2 Software lock initialized

◆ R_LPMV2_LowPowerConfigure()

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

Configure a low power mode.

NOTE: This function does not enter the low power mode, it only configures parameters of the mode.
Execution of the WFI instruction is what causes the low power mode to be entered.

Return values
SSP_SUCCESS Low power mode successfully applied

SSP_ERR_INVALID_POINTER p_cfg is NULL

SSP_ERR_IN_USE Lock was not acquired

SSP_ERR_INVALID_HW_CONDITION Operating mode change transition was
detected (OPCMTSF, SOPCMTSF bits)

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,853 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S124

◆ R_LPMV2_LowPowerModeEnter()

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

Enter low power mode (sleep/standby/deep standby) using WFI macro.

Function will return after waking from low power mode.

Return values
SSP_SUCCESS Successful.

SSP_ERR_INVALID_HW_CONDITION HOCO was unstable during attempt to
revert operating mode.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

◆ R_LPMV2_VersionGet()

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_INVALID_POINTER p_version is NULL.

 Build Time Configurations
Renesas Synergy Software Package Reference » HAL Layer » LPMV2 S124

Macros

#define LPMV2_CFG_PARAM_CHECKING_ENABLE
 (BSP_CFG_PARAM_CHECKING_ENABLE)

Detailed Description

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,854 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S124 > Build Time Configurations

◆ LPMV2_CFG_PARAM_CHECKING_ENABLE

#define LPMV2_CFG_PARAM_CHECKING_ENABLE (BSP_CFG_PARAM_CHECKING_ENABLE)

Specify whether to include code for API parameter checking. Valid settings include:

BSP_CFG_PARAM_CHECKING_ENABLE : Utilizes the system default setting from bsp_cfg.h
1 : Includes parameter checking
0 : Compiles out parameter checking

5.1.5.31 LPMV2 S128
Renesas Synergy Software Package Reference » HAL Layer

Driver for Low Power Modes. More...

Modules

Build Time Configurations

Data Structures

struct lpmv2_mcu_cfg_t

Enumerations

enum lpmv2_snooze_request_t { ,
 LPMV2_SNOOZE_REQUEST_ACMPLP = 0x00800000U ,
LPMV2_SNOOZE_REQUEST_RXD0_FALLING = 0x00000000U,
LPMV2_SNOOZE_REQUEST_IRQ0 = 0x00000001U,
LPMV2_SNOOZE_REQUEST_IRQ1 = 0x00000002U,
 LPMV2_SNOOZE_REQUEST_IRQ2 = 0x00000004U,
LPMV2_SNOOZE_REQUEST_IRQ3 = 0x00000008U,
LPMV2_SNOOZE_REQUEST_IRQ4 = 0x00000010U,
LPMV2_SNOOZE_REQUEST_IRQ5 = 0x00000020U,
 LPMV2_SNOOZE_REQUEST_IRQ6 = 0x00000040U,
LPMV2_SNOOZE_REQUEST_IRQ7 = 0x00000080U,
LPMV2_SNOOZE_REQUEST_IRQ8 = 0x00000100U,
LPMV2_SNOOZE_REQUEST_IRQ9 = 0x00000200U,
 LPMV2_SNOOZE_REQUEST_IRQ10 = 0x00000400U,
LPMV2_SNOOZE_REQUEST_IRQ11 = 0x00000800U,
LPMV2_SNOOZE_REQUEST_IRQ12 = 0x00001000U,
LPMV2_SNOOZE_REQUEST_IRQ13 = 0x00002000U,
 LPMV2_SNOOZE_REQUEST_IRQ14 = 0x00004000U,
LPMV2_SNOOZE_REQUEST_IRQ15 = 0x00008000U,
LPMV2_SNOOZE_REQUEST_KEY = 0x00020000U,
LPMV2_SNOOZE_REQUEST_ACMPHS0 = 0x00400000U,
 LPMV2_SNOOZE_REQUEST_RTC_ALARM = 0x01000000U,
LPMV2_SNOOZE_REQUEST_RTC_PERIOD = 0x02000000U,
LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW = 0x10000000U,
LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A = 0x20000000U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,855 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S128

 LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B = 0x40000000U
}

enum lpmv2_snooze_end_t { ,
 LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATCH = 0x80U ,
LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCES = 0x00U,
LPMV2_SNOOZE_END_AGT1_UNDERFLOW = 0x01U,
LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE = 0x02U,
 LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_NEGATED = 0x04U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH = 0x08U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATCH = 0x10U,
LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH = 0x20U,
 LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATCH = 0x40U,
LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH = 0x80U
}

enum lpmv2_snooze_cancel_t { ,
 LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM = (79),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM = (80),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPM = (85),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPUM = (86),
 LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM = (376),
LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR_ERI = (377),
LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE = (41),
LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI = (134),
 LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUFN = (18)
}

enum lpmv2_snooze_dtc_t { , LPMV2_SNOOZE_DTC_DISABLE = 0U,
LPMV2_SNOOZE_DTC_ENABLE = 1U }

enum lpmv2_standby_wake_source_t { ,
 LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 = 0x00800000U ,
LPMV2_STANDBY_WAKE_SOURCE_VBATT = 0x00100000U ,
LPMV2_STANDBY_WAKE_SOURCE_IRQ0 = 0x00000001U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ1 = 0x00000002U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ2 = 0x00000004U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ3 = 0x00000008U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ4 = 0x00000010U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ5 = 0x00000020U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ6 = 0x00000040U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ7 = 0x00000080U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ8 = 0x00000100U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ9 = 0x00000200U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ10 = 0x00000400U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ11 = 0x00000800U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ12 = 0x00001000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ13 = 0x00002000U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ14 = 0x00004000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ15 = 0x00008000U,
LPMV2_STANDBY_WAKE_SOURCE_IWDT = 0x00010000U,
LPMV2_STANDBY_WAKE_SOURCE_KEY = 0x00020000U,
 LPMV2_STANDBY_WAKE_SOURCE_LVD1 = 0x00040000U,
LPMV2_STANDBY_WAKE_SOURCE_LVD2 = 0x00080000U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,856 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S128

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 = 0x00400000U,
LPMV2_STANDBY_WAKE_SOURCE_RTCALM = 0x01000000U,
 LPMV2_STANDBY_WAKE_SOURCE_RTCPRD = 0x02000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBHS = 0x04000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBFS = 0x08000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1UD = 0x10000000U,
 LPMV2_STANDBY_WAKE_SOURCE_AGT1CA = 0x20000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1CB = 0x40000000U,
LPMV2_STANDBY_WAKE_SOURCE_IIC0 = 0x80000000U
}

Functions

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

ssp_err_t R_LPMV2_Init (void)

 Perform any necessary initialization. More...

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

 Configure a low power mode. More...

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

 Enter low power mode (sleep/standby/deep standby) using WFI
macro. More...

ssp_err_t R_LPMV2_ClearIOKeep (void)

 Clear the IOKEEP bit after deep software stand by. More...

Detailed Description

Driver for Low Power Modes.

The LPMV2 driver supports low power modes deep standby, standby, sleep, and snooze.

Note
Not all low power modes are available on all MCU's.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,857 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S128

◆ lpmv2_snooze_cancel_t

enum lpmv2_snooze_cancel_t

Snooze cancel control

Enumerator

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
M

ADC Channel 0 window compare match (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
UM

ADC Channel 0 window compare mismatch (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
M

ADC Channel 1 window compare match (S5D3,
S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
UM

ADC Channel 1 window compare mismatch
(S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM SCI0 address match event (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR
_ERI

SCI0 receive error (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLE
TE

DTC transfer completion (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt (all Synergy
MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUF
N

CTSU measurement end interrupt (all Synergy
MCUs).

◆ lpmv2_snooze_dtc_t

enum lpmv2_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPMV2_SNOOZE_DTC_DISABLE Disable DTC operation (all Synergy MCUs).

LPMV2_SNOOZE_DTC_ENABLE Enable DTC operation (all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,858 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S128

◆ lpmv2_snooze_end_t

enum lpmv2_snooze_end_t

Snooze end control

Enumerator

LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATC
H

SCI0 address mismatch (S5D3)

LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCE
S

Transition from Snooze to Normal mode
directly (all Synergy MCUs).

LPMV2_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow (all Synergy MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion (all Synergy
MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_N
EGATED

Not Last DTC transmission completion (all
Synergy MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATC
H

ADC Channel 0 compare mismatch (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATC
H

ADC 1 compare mismatch (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch (S124, S128, S1JA,
S3A1, S3A3, S3A6, S3A7, S5D5, S5D9, S7G2)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,859 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S128

◆ lpmv2_snooze_request_t

enum lpmv2_snooze_request_t

Snooze request sources

Enumerator

LPMV2_SNOOZE_REQUEST_ACMPLP Enable Low-speed analog comparator snooze
request (S124, S128, S1JA, S3A1, S3A3, S3A6,
S3A7).

LPMV2_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request
(S124, S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).
Enable RXD0/DALI falling edge snooze request
(S128, S1JA).

LPMV2_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,860 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S128

LPMV2_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request (S3A1, S3A3,
S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_KEY Enable KR snooze request (all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request (S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request (all
Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze request
(all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze request
(all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,861 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S128

◆ lpmv2_standby_wake_source_t

enum lpmv2_standby_wake_source_t

Wake from standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt
(S124, S128, S1JA, S3A1, S3A3, S3A6, S3A7).

LPMV2_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt (S3A1, S3A3, S3A6,
S3A7).

LPMV2_STANDBY_WAKE_SOURCE_IRQ0 IRQ0 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ1 IRQ1 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ2 IRQ2 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ3 IRQ3 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ4 IRQ4 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ5 IRQ5 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ6 IRQ6 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ7 IRQ7 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ8 IRQ8 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ9 IRQ9 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ10 IRQ10 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ11 IRQ11 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ12 IRQ12 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ13 IRQ13 (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ14 IRQ14 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,862 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S128

LPMV2_STANDBY_WAKE_SOURCE_IRQ15 IRQ15 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_KEY Key interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 Analog Comparator High-speed 0 interrupt
(S5D3, S5D5, S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt (S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1UD AGT1 underflow interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CA AGT1 compare match A interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CB AGT1 compare match B interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt (all Synergy MCUs).

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,863 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S128

◆ R_LPMV2_ClearIOKeep()

ssp_err_t R_LPMV2_ClearIOKeep (void)

Clear the IOKEEP bit after deep software stand by.

Return values
SSP_SUCCESS DSPBYCR_b.IOKEEP bit cleared Successfully.

SSP_ERR_UNSUPPORTED Deep stand by mode not supported on this
MCU.

◆ R_LPMV2_Init()

ssp_err_t R_LPMV2_Init (void)

Perform any necessary initialization.

Return values
SSP_SUCCESS LPMV2 Software lock initialized

◆ R_LPMV2_LowPowerConfigure()

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

Configure a low power mode.

NOTE: This function does not enter the low power mode, it only configures parameters of the mode.
Execution of the WFI instruction is what causes the low power mode to be entered.

Return values
SSP_SUCCESS Low power mode successfully applied

SSP_ERR_INVALID_POINTER p_cfg is NULL

SSP_ERR_IN_USE Lock was not acquired

SSP_ERR_INVALID_HW_CONDITION Operating mode change transition was
detected (OPCMTSF, SOPCMTSF bits)

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configures MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,864 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S128

◆ R_LPMV2_LowPowerModeEnter()

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

Enter low power mode (sleep/standby/deep standby) using WFI macro.

Function will return after waking from low power mode.

Return values
SSP_SUCCESS Successful.

SSP_ERR_INVALID_HW_CONDITION HOCO was unstable during attempt to
revert operating mode.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

◆ R_LPMV2_VersionGet()

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_INVALID_POINTER p_version is NULL.

 Build Time Configurations
Renesas Synergy Software Package Reference » HAL Layer » LPMV2 S128

Macros

#define LPMV2_CFG_PARAM_CHECKING_ENABLE
 (BSP_CFG_PARAM_CHECKING_ENABLE)

Detailed Description

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,865 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S128 > Build Time Configurations

◆ LPMV2_CFG_PARAM_CHECKING_ENABLE

#define LPMV2_CFG_PARAM_CHECKING_ENABLE (BSP_CFG_PARAM_CHECKING_ENABLE)

Specify whether to include code for API parameter checking. Valid settings include:

BSP_CFG_PARAM_CHECKING_ENABLE : Utilizes the system default setting from bsp_cfg.h
1 : Includes parameter checking
0 : Compiles out parameter checking

5.1.5.32 LPMV2 S1JA
Renesas Synergy Software Package Reference » HAL Layer

Driver for Low Power Modes. More...

Modules

Build Time Configurations

Data Structures

struct lpmv2_mcu_cfg_t

Enumerations

enum lpmv2_snooze_request_t { ,
 LPMV2_SNOOZE_REQUEST_ACMPLP = 0x00800000U ,
LPMV2_SNOOZE_REQUEST_RXD0_FALLING = 0x00000000U,
LPMV2_SNOOZE_REQUEST_IRQ0 = 0x00000001U,
LPMV2_SNOOZE_REQUEST_IRQ1 = 0x00000002U,
 LPMV2_SNOOZE_REQUEST_IRQ2 = 0x00000004U,
LPMV2_SNOOZE_REQUEST_IRQ3 = 0x00000008U,
LPMV2_SNOOZE_REQUEST_IRQ4 = 0x00000010U,
LPMV2_SNOOZE_REQUEST_IRQ5 = 0x00000020U,
 LPMV2_SNOOZE_REQUEST_IRQ6 = 0x00000040U,
LPMV2_SNOOZE_REQUEST_IRQ7 = 0x00000080U,
LPMV2_SNOOZE_REQUEST_IRQ8 = 0x00000100U,
LPMV2_SNOOZE_REQUEST_IRQ9 = 0x00000200U,
 LPMV2_SNOOZE_REQUEST_IRQ10 = 0x00000400U,
LPMV2_SNOOZE_REQUEST_IRQ11 = 0x00000800U,
LPMV2_SNOOZE_REQUEST_IRQ12 = 0x00001000U,
LPMV2_SNOOZE_REQUEST_IRQ13 = 0x00002000U,
 LPMV2_SNOOZE_REQUEST_IRQ14 = 0x00004000U,
LPMV2_SNOOZE_REQUEST_IRQ15 = 0x00008000U,
LPMV2_SNOOZE_REQUEST_KEY = 0x00020000U,
LPMV2_SNOOZE_REQUEST_ACMPHS0 = 0x00400000U,
 LPMV2_SNOOZE_REQUEST_RTC_ALARM = 0x01000000U,
LPMV2_SNOOZE_REQUEST_RTC_PERIOD = 0x02000000U,
LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW = 0x10000000U,
LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A = 0x20000000U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,866 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S1JA

 LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B = 0x40000000U
}

enum lpmv2_snooze_end_t { ,
 LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATCH = 0x80U ,
LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCES = 0x00U,
LPMV2_SNOOZE_END_AGT1_UNDERFLOW = 0x01U,
LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE = 0x02U,
 LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_NEGATED = 0x04U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH = 0x08U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATCH = 0x10U,
LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH = 0x20U,
 LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATCH = 0x40U,
LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH = 0x80U
}

enum lpmv2_snooze_cancel_t { ,
 LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM = (79),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM = (80),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPM = (85),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPUM = (86),
 LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM = (376),
LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR_ERI = (377),
LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE = (41),
LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI = (134),
 LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUFN = (18)
}

enum lpmv2_snooze_dtc_t { , LPMV2_SNOOZE_DTC_DISABLE = 0U,
LPMV2_SNOOZE_DTC_ENABLE = 1U }

enum lpmv2_standby_wake_source_t { ,
 LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 = 0x00800000U ,
LPMV2_STANDBY_WAKE_SOURCE_VBATT = 0x00100000U ,
LPMV2_STANDBY_WAKE_SOURCE_IRQ0 = 0x00000001U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ1 = 0x00000002U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ2 = 0x00000004U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ3 = 0x00000008U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ4 = 0x00000010U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ5 = 0x00000020U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ6 = 0x00000040U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ7 = 0x00000080U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ8 = 0x00000100U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ9 = 0x00000200U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ10 = 0x00000400U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ11 = 0x00000800U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ12 = 0x00001000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ13 = 0x00002000U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ14 = 0x00004000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ15 = 0x00008000U,
LPMV2_STANDBY_WAKE_SOURCE_IWDT = 0x00010000U,
LPMV2_STANDBY_WAKE_SOURCE_KEY = 0x00020000U,
 LPMV2_STANDBY_WAKE_SOURCE_LVD1 = 0x00040000U,
LPMV2_STANDBY_WAKE_SOURCE_LVD2 = 0x00080000U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,867 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S1JA

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 = 0x00400000U,
LPMV2_STANDBY_WAKE_SOURCE_RTCALM = 0x01000000U,
 LPMV2_STANDBY_WAKE_SOURCE_RTCPRD = 0x02000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBHS = 0x04000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBFS = 0x08000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1UD = 0x10000000U,
 LPMV2_STANDBY_WAKE_SOURCE_AGT1CA = 0x20000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1CB = 0x40000000U,
LPMV2_STANDBY_WAKE_SOURCE_IIC0 = 0x80000000U
}

Functions

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

ssp_err_t R_LPMV2_Init (void)

 Perform any necessary initialization. More...

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

 Configure a low power mode. More...

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

 Enter low power mode (sleep/standby/deep standby) using WFI
macro. More...

ssp_err_t R_LPMV2_ClearIOKeep (void)

 Clear the IOKEEP bit after deep software stand by. More...

Detailed Description

Driver for Low Power Modes.

The LPMV2 driver supports low power modes deep standby, standby, sleep, and snooze.

Note
Not all low power modes are available on all MCU's.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,868 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S1JA

◆ lpmv2_snooze_cancel_t

enum lpmv2_snooze_cancel_t

Snooze cancel control

Enumerator

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
M

ADC Channel 0 window compare match (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
UM

ADC Channel 0 window compare mismatch (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
M

ADC Channel 1 window compare match (S5D3,
S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
UM

ADC Channel 1 window compare mismatch
(S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM SCI0 address match event (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR
_ERI

SCI0 receive error (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLE
TE

DTC transfer completion (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt (all Synergy
MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUF
N

CTSU measurement end interrupt (all Synergy
MCUs).

◆ lpmv2_snooze_dtc_t

enum lpmv2_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPMV2_SNOOZE_DTC_DISABLE Disable DTC operation (all Synergy MCUs).

LPMV2_SNOOZE_DTC_ENABLE Enable DTC operation (all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,869 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S1JA

◆ lpmv2_snooze_end_t

enum lpmv2_snooze_end_t

Snooze end control

Enumerator

LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATC
H

SCI0 address mismatch (S5D3)

LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCE
S

Transition from Snooze to Normal mode
directly (all Synergy MCUs).

LPMV2_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow (all Synergy MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion (all Synergy
MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_N
EGATED

Not Last DTC transmission completion (all
Synergy MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATC
H

ADC Channel 0 compare mismatch (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATC
H

ADC 1 compare mismatch (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch (S124, S128, S1JA,
S3A1, S3A3, S3A6, S3A7, S5D5, S5D9, S7G2)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,870 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S1JA

◆ lpmv2_snooze_request_t

enum lpmv2_snooze_request_t

Snooze request sources

Enumerator

LPMV2_SNOOZE_REQUEST_ACMPLP Enable Low-speed analog comparator snooze
request (S124, S128, S1JA, S3A1, S3A3, S3A6,
S3A7).

LPMV2_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request
(S124, S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).
Enable RXD0/DALI falling edge snooze request
(S128, S1JA).

LPMV2_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,871 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S1JA

LPMV2_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request (S3A1, S3A3,
S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_KEY Enable KR snooze request (all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request (S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request (all
Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze request
(all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze request
(all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,872 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S1JA

◆ lpmv2_standby_wake_source_t

enum lpmv2_standby_wake_source_t

Wake from standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt
(S124, S128, S1JA, S3A1, S3A3, S3A6, S3A7).

LPMV2_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt (S3A1, S3A3, S3A6,
S3A7).

LPMV2_STANDBY_WAKE_SOURCE_IRQ0 IRQ0 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ1 IRQ1 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ2 IRQ2 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ3 IRQ3 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ4 IRQ4 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ5 IRQ5 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ6 IRQ6 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ7 IRQ7 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ8 IRQ8 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ9 IRQ9 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ10 IRQ10 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ11 IRQ11 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ12 IRQ12 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ13 IRQ13 (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ14 IRQ14 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,873 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S1JA

LPMV2_STANDBY_WAKE_SOURCE_IRQ15 IRQ15 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_KEY Key interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 Analog Comparator High-speed 0 interrupt
(S5D3, S5D5, S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt (S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1UD AGT1 underflow interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CA AGT1 compare match A interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CB AGT1 compare match B interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt (all Synergy MCUs).

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,874 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S1JA

◆ R_LPMV2_ClearIOKeep()

ssp_err_t R_LPMV2_ClearIOKeep (void)

Clear the IOKEEP bit after deep software stand by.

Return values
SSP_SUCCESS DSPBYCR_b.IOKEEP bit cleared Successfully.

SSP_ERR_UNSUPPORTED Deep stand by mode not supported on this
MCU.

◆ R_LPMV2_Init()

ssp_err_t R_LPMV2_Init (void)

Perform any necessary initialization.

Return values
SSP_SUCCESS LPMV2 Software lock initialized

◆ R_LPMV2_LowPowerConfigure()

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

Configure a low power mode.

NOTE: This function does not enter the low power mode, it only configures parameters of the mode.
Execution of the WFI instruction is what causes the low power mode to be entered.

Return values
SSP_SUCCESS Low power mode successfully applied

SSP_ERR_INVALID_POINTER p_cfg is NULL

SSP_ERR_IN_USE Lock was not acquired

SSP_ERR_INVALID_HW_CONDITION Operating mode change transition was
detected (OPCMTSF, SOPCMTSF bits)

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,875 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S1JA

◆ R_LPMV2_LowPowerModeEnter()

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

Enter low power mode (sleep/standby/deep standby) using WFI macro.

Function will return after waking from low power mode.

Return values
SSP_SUCCESS Successful.

SSP_ERR_INVALID_HW_CONDITION HOCO was unstable during attempt to
revert operating mode.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

◆ R_LPMV2_VersionGet()

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_INVALID_POINTER p_version is NULL.

 Build Time Configurations
Renesas Synergy Software Package Reference » HAL Layer » LPMV2 S1JA

Macros

#define LPMV2_CFG_PARAM_CHECKING_ENABLE
 (BSP_CFG_PARAM_CHECKING_ENABLE)

Detailed Description

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,876 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S1JA > Build Time Configurations

◆ LPMV2_CFG_PARAM_CHECKING_ENABLE

#define LPMV2_CFG_PARAM_CHECKING_ENABLE (BSP_CFG_PARAM_CHECKING_ENABLE)

Specify whether to include code for API parameter checking. Valid settings include:

BSP_CFG_PARAM_CHECKING_ENABLE : Utilizes the system default setting from bsp_cfg.h
1 : Includes parameter checking
0 : Compiles out parameter checking

5.1.5.33 LPMV2 S3A1
Renesas Synergy Software Package Reference » HAL Layer

Driver for Low Power Modes. More...

Modules

Build Time Configurations

Data Structures

struct lpmv2_mcu_cfg_t

Enumerations

enum lpmv2_snooze_request_t { ,
 LPMV2_SNOOZE_REQUEST_ACMPLP = 0x00800000U ,
LPMV2_SNOOZE_REQUEST_RXD0_FALLING = 0x00000000U,
LPMV2_SNOOZE_REQUEST_IRQ0 = 0x00000001U,
LPMV2_SNOOZE_REQUEST_IRQ1 = 0x00000002U,
 LPMV2_SNOOZE_REQUEST_IRQ2 = 0x00000004U,
LPMV2_SNOOZE_REQUEST_IRQ3 = 0x00000008U,
LPMV2_SNOOZE_REQUEST_IRQ4 = 0x00000010U,
LPMV2_SNOOZE_REQUEST_IRQ5 = 0x00000020U,
 LPMV2_SNOOZE_REQUEST_IRQ6 = 0x00000040U,
LPMV2_SNOOZE_REQUEST_IRQ7 = 0x00000080U,
LPMV2_SNOOZE_REQUEST_IRQ8 = 0x00000100U,
LPMV2_SNOOZE_REQUEST_IRQ9 = 0x00000200U,
 LPMV2_SNOOZE_REQUEST_IRQ10 = 0x00000400U,
LPMV2_SNOOZE_REQUEST_IRQ11 = 0x00000800U,
LPMV2_SNOOZE_REQUEST_IRQ12 = 0x00001000U,
LPMV2_SNOOZE_REQUEST_IRQ13 = 0x00002000U,
 LPMV2_SNOOZE_REQUEST_IRQ14 = 0x00004000U,
LPMV2_SNOOZE_REQUEST_IRQ15 = 0x00008000U,
LPMV2_SNOOZE_REQUEST_KEY = 0x00020000U,
LPMV2_SNOOZE_REQUEST_ACMPHS0 = 0x00400000U,
 LPMV2_SNOOZE_REQUEST_RTC_ALARM = 0x01000000U,
LPMV2_SNOOZE_REQUEST_RTC_PERIOD = 0x02000000U,
LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW = 0x10000000U,
LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A = 0x20000000U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,877 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A1

 LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B = 0x40000000U
}

enum lpmv2_snooze_end_t { ,
 LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATCH = 0x80U ,
LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCES = 0x00U,
LPMV2_SNOOZE_END_AGT1_UNDERFLOW = 0x01U,
LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE = 0x02U,
 LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_NEGATED = 0x04U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH = 0x08U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATCH = 0x10U,
LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH = 0x20U,
 LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATCH = 0x40U,
LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH = 0x80U
}

enum lpmv2_snooze_cancel_t { ,
 LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM = (79),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM = (80),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPM = (85),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPUM = (86),
 LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM = (376),
LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR_ERI = (377),
LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE = (41),
LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI = (134),
 LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUFN = (18)
}

enum lpmv2_snooze_dtc_t { , LPMV2_SNOOZE_DTC_DISABLE = 0U,
LPMV2_SNOOZE_DTC_ENABLE = 1U }

enum lpmv2_standby_wake_source_t { ,
 LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 = 0x00800000U ,
LPMV2_STANDBY_WAKE_SOURCE_VBATT = 0x00100000U ,
LPMV2_STANDBY_WAKE_SOURCE_IRQ0 = 0x00000001U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ1 = 0x00000002U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ2 = 0x00000004U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ3 = 0x00000008U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ4 = 0x00000010U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ5 = 0x00000020U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ6 = 0x00000040U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ7 = 0x00000080U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ8 = 0x00000100U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ9 = 0x00000200U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ10 = 0x00000400U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ11 = 0x00000800U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ12 = 0x00001000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ13 = 0x00002000U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ14 = 0x00004000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ15 = 0x00008000U,
LPMV2_STANDBY_WAKE_SOURCE_IWDT = 0x00010000U,
LPMV2_STANDBY_WAKE_SOURCE_KEY = 0x00020000U,
 LPMV2_STANDBY_WAKE_SOURCE_LVD1 = 0x00040000U,
LPMV2_STANDBY_WAKE_SOURCE_LVD2 = 0x00080000U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,878 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A1

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 = 0x00400000U,
LPMV2_STANDBY_WAKE_SOURCE_RTCALM = 0x01000000U,
 LPMV2_STANDBY_WAKE_SOURCE_RTCPRD = 0x02000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBHS = 0x04000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBFS = 0x08000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1UD = 0x10000000U,
 LPMV2_STANDBY_WAKE_SOURCE_AGT1CA = 0x20000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1CB = 0x40000000U,
LPMV2_STANDBY_WAKE_SOURCE_IIC0 = 0x80000000U
}

enum lpmv2_output_port_enable_t { ,
LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANCE = 0U,
LPMV2_OUTPUT_PORT_ENABLE_RETAIN = 1U }

Functions

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

ssp_err_t R_LPMV2_Init (void)

 Perform any necessary initialization. More...

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

 Configure a low power mode. More...

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

 Enter low power mode (sleep/standby/deep standby) using WFI
macro. More...

ssp_err_t R_LPMV2_ClearIOKeep (void)

 Clear the IOKEEP bit after deep software stand by. More...

Detailed Description

Driver for Low Power Modes.

The LPMV2 driver supports low power modes deep standby, standby, sleep, and snooze.

Note
Not all low power modes are available on all MCU's.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,879 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A1

◆ lpmv2_output_port_enable_t

enum lpmv2_output_port_enable_t

Output port enable (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANC
E

0: In Software Standby Mode or Deep Software
Standby Mode, the address output pins, data
output pins, and other bus control signal
output pins are set to the high-impedance
state. In Snooze, the status of the address bus
and bus control signals are same as before
entering Software Standby Mode.

LPMV2_OUTPUT_PORT_ENABLE_RETAIN 1: In Software Standby Mode, the address
output pins, data output pins, and other bus
control signal output pins retain the output
state.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,880 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A1

◆ lpmv2_snooze_cancel_t

enum lpmv2_snooze_cancel_t

Snooze cancel control

Enumerator

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
M

ADC Channel 0 window compare match (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
UM

ADC Channel 0 window compare mismatch (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
M

ADC Channel 1 window compare match (S5D3,
S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
UM

ADC Channel 1 window compare mismatch
(S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM SCI0 address match event (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR
_ERI

SCI0 receive error (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLE
TE

DTC transfer completion (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt (all Synergy
MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUF
N

CTSU measurement end interrupt (all Synergy
MCUs).

◆ lpmv2_snooze_dtc_t

enum lpmv2_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPMV2_SNOOZE_DTC_DISABLE Disable DTC operation (all Synergy MCUs).

LPMV2_SNOOZE_DTC_ENABLE Enable DTC operation (all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,881 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A1

◆ lpmv2_snooze_end_t

enum lpmv2_snooze_end_t

Snooze end control

Enumerator

LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATC
H

SCI0 address mismatch (S5D3)

LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCE
S

Transition from Snooze to Normal mode
directly (all Synergy MCUs).

LPMV2_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow (all Synergy MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion (all Synergy
MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_N
EGATED

Not Last DTC transmission completion (all
Synergy MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATC
H

ADC Channel 0 compare mismatch (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATC
H

ADC 1 compare mismatch (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch (S124, S128, S1JA,
S3A1, S3A3, S3A6, S3A7, S5D5, S5D9, S7G2)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,882 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A1

◆ lpmv2_snooze_request_t

enum lpmv2_snooze_request_t

Snooze request sources

Enumerator

LPMV2_SNOOZE_REQUEST_ACMPLP Enable Low-speed analog comparator snooze
request (S124, S128, S1JA, S3A1, S3A3, S3A6,
S3A7).

LPMV2_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request
(S124, S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).
Enable RXD0/DALI falling edge snooze request
(S128, S1JA).

LPMV2_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,883 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A1

LPMV2_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request (S3A1, S3A3,
S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_KEY Enable KR snooze request (all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request (S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request (all
Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze request
(all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze request
(all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,884 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A1

◆ lpmv2_standby_wake_source_t

enum lpmv2_standby_wake_source_t

Wake from standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt
(S124, S128, S1JA, S3A1, S3A3, S3A6, S3A7).

LPMV2_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt (S3A1, S3A3, S3A6,
S3A7).

LPMV2_STANDBY_WAKE_SOURCE_IRQ0 IRQ0 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ1 IRQ1 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ2 IRQ2 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ3 IRQ3 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ4 IRQ4 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ5 IRQ5 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ6 IRQ6 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ7 IRQ7 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ8 IRQ8 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ9 IRQ9 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ10 IRQ10 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ11 IRQ11 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ12 IRQ12 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ13 IRQ13 (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ14 IRQ14 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,885 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A1

LPMV2_STANDBY_WAKE_SOURCE_IRQ15 IRQ15 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_KEY Key interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 Analog Comparator High-speed 0 interrupt
(S5D3, S5D5, S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt (S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1UD AGT1 underflow interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CA AGT1 compare match A interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CB AGT1 compare match B interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt (all Synergy MCUs).

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,886 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A1

◆ R_LPMV2_ClearIOKeep()

ssp_err_t R_LPMV2_ClearIOKeep (void)

Clear the IOKEEP bit after deep software stand by.

Return values
SSP_SUCCESS DSPBYCR_b.IOKEEP bit cleared Successfully.

SSP_ERR_UNSUPPORTED Deep stand by mode not supported on this
MCU.

◆ R_LPMV2_Init()

ssp_err_t R_LPMV2_Init (void)

Perform any necessary initialization.

Return values
SSP_SUCCESS LPMV2 Software lock initialized

◆ R_LPMV2_LowPowerConfigure()

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

Configure a low power mode.

NOTE: This function does not enter the low power mode, it only configures parameters of the mode.
Execution of the WFI instruction is what causes the low power mode to be entered.

Return values
SSP_SUCCESS Low power mode successfully applied

SSP_ERR_INVALID_POINTER p_cfg is NULL

SSP_ERR_IN_USE Lock was not acquired

SSP_ERR_INVALID_HW_CONDITION Operating mode change transition was
detected (OPCMTSF, SOPCMTSF bits)

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,887 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A1

◆ R_LPMV2_LowPowerModeEnter()

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

Enter low power mode (sleep/standby/deep standby) using WFI macro.

Function will return after waking from low power mode.

Return values
SSP_SUCCESS Successful.

SSP_ERR_INVALID_HW_CONDITION HOCO was unstable during attempt to
revert operating mode.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

◆ R_LPMV2_VersionGet()

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_INVALID_POINTER p_version is NULL.

 Build Time Configurations
Renesas Synergy Software Package Reference » HAL Layer » LPMV2 S3A1

Macros

#define LPMV2_CFG_PARAM_CHECKING_ENABLE
 (BSP_CFG_PARAM_CHECKING_ENABLE)

Detailed Description

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,888 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A1 > Build Time Configurations

◆ LPMV2_CFG_PARAM_CHECKING_ENABLE

#define LPMV2_CFG_PARAM_CHECKING_ENABLE (BSP_CFG_PARAM_CHECKING_ENABLE)

Specify whether to include code for API parameter checking. Valid settings include:

BSP_CFG_PARAM_CHECKING_ENABLE : Utilizes the system default setting from bsp_cfg.h
1 : Includes parameter checking
0 : Compiles out parameter checking

5.1.5.34 LPMV2 S3A3
Renesas Synergy Software Package Reference » HAL Layer

Driver for Low Power Modes. More...

Modules

Build Time Configurations

Data Structures

struct lpmv2_mcu_cfg_t

Enumerations

enum lpmv2_snooze_request_t { ,
 LPMV2_SNOOZE_REQUEST_ACMPLP = 0x00800000U ,
LPMV2_SNOOZE_REQUEST_RXD0_FALLING = 0x00000000U,
LPMV2_SNOOZE_REQUEST_IRQ0 = 0x00000001U,
LPMV2_SNOOZE_REQUEST_IRQ1 = 0x00000002U,
 LPMV2_SNOOZE_REQUEST_IRQ2 = 0x00000004U,
LPMV2_SNOOZE_REQUEST_IRQ3 = 0x00000008U,
LPMV2_SNOOZE_REQUEST_IRQ4 = 0x00000010U,
LPMV2_SNOOZE_REQUEST_IRQ5 = 0x00000020U,
 LPMV2_SNOOZE_REQUEST_IRQ6 = 0x00000040U,
LPMV2_SNOOZE_REQUEST_IRQ7 = 0x00000080U,
LPMV2_SNOOZE_REQUEST_IRQ8 = 0x00000100U,
LPMV2_SNOOZE_REQUEST_IRQ9 = 0x00000200U,
 LPMV2_SNOOZE_REQUEST_IRQ10 = 0x00000400U,
LPMV2_SNOOZE_REQUEST_IRQ11 = 0x00000800U,
LPMV2_SNOOZE_REQUEST_IRQ12 = 0x00001000U,
LPMV2_SNOOZE_REQUEST_IRQ13 = 0x00002000U,
 LPMV2_SNOOZE_REQUEST_IRQ14 = 0x00004000U,
LPMV2_SNOOZE_REQUEST_IRQ15 = 0x00008000U,
LPMV2_SNOOZE_REQUEST_KEY = 0x00020000U,
LPMV2_SNOOZE_REQUEST_ACMPHS0 = 0x00400000U,
 LPMV2_SNOOZE_REQUEST_RTC_ALARM = 0x01000000U,
LPMV2_SNOOZE_REQUEST_RTC_PERIOD = 0x02000000U,
LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW = 0x10000000U,
LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A = 0x20000000U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,889 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A3

 LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B = 0x40000000U
}

enum lpmv2_snooze_end_t { ,
 LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATCH = 0x80U ,
LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCES = 0x00U,
LPMV2_SNOOZE_END_AGT1_UNDERFLOW = 0x01U,
LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE = 0x02U,
 LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_NEGATED = 0x04U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH = 0x08U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATCH = 0x10U,
LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH = 0x20U,
 LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATCH = 0x40U,
LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH = 0x80U
}

enum lpmv2_snooze_cancel_t { ,
 LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM = (79),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM = (80),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPM = (85),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPUM = (86),
 LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM = (376),
LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR_ERI = (377),
LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE = (41),
LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI = (134),
 LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUFN = (18)
}

enum lpmv2_snooze_dtc_t { , LPMV2_SNOOZE_DTC_DISABLE = 0U,
LPMV2_SNOOZE_DTC_ENABLE = 1U }

enum lpmv2_standby_wake_source_t { ,
 LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 = 0x00800000U ,
LPMV2_STANDBY_WAKE_SOURCE_VBATT = 0x00100000U ,
LPMV2_STANDBY_WAKE_SOURCE_IRQ0 = 0x00000001U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ1 = 0x00000002U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ2 = 0x00000004U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ3 = 0x00000008U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ4 = 0x00000010U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ5 = 0x00000020U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ6 = 0x00000040U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ7 = 0x00000080U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ8 = 0x00000100U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ9 = 0x00000200U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ10 = 0x00000400U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ11 = 0x00000800U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ12 = 0x00001000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ13 = 0x00002000U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ14 = 0x00004000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ15 = 0x00008000U,
LPMV2_STANDBY_WAKE_SOURCE_IWDT = 0x00010000U,
LPMV2_STANDBY_WAKE_SOURCE_KEY = 0x00020000U,
 LPMV2_STANDBY_WAKE_SOURCE_LVD1 = 0x00040000U,
LPMV2_STANDBY_WAKE_SOURCE_LVD2 = 0x00080000U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,890 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A3

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 = 0x00400000U,
LPMV2_STANDBY_WAKE_SOURCE_RTCALM = 0x01000000U,
 LPMV2_STANDBY_WAKE_SOURCE_RTCPRD = 0x02000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBHS = 0x04000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBFS = 0x08000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1UD = 0x10000000U,
 LPMV2_STANDBY_WAKE_SOURCE_AGT1CA = 0x20000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1CB = 0x40000000U,
LPMV2_STANDBY_WAKE_SOURCE_IIC0 = 0x80000000U
}

enum lpmv2_output_port_enable_t { ,
LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANCE = 0U,
LPMV2_OUTPUT_PORT_ENABLE_RETAIN = 1U }

Functions

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

ssp_err_t R_LPMV2_Init (void)

 Perform any necessary initialization. More...

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

 Configure a low power mode. More...

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

 Enter low power mode (sleep/standby/deep standby) using WFI
macro. More...

ssp_err_t R_LPMV2_ClearIOKeep (void)

 Clear the IOKEEP bit after deep software stand by. More...

Detailed Description

Driver for Low Power Modes.

The LPMV2 driver supports low power modes deep standby, standby, sleep, and snooze.

Note
Not all low power modes are available on all MCU's.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,891 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A3

◆ lpmv2_output_port_enable_t

enum lpmv2_output_port_enable_t

Output port enable (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANC
E

0: In Software Standby Mode or Deep Software
Standby Mode, the address output pins, data
output pins, and other bus control signal
output pins are set to the high-impedance
state. In Snooze, the status of the address bus
and bus control signals are same as before
entering Software Standby Mode.

LPMV2_OUTPUT_PORT_ENABLE_RETAIN 1: In Software Standby Mode, the address
output pins, data output pins, and other bus
control signal output pins retain the output
state.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,892 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A3

◆ lpmv2_snooze_cancel_t

enum lpmv2_snooze_cancel_t

Snooze cancel control

Enumerator

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
M

ADC Channel 0 window compare match (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
UM

ADC Channel 0 window compare mismatch (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
M

ADC Channel 1 window compare match (S5D3,
S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
UM

ADC Channel 1 window compare mismatch
(S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM SCI0 address match event (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR
_ERI

SCI0 receive error (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLE
TE

DTC transfer completion (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt (all Synergy
MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUF
N

CTSU measurement end interrupt (all Synergy
MCUs).

◆ lpmv2_snooze_dtc_t

enum lpmv2_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPMV2_SNOOZE_DTC_DISABLE Disable DTC operation (all Synergy MCUs).

LPMV2_SNOOZE_DTC_ENABLE Enable DTC operation (all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,893 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A3

◆ lpmv2_snooze_end_t

enum lpmv2_snooze_end_t

Snooze end control

Enumerator

LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATC
H

SCI0 address mismatch (S5D3)

LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCE
S

Transition from Snooze to Normal mode
directly (all Synergy MCUs).

LPMV2_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow (all Synergy MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion (all Synergy
MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_N
EGATED

Not Last DTC transmission completion (all
Synergy MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATC
H

ADC Channel 0 compare mismatch (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATC
H

ADC 1 compare mismatch (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch (S124, S128, S1JA,
S3A1, S3A3, S3A6, S3A7, S5D5, S5D9, S7G2)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,894 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A3

◆ lpmv2_snooze_request_t

enum lpmv2_snooze_request_t

Snooze request sources

Enumerator

LPMV2_SNOOZE_REQUEST_ACMPLP Enable Low-speed analog comparator snooze
request (S124, S128, S1JA, S3A1, S3A3, S3A6,
S3A7).

LPMV2_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request
(S124, S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).
Enable RXD0/DALI falling edge snooze request
(S128, S1JA).

LPMV2_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,895 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A3

LPMV2_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request (S3A1, S3A3,
S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_KEY Enable KR snooze request (all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request (S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request (all
Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze request
(all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze request
(all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,896 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A3

◆ lpmv2_standby_wake_source_t

enum lpmv2_standby_wake_source_t

Wake from standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt
(S124, S128, S1JA, S3A1, S3A3, S3A6, S3A7).

LPMV2_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt (S3A1, S3A3, S3A6,
S3A7).

LPMV2_STANDBY_WAKE_SOURCE_IRQ0 IRQ0 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ1 IRQ1 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ2 IRQ2 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ3 IRQ3 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ4 IRQ4 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ5 IRQ5 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ6 IRQ6 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ7 IRQ7 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ8 IRQ8 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ9 IRQ9 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ10 IRQ10 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ11 IRQ11 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ12 IRQ12 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ13 IRQ13 (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ14 IRQ14 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,897 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A3

LPMV2_STANDBY_WAKE_SOURCE_IRQ15 IRQ15 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_KEY Key interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 Analog Comparator High-speed 0 interrupt
(S5D3, S5D5, S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt (S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1UD AGT1 underflow interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CA AGT1 compare match A interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CB AGT1 compare match B interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt (all Synergy MCUs).

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,898 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A3

◆ R_LPMV2_ClearIOKeep()

ssp_err_t R_LPMV2_ClearIOKeep (void)

Clear the IOKEEP bit after deep software stand by.

Return values
SSP_SUCCESS DSPBYCR_b.IOKEEP bit cleared Successfully.

SSP_ERR_UNSUPPORTED Deep stand by mode not supported on this
MCU.

◆ R_LPMV2_Init()

ssp_err_t R_LPMV2_Init (void)

Perform any necessary initialization.

Return values
SSP_SUCCESS LPMV2 Software lock initialized

◆ R_LPMV2_LowPowerConfigure()

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

Configure a low power mode.

NOTE: This function does not enter the low power mode, it only configures parameters of the mode.
Execution of the WFI instruction is what causes the low power mode to be entered.

Return values
SSP_SUCCESS Low power mode successfuly applied

SSP_ERR_INVALID_POINTER p_cfg is NULL

SSP_ERR_IN_USE Lock was not acquired

SSP_ERR_INVALID_HW_CONDITION Operating mode change transition was
detected (OPCMTSF, SOPCMTSF bits)

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,899 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A3

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configures MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,900 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A3

◆ R_LPMV2_LowPowerModeEnter()

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

Enter low power mode (sleep/standby/deep standby) using WFI macro.

Function will return after waking from low power mode.

Return values
SSP_SUCCESS Successful.

SSP_ERR_INVALID_HW_CONDITION HOCO was unstable during attempt to
revert operating mode.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

◆ R_LPMV2_VersionGet()

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_INVALID_POINTER p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,901 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A3

 Build Time Configurations
Renesas Synergy Software Package Reference » HAL Layer » LPMV2 S3A3

Macros

#define LPMV2_CFG_PARAM_CHECKING_ENABLE
 (BSP_CFG_PARAM_CHECKING_ENABLE)

Detailed Description

Macro Definition Documentation

◆ LPMV2_CFG_PARAM_CHECKING_ENABLE

#define LPMV2_CFG_PARAM_CHECKING_ENABLE (BSP_CFG_PARAM_CHECKING_ENABLE)

Specify whether to include code for API parameter checking. Valid settings include:

BSP_CFG_PARAM_CHECKING_ENABLE : Utilizes the system default setting from bsp_cfg.h
1 : Includes parameter checking
0 : Compiles out parameter checking

5.1.5.35 LPMV2 S3A6
Renesas Synergy Software Package Reference » HAL Layer

Driver for Low Power Modes. More...

Data Structures

struct lpmv2_mcu_cfg_t

Enumerations

enum lpmv2_snooze_request_t { ,
 LPMV2_SNOOZE_REQUEST_ACMPLP = 0x00800000U ,
LPMV2_SNOOZE_REQUEST_RXD0_FALLING = 0x00000000U,
LPMV2_SNOOZE_REQUEST_IRQ0 = 0x00000001U,
LPMV2_SNOOZE_REQUEST_IRQ1 = 0x00000002U,
 LPMV2_SNOOZE_REQUEST_IRQ2 = 0x00000004U,
LPMV2_SNOOZE_REQUEST_IRQ3 = 0x00000008U,
LPMV2_SNOOZE_REQUEST_IRQ4 = 0x00000010U,
LPMV2_SNOOZE_REQUEST_IRQ5 = 0x00000020U,
 LPMV2_SNOOZE_REQUEST_IRQ6 = 0x00000040U,
LPMV2_SNOOZE_REQUEST_IRQ7 = 0x00000080U,
LPMV2_SNOOZE_REQUEST_IRQ8 = 0x00000100U,
LPMV2_SNOOZE_REQUEST_IRQ9 = 0x00000200U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,902 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A6

 LPMV2_SNOOZE_REQUEST_IRQ10 = 0x00000400U,
LPMV2_SNOOZE_REQUEST_IRQ11 = 0x00000800U,
LPMV2_SNOOZE_REQUEST_IRQ12 = 0x00001000U,
LPMV2_SNOOZE_REQUEST_IRQ13 = 0x00002000U,
 LPMV2_SNOOZE_REQUEST_IRQ14 = 0x00004000U,
LPMV2_SNOOZE_REQUEST_IRQ15 = 0x00008000U,
LPMV2_SNOOZE_REQUEST_KEY = 0x00020000U,
LPMV2_SNOOZE_REQUEST_ACMPHS0 = 0x00400000U,
 LPMV2_SNOOZE_REQUEST_RTC_ALARM = 0x01000000U,
LPMV2_SNOOZE_REQUEST_RTC_PERIOD = 0x02000000U,
LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW = 0x10000000U,
LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A = 0x20000000U,
 LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B = 0x40000000U
}

enum lpmv2_snooze_end_t { ,
 LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATCH = 0x80U ,
LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCES = 0x00U,
LPMV2_SNOOZE_END_AGT1_UNDERFLOW = 0x01U,
LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE = 0x02U,
 LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_NEGATED = 0x04U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH = 0x08U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATCH = 0x10U,
LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH = 0x20U,
 LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATCH = 0x40U,
LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH = 0x80U
}

enum lpmv2_snooze_cancel_t { ,
 LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM = (79),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM = (80),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPM = (85),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPUM = (86),
 LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM = (376),
LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR_ERI = (377),
LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE = (41),
LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI = (134),
 LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUFN = (18)
}

enum lpmv2_snooze_dtc_t { , LPMV2_SNOOZE_DTC_DISABLE = 0U,
LPMV2_SNOOZE_DTC_ENABLE = 1U }

enum lpmv2_standby_wake_source_t { ,
 LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 = 0x00800000U ,
LPMV2_STANDBY_WAKE_SOURCE_VBATT = 0x00100000U ,
LPMV2_STANDBY_WAKE_SOURCE_IRQ0 = 0x00000001U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ1 = 0x00000002U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ2 = 0x00000004U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ3 = 0x00000008U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ4 = 0x00000010U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ5 = 0x00000020U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ6 = 0x00000040U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ7 = 0x00000080U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,903 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A6

LPMV2_STANDBY_WAKE_SOURCE_IRQ8 = 0x00000100U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ9 = 0x00000200U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ10 = 0x00000400U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ11 = 0x00000800U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ12 = 0x00001000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ13 = 0x00002000U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ14 = 0x00004000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ15 = 0x00008000U,
LPMV2_STANDBY_WAKE_SOURCE_IWDT = 0x00010000U,
LPMV2_STANDBY_WAKE_SOURCE_KEY = 0x00020000U,
 LPMV2_STANDBY_WAKE_SOURCE_LVD1 = 0x00040000U,
LPMV2_STANDBY_WAKE_SOURCE_LVD2 = 0x00080000U,
LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 = 0x00400000U,
LPMV2_STANDBY_WAKE_SOURCE_RTCALM = 0x01000000U,
 LPMV2_STANDBY_WAKE_SOURCE_RTCPRD = 0x02000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBHS = 0x04000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBFS = 0x08000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1UD = 0x10000000U,
 LPMV2_STANDBY_WAKE_SOURCE_AGT1CA = 0x20000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1CB = 0x40000000U,
LPMV2_STANDBY_WAKE_SOURCE_IIC0 = 0x80000000U
}

Functions

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

ssp_err_t R_LPMV2_Init (void)

 Perform any necessary initialization. More...

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

 Configure a low power mode. More...

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

 Enter low power mode (sleep/standby/deep standby) using WFI
macro. More...

ssp_err_t R_LPMV2_ClearIOKeep (void)

 Clear the IOKEEP bit after deep software stand by. More...

Detailed Description

Driver for Low Power Modes.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,904 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A6

The LPMV2 driver supports low power modes deep standby, standby, sleep, and snooze.

Note
Not all low power modes are available on all MCU's.

Enumeration Type Documentation

◆ lpmv2_snooze_cancel_t

enum lpmv2_snooze_cancel_t

Snooze cancel control

Enumerator

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
M

ADC Channel 0 window compare match (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
UM

ADC Channel 0 window compare mismatch (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
M

ADC Channel 1 window compare match (S5D3,
S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
UM

ADC Channel 1 window compare mismatch
(S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM SCI0 address match event (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR
_ERI

SCI0 receive error (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLE
TE

DTC transfer completion (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt (all Synergy
MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUF
N

CTSU measurement end interrupt (all Synergy
MCUs).

◆ lpmv2_snooze_dtc_t

enum lpmv2_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPMV2_SNOOZE_DTC_DISABLE Disable DTC operation (all Synergy MCUs).

LPMV2_SNOOZE_DTC_ENABLE Enable DTC operation (all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,905 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A6

◆ lpmv2_snooze_end_t

enum lpmv2_snooze_end_t

Snooze end control

Enumerator

LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATC
H

SCI0 address mismatch (S5D3)

LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCE
S

Transition from Snooze to Normal mode
directly (all Synergy MCUs).

LPMV2_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow (all Synergy MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion (all Synergy
MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_N
EGATED

Not Last DTC transmission completion (all
Synergy MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATC
H

ADC Channel 0 compare mismatch (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATC
H

ADC 1 compare mismatch (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch (S124, S128, S1JA,
S3A1, S3A3, S3A6, S3A7, S5D5, S5D9, S7G2)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,906 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A6

◆ lpmv2_snooze_request_t

enum lpmv2_snooze_request_t

Snooze request sources

Enumerator

LPMV2_SNOOZE_REQUEST_ACMPLP Enable Low-speed analog comparator snooze
request (S124, S128, S1JA, S3A1, S3A3, S3A6,
S3A7).

LPMV2_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request
(S124, S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).
Enable RXD0/DALI falling edge snooze request
(S128, S1JA).

LPMV2_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,907 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A6

LPMV2_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request (S3A1, S3A3,
S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_KEY Enable KR snooze request (all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request (S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request (all
Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze request
(all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze request
(all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,908 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A6

◆ lpmv2_standby_wake_source_t

enum lpmv2_standby_wake_source_t

Wake from standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt
(S124, S128, S1JA, S3A1, S3A3, S3A6, S3A7).

LPMV2_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt (S3A1, S3A3, S3A6,
S3A7).

LPMV2_STANDBY_WAKE_SOURCE_IRQ0 IRQ0 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ1 IRQ1 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ2 IRQ2 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ3 IRQ3 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ4 IRQ4 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ5 IRQ5 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ6 IRQ6 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ7 IRQ7 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ8 IRQ8 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ9 IRQ9 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ10 IRQ10 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ11 IRQ11 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ12 IRQ12 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ13 IRQ13 (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ14 IRQ14 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,909 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A6

LPMV2_STANDBY_WAKE_SOURCE_IRQ15 IRQ15 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_KEY Key interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 Analog Comparator High-speed 0 interrupt
(S5D3, S5D5, S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt (S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1UD AGT1 underflow interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CA AGT1 compare match A interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CB AGT1 compare match B interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt (all Synergy MCUs).

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,910 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A6

◆ R_LPMV2_ClearIOKeep()

ssp_err_t R_LPMV2_ClearIOKeep (void)

Clear the IOKEEP bit after deep software stand by.

Return values
SSP_SUCCESS DSPBYCR_b.IOKEEP bit cleared Successfully.

SSP_ERR_UNSUPPORTED Deep stand by mode not supported on this
MCU.

◆ R_LPMV2_Init()

ssp_err_t R_LPMV2_Init (void)

Perform any necessary initialization.

Return values
SSP_SUCCESS LPMV2 Software lock initialized

◆ R_LPMV2_LowPowerConfigure()

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

Configure a low power mode.

NOTE: This function does not enter the low power mode, it only configures parameters of the mode.
Execution of the WFI instruction is what causes the low power mode to be entered.

Return values
SSP_SUCCESS Low power mode successfuly applied

SSP_ERR_INVALID_POINTER p_cfg is NULL

SSP_ERR_IN_USE Lock was not acquired

SSP_ERR_INVALID_HW_CONDITION Operating mode change transition was
detected (OPCMTSF, SOPCMTSF bits)

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,911 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A6

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configures MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,912 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A6

◆ R_LPMV2_LowPowerModeEnter()

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

Enter low power mode (sleep/standby/deep standby) using WFI macro.

Function will return after waking from low power mode.

Return values
SSP_SUCCESS Successful.

SSP_ERR_INVALID_HW_CONDITION HOCO was unstable during attempt to
revert operating mode.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

◆ R_LPMV2_VersionGet()

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_INVALID_POINTER p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,913 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A6

5.1.5.36 LPMV2 S3A7
Renesas Synergy Software Package Reference » HAL Layer

Driver for Low Power Modes. More...

Modules

Build Time Configurations

Data Structures

struct lpmv2_mcu_cfg_t

Enumerations

enum lpmv2_snooze_request_t { ,
 LPMV2_SNOOZE_REQUEST_ACMPLP = 0x00800000U ,
LPMV2_SNOOZE_REQUEST_RXD0_FALLING = 0x00000000U,
LPMV2_SNOOZE_REQUEST_IRQ0 = 0x00000001U,
LPMV2_SNOOZE_REQUEST_IRQ1 = 0x00000002U,
 LPMV2_SNOOZE_REQUEST_IRQ2 = 0x00000004U,
LPMV2_SNOOZE_REQUEST_IRQ3 = 0x00000008U,
LPMV2_SNOOZE_REQUEST_IRQ4 = 0x00000010U,
LPMV2_SNOOZE_REQUEST_IRQ5 = 0x00000020U,
 LPMV2_SNOOZE_REQUEST_IRQ6 = 0x00000040U,
LPMV2_SNOOZE_REQUEST_IRQ7 = 0x00000080U,
LPMV2_SNOOZE_REQUEST_IRQ8 = 0x00000100U,
LPMV2_SNOOZE_REQUEST_IRQ9 = 0x00000200U,
 LPMV2_SNOOZE_REQUEST_IRQ10 = 0x00000400U,
LPMV2_SNOOZE_REQUEST_IRQ11 = 0x00000800U,
LPMV2_SNOOZE_REQUEST_IRQ12 = 0x00001000U,
LPMV2_SNOOZE_REQUEST_IRQ13 = 0x00002000U,
 LPMV2_SNOOZE_REQUEST_IRQ14 = 0x00004000U,
LPMV2_SNOOZE_REQUEST_IRQ15 = 0x00008000U,
LPMV2_SNOOZE_REQUEST_KEY = 0x00020000U,
LPMV2_SNOOZE_REQUEST_ACMPHS0 = 0x00400000U,
 LPMV2_SNOOZE_REQUEST_RTC_ALARM = 0x01000000U,
LPMV2_SNOOZE_REQUEST_RTC_PERIOD = 0x02000000U,
LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW = 0x10000000U,
LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A = 0x20000000U,
 LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B = 0x40000000U
}

enum lpmv2_snooze_end_t { ,
 LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATCH = 0x80U ,
LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCES = 0x00U,
LPMV2_SNOOZE_END_AGT1_UNDERFLOW = 0x01U,
LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE = 0x02U,
 LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_NEGATED = 0x04U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH = 0x08U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,914 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A7

LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATCH = 0x10U,
LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH = 0x20U,
 LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATCH = 0x40U,
LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH = 0x80U
}

enum lpmv2_snooze_cancel_t { ,
 LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM = (79),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM = (80),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPM = (85),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPUM = (86),
 LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM = (376),
LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR_ERI = (377),
LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE = (41),
LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI = (134),
 LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUFN = (18)
}

enum lpmv2_snooze_dtc_t { , LPMV2_SNOOZE_DTC_DISABLE = 0U,
LPMV2_SNOOZE_DTC_ENABLE = 1U }

enum lpmv2_standby_wake_source_t { ,
 LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 = 0x00800000U ,
LPMV2_STANDBY_WAKE_SOURCE_VBATT = 0x00100000U ,
LPMV2_STANDBY_WAKE_SOURCE_IRQ0 = 0x00000001U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ1 = 0x00000002U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ2 = 0x00000004U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ3 = 0x00000008U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ4 = 0x00000010U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ5 = 0x00000020U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ6 = 0x00000040U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ7 = 0x00000080U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ8 = 0x00000100U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ9 = 0x00000200U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ10 = 0x00000400U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ11 = 0x00000800U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ12 = 0x00001000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ13 = 0x00002000U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ14 = 0x00004000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ15 = 0x00008000U,
LPMV2_STANDBY_WAKE_SOURCE_IWDT = 0x00010000U,
LPMV2_STANDBY_WAKE_SOURCE_KEY = 0x00020000U,
 LPMV2_STANDBY_WAKE_SOURCE_LVD1 = 0x00040000U,
LPMV2_STANDBY_WAKE_SOURCE_LVD2 = 0x00080000U,
LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 = 0x00400000U,
LPMV2_STANDBY_WAKE_SOURCE_RTCALM = 0x01000000U,
 LPMV2_STANDBY_WAKE_SOURCE_RTCPRD = 0x02000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBHS = 0x04000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBFS = 0x08000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1UD = 0x10000000U,
 LPMV2_STANDBY_WAKE_SOURCE_AGT1CA = 0x20000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1CB = 0x40000000U,
LPMV2_STANDBY_WAKE_SOURCE_IIC0 = 0x80000000U
}

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,915 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A7

enum lpmv2_output_port_enable_t { ,
LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANCE = 0U,
LPMV2_OUTPUT_PORT_ENABLE_RETAIN = 1U }

Functions

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

ssp_err_t R_LPMV2_Init (void)

 Perform any necessary initialization. More...

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

 Configure a low power mode. More...

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

 Enter low power mode (sleep/standby/deep standby) using WFI
macro. More...

ssp_err_t R_LPMV2_ClearIOKeep (void)

 Clear the IOKEEP bit after deep software stand by. More...

Detailed Description

Driver for Low Power Modes.

The LPMV2 driver supports low power modes deep standby, standby, sleep, and snooze.

Note
Not all low power modes are available on all MCU's.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,916 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A7

◆ lpmv2_output_port_enable_t

enum lpmv2_output_port_enable_t

Output port enable (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANC
E

0: In Software Standby Mode or Deep Software
Standby Mode, the address output pins, data
output pins, and other bus control signal
output pins are set to the high-impedance
state. In Snooze, the status of the address bus
and bus control signals are same as before
entering Software Standby Mode.

LPMV2_OUTPUT_PORT_ENABLE_RETAIN 1: In Software Standby Mode, the address
output pins, data output pins, and other bus
control signal output pins retain the output
state.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,917 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A7

◆ lpmv2_snooze_cancel_t

enum lpmv2_snooze_cancel_t

Snooze cancel control

Enumerator

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
M

ADC Channel 0 window compare match (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
UM

ADC Channel 0 window compare mismatch (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
M

ADC Channel 1 window compare match (S5D3,
S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
UM

ADC Channel 1 window compare mismatch
(S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM SCI0 address match event (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR
_ERI

SCI0 receive error (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLE
TE

DTC transfer completion (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt (all Synergy
MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUF
N

CTSU measurement end interrupt (all Synergy
MCUs).

◆ lpmv2_snooze_dtc_t

enum lpmv2_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPMV2_SNOOZE_DTC_DISABLE Disable DTC operation (all Synergy MCUs).

LPMV2_SNOOZE_DTC_ENABLE Enable DTC operation (all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,918 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A7

◆ lpmv2_snooze_end_t

enum lpmv2_snooze_end_t

Snooze end control

Enumerator

LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATC
H

SCI0 address mismatch (S5D3)

LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCE
S

Transition from Snooze to Normal mode
directly (all Synergy MCUs).

LPMV2_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow (all Synergy MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion (all Synergy
MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_N
EGATED

Not Last DTC transmission completion (all
Synergy MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATC
H

ADC Channel 0 compare mismatch (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATC
H

ADC 1 compare mismatch (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch (S124, S128, S1JA,
S3A1, S3A3, S3A6, S3A7, S5D5, S5D9, S7G2)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,919 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A7

◆ lpmv2_snooze_request_t

enum lpmv2_snooze_request_t

Snooze request sources

Enumerator

LPMV2_SNOOZE_REQUEST_ACMPLP Enable Low-speed analog comparator snooze
request (S124, S128, S1JA, S3A1, S3A3, S3A6,
S3A7).

LPMV2_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request
(S124, S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).
Enable RXD0/DALI falling edge snooze request
(S128, S1JA).

LPMV2_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,920 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A7

LPMV2_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request (S3A1, S3A3,
S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_KEY Enable KR snooze request (all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request (S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request (all
Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze request
(all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze request
(all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,921 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A7

◆ lpmv2_standby_wake_source_t

enum lpmv2_standby_wake_source_t

Wake from standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt
(S124, S128, S1JA, S3A1, S3A3, S3A6, S3A7).

LPMV2_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt (S3A1, S3A3, S3A6,
S3A7).

LPMV2_STANDBY_WAKE_SOURCE_IRQ0 IRQ0 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ1 IRQ1 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ2 IRQ2 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ3 IRQ3 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ4 IRQ4 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ5 IRQ5 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ6 IRQ6 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ7 IRQ7 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ8 IRQ8 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ9 IRQ9 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ10 IRQ10 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ11 IRQ11 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ12 IRQ12 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ13 IRQ13 (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ14 IRQ14 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,922 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A7

LPMV2_STANDBY_WAKE_SOURCE_IRQ15 IRQ15 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_KEY Key interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 Analog Comparator High-speed 0 interrupt
(S5D3, S5D5, S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt (S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1UD AGT1 underflow interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CA AGT1 compare match A interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CB AGT1 compare match B interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt (all Synergy MCUs).

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,923 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A7

◆ R_LPMV2_ClearIOKeep()

ssp_err_t R_LPMV2_ClearIOKeep (void)

Clear the IOKEEP bit after deep software stand by.

Return values
SSP_SUCCESS DSPBYCR_b.IOKEEP bit cleared Successfully.

SSP_ERR_UNSUPPORTED Deep stand by mode not supported on this
MCU.

◆ R_LPMV2_Init()

ssp_err_t R_LPMV2_Init (void)

Perform any necessary initialization.

Return values
SSP_SUCCESS LPMV2 Software lock initialized

◆ R_LPMV2_LowPowerConfigure()

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

Configure a low power mode.

NOTE: This function does not enter the low power mode, it only configures parameters of the mode.
Execution of the WFI instruction is what causes the low power mode to be entered.

Return values
SSP_SUCCESS Low power mode successfuly applied

SSP_ERR_INVALID_POINTER p_cfg is NULL

SSP_ERR_IN_USE Lock was not acquired

SSP_ERR_INVALID_HW_CONDITION Operating mode change transition was
detected (OPCMTSF, SOPCMTSF bits)

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,924 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A7

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configures MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,925 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A7

◆ R_LPMV2_LowPowerModeEnter()

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

Enter low power mode (sleep/standby/deep standby) using WFI macro.

Function will return after waking from low power mode.

Return values
SSP_SUCCESS Successful.

SSP_ERR_INVALID_HW_CONDITION HOCO was unstable during attempt to
revert operating mode.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

◆ R_LPMV2_VersionGet()

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_INVALID_POINTER p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,926 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S3A7

 Build Time Configurations
Renesas Synergy Software Package Reference » HAL Layer » LPMV2 S3A7

Macros

#define LPMV2_CFG_PARAM_CHECKING_ENABLE
 (BSP_CFG_PARAM_CHECKING_ENABLE)

Detailed Description

Macro Definition Documentation

◆ LPMV2_CFG_PARAM_CHECKING_ENABLE

#define LPMV2_CFG_PARAM_CHECKING_ENABLE (BSP_CFG_PARAM_CHECKING_ENABLE)

Specify whether to include code for API parameter checking. Valid settings include:

BSP_CFG_PARAM_CHECKING_ENABLE : Utilizes the system default setting from bsp_cfg.h
1 : Includes parameter checking
0 : Compiles out parameter checking

5.1.5.37 LPMV2 S5D3
Renesas Synergy Software Package Reference » HAL Layer

Driver for Low Power Modes. More...

Data Structures

struct lpmv2_mcu_cfg_t

Enumerations

enum lpmv2_snooze_request_t { ,
 LPMV2_SNOOZE_REQUEST_ACMPLP = 0x00800000U ,
LPMV2_SNOOZE_REQUEST_RXD0_FALLING = 0x00000000U,
LPMV2_SNOOZE_REQUEST_IRQ0 = 0x00000001U,
LPMV2_SNOOZE_REQUEST_IRQ1 = 0x00000002U,
 LPMV2_SNOOZE_REQUEST_IRQ2 = 0x00000004U,
LPMV2_SNOOZE_REQUEST_IRQ3 = 0x00000008U,
LPMV2_SNOOZE_REQUEST_IRQ4 = 0x00000010U,
LPMV2_SNOOZE_REQUEST_IRQ5 = 0x00000020U,
 LPMV2_SNOOZE_REQUEST_IRQ6 = 0x00000040U,
LPMV2_SNOOZE_REQUEST_IRQ7 = 0x00000080U,
LPMV2_SNOOZE_REQUEST_IRQ8 = 0x00000100U,
LPMV2_SNOOZE_REQUEST_IRQ9 = 0x00000200U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,927 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

 LPMV2_SNOOZE_REQUEST_IRQ10 = 0x00000400U,
LPMV2_SNOOZE_REQUEST_IRQ11 = 0x00000800U,
LPMV2_SNOOZE_REQUEST_IRQ12 = 0x00001000U,
LPMV2_SNOOZE_REQUEST_IRQ13 = 0x00002000U,
 LPMV2_SNOOZE_REQUEST_IRQ14 = 0x00004000U,
LPMV2_SNOOZE_REQUEST_IRQ15 = 0x00008000U,
LPMV2_SNOOZE_REQUEST_KEY = 0x00020000U,
LPMV2_SNOOZE_REQUEST_ACMPHS0 = 0x00400000U,
 LPMV2_SNOOZE_REQUEST_RTC_ALARM = 0x01000000U,
LPMV2_SNOOZE_REQUEST_RTC_PERIOD = 0x02000000U,
LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW = 0x10000000U,
LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A = 0x20000000U,
 LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B = 0x40000000U
}

enum lpmv2_snooze_end_t { ,
 LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATCH = 0x80U ,
LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCES = 0x00U,
LPMV2_SNOOZE_END_AGT1_UNDERFLOW = 0x01U,
LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE = 0x02U,
 LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_NEGATED = 0x04U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH = 0x08U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATCH = 0x10U,
LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH = 0x20U,
 LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATCH = 0x40U,
LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH = 0x80U
}

enum lpmv2_snooze_cancel_t { ,
 LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM = (79),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM = (80),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPM = (85),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPUM = (86),
 LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM = (376),
LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR_ERI = (377),
LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE = (41),
LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI = (134),
 LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUFN = (18)
}

enum lpmv2_snooze_dtc_t { , LPMV2_SNOOZE_DTC_DISABLE = 0U,
LPMV2_SNOOZE_DTC_ENABLE = 1U }

enum lpmv2_standby_wake_source_t { ,
 LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 = 0x00800000U ,
LPMV2_STANDBY_WAKE_SOURCE_VBATT = 0x00100000U ,
LPMV2_STANDBY_WAKE_SOURCE_IRQ0 = 0x00000001U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ1 = 0x00000002U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ2 = 0x00000004U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ3 = 0x00000008U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ4 = 0x00000010U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ5 = 0x00000020U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ6 = 0x00000040U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ7 = 0x00000080U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,928 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

LPMV2_STANDBY_WAKE_SOURCE_IRQ8 = 0x00000100U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ9 = 0x00000200U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ10 = 0x00000400U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ11 = 0x00000800U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ12 = 0x00001000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ13 = 0x00002000U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ14 = 0x00004000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ15 = 0x00008000U,
LPMV2_STANDBY_WAKE_SOURCE_IWDT = 0x00010000U,
LPMV2_STANDBY_WAKE_SOURCE_KEY = 0x00020000U,
 LPMV2_STANDBY_WAKE_SOURCE_LVD1 = 0x00040000U,
LPMV2_STANDBY_WAKE_SOURCE_LVD2 = 0x00080000U,
LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 = 0x00400000U,
LPMV2_STANDBY_WAKE_SOURCE_RTCALM = 0x01000000U,
 LPMV2_STANDBY_WAKE_SOURCE_RTCPRD = 0x02000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBHS = 0x04000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBFS = 0x08000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1UD = 0x10000000U,
 LPMV2_STANDBY_WAKE_SOURCE_AGT1CA = 0x20000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1CB = 0x40000000U,
LPMV2_STANDBY_WAKE_SOURCE_IIC0 = 0x80000000U
}

enum lpmv2_io_port_t { , LPMV2_IO_PORT_RESET = 0U,
LPMV2_IO_PORT_NO_CHANGE = 1U }

enum lpmv2_power_supply_t { , LPMV2_POWER_SUPPLY_DEEPCUT0 = 0U,
LPMV2_POWER_SUPPLY_DEEPCUT1 = 1U,
LPMV2_POWER_SUPPLY_DEEPCUT3 = 3UL }

enum lpmv2_deep_standby_cancel_edge_t { ,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_EDGE_NONE = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_RISING =
0x00000001U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_RISING =
0x00000002U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_RISING =
0x00000004U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_RISING =
0x00000008U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_RISING =
0x00000010U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_RISING =
0x00000020U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_RISING =
0x00000040U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_RISING =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,929 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

0x00000080U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_RISING =
0x00000100U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_RISING =
0x00000200U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_RISING =
0x00000400U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_RISING =
0x00000800U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_RISING =
0x00001000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_RISING =
0x00002000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_RISING =
0x00004000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15_RISING =
0x00008000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_RISING =
0x00010000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_RISING =
0x00020000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_RISING =
0x00100000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_FALLING = 0U
}

enum lpmv2_deep_standby_cancel_source_t { ,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RESET_ONLY = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0 = 0x00000001U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1 = 0x00000002U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2 = 0x00000004U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3 = 0x00000008U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4 = 0x00000010U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5 = 0x00000020U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6 = 0x00000040U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7 = 0x00000080U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8 = 0x00000100U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9 = 0x00000200U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10 = 0x00000400U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11 = 0x00000800U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12 = 0x00001000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13 = 0x00002000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14 = 0x00004000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15 = 0x00008000U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,930 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1 = 0x00010000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2 = 0x00020000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_INTERVAL =
0x00040000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_ALARM =
0x00080000U, LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI =
0x00100000U, LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBFS =
0x01000000U, LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBHS =
0x02000000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_AGT1 = 0x04000000U
}

enum lpmv2_output_port_enable_t { ,
LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANCE = 0U,
LPMV2_OUTPUT_PORT_ENABLE_RETAIN = 1U }

Functions

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

ssp_err_t R_LPMV2_Init (void)

 Perform any necessary initialization. More...

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

 Configure a low power mode. More...

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

 Enter low power mode (sleep/standby/deep standby) using WFI
macro. More...

ssp_err_t R_LPMV2_ClearIOKeep (void)

 Clear the IOKEEP bit after deep software stand by. More...

Detailed Description

Driver for Low Power Modes.

The LPMV2 driver supports low power modes deep standby, standby, sleep, and snooze.

Note
Not all low power modes are available on all MCU's.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,931 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

◆ lpmv2_deep_standby_cancel_edge_t

enum lpmv2_deep_standby_cancel_edge_t

Deep Standby Interrupt Edge

Enumerator

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_EDGE
_NONE

No options for a deep standby cancel source
(S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_
RISING

IRQ0-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_
FALLING

IRQ0-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_
RISING

IRQ1-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_
FALLING

IRQ1-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_
RISING

IRQ2-DS Pin Rising Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_
FALLING

IRQ2-DS Pin Falling Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_
RISING

IRQ3-DS Pin Rising Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_
FALLING

IRQ3-DS Pin Falling Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_
RISING

IRQ4-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_
FALLING

IRQ4-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_
RISING

IRQ5-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_
FALLING

IRQ5-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_
RISING

IRQ6-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_
FALLING

IRQ6-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_ IRQ7-DS Pin Rising Edge (S5D3, S5D5, S5D9,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,932 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

RISING S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_
FALLING

IRQ7-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_
RISING

IRQ8-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_
FALLING

IRQ8-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_
RISING

IRQ9-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_
FALLING

IRQ9-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10
_RISING

IRQ10-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10
_FALLING

IRQ10-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11
_RISING

IRQ11-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11
_FALLING

IRQ11-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12
_RISING

IRQ12-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12
_FALLING

IRQ12-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13
_RISING

IRQ13-DS Pin Rising Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13
_FALLING

IRQ13-DS Pin Falling Edge (S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14
_RISING

IRQ14-DS Pin Rising Edge (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14
_FALLING

IRQ14-DS Pin Falling Edge (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15
_RISING

IRQ15-DS Pin Rising Edge (S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15
_FALLING

IRQ15-DS Pin Falling Edge (S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,933 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

RISING LVD1 Rising Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_
FALLING

LVD1 Falling Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_
RISING

LVD2 Rising Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_
FALLING

LVD2 Falling Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_R
ISING

NMI Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_F
ALLING

NMI Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

◆ lpmv2_deep_standby_cancel_source_t

enum lpmv2_deep_standby_cancel_source_t

Deep Standby cancel sources

Enumerator

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RESET
_ONLY

Cancel deep standby only by reset (S5D3,
S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0 IRQ0 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1 IRQ1 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2 IRQ2 (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3 IRQ3 (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4 IRQ4 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5 IRQ5 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6 IRQ6 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7 IRQ7 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8 IRQ8 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9 IRQ9 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10

IRQ10 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11 IRQ11 (S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,934 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12

IRQ12 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13

IRQ13 (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14

IRQ14 (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15

IRQ15 (S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1 LVD1 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2 LVD2 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_I
NTERVAL

RTC Interval Interrupt (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_A
LARM

RTC Alarm Interrupt (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI NMI (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBFS

USBFS Suspend/Resume (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBH
S

USBHS Suspend/Resume (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_AGT1 AGT1 Underflow (S5D3, S5D5, S5D9, S7G2).

◆ lpmv2_io_port_t

enum lpmv2_io_port_t

I/O port state after Deep Software Standby mode (S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_IO_PORT_RESET When the Deep Software Standby mode is
canceled, the I/O ports are in the reset state.

LPMV2_IO_PORT_NO_CHANGE When the Deep Software Standby mode is
canceled, the I/O ports are in the same state as
in the Deep Software Standby mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,935 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

◆ lpmv2_output_port_enable_t

enum lpmv2_output_port_enable_t

Output port enable (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANC
E

0: In Software Standby Mode or Deep Software
Standby Mode, the address output pins, data
output pins, and other bus control signal
output pins are set to the high-impedance
state. In Snooze, the status of the address bus
and bus control signals are same as before
entering Software Standby Mode.

LPMV2_OUTPUT_PORT_ENABLE_RETAIN 1: In Software Standby Mode, the address
output pins, data output pins, and other bus
control signal output pins retain the output
state.

◆ lpmv2_power_supply_t

enum lpmv2_power_supply_t

Power supply control (S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_POWER_SUPPLY_DEEPCUT0 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is supplied in deep software
standby mode.

LPMV2_POWER_SUPPLY_DEEPCUT1 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode.

LPMV2_POWER_SUPPLY_DEEPCUT3 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode. In addition, LVD is disabled and
the low power function in a poweron reset
circuit is enabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,936 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

◆ lpmv2_snooze_cancel_t

enum lpmv2_snooze_cancel_t

Snooze cancel control

Enumerator

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
M

ADC Channel 0 window compare match (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
UM

ADC Channel 0 window compare mismatch (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
M

ADC Channel 1 window compare match (S5D3,
S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
UM

ADC Channel 1 window compare mismatch
(S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM SCI0 address match event (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR
_ERI

SCI0 receive error (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLE
TE

DTC transfer completion (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt (all Synergy
MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUF
N

CTSU measurement end interrupt (all Synergy
MCUs).

◆ lpmv2_snooze_dtc_t

enum lpmv2_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPMV2_SNOOZE_DTC_DISABLE Disable DTC operation (all Synergy MCUs).

LPMV2_SNOOZE_DTC_ENABLE Enable DTC operation (all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,937 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

◆ lpmv2_snooze_end_t

enum lpmv2_snooze_end_t

Snooze end control

Enumerator

LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATC
H

SCI0 address mismatch (S5D3)

LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCE
S

Transition from Snooze to Normal mode
directly (all Synergy MCUs).

LPMV2_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow (all Synergy MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion (all Synergy
MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_N
EGATED

Not Last DTC transmission completion (all
Synergy MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATC
H

ADC Channel 0 compare mismatch (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATC
H

ADC 1 compare mismatch (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch (S124, S128, S1JA,
S3A1, S3A3, S3A6, S3A7, S5D5, S5D9, S7G2)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,938 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

◆ lpmv2_snooze_request_t

enum lpmv2_snooze_request_t

Snooze request sources

Enumerator

LPMV2_SNOOZE_REQUEST_ACMPLP Enable Low-speed analog comparator snooze
request (S124, S128, S1JA, S3A1, S3A3, S3A6,
S3A7).

LPMV2_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request
(S124, S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).
Enable RXD0/DALI falling edge snooze request
(S128, S1JA).

LPMV2_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,939 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

LPMV2_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request (S3A1, S3A3,
S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_KEY Enable KR snooze request (all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request (S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request (all
Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze request
(all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze request
(all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,940 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

◆ lpmv2_standby_wake_source_t

enum lpmv2_standby_wake_source_t

Wake from standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt
(S124, S128, S1JA, S3A1, S3A3, S3A6, S3A7).

LPMV2_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt (S3A1, S3A3, S3A6,
S3A7).

LPMV2_STANDBY_WAKE_SOURCE_IRQ0 IRQ0 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ1 IRQ1 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ2 IRQ2 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ3 IRQ3 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ4 IRQ4 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ5 IRQ5 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ6 IRQ6 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ7 IRQ7 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ8 IRQ8 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ9 IRQ9 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ10 IRQ10 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ11 IRQ11 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ12 IRQ12 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ13 IRQ13 (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ14 IRQ14 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,941 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

LPMV2_STANDBY_WAKE_SOURCE_IRQ15 IRQ15 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_KEY Key interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 Analog Comparator High-speed 0 interrupt
(S5D3, S5D5, S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt (S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1UD AGT1 underflow interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CA AGT1 compare match A interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CB AGT1 compare match B interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt (all Synergy MCUs).

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,942 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

◆ R_LPMV2_ClearIOKeep()

ssp_err_t R_LPMV2_ClearIOKeep (void)

Clear the IOKEEP bit after deep software stand by.

Return values
SSP_SUCCESS DSPBYCR_b.IOKEEP bit cleared Successfully.

SSP_ERR_UNSUPPORTED Deep stand by mode not supported on this
MCU.

◆ R_LPMV2_Init()

ssp_err_t R_LPMV2_Init (void)

Perform any necessary initialization.

Return values
SSP_SUCCESS LPMV2 Software lock initialized

◆ R_LPMV2_LowPowerConfigure()

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

Configure a low power mode.

NOTE: This function does not enter the low power mode, it only configures parameters of the mode.
Execution of the WFI instruction is what causes the low power mode to be entered.

Return values
SSP_SUCCESS Low power mode successfuly applied

SSP_ERR_INVALID_POINTER p_cfg is NULL

SSP_ERR_IN_USE Lock was not acquired

SSP_ERR_INVALID_HW_CONDITION Operating mode change transition was
detected (OPCMTSF, SOPCMTSF bits)

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,943 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configures MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,944 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

◆ R_LPMV2_LowPowerModeEnter()

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

Enter low power mode (sleep/standby/deep standby) using WFI macro.

Function will return after waking from low power mode.

Return values
SSP_SUCCESS Successful.

SSP_ERR_INVALID_HW_CONDITION HOCO was unstable during attempt to
revert operating mode.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

◆ R_LPMV2_VersionGet()

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_INVALID_POINTER p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,945 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3

 lpmv2_mcu_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » LPMV2 S124Renesas Synergy Software
Package Reference » HAL Layer » | LPMV2 S128Renesas Synergy Software Package Reference » HAL
Layer » | LPMV2 S1JARenesas Synergy Software Package Reference » HAL Layer » | LPMV2 S3A1
Renesas Synergy Software Package Reference » HAL Layer » | LPMV2 S3A3Renesas Synergy
Software Package Reference » HAL Layer » | LPMV2 S3A6Renesas Synergy Software Package
Reference » HAL Layer » | LPMV2 S3A7Renesas Synergy Software Package Reference » HAL Layer » |
LPMV2 S5D3Renesas Synergy Software Package Reference » HAL Layer » | LPMV2 S5D5Renesas
Synergy Software Package Reference » HAL Layer » | LPMV2 S5D9Renesas Synergy Software
Package Reference » HAL Layer » | LPMV2 S7G2

#include <r_lpmv2_s7g2.h>

Data Fields

lpmv2_standby_wake_sourc
e_bits_t

standby_wake_sources

lpmv2_snooze_request_t snooze_request_source

lpmv2_snooze_end_bits_t snooze_end_sources

lpmv2_snooze_cancel_t snooze_cancel_sources

lpmv2_snooze_dtc_t dtc_state_in_snooze

lpmv2_output_port_enable_t output_port_enable

lpmv2_io_port_t io_port_state

lpmv2_power_supply_t power_supply_state

lpmv2_deep_standby_cancel
_source_bits_t

deep_standby_cancel_source

lpmv2_deep_standby_cancel
_edge_bits_t

deep_standby_cancel_edge

Detailed Description

MCU-specific configuration structure

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,946 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3 > lpmv2_mcu_cfg_t Struct Reference

◆ deep_standby_cancel_edge

lpmv2_deep_standby_cancel_edge_bits_t lpmv2_mcu_cfg_t::deep_standby_cancel_edge

Signal edges for the sources that can trigger exit from deep standby (S5D3, S5D5, S5D9, S7G2).

◆ deep_standby_cancel_source

lpmv2_deep_standby_cancel_source_bits_t lpmv2_mcu_cfg_t::deep_standby_cancel_source

Sources that can trigger exit from deep standby (S5D3, S5D5, S5D9, S7G2).

◆ dtc_state_in_snooze

lpmv2_snooze_dtc_t lpmv2_mcu_cfg_t::dtc_state_in_snooze

State of DTC in snooze mode, enabled or disabled (all Synergy MCUs).

◆ io_port_state

lpmv2_io_port_t lpmv2_mcu_cfg_t::io_port_state

IO port state in deep standby (maintained or reset) (S5D3, S5D5, S5D9, S7G2).

◆ output_port_enable

lpmv2_output_port_enable_t lpmv2_mcu_cfg_t::output_port_enable

Output port enabled/disabled in standby and deep standby (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9,
S7G2).

◆ power_supply_state

lpmv2_power_supply_t lpmv2_mcu_cfg_t::power_supply_state

Internal power supply state in standby and deep standby (deepcut) (S5D3, S5D5, S5D9, S7G2).

◆ snooze_cancel_sources

lpmv2_snooze_cancel_t lpmv2_mcu_cfg_t::snooze_cancel_sources

list of snooze cancel sources (all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,947 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D3 > lpmv2_mcu_cfg_t Struct Reference

◆ snooze_end_sources

lpmv2_snooze_end_bits_t lpmv2_mcu_cfg_t::snooze_end_sources

Bitwise list of snooze end sources (all Synergy MCUs).

◆ snooze_request_source

lpmv2_snooze_request_t lpmv2_mcu_cfg_t::snooze_request_source

Snooze request source (all Synergy MCUs).

◆ standby_wake_sources

lpmv2_standby_wake_source_bits_t lpmv2_mcu_cfg_t::standby_wake_sources

Bitwise list of sources to wake from standby (all Synergy MCUs).

The documentation for this struct was generated from the following files:

r_lpmv2_s124.h
r_lpmv2_s128.h
r_lpmv2_s1ja.h
r_lpmv2_s3a1.h
r_lpmv2_s3a3.h
r_lpmv2_s3a6.h
r_lpmv2_s3a7.h
r_lpmv2_s5d3.h
r_lpmv2_s5d5.h
r_lpmv2_s5d9.h
r_lpmv2_s7g2.h

5.1.5.38 LPMV2 S5D5
Renesas Synergy Software Package Reference » HAL Layer

Driver for Low Power Modes. More...

Modules

Build Time Configurations

Data Structures

struct lpmv2_mcu_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,948 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

Enumerations

enum lpmv2_snooze_request_t { ,
 LPMV2_SNOOZE_REQUEST_ACMPLP = 0x00800000U ,
LPMV2_SNOOZE_REQUEST_RXD0_FALLING = 0x00000000U,
LPMV2_SNOOZE_REQUEST_IRQ0 = 0x00000001U,
LPMV2_SNOOZE_REQUEST_IRQ1 = 0x00000002U,
 LPMV2_SNOOZE_REQUEST_IRQ2 = 0x00000004U,
LPMV2_SNOOZE_REQUEST_IRQ3 = 0x00000008U,
LPMV2_SNOOZE_REQUEST_IRQ4 = 0x00000010U,
LPMV2_SNOOZE_REQUEST_IRQ5 = 0x00000020U,
 LPMV2_SNOOZE_REQUEST_IRQ6 = 0x00000040U,
LPMV2_SNOOZE_REQUEST_IRQ7 = 0x00000080U,
LPMV2_SNOOZE_REQUEST_IRQ8 = 0x00000100U,
LPMV2_SNOOZE_REQUEST_IRQ9 = 0x00000200U,
 LPMV2_SNOOZE_REQUEST_IRQ10 = 0x00000400U,
LPMV2_SNOOZE_REQUEST_IRQ11 = 0x00000800U,
LPMV2_SNOOZE_REQUEST_IRQ12 = 0x00001000U,
LPMV2_SNOOZE_REQUEST_IRQ13 = 0x00002000U,
 LPMV2_SNOOZE_REQUEST_IRQ14 = 0x00004000U,
LPMV2_SNOOZE_REQUEST_IRQ15 = 0x00008000U,
LPMV2_SNOOZE_REQUEST_KEY = 0x00020000U,
LPMV2_SNOOZE_REQUEST_ACMPHS0 = 0x00400000U,
 LPMV2_SNOOZE_REQUEST_RTC_ALARM = 0x01000000U,
LPMV2_SNOOZE_REQUEST_RTC_PERIOD = 0x02000000U,
LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW = 0x10000000U,
LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A = 0x20000000U,
 LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B = 0x40000000U
}

enum lpmv2_snooze_end_t { ,
 LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATCH = 0x80U ,
LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCES = 0x00U,
LPMV2_SNOOZE_END_AGT1_UNDERFLOW = 0x01U,
LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE = 0x02U,
 LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_NEGATED = 0x04U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH = 0x08U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATCH = 0x10U,
LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH = 0x20U,
 LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATCH = 0x40U,
LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH = 0x80U
}

enum lpmv2_snooze_cancel_t { ,
 LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM = (79),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM = (80),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPM = (85),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPUM = (86),
 LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM = (376),
LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR_ERI = (377),
LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE = (41),
LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI = (134),
 LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUFN = (18)
}

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,949 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

enum lpmv2_snooze_dtc_t { , LPMV2_SNOOZE_DTC_DISABLE = 0U,
LPMV2_SNOOZE_DTC_ENABLE = 1U }

enum lpmv2_standby_wake_source_t { ,
 LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 = 0x00800000U ,
LPMV2_STANDBY_WAKE_SOURCE_VBATT = 0x00100000U ,
LPMV2_STANDBY_WAKE_SOURCE_IRQ0 = 0x00000001U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ1 = 0x00000002U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ2 = 0x00000004U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ3 = 0x00000008U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ4 = 0x00000010U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ5 = 0x00000020U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ6 = 0x00000040U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ7 = 0x00000080U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ8 = 0x00000100U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ9 = 0x00000200U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ10 = 0x00000400U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ11 = 0x00000800U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ12 = 0x00001000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ13 = 0x00002000U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ14 = 0x00004000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ15 = 0x00008000U,
LPMV2_STANDBY_WAKE_SOURCE_IWDT = 0x00010000U,
LPMV2_STANDBY_WAKE_SOURCE_KEY = 0x00020000U,
 LPMV2_STANDBY_WAKE_SOURCE_LVD1 = 0x00040000U,
LPMV2_STANDBY_WAKE_SOURCE_LVD2 = 0x00080000U,
LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 = 0x00400000U,
LPMV2_STANDBY_WAKE_SOURCE_RTCALM = 0x01000000U,
 LPMV2_STANDBY_WAKE_SOURCE_RTCPRD = 0x02000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBHS = 0x04000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBFS = 0x08000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1UD = 0x10000000U,
 LPMV2_STANDBY_WAKE_SOURCE_AGT1CA = 0x20000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1CB = 0x40000000U,
LPMV2_STANDBY_WAKE_SOURCE_IIC0 = 0x80000000U
}

enum lpmv2_io_port_t { , LPMV2_IO_PORT_RESET = 0U,
LPMV2_IO_PORT_NO_CHANGE = 1U }

enum lpmv2_power_supply_t { , LPMV2_POWER_SUPPLY_DEEPCUT0 = 0U,
LPMV2_POWER_SUPPLY_DEEPCUT1 = 1U,
LPMV2_POWER_SUPPLY_DEEPCUT3 = 3UL }

enum lpmv2_deep_standby_cancel_edge_t { ,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_EDGE_NONE = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_RISING =
0x00000001U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_RISING =
0x00000002U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_RISING =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,950 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

0x00000004U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_RISING =
0x00000008U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_RISING =
0x00000010U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_RISING =
0x00000020U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_RISING =
0x00000040U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_RISING =
0x00000080U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_RISING =
0x00000100U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_RISING =
0x00000200U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_RISING =
0x00000400U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_RISING =
0x00000800U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_RISING =
0x00001000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_RISING =
0x00002000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_RISING =
0x00004000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15_RISING =
0x00008000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_RISING =
0x00010000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_RISING =
0x00020000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_RISING =
0x00100000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_FALLING = 0U
}

enum lpmv2_deep_standby_cancel_source_t { ,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RESET_ONLY = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0 = 0x00000001U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,951 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1 = 0x00000002U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2 = 0x00000004U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3 = 0x00000008U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4 = 0x00000010U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5 = 0x00000020U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6 = 0x00000040U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7 = 0x00000080U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8 = 0x00000100U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9 = 0x00000200U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10 = 0x00000400U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11 = 0x00000800U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12 = 0x00001000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13 = 0x00002000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14 = 0x00004000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15 = 0x00008000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1 = 0x00010000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2 = 0x00020000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_INTERVAL =
0x00040000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_ALARM =
0x00080000U, LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI =
0x00100000U, LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBFS =
0x01000000U, LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBHS =
0x02000000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_AGT1 = 0x04000000U
}

enum lpmv2_output_port_enable_t { ,
LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANCE = 0U,
LPMV2_OUTPUT_PORT_ENABLE_RETAIN = 1U }

Functions

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

ssp_err_t R_LPMV2_Init (void)

 Perform any necessary initialization. More...

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

 Configure a low power mode. More...

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

 Enter low power mode (sleep/standby/deep standby) using WFI
macro. More...

ssp_err_t R_LPMV2_ClearIOKeep (void)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,952 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

 Clear the IOKEEP bit after deep software stand by. More...

Detailed Description

Driver for Low Power Modes.

The LPMV2 driver supports low power modes deep standby, standby, sleep, and snooze.

Note
Not all low power modes are available on all MCU's.

Enumeration Type Documentation

◆ lpmv2_deep_standby_cancel_edge_t

enum lpmv2_deep_standby_cancel_edge_t

Deep Standby Interrupt Edge

Enumerator

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_EDGE
_NONE

No options for a deep standby cancel source
(S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_
RISING

IRQ0-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_
FALLING

IRQ0-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_
RISING

IRQ1-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_
FALLING

IRQ1-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_
RISING

IRQ2-DS Pin Rising Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_
FALLING

IRQ2-DS Pin Falling Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_
RISING

IRQ3-DS Pin Rising Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_
FALLING

IRQ3-DS Pin Falling Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_
RISING

IRQ4-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_
FALLING

IRQ4-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,953 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_
RISING

IRQ5-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_
FALLING

IRQ5-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_
RISING

IRQ6-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_
FALLING

IRQ6-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_
RISING

IRQ7-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_
FALLING

IRQ7-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_
RISING

IRQ8-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_
FALLING

IRQ8-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_
RISING

IRQ9-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_
FALLING

IRQ9-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10
_RISING

IRQ10-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10
_FALLING

IRQ10-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11
_RISING

IRQ11-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11
_FALLING

IRQ11-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12
_RISING

IRQ12-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12
_FALLING

IRQ12-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13
_RISING

IRQ13-DS Pin Rising Edge (S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,954 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13
_FALLING

IRQ13-DS Pin Falling Edge (S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14
_RISING

IRQ14-DS Pin Rising Edge (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14
_FALLING

IRQ14-DS Pin Falling Edge (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15
_RISING

IRQ15-DS Pin Rising Edge (S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15
_FALLING

IRQ15-DS Pin Falling Edge (S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_
RISING

LVD1 Rising Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_
FALLING

LVD1 Falling Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_
RISING

LVD2 Rising Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_
FALLING

LVD2 Falling Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_R
ISING

NMI Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_F
ALLING

NMI Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

◆ lpmv2_deep_standby_cancel_source_t

enum lpmv2_deep_standby_cancel_source_t

Deep Standby cancel sources

Enumerator

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RESET
_ONLY

Cancel deep standby only by reset (S5D3,
S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0 IRQ0 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1 IRQ1 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2 IRQ2 (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3 IRQ3 (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4 IRQ4 (S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,955 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5 IRQ5 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6 IRQ6 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7 IRQ7 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8 IRQ8 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9 IRQ9 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10

IRQ10 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11

IRQ11 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12

IRQ12 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13

IRQ13 (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14

IRQ14 (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15

IRQ15 (S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1 LVD1 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2 LVD2 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_I
NTERVAL

RTC Interval Interrupt (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_A
LARM

RTC Alarm Interrupt (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI NMI (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBFS

USBFS Suspend/Resume (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBH
S

USBHS Suspend/Resume (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_AGT1 AGT1 Underflow (S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,956 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

◆ lpmv2_io_port_t

enum lpmv2_io_port_t

I/O port state after Deep Software Standby mode (S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_IO_PORT_RESET When the Deep Software Standby mode is
canceled, the I/O ports are in the reset state.

LPMV2_IO_PORT_NO_CHANGE When the Deep Software Standby mode is
canceled, the I/O ports are in the same state as
in the Deep Software Standby mode.

◆ lpmv2_output_port_enable_t

enum lpmv2_output_port_enable_t

Output port enable (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANC
E

0: In Software Standby Mode or Deep Software
Standby Mode, the address output pins, data
output pins, and other bus control signal
output pins are set to the high-impedance
state. In Snooze, the status of the address bus
and bus control signals are same as before
entering Software Standby Mode.

LPMV2_OUTPUT_PORT_ENABLE_RETAIN 1: In Software Standby Mode, the address
output pins, data output pins, and other bus
control signal output pins retain the output
state.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,957 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

◆ lpmv2_power_supply_t

enum lpmv2_power_supply_t

Power supply control (S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_POWER_SUPPLY_DEEPCUT0 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is supplied in deep software
standby mode.

LPMV2_POWER_SUPPLY_DEEPCUT1 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode.

LPMV2_POWER_SUPPLY_DEEPCUT3 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode. In addition, LVD is disabled and
the low power function in a poweron reset
circuit is enabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,958 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

◆ lpmv2_snooze_cancel_t

enum lpmv2_snooze_cancel_t

Snooze cancel control

Enumerator

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
M

ADC Channel 0 window compare match (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
UM

ADC Channel 0 window compare mismatch (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
M

ADC Channel 1 window compare match (S5D3,
S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
UM

ADC Channel 1 window compare mismatch
(S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM SCI0 address match event (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR
_ERI

SCI0 receive error (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLE
TE

DTC transfer completion (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt (all Synergy
MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUF
N

CTSU measurement end interrupt (all Synergy
MCUs).

◆ lpmv2_snooze_dtc_t

enum lpmv2_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPMV2_SNOOZE_DTC_DISABLE Disable DTC operation (all Synergy MCUs).

LPMV2_SNOOZE_DTC_ENABLE Enable DTC operation (all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,959 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

◆ lpmv2_snooze_end_t

enum lpmv2_snooze_end_t

Snooze end control

Enumerator

LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATC
H

SCI0 address mismatch (S5D3)

LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCE
S

Transition from Snooze to Normal mode
directly (all Synergy MCUs).

LPMV2_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow (all Synergy MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion (all Synergy
MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_N
EGATED

Not Last DTC transmission completion (all
Synergy MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATC
H

ADC Channel 0 compare mismatch (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATC
H

ADC 1 compare mismatch (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch (S124, S128, S1JA,
S3A1, S3A3, S3A6, S3A7, S5D5, S5D9, S7G2)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,960 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

◆ lpmv2_snooze_request_t

enum lpmv2_snooze_request_t

Snooze request sources

Enumerator

LPMV2_SNOOZE_REQUEST_ACMPLP Enable Low-speed analog comparator snooze
request (S124, S128, S1JA, S3A1, S3A3, S3A6,
S3A7).

LPMV2_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request
(S124, S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).
Enable RXD0/DALI falling edge snooze request
(S128, S1JA).

LPMV2_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,961 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

LPMV2_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request (S3A1, S3A3,
S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_KEY Enable KR snooze request (all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request (S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request (all
Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze request
(all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze request
(all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,962 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

◆ lpmv2_standby_wake_source_t

enum lpmv2_standby_wake_source_t

Wake from standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt
(S124, S128, S1JA, S3A1, S3A3, S3A6, S3A7).

LPMV2_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt (S3A1, S3A3, S3A6,
S3A7).

LPMV2_STANDBY_WAKE_SOURCE_IRQ0 IRQ0 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ1 IRQ1 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ2 IRQ2 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ3 IRQ3 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ4 IRQ4 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ5 IRQ5 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ6 IRQ6 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ7 IRQ7 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ8 IRQ8 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ9 IRQ9 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ10 IRQ10 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ11 IRQ11 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ12 IRQ12 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ13 IRQ13 (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ14 IRQ14 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,963 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

LPMV2_STANDBY_WAKE_SOURCE_IRQ15 IRQ15 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_KEY Key interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 Analog Comparator High-speed 0 interrupt
(S5D3, S5D5, S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt (S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1UD AGT1 underflow interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CA AGT1 compare match A interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CB AGT1 compare match B interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt (all Synergy MCUs).

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,964 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

◆ R_LPMV2_ClearIOKeep()

ssp_err_t R_LPMV2_ClearIOKeep (void)

Clear the IOKEEP bit after deep software stand by.

Return values
SSP_SUCCESS DSPBYCR_b.IOKEEP bit cleared Successfully.

SSP_ERR_UNSUPPORTED Deep stand by mode not supported on this
MCU.

◆ R_LPMV2_Init()

ssp_err_t R_LPMV2_Init (void)

Perform any necessary initialization.

Return values
SSP_SUCCESS LPMV2 Software lock initialized

◆ R_LPMV2_LowPowerConfigure()

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

Configure a low power mode.

NOTE: This function does not enter the low power mode, it only configures parameters of the mode.
Execution of the WFI instruction is what causes the low power mode to be entered.

Return values
SSP_SUCCESS Low power mode successfuly applied

SSP_ERR_INVALID_POINTER p_cfg is NULL

SSP_ERR_IN_USE Lock was not acquired

SSP_ERR_INVALID_HW_CONDITION Operating mode change transition was
detected (OPCMTSF, SOPCMTSF bits)

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,965 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configures MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,966 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

◆ R_LPMV2_LowPowerModeEnter()

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

Enter low power mode (sleep/standby/deep standby) using WFI macro.

Function will return after waking from low power mode.

Return values
SSP_SUCCESS Successful.

SSP_ERR_INVALID_HW_CONDITION HOCO was unstable during attempt to
revert operating mode.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

◆ R_LPMV2_VersionGet()

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_INVALID_POINTER p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,967 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D5

 Build Time Configurations
Renesas Synergy Software Package Reference » HAL Layer » LPMV2 S5D5

Macros

#define LPMV2_CFG_PARAM_CHECKING_ENABLE
 (BSP_CFG_PARAM_CHECKING_ENABLE)

Detailed Description

Macro Definition Documentation

◆ LPMV2_CFG_PARAM_CHECKING_ENABLE

#define LPMV2_CFG_PARAM_CHECKING_ENABLE (BSP_CFG_PARAM_CHECKING_ENABLE)

Specify whether to include code for API parameter checking. Valid settings include:

BSP_CFG_PARAM_CHECKING_ENABLE : Utilizes the system default setting from bsp_cfg.h
1 : Includes parameter checking
0 : Compiles out parameter checking

5.1.5.39 LPMV2 S5D9
Renesas Synergy Software Package Reference » HAL Layer

Driver for Low Power Modes. More...

Modules

Build Time Configurations

Data Structures

struct lpmv2_mcu_cfg_t

Enumerations

enum lpmv2_snooze_request_t { ,
 LPMV2_SNOOZE_REQUEST_ACMPLP = 0x00800000U ,
LPMV2_SNOOZE_REQUEST_RXD0_FALLING = 0x00000000U,
LPMV2_SNOOZE_REQUEST_IRQ0 = 0x00000001U,
LPMV2_SNOOZE_REQUEST_IRQ1 = 0x00000002U,
 LPMV2_SNOOZE_REQUEST_IRQ2 = 0x00000004U,
LPMV2_SNOOZE_REQUEST_IRQ3 = 0x00000008U,
LPMV2_SNOOZE_REQUEST_IRQ4 = 0x00000010U,
LPMV2_SNOOZE_REQUEST_IRQ5 = 0x00000020U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,968 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

 LPMV2_SNOOZE_REQUEST_IRQ6 = 0x00000040U,
LPMV2_SNOOZE_REQUEST_IRQ7 = 0x00000080U,
LPMV2_SNOOZE_REQUEST_IRQ8 = 0x00000100U,
LPMV2_SNOOZE_REQUEST_IRQ9 = 0x00000200U,
 LPMV2_SNOOZE_REQUEST_IRQ10 = 0x00000400U,
LPMV2_SNOOZE_REQUEST_IRQ11 = 0x00000800U,
LPMV2_SNOOZE_REQUEST_IRQ12 = 0x00001000U,
LPMV2_SNOOZE_REQUEST_IRQ13 = 0x00002000U,
 LPMV2_SNOOZE_REQUEST_IRQ14 = 0x00004000U,
LPMV2_SNOOZE_REQUEST_IRQ15 = 0x00008000U,
LPMV2_SNOOZE_REQUEST_KEY = 0x00020000U,
LPMV2_SNOOZE_REQUEST_ACMPHS0 = 0x00400000U,
 LPMV2_SNOOZE_REQUEST_RTC_ALARM = 0x01000000U,
LPMV2_SNOOZE_REQUEST_RTC_PERIOD = 0x02000000U,
LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW = 0x10000000U,
LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A = 0x20000000U,
 LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B = 0x40000000U
}

enum lpmv2_snooze_end_t { ,
 LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATCH = 0x80U ,
LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCES = 0x00U,
LPMV2_SNOOZE_END_AGT1_UNDERFLOW = 0x01U,
LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE = 0x02U,
 LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_NEGATED = 0x04U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH = 0x08U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATCH = 0x10U,
LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH = 0x20U,
 LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATCH = 0x40U,
LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH = 0x80U
}

enum lpmv2_snooze_cancel_t { ,
 LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM = (79),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM = (80),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPM = (85),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPUM = (86),
 LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM = (376),
LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR_ERI = (377),
LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE = (41),
LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI = (134),
 LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUFN = (18)
}

enum lpmv2_snooze_dtc_t { , LPMV2_SNOOZE_DTC_DISABLE = 0U,
LPMV2_SNOOZE_DTC_ENABLE = 1U }

enum lpmv2_standby_wake_source_t { ,
 LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 = 0x00800000U ,
LPMV2_STANDBY_WAKE_SOURCE_VBATT = 0x00100000U ,
LPMV2_STANDBY_WAKE_SOURCE_IRQ0 = 0x00000001U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ1 = 0x00000002U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ2 = 0x00000004U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ3 = 0x00000008U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,969 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

LPMV2_STANDBY_WAKE_SOURCE_IRQ4 = 0x00000010U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ5 = 0x00000020U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ6 = 0x00000040U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ7 = 0x00000080U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ8 = 0x00000100U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ9 = 0x00000200U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ10 = 0x00000400U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ11 = 0x00000800U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ12 = 0x00001000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ13 = 0x00002000U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ14 = 0x00004000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ15 = 0x00008000U,
LPMV2_STANDBY_WAKE_SOURCE_IWDT = 0x00010000U,
LPMV2_STANDBY_WAKE_SOURCE_KEY = 0x00020000U,
 LPMV2_STANDBY_WAKE_SOURCE_LVD1 = 0x00040000U,
LPMV2_STANDBY_WAKE_SOURCE_LVD2 = 0x00080000U,
LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 = 0x00400000U,
LPMV2_STANDBY_WAKE_SOURCE_RTCALM = 0x01000000U,
 LPMV2_STANDBY_WAKE_SOURCE_RTCPRD = 0x02000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBHS = 0x04000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBFS = 0x08000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1UD = 0x10000000U,
 LPMV2_STANDBY_WAKE_SOURCE_AGT1CA = 0x20000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1CB = 0x40000000U,
LPMV2_STANDBY_WAKE_SOURCE_IIC0 = 0x80000000U
}

enum lpmv2_io_port_t { , LPMV2_IO_PORT_RESET = 0U,
LPMV2_IO_PORT_NO_CHANGE = 1U }

enum lpmv2_power_supply_t { , LPMV2_POWER_SUPPLY_DEEPCUT0 = 0U,
LPMV2_POWER_SUPPLY_DEEPCUT1 = 1U,
LPMV2_POWER_SUPPLY_DEEPCUT3 = 3UL }

enum lpmv2_deep_standby_cancel_edge_t { ,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_EDGE_NONE = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_RISING =
0x00000001U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_RISING =
0x00000002U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_RISING =
0x00000004U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_RISING =
0x00000008U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_RISING =
0x00000010U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_RISING =
0x00000020U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_FALLING = 0U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,970 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_RISING =
0x00000040U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_RISING =
0x00000080U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_RISING =
0x00000100U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_RISING =
0x00000200U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_RISING =
0x00000400U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_RISING =
0x00000800U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_RISING =
0x00001000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_RISING =
0x00002000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_RISING =
0x00004000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15_RISING =
0x00008000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_RISING =
0x00010000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_RISING =
0x00020000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_RISING =
0x00100000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_FALLING = 0U
}

enum lpmv2_deep_standby_cancel_source_t { ,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RESET_ONLY = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0 = 0x00000001U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1 = 0x00000002U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2 = 0x00000004U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3 = 0x00000008U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4 = 0x00000010U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5 = 0x00000020U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6 = 0x00000040U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7 = 0x00000080U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8 = 0x00000100U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9 = 0x00000200U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10 = 0x00000400U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11 = 0x00000800U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,971 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12 = 0x00001000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13 = 0x00002000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14 = 0x00004000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15 = 0x00008000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1 = 0x00010000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2 = 0x00020000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_INTERVAL =
0x00040000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_ALARM =
0x00080000U, LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI =
0x00100000U, LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBFS =
0x01000000U, LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBHS =
0x02000000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_AGT1 = 0x04000000U
}

enum lpmv2_output_port_enable_t { ,
LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANCE = 0U,
LPMV2_OUTPUT_PORT_ENABLE_RETAIN = 1U }

Functions

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

ssp_err_t R_LPMV2_Init (void)

 Perform any necessary initialization. More...

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

 Configure a low power mode. More...

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

 Enter low power mode (sleep/standby/deep standby) using WFI
macro. More...

ssp_err_t R_LPMV2_ClearIOKeep (void)

 Clear the IOKEEP bit after deep software stand by. More...

Detailed Description

Driver for Low Power Modes.

The LPMV2 driver supports low power modes deep standby, standby, sleep, and snooze.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,972 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

Note
Not all low power modes are available on all MCU's.

Enumeration Type Documentation

◆ lpmv2_deep_standby_cancel_edge_t

enum lpmv2_deep_standby_cancel_edge_t

Deep Standby Interrupt Edge

Enumerator

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_EDGE
_NONE

No options for a deep standby cancel source
(S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_
RISING

IRQ0-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_
FALLING

IRQ0-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_
RISING

IRQ1-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_
FALLING

IRQ1-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_
RISING

IRQ2-DS Pin Rising Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_
FALLING

IRQ2-DS Pin Falling Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_
RISING

IRQ3-DS Pin Rising Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_
FALLING

IRQ3-DS Pin Falling Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_
RISING

IRQ4-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_
FALLING

IRQ4-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_
RISING

IRQ5-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_
FALLING

IRQ5-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_
RISING

IRQ6-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,973 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_
FALLING

IRQ6-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_
RISING

IRQ7-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_
FALLING

IRQ7-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_
RISING

IRQ8-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_
FALLING

IRQ8-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_
RISING

IRQ9-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_
FALLING

IRQ9-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10
_RISING

IRQ10-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10
_FALLING

IRQ10-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11
_RISING

IRQ11-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11
_FALLING

IRQ11-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12
_RISING

IRQ12-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12
_FALLING

IRQ12-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13
_RISING

IRQ13-DS Pin Rising Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13
_FALLING

IRQ13-DS Pin Falling Edge (S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14
_RISING

IRQ14-DS Pin Rising Edge (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14
_FALLING

IRQ14-DS Pin Falling Edge (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15 IRQ15-DS Pin Rising Edge (S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,974 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

_RISING

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15
_FALLING

IRQ15-DS Pin Falling Edge (S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_
RISING

LVD1 Rising Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_
FALLING

LVD1 Falling Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_
RISING

LVD2 Rising Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_
FALLING

LVD2 Falling Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_R
ISING

NMI Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_F
ALLING

NMI Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

◆ lpmv2_deep_standby_cancel_source_t

enum lpmv2_deep_standby_cancel_source_t

Deep Standby cancel sources

Enumerator

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RESET
_ONLY

Cancel deep standby only by reset (S5D3,
S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0 IRQ0 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1 IRQ1 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2 IRQ2 (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3 IRQ3 (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4 IRQ4 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5 IRQ5 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6 IRQ6 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7 IRQ7 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8 IRQ8 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9 IRQ9 (S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,975 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10

IRQ10 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11

IRQ11 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12

IRQ12 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13

IRQ13 (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14

IRQ14 (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15

IRQ15 (S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1 LVD1 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2 LVD2 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_I
NTERVAL

RTC Interval Interrupt (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_A
LARM

RTC Alarm Interrupt (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI NMI (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBFS

USBFS Suspend/Resume (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBH
S

USBHS Suspend/Resume (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_AGT1 AGT1 Underflow (S5D3, S5D5, S5D9, S7G2).

◆ lpmv2_io_port_t

enum lpmv2_io_port_t

I/O port state after Deep Software Standby mode (S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_IO_PORT_RESET When the Deep Software Standby mode is
canceled, the I/O ports are in the reset state.

LPMV2_IO_PORT_NO_CHANGE When the Deep Software Standby mode is
canceled, the I/O ports are in the same state as
in the Deep Software Standby mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,976 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

◆ lpmv2_output_port_enable_t

enum lpmv2_output_port_enable_t

Output port enable (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANC
E

0: In Software Standby Mode or Deep Software
Standby Mode, the address output pins, data
output pins, and other bus control signal
output pins are set to the high-impedance
state. In Snooze, the status of the address bus
and bus control signals are same as before
entering Software Standby Mode.

LPMV2_OUTPUT_PORT_ENABLE_RETAIN 1: In Software Standby Mode, the address
output pins, data output pins, and other bus
control signal output pins retain the output
state.

◆ lpmv2_power_supply_t

enum lpmv2_power_supply_t

Power supply control (S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_POWER_SUPPLY_DEEPCUT0 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is supplied in deep software
standby mode.

LPMV2_POWER_SUPPLY_DEEPCUT1 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode.

LPMV2_POWER_SUPPLY_DEEPCUT3 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode. In addition, LVD is disabled and
the low power function in a poweron reset
circuit is enabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,977 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

◆ lpmv2_snooze_cancel_t

enum lpmv2_snooze_cancel_t

Snooze cancel control

Enumerator

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
M

ADC Channel 0 window compare match (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
UM

ADC Channel 0 window compare mismatch (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
M

ADC Channel 1 window compare match (S5D3,
S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
UM

ADC Channel 1 window compare mismatch
(S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM SCI0 address match event (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR
_ERI

SCI0 receive error (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLE
TE

DTC transfer completion (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt (all Synergy
MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUF
N

CTSU measurement end interrupt (all Synergy
MCUs).

◆ lpmv2_snooze_dtc_t

enum lpmv2_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPMV2_SNOOZE_DTC_DISABLE Disable DTC operation (all Synergy MCUs).

LPMV2_SNOOZE_DTC_ENABLE Enable DTC operation (all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,978 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

◆ lpmv2_snooze_end_t

enum lpmv2_snooze_end_t

Snooze end control

Enumerator

LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATC
H

SCI0 address mismatch (S5D3)

LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCE
S

Transition from Snooze to Normal mode
directly (all Synergy MCUs).

LPMV2_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow (all Synergy MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion (all Synergy
MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_N
EGATED

Not Last DTC transmission completion (all
Synergy MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATC
H

ADC Channel 0 compare mismatch (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATC
H

ADC 1 compare mismatch (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch (S124, S128, S1JA,
S3A1, S3A3, S3A6, S3A7, S5D5, S5D9, S7G2)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,979 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

◆ lpmv2_snooze_request_t

enum lpmv2_snooze_request_t

Snooze request sources

Enumerator

LPMV2_SNOOZE_REQUEST_ACMPLP Enable Low-speed analog comparator snooze
request (S124, S128, S1JA, S3A1, S3A3, S3A6,
S3A7).

LPMV2_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request
(S124, S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).
Enable RXD0/DALI falling edge snooze request
(S128, S1JA).

LPMV2_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,980 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

LPMV2_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request (S3A1, S3A3,
S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_KEY Enable KR snooze request (all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request (S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request (all
Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze request
(all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze request
(all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,981 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

◆ lpmv2_standby_wake_source_t

enum lpmv2_standby_wake_source_t

Wake from standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt
(S124, S128, S1JA, S3A1, S3A3, S3A6, S3A7).

LPMV2_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt (S3A1, S3A3, S3A6,
S3A7).

LPMV2_STANDBY_WAKE_SOURCE_IRQ0 IRQ0 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ1 IRQ1 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ2 IRQ2 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ3 IRQ3 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ4 IRQ4 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ5 IRQ5 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ6 IRQ6 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ7 IRQ7 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ8 IRQ8 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ9 IRQ9 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ10 IRQ10 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ11 IRQ11 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ12 IRQ12 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ13 IRQ13 (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ14 IRQ14 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,982 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

LPMV2_STANDBY_WAKE_SOURCE_IRQ15 IRQ15 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_KEY Key interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 Analog Comparator High-speed 0 interrupt
(S5D3, S5D5, S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt (S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1UD AGT1 underflow interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CA AGT1 compare match A interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CB AGT1 compare match B interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt (all Synergy MCUs).

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,983 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

◆ R_LPMV2_ClearIOKeep()

ssp_err_t R_LPMV2_ClearIOKeep (void)

Clear the IOKEEP bit after deep software stand by.

Return values
SSP_SUCCESS DSPBYCR_b.IOKEEP bit cleared Successfully.

SSP_ERR_UNSUPPORTED Deep stand by mode not supported on this
MCU.

◆ R_LPMV2_Init()

ssp_err_t R_LPMV2_Init (void)

Perform any necessary initialization.

Return values
SSP_SUCCESS LPMV2 Software lock initialized

◆ R_LPMV2_LowPowerConfigure()

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

Configure a low power mode.

NOTE: This function does not enter the low power mode, it only configures parameters of the mode.
Execution of the WFI instruction is what causes the low power mode to be entered.

Return values
SSP_SUCCESS Low power mode successfuly applied

SSP_ERR_INVALID_POINTER p_cfg is NULL

SSP_ERR_IN_USE Lock was not acquired

SSP_ERR_INVALID_HW_CONDITION Operating mode change transition was
detected (OPCMTSF, SOPCMTSF bits)

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,984 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configures MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,985 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

◆ R_LPMV2_LowPowerModeEnter()

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

Enter low power mode (sleep/standby/deep standby) using WFI macro.

Function will return after waking from low power mode.

Return values
SSP_SUCCESS Successful.

SSP_ERR_INVALID_HW_CONDITION HOCO was unstable during attempt to
revert operating mode.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

◆ R_LPMV2_VersionGet()

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_INVALID_POINTER p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,986 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S5D9

 Build Time Configurations
Renesas Synergy Software Package Reference » HAL Layer » LPMV2 S5D9

Macros

#define LPMV2_CFG_PARAM_CHECKING_ENABLE
 (BSP_CFG_PARAM_CHECKING_ENABLE)

Detailed Description

Macro Definition Documentation

◆ LPMV2_CFG_PARAM_CHECKING_ENABLE

#define LPMV2_CFG_PARAM_CHECKING_ENABLE (BSP_CFG_PARAM_CHECKING_ENABLE)

Specify whether to include code for API parameter checking. Valid settings include:

BSP_CFG_PARAM_CHECKING_ENABLE : Utilizes the system default setting from bsp_cfg.h
1 : Includes parameter checking
0 : Compiles out parameter checking

5.1.5.40 LPMV2 S7G2
Renesas Synergy Software Package Reference » HAL Layer

Driver for Low Power Modes. More...

Modules

Build Time Configurations

Data Structures

struct lpmv2_mcu_cfg_t

Enumerations

enum lpmv2_snooze_request_t { ,
 LPMV2_SNOOZE_REQUEST_ACMPLP = 0x00800000U ,
LPMV2_SNOOZE_REQUEST_RXD0_FALLING = 0x00000000U,
LPMV2_SNOOZE_REQUEST_IRQ0 = 0x00000001U,
LPMV2_SNOOZE_REQUEST_IRQ1 = 0x00000002U,
 LPMV2_SNOOZE_REQUEST_IRQ2 = 0x00000004U,
LPMV2_SNOOZE_REQUEST_IRQ3 = 0x00000008U,
LPMV2_SNOOZE_REQUEST_IRQ4 = 0x00000010U,
LPMV2_SNOOZE_REQUEST_IRQ5 = 0x00000020U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,987 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

 LPMV2_SNOOZE_REQUEST_IRQ6 = 0x00000040U,
LPMV2_SNOOZE_REQUEST_IRQ7 = 0x00000080U,
LPMV2_SNOOZE_REQUEST_IRQ8 = 0x00000100U,
LPMV2_SNOOZE_REQUEST_IRQ9 = 0x00000200U,
 LPMV2_SNOOZE_REQUEST_IRQ10 = 0x00000400U,
LPMV2_SNOOZE_REQUEST_IRQ11 = 0x00000800U,
LPMV2_SNOOZE_REQUEST_IRQ12 = 0x00001000U,
LPMV2_SNOOZE_REQUEST_IRQ13 = 0x00002000U,
 LPMV2_SNOOZE_REQUEST_IRQ14 = 0x00004000U,
LPMV2_SNOOZE_REQUEST_IRQ15 = 0x00008000U,
LPMV2_SNOOZE_REQUEST_KEY = 0x00020000U,
LPMV2_SNOOZE_REQUEST_ACMPHS0 = 0x00400000U,
 LPMV2_SNOOZE_REQUEST_RTC_ALARM = 0x01000000U,
LPMV2_SNOOZE_REQUEST_RTC_PERIOD = 0x02000000U,
LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW = 0x10000000U,
LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A = 0x20000000U,
 LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B = 0x40000000U
}

enum lpmv2_snooze_end_t { ,
 LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATCH = 0x80U ,
LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCES = 0x00U,
LPMV2_SNOOZE_END_AGT1_UNDERFLOW = 0x01U,
LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE = 0x02U,
 LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_NEGATED = 0x04U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH = 0x08U,
LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATCH = 0x10U,
LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH = 0x20U,
 LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATCH = 0x40U,
LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH = 0x80U
}

enum lpmv2_snooze_cancel_t { ,
 LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPM = (79),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMPUM = (80),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPM = (85),
LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMPUM = (86),
 LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM = (376),
LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR_ERI = (377),
LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLETE = (41),
LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI = (134),
 LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUFN = (18)
}

enum lpmv2_snooze_dtc_t { , LPMV2_SNOOZE_DTC_DISABLE = 0U,
LPMV2_SNOOZE_DTC_ENABLE = 1U }

enum lpmv2_standby_wake_source_t { ,
 LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 = 0x00800000U ,
LPMV2_STANDBY_WAKE_SOURCE_VBATT = 0x00100000U ,
LPMV2_STANDBY_WAKE_SOURCE_IRQ0 = 0x00000001U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ1 = 0x00000002U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ2 = 0x00000004U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ3 = 0x00000008U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,988 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

LPMV2_STANDBY_WAKE_SOURCE_IRQ4 = 0x00000010U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ5 = 0x00000020U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ6 = 0x00000040U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ7 = 0x00000080U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ8 = 0x00000100U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ9 = 0x00000200U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ10 = 0x00000400U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ11 = 0x00000800U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ12 = 0x00001000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ13 = 0x00002000U,
 LPMV2_STANDBY_WAKE_SOURCE_IRQ14 = 0x00004000U,
LPMV2_STANDBY_WAKE_SOURCE_IRQ15 = 0x00008000U,
LPMV2_STANDBY_WAKE_SOURCE_IWDT = 0x00010000U,
LPMV2_STANDBY_WAKE_SOURCE_KEY = 0x00020000U,
 LPMV2_STANDBY_WAKE_SOURCE_LVD1 = 0x00040000U,
LPMV2_STANDBY_WAKE_SOURCE_LVD2 = 0x00080000U,
LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 = 0x00400000U,
LPMV2_STANDBY_WAKE_SOURCE_RTCALM = 0x01000000U,
 LPMV2_STANDBY_WAKE_SOURCE_RTCPRD = 0x02000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBHS = 0x04000000U,
LPMV2_STANDBY_WAKE_SOURCE_USBFS = 0x08000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1UD = 0x10000000U,
 LPMV2_STANDBY_WAKE_SOURCE_AGT1CA = 0x20000000U,
LPMV2_STANDBY_WAKE_SOURCE_AGT1CB = 0x40000000U,
LPMV2_STANDBY_WAKE_SOURCE_IIC0 = 0x80000000U
}

enum lpmv2_io_port_t { , LPMV2_IO_PORT_RESET = 0U,
LPMV2_IO_PORT_NO_CHANGE = 1U }

enum lpmv2_power_supply_t { , LPMV2_POWER_SUPPLY_DEEPCUT0 = 0U,
LPMV2_POWER_SUPPLY_DEEPCUT1 = 1U,
LPMV2_POWER_SUPPLY_DEEPCUT3 = 3UL }

enum lpmv2_deep_standby_cancel_edge_t { ,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_EDGE_NONE = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_RISING =
0x00000001U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_RISING =
0x00000002U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_RISING =
0x00000004U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_RISING =
0x00000008U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_RISING =
0x00000010U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_RISING =
0x00000020U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_FALLING = 0U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,989 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_RISING =
0x00000040U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_RISING =
0x00000080U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_RISING =
0x00000100U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_RISING =
0x00000200U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_RISING =
0x00000400U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_RISING =
0x00000800U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_RISING =
0x00001000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_RISING =
0x00002000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_RISING =
0x00004000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15_RISING =
0x00008000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_RISING =
0x00010000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_RISING =
0x00020000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_FALLING = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_RISING =
0x00100000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_FALLING = 0U
}

enum lpmv2_deep_standby_cancel_source_t { ,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RESET_ONLY = 0U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0 = 0x00000001U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1 = 0x00000002U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2 = 0x00000004U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3 = 0x00000008U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4 = 0x00000010U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5 = 0x00000020U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6 = 0x00000040U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7 = 0x00000080U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8 = 0x00000100U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9 = 0x00000200U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10 = 0x00000400U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11 = 0x00000800U,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,990 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12 = 0x00001000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13 = 0x00002000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14 = 0x00004000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15 = 0x00008000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1 = 0x00010000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2 = 0x00020000U,
LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_INTERVAL =
0x00040000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_ALARM =
0x00080000U, LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI =
0x00100000U, LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBFS =
0x01000000U, LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBHS =
0x02000000U,
 LPMV2_DEEP_STANDBY_CANCEL_SOURCE_AGT1 = 0x04000000U
}

enum lpmv2_output_port_enable_t { ,
LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANCE = 0U,
LPMV2_OUTPUT_PORT_ENABLE_RETAIN = 1U }

Functions

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

ssp_err_t R_LPMV2_Init (void)

 Perform any necessary initialization. More...

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

 Configure a low power mode. More...

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

 Enter low power mode (sleep/standby/deep standby) using WFI
macro. More...

ssp_err_t R_LPMV2_ClearIOKeep (void)

 Clear the IOKEEP bit after deep software stand by. More...

Detailed Description

Driver for Low Power Modes.

The LPMV2 driver supports low power modes deep standby, standby, sleep, and snooze.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,991 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

Note
Not all low power modes are available on all MCU's.

Enumeration Type Documentation

◆ lpmv2_deep_standby_cancel_edge_t

enum lpmv2_deep_standby_cancel_edge_t

Deep Standby Interrupt Edge

Enumerator

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_EDGE
_NONE

No options for a deep standby cancel source
(S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_
RISING

IRQ0-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0_
FALLING

IRQ0-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_
RISING

IRQ1-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1_
FALLING

IRQ1-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_
RISING

IRQ2-DS Pin Rising Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2_
FALLING

IRQ2-DS Pin Falling Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_
RISING

IRQ3-DS Pin Rising Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3_
FALLING

IRQ3-DS Pin Falling Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_
RISING

IRQ4-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4_
FALLING

IRQ4-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_
RISING

IRQ5-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5_
FALLING

IRQ5-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_
RISING

IRQ6-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,992 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6_
FALLING

IRQ6-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_
RISING

IRQ7-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7_
FALLING

IRQ7-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_
RISING

IRQ8-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8_
FALLING

IRQ8-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_
RISING

IRQ9-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9_
FALLING

IRQ9-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10
_RISING

IRQ10-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10
_FALLING

IRQ10-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11
_RISING

IRQ11-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11
_FALLING

IRQ11-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12
_RISING

IRQ12-DS Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12
_FALLING

IRQ12-DS Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13
_RISING

IRQ13-DS Pin Rising Edge (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13
_FALLING

IRQ13-DS Pin Falling Edge (S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14
_RISING

IRQ14-DS Pin Rising Edge (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14
_FALLING

IRQ14-DS Pin Falling Edge (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15 IRQ15-DS Pin Rising Edge (S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,993 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

_RISING

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15
_FALLING

IRQ15-DS Pin Falling Edge (S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_
RISING

LVD1 Rising Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1_
FALLING

LVD1 Falling Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_
RISING

LVD2 Rising Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2_
FALLING

LVD2 Falling Slope (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_R
ISING

NMI Pin Rising Edge (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI_F
ALLING

NMI Pin Falling Edge (S5D3, S5D5, S5D9,
S7G2).

◆ lpmv2_deep_standby_cancel_source_t

enum lpmv2_deep_standby_cancel_source_t

Deep Standby cancel sources

Enumerator

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RESET
_ONLY

Cancel deep standby only by reset (S5D3,
S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ0 IRQ0 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ1 IRQ1 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ2 IRQ2 (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ3 IRQ3 (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ4 IRQ4 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ5 IRQ5 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ6 IRQ6 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ7 IRQ7 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ8 IRQ8 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ9 IRQ9 (S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,994 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ10

IRQ10 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ11

IRQ11 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ12

IRQ12 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ13

IRQ13 (S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ14

IRQ14 (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_IRQ15

IRQ15 (S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD1 LVD1 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_LVD2 LVD2 (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_I
NTERVAL

RTC Interval Interrupt (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_RTC_A
LARM

RTC Alarm Interrupt (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_NMI NMI (S5D3, S5D5, S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBFS

USBFS Suspend/Resume (S5D3, S5D5, S5D9,
S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_USBH
S

USBHS Suspend/Resume (S5D9, S7G2).

LPMV2_DEEP_STANDBY_CANCEL_SOURCE_AGT1 AGT1 Underflow (S5D3, S5D5, S5D9, S7G2).

◆ lpmv2_io_port_t

enum lpmv2_io_port_t

I/O port state after Deep Software Standby mode (S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_IO_PORT_RESET When the Deep Software Standby mode is
canceled, the I/O ports are in the reset state.

LPMV2_IO_PORT_NO_CHANGE When the Deep Software Standby mode is
canceled, the I/O ports are in the same state as
in the Deep Software Standby mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,995 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

◆ lpmv2_output_port_enable_t

enum lpmv2_output_port_enable_t

Output port enable (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_OUTPUT_PORT_ENABLE_HIGH_IMPEDANC
E

0: In Software Standby Mode or Deep Software
Standby Mode, the address output pins, data
output pins, and other bus control signal
output pins are set to the high-impedance
state. In Snooze, the status of the address bus
and bus control signals are same as before
entering Software Standby Mode.

LPMV2_OUTPUT_PORT_ENABLE_RETAIN 1: In Software Standby Mode, the address
output pins, data output pins, and other bus
control signal output pins retain the output
state.

◆ lpmv2_power_supply_t

enum lpmv2_power_supply_t

Power supply control (S5D3, S5D5, S5D9, S7G2)

Enumerator

LPMV2_POWER_SUPPLY_DEEPCUT0 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is supplied in deep software
standby mode.

LPMV2_POWER_SUPPLY_DEEPCUT1 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode.

LPMV2_POWER_SUPPLY_DEEPCUT3 Power to the standby RAM, Low-speed on-chip
oscillator, AGTn, and USBFS/HS resume
detecting unit is not supplied in deep software
standby mode. In addition, LVD is disabled and
the low power function in a poweron reset
circuit is enabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,996 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

◆ lpmv2_snooze_cancel_t

enum lpmv2_snooze_cancel_t

Snooze cancel control

Enumerator

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
M

ADC Channel 0 window compare match (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC0_WCMP
UM

ADC Channel 0 window compare mismatch (all
Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
M

ADC Channel 1 window compare match (S5D3,
S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_ADC1_WCMP
UM

ADC Channel 1 window compare mismatch
(S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_AM SCI0 address match event (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_SCI0_RXI_OR
_ERI

SCI0 receive error (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DTC_COMPLE
TE

DTC transfer completion (all Synergy MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_DOC_DOPCI Data operation circuit interrupt (all Synergy
MCUs).

LPMV2_SNOOZE_CANCEL_SOURCE_CTSU_CTSUF
N

CTSU measurement end interrupt (all Synergy
MCUs).

◆ lpmv2_snooze_dtc_t

enum lpmv2_snooze_dtc_t

DTC Enable in Snooze Mode

Enumerator

LPMV2_SNOOZE_DTC_DISABLE Disable DTC operation (all Synergy MCUs).

LPMV2_SNOOZE_DTC_ENABLE Enable DTC operation (all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,997 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

◆ lpmv2_snooze_end_t

enum lpmv2_snooze_end_t

Snooze end control

Enumerator

LPMV2_SNOOZE_END_SCI0_ADDRESS_MISMATC
H

SCI0 address mismatch (S5D3)

LPMV2_SNOOZE_END_STANDBY_WAKE_SOURCE
S

Transition from Snooze to Normal mode
directly (all Synergy MCUs).

LPMV2_SNOOZE_END_AGT1_UNDERFLOW AGT1 underflow (all Synergy MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE Last DTC transmission completion (all Synergy
MCUs).

LPMV2_SNOOZE_END_DTC_TRANS_COMPLETE_N
EGATED

Not Last DTC transmission completion (all
Synergy MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MATCH ADC Channel 0 compare match (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC0_COMPARE_MISMATC
H

ADC Channel 0 compare mismatch (all Synergy
MCUs).

LPMV2_SNOOZE_END_ADC1_COMPARE_MATCH ADC 1 compare match (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_ADC1_COMPARE_MISMATC
H

ADC 1 compare mismatch (S5D3, S5D5, S5D9,
S7G2).

LPMV2_SNOOZE_END_SCI0_ADDRESS_MATCH SCI0 address mismatch (S124, S128, S1JA,
S3A1, S3A3, S3A6, S3A7, S5D5, S5D9, S7G2)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,998 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

◆ lpmv2_snooze_request_t

enum lpmv2_snooze_request_t

Snooze request sources

Enumerator

LPMV2_SNOOZE_REQUEST_ACMPLP Enable Low-speed analog comparator snooze
request (S124, S128, S1JA, S3A1, S3A3, S3A6,
S3A7).

LPMV2_SNOOZE_REQUEST_RXD0_FALLING Enable RXD0 falling edge snooze request
(S124, S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).
Enable RXD0/DALI falling edge snooze request
(S128, S1JA).

LPMV2_SNOOZE_REQUEST_IRQ0 Enable IRQ0 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ1 Enable IRQ1 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ2 Enable IRQ2 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ3 Enable IRQ3 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ4 Enable IRQ4 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ5 Enable IRQ5 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ6 Enable IRQ6 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ7 Enable IRQ7 pin snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_IRQ8 Enable IRQ8 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ9 Enable IRQ9 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ10 Enable IRQ10 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 3,999 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

LPMV2_SNOOZE_REQUEST_IRQ11 Enable IRQ11 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ12 Enable IRQ12 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ13 Enable IRQ13 pin snooze request (S3A1, S3A3,
S3A7, S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ14 Enable IRQ14 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_IRQ15 Enable IRQ15 pin snooze request (S3A1, S3A3,
S3A6, S3A7, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_KEY Enable KR snooze request (all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_ACMPHS0 Enable High-speed analog comparator 0
snooze request (S5D3, S5D5, S5D9, S7G2).

LPMV2_SNOOZE_REQUEST_RTC_ALARM Enable RTC alarm snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_RTC_PERIOD Enable RTC period snooze request (all Synergy
MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_UNDERFLOW Enable AGT1 underflow snooze request (all
Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_A Enable AGT1 compare match A snooze request
(all Synergy MCUs).

LPMV2_SNOOZE_REQUEST_AGT1_COMPARE_B Enable AGT1 compare match B snooze request
(all Synergy MCUs).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,000 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

◆ lpmv2_standby_wake_source_t

enum lpmv2_standby_wake_source_t

Wake from standby mode sources, does not apply to sleep or deep standby modes

Enumerator

LPMV2_STANDBY_WAKE_SOURCE_ACMPLP0 Analog Comparator Low-speed 0 interrupt
(S124, S128, S1JA, S3A1, S3A3, S3A6, S3A7).

LPMV2_STANDBY_WAKE_SOURCE_VBATT VBATT Monitor interrupt (S3A1, S3A3, S3A6,
S3A7).

LPMV2_STANDBY_WAKE_SOURCE_IRQ0 IRQ0 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ1 IRQ1 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ2 IRQ2 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ3 IRQ3 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ4 IRQ4 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ5 IRQ5 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ6 IRQ6 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ7 IRQ7 (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IRQ8 IRQ8 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ9 IRQ9 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ10 IRQ10 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ11 IRQ11 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ12 IRQ12 (S3A1, S3A3, S3A6, S3A7, S5D3, S5D5,
S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ13 IRQ13 (S3A1, S3A3, S3A7, S5D3, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IRQ14 IRQ14 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,001 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

LPMV2_STANDBY_WAKE_SOURCE_IRQ15 IRQ15 (S3A1, S3A3, S3A6, S3A7, S5D5, S5D9,
S7G2).

LPMV2_STANDBY_WAKE_SOURCE_IWDT Independent watchdog interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_KEY Key interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD1 Low Voltage Detection 1 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_LVD2 Low Voltage Detection 2 interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_ACMPHS0 Analog Comparator High-speed 0 interrupt
(S5D3, S5D5, S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_RTCALM RTC Alarm interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_RTCPRD RTC Period interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_USBHS USB High-speed interrupt (S5D9, S7G2).

LPMV2_STANDBY_WAKE_SOURCE_USBFS USB Full-speed interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1UD AGT1 underflow interrupt (all Synergy MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CA AGT1 compare match A interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_AGT1CB AGT1 compare match B interrupt (all Synergy
MCUs).

LPMV2_STANDBY_WAKE_SOURCE_IIC0 I2C 0 interrupt (all Synergy MCUs).

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,002 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

◆ R_LPMV2_ClearIOKeep()

ssp_err_t R_LPMV2_ClearIOKeep (void)

Clear the IOKEEP bit after deep software stand by.

Return values
SSP_SUCCESS DSPBYCR_b.IOKEEP bit cleared Successfully.

SSP_ERR_UNSUPPORTED Deep stand by mode not supported on this
MCU.

◆ R_LPMV2_Init()

ssp_err_t R_LPMV2_Init (void)

Perform any necessary initialization.

Return values
SSP_SUCCESS LPMV2 Software lock initialized

◆ R_LPMV2_LowPowerConfigure()

ssp_err_t R_LPMV2_LowPowerConfigure (lpmv2_cfg_t const *const p_cfg)

Configure a low power mode.

NOTE: This function does not enter the low power mode, it only configures parameters of the mode.
Execution of the WFI instruction is what causes the low power mode to be entered.

Return values
SSP_SUCCESS Low power mode successfully applied

SSP_ERR_INVALID_POINTER p_cfg is NULL

SSP_ERR_IN_USE Lock was not acquired

SSP_ERR_INVALID_HW_CONDITION Operating mode change transition was
detected (OPCMTSF, SOPCMTSF bits)

Get hardware lock

Unlock LPMV2 registers

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Configure MCU specific settings related to low power modes

Lock LPMV2 registers

Release hardware lock.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,003 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2

◆ R_LPMV2_LowPowerModeEnter()

ssp_err_t R_LPMV2_LowPowerModeEnter (void)

Enter low power mode (sleep/standby/deep standby) using WFI macro.

Function will return after waking from low power mode.

Return values
SSP_SUCCESS Successful.

SSP_ERR_INVALID_HW_CONDITION HOCO was unstable during attempt to
revert operating mode.

Get hardware lock

Check for ongoing operating mode transition (OPCMTSF, SOPCMTSF)

Enter low power mode

Release hardware lock.

◆ R_LPMV2_VersionGet()

ssp_err_t R_LPMV2_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_INVALID_POINTER p_version is NULL.

 Build Time Configurations
Renesas Synergy Software Package Reference » HAL Layer » LPMV2 S7G2

Macros

#define LPMV2_CFG_PARAM_CHECKING_ENABLE
 (BSP_CFG_PARAM_CHECKING_ENABLE)

Detailed Description

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,004 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LPMV2 S7G2 > Build Time Configurations

◆ LPMV2_CFG_PARAM_CHECKING_ENABLE

#define LPMV2_CFG_PARAM_CHECKING_ENABLE (BSP_CFG_PARAM_CHECKING_ENABLE)

Specify whether to include code for API parameter checking. Valid settings include:

BSP_CFG_PARAM_CHECKING_ENABLE : Utilizes the system default setting from bsp_cfg.h
1 : Includes parameter checking
0 : Compiles out parameter checking

5.1.5.41 LVD
Renesas Synergy Software Package Reference » HAL Layer

Driver for Low Voltage Detection. More...

Data Structures

struct lvd_instance_ctrl_t

struct lvd_extend_t

Enumerations

enum lvd_sample_clock_t {
 LVD_SAMPLE_CLOCK_LOCO_DIV_2 = 0,
LVD_SAMPLE_CLOCK_LOCO_DIV_4 = 1,
LVD_SAMPLE_CLOCK_LOCO_DIV_8 = 2,
LVD_SAMPLE_CLOCK_LOCO_DIV_16 = 3,
 LVD_SAMPLE_CLOCK_DISABLED = -1
}

enum lvd_negation_delay_t { LVD_NEGATION_DELAY_FROM_VOLTAGE = 0,
LVD_NEGATION_DELAY_FROM_RESET = 1 }

Functions

ssp_err_t R_LVD_Open (lvd_ctrl_t *const p_api_ctrl, lvd_cfg_t const *const
p_cfg)

 Initializes a low voltage detection driver according to the passed in
configuration structure. Enables an LVD peripheral based on
configuration structure. More...

ssp_err_t R_LVD_Close (lvd_ctrl_t *const p_api_ctrl)

 Disables the LVD peripheral. Closes the driver instance. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,005 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LVD

ssp_err_t R_LVD_StatusGet (lvd_ctrl_t *const p_api_ctrl, lvd_status_t
*p_lvd_status)

 Get the current state of the monitor, (threshold crossing detected,
voltage currently within range) More...

ssp_err_t R_LVD_StatusClear (lvd_ctrl_t *const p_api_ctrl)

 Clears the latched status of the monitor. More...

ssp_err_t R_LVD_VersionGet (ssp_version_t *const p_version)

 Returns the LVD driver version based on compile time macros.
More...

Detailed Description

Driver for Low Voltage Detection.

Implementation of the LVD API.For a detailed description see the Low Voltage Detection Interface.

Summary
This module implements the following interface: Low Voltage Detection Interface.

Enumeration Type Documentation

◆ lvd_negation_delay_t

enum lvd_negation_delay_t

Negation of LVD signal follows reset or voltage in range

Enumerator

LVD_NEGATION_DELAY_FROM_VOLTAGE Negation follows a stabilization time (tLVDn)
after VCC > Vdet1 is detected. If a transition to
software standby or deep software standby is
to be made, the only possible value for the RN
bit is LVD_NEGATION_DELAY_FROM_VOLTAGE

LVD_NEGATION_DELAY_FROM_RESET Negation follows a stabilization time (tLVDn)
after assertion of the LVDn reset. If a transition
to software standby or deep software standby
is to be made, the only possible value for the
RN bit is
LVD_NEGATION_DELAY_FROM_VOLTAGE

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,006 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LVD

◆ lvd_sample_clock_t

enum lvd_sample_clock_t

Sample clock divider, use LVD_SAMPLE_CLOCK_DISABLED to disable digital filtering

Enumerator

LVD_SAMPLE_CLOCK_LOCO_DIV_2 Digital filter sample clock is LOCO divided by
2.

LVD_SAMPLE_CLOCK_LOCO_DIV_4 Digital filter sample clock is LOCO divided by
4.

LVD_SAMPLE_CLOCK_LOCO_DIV_8 Digital filter sample clock is LOCO divided by
8.

LVD_SAMPLE_CLOCK_LOCO_DIV_16 Digital filter sample clock is LOCO divided by
16.

LVD_SAMPLE_CLOCK_DISABLED Digital filter is disabled.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,007 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LVD

◆ R_LVD_Close()

ssp_err_t R_LVD_Close (lvd_ctrl_t *const p_api_ctrl)

Disables the LVD peripheral. Closes the driver instance.

Implements

lvd_api_t::close.
Return values

SSP_SUCCESS Successful

SSP_ERR_ASSERTION Pointers passed as function argument is
NULL or the monitor number is invalid.

SSP_ERR_NOT_OPEN Driver is not open.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::eventInfoGet
Disable voltage monitor comparison result output

Disable reset/interrupt event

Clear low voltage detection flag LVDnSR.DET = 0

Disable digital filtering

Disable voltage monitor

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,008 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LVD

◆ R_LVD_Open()

ssp_err_t R_LVD_Open (lvd_ctrl_t *const p_api_ctrl, lvd_cfg_t const *const p_cfg)

Initializes a low voltage detection driver according to the passed in configuration structure. Enables
an LVD peripheral based on configuration structure.

Implements

lvd_api_t::open.
Note

Digital filter is not to be used with standby modes
Return values

SSP_SUCCESS Successful

SSP_ERR_ASSERTION One or more pointers passed as function
argument point to NULL or the Requested
configuration, detection, voltage, monitor
number or sample clock configuration of a
voltage monitor is invalid.

SSP_ERR_IN_USE Unable to acquire the hardware lock.

SSP_ERR_INVALID_MODE MOCO must be running for
LVD_NEGATION_DELAY_FROM_RESET
negation delay option

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Verify channel is not already used

Select the detection voltage by setting the LVDLVLR.LVDnLVL[m:0] bits.

Enable voltage detection LVCMPCR.LVDnE = 1

Configure the digital filter.

Configure LVD monitor detection response.

Enable output of the results of comparison by voltage monitor LVDnCR0.CMPE = 1

Mark driver as opened by initializing it to "LVD" in its ASCII equivalent.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,009 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LVD

◆ R_LVD_StatusClear()

ssp_err_t R_LVD_StatusClear (lvd_ctrl_t *const p_api_ctrl)

Clears the latched status of the monitor.

Implements

lvd_api_t::statusClear.
Return values

SSP_SUCCESS Successful

SSP_ERR_ASSERTION Pointers passed as function argument point
to NULL, invalid LVD monitor number

SSP_ERR_NOT_OPEN Driver is not open, status will not be valid

Clears the latched status of the monitor

◆ R_LVD_StatusGet()

ssp_err_t R_LVD_StatusGet (lvd_ctrl_t *const p_api_ctrl, lvd_status_t * p_lvd_status)

Get the current state of the monitor, (threshold crossing detected, voltage currently within range)

Implements

lvd_api_t::statusGet.
Return values

SSP_SUCCESS Successful

SSP_ERR_ASSERTION One or more pointers passed as function
argument point to NULL, invalid LVD
monitor number

SSP_ERR_NOT_OPEN Driver is not open, status will not be valid

Get the current state of the monitor

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,010 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LVD

◆ R_LVD_VersionGet()

ssp_err_t R_LVD_VersionGet (ssp_version_t *const p_version)

Returns the LVD driver version based on compile time macros.

Implements

lvd_api_t::versionGet.
Return values

SSP_SUCCESS Successful

SSP_ERR_ASSERTION p_version was NULL

 lvd_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » LVD

#include <r_lvd.h>

Data Fields

uint32_t monitor_number

 Monitor number. More...

R_SYSTEM_Type * p_reg

 Pointer to LVD register base address.

void(* p_callback)(lvd_callback_args_t *p_args)

 Pointer to user callback.

lvd_callback_args_t lvd_callback_args

 LVD callback parameters arguments.

uint32_t opened

 Whether or not channel is open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,011 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LVD > lvd_instance_ctrl_t Struct Reference

Detailed Description

LVD instance control structure

Field Documentation

◆ monitor_number

uint32_t lvd_instance_ctrl_t::monitor_number

Monitor number.

Monitor number, 1, 2, ...

The documentation for this struct was generated from the following file:

r_lvd.h

 lvd_extend_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » LVD

#include <r_lvd.h>

Data Fields

lvd_negation_delay_t negation_delay

lvd_sample_clock_t sample_clock_divisor

Detailed Description

Hardware extend structure

Field Documentation

◆ negation_delay

lvd_negation_delay_t lvd_extend_t::negation_delay

Negation of LVD signal follows reset or voltage in range

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,012 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > LVD > lvd_extend_t Struct Reference

◆ sample_clock_divisor

lvd_sample_clock_t lvd_extend_t::sample_clock_divisor

Sample clock divider, use LVD_SAMPLE_CLOCK_DISABLED to disable digital filtering

The documentation for this struct was generated from the following file:

r_lvd.h

5.1.5.42 Operational Amplifier (OPAMP)
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Operational Amplifier (OPAMP). More...

Data Structures

struct opamp_on_opamp_cfg_t

struct opamp_instance_ctrl_t

Macros

#define OPAMP_CODE_VERSION_MAJOR (2U)

#define OPAMP_ERROR_RETURN(a, err) SSP_ERROR_RETURN((a), (err),
&g_module_name[0], &g_opamp_version)

Enumerations

enum opamp_trigger_t {
OPAMP_TRIGGER_SOFTWARE_START_SOFTWARE_STOP = 0,
OPAMP_TRIGGER_AGT_START_SOFTWARE_STOP = 1,
OPAMP_TRIGGER_AGT_START_ADC_STOP = 3 }

enum opamp_agt_link_t {
OPAMP_AGT_LINK_AGT1_OPAMP_0_2_AGT0_OPAMP_1_3 = 0,
OPAMP_AGT_LINK_AGT1_OPAMP_0_1_AGT0_OPAMP_2_3 = 1,
OPAMP_AGT_LINK_AGT1_OPAMP_0_1_2_3 = 3 }

enum opamp_mode_t { OPAMP_MODE_LOW_POWER = 0,
OPAMP_MODE_MIDDLE_SPEED = 1, OPAMP_MODE_HIGH_SPEED = 3
}

enum opamp_priv_trim_state_t {

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,013 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Operational Amplifier (OPAMP)

 OPAMP_PRIV_TRIM_STATE_INVALID = -1,
OPAMP_PRIV_TRIM_STATE_END = 0, OPAMP_PRIV_TRIM_STATE_BIT_0
= 0, OPAMP_PRIV_TRIM_STATE_BIT_1 = 1,
 OPAMP_PRIV_TRIM_STATE_BIT_2 = 2,
OPAMP_PRIV_TRIM_STATE_BIT_3 = 3,
OPAMP_PRIV_TRIM_STATE_BIT_4 = 4,
OPAMP_PRIV_TRIM_STATE_BEGIN = 5
}

Functions

ssp_err_t R_OPAMP_Open (opamp_ctrl_t *const p_api_ctrl, opamp_cfg_t const
*const p_cfg)

 Applies power to the OPAMP and initializes the hardware based on
the user configuration. Implements opamp_api_t::open(). More...

ssp_err_t R_OPAMP_InfoGet (opamp_ctrl_t *const p_api_ctrl, opamp_info_t
*const p_info)

 Provides the minimum stabilization wait time in microseconds.
Implements opamp_api_t::infoGet(). More...

ssp_err_t R_OPAMP_Start (opamp_ctrl_t *const p_api_ctrl, uint32_t const
channel_mask)

 If the OPAMP is configured for hardware triggers, enables hardware
triggers. Otherwise, starts the op-amp. Implements
opamp_api_t::start(). More...

ssp_err_t R_OPAMP_Stop (opamp_ctrl_t *const p_api_ctrl, uint32_t const
channel_mask)

 Stops the op-amp. If the OPAMP is configured for hardware triggers,
disables hardware triggers. Implements opamp_api_t::stop(). More...

ssp_err_t R_OPAMP_StatusGet (opamp_ctrl_t *const p_api_ctrl, opamp_status_t
*const p_status)

 Provides the operating status for each op-amp in a bitmask. This bit
is set when operation begins, before the stabilization wait time has
elapsed. Implements opamp_api_t::statusGet(). More...

ssp_err_t R_OPAMP_Trim (opamp_ctrl_t *const p_api_ctrl, opamp_trim_cmd_t
const cmd, opamp_trim_args_t const *const p_args)

 On MCUs that support trimming, the op-amp trim register is set to
the factory default after open(). This function allows the application
to trim the operational amplifier to a user setting, which overwrites
the factory default factory trim values. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,014 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Operational Amplifier (OPAMP)

ssp_err_t R_OPAMP_Close (opamp_ctrl_t *const p_api_ctrl)

 Stops the op-amps. Implements opamp_api_t::close(). More...

ssp_err_t R_OPAMP_VersionGet (ssp_version_t *const p_version)

Variables

const opamp_api_t g_opamp_on_opamp

Detailed Description

Driver for the Operational Amplifier (OPAMP).

This module supports the OPAMP peripheral. It implements the following interfaces:

OPAMP Interface

Macro Definition Documentation

◆ OPAMP_CODE_VERSION_MAJOR

#define OPAMP_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

◆ OPAMP_ERROR_RETURN

#define OPAMP_ERROR_RETURN (a, err) SSP_ERROR_RETURN((a), (err), &g_module_name[0],
&g_opamp_version)

Macro for error logger.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,015 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Operational Amplifier (OPAMP)

◆ opamp_agt_link_t

enum opamp_agt_link_t

Which AGT timer starts the op-amp. Only applies to channels if
OPAMP_TRIGGER_AGT_START_SOFTWARE_STOP or OPAMP_TRIGGER_AGT_START_ADC_STOP is
selected for the channel. If OPAMP_TRIGGER_SOFTWARE_START_SOFTWARE_STOP is selected for a
channel, then no AGT compare match event will start that op-amp channel.

Enumerator

OPAMP_AGT_LINK_AGT1_OPAMP_0_2_AGT0_OPA
MP_1_3

OPAMP channel 0 and 2 are started by AGT1
compare match. OPAMP channel 1 and 3 are
started by AGT0 compare match.

OPAMP_AGT_LINK_AGT1_OPAMP_0_1_AGT0_OPA
MP_2_3

OPAMP channel 0 and 1 are started by AGT1
compare match. OPAMP channel 2 and 3 are
started by AGT0 compare match.

OPAMP_AGT_LINK_AGT1_OPAMP_0_1_2_3 All OPAMP channels are started by AGT1
compare match.

◆ opamp_mode_t

enum opamp_mode_t

Op-amp mode.

Enumerator

OPAMP_MODE_LOW_POWER Low power mode.

OPAMP_MODE_MIDDLE_SPEED Middle speed mode (not supported on all
MCUs)

OPAMP_MODE_HIGH_SPEED High speed mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,016 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Operational Amplifier (OPAMP)

◆ opamp_priv_trim_state_t

enum opamp_priv_trim_state_t

Op-amp trim state.

Enumerator

OPAMP_PRIV_TRIM_STATE_INVALID Trim state invalid.

OPAMP_PRIV_TRIM_STATE_END Trim state end.

OPAMP_PRIV_TRIM_STATE_BIT_0 Trim state bit 0.

OPAMP_PRIV_TRIM_STATE_BIT_1 Trim state bit 1.

OPAMP_PRIV_TRIM_STATE_BIT_2 Trim state bit 2.

OPAMP_PRIV_TRIM_STATE_BIT_3 Trim state bit 3.

OPAMP_PRIV_TRIM_STATE_BIT_4 Trim state bit 4.

OPAMP_PRIV_TRIM_STATE_BEGIN Trim state begin.

◆ opamp_trigger_t

enum opamp_trigger_t

Start and stop trigger for the op-amp.

Enumerator

OPAMP_TRIGGER_SOFTWARE_START_SOFTWARE
_STOP

Start and stop with APIs.

OPAMP_TRIGGER_AGT_START_SOFTWARE_STOP Start by AGT compare match and stop with
API.

OPAMP_TRIGGER_AGT_START_ADC_STOP Start by AGT compare match and stop after
ADC conversion.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,017 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Operational Amplifier (OPAMP)

◆ R_OPAMP_Close()

ssp_err_t R_OPAMP_Close (opamp_ctrl_t *const p_api_ctrl)

Stops the op-amps. Implements opamp_api_t::close().

Return values
SSP_SUCCESS Instance control block closed successfully.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Perform parameter checking

Set all OPAMP units and the reference current generator to be stopped.

Mark driver as closed

Enter the module-stop state.

Release the hardware lock

Return the error code

◆ R_OPAMP_InfoGet()

ssp_err_t R_OPAMP_InfoGet (opamp_ctrl_t *const p_api_ctrl, opamp_info_t *const p_info)

Provides the minimum stabilization wait time in microseconds. Implements opamp_api_t::infoGet().

Return values
SSP_SUCCESS Information stored in p_info.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Perform parameter checking

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,018 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Operational Amplifier (OPAMP)

◆ R_OPAMP_Open()

ssp_err_t R_OPAMP_Open (opamp_ctrl_t *const p_api_ctrl, opamp_cfg_t const *const p_cfg)

Applies power to the OPAMP and initializes the hardware based on the user configuration.
Implements opamp_api_t::open().

The op-amp is not operational until the opamp_api_t::start() is called. If the op-amp is configured to
start after AGT compare match, the op-amp is not operational until opamp_api_t::start() and the
associated AGT compare match event occurs.

Some MCUs have switches that must be set before starting the op-amp. These switches must be
set in the application code after opamp_api_t::open() and before opamp_api_t::start().

Return values
SSP_SUCCESS Configuration successful.

SSP_ERR_ASSERTION An input pointer is NULL.

SSP_ERR_INVALID_ARGUMENT An input argument is invalid.

SSP_ERR_IN_USE Control block is already opened.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
Verify the control block has not already been initialized.

Confirm the OPAMP exists on this MCU.

Lock the OPAMP

Initialize the hardware based on the configuration.

Stop operation of all op-amps.

Initialize trim registers to factory trim values.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,019 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Operational Amplifier (OPAMP)

◆ R_OPAMP_Start()

ssp_err_t R_OPAMP_Start (opamp_ctrl_t *const p_api_ctrl, uint32_t const channel_mask)

If the OPAMP is configured for hardware triggers, enables hardware triggers. Otherwise, starts the
op-amp. Implements opamp_api_t::start().

Some MCUs have switches that must be set before starting the op-amp. These switches must be
set in the application code after opamp_api_t::open() and before opamp_api_t::start().

Return values
SSP_SUCCESS Op-amp started or hardware triggers

enabled successfully.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

SSP_ERR_INVALID_ARGUMENT channel_mask includes a channel that does
not exist on this MCU.

Enable AGT start and ADC conversion end triggers or start the op-amp channel(s).

Return the error code

◆ R_OPAMP_StatusGet()

ssp_err_t R_OPAMP_StatusGet (opamp_ctrl_t *const p_api_ctrl, opamp_status_t *const p_status)

Provides the operating status for each op-amp in a bitmask. This bit is set when operation begins,
before the stabilization wait time has elapsed. Implements opamp_api_t::statusGet().

Return values
SSP_SUCCESS Operating status of each op-amp provided

in p_status.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Read the operating status of the op-amps.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,020 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Operational Amplifier (OPAMP)

◆ R_OPAMP_Stop()

ssp_err_t R_OPAMP_Stop (opamp_ctrl_t *const p_api_ctrl, uint32_t const channel_mask)

Stops the op-amp. If the OPAMP is configured for hardware triggers, disables hardware triggers.
Implements opamp_api_t::stop().

Return values
SSP_SUCCESS Op-amp stopped or hardware triggers

disabled successfully.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

SSP_ERR_INVALID_ARGUMENT channel_mask includes a channel that does
not exist on this MCU.

Disable AGT start and ADC conversion end triggers and stop the op-amp channel(s).

Return the error code

◆ R_OPAMP_Trim()

ssp_err_t R_OPAMP_Trim (opamp_ctrl_t *const p_api_ctrl, opamp_trim_cmd_t const cmd,
opamp_trim_args_t const *const p_args)

On MCUs that support trimming, the op-amp trim register is set to the factory default after open().
This function allows the application to trim the operational amplifier to a user setting, which
overwrites the factory default factory trim values.

Not supported on all MCUs. See hardware manual for details. Not supported if configured for low
power mode (OPAMP_MODE_LOW_POWER).

This function is not reentrant. Only one side of one op-amp can be trimmed at a time. Complete the
procedure for one side of one channel before calling trim() with command
OPAMP_TRIM_CMD_START again.

Implements opamp_api_t::trim().

The trim procedure works as follows:

1. Call trim() for the Pch (+) side input with command OPAMP_TRIM_CMD_START.
2. Connect a fixed voltage to the Pch (+) input.
3. Connect the Nch (-) input to the op-amp output to create a voltage follower.
4. Ensure the op-amp is operating and stabilized.
5. Call trim() for the Pch (+) side input with command OPAMP_TRIM_CMD_START.
6. Measure the fixed voltage connected to the Pch (+) input using the SAR ADC and save the

value (referred to as A later in this procedure).
7. Iterate over the following loop 5 times:

a. Call trim() for the Pch (+) side input with command OPAMP_TRIM_CMD_NEXT_STEP.
b. Measure the op-amp output using the SAR ADC (referred to as B in the next step).
c. If A <= B, call trim() for the Pch (+) side input with command

OPAMP_TRIM_CMD_CLEAR_BIT.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,021 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Operational Amplifier (OPAMP)

8. Call trim() for the Nch (-) side input with command OPAMP_TRIM_CMD_START.
9. Measure the fixed voltage connected to the Pch (+) input using the SAR ADC and save the

value (referred to as A later in this procedure).
10. Iterate over the following loop 5 times:

a. Call trim() for the Nch (-) side input with command OPAMP_TRIM_CMD_NEXT_STEP.
b. Measure the op-amp output using the SAR ADC (referred to as B in the next step).
c. If A <= B, call trim() for the Nch (-) side input with command

OPAMP_TRIM_CMD_CLEAR_BIT.
Return values

SSP_SUCCESS Conversion result in p_data.

SSP_ERR_UNSUPPORTED Trimming is not supported on this MCU.

SSP_ERR_INVALID_STATE The command is not valid in the current
state of the trim state machine.

SSP_ERR_INVALID_ARGUMENT The requested channel is not operating or
the trim procedure is not in progress for this
channel/input combination.

SSP_ERR_INVALID_MODE Trim is not allowed in low power mode.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Initialize the trim register to 0 during OPAMP_TRIM_CMD_START.

Set the next trim bit during OPAMP_TRIM_CMD_NEXT_STEP.

Clear the current trim bit during OPAMP_TRIM_CMD_CLEAR_BIT.

◆ R_OPAMP_VersionGet()

ssp_err_t R_OPAMP_VersionGet (ssp_version_t *const p_version)

Gets the API and code version. Implements opamp_api_t::versionGet().

Return values
SSP_SUCCESS Version information available in p_version.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Return the version number

Variable Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,022 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Operational Amplifier (OPAMP)

◆ g_opamp_on_opamp

const opamp_api_t g_opamp_on_opamp

=

{

 .open = R_OPAMP_Open,

 .start = R_OPAMP_Start,

 .stop = R_OPAMP_Stop,

 .trim = R_OPAMP_Trim,

 .infoGet = R_OPAMP_InfoGet,

 .statusGet = R_OPAMP_StatusGet,

 .close = R_OPAMP_Close,

 .versionGet = R_OPAMP_VersionGet

}

Name of module used by error logger macro OPAMP Implementation of OPAMP interface.

 opamp_on_opamp_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » Operational Amplifier (OPAMP)

#include <r_opamp.h>

Data Fields

opamp_agt_link_t agt_link

opamp_mode_t mode

 Low power, middle speed, or high speed mode.

opamp_trigger_t trigger_channel_0

 Start and stop triggers for channel 0.

opamp_trigger_t trigger_channel_1

 Start and stop triggers for channel 1.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,023 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Operational Amplifier (OPAMP) > opamp_on_opamp_cfg_t Struct Reference

opamp_trigger_t trigger_channel_2

 Start and stop triggers for channel 2.

opamp_trigger_t trigger_channel_3

 Start and stop triggers for channel 3.

Detailed Description

OPAMP configuration extension. This extension is required and must be provided in
opamp_cfg_t::p_extend.

Field Documentation

◆ agt_link

opamp_agt_link_t opamp_on_opamp_cfg_t::agt_link

Configure which AGT links are paired to which channel. Only applies to channels if
OPAMP_TRIGGER_AGT_START_SOFTWARE_STOP or OPAMP_TRIGGER_AGT_START_ADC_STOP is
selected for the channel.

The documentation for this struct was generated from the following file:

r_opamp.h

 opamp_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » Operational Amplifier (OPAMP)

#include <r_opamp.h>

Data Fields

R_OPAMP_Type * p_reg

 Base register for this unit.

uint32_t opened

 Boolean to verify that the Unit has been initialized.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,024 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Operational Amplifier (OPAMP) > opamp_instance_ctrl_t Struct Reference

uint8_t trim_capable

 OPAMP has trim registers.

uint8_t switches

 OPAMP has switches.

uint32_t valid_opamps

 Mask of valid op-amps.

opamp_priv_trim_state_t trim_state

 Trim state for each op-amp.

uint8_t trim_channel

 Channel.

opamp_trim_input_t trim_input

 Which input of the channel above.

Detailed Description

OPAMP instance control block. DO NOT INITIALIZE. Initialized in opamp_api_t::open().

The documentation for this struct was generated from the following file:

r_opamp.h

5.1.5.43 PDC
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Parallel Data Capture Unit (PDC). More...

Data Structures

struct pdc_instance_ctrl_t

Functions

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,025 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PDC

ssp_err_t R_PDC_Open (pdc_ctrl_t *const p_api_ctrl, pdc_cfg_t const *const
p_cfg)

 Powers on PDC, handles required initialization described in the
hardware manual. Implements pdc_api_t::open. More...

ssp_err_t R_PDC_Close (pdc_ctrl_t *const p_api_ctrl)

 Stops and closes the transfer interface, disables the PDC, powers off
the PDC, clears internal driver data and disables interrupts.
Implements pdc_api_t::close. More...

ssp_err_t R_PDC_CaptureStart (pdc_ctrl_t *const p_api_ctrl, uint8_t *const
p_buffer)

 Starts a capture. Enables interrupts. Implements
pdc_api_t::captureStart. More...

ssp_err_t R_PDC_StateGet (pdc_ctrl_t *const p_api_ctrl, pdc_state_t *p_state)

 Returns the state of the VSYNC and HSYNC pins.Implements
pdc_api_t::stateGet. More...

ssp_err_t R_PDC_VersionGet (ssp_version_t *const p_data)

 Return PDC HAL driver version. Implements pdc_api_t::versionGet.
More...

Detailed Description

Driver for the Parallel Data Capture Unit (PDC).

Summary
extends PDC Interface The PDC interface allows the capturing of an image from a camera module.

Function Documentation

◆ R_PDC_CaptureStart()

ssp_err_t R_PDC_CaptureStart (pdc_ctrl_t *const p_api_ctrl, uint8_t *const p_buffer)

Starts a capture. Enables interrupts. Implements pdc_api_t::captureStart.

Sets up the transfer interface to transfer data from the PDC into the specified buffer. Configures the
PDC settings as previously set by the pdc_api_t::open API. These settings are configured here as
the PIXCLK input must be active for the PDC reset operation. When a capture is complete the
callback registered during pdc_api_t::open API call will be called.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,026 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PDC

Return values
SSP_SUCCESS Capture start successful.

SSP_ERR_ASSERTION One of the following parameters is incorrect.
Either

p_api_ctrl is NULL, OR
low level transfer is not assigned,
OR
low level transfer APIs are not
assigned
buffer is not assigned, assign buffer

SSP_ERR_NOT_OPEN Open has not been successfully called.

SSP_ERR_IN_USE Pdc transfer is already in progress, wait for
transfer to complete.

SSP_ERR_TIMEOUT Reset operation timed out.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::open
transfer_api_t::enable

Note
If the PIXCLK is being generated by a camera module the camera must be configured after the call to
pdc_api_t::open and before the call to pdc_api_t::captureStart. This function is not reentrant.

The user is responsible to ensuring that the memory pointed to by p_buffer is both valid and large
enough to store a complete image. The amount of space required, in bytes can be calculated as
shown:

size (bytes) = image width (pixels) * image height (lines) * number of bytes per pixel

Set up transfer interface

Configure the transfer interface

Open transfer interface

Wait for reset to complete

Set horizontal capture range

Set horizontal capture size

Set vertical capture range

Set vertical capture size

Set VSYNC polarity

Set HSYNC polarity

Set endianess of capture data

Enable interrupts: Receive data ready interrupt, Underrun interrupt, Overrun interrupt, Frame end
interrupt, Vertical line number setting error interrupt, Horizontal byte number setting error
interrupt

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,027 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PDC

◆ R_PDC_Close()

ssp_err_t R_PDC_Close (pdc_ctrl_t *const p_api_ctrl)

Stops and closes the transfer interface, disables the PDC, powers off the PDC, clears internal driver
data and disables interrupts. Implements pdc_api_t::close.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION One of the following parameters is incorrect.
Either

p_api_ctrl is NULL, OR
low level transfer is not assigned,
OR
low level transfer APIs are not
assigned

SSP_ERR_NOT_OPEN Open has not been successfully called.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::disable
transfer_api_t::close

Note
This API will close the PDC driver. If a capture is in progress it will be stopped. This function is reentrant.

Disable all interrupts.

Enable module stop mode for PDC

Unlock the PDC Hardware Resource

◆ R_PDC_Open()

ssp_err_t R_PDC_Open (pdc_ctrl_t *const p_api_ctrl, pdc_cfg_t const *const p_cfg)

Powers on PDC, handles required initialization described in the hardware manual. Implements
pdc_api_t::open.

The Open function provides initial configuration for the PDC module. It powers on the module and
enables the PCLKO output and the PIXCLK input. Further initialization requires the PIXCLK input to
be running in order to be able to reset the PDC as part of its initialization. This clock is input from a
camera module and so the reset and further initialization is performed in pdc_api_t::captureStart.
This function should be called once prior to calling any other PDC API functions. After the PDC is
opened the Open function should not be called again without first calling the Close function.

Return values
SSP_SUCCESS Initialization was successful.

SSP_ERR_ASSERTION One of the following parameters is incorrect.
Either

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,028 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PDC

p_cfg is NULL, OR
p_api_ctrl is NULL, OR
The pointer to the transfer interface
in the p_cfg parameter is NULL

SSP_ERR_INVALID_ARGUMENT One of the following configuration
parameters is incorrect. Either

bytes_per_pixel is zero, OR
x_capture_pixels is zero, OR
y_capture_pixels is zero, OR
x_capture_start_pixel +
x_capture_pixels is greater than
4095, OR
y_capture_start_pixel +
y_capture_pixels is greater than
4095

SSP_ERR_HW_LOCKED Unable to reserve BSP hardware lock for this
module.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Note
This function is not reentrant.

Lock the PDC Hardware Resource

Disable module stop mode for PDC

Set PCLKB divider

Enable PCLKO output

Enable the PIXCLK input

Mark driver as open by initializing it to "PDC" in its ASCII equivalent

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,029 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PDC

◆ R_PDC_StateGet()

ssp_err_t R_PDC_StateGet (pdc_ctrl_t *const p_api_ctrl, pdc_state_t * p_state)

Returns the state of the VSYNC and HSYNC pins.Implements pdc_api_t::stateGet.

Return values
SSP_SUCCESS State read successful.

SSP_ERR_ASSERTION p_api_ctrl is NULL OR p_state is NULL

SSP_ERR_NOT_OPEN Open has not been successfully called.

Note
This function is reentrant.

Check if the driver is open

Get the contents of PCMONR register

Update vsync signal state

Update hsync signal state

◆ R_PDC_VersionGet()

ssp_err_t R_PDC_VersionGet (ssp_version_t *const p_data)

Return PDC HAL driver version. Implements pdc_api_t::versionGet.

Return values
SSP_SUCCESS Version information successfully read.

SSP_ERR_ASSERTION Null pointer passed as a parameter

Note
This function is reentrant.

 pdc_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » PDC

#include <r_pdc.h>

Data Fields

R_PDC_Type * p_reg

 Pointer to PDC base address.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,030 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PDC > pdc_instance_ctrl_t Struct Reference

uint32_t open

uint8_t bytes_per_pixel

 Number of bytes per pixel.

uint16_t x_resolution_pixels

 Total number of horizontal pixels input to PDC.

uint16_t y_resolution_pixels

 Total number of lines input to the PDC.

uint16_t x_capture_start_pixel

 Horizontal position to start capture.

uint16_t x_capture_pixels

 Number of horizontal pixels to capture.

uint16_t y_capture_start_pixel

 Vertical position to start capture.

uint16_t y_capture_pixels

 Number of vertical lines/pixels to capture.

pdc_endian_t endian

 Endian of capture data.

pdc_hsync_polarity_t hsync_polarity

 Polarity of HSYNC input.

pdc_vsync_polarity_t vsync_polarity

 Polarity of VSYNC input.

uint8_t * p_current_buffer

 Pointer to buffer currently in use.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,031 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PDC > pdc_instance_ctrl_t Struct Reference

bool transfer_in_progress

 Indicates if a PDC transfer is already in progress.

transfer_instance_t const * p_lower_lvl_transfer

 Pointer to the transfer instance the PDC should use.

transfer_info_t info_transfer

 Transfer info structure for low level Transfer interface.

void const * p_context

void(* p_callback)(pdc_callback_args_t *p_args)

 Callback provided when a PDC transfer ISR occurs.

IRQn_Type frame_end_irq

 Frame end interrupt number.

IRQn_Type irq

 PDC interrupt number.

Detailed Description

PDC instance control block. DO NOT INITIALIZE. Initialization occurs when pdc_api_t::open is called.

Field Documentation

◆ open

uint32_t pdc_instance_ctrl_t::open

Indicates whether or not the driver is open called.

◆ p_context

void const* pdc_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in pdc_callback_args_t.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,032 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PDC > pdc_instance_ctrl_t Struct Reference

The documentation for this struct was generated from the following file:

r_pdc.h

5.1.5.44 PTP
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Precision time protocol(PTP). More...

Data Structures

struct ptp_instance_ctrl_t

Functions

ssp_err_t R_PTP_Open (ptp_ctrl_t *const p_api_ctrl, ptp_cfg_t const *const
p_cfg)

 Open the PTP driver, handles required initialization described in
hardware manual. Implements ptp_api_t::open. More...

ssp_err_t R_PTP_Close (ptp_ctrl_t *const p_api_ctrl)

 Closes the PTP driver. Implements ptp_api_t::close. More...

ssp_err_t R_PTP_Configure (ptp_ctrl_t *const p_api_ctrl, uint32_t *p_ip_address,
uint32_t *p_physical_address_msw, uint32_t
*p_physical_address_lsw)

 Configures the PTP driver with IP and MAC address. Implements
ptp_api_t::configure. More...

ssp_err_t R_PTP_SetExtPromiscuous (ptp_ctrl_t *const p_api_ctrl, uint8_t
ptp_channel, bool is_set)

 Sets or clear the extended promiscuous mode of the specified PTP
channel. Implements ptp_api_t::setExtPromiscuous. More...

ssp_err_t R_PTP_GetLocalClock (ptp_ctrl_t *const p_api_ctrl, ptp_timestamp_t
*p_clock, uint32_t wait_option)

 Gets the current local clock counter value in Timestamp format(UNIX
time) when configured as slave. Implements ptp_api_t::getLocalClock
. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,033 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

ssp_err_t R_PTP_SetLocalClock (ptp_ctrl_t *const p_api_ctrl, ptp_timestamp_t
*p_clock)

 Sets local clock counter value with Timestamp (UNIX time). Master
clock set the master time. Implements ptp_api_t::setLocalClock.
More...

ssp_err_t R_PTP_GetMasterPortID (ptp_ctrl_t *const p_api_ctrl, uint8_t
ptp_channel, uint32_t *p_clock, uint16_t *p_port)

 Gets master clock ID and master port number fields of the specified
PTP channel. Note: If the argument (p_clock or p_port) is NULL
pointer, the value will not be acquired. Implements
ptp_api_t::getMasterPortID. More...

ssp_err_t R_PTP_SetMasterPortID (ptp_ctrl_t *const p_api_ctrl, uint8_t
ptp_channel, uint32_t *p_clock, uint16_t *p_port)

 Sets master clock ID and master port number fields of the specified
PTP channel. Note: If the argument (p_clock or p_port) is NULL
pointer, the value will not be updated. Implements
ptp_api_t::setMasterPortID. More...

ssp_err_t R_PTP_GetSyncInfo (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel,
ptp_timeInterval_t *p_master_offset, ptp_timeInterval_t
*p_path_delay)

 Gets the current offset from master and mean path delay of the
specified PTP channel when configured as slave. Note: If the
argument (p_master_offset or p_path_delay) is NULL pointer, the
value will not be acquired. Implements ptp_api_t::getSyncInfo.
More...

ssp_err_t R_PTP_Start (ptp_ctrl_t *const p_api_ctrl, uint32_t wait_option)

 Starts time synchronization. Implements ptp_api_t::start. More...

ssp_err_t R_PTP_Stop (ptp_ctrl_t *const p_api_ctrl, uint32_t wait_option)

 Stops time synchronization. Implements ptp_api_t::stop. More...

ssp_err_t R_PTP_SetWorst10Values (ptp_ctrl_t *const p_api_ctrl, uint8_t
interval)

 Sets the interval for collecting worst 10 values. Implements
ptp_api_t::setWorst10Values. More...

ssp_err_t R_PTP_CheckWorst10Values (ptp_ctrl_t *const p_api_ctrl, uint32_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,034 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

wait_option)

 Checks if worst 10 values are acquired and set as gradient limits
when configured as slave. Implements
ptp_api_t::checkWorst10Values. More...

ssp_err_t R_PTP_GetWorst10Values (ptp_ctrl_t *const p_api_ctrl, uint32_t
*p_positive_worst10, uint32_t *p_negative_worst10, uint32_t
wait_option)

 Gets positive and negative worst 10 values by software. Note: If the
argument (p_positive_worst10 or p_negative_worst10) is NULL
pointer, the value will not be acquired. Implements
ptp_api_t::getWorst10Values. More...

ssp_err_t R_PTP_SetGradientLimit (ptp_ctrl_t *const p_api_ctrl, uint32_t
*p_positive_limit, uint32_t *p_negative_limit)

 Sets the gradient limits for positive and negative worst 10 values.
Note: If the argument (p_positive_limit or p_negative_limit) is NULL
pointer, the value will not be acquired. Implements
ptp_api_t::setGradientLimit. More...

ssp_err_t R_PTP_UpdateClockID (ptp_ctrl_t *const p_api_ctrl, uint8_t
ptp_channel, int8_t *p_clock_id)

 Updates clock identity field. Implements ptp_api_t::updateClockID.
More...

ssp_err_t R_PTP_UpdateDomainNumber (ptp_ctrl_t *const p_api_ctrl, uint8_t
ptp_channel, uint8_t domain_num)

 Updates domain number field in the message header. Implements
ptp_api_t::updateDomainNumber. More...

ssp_err_t R_PTP_UpdateAnnounceFlags (ptp_ctrl_t *const p_api_ctrl, uint8_t
ptp_channel, ptp_announce_flag_t *p_flag)

 Updates announce message's flag field. Implements
ptp_api_t::updateAnnounceFlags. More...

ssp_err_t R_PTP_UpdateAnnounceMsgs (ptp_ctrl_t *const p_api_ctrl, uint8_t
ptp_channel, ptp_announce_message_t *p_message)

 Updates announce message's message field. Implements
ptp_api_t::updateAnnounceMsgs. More...

ssp_err_t R_PTP_UpdateSyncAnnounceMsgInterval (ptp_ctrl_t *const p_api_ctrl,
uint8_t ptp_channel, int8_t *p_sync_interval, int8_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,035 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

*p_announce_interval)

 Updates transmission interval and logMessageInterval of Sync and
Announce messages. Note: If the argument (p_sync_interval or
p_announce_interval) is NULL pointer, the value will not be acquired.
Implements ptp_api_t::updateSyncAnnounceMsgInterval. More...

ssp_err_t R_PTP_UpdateDelayMsgInterval (ptp_ctrl_t *const p_api_ctrl, uint8_t
ptp_channel, int8_t *p_interval, uint32_t *p_timeout)

 Updates transmission interval, logMessageInterval and timeout
values of Delay message. Note: If the argument (p_interval or
p_timeout) is NULL pointer, the value will not be updated.
Implements ptp_api_t::updateDelayMsgInterval. More...

ssp_err_t R_PTP_GetMessageReceptionConfig (ptp_ctrl_t *const p_api_ctrl,
uint8_t ptp_channel, ptp_message_reception_t
*p_ptp_message_reception)

 Gets PTP message reception synchronous configuration. Implements
ptp_api_t::getMessageReceptionConfig. More...

ssp_err_t R_PTP_SetMessageReceptionConfig (ptp_ctrl_t *const p_api_ctrl,
uint8_t ptp_channel, ptp_message_reception_t
*p_ptp_message_reception)

 Sets PTP message reception synchronous configuration. Implements
ptp_api_t::setMessageReceptionConfig. More...

ssp_err_t R_PTP_DisableTimer (ptp_ctrl_t *const p_api_ctrl,
ptp_stca_timer_channel_t timer_channel)

 Disables the specified timer event interrupt. Implements
ptp_api_t::disableTimer. More...

ssp_err_t R_PTP_IndicateEvent (ptp_ctrl_t *const p_api_ctrl,
ptp_stca_timer_channel_t timer_channel,
ptp_stca_timer_pulse_edge_t timer_pulse_edge, bool is_set)

 Set/clear interrupt indication to ELC output on generation of pulse
produced by pulse output timer. Implements ptp_api_t::indicateEvent
. More...

ssp_err_t R_PTP_AutoClearEvent (ptp_ctrl_t *const p_api_ctrl,
ptp_stca_timer_channel_t timer_channel,
ptp_stca_timer_pulse_edge_t timer_pulse_edge, bool is_set)

 Set/clear auto clear mode for enabling one time output of ELC event.
Implements ptp_api_t::autoClearEvent. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,036 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

ssp_err_t R_PTP_SetTimer (ptp_ctrl_t *const p_api_ctrl, uint8_t timer_channel,
UInt64_t event_time, uint32_t cycle, uint32_t pulse_width)

 Sets start time, pulse period and pulse width for the pulse output
timer. Implements ptp_api_t::setTimer. More...

ssp_err_t R_PTP_SetMINTevent (ptp_ctrl_t *const p_api_ctrl, ptp_event_t
ptp_reg, uint32_t event, bool is_set)

 Sets MINT interrupt event to enable notification for change in state of
modules Implements ptp_api_t::setMINTevent. More...

ssp_err_t R_PTP_EnableINFABTnotification (ptp_ctrl_t *const p_api_ctrl, uint8_t
ptp_channel)

 Enables EPTPC INFABT notification of the specified PTP channel.
Implements ptp_api_t::enableINFABTnotification. More...

ssp_err_t R_PTP_DisableINFABTnotification (ptp_ctrl_t *const p_api_ctrl, uint8_t
ptp_channel)

 Disables EPTPC INFABT notification of the specified PTP channel.
Implements ptp_api_t::disableINFABTnotification. More...

ssp_err_t R_PTP_CheckINFABTstatus (ptp_ctrl_t *const p_api_ctrl, uint8_t
ptp_channel, uint8_t *p_status)

 Checks the status of INFABT flag of the specified PTP channel.
Implements ptp_api_t::checkINFABTstatus. More...

ssp_err_t R_PTP_ClearINFABTstatus (ptp_ctrl_t *const p_api_ctrl, uint8_t
ptp_channel)

 Clears INFABT interrupt occurrence flag of the specified PTP channel.
Implements ptp_api_t::clearINFABTstatus. More...

ssp_err_t R_PTP_VersionGet (ssp_version_t *const p_version)

 Gets version information and stores it in the provided version struct.
Implements ptp_api_t::versionGet. More...

Detailed Description

Driver for the Precision time protocol(PTP).

Summary

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,037 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

This module supports the PTP time synchronization functionality.

Extends PTP driver Interface.

Function Documentation

◆ R_PTP_AutoClearEvent()

ssp_err_t R_PTP_AutoClearEvent (ptp_ctrl_t *const p_api_ctrl, ptp_stca_timer_channel_t
timer_channel, ptp_stca_timer_pulse_edge_t timer_pulse_edge, bool is_set)

Set/clear auto clear mode for enabling one time output of ELC event. Implements
ptp_api_t::autoClearEvent.

Return values
SSP_SUCCESS ELC interrupt auto clear mode set or clear is

successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

Get IPLS Interrupt Permission Automatic clearing register status

If set, enable automatic clearing for specified pulse output timer channel

Set IPLS Interrupt Permission Automatic clearing register status

◆ R_PTP_CheckINFABTstatus()

ssp_err_t R_PTP_CheckINFABTstatus (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel, uint8_t *
p_status)

Checks the status of INFABT flag of the specified PTP channel. Implements
ptp_api_t::checkINFABTstatus.

Return values
SSP_SUCCESS INFABT flag status check is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Gets the current status of INFABT notification flag of the specified PTP channel

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,038 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_CheckWorst10Values()

ssp_err_t R_PTP_CheckWorst10Values (ptp_ctrl_t *const p_api_ctrl, uint32_t wait_option)

Checks if worst 10 values are acquired and set as gradient limits when configured as slave.
Implements ptp_api_t::checkWorst10Values.

Return values
SSP_SUCCESS Gradient values are set based on worst 10

values successfully.

SSP_ERR_TIMEOUT Gradient values are not set before timeout.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

Wait till worst10 values are acquired by hardware and set as gradient limits

◆ R_PTP_ClearINFABTstatus()

ssp_err_t R_PTP_ClearINFABTstatus (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel)

Clears INFABT interrupt occurrence flag of the specified PTP channel. Implements
ptp_api_t::clearINFABTstatus.

Return values
SSP_SUCCESS INFABT status flag clear is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Clear the status of INFABT notification flag of the specified PTP channel

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,039 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_Close()

ssp_err_t R_PTP_Close (ptp_ctrl_t *const p_api_ctrl)

Closes the PTP driver. Implements ptp_api_t::close.

Return values
SSP_SUCCESS The PTP driver is successfully closed.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

Disable PTP MINT interrupt

Release hardware lock

Mark driver as closed

◆ R_PTP_Configure()

ssp_err_t R_PTP_Configure (ptp_ctrl_t *const p_api_ctrl, uint32_t * p_ip_address, uint32_t *
p_physical_address_msw, uint32_t * p_physical_address_lsw)

Configures the PTP driver with IP and MAC address. Implements ptp_api_t::configure.

Return values
SSP_SUCCESS The PTP driver is successfully configured

with IP and MAC address.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block or passed
argument is NULL.

Initialize Synchronization Frame Processing unit (SYNFP)

Initialize Packet Relation Controller (PRC-TC) and Statistical Time Correction Algorithm (STCA) units

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,040 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_DisableINFABTnotification()

ssp_err_t R_PTP_DisableINFABTnotification (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel)

Disables EPTPC INFABT notification of the specified PTP channel. Implements
ptp_api_t::disableINFABTnotification.

Return values
SSP_SUCCESS INFABT notification disable is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Disable INFABT detection flag of the specified PTP channel

◆ R_PTP_DisableTimer()

ssp_err_t R_PTP_DisableTimer (ptp_ctrl_t *const p_api_ctrl, ptp_stca_timer_channel_t
timer_channel)

Disables the specified timer event interrupt. Implements ptp_api_t::disableTimer.

Return values
SSP_SUCCESS Timer event interrupt disable is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

Get MINT interrupt request status

Disable the timer event of specified pulse output channel

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,041 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_EnableINFABTnotification()

ssp_err_t R_PTP_EnableINFABTnotification (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel)

Enables EPTPC INFABT notification of the specified PTP channel. Implements
ptp_api_t::enableINFABTnotification.

Return values
SSP_SUCCESS INFABT notification enable is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Initially clear the status of INFABT detection flag of the specified PTP channel

Enable generation of ETHER_MINT interrupt by SYNFP0 status flag

Enable generation of ETHER_MINT interrupt by SYNFP1 status flag

Enable the INFABT detection flag of specified PTP channel

◆ R_PTP_GetLocalClock()

ssp_err_t R_PTP_GetLocalClock (ptp_ctrl_t *const p_api_ctrl, ptp_timestamp_t * p_clock, uint32_t
wait_option)

Gets the current local clock counter value in Timestamp format(UNIX time) when configured as
slave. Implements ptp_api_t::getLocalClock.

Return values
SSP_SUCCESS Local clock counter get is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_TIMEOUT Clock info is not acquired before timeout.

SSP_ERR_ASSERTION Pointer to the control block or p_clock
parameter is NULL.

Request the current local clock counter information

Wait till local clock counter value is loaded with current local time

Save current local clock counter value

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,042 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_GetMasterPortID()

ssp_err_t R_PTP_GetMasterPortID (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel, uint32_t *
p_clock, uint16_t * p_port)

Gets master clock ID and master port number fields of the specified PTP channel. Note: If the
argument (p_clock or p_port) is NULL pointer, the value will not be acquired. Implements
ptp_api_t::getMasterPortID.

Return values
SSP_SUCCESS Master port ID get is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block, p_clock or
p_port parameter is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Get master clock ID high and low fields

Get master port number field

◆ R_PTP_GetMessageReceptionConfig()

ssp_err_t R_PTP_GetMessageReceptionConfig (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel,
ptp_message_reception_t * p_ptp_message_reception)

Gets PTP message reception synchronous configuration. Implements
ptp_api_t::getMessageReceptionConfig.

Return values
SSP_SUCCESS Synchronous configuration get is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Get SYNFP Reception Filter Register 1

Get SYNFP Reception Filter Register 2

Get SYNFP Transmission Enable Register

Get SYNFP Operation Setting Register

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,043 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_GetSyncInfo()

ssp_err_t R_PTP_GetSyncInfo (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel, ptp_timeInterval_t
* p_master_offset, ptp_timeInterval_t * p_path_delay)

Gets the current offset from master and mean path delay of the specified PTP channel when
configured as slave. Note: If the argument (p_master_offset or p_path_delay) is NULL pointer, the
value will not be acquired. Implements ptp_api_t::getSyncInfo.

Return values
SSP_SUCCESS Offset from master and mean path delay

get is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block, p_master_offset
or p_path_delay is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Request offset from master from the specified PTP channel

Get the offset from master in nano-seconds format

Request mean path delay from the specified PTP channel

Get the mean path delay in nano-seconds format

◆ R_PTP_GetWorst10Values()

ssp_err_t R_PTP_GetWorst10Values (ptp_ctrl_t *const p_api_ctrl, uint32_t * p_positive_worst10,
uint32_t * p_negative_worst10, uint32_t wait_option)

Gets positive and negative worst 10 values by software. Note: If the argument (p_positive_worst10
or p_negative_worst10) is NULL pointer, the value will not be acquired. Implements
ptp_api_t::getWorst10Values.

Return values
SSP_SUCCESS Positive and negative worst 10 values get is

successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

Request current worst10 values acquired

Wait till gradient worst10 values are acquired by software

Get positive gradient values

Get negative gradient values

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,044 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_IndicateEvent()

ssp_err_t R_PTP_IndicateEvent (ptp_ctrl_t *const p_api_ctrl, ptp_stca_timer_channel_t
timer_channel, ptp_stca_timer_pulse_edge_t timer_pulse_edge, bool is_set)

Set/clear interrupt indication to ELC output on generation of pulse produced by pulse output timer.
Implements ptp_api_t::indicateEvent.

Return values
SSP_SUCCESS ELC interrupt indication set or clear is

successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

Get IPLS Interrupt Permission Register status

If set, enable output from pulse output timer channel

Set IPLS Interrupt Permission Register status

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,045 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_Open()

ssp_err_t R_PTP_Open (ptp_ctrl_t *const p_api_ctrl, ptp_cfg_t const *const p_cfg)

Open the PTP driver, handles required initialization described in hardware manual. Implements
ptp_api_t::open.

Return values
SSP_SUCCESS PTP driver has opened successfully and

initialization was successful.

SSP_ERR_IN_USE The channel specified has already been
opened.

SSP_ERR_ASSERTION The p_ctrl or p_cfg parameter was NULL.

SSP_ERR_IRQ_BSP_DISABLED A required interrupt does not exist in the
vector table.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Verify if this unit has not already been initialized

Make sure the peripheral exists

Lock EPTPC channel

Power on the PTP module.

Configure MINT interrupt

Reset PTP driver

Wait at least 64 cycles of PCLKA to reset the PTPEDMAC and EPTPC. PCLKA must be at least 12.5
MHz to use Ethernet, so wait at least 5.12 us.

Initialize the channel state information

Select synchronization frame processing unit (SYNFP0 or SYNFP1)

Initialize EPTPC MINT interrupt requests

Initialize SYNFP reception status

Enable MINT interrupt

Disable bypassing of EPTPC module

Mark driver as opened by initializing it to "PTP" in its ASCII equivalent for this unit

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,046 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_SetExtPromiscuous()

ssp_err_t R_PTP_SetExtPromiscuous (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel, bool is_set
)

Sets or clear the extended promiscuous mode of the specified PTP channel. Implements
ptp_api_t::setExtPromiscuous.

Return values
SSP_SUCCESS Extended promiscuous mode is set/cleared

successfully.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Set or clear extended promiscuous mode of the specified PTP channel

◆ R_PTP_SetGradientLimit()

ssp_err_t R_PTP_SetGradientLimit (ptp_ctrl_t *const p_api_ctrl, uint32_t * p_positive_limit, uint32_t
* p_negative_limit)

Sets the gradient limits for positive and negative worst 10 values. Note: If the argument
(p_positive_limit or p_negative_limit) is NULL pointer, the value will not be acquired. Implements
ptp_api_t::setGradientLimit.

Return values
SSP_SUCCESS Positive and negative gradient values set is

successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

Set positive gradient values

Set negative gradient values

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,047 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_SetLocalClock()

ssp_err_t R_PTP_SetLocalClock (ptp_ctrl_t *const p_api_ctrl, ptp_timestamp_t * p_clock)

Sets local clock counter value with Timestamp (UNIX time). Master clock set the master time.
Implements ptp_api_t::setLocalClock.

Return values
SSP_SUCCESS Local clock counter set is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block or p_clock
parameter is NULL.

Set local clock counter value with the specified time information

◆ R_PTP_SetMasterPortID()

ssp_err_t R_PTP_SetMasterPortID (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel, uint32_t *
p_clock, uint16_t * p_port)

Sets master clock ID and master port number fields of the specified PTP channel. Note: If the
argument (p_clock or p_port) is NULL pointer, the value will not be updated. Implements
ptp_api_t::setMasterPortID.

Return values
SSP_SUCCESS Master port ID is updated successfully.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block, p_clock or
p_port is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Set master clock ID high and low fields

Set master port number field

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,048 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_SetMessageReceptionConfig()

ssp_err_t R_PTP_SetMessageReceptionConfig (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel,
ptp_message_reception_t * p_ptp_message_reception)

Sets PTP message reception synchronous configuration. Implements
ptp_api_t::setMessageReceptionConfig.

Return values
SSP_SUCCESS Synchronous configuration set is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Set SYNFP Reception Filter Register 1

Set SYNFP Reception Filter Register 2

Set SYNFP Transmission Enable Register

Set SYNFP Operation Setting Register

◆ R_PTP_SetMINTevent()

ssp_err_t R_PTP_SetMINTevent (ptp_ctrl_t *const p_api_ctrl, ptp_event_t ptp_reg, uint32_t event,
bool is_set)

Sets MINT interrupt event to enable notification for change in state of modules Implements
ptp_api_t::setMINTevent.

Return values
SSP_SUCCESS MINT interrupt event set is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

Enable notification of STCA status

Enable notification of PRC-TC status

Enable notification of SYNFP0 status

Enable notification of SYNFP1 status

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,049 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_SetTimer()

ssp_err_t R_PTP_SetTimer (ptp_ctrl_t *const p_api_ctrl, uint8_t timer_channel, UInt64_t
event_time, uint32_t cycle, uint32_t pulse_width)

Sets start time, pulse period and pulse width for the pulse output timer. Implements
ptp_api_t::setTimer.

Return values
SSP_SUCCESS Timer event set is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

Set event time, PWM cycle interval and PWM pulse width to specified timer channel

Start the specified pulse output timer

◆ R_PTP_SetWorst10Values()

ssp_err_t R_PTP_SetWorst10Values (ptp_ctrl_t *const p_api_ctrl, uint8_t interval)

Sets the interval for collecting worst 10 values. Implements ptp_api_t::setWorst10Values.

Return values
SSP_SUCCESS Worst 10 values are recorded successfully.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

Sets interval to get worst 10 values

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,050 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_Start()

ssp_err_t R_PTP_Start (ptp_ctrl_t *const p_api_ctrl, uint32_t wait_option)

Starts time synchronization. Implements ptp_api_t::start.

Return values
SSP_SUCCESS Time synchronization started successfully.

SSP_ERR_TIMEOUT Time synchronization did not start before
timeout.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_MODE Invalid PTP mode.

Starts time synchronization

◆ R_PTP_Stop()

ssp_err_t R_PTP_Stop (ptp_ctrl_t *const p_api_ctrl, uint32_t wait_option)

Stops time synchronization. Implements ptp_api_t::stop.

Return values
SSP_SUCCESS Time synchronization stopped successfully.

SSP_ERR_TIMEOUT Time synchronization did not stop before
timeout.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_MODE Invalid PTP mode.

Stops the time synchronization

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,051 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_UpdateAnnounceFlags()

ssp_err_t R_PTP_UpdateAnnounceFlags (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel,
ptp_announce_flag_t * p_flag)

Updates announce message's flag field. Implements ptp_api_t::updateAnnounceFlags.

Return values
SSP_SUCCESS Announce message flag field set is

successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Update announce message's flag field

◆ R_PTP_UpdateAnnounceMsgs()

ssp_err_t R_PTP_UpdateAnnounceMsgs (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel,
ptp_announce_message_t * p_message)

Updates announce message's message field. Implements ptp_api_t::updateAnnounceMsgs.

Return values
SSP_SUCCESS Announce message field set is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Update grandmasterPriority1 and grandmasterPriority2 fields

Update grandmasterClockQuality fields

Update grandmasterIdentity fields of Announce messages

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,052 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_UpdateClockID()

ssp_err_t R_PTP_UpdateClockID (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel, int8_t *
p_clock_id)

Updates clock identity field. Implements ptp_api_t::updateClockID.

Return values
SSP_SUCCESS Clock identity field set is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Update local clockIdentity field of the specified EPTPC port

◆ R_PTP_UpdateDelayMsgInterval()

ssp_err_t R_PTP_UpdateDelayMsgInterval (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel, int8_t
* p_interval, uint32_t * p_timeout)

Updates transmission interval, logMessageInterval and timeout values of Delay message. Note: If
the argument (p_interval or p_timeout) is NULL pointer, the value will not be updated. Implements
ptp_api_t::updateDelayMsgInterval.

Return values
SSP_SUCCESS Transmission interval, logMessage interval

and timeout set is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

If clock state is master, update Delay_Response logMessageInterval value

If clock state is slave, update Delay_Request /Pdelay_Request transmission interval value

Update Delay_Response/Pdelay_Response receiving timeout value

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,053 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_UpdateDomainNumber()

ssp_err_t R_PTP_UpdateDomainNumber (ptp_ctrl_t *const p_api_ctrl, uint8_t ptp_channel, uint8_t
domain_num)

Updates domain number field in the message header. Implements
ptp_api_t::updateDomainNumber.

Return values
SSP_SUCCESS Domain number field set is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Update domainNumber field of the PTP message header

◆ R_PTP_UpdateSyncAnnounceMsgInterval()

ssp_err_t R_PTP_UpdateSyncAnnounceMsgInterval (ptp_ctrl_t *const p_api_ctrl, uint8_t
ptp_channel, int8_t * p_sync_interval, int8_t * p_announce_interval)

Updates transmission interval and logMessageInterval of Sync and Announce messages. Note: If
the argument (p_sync_interval or p_announce_interval) is NULL pointer, the value will not be
acquired. Implements ptp_api_t::updateSyncAnnounceMsgInterval.

Return values
SSP_SUCCESS Transmission interval and logMessage

interval set is successful.

SSP_ERR_NOT_OPEN The PTP driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_INVALID_CHANNEL Invalid EPTPC channel.

Update SYNFP Sync message transmission interval

Update SYNFP announce message Transmission Interval

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,054 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP

◆ R_PTP_VersionGet()

ssp_err_t R_PTP_VersionGet (ssp_version_t *const p_version)

Gets version information and stores it in the provided version struct. Implements
ptp_api_t::versionGet.

Return values
SSP_SUCCESS Version returned successfully.

SSP_ERR_ASSERTION Parameter p_version was NULL.

Return the version number

 ptp_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » PTP

#include <r_ptp.h>

Data Fields

ssp_err_t(* p_callback)(ptp_callback_args_t *p_args)

IRQn_Type mint_irq

 MINT interrupt IRQ number.

ptp_device_t device

 PTP clock type.

ptp_state_t state [2]

 PTP clock state.

ptp_delay_mechanism_t delay [2]

 PTP delay correction mechanism.

ptp_frame_format_t frame_format [2]

 PTP message frame format.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,055 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP > ptp_instance_ctrl_t Struct Reference

ptp_stca_mode_t stca_mode

 STCA synchronous mode.

ptp_address_t address [2]

 IP and MAC address.

uint32_t open

 Flag to determine if the device is open.

uint8_t eptpc_flag [2]

 Flag to check the EPTPC channel.

uint8_t infabt_flag [2]

 Flag to check INFABT status.

void * p_reg_gen

 Pointer to R_EPTPC_GEN_Type base register.

void * p_reg_cfg

 Pointer to R_EPTPC_CFG_Type base register.

void * p_reg [2]

 Pointer to R_EPTPC0_Type base register.

void const * p_context

 Placeholder for user data.

void const * p_extend

 Extension parameter for hardware specific settings.

Detailed Description

PTP instance control block. DO NOT INITIALIZE. Initialized in ptp_api_t::open().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,056 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTP > ptp_instance_ctrl_t Struct Reference

Field Documentation

◆ p_callback

ssp_err_t(* ptp_instance_ctrl_t::p_callback) (ptp_callback_args_t *p_args)

Callback provided when a PTP message is received. NULL indicates no CPU interrupt.

The documentation for this struct was generated from the following file:

r_ptp.h

5.1.5.45 PTPEDMAC
Renesas Synergy Software Package Reference » HAL Layer

DMA controller for PTP driver. More...

Data Structures

struct ptpedmac_instance_ctrl_t

Functions

ssp_err_t R_PTPEDMAC_Open (ptpedmac_ctrl_t *const p_api_ctrl,
ptpedmac_cfg_t const *const p_cfg)

 Open the PTP host interface (PTPEDMAC), handles required
initialization described in hardware manual. Implements
ptpedmac_api_t::open. More...

ssp_err_t R_PTPEDMAC_LinkProcess (ptpedmac_ctrl_t *const p_api_ctrl)

 Sets PTP host interface to transfer PTP messages. Implements
ptpedmac_api_t::linkProcess. More...

ssp_err_t R_PTPEDMAC_CheckLink (ptpedmac_ctrl_t *const p_api_ctrl)

 Checks PTP host interface communication link. Implements
ptpedmac_api_t::checkLink. More...

ssp_err_t R_PTPEDMAC_Read (ptpedmac_ctrl_t *const p_api_ctrl, uint32_t
*p_channel, void *p_buffer, int32_t *p_num_received)

 Receive PTP message. Implements ptpedmac_api_t::read. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,057 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTPEDMAC

ssp_err_t R_PTPEDMAC_Close (ptpedmac_ctrl_t *const p_api_ctrl)

 Disable PTP host interface. Implements ptpedmac_api_t::close.
More...

ssp_err_t R_PTPEDMAC_VersionGet (ssp_version_t *const p_version)

 This function returns the API version. Implements
ptpedmac_api_t::versionGet. More...

Detailed Description

DMA controller for PTP driver.

Summary
This module implements the following interface: PTPEDMAC driver Interface.

Function Documentation

◆ R_PTPEDMAC_CheckLink()

ssp_err_t R_PTPEDMAC_CheckLink (ptpedmac_ctrl_t *const p_api_ctrl)

Checks PTP host interface communication link. Implements ptpedmac_api_t::checkLink.

Return values
SSP_SUCCESS PTP host interface link status is verified

successfully

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_NOT_OPEN PTPEDMAC driver is not opened.

SSP_ERR_NOT_ENABLED PTP host interface is not enabled

Check the current status of PTP message transfer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,058 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTPEDMAC

◆ R_PTPEDMAC_Close()

ssp_err_t R_PTPEDMAC_Close (ptpedmac_ctrl_t *const p_api_ctrl)

Disable PTP host interface. Implements ptpedmac_api_t::close.

Return values
SSP_SUCCESS PTP host interface is closed successfully

SSP_ERR_NOT_OPEN PTPEDMAC driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

Clear PTPEDMAC interrupt

Set PTP Host interface transfer flag to disable

The device is now considered closed

◆ R_PTPEDMAC_LinkProcess()

ssp_err_t R_PTPEDMAC_LinkProcess (ptpedmac_ctrl_t *const p_api_ctrl)

Sets PTP host interface to transfer PTP messages. Implements ptpedmac_api_t::linkProcess.

Return values
SSP_SUCCESS PTP host interface has linked successfully to

transfer PTP messages

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_NOT_OPEN PTPEDMAC driver is not opened.

Initialize the receive descriptor

Initialize and configure PTPEDMAC

Set PTP Host interface transfer flag to enable

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,059 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTPEDMAC

◆ R_PTPEDMAC_Open()

ssp_err_t R_PTPEDMAC_Open (ptpedmac_ctrl_t *const p_api_ctrl, ptpedmac_cfg_t const *const
p_cfg)

Open the PTP host interface (PTPEDMAC), handles required initialization described in hardware
manual. Implements ptpedmac_api_t::open.

Return values
SSP_SUCCESS PTP host interface has opened successfully

and initialization was successful.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_IRQ_BSP_DISABLED A required interrupt does not exist in the
vector table

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Reset PTPEDMAC

Wait at least 64 cycles of PCLKA to reset the PTPEDMAC and EPTPC. PCLKA must be at least 12.5
MHz to use Ethernet, so wait at least 5.12 us.

Make sure the peripheral exists.

Initialize the channel state information.

If interrupt is registered in the vector table, disable interrupts, set priority, and store control block
in the vector information so it can be accessed from the callback.

Enable PINT interrupt

Initialize frame transfer status flag

Mark driver as opened by initializing it to "DMAC" in its ASCII equivalent for this unit.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,060 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTPEDMAC

◆ R_PTPEDMAC_Read()

ssp_err_t R_PTPEDMAC_Read (ptpedmac_ctrl_t *const p_api_ctrl, uint32_t * p_channel, void *
p_buffer, int32_t * p_num_received)

Receive PTP message. Implements ptpedmac_api_t::read.

Return values
SSP_SUCCESS PTP message received successfully

SSP_ERR_TIMEOUT No data received

SSP_ERR_NOT_OPEN PTPEDMAC driver is not opened.

SSP_ERR_ASSERTION Pointer to the control block is NULL.

SSP_ERR_NOT_ENABLED PTP host interface is not enabled

Set the allocated buffer pointer for received data

◆ R_PTPEDMAC_VersionGet()

ssp_err_t R_PTPEDMAC_VersionGet (ssp_version_t *const p_version)

This function returns the API version. Implements ptpedmac_api_t::versionGet.

Parameters
[in] p_version Pointer to the API version

block

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Return the version number

 ptpedmac_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » PTPEDMAC

#include <r_ptpedmac.h>

Public Member Functions

ptpedmac_descriptor_t
p_rx_descriptors [PTPEDMAC

BSP_ALIGN_VARIABLE_V2 (16)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,061 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTPEDMAC > ptpedmac_instance_ctrl_t Struct Reference

_NUM_RX_DESCRIPTORS]

 Pointer to receive descriptor aligned to 16 bytes.

Data Fields

ssp_err_t(* p_callback)(ptpedmac_callback_args_t *p_args)

void const * p_context

 Pointer to user interrupt context data.

IRQn_Type pint_irq

 PINT interrupt IRQ number.

void * p_reg

 Pointer to R_PTPEDMAC_Type base register.

uint32_t open

 Flag to determine if the device is open.

ptpedmac_trans_t transfer_flag

 Flag to determine if the PTP host interface is linked.

ptpedmac_ether_buffer_t p_ptpedmac_buffer

 Pointer to Ethernet buffer.

ptpedmac_descriptor_t * p_app_ptp_rx_desc

 Pointer to application descriptor.

Detailed Description

PTPEDMAC instance control block. DO NOT INITIALIZE. Initialized in ptpedmac_api_t::open().

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,062 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > PTPEDMAC > ptpedmac_instance_ctrl_t Struct Reference

◆ p_callback

ssp_err_t(* ptpedmac_instance_ctrl_t::p_callback) (ptpedmac_callback_args_t *p_args)

Callback provided when a PTP message is received. NULL indicates no CPU interrupt.

The documentation for this struct was generated from the following file:

r_ptpedmac.h

5.1.5.46 QSPI
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Quad Serial Peripheral Interface (QSPI). More...

Data Structures

struct qspi_instance_ctrl_t

Functions

ssp_err_t R_QSPI_Open (qspi_ctrl_t *p_api_ctrl, qspi_cfg_t const *const p_cfg)

 Open the QSPI driver module. More...

ssp_err_t R_QSPI_Close (qspi_ctrl_t *p_api_ctrl)

 Close the QSPI driver module. More...

ssp_err_t R_QSPI_Read (qspi_ctrl_t *p_api_ctrl, uint8_t *p_device_address,
uint8_t *p_memory_address, uint32_t byte_count)

 Read data from the flash. More...

ssp_err_t R_QSPI_PageProgram (qspi_ctrl_t *p_api_ctrl, uint8_t
*p_device_address, uint8_t *p_memory_address, uint32_t
byte_count)

 Program a page of data to the flash. More...

ssp_err_t R_QSPI_Erase (qspi_ctrl_t *p_api_ctrl, uint8_t *p_device_address,
uint32_t byte_count)

 Erase a number of byte from the flash. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,063 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > QSPI

ssp_err_t R_QSPI_InfoGet (qspi_ctrl_t *p_api_ctrl, qspi_info_t *const p_info)

 Returns the information about the flash. More...

ssp_err_t R_QSPI_SectorErase (qspi_ctrl_t *p_api_ctrl, uint8_t
*p_device_address)

 Erase a sector on the flash. More...

ssp_err_t R_QSPI_StatusGet (qspi_ctrl_t *p_api_ctrl, bool *p_write_in_progress)

 Get the write or erase status of the flash. More...

ssp_err_t R_QSPI_BankSelect (uint32_t bank)

 Select the bank to access. More...

ssp_err_t R_QSPI_VersionGet (ssp_version_t *const p_version)

 Get the driver version based on compile time macros. More...

Detailed Description

Driver for the Quad Serial Peripheral Interface (QSPI).

This is a driver for the Quad-SPI module (QSPI) which is a memory controller for connecting a serial
ROM (non-volatile memory such as a serial flash memory, serial EEPROM, or serial FeRAM) that has
an SPI-compatible interface.

Summary
Extends Quad SPI Flash Interface.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,064 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > QSPI

◆ R_QSPI_BankSelect()

ssp_err_t R_QSPI_BankSelect (uint32_t bank)

Select the bank to access.

A bank is a 64MB sliding access window into the flash memory space. This function sets the current
bank.

Return values
SSP_SUCCESS Bank successfully selected.

Return back to ROM access mode

◆ R_QSPI_Close()

ssp_err_t R_QSPI_Close (qspi_ctrl_t * p_api_ctrl)

Close the QSPI driver module.

Return the QSPI module back to ROM access mode.

Return values
SSP_SUCCESS Configuration was successful.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_NOT_OPEN Driver is not opened.

Check if the device is open

Re-enter XIP mode if it was running in this mode before entering opening the driver

Clearing the manufacturing_id, memory_type and memory_capacity

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,065 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > QSPI

◆ R_QSPI_Erase()

ssp_err_t R_QSPI_Erase (qspi_ctrl_t * p_api_ctrl, uint8_t * p_device_address, uint32_t byte_count
)

Erase a number of byte from the flash.

Return values
SSP_SUCCESS The command to erase the flash was

executed successfully.

SSP_ERR_UNSUPPORTED The device address is invalid.

SSP_ERR_ASSERTION p_ctrl or p_device_address is NULL.

SSP_ERR_INVALID_ARGUMENT Invalid byte_count entered.

SSP_ERR_NOT_OPEN Driver is not opened.

Check if the device is open

Check whether the device address is valid

Get the information of underlying flash

If requested byte_count is supported by underlying flash, assign the value of size_index to
cmd_index for searching the command

Send command to enable writing

Get the erase command

Send command to erase

If the command is not a chip erase command then send the start address

Send command to write data

Send command to disable writing

◆ R_QSPI_InfoGet()

ssp_err_t R_QSPI_InfoGet (qspi_ctrl_t * p_api_ctrl, qspi_info_t *const p_info)

Returns the information about the flash.

Return values
SSP_SUCCESS Operation was successful.

SSP_ERR_ASSERTION p_ctrl or p_info is NULL.

SSP_ERR_NOT_OPEN Driver is not opened.

Check if the device is open

Get the information of underlying flash

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,066 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > QSPI

◆ R_QSPI_Open()

ssp_err_t R_QSPI_Open (qspi_ctrl_t * p_api_ctrl, qspi_cfg_t const *const p_cfg)

Open the QSPI driver module.

Open the QSPI module driver in direct communication mode for the purposes of reading and writing
flash memory via SPI protocols.

Return values
SSP_SUCCESS Configuration was successful.

SSP_ERR_ASSERTION The parameter p_ctrl or p_cfg is NULL.

SSP_ERR_UNSUPPORTED Driver not able to query the following
information from the flash manufacturer
id,memory capacity and memory type.

SSP_ERR_IN_USE QSPI resource is locked.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
Set the default bank to the first bank

Get the configuration of the quad SPI flash device and remember it for subsequent operations

If populated flash is 16MB & address mode configured as 4-byte,returns an unsupported error

A zero in the manufacturer_id mean the flash device is broken, misconfigured, or not populated

Mark driver as opened by initializing it to "RQSP" in its ASCII equivalent for this unit.

Exit XIP mode while the driver is open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,067 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > QSPI

◆ R_QSPI_PageProgram()

ssp_err_t R_QSPI_PageProgram (qspi_ctrl_t * p_api_ctrl, uint8_t * p_device_address, uint8_t *
p_memory_address, uint32_t byte_count)

Program a page of data to the flash.

Return values
SSP_SUCCESS The flash was programmed successfully.

SSP_ERR_UNSUPPORTED The device address is invalid.

SSP_ERR_ASSERTION p_ctrl, p_device_address or
p_memory_address is NULL.

SSP_ERR_INVALID_ARGUMENT Invalid parameter is passed.

SSP_ERR_NOT_OPEN Driver is not opened.

Check whether the device address is valid

Send command to enable writing

If the peripheral is in extended SPI mode, and the configuration provided in the BSP allows for
programming on multiple data lines, and a unique command is provided for the required mode,
update the SPI protocol to send data on multiple lines.

Send command to write data

Write the address.

Write the data.

If the SPI protocol was modified in this function, restore it.

Send command to disable writing

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,068 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > QSPI

◆ R_QSPI_Read()

ssp_err_t R_QSPI_Read (qspi_ctrl_t * p_api_ctrl, uint8_t * p_device_address, uint8_t *
p_memory_address, uint32_t byte_count)

Read data from the flash.

Read a block of data from a particular address on the SPI flash device.

Return values
SSP_SUCCESS The flash was programmed successfully.

SSP_ERR_UNSUPPORTED The device address is invalid.

SSP_ERR_ASSERTION p_ctrl,p_device_address or
p_memory_address is NULL.

SSP_ERR_NOT_OPEN Driver is not opened.

SSP_ERR_TRANSFER_BUSY Another serial communications transfer is in
progress.

Check if the device is open

Check whether the device address is valid

Make sure no other communication is in progress.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,069 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > QSPI

◆ R_QSPI_SectorErase()

ssp_err_t R_QSPI_SectorErase (qspi_ctrl_t * p_api_ctrl, uint8_t * p_device_address)

Erase a sector on the flash.

Erase one sector on the SPI flash device. Any passed in address within the sector to be erased is
acceptable.

Return values
SSP_SUCCESS The command to erase the sector of flash

was executed successfully.

SSP_ERR_UNSUPPORTED The device address is invalid.

SSP_ERR_ASSERTION p_ctrl or p_device_address is NULL.

SSP_ERR_NOT_OPEN Driver is not opened.

Check whether the device address is valid

Check if the device is open

Place the QSPI block into Direct Communication mode

Send command to enable writing

Close the SPI bus cycle

Send command to erase

Send command to write data

Send command to erase

Close the SPI bus cycle

Send command to disable writing

Close the SPI bus cycle

Return to ROM access mode

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,070 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > QSPI

◆ R_QSPI_StatusGet()

ssp_err_t R_QSPI_StatusGet (qspi_ctrl_t * p_api_ctrl, bool * p_write_in_progress)

Get the write or erase status of the flash.

Return the write status of the flash. This is most useful for determining if erases are complete.

Return values
SSP_SUCCESS The write status is correct.

SSP_ERR_ASSERTION p_ctrl or p_write_in_progress is NULL.

SSP_ERR_NOT_OPEN Driver is not opened.

Check if the device is open

Place the QSPI block into Direct Communication mode

Get the write status from the device

Return to ROM access mode

◆ R_QSPI_VersionGet()

ssp_err_t R_QSPI_VersionGet (ssp_version_t *const p_version)

Get the driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION p_version is NULL.

 qspi_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » QSPI

#include <r_qspi.h>

Data Fields

R_QSPI_Type * p_reg

 Pointer to QSPI base register.

uint32_t max_eraseable_size

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,071 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > QSPI > qspi_instance_ctrl_t Struct Reference

uint32_t num_address_bytes

 Number of bytes used to represent the address.

uint32_t spi_mode

 SPI mode - 0 = Extended, 1 = Dual, 2 = Quad.

uint32_t page_size

 Number of bytes in a programmable page.

uint8_t data_lines

 data lines - 0 = 1 line, 1 = 2 lines, 2 = 4 lines

uint8_t manufacturer_id

 Manufacturer ID.

uint8_t memory_type

 Memory type.

uint8_t memory_capacity

 Memory capacity (in MByte)

bool xip_mode

 0 = run in read mode, 1 = run in XIP mode

uint32_t total_size_bytes

 Total size of the flash in bytes.

uint32_t open

 Flag to determine if the device is open.

Detailed Description

Instance control block. DO NOT INITIALIZE. Initialization occurs when qspi_api_t::open is called

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,072 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > QSPI > qspi_instance_ctrl_t Struct Reference

Field Documentation

◆ max_eraseable_size

uint32_t qspi_instance_ctrl_t::max_eraseable_size

Largest eraseable sector size in kbytes. Used to determine buffer size for partial sector erases.

The documentation for this struct was generated from the following file:

r_qspi.h

5.1.5.47 IIC
Renesas Synergy Software Package Reference » HAL Layer

Driver for the I2C Bus Interface (IIC). More...

Data Structures

struct riic_instance_ctrl_t

struct riic_extended_cfg

Macros

#define RIIC_OPEN (0x52494943ULL)

#define RIIC_ERROR_RETURN(a, err) SSP_ERROR_RETURN((a), (err),
&g_module_name[0], &g_riic_master_version)

Enumerations

enum riic_timeout_mode_t { RIIC_TIMEOUT_MODE_LONG = 0,
RIIC_TIMEOUT_MODE_SHORT = 1 }

Functions

ssp_err_t R_RIIC_MasterVersionGet (ssp_version_t *const p_version)

 Gets version information and stores it in the provided version struct.
More...

ssp_err_t R_RIIC_MasterOpen (i2c_ctrl_t *const p_api_ctrl, i2c_cfg_t const
*const p_cfg)

 Opens the I2C device. May power on IIC peripheral and perform
initialization described in hardware manual. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,073 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC

ssp_err_t R_RIIC_MasterClose (i2c_ctrl_t *const p_api_ctrl)

 Closes the I2C device. May power down IIC peripheral. More...

ssp_err_t R_RIIC_MasterRead (i2c_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes, bool const restart)

 Performs a read from the I2C device. More...

ssp_err_t R_RIIC_MasterWrite (i2c_ctrl_t *const p_api_ctrl, uint8_t *const p_src,
uint32_t const bytes, bool const restart)

 Performs a write to the I2C device. More...

ssp_err_t R_RIIC_MasterReset (i2c_ctrl_t *const p_api_ctrl)

 Aborts any in-progress transfer and forces the IIC peripheral into a
ready state. More...

ssp_err_t R_RIIC_MasterSlaveAddressSet (i2c_ctrl_t *const p_api_ctrl, uint16_t
const slave_address, i2c_addr_mode_t const addr_mode)

 Sets address and addressing mode of the slave device. More...

Variables

i2c_api_master_t const g_i2c_master_on_riic

Detailed Description

Driver for the I2C Bus Interface (IIC).

This module supports the Renesas Inter-Integrated Circuit (IIC) peripheral. It implements the
following interfaces:

I2C Interface r_i2c_api.h

Macro Definition Documentation

◆ RIIC_ERROR_RETURN

#define RIIC_ERROR_RETURN (a, err) SSP_ERROR_RETURN((a), (err), &g_module_name[0],
&g_riic_master_version)

Macro for error logger.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,074 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC

◆ RIIC_OPEN

#define RIIC_OPEN (0x52494943ULL)

"RIIC" in ASCII, used to determine if channel is open.

Enumeration Type Documentation

◆ riic_timeout_mode_t

enum riic_timeout_mode_t

I2C Timeout mode parameter definition

Enumerator

RIIC_TIMEOUT_MODE_LONG Timeout Detection Time Select: Long Mode ->
TMOS = 0.

RIIC_TIMEOUT_MODE_SHORT Timeout Detection Time Select: Short Mode ->
TMOS = 1.

Function Documentation

◆ R_RIIC_MasterClose()

ssp_err_t R_RIIC_MasterClose (i2c_ctrl_t *const p_api_ctrl)

Closes the I2C device. May power down IIC peripheral.

This function will safely terminate any in-progress I2C transfer with the device. If a transfer is
aborted, the user will be notified via callback with an abort event. Since the callback is optional,
this function will also return a specific error code in this situation.

Return values
SSP_SUCCESS Device closed without issue.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_ABORTED Device was closed while a transfer was in
progress.

Check if the device is even open, return an error if not

Abort an in-progress transfer with this device only

Close the DTC transfer interfaces if configured

Disable the interrupt sources for I2C peripheral

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,075 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC

◆ R_RIIC_MasterOpen()

ssp_err_t R_RIIC_MasterOpen (i2c_ctrl_t *const p_api_ctrl, i2c_cfg_t const *const p_cfg)

Opens the I2C device. May power on IIC peripheral and perform initialization described in hardware
manual.

This function will reconfigure the clock settings of the peripheral when a device with a lower rate
than previously configured is opened.

Return values
SSP_SUCCESS Requested clock rate was set exactly.

SSP_ERR_ASSERTION The parameter p_api_ctrl or p_cfg is NULL or
clock rate is greater than 1MHz. or the
extended parameter is NULL

SSP_ERR_IN_USE Attempted to open an already open device
instance.

SSP_ERR_INVALID_ARGUMENT If fast mode plus is configured and the
channel does not support it

SSP_ERR_INVALID_RATE The requested rate cannot be set.

Returns
See Common Error Codes for other possible return codes. This function calls

fmi_api_t::productFeatureGet
g_cgc_on_cgc.systemClockFreqGet

If rate is configured as Fast mode plus, check whether the channel supports it

set valid interrupts with user provided priority

Open the hardware in master mode

Open the RIIC DTC transfer interface if enabled

Initialize control block

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,076 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC

◆ R_RIIC_MasterRead()

ssp_err_t R_RIIC_MasterRead (i2c_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t const
bytes, bool const restart)

Performs a read from the I2C device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C read operation will begin. When no callback is provided by the user, this
function performs a blocking read. Otherwise, the read operation is non-blocking and the caller will
be notified when the operation has finished by an I2C_EVENT_RX_COMPLETE in the callback.

Return values
SSP_SUCCESS Function executed without issue, if no

callback was provided, the process was
kicked off.

SSP_ERR_ASSERTION p_api_ctrl, p_dest or bytes is NULL.

SSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size(65535) while DTC is used for
data transfer.

SSP_ERR_IN_USE Another transfer was in progress.

SSP_ERR_HW_LOCKED Driver busy doing RIIC operation

SSP_ERR_ABORTED The transfer failed.

Check if the device is even open, return an error if not

Attempt to acquire lock for this transfer operation. Prevents re-entrance conflict.

Record the new information about this transfer

Kickoff the read operation as a master

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,077 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC

◆ R_RIIC_MasterReset()

ssp_err_t R_RIIC_MasterReset (i2c_ctrl_t *const p_api_ctrl)

Aborts any in-progress transfer and forces the IIC peripheral into a ready state.

This function will safely terminate any in-progress I2C transfer with the device. If a transfer is
aborted, the user will be notified via callback with an abort event. Since the callback is optional,
this function will also return a specific error code in this situation.

Return values
SSP_SUCCESS Channel was reset without issue.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_ABORTED A transfer was aborted while resetting the
hardware.

Check if the device is even open, return an error if not

Abort any on-going transfer on the channel

◆ R_RIIC_MasterSlaveAddressSet()

ssp_err_t R_RIIC_MasterSlaveAddressSet (i2c_ctrl_t *const p_api_ctrl, uint16_t const
slave_address, i2c_addr_mode_t const addr_mode)

Sets address and addressing mode of the slave device.

This function is used to set the device address and addressing mode of the slave without
reconfiguring the entire bus.

Return values
SSP_SUCCESS Address of the slave is set correctly.

SSP_ERR_ASSERTION Pointer to control structure is NULL.

SSP_ERR_HW_LOCKED Driver busy doing RIIC operation.

SSP_ERR_NOT_OPEN Device was not even opened.

Check if the device is open, return an error if not

Attempt to acquire lock for configuring the slave address. Prevents re-entrance conflict.

Return failure if there is already a transfer in progress

Sets the address of the slave device

Sets the mode of addressing

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,078 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC

◆ R_RIIC_MasterVersionGet()

ssp_err_t R_RIIC_MasterVersionGet (ssp_version_t *const p_version)

Gets version information and stores it in the provided version struct.

Return values
SSP_SUCCESS Successful version get.

SSP_ERR_ASSERTION p_version is NULL.

◆ R_RIIC_MasterWrite()

ssp_err_t R_RIIC_MasterWrite (i2c_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t const
bytes, bool const restart)

Performs a write to the I2C device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C write operation will begin. When no callback is provided by the user, this
function performs a blocking write. Otherwise, the write operation is non-blocking and the caller will
be notified when the operation has finished by an I2C_EVENT_TX_COMPLETE in the callback.

Return values
SSP_SUCCESS Function executed without issue, if no

callback was provided, the process was
kicked off.

SSP_ERR_ASSERTION p_api_ctrl or p_src is NULL.

SSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size(65535) while DTC is used for
data transfer.

SSP_ERR_IN_USE Another transfer was in progress.

SSP_ERR_HW_LOCKED Driver busy doing RIIC operation

SSP_ERR_ABORTED The transfer failed.

Check if the device is even open, return an error if not

Attempt to acquire lock for this transfer operation. Prevents re-entrance conflict.

Record the new information about this transfer

Kickoff the write operation as a master

Variable Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,079 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC

◆ g_i2c_master_on_riic

i2c_api_master_t const g_i2c_master_on_riic

=

{

 .open = R_RIIC_MasterOpen,

 .close = R_RIIC_MasterClose,

 .read = R_RIIC_MasterRead,

 .write = R_RIIC_MasterWrite,

 .reset = R_RIIC_MasterReset,

 .versionGet = R_RIIC_MasterVersionGet,

 .slaveAddressSet = R_RIIC_MasterSlaveAddressSet

}

RIIC Implementation of I2C device master interface

 riic_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » IIC

#include <r_riic.h>

Data Fields

i2c_cfg_t info

 Information describing I2C device.

uint32_t open

 Flag to determine if the device is open.

void * p_reg

 Base register for this channel.

IRQn_Type rxi_irq

 Receive IRQ number.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,080 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC > riic_instance_ctrl_t Struct Reference

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type tei_irq

 Transmit end IRQ number.

IRQn_Type eri_irq

 Error IRQ number.

uint8_t * p_buff

uint32_t total

uint32_t remain

uint32_t loaded

uint8_t addr_low

uint8_t addr_high

uint8_t addr_total

uint8_t addr_remain

uint8_t addr_loaded

volatile bool read

volatile bool restart

volatile bool err

volatile bool restarted

volatile bool dummy_read_completed

volatile bool activation_on_rxi

volatile bool activation_on_txi

volatile bool address_restarted

volatile bsp_lock_t resource_lock_tx_rx

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,081 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC > riic_instance_ctrl_t Struct Reference

riic_timeout_mode_t timeout_mode

i2c_hw_err_event_t actual_hwErr_event

Detailed Description

I2C control structure. DO NOT INITIALIZE.

Field Documentation

◆ activation_on_rxi

volatile bool riic_instance_ctrl_t::activation_on_rxi

Tracks whether the transfer is activated on RXI interrupt

◆ activation_on_txi

volatile bool riic_instance_ctrl_t::activation_on_txi

Tracks whether the transfer is activated on TXI interrupt

◆ actual_hwErr_event

i2c_hw_err_event_t riic_instance_ctrl_t::actual_hwErr_event

Holds error event value obtained through hardware

◆ addr_high

uint8_t riic_instance_ctrl_t::addr_high

Holds the first address byte to issue in 10-bit mode

◆ addr_loaded

uint8_t riic_instance_ctrl_t::addr_loaded

Tracks the number of address bytes written to the register

◆ addr_low

uint8_t riic_instance_ctrl_t::addr_low

Holds the last address byte to issue

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,082 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC > riic_instance_ctrl_t Struct Reference

◆ addr_remain

uint8_t riic_instance_ctrl_t::addr_remain

Tracks the remaining address bytes to transfer

◆ addr_total

uint8_t riic_instance_ctrl_t::addr_total

Holds the total number of address bytes to transfer

◆ address_restarted

volatile bool riic_instance_ctrl_t::address_restarted

Tracks whether the restart condition is send on 10 bit read

◆ dummy_read_completed

volatile bool riic_instance_ctrl_t::dummy_read_completed

Tracks whether the dummy read is performed

◆ err

volatile bool riic_instance_ctrl_t::err

Tracks whether or not an error occurred during processing

◆ loaded

uint32_t riic_instance_ctrl_t::loaded

Tracks the number of data bytes written to the register

◆ p_buff

uint8_t* riic_instance_ctrl_t::p_buff

Holds the data associated with the transfer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,083 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC > riic_instance_ctrl_t Struct Reference

◆ read

volatile bool riic_instance_ctrl_t::read

Holds the direction of the data byte transfer

◆ remain

uint32_t riic_instance_ctrl_t::remain

Tracks the remaining data bytes to transfer

◆ resource_lock_tx_rx

volatile bsp_lock_t riic_instance_ctrl_t::resource_lock_tx_rx

Resource lock for transmission/reception

◆ restart

volatile bool riic_instance_ctrl_t::restart

Holds whether or not the restart should be issued when done

◆ restarted

volatile bool riic_instance_ctrl_t::restarted

Tracks whether or not a restart was issued during the previous transfer

◆ timeout_mode

riic_timeout_mode_t riic_instance_ctrl_t::timeout_mode

Holds the timeout mode value. i.e short mode or long mode

◆ total

uint32_t riic_instance_ctrl_t::total

Holds the total number of data bytes to transfer

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,084 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC > riic_instance_ctrl_t Struct Reference

r_riic.h

 riic_extended_cfg Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » IIC

#include <r_riic.h>

Data Fields

riic_timeout_mode_t timeout_mode

 Timeout Detection Time Select: Long Mode = 0 and Short Mode = 1.

Detailed Description

R_IIC extended configuration

The documentation for this struct was generated from the following file:

r_riic.h

5.1.5.48 IIC Slave
Renesas Synergy Software Package Reference » HAL Layer

Driver for the I2C Bus Slave Interface (IIC Slave). More...

Data Structures

struct riic_slave_instance_ctrl_t

Macros

#define RIIC_SLAVE_ERROR_RETURN(a, err) SSP_ERROR_RETURN((a), (err),
&g_module_name[0], &g_riic_slave_version)

#define RIIC_SLAVE_OPEN (0x49324353ULL)

Functions

ssp_err_t R_RIIC_SlaveVersionGet (ssp_version_t *const p_version)

 Gets version information and stores it in the provided version struct.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,085 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC Slave

More...

ssp_err_t R_RIIC_SlaveOpen (i2c_ctrl_t *const p_api_ctrl, i2c_cfg_t const *const
p_cfg)

 Opens the I2C device. May power on IIC peripheral and perform
initialization described in hardware manual. More...

ssp_err_t R_RIIC_SlaveClose (i2c_ctrl_t *const p_api_ctrl)

 Closes the I2C device. Power down IIC peripheral. More...

ssp_err_t R_RIIC_MasterWriteSlaveRead (i2c_ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes)

 Performs a read from the I2C Master device. More...

ssp_err_t R_RIIC_MasterReadSlaveWrite (i2c_ctrl_t *const p_api_ctrl, uint8_t
*const p_src, uint32_t const bytes)

 Performs a write to the I2C Master device. More...

Variables

i2c_api_slave_t const g_i2c_slave_on_riic

Detailed Description

Driver for the I2C Bus Slave Interface (IIC Slave).

This module supports the Renesas Inter-Integrated Circuit (IIC) peripheral. It implements the
following interfaces:

I2C Interface r_i2c_api.h

Macro Definition Documentation

◆ RIIC_SLAVE_ERROR_RETURN

#define RIIC_SLAVE_ERROR_RETURN (a, err) SSP_ERROR_RETURN((a), (err), &g_module_name[0],
&g_riic_slave_version)

Macro for error logger.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,086 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC Slave

◆ RIIC_SLAVE_OPEN

#define RIIC_SLAVE_OPEN (0x49324353ULL)

"I2CS" in ASCII, used to determine if channel is open.

Function Documentation

◆ R_RIIC_MasterReadSlaveWrite()

ssp_err_t R_RIIC_MasterReadSlaveWrite (i2c_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t
const bytes)

Performs a write to the I2C Master device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C write operation will begin. When no callback is provided by the user, this
function performs a blocking write. Otherwise, the write operation is non-blocking and the caller will
be notified when the operation has finished by an I2C_EVENT_TX_COMPLETE in the callback.

Return values
SSP_SUCCESS Function executed without issue; if no

callback was provided, the process was
kicked off

SSP_ERR_ASSERTION p_api_ctrl or p_src is NULL.

SSP_ERR_IN_USE Another transfer was in progress.

SSP_ERR_NOT_OPEN device is not open.

SSP_ERR_ABORTED If transaction encounter an error.

Check if the device is open, return an error if not

Return an error if transfer is in progress

Record the new information about this transfer

Start the write operation as a slave

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,087 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC Slave

◆ R_RIIC_MasterWriteSlaveRead()

ssp_err_t R_RIIC_MasterWriteSlaveRead (i2c_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const bytes)

Performs a read from the I2C Master device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C read operation will begin. When no callback is provided by the user, this
function performs a blocking read. Otherwise, the read operation is non-blocking and the caller will
be notified when the operation has finished by an I2C_EVENT_RX_COMPLETE in the callback.

Return values
SSP_SUCCESS Function executed without issue; if no

callback was provided, the process was
kicked off

SSP_ERR_ASSERTION p_api_ctrl, bytes or p_dest is NULL.

SSP_ERR_IN_USE Another transfer was in progress.

SSP_ERR_NOT_OPEN device is not open.

SSP_ERR_ABORTED If transaction encounter an error.

Check if the device is open, return an error if not

Return an error if transfer is in progress.

Record the new information about this transfer

Start the read operation as a slave

◆ R_RIIC_SlaveClose()

ssp_err_t R_RIIC_SlaveClose (i2c_ctrl_t *const p_api_ctrl)

Closes the I2C device. Power down IIC peripheral.

Return values
SSP_SUCCESS Device closed without issue.

SSP_ERR_NOT_OPEN Device not opened.

SSP_ERR_ASSERTION p_api_ctrl is NULL.

SSP_ERR_ABORTED Device was closed while a transfer was in
progress.

Check if the device is even open, return an error if not

De-configure everything.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,088 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC Slave

◆ R_RIIC_SlaveOpen()

ssp_err_t R_RIIC_SlaveOpen (i2c_ctrl_t *const p_api_ctrl, i2c_cfg_t const *const p_cfg)

Opens the I2C device. May power on IIC peripheral and perform initialization described in hardware
manual.

Return values
SSP_SUCCESS Opened identical configuration of already

open instance.

SSP_ERR_ASSERTION p_api_ctrl or p_cfg is NULL.

SSP_ERR_IN_USE Attempted to open an already open device
instance.

SSP_ERR_IRQ_BSP_DISABLED Interrupt does not exist in the vector table.

SSP_ERR_INVALID_ARGUMENT If fast mode plus is configured and the
channel does not support it

Returns
See Common Error Codes for other possible return codes. This function calls

fmi_api_t::productFeatureGet
g_cgc_on_cgc.systemClockFreqGet

If rate is configured as Fast mode plus, check whether the channel supports it

Attempt to acquire hardware lock

Open the hardware in slave mode

Clear all interrupt bits

Enable both TXI and RXI interrupt sources

Set ACK as slave is now ready to serve requests from master

Enable all RIIC interrupts in NVIC, that need to be serviced

Release hardware lock on failure

◆ R_RIIC_SlaveVersionGet()

ssp_err_t R_RIIC_SlaveVersionGet (ssp_version_t *const p_version)

Gets version information and stores it in the provided version struct.

Return values
SSP_SUCCESS Successful version get.

SSP_ERR_ASSERTION p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,089 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC Slave

Variable Documentation

◆ g_i2c_slave_on_riic

i2c_api_slave_t const g_i2c_slave_on_riic

=

{

 .open = R_RIIC_SlaveOpen,

 .close = R_RIIC_SlaveClose,

 .masterWriteSlaveRead = R_RIIC_MasterWriteSlaveRead,

 .masterReadSlaveWrite = R_RIIC_MasterReadSlaveWrite,

 .versionGet = R_RIIC_SlaveVersionGet

}

RIIC Implementation of I2C device slave interface

 riic_slave_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » IIC Slave

#include <r_riic_slave.h>

Data Fields

i2c_cfg_t info

 Information describing I2C device.

uint32_t open

 Flag to determine if the device is open.

void * p_reg

 Base register for this channel.

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type txi_irq

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,090 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC Slave > riic_slave_instance_ctrl_t Struct Reference

 Transmit IRQ number.

IRQn_Type eri_irq

 Error IRQ number.

IRQn_Type tei_irq

 Transmit end IRQ number.

uint8_t * p_buff

uint32_t total

uint32_t remain

uint32_t loaded

uint32_t transaction_count

volatile bool notify_request

volatile bool read

volatile bool err

volatile bool slave_busy

volatile bool start_interrupt_enabled

Detailed Description

I2C control structure. DO NOT INITIALIZE.

Field Documentation

◆ err

volatile bool riic_slave_instance_ctrl_t::err

Tracks whether or not an error occurred during processing

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,091 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC Slave > riic_slave_instance_ctrl_t Struct Reference

◆ loaded

uint32_t riic_slave_instance_ctrl_t::loaded

Tracks the number of data bytes written to the register

◆ notify_request

volatile bool riic_slave_instance_ctrl_t::notify_request

Track whether the master request is notified to the application

◆ p_buff

uint8_t* riic_slave_instance_ctrl_t::p_buff

Holds the data associated with the transfer

◆ read

volatile bool riic_slave_instance_ctrl_t::read

Holds the direction of the data byte transfer

◆ remain

uint32_t riic_slave_instance_ctrl_t::remain

Tracks the remaining data bytes to transfer

◆ slave_busy

volatile bool riic_slave_instance_ctrl_t::slave_busy

Tracks if the slave is busy performing a transaction

◆ start_interrupt_enabled

volatile bool riic_slave_instance_ctrl_t::start_interrupt_enabled

<< Tracks whether a dummy read is issued on the first RX < Tracks whether the start interrupt is
enabled

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,092 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > IIC Slave > riic_slave_instance_ctrl_t Struct Reference

◆ total

uint32_t riic_slave_instance_ctrl_t::total

Holds the total number of data bytes to transfer

◆ transaction_count

uint32_t riic_slave_instance_ctrl_t::transaction_count

Tracks the actual number of transactions

The documentation for this struct was generated from the following file:

r_riic_slave.h

5.1.5.49 SPI
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Serial Peripheral Interface (SPI). More...

Data Structures

struct rspi_ssl_polarity_t

struct rspi_loopback_t

struct rspi_mosi_idle_t

struct rspi_parity_t

struct rspi_clock_delay_t

struct rspi_ssl_negation_delay_t

struct rspi_access_delay_t

struct spi_on_rspi_cfg_t

struct rspi_instance_ctrl_t

Enumerations

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,093 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

enum rspi_spcmd_bit_length_t { RSPI_SPCMD_BIT_LENGTH_8 = (0x7),
RSPI_SPCMD_BIT_LENGTH_16 = (0xF), RSPI_SPCMD_BIT_LENGTH_32
= (0x3) }

enum rspi_operation_t { RSPI_OPERATION_SPI, RSPI_OPERATION_CLK_SYN
}

enum rspi_communication_t { RSPI_COMMUNICATION_FULL_DUPLEX,
RSPI_COMMUNICATION_TRANSMIT_ONLY }

enum rspi_sslp_t { RSPI_SSLP_LOW, RSPI_SSLP_HIGH }

enum rspi_loopback1_t { RSPI_LOOPBACK1_NORMAL_DATA,
RSPI_LOOPBACK1_INVERTED_DATA }

enum rspi_loopback2_t { RSPI_LOOPBACK2_NORMAL_DATA,
RSPI_LOOPBACK2_NOT_INVERTED_DATA }

enum rspi_mosi_idle_fixed_val_t { RSPI_MOSI_IDLE_FIXED_VAL_LOW,
RSPI_MOSI_IDLE_FIXED_VAL_HIGH }

enum rspi_mosi_idle_val_fixing_t { RSPI_MOSI_IDLE_VAL_FIXING_ENABLE,
RSPI_MOSI_IDLE_VAL_FIXING_DISABLE }

enum rspi_parity_state_t { RSPI_PARITY_STATE_DISABLE,
RSPI_PARITY_STATE_ENABLE }

enum rspi_byte_swap_t { RSPI_BYTE_SWAP_DISABLE,
RSPI_BYTE_SWAP_ENABLE }

enum rspi_parity_mode_t { RSPI_PARITY_MODE_ODD,
RSPI_PARITY_MODE_EVEN }

enum rspi_ssl_select_t { RSPI_SSL_SELECT_SSL0, RSPI_SSL_SELECT_SSL1,
RSPI_SSL_SELECT_SSL2, RSPI_SSL_SELECT_SSL3 }

enum rspi_ssl_level_keep_t { RSPI_SSL_LEVEL_KEEP_NOT,
RSPI_SSL_LEVEL_KEEP }

enum rspi_clock_delay_count_t {
 RSPI_CLOCK_DELAY_COUNT_1, RSPI_CLOCK_DELAY_COUNT_2,
RSPI_CLOCK_DELAY_COUNT_3, RSPI_CLOCK_DELAY_COUNT_4,
 RSPI_CLOCK_DELAY_COUNT_5, RSPI_CLOCK_DELAY_COUNT_6,
RSPI_CLOCK_DELAY_COUNT_7, RSPI_CLOCK_DELAY_COUNT_8
}

enum rspi_clock_delay_state_t { RSPI_CLOCK_DELAY_STATE_DISABLE,
RSPI_CLOCK_DELAY_STATE_ENABLE }

enum rspi_ssl_negation_delay_count_t {
 RSPI_SSL_NEGATION_DELAY_1, RSPI_SSL_NEGATION_DELAY_2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,094 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

RSPI_SSL_NEGATION_DELAY_3, RSPI_SSL_NEGATION_DELAY_4,
 RSPI_SSL_NEGATION_DELAY_5, RSPI_SSL_NEGATION_DELAY_6,
RSPI_SSL_NEGATION_DELAY_7, RSPI_SSL_NEGATION_DELAY_8
}

enum rspi_ssl_negation_delay_state_t {
RSPI_SSL_NEGATION_DELAY_DISABLE,
RSPI_SSL_NEGATION_DELAY_ENABLE }

enum rspi_next_access_delay_count_t {
 RSPI_NEXT_ACCESS_DELAY_COUNT_1,
RSPI_NEXT_ACCESS_DELAY_COUNT_2,
RSPI_NEXT_ACCESS_DELAY_COUNT_3,
RSPI_NEXT_ACCESS_DELAY_COUNT_4,
 RSPI_NEXT_ACCESS_DELAY_COUNT_5,
RSPI_NEXT_ACCESS_DELAY_COUNT_6,
RSPI_NEXT_ACCESS_DELAY_COUNT_7,
RSPI_NEXT_ACCESS_DELAY_COUNT_8
}

enum rspi_next_access_delay_state_t {
RSPI_NEXT_ACCESS_DELAY_STATE_DISABLE,
RSPI_NEXT_ACCESS_DELAY_STATE_ENABLE }

enum rspi_spcmd_br_div_t { RSPI_SPCMD_BR_DIV_1 = (0x0),
RSPI_SPCMD_BR_DIV_2 = (0x1), RSPI_SPCMD_BR_DIV_4 = (0x2),
RSPI_SPCMD_BR_DIV_8 = (0x3) }

enum rspi_spcmd_assert_ssl_t { RSPI_SPCMD_ASSERT_SSL0 = (0x0),
RSPI_SPCMD_ASSERT_SSL1 = (0x1), RSPI_SPCMD_ASSERT_SSL2 =
(0x2), RSPI_SPCMD_ASSERT_SSL3 = (0x3) }

Functions

ssp_err_t R_RSPI_Open (spi_ctrl_t *p_api_ctrl, spi_cfg_t const *const p_cfg)

 This functions initializes a channel for SPI communication mode.
More...

ssp_err_t R_RSPI_Read (spi_ctrl_t *const p_api_ctrl, void const *p_dest,
uint32_t const length, spi_bit_width_t const bit_width)

 This function receives data from a SPI device. More...

ssp_err_t R_RSPI_Write (spi_ctrl_t *const p_api_ctrl, void const *p_src, uint32_t
const length, spi_bit_width_t const bit_width)

 This function transmits data to a SPI device using the TX Only
Communications Operation Mode. More...

ssp_err_t R_RSPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const *p_src,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,095 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

void const *p_dest, uint32_t const length, spi_bit_width_t const
bit_width)

 This function simultaneously transmits data to a SPI device while
receiving data from a SPI device (full duplex). More...

ssp_err_t R_RSPI_Close (spi_ctrl_t *const p_api_ctrl)

 This function manages the closing of a channel by the following task.
More...

ssp_err_t R_RSPI_VersionGet (ssp_version_t *p_version)

 This function gets the version information of the underlying driver.
More...

Detailed Description

Driver for the Serial Peripheral Interface (SPI).

This module supports SPI serial communication for the SPI module. The SPI Interface is defined in
r_spi_api.h

Enumeration Type Documentation

◆ rspi_byte_swap_t

enum rspi_byte_swap_t

SPDCR2 (RSPI Data Control Register 2) – Byte swapping operation enable/disable

Enumerator

RSPI_BYTE_SWAP_DISABLE Disable Byte swap

RSPI_BYTE_SWAP_ENABLE Enable Byte swap

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,096 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

◆ rspi_clock_delay_count_t

enum rspi_clock_delay_count_t

SPCKD (RSPI Clock Delay) Register – Clock Delay Count select

Enumerator

RSPI_CLOCK_DELAY_COUNT_1 Set RSPCK Clock delay to 1 RSPCK

RSPI_CLOCK_DELAY_COUNT_2 Set RSPCK Clock delay to 2 RSPCK

RSPI_CLOCK_DELAY_COUNT_3 Set RSPCK Clock delay to 3 RSPCK

RSPI_CLOCK_DELAY_COUNT_4 Set RSPCK Clock delay to 4 RSPCK

RSPI_CLOCK_DELAY_COUNT_5 Set RSPCK Clock delay to 5 RSPCK

RSPI_CLOCK_DELAY_COUNT_6 Set RSPCK Clock delay to 6 RSPCK

RSPI_CLOCK_DELAY_COUNT_7 Set RSPCK Clock delay to 7 RSPCK

RSPI_CLOCK_DELAY_COUNT_8 Set RSPCK Clock delay to 8 RSPCK

◆ rspi_clock_delay_state_t

enum rspi_clock_delay_state_t

SPCMD (RSPI Command) Register – RSPCK Delay Enable/Disable select – SCKDEN

Enumerator

RSPI_CLOCK_DELAY_STATE_DISABLE RSPCK delay=1 RSPCK

RSPI_CLOCK_DELAY_STATE_ENABLE RSPCK delay=SPCKD register setting

◆ rspi_communication_t

enum rspi_communication_t

SPCR (RSPI Control register) – TXMD (communication operating mode) select

Enumerator

RSPI_COMMUNICATION_FULL_DUPLEX Full-Duplex synchronous serial communication

RSPI_COMMUNICATION_TRANSMIT_ONLY Transit only serial communication

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,097 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

◆ rspi_loopback1_t

enum rspi_loopback1_t

SPPCR (RSPI Pin Control Register) – Loopback1 select

Enumerator

RSPI_LOOPBACK1_NORMAL_DATA Loopback1 normal mode

RSPI_LOOPBACK1_INVERTED_DATA Loopback1 with inverted data

◆ rspi_loopback2_t

enum rspi_loopback2_t

SPPCR (RSPI Pin Control Register) – Loopback2 select

Enumerator

RSPI_LOOPBACK2_NORMAL_DATA Loopback2 normal mode

RSPI_LOOPBACK2_NOT_INVERTED_DATA Loopback2 with not inverted data

◆ rspi_mosi_idle_fixed_val_t

enum rspi_mosi_idle_fixed_val_t

SPPCR (RSPI Pin Control Register) – MOIFV select

Enumerator

RSPI_MOSI_IDLE_FIXED_VAL_LOW MOSIn level low during MOSI idling

RSPI_MOSI_IDLE_FIXED_VAL_HIGH MOSIn level high during MOSI idling

◆ rspi_mosi_idle_val_fixing_t

enum rspi_mosi_idle_val_fixing_t

SPPCR (RSPI Pin Control Register) – MOIFE (MOSI idle value fixing) select

Enumerator

RSPI_MOSI_IDLE_VAL_FIXING_ENABLE MOSI output value=final data from previous
transfer

RSPI_MOSI_IDLE_VAL_FIXING_DISABLE MOSI output value=value set in MOIFV bit

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,098 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

◆ rspi_next_access_delay_count_t

enum rspi_next_access_delay_count_t

SPND (RSPI Next-Access Delay) Register – Next Access Delay Count select

Enumerator

RSPI_NEXT_ACCESS_DELAY_COUNT_1 Set next access delay to 1 RSPCK+2PCLK

RSPI_NEXT_ACCESS_DELAY_COUNT_2 Set next access delay to 2 RSPCK+2PCLK

RSPI_NEXT_ACCESS_DELAY_COUNT_3 Set next access delay to 3 RSPCK+2PCLK

RSPI_NEXT_ACCESS_DELAY_COUNT_4 Set next access delay to 4 RSPCK+2PCLK

RSPI_NEXT_ACCESS_DELAY_COUNT_5 Set next access delay to 5 RSPCK+2PCLK

RSPI_NEXT_ACCESS_DELAY_COUNT_6 Set next access delay to 6 RSPCK+2PCLK

RSPI_NEXT_ACCESS_DELAY_COUNT_7 Set next access delay to 7 RSPCK+2PCLK

RSPI_NEXT_ACCESS_DELAY_COUNT_8 Set next access delay to 8 RSPCK+2PCLK

◆ rspi_next_access_delay_state_t

enum rspi_next_access_delay_state_t

SPCMD (RSPI Command) Register – Next Access Delay select – SPNDEN

Enumerator

RSPI_NEXT_ACCESS_DELAY_STATE_DISABLE Next access delay=1 RSPCK + 2 PCLK

RSPI_NEXT_ACCESS_DELAY_STATE_ENABLE Next access delay=SPND register setting

◆ rspi_operation_t

enum rspi_operation_t

SPCR (RSPI Control register) – SPMS (RSPI mode) select

Enumerator

RSPI_OPERATION_SPI SPI operation (4-wire method)

RSPI_OPERATION_CLK_SYN Clock Synchronous operation (3-wire method)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,099 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

◆ rspi_parity_mode_t

enum rspi_parity_mode_t

SPCR2 (RSPI Control Register 2) – Parity select

Enumerator

RSPI_PARITY_MODE_ODD Select even parity

RSPI_PARITY_MODE_EVEN Select odd parity

◆ rspi_parity_state_t

enum rspi_parity_state_t

SPCR2 (RSPI Control Register 2) – Parity Enable select

Enumerator

RSPI_PARITY_STATE_DISABLE Disable parity

RSPI_PARITY_STATE_ENABLE Enable parity

◆ rspi_spcmd_assert_ssl_t

enum rspi_spcmd_assert_ssl_t

Slave select to be asserted during transfer operation.

Enumerator

RSPI_SPCMD_ASSERT_SSL0 Select SSL0

RSPI_SPCMD_ASSERT_SSL1 Select SSL1

RSPI_SPCMD_ASSERT_SSL2 Select SSL2

RSPI_SPCMD_ASSERT_SSL3 Select SSL3

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,100 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

◆ rspi_spcmd_bit_length_t

enum rspi_spcmd_bit_length_t

Frame data length

Enumerator

RSPI_SPCMD_BIT_LENGTH_8 0100 to 0111 = 8 bits data length

RSPI_SPCMD_BIT_LENGTH_16 1111 = 16 bits data length

RSPI_SPCMD_BIT_LENGTH_32 0011 = 32 bits data length

◆ rspi_spcmd_br_div_t

enum rspi_spcmd_br_div_t

Clock base rate division

Enumerator

RSPI_SPCMD_BR_DIV_1 Select the base bit rate

RSPI_SPCMD_BR_DIV_2 Select the base bit rate divided by 2

RSPI_SPCMD_BR_DIV_4 Select the base bit rate divided by 4

RSPI_SPCMD_BR_DIV_8 Select the base bit rate divided by 8

◆ rspi_ssl_level_keep_t

enum rspi_ssl_level_keep_t

SPCMD (RSPI Command) Register – SSL Signal Level Keeping select

Enumerator

RSPI_SSL_LEVEL_KEEP_NOT Negates all SSL signals upon transfer
completion

RSPI_SSL_LEVEL_KEEP Keeps the SSL level upon transfer completion

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,101 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

◆ rspi_ssl_negation_delay_count_t

enum rspi_ssl_negation_delay_count_t

SSLND (RSPI Slave Select Negation Delay) Register – Slave Select Negation Delay Count select

Enumerator

RSPI_SSL_NEGATION_DELAY_1 Set SSL negation delay to 1 RSPCK

RSPI_SSL_NEGATION_DELAY_2 Set SSL negation delay to 2 RSPCK

RSPI_SSL_NEGATION_DELAY_3 Set SSL negation delay to 3 RSPCK

RSPI_SSL_NEGATION_DELAY_4 Set SSL negation delay to 4 RSPCK

RSPI_SSL_NEGATION_DELAY_5 Set SSL negation delay to 5 RSPCK

RSPI_SSL_NEGATION_DELAY_6 Set SSL negation delay to 6 RSPCK

RSPI_SSL_NEGATION_DELAY_7 Set SSL negation delay to 7 RSPCK

RSPI_SSL_NEGATION_DELAY_8 Set SSL negation delay to 8 RSPCK

◆ rspi_ssl_negation_delay_state_t

enum rspi_ssl_negation_delay_state_t

SPCMD (RSPI Command) Register – SSL Negation Delay select – SLNDEN

Enumerator

RSPI_SSL_NEGATION_DELAY_DISABLE SSL negation delay=1 RSPCK

RSPI_SSL_NEGATION_DELAY_ENABLE SSL negation delay=SSLND register setting

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,102 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

◆ rspi_ssl_select_t

enum rspi_ssl_select_t

SPCMD (RSPI Command) Register – SSL Signal Assertion select

Enumerator

RSPI_SSL_SELECT_SSL0 Select SSL0 as slave

RSPI_SSL_SELECT_SSL1 Select SSL1 as slave

RSPI_SSL_SELECT_SSL2 Select SSL2 as slave

RSPI_SSL_SELECT_SSL3 Select SSL3 as slave

◆ rspi_sslp_t

enum rspi_sslp_t

Definition for SSLP (RSPI Slave Select Polarity register) select

Enumerator

RSPI_SSLP_LOW SSLP signal polarity active low

RSPI_SSLP_HIGH SSLP signal polarity active high

Function Documentation

◆ R_RSPI_Close()

ssp_err_t R_RSPI_Close (spi_ctrl_t *const p_api_ctrl)

This function manages the closing of a channel by the following task.

Implements spi_api_t::close Disables SPI operations by disabling the SPI bus. Power off the channel.
Disables all the associated interrupts. Update channel status.

Return values
SSP_SUCCESS Channel successfully closed.

SSP_ERR_ASSERTION A required pointer argument is NULL.

SSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

Note
This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,103 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

◆ R_RSPI_Open()

ssp_err_t R_RSPI_Open (spi_ctrl_t * p_api_ctrl, spi_cfg_t const *const p_cfg)

This functions initializes a channel for SPI communication mode.

Implements spi_api_t::open This function performs the following tasks: Performs parameter
checking and processes error conditions. Applies power to the SPI channel. Disables interrupts.
Initializes the associated registers with some default value and the user-configurable options.
Provides the channel control for use with other API functions. Updates user-configurable file if
necessary.

Return values
SSP_SUCCESS Channel initialized successfully.

SSP_ERR_ASSERTION NULL pointer to following parameters p_ctrl,
p_cfg, p_cfg::p_transfer_rx::p_api,
p_cfg::p_transfer_rx::p_ctrl,
p_cfg::p_transfer_rx::p_cfg,
p_cfg::p_transfer_rx::p_cfg::p_info. or failed
to set the baud rate,

SSP_ERR_INVALID_ARGUMENT An element of the r_spi_cfg_t structure
contains an invalid value. The parameters is
out of range. Both transfer modules need to
be present or absent.

SSP_ERR_HW_LOCKED The lock could not be acquired. The channel
is busy.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::open
fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Note
This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,104 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

◆ R_RSPI_Read()

ssp_err_t R_RSPI_Read (spi_ctrl_t *const p_api_ctrl, void const * p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

This function receives data from a SPI device.

Implements spi_api_t::read The function performs the following tasks: Performs parameter
checking and processes error conditions. Disable Interrupts. Disable the SPI bus. Setup data bit
width per user request. Enable the SPI bus. Enable interrupts. Start data transmission with dummy
data via transmit buffer empty interrupt. Copy data from source buffer to the SPI data register for
transmission. Receive data from receive buffer full interrupt occurs and copy data to the buffer of
destination. Complete data reception via receive buffer full interrupt and transmitting dummy data.

Return values
SSP_SUCCESS Read operation successfully completed.

SSP_ERR_ASSERTION NULL pointer to control or destination
parameters or transfer length is zero.

SSP_ERR_UNSUPPORTED With DTC transfer mode, bit_width must
match configured DTC transfer width

SSP_ERR_HW_LOCKED The lock could not be acquired. The channel
is busy.

SSP_ERR_NOT_OPEN The channel has not been opened. Open
channel first.

SSP_ERR_INVALID_HW_CONDITION Failed to clear errors in the module

Note
This function is reentrant.

◆ R_RSPI_VersionGet()

ssp_err_t R_RSPI_VersionGet (ssp_version_t * p_version)

This function gets the version information of the underlying driver.

Implements spi_api_t::versionget

Return values
void

SSP_SUCCESS Successful version get.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Note
This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,105 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

◆ R_RSPI_Write()

ssp_err_t R_RSPI_Write (spi_ctrl_t *const p_api_ctrl, void const * p_src, uint32_t const length,
spi_bit_width_t const bit_width)

This function transmits data to a SPI device using the TX Only Communications Operation Mode.

Implements spi_api_t::write The function performs the following tasks: Performs parameter
checking and processes error conditions. Disable Interrupts. Disable the SPI bus. Setup data bit
width per user request. Enable the SPI bus. Enable interrupts. Start data transmission with dummy
data via transmit buffer empty interrupt. Copy data from source buffer to the SPI data register for
transmission. Receive data from receive buffer full interrupt occurs and do nothing with the
received data. Complete data transmission via receive buffer full interrupt.

Return values
SSP_SUCCESS Write operation successfully completed.

SSP_ERR_ASSERTION NULL pointer to control or source
parameters or transfer length is zero.

SSP_ERR_UNSUPPORTED With DTC transfer mode, bit_width must
match configured DTC transfer width

SSP_ERR_HW_LOCKED The lock could not be acquired. The channel
is busy.

SSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

SSP_ERR_INVALID_HW_CONDITION Failed to clear errors in the module

Note
This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,106 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI

◆ R_RSPI_WriteRead()

ssp_err_t R_RSPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const * p_src, void const * p_dest,
uint32_t const length, spi_bit_width_t const bit_width)

This function simultaneously transmits data to a SPI device while receiving data from a SPI device
(full duplex).

Implements spi_api_t::writeread The function performs the following tasks: Performs parameter
checking and processes error conditions. Disable Interrupts. Disable the SPI bus. Setup data bit
width per user request. Enable the SPI bus. Enable interrupts. Start data transmission using
transmit buffer empty interrupt. Copy data from source buffer to the SPI data register for
transmission. Receive data from receive buffer full interrupt occurs and copy data to the buffer of
destination. Complete data transmission and reception via receive buffer full interrupt.

Return values
SSP_SUCCESS Write operation successfully completed.

SSP_ERR_ASSERTION NULL pointer to control, source or
destination parameters or transfer length is
zero.

SSP_ERR_UNSUPPORTED With DTC transfer mode, bit_width must
match configured DTC transfer width

SSP_ERR_HW_LOCKED The lock could not be acquired. The channel
is busy.

SSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

SSP_ERR_INVALID_HW_CONDITION Failed to clear errors in the module

Note
This function is reentrant.

 rspi_ssl_polarity_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SPI

#include <r_rspi.h>

Detailed Description

SSLP (RSPI Slave Select Polarity register) – SSLnP select

The documentation for this struct was generated from the following file:

r_rspi.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,107 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI > rspi_ssl_polarity_t Struct Reference

 rspi_loopback_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SPI

#include <r_rspi.h>

Detailed Description

SPPCR (RSPI Pin Control Register) – Loopback select

The documentation for this struct was generated from the following file:

r_rspi.h

 rspi_mosi_idle_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SPI

#include <r_rspi.h>

Detailed Description

SPPCR (RSPI Pin Control Register) – MOIFV (mosi idle value) select

The documentation for this struct was generated from the following file:

r_rspi.h

 rspi_parity_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SPI

#include <r_rspi.h>

Detailed Description

SPCR2 (RSPI Control Register 2) – Parity select

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,108 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI > rspi_parity_t Struct Reference

The documentation for this struct was generated from the following file:

r_rspi.h

 rspi_clock_delay_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SPI

#include <r_rspi.h>

Detailed Description

Select RSPI Clock Delay Register (SPCKD) and SPCMD (RSPI Command) Register-Clock Delay
state(SCKDEN)

The documentation for this struct was generated from the following file:

r_rspi.h

 rspi_ssl_negation_delay_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SPI

#include <r_rspi.h>

Detailed Description

Select SSL Negation Delay(SSLND) and SPCMD Register-SSL negation Delay state(SLNDEN)

The documentation for this struct was generated from the following file:

r_rspi.h

 rspi_access_delay_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SPI

#include <r_rspi.h>

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,109 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI > rspi_access_delay_t Struct Reference

Select Next Access Delay(SPND) and SPCMD Register-Next Access Delay state(SPNDEN)

The documentation for this struct was generated from the following file:

r_rspi.h

 spi_on_rspi_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SPI

#include <r_rspi.h>

Data Fields

rspi_operation_t rspi_clksyn

rspi_communication_t rspi_comm

rspi_ssl_polarity_t ssl_polarity

rspi_loopback_t loopback

rspi_mosi_idle_t mosi_idle

rspi_parity_t parity

rspi_ssl_select_t ssl_select

rspi_ssl_level_keep_t ssl_level_keep

rspi_clock_delay_t clock_delay

rspi_ssl_negation_delay_t ssl_neg_delay

rspi_access_delay_t access_delay

rspi_byte_swap_t byte_swap

Detailed Description

Extended SPI interface configuration

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,110 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI > spi_on_rspi_cfg_t Struct Reference

◆ access_delay

rspi_access_delay_t spi_on_rspi_cfg_t::access_delay

Select next access delay from 0 to 7

◆ byte_swap

rspi_byte_swap_t spi_on_rspi_cfg_t::byte_swap

Feature for byte swapping

◆ clock_delay

rspi_clock_delay_t spi_on_rspi_cfg_t::clock_delay

Select clock delay from 0 to 7

◆ loopback

rspi_loopback_t spi_on_rspi_cfg_t::loopback

Select loopback1 and loopback2

◆ mosi_idle

rspi_mosi_idle_t spi_on_rspi_cfg_t::mosi_idle

Select mosi idle fixed value and selection

◆ parity

rspi_parity_t spi_on_rspi_cfg_t::parity

Select parity and enable/disable parity

◆ rspi_clksyn

rspi_operation_t spi_on_rspi_cfg_t::rspi_clksyn

Select spi or clock syn mode operation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,111 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI > spi_on_rspi_cfg_t Struct Reference

◆ rspi_comm

rspi_communication_t spi_on_rspi_cfg_t::rspi_comm

Select full-duplex or transmit-only communication

◆ ssl_level_keep

rspi_ssl_level_keep_t spi_on_rspi_cfg_t::ssl_level_keep

Select SSL level after transfer completion;0-negate;1-keeps

◆ ssl_neg_delay

rspi_ssl_negation_delay_t spi_on_rspi_cfg_t::ssl_neg_delay

Select Slave elect negation delay from 0 to 7

◆ ssl_polarity

rspi_ssl_polarity_t spi_on_rspi_cfg_t::ssl_polarity

Select SSLn signal polarity

◆ ssl_select

rspi_ssl_select_t spi_on_rspi_cfg_t::ssl_select

Select which slave to use;0-SSL0;1-SSL1;2-SSL2;3-SSL3

The documentation for this struct was generated from the following file:

r_rspi.h

 rspi_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SPI

#include <r_rspi.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,112 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI > rspi_instance_ctrl_t Struct Reference

uint8_t channel

 Channel number to be used.

uint8_t current_slave

 Number of the currently assigned slave.

uint32_t channel_opened

 Internal flag to indicate the peripheral was initialized.

transfer_instance_t const * p_transfer_tx

 To use SPI DTC/DMA write transfer.

transfer_instance_t const * p_transfer_rx

 To use SPI DTC/DMA read transfer.

void(* p_callback)(spi_callback_args_t *p_args)

 Pointer to user callback function.

void const * p_context

 Pointer to the higher level device context.

void * p_reg

 Base register for this channel.

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type tei_irq

 Transmit end IRQ number.

IRQn_Type eri_irq

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,113 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SPI > rspi_instance_ctrl_t Struct Reference

 Error IRQ number.

Detailed Description

SPI instance control block. DO NOT INITIALIZE.

The documentation for this struct was generated from the following file:

r_rspi.h

5.1.5.50 RTC
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Realtime Clock (RTC). More...

Data Structures

struct rtc_instance_ctrl_t

Enumerations

enum rtc_count_mode_t { RTC_CALENDAR_MODE = 0, RTC_BINARY_MODE
= 1 }

Functions

ssp_err_t R_RTC_Open (rtc_ctrl_t *const p_api_ctrl, rtc_cfg_t const *const
p_cfg)

 Open the RTC driver. More...

ssp_err_t R_RTC_Close (rtc_ctrl_t *const p_api_ctrl)

 Close the RTC driver. More...

ssp_err_t R_RTC_Configure (rtc_ctrl_t *const p_api_ctrl, void *const p_extend)

 Configure the RTC driver. More...

ssp_err_t R_RTC_CalendarTimeSet (rtc_ctrl_t *const p_api_ctrl, rtc_time_t
*p_time, bool clock_start)

 Set the calendar time. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,114 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > RTC

ssp_err_t R_RTC_CalendarTimeGet (rtc_ctrl_t *const p_api_ctrl, rtc_time_t
*p_time)

 Get the calendar time. (Should not be called from critical section as
it may return incorrect time) More...

ssp_err_t R_RTC_CalendarAlarmSet (rtc_ctrl_t *const p_api_ctrl,
rtc_alarm_time_t *p_alarm, bool interrupt_enable_flag)

 Set the calendar alarm time. More...

ssp_err_t R_RTC_CalendarAlarmGet (rtc_ctrl_t *const p_api_ctrl,
rtc_alarm_time_t *p_alarm)

 Get the calendar alarm time. More...

ssp_err_t R_RTC_CalendarCounterStart (rtc_ctrl_t *const p_api_ctrl)

 Start the calendar counter. More...

ssp_err_t R_RTC_CalendarCounterStop (rtc_ctrl_t *const p_api_ctrl)

 Stop the calendar counter. More...

ssp_err_t R_RTC_IrqEnable (rtc_ctrl_t *const p_api_ctrl, rtc_event_t event)

 Enable the alarm interrupt. More...

ssp_err_t R_RTC_IrqDisable (rtc_ctrl_t *const p_api_ctrl, rtc_event_t event)

 Disable the alarm interrupt. More...

ssp_err_t R_RTC_PeriodicIrqRateSet (rtc_ctrl_t *const p_api_ctrl,
rtc_periodic_irq_select_t rate)

 Set the periodic interrupt rate. More...

ssp_err_t R_RTC_InfoGet (rtc_ctrl_t *p_api_ctrl, rtc_info_t *p_rtc_info)

 This function returns information about the driver clock source.
More...

ssp_err_t R_RTC_ErrorAdjustmentModeSet (rtc_ctrl_t *p_api_ctrl,
rtc_error_adjustment_mode_cfg_t *p_error_adjustment_mode)

 This function sets time error adjustment mode. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,115 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > RTC

ssp_err_t R_RTC_ErrorAdjustmentSet (rtc_ctrl_t *p_api_ctrl,
rtc_error_adjustment_cfg_t *p_error_adjustment_config)

 This function sets time error adjustment. More...

ssp_err_t R_RTC_VersionGet (ssp_version_t *p_version)

 Get driver version based on compile time macros. More...

Detailed Description

Driver for the Realtime Clock (RTC).

This module supports the Real Time Clock (RTC). It implements the following interfaces:

RTC Interface

Enumeration Type Documentation

◆ rtc_count_mode_t

enum rtc_count_mode_t

Counting mode

Enumerator

RTC_CALENDAR_MODE Calender count mode.

RTC_BINARY_MODE Binary count mode.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,116 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > RTC

◆ R_RTC_CalendarAlarmGet()

ssp_err_t R_RTC_CalendarAlarmGet (rtc_ctrl_t *const p_api_ctrl, rtc_alarm_time_t * p_alarm)

Get the calendar alarm time.

Implements rtc_api_t::calendarAlarmGet

Return values
SSP_SUCCESS Calendar alarm time get operation was

successful.

SSP_ERR_ASSERTION Invalid p_api_ctrl, p_alarm or p_ctrl->p_reg
member pointed by p_api_ctrl pointer.

SSP_ERR_NOT_OPEN Driver not open already for operation.

Get the alarm time

◆ R_RTC_CalendarAlarmSet()

ssp_err_t R_RTC_CalendarAlarmSet (rtc_ctrl_t *const p_api_ctrl, rtc_alarm_time_t * p_alarm, bool
interrupt_enable_flag)

Set the calendar alarm time.

Implements rtc_api_t::calendarAlarmSet.

Precondition
The calendar counter must be running before the alarm can be set.

Return values
SSP_SUCCESS Calendar alarm time set operation was

successful.

SSP_ERR_INVALID_ARGUMENT Invalid time parameter field.

SSP_ERR_ASSERTION Invalid p_api_ctrl, p_alarm or p_ctrl->p_reg
member pointed by p_api_ctrl pointer.

SSP_ERR_NOT_OPEN Driver not open already for operation.

Disable the ICU alarm interrupt request

Set alarm time

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,117 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > RTC

◆ R_RTC_CalendarCounterStart()

ssp_err_t R_RTC_CalendarCounterStart (rtc_ctrl_t *const p_api_ctrl)

Start the calendar counter.

Implements rtc_api_t::calendarCounterStart.

Return values
SSP_SUCCESS Calendar counter started.

SSP_ERR_ASSERTION Invalid p_api_ctrl or p_ctrl->p_reg member
pointed by p_api_ctrl pointer.

SSP_ERR_NOT_OPEN Driver not open already for operation.

SSP_ERR_TIMEOUT Start bit not set.

Set the start bit.

◆ R_RTC_CalendarCounterStop()

ssp_err_t R_RTC_CalendarCounterStop (rtc_ctrl_t *const p_api_ctrl)

Stop the calendar counter.

Implements rtc_api_t::calendarCounterStop.

Return values
SSP_SUCCESS Calendar counter stopped.

SSP_ERR_ASSERTION Invalid p_api_ctrl or p_ctrl->p_reg member
pointed by p_api_ctrl pointer.

SSP_ERR_NOT_OPEN Driver not open already for operation.

SSP_ERR_TIMEOUT Start bit not cleared.

Clear the start bit.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,118 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > RTC

◆ R_RTC_CalendarTimeGet()

ssp_err_t R_RTC_CalendarTimeGet (rtc_ctrl_t *const p_api_ctrl, rtc_time_t * p_time)

Get the calendar time. (Should not be called from critical section as it may return incorrect time)

Implements rtc_api_t::calendarTimeGet

Return values
SSP_SUCCESS Calendar time get operation was successful.

SSP_ERR_ASSERTION Invalid p_api_ctrl, p_time or p_ctrl->p_reg
member pointed by p_api_ctrl pointer.

SSP_ERR_NOT_OPEN Driver not open already for operation.

SSP_ERR_TIMEOUT IRQ enable operation timed out.

Read all the time registers, if a carry irq occurred in-between read again

This flag will be set to 'true' in the carry ISR

Restore the state of carry IRQ.

◆ R_RTC_CalendarTimeSet()

ssp_err_t R_RTC_CalendarTimeSet (rtc_ctrl_t *const p_api_ctrl, rtc_time_t * p_time, bool
clock_start)

Set the calendar time.

Implements rtc_api_t::calendarTimeSet.

Return values
SSP_SUCCESS Calendar time set operation was successful.

SSP_ERR_ASSERTION Invalid p_api_ctrl, p_time or p_ctrl->p_reg
member pointed by p_api_ctrl pointer.

SSP_ERR_NOT_OPEN Driver not open already for operation.

SSP_ERR_INVALID_ARGUMENT Invalid time parameter field.

SSP_ERR_TIMEOUT Software reset status check failed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,119 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > RTC

◆ R_RTC_Close()

ssp_err_t R_RTC_Close (rtc_ctrl_t *const p_api_ctrl)

Close the RTC driver.

Implements rtc_api_t::close

Return values
SSP_SUCCESS De-Initialization was successful and RTC

driver closed.

SSP_ERR_ASSERTION Invalid p_api_ctrl or p_ctrl->p_reg member
pointed by p_api_ctrl pointer.

SSP_ERR_NOT_OPEN Driver not open already for close.

Disable the periodic interrupt, alarm interrupt, carry interrupts, and disable there interrupt priority
and vector info.

◆ R_RTC_Configure()

ssp_err_t R_RTC_Configure (rtc_ctrl_t *const p_api_ctrl, void *const p_extend)

Configure the RTC driver.

Implements rtc_api_t::configure

Return values
SSP_SUCCESS RTC was successful configured.

SSP_ERR_ASSERTION Invalid p_api_ctrl or p_ctrl->p_reg member
pointed by p_api_ctrl pointer.

SSP_ERR_NOT_OPEN Driver not open already for operation.

SSP_ERR_TIMEOUT Status check for counter mode or reset
timed out

Parameter checking

p_extend is currently not used, reserved for future use

Set the clock source of the RTC block according to the UM

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,120 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > RTC

◆ R_RTC_ErrorAdjustmentModeSet()

ssp_err_t R_RTC_ErrorAdjustmentModeSet (rtc_ctrl_t * p_api_ctrl, rtc_error_adjustment_mode_cfg_t
* p_error_adjustment_mode)

This function sets time error adjustment mode.

Implements rtc_api_t::errorAdjustmentModeSet

Return values
SSP_SUCCESS Time error adjustment mode set successful.

SSP_ERR_ASSERTION Invalid p_api_ctrl or error_adjustment_mode
pointer.

SSP_ERR_NOT_OPEN Driver not open for operation.

SSP_ERR_UNSUPPORTED The clock source is not SubClock.

SSP_ERR_INVALID_ARGUMENT Invalid error adjustment period.

SSP_ERR_TIMEOUT Time error adjustment get query timed out.

◆ R_RTC_ErrorAdjustmentSet()

ssp_err_t R_RTC_ErrorAdjustmentSet (rtc_ctrl_t * p_api_ctrl, rtc_error_adjustment_cfg_t *
p_error_adjustment_config)

This function sets time error adjustment.

Implements rtc_api_t::errorAdjustmentSet

Return values
SSP_SUCCESS Time error adjustment successful.

SSP_ERR_ASSERTION Invalid p_api_ctrl or
p_error_adjustment_config pointer.

SSP_ERR_NOT_OPEN Driver not open for operation.

SSP_ERR_UNSUPPORTED The clock source is not SubClock.

SSP_ERR_INVALID_ARGUMENT Invalid error adjustment value.

SSP_ERR_TIMEOUT Time error adjustment get query timed out.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,121 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > RTC

◆ R_RTC_InfoGet()

ssp_err_t R_RTC_InfoGet (rtc_ctrl_t * p_api_ctrl, rtc_info_t * p_rtc_info)

This function returns information about the driver clock source.

Implements rtc_api_t::infoGet

Return values
SSP_SUCCESS Get information Successful.

SSP_ERR_ASSERTION Invalid p_api_ctrl, p_rtc_info or p_ctrl->p_reg
member pointed by p_api_ctrl pointer.

SSP_ERR_NOT_OPEN Driver not open already for operation.

◆ R_RTC_IrqDisable()

ssp_err_t R_RTC_IrqDisable (rtc_ctrl_t *const p_api_ctrl, rtc_event_t event)

Disable the alarm interrupt.

Implements rtc_api_t::interruptDisable.

Return values
SSP_SUCCESS Alarm interrupt disabled.

SSP_ERR_ASSERTION Invalid p_api_ctrl or p_ctrl->p_reg member
pointed by p_api_ctrl pointer.

SSP_ERR_IRQ_BSP_DISABLED User IRQ parameter not valid

SSP_ERR_INVALID_ARGUMENT Invalid IRQ event

SSP_ERR_TIMEOUT IRQ disable operation timed out.

SSP_ERR_NOT_OPEN Driver not open already for operation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,122 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > RTC

◆ R_RTC_IrqEnable()

ssp_err_t R_RTC_IrqEnable (rtc_ctrl_t *const p_api_ctrl, rtc_event_t event)

Enable the alarm interrupt.

Implements rtc_api_t::interruptEnable.

Return values
SSP_SUCCESS Alarm interrupt enabled.

SSP_ERR_ASSERTION Invalid p_api_ctrl or p_ctrl->p_reg member
pointed by p_api_ctrl pointer.

SSP_ERR_IRQ_BSP_DISABLED User IRQ parameter not valid.

SSP_ERR_INVALID_ARGUMENT Invalid IRQ event.

SSP_ERR_TIMEOUT IRQ enable operation timed out.

SSP_ERR_NOT_OPEN Driver not open already for operation.

◆ R_RTC_Open()

ssp_err_t R_RTC_Open (rtc_ctrl_t *const p_api_ctrl, rtc_cfg_t const *const p_cfg)

Open the RTC driver.

Implements rtc_api_t::open.

Opens and configures the RTC driver module. Configuration includes clock source, and interrupt
callback function. If the sub-clock oscillator is the clock source it is started in this function.

Return values
SSP_SUCCESS Initialization was successful and RTC has

started.

SSP_ERR_ASSERTION Invalid p_api_ctrl or p_cfg pointer.

SSP_ERR_HW_LOCKED Hardware in use

SSP_ERR_TIMEOUT Status check for counter mode or reset
timed out

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
Mark driver as open by initializing it to "RTC" in its ASCII equivalent.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,123 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > RTC

◆ R_RTC_PeriodicIrqRateSet()

ssp_err_t R_RTC_PeriodicIrqRateSet (rtc_ctrl_t *const p_api_ctrl, rtc_periodic_irq_select_t rate)

Set the periodic interrupt rate.

Implements rtc_api_t::periodicInterruptRateSet.

Return values
SSP_SUCCESS The periodic interrupt rate was successfully

set.

SSP_ERR_ASSERTION Invalid p_api_ctrl or p_ctrl->p_reg member
pointed by p_api_ctrl pointer.

SSP_ERR_TIMEOUT Periodic interrupt rate get query timed out.

SSP_ERR_NOT_OPEN Driver not open already for operation.

◆ R_RTC_VersionGet()

ssp_err_t R_RTC_VersionGet (ssp_version_t * p_version)

Get driver version based on compile time macros.

Implements rtc_api_t::versionGet

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

 rtc_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » RTC

#include <r_rtc.h>

Data Fields

void * p_reg

 Pointer to register base address.

void(* p_callback)(rtc_callback_args_t *cb_data)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,124 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > RTC > rtc_instance_ctrl_t Struct Reference

 Called from the ISR.

void const * p_context

 Passed to the callback.

uint32_t open

 Whether or not driver is open.

IRQn_Type alarm_irq

 Alarm IRQ number.

IRQn_Type periodic_irq

 Periodic IRQ number.

IRQn_Type carry_irq

 Carry IRQ number.

rtc_clock_source_t clock_source

 Clock source for the RTC block.

bool suppress_carry_event_callback

 carry event callback will be suppressed if set

volatile bool carry_isr_triggered

 Was the carry isr triggered.

Detailed Description

Channel control block. DO NOT INITIALIZE. Initialization occurs when rtc_api_t::open is called

The documentation for this struct was generated from the following file:

r_rtc.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,125 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple I2C on SCI

5.1.5.51 Simple I2C on SCI
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Simple IIC on SCI. More...

Data Structures

struct sci_i2c_instance_ctrl_t

struct sci_i2c_extended_cfg

Functions

ssp_err_t R_SCI_SIIC_MasterVersionGet (ssp_version_t *const p_version)

 Sets driver version based on compile time macros. More...

ssp_err_t R_SCI_SIIC_MasterOpen (i2c_ctrl_t *const p_api_ctrl, i2c_cfg_t const
*const p_cfg)

 Opens the I2C device. Power on I2C peripheral and perform
initialization described in hardware manual. More...

ssp_err_t R_SCI_SIIC_MasterClose (i2c_ctrl_t *const p_api_ctrl)

 Closes the I2C device. Power down I2C peripheral. More...

ssp_err_t R_SCI_SIIC_MasterRead (i2c_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes, bool const restart)

 Performs a read from the I2C device. More...

ssp_err_t R_SCI_SIIC_MasterWrite (i2c_ctrl_t *const p_api_ctrl, uint8_t *const
p_src, uint32_t const bytes, bool const restart)

 Performs a write to the I2C device. More...

ssp_err_t R_SCI_SIIC_MasterReset (i2c_ctrl_t *const p_api_ctrl)

 Aborts any in-progress transfer and forces the I2C peripheral into a
ready state. More...

ssp_err_t R_SCI_SIIC_MasterSlaveAddressSet (i2c_ctrl_t *const p_api_ctrl,
uint16_t const slave, i2c_addr_mode_t const addr_mode)

 Sets address and addressing mode of the slave device. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,126 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple I2C on SCI

Detailed Description

Driver for the Simple IIC on SCI.

This module supports the SCI in I2C mode. It implements the following interfaces:

I2C Interface r_i2c_api.h

Function Documentation

◆ R_SCI_SIIC_MasterClose()

ssp_err_t R_SCI_SIIC_MasterClose (i2c_ctrl_t *const p_api_ctrl)

Closes the I2C device. Power down I2C peripheral.

This function will safely terminate any in-progress I2C transfer with the device. If a transfer is
aborted, the user will be notified via callback with an abort event. Since the callback is optional,
this function will also return a specific error code in this situation.

Return values
SSP_SUCCESS Device closed without issue.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

SSP_ERR_ABORTED Device was closed while a transfer was in-
progress.

SSP_ERR_NOT_OPEN Device was not even opened.

Abort an in-progress transfer with this device only

The device is now considered closed

De-configure everything.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,127 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple I2C on SCI

◆ R_SCI_SIIC_MasterOpen()

ssp_err_t R_SCI_SIIC_MasterOpen (i2c_ctrl_t *const p_api_ctrl, i2c_cfg_t const *const p_cfg)

Opens the I2C device. Power on I2C peripheral and perform initialization described in hardware
manual.

This function will reconfigure the clock settings of the peripheral when a device with a lower rate
than previously configured is opened.

Return values
SSP_SUCCESS Requested baud rate was valid.

SSP_ERR_ASSERTION The parameter p_ctrl or p_cfg is NULL or if
clock rate greater than 400KHz.

SSP_ERR_INVALID_RATE The requested rate cannot be set.

SSP_ERR_IN_USE Lock was not acquired

SSP_ERR_IRQ_BSP_DISABLED Event information could not be found.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet

Disable, clear and configure interrupts

Open the hardware in master mode

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,128 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple I2C on SCI

◆ R_SCI_SIIC_MasterRead()

ssp_err_t R_SCI_SIIC_MasterRead (i2c_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t
const bytes, bool const restart)

Performs a read from the I2C device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C read operation will begin. When no callback is provided by the user, this
function performs a blocking read. Otherwise, the read operation is non-blocking and the caller will
be notified when the operation has finished by an I2C_EVENT_RX_COMPLETE in the callback.

Return values
SSP_SUCCESS Function executed without issue.

SSP_ERR_ASSERTION The parameter p_ctrl, p_dest is NULL, bytes
is 0.

SSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size(65535) while DTC is used for
data transfer.

SSP_ERR_IN_USE Another transfer was in-progress.

SSP_ERR_NOT_OPEN Device was not even opened.

Record the new information about this transfer

Handle the different addressing modes

Kickoff the read operation as a master

◆ R_SCI_SIIC_MasterReset()

ssp_err_t R_SCI_SIIC_MasterReset (i2c_ctrl_t *const p_api_ctrl)

Aborts any in-progress transfer and forces the I2C peripheral into a ready state.

This function will safely terminate any in-progress I2C transfer with the device. If a transfer is
aborted, the user will be notified via callback with an abort event. Since the callback is optional,
this function will also return a specific error code in this situation.

Return values
SSP_SUCCESS Channel was reset without issue.

SSP_ERR_ASSERTION p_ctrl is NULL.

SSP_ERR_ABORTED A transfer was aborted while resetting the
hardware.

SSP_ERR_NOT_OPEN Device was not even opened.

Abort any transfer happening on the channel

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,129 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple I2C on SCI

◆ R_SCI_SIIC_MasterSlaveAddressSet()

ssp_err_t R_SCI_SIIC_MasterSlaveAddressSet (i2c_ctrl_t *const p_api_ctrl, uint16_t const slave,
i2c_addr_mode_t const addr_mode)

Sets address and addressing mode of the slave device.

This function is used to set the device address and addressing mode of the slave without
reconfiguring the entire bus.

Return values
SSP_SUCCESS Address of the slave is set correctly.

SSP_ERR_ASSERTION p_ctrl or address is NULL.

SSP_ERR_IN_USE Another transfer was in-progress.

SSP_ERR_NOT_OPEN Device was not even opened.

Sets the address of the slave device

Sets the mode of addressing

◆ R_SCI_SIIC_MasterVersionGet()

ssp_err_t R_SCI_SIIC_MasterVersionGet (ssp_version_t *const p_version)

Sets driver version based on compile time macros.

Return values
SSP_SUCCESS Successful version get.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Verify parameter is valid

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,130 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple I2C on SCI

◆ R_SCI_SIIC_MasterWrite()

ssp_err_t R_SCI_SIIC_MasterWrite (i2c_ctrl_t *const p_api_ctrl, uint8_t *const p_src, uint32_t const
bytes, bool const restart)

Performs a write to the I2C device.

This function will fail if there is already an in-progress I2C transfer on the associated channel.
Otherwise, the I2C write operation will begin. When no callback is provided by the user, this
function performs a blocking write. Otherwise, the write operation is non-blocking and the caller will
be notified when the operation has finished by an I2C_EVENT_TX_COMPLETE in the callback.

Return values
SSP_SUCCESS Function executed without issue.

SSP_ERR_ASSERTION p_ctrl, p_src is NULL.

SSP_ERR_INVALID_SIZE Provided number of bytes more than
uint16_t size(65535) while DTC is used for
data transfer.

SSP_ERR_IN_USE Another transfer was in-progress.

SSP_ERR_NOT_OPEN Device was not even opened.

Record the new information about this transfer

Handle the different addressing modes

Kickoff the write operation as a master

 sci_i2c_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » Simple I2C on SCI

#include <r_sci_i2c.h>

Data Fields

i2c_cfg_t info

 Information describing I2C device.

uint32_t open

 Flag to determine if the device is open.

void * p_reg

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,131 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple I2C on SCI > sci_i2c_instance_ctrl_t Struct Reference

 Base register for this channel.

transfer_instance_t const * p_transfer_tx

 DTC instance for I2C transmit.Set to NULL if unused. More...

transfer_instance_t const * p_transfer_rx

 DTC instance for I2C receive. Set to NULL if unused.

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type tei_irq

 Transmit end IRQ number.

uint8_t * p_buff

uint32_t total

uint32_t remain

uint32_t loaded

uint8_t addr_low

uint8_t addr_high

uint8_t addr_total

uint8_t addr_remain

uint8_t addr_loaded

volatile bool read

volatile bool restart

volatile bool err

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,132 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple I2C on SCI > sci_i2c_instance_ctrl_t Struct Reference

volatile bool restarted

volatile bool transaction_completed

volatile bool activation_on_rxi

volatile bool activation_on_txi

Detailed Description

I2C control structure. DO NOT INITIALIZE.

Field Documentation

◆ activation_on_rxi

volatile bool sci_i2c_instance_ctrl_t::activation_on_rxi

<< Tracks whether a dummy read is issued on the first RX < Tracks whether the transfer is
activated on RXI interrupt

◆ activation_on_txi

volatile bool sci_i2c_instance_ctrl_t::activation_on_txi

< Tracks whether the transfer is activated on TXI interrupt

◆ addr_high

uint8_t sci_i2c_instance_ctrl_t::addr_high

Holds the first address byte to issue in 10-bit mode

◆ addr_loaded

uint8_t sci_i2c_instance_ctrl_t::addr_loaded

Tracks the number of address bytes written to the register

◆ addr_low

uint8_t sci_i2c_instance_ctrl_t::addr_low

Holds the last address byte to issue

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,133 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple I2C on SCI > sci_i2c_instance_ctrl_t Struct Reference

◆ addr_remain

uint8_t sci_i2c_instance_ctrl_t::addr_remain

Tracks the remaining address bytes to transfer

◆ addr_total

uint8_t sci_i2c_instance_ctrl_t::addr_total

Holds the total number of address bytes to transfer

◆ err

volatile bool sci_i2c_instance_ctrl_t::err

Tracks whether or not an error occurred during processing

◆ loaded

uint32_t sci_i2c_instance_ctrl_t::loaded

Tracks the number of data bytes written to the register

◆ p_buff

uint8_t* sci_i2c_instance_ctrl_t::p_buff

Holds the data associated with the transfer

◆ p_transfer_tx

transfer_instance_t const* sci_i2c_instance_ctrl_t::p_transfer_tx

DTC instance for I2C transmit.Set to NULL if unused.

DTC/DMA support

◆ read

volatile bool sci_i2c_instance_ctrl_t::read

Holds the direction of the data byte transfer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,134 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple I2C on SCI > sci_i2c_instance_ctrl_t Struct Reference

◆ remain

uint32_t sci_i2c_instance_ctrl_t::remain

Tracks the remaining data bytes to transfer

◆ restart

volatile bool sci_i2c_instance_ctrl_t::restart

Holds whether or not the restart should be issued when done

◆ restarted

volatile bool sci_i2c_instance_ctrl_t::restarted

Tracks whether or not a restart was issued during the previous transfer

◆ total

uint32_t sci_i2c_instance_ctrl_t::total

Holds the total number of data bytes to transfer

◆ transaction_completed

volatile bool sci_i2c_instance_ctrl_t::transaction_completed

Tracks if the transaction started earlier was completed

The documentation for this struct was generated from the following file:

r_sci_i2c.h

 sci_i2c_extended_cfg Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » Simple I2C on SCI

#include <r_sci_i2c.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,135 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple I2C on SCI > sci_i2c_extended_cfg Struct Reference

bool bitrate_modulation

Detailed Description

SCI I2C extended configuration

Field Documentation

◆ bitrate_modulation

bool sci_i2c_extended_cfg::bitrate_modulation

Bitrate Modulation Function enable or disable

The documentation for this struct was generated from the following file:

r_sci_i2c.h

5.1.5.52 Simple SPI on SCI
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Simple SPI on SCI. More...

Data Structures

struct sci_spi_instance_ctrl_t

struct sci_spi_extended_cfg

Functions

ssp_err_t R_SCI_SPI_Open (spi_ctrl_t *p_api_ctrl, spi_cfg_t const *const p_cfg)

 Initialize a channel for SPI communication mode. Implements
spi_api_t::open. This function performs the following tasks: Performs
parameter checking and processes error conditions. Applies power to
the SPI channel. Disables interrupts. Initializes the associated
registers with default value and the user-configurable options.
Provides the channel handle for use with other API functions.
Updates user-configurable file if necessary. More...

ssp_err_t R_SCI_SPI_Read (spi_ctrl_t *const p_api_ctrl, void const *p_dest,
uint32_t const length, spi_bit_width_t const bit_width)

 Receive data from an SPI device. Implements spi_api_t::read. The

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,136 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple SPI on SCI

function performs the following tasks: More...

ssp_err_t R_SCI_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const *p_src,
uint32_t const length, spi_bit_width_t const bit_width)

 Transmit data to a SPI device. Implements spi_api_t::write. More...

ssp_err_t R_SCI_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const *p_src,
void const *p_dest, uint32_t const length, spi_bit_width_t const
bit_width)

 Simultaneously transmit data to SPI device while receiving data from
SPI device (full duplex). Implements spi_api_t::writeRead. The
function performs the following tasks: More...

ssp_err_t R_SCI_SPI_Close (spi_ctrl_t *const p_api_ctrl)

 Handle the closing of a channel by the following task. Implements
spi_api_t::close Power off the channel. Disables all the associated
interrupts. Update channel status. More...

ssp_err_t R_SCI_SPI_VersionGet (ssp_version_t *p_version)

 Get the version information of the underlying driver. Implements
spi_api_t::versionGet. More...

Variables

const spi_api_t g_spi_on_sci

Detailed Description

Driver for the Simple SPI on SCI.

This module supports simple SPI serial communication using the microcontroller's SCI peripheral. The
Interface is defined in r_spi_api.h. This module implements SPI Interface.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,137 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple SPI on SCI

◆ R_SCI_SPI_Close()

ssp_err_t R_SCI_SPI_Close (spi_ctrl_t *const p_api_ctrl)

Handle the closing of a channel by the following task. Implements spi_api_t::close Power off the
channel. Disables all the associated interrupts. Update channel status.

Return values
SSP_SUCCESS Channel successfully closed.

SSP_ERR_ASSERTION The parameter p_api_ctrl is NULL.

SSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

Note
This function is reentrant.

Check to see if the channel is currently initialized.

Turn off power.

Close transfer block.

Release lock for this channel.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,138 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple SPI on SCI

◆ R_SCI_SPI_Open()

ssp_err_t R_SCI_SPI_Open (spi_ctrl_t * p_api_ctrl, spi_cfg_t const *const p_cfg)

Initialize a channel for SPI communication mode. Implements spi_api_t::open. This function
performs the following tasks: Performs parameter checking and processes error conditions. Applies
power to the SPI channel. Disables interrupts. Initializes the associated registers with default value
and the user-configurable options. Provides the channel handle for use with other API functions.
Updates user-configurable file if necessary.

Return values
SSP_SUCCESS Channel initialized successfully.

SSP_ERR_ASSERTION One of the following invalid parameter
passed.

Pointer p_api_ctrl is NULL
Pointer p_cfg is NULL

SSP_ERR_IN_USE Channel currently in operation; Close
channel first.

SSP_ERR_HW_LOCKED The lock could not be acquired. The channel
is busy.

See Common Error Codes or functions called by this function for other possible return codes. This
function calls:

fmi_api_t::productFeatureGet
Note

This function is reentrant.
The bit-rate argument in p_cfg ranges from 2500 to 7.5m for Simple SPI at PCLK=120 MHz. For RSPI, BRDV is
fixed at 0 to get the maximum bit rate. The range is 10.0 mbps to 30.0 mbps at PCLK=120.0 MHz.

Attempt to acquire lock for this SCI SPI channel. Prevents re-entrancy conflict.

set valid interrupts with user provided priority.

Turn on power.

Don't use FIFO mode – set FCRL_b.FM = 0.

Select SPI mode - set SCMR.SMIF=0, SIMR1.IICM=0, SMR.CM=1, SPMR.SSE=1.

Set baud rate in SCI channel for the SPI channel.

Open the SCI SPI transfer interface if available.

Peripheral Initialized.

Set control block for SCI channel to SPI mode operation.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,139 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple SPI on SCI

◆ R_SCI_SPI_Read()

ssp_err_t R_SCI_SPI_Read (spi_ctrl_t *const p_api_ctrl, void const * p_dest, uint32_t const length,
spi_bit_width_t const bit_width)

Receive data from an SPI device. Implements spi_api_t::read. The function performs the following
tasks:

Performs parameter checking and processes error conditions.
Disable Interrupts.
Set-up data bit width per user request.
Enable transmitter.
Enable receiver.
Enable interrupts.
Start data transmission with dummy data via transmit buffer empty interrupt.
Copy data from source buffer to the SPI data register for transmission.
Receive data from receive buffer full interrupt occurs and copy data to the buffer of
destination.
Complete data reception via receive buffer full interrupt and transmitting dummy data.
Disable transmitter.
Disable receiver.
Disable interrupts.

Return values
SSP_SUCCESS Read operation successfully completed.

SSP_ERR_ASSERTION One of the following invalid parameters
passed

Pointer p_api_ctrl is NULL
Bit width is not 8 bits
Length is equal to 0
Pointer to destination is NULL

SSP_ERR_HW_LOCKED The lock could not be acquired. The channel
is busy.

SSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

See Common Error Codes or functions called by this function for other possible return codes. This
function calls:

transfer_api_t::reset
Note

This function is reentrant.

Configure module to receive data from a SPI device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,140 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple SPI on SCI

◆ R_SCI_SPI_VersionGet()

ssp_err_t R_SCI_SPI_VersionGet (ssp_version_t * p_version)

Get the version information of the underlying driver. Implements spi_api_t::versionGet.

Return values
SSP_SUCCESS Successful version get.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Note
This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,141 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple SPI on SCI

◆ R_SCI_SPI_Write()

ssp_err_t R_SCI_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const * p_src, uint32_t const length,
spi_bit_width_t const bit_width)

Transmit data to a SPI device. Implements spi_api_t::write.

The function performs the following tasks:
Performs parameter checking and processes error conditions.
Disable Interrupts.
Setup data bit width per user request.
Enable transmitter.
Enable receiver.
Enable interrupts.
Start data transmission with data via transmit buffer empty interrupt.
Copy data from source buffer to the SPI data register for transmission.
Receive data from receive buffer full interrupt occurs and do nothing with the received
data.
Complete data transmission via receive buffer full interrupt.
Disable transmitter.
Disable receiver.
Disable interrupts.

Return values
SSP_SUCCESS Write operation successfully completed.

SSP_ERR_ASSERTION One of the following invalid parameters
passed

Pointer p_api_ctrl is NULL
Pointer to source is NULL
Length is equal to 0
Bit width is not equal to 8 bits

SSP_ERR_HW_LOCKED The lock could not be acquired. The channel
is busy.

SSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

See Common Error Codes or functions called by this function for other possible return codes. This
function calls:

transfer_api_t::reset
Note

This function is reentrant.

Configure module to transmit data to a SPI device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,142 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple SPI on SCI

◆ R_SCI_SPI_WriteRead()

ssp_err_t R_SCI_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const * p_src, void const *
p_dest, uint32_t const length, spi_bit_width_t const bit_width)

Simultaneously transmit data to SPI device while receiving data from SPI device (full duplex).
Implements spi_api_t::writeRead. The function performs the following tasks:

Performs parameter checking and processes error conditions.
Disable Interrupts.
Setup data bit width per user request.
Enable transmitter.
Enable receiver.
Enable interrupts.
Start data transmission using transmit buffer empty interrupt.
Copy data from source buffer to the SPI data register for transmission.
Receive data from receive buffer full interrupt occurs and copy data to the buffer of
destination.
Complete data transmission and reception via receive buffer full interrupt.
Disable transmitter.
Disable receiver.
Disable interrupts.

Return values
SSP_SUCCESS Write operation successfully completed.

SSP_ERR_ASSERTION One of the following invalid parameters
passed

Pointer p_api_ctrl is NULL
Pointer to source is NULL
Pointer to destination is NULL
Length is equal to 0
Bit width is not equal to 8 bits

SSP_ERR_HW_LOCKED The lock could not be acquired. The channel
is busy.

SSP_ERR_NOT_OPEN The channel has not been opened. Open the
channel first.

See Common Error Codes or functions called by this function for other possible return codes. This
function calls:

transfer_api_t::reset
Note

This function is reentrant.

Configure module for full duplex operation.

Variable Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,143 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple SPI on SCI

◆ g_spi_on_sci

const spi_api_t g_spi_on_sci

Filled in Interface API structure for this Instance.

 sci_spi_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » Simple SPI on SCI

#include <r_sci_spi.h>

Data Fields

uint8_t channel

 Channel number to be used.

uint32_t channel_opened

 Internal flag to indicate the peripheral was initialized.

transfer_instance_t const * p_transfer_tx

 To use SPI DTC/DMA write transfer.

transfer_instance_t const * p_transfer_rx

 To use SPI DTC/DMA read transfer.

void(* p_callback)(spi_callback_args_t *p_args)

 Pointer to user callback function.

void const * p_context

 Pointer to the higher level device context.

void * p_reg

 Base register for this channel.

IRQn_Type rxi_irq

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,144 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple SPI on SCI > sci_spi_instance_ctrl_t Struct Reference

 Receive IRQ number.

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type tei_irq

 Transmit end IRQ number.

IRQn_Type eri_irq

 Error IRQ number.

bsp_lock_t resource_lock_tx_rx

Detailed Description

SPI instance control block. DO NOT INITIALIZE.

Field Documentation

◆ resource_lock_tx_rx

bsp_lock_t sci_spi_instance_ctrl_t::resource_lock_tx_rx

Resource lock for transmission/reception

The documentation for this struct was generated from the following file:

r_sci_spi.h

 sci_spi_extended_cfg Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » Simple SPI on SCI

#include <r_sci_spi.h>

Data Fields

bool bitrate_modulation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,145 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Simple SPI on SCI > sci_spi_extended_cfg Struct Reference

Detailed Description

SCI SPI extended configuration

Field Documentation

◆ bitrate_modulation

bool sci_spi_extended_cfg::bitrate_modulation

Bitrate Modulation Function enable or disable

The documentation for this struct was generated from the following file:

r_sci_spi.h

5.1.5.53 UART on SCI
Renesas Synergy Software Package Reference » HAL Layer

Driver for the UART on SCI. More...

Data Structures

struct sci_uart_instance_ctrl_t

struct uart_on_sci_cfg_t

Enumerations

enum sci_clk_src_t { SCI_CLK_SRC_INT, SCI_CLK_SRC_EXT,
SCI_CLK_SRC_EXT8X, SCI_CLK_SRC_EXT16X }

enum sci_uart_rx_fifo_trigger_t { SCI_UART_RX_FIFO_TRIGGER_1 = 0x1,
SCI_UART_RX_FIFO_TRIGGER_MAX = 0xF }

Functions

ssp_err_t R_SCI_UartOpen (uart_ctrl_t *const p_api_ctrl, uart_cfg_t const *const
p_cfg)

ssp_err_t R_SCI_UartClose (uart_ctrl_t *const p_api_ctrl)

ssp_err_t R_SCI_UartRead (uart_ctrl_t *const p_api_ctrl, uint8_t const *const
p_dest, uint32_t const bytes)

ssp_err_t R_SCI_UartWrite (uart_ctrl_t *const p_api_ctrl, uint8_t const *const

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,146 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > UART on SCI

p_src, uint32_t const bytes)

ssp_err_t R_SCI_UartBaudSet (uart_ctrl_t *const p_api_ctrl, uint32_t const
baudrate)

ssp_err_t R_SCI_UartInfoGet (uart_ctrl_t *const p_api_ctrl, uart_info_t *const
p_info)

ssp_err_t R_SCI_UartVersionGet (ssp_version_t *p_version)

ssp_err_t R_SCI_UartAbort (uart_ctrl_t *const p_api_ctrl, uart_dir_t
communication_to_abort)

Detailed Description

Driver for the UART on SCI.

Summary
This module supports the UART on SCI. It implements the UART interface and drives SCI as a full-
duplex UART communication port. This module can drive all SCI channels as UART ports.

Extends UART Interface.

Note
This module can use either the 16-stage hardware FIFO or a DTC transfer implementation to write multiple bytes.

Enumeration Type Documentation

◆ sci_clk_src_t

enum sci_clk_src_t

Enumeration for SCI clock source

Enumerator

SCI_CLK_SRC_INT Use internal clock for baud generation.

SCI_CLK_SRC_EXT Use external clock for baud generation.

SCI_CLK_SRC_EXT8X Use external clock 8x baud rate.

SCI_CLK_SRC_EXT16X Use external clock 16x baud rate.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,147 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > UART on SCI

◆ sci_uart_rx_fifo_trigger_t

enum sci_uart_rx_fifo_trigger_t

Receive FIFO trigger configuration.

Enumerator

SCI_UART_RX_FIFO_TRIGGER_1 Callback after each byte is received without
buffering.

SCI_UART_RX_FIFO_TRIGGER_MAX Callback when FIFO is full or after 15 bit times
with no data (fewer interrupts)

Function Documentation

◆ R_SCI_UartAbort()

ssp_err_t R_SCI_UartAbort (uart_ctrl_t *const p_api_ctrl, uart_dir_t communication_to_abort)

Provides API to abort ongoing transfer. Transmission is aborted after the current character is
transmitted. Reception is still enabled after abort(). Any characters received after abort() and
before the transfer is reset in the next call to read(), will arrive via the callback function with event
UART_EVENT_RX_CHAR.

Return values
SSP_SUCCESS UART transaction aborted successfully.

SSP_ERR_ASSERTION Pointer to UART control block is NULL.

SSP_ERR_NOT_OPEN The control block has not been opened.

SSP_ERR_UNSUPPORTED The requested Abort direction is
unsupported.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::disable

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,148 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > UART on SCI

◆ R_SCI_UartBaudSet()

ssp_err_t R_SCI_UartBaudSet (uart_ctrl_t *const p_api_ctrl, uint32_t const baudrate)

Updates the baud rate.

Warning
This terminates any in-progress transmission.

Return values
SSP_SUCCESS Baud rate was successfully changed.

SSP_ERR_ASSERTION Pointer to UART control block is NULL or the
UART is not configured to use the internal
clock.

SSP_ERR_INVALID_ARGUMENT Illegal baud rate value is specified.

SSP_ERR_NOT_OPEN The control block has not been opened

Calculate new baud rate register settings.

Disables transmitter and receiver. This terminates any in-progress transmission.

Apply new baud rate register settings.

Enable receiver.

If the channel has no FIFO, enable transmitter.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,149 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > UART on SCI

◆ R_SCI_UartClose()

ssp_err_t R_SCI_UartClose (uart_ctrl_t *const p_api_ctrl)

Disables interrupts, receiver, and transmitter. Closes lower level transfer drivers if used. Removes
power and releases hardware lock.

Return values
SSP_SUCCESS Channel successfully closed.

SSP_ERR_ASSERTION Pointer to UART control block is NULL.

SSP_ERR_NOT_OPEN The control block has not been opened

Mark the channel not open so other APIs cannot use it.

Disable interrupts, receiver, and transmitter.

If reception is enabled at build time, disable reception irqs.

If transmission is enabled at build time, disable transmission irqs.

Disable baud clock output.

Close the lower level transfer instances.

Clear control block parameters.

Remove power to the channel.

Unlock the SCI channel.

◆ R_SCI_UartInfoGet()

ssp_err_t R_SCI_UartInfoGet (uart_ctrl_t *const p_api_ctrl, uart_info_t *const p_info)

Provides the driver information, including the maximum number of bytes that can be received or
transmitted at a time.

Return values
SSP_SUCCESS Information stored in provided p_info.

SSP_ERR_ASSERTION Pointer to UART control block is NULL.

SSP_ERR_NOT_OPEN The control block has not been opened

Store number of bytes that can be read at a time.

Store number of bytes that can be written at a time.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,150 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > UART on SCI

◆ R_SCI_UartOpen()

ssp_err_t R_SCI_UartOpen (uart_ctrl_t *const p_api_ctrl, uart_cfg_t const *const p_cfg)

Configures the UART driver based on the input configurations. If reception is enabled at compile
time, reception is enabled at the end of this function.

Return values
SSP_SUCCESS Channel opened successfully.

SSP_ERR_ASSERTION Pointer to UART control block or
configuration structure is NULL.

SSP_ERR_INVALID_ARGUMENT Invalid parameter setting found in the
configuration structure.

SSP_ERR_IN_USE Control block has already been opened or
channel is being used by another instance.
Call close() then open() to reconfigure.

SSP_ERR_IRQ_BSP_DISABLED A required interrupt does not exist in the
vector table

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet
cgc_api_t::systemClockFreqGet
transfer_api_t::open

Make sure this channel exists.

Reserve the hardware lock.

Determine if this channel has a FIFO.

Calculate the baud rate register settings.

Configure the interrupts.

Configure the transfer interface for transmission and reception if provided.

Configuration of driver enable pin for rs485 communication mode.

Enable the SCI channel and reset the registers to their initial state.

Set the default level of the TX pin to 1.

Set the baud rate registers.

Set the UART configuration settings provided in uart_cfg_t and uart_on_sci_cfg_t.

If reception is enabled at build time, enable reception.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,151 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > UART on SCI

◆ R_SCI_UartRead()

ssp_err_t R_SCI_UartRead (uart_ctrl_t *const p_api_ctrl, uint8_t const *const p_dest, uint32_t
const bytes)

Receives user specified number of bytes into destination buffer pointer.

Return values
SSP_SUCCESS Data reception successfully ends.

SSP_ERR_ASSERTION Pointer to UART control block is NULL.
Number of transfers outside the max or min
boundary when transfer instance used

SSP_ERR_INVALID_ARGUMENT Destination address or data size is not valid
for 9-bit mode.

SSP_ERR_NOT_OPEN The control block has not been opened

SSP_ERR_IN_USE A previous read operation is still in progress.

SSP_ERR_UNSUPPORTED SCI_UART_CFG_RX_ENABLE is set to 0

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset
Note

This API is only valid when SCI_UART_CFG_RX_ENABLE is enabled. If 9-bit data length is specified at
R_SCI_UartOpen call, p_dest must be aligned 16-bit boundary.

Configure transfer instance to receive the requested number of bytes if transfer is used for
reception.

◆ R_SCI_UartVersionGet()

ssp_err_t R_SCI_UartVersionGet (ssp_version_t * p_version)

Provides API and code version in the user provided pointer.

Parameters
[in] p_version Version number set here

Return values
SSP_SUCCESS Version information stored in provided

p_version.

SSP_ERR_ASSERTION p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,152 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > UART on SCI

◆ R_SCI_UartWrite()

ssp_err_t R_SCI_UartWrite (uart_ctrl_t *const p_api_ctrl, uint8_t const *const p_src, uint32_t const
bytes)

Transmits user specified number of bytes from the source buffer pointer.

Return values
SSP_SUCCESS Data transmission finished successfully.

SSP_ERR_ASSERTION Pointer to UART control block is NULL.
Number of transfers outside the max or min
boundary when transfer instance used

SSP_ERR_INVALID_ARGUMENT Source address or data size is not valid for
9-bit mode.

SSP_ERR_NOT_OPEN The control block has not been opened

SSP_ERR_IN_USE A UART transmission is in progress

SSP_ERR_UNSUPPORTED SCI_UART_CFG_TX_ENABLE is set to 0

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset
Note

This API is only valid when SCI_UART_CFG_TX_ENABLE is enabled. If 9-bit data length is specified at
R_SCI_UartOpen call, p_src must be aligned on a 16-bit boundary.

Set the Driver Enable pin in RS485 half duplex mode to enable transmission.

Transmit interrupts must be disabled to start with.

Save data to transmit to the control block. It will be transmitted in the TXI ISR.

If a transfer instance is used for transmission, reset the transfer instance to transmit the requested
data.

Clear the Driver Enable pin in RS485 half duplex mode to enable reception in error conditions

Trigger a TXI interrupt. This triggers the transfer instance or a TXI interrupt if the transfer instance
is not used.

 sci_uart_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » UART on SCI

#include <r_sci_uart.h>

Data Fields

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,153 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > UART on SCI > sci_uart_instance_ctrl_t Struct Reference

uint8_t channel

 Channel number.

uint8_t fifo_depth

 FIFO depth of the UART channel.

uint8_t rx_transfer_in_progress

 Set to 1 if a receive transfer is in progress, 0 otherwise.

uint8_t data_bytes:2

 1 byte for 7 or 8 bit data, 2 bytes for 9 bit data

uint8_t bitrate_modulation:1

 1 if bit rate modulation is enabled, 0 otherwise

uint32_t open

 Used to determine if the channel is configured.

transfer_instance_t const * p_transfer_rx

transfer_instance_t const * p_transfer_tx

uint8_t const * p_tx_src

uint32_t tx_src_bytes

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type txi_irq

 Transmit IRQ number.

IRQn_Type tei_irq

 Transmit end IRQ number.

IRQn_Type eri_irq

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,154 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > UART on SCI > sci_uart_instance_ctrl_t Struct Reference

 Error IRQ number.

void(* p_callback)(uart_callback_args_t *p_args)

 Pointer to callback function.

void const * p_context

 Pointer to user interrupt context data.

void * p_reg

 Base register for this channel.

void(* p_extpin_ctrl)(uint32_t channel, uint32_t level)

 External pin control.

uint32_t baud_rate_error_x_1000

 Baud rate <Maximum percent error> x 1000. baud_rate_error must
be greater than 0 and less than 15000.

uint8_t * p_rx_dst

 Destination buffer initialized by read() API.

uint32_t rx_dst_bytes

 Number of bytes expected by the read() API.

volatile uint32_t rx_bytes_count

 Number of bytes received since the last read()

uart_mode_t uart_comm_mode

 UART communication mode selection.

uart_rs485_type_t uart_rs485_mode

 UART RS485 communication channel type selection.

ioport_port_pin_t rs485_de_pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,155 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > UART on SCI > sci_uart_instance_ctrl_t Struct Reference

 UART Driver Enable pin.

Detailed Description

UART instance control block.

Field Documentation

◆ p_transfer_rx

transfer_instance_t const* sci_uart_instance_ctrl_t::p_transfer_rx

Optional transfer instance used to send or receive multiple bytes without interrupts.

◆ p_transfer_tx

transfer_instance_t const* sci_uart_instance_ctrl_t::p_transfer_tx

Optional transfer instance used to send or receive multiple bytes without interrupts.

◆ p_tx_src

uint8_t const* sci_uart_instance_ctrl_t::p_tx_src

Source buffer pointer used to fill hardware FIFO from transmit ISR.

◆ tx_src_bytes

uint32_t sci_uart_instance_ctrl_t::tx_src_bytes

Size of source buffer pointer used to fill hardware FIFO from transmit ISR.

The documentation for this struct was generated from the following file:

r_sci_uart.h

 uart_on_sci_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » UART on SCI

#include <r_sci_uart.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,156 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > UART on SCI > uart_on_sci_cfg_t Struct Reference

Data Fields

sci_clk_src_t clk_src

 Use SCI_CLK_SRC_INT/EXT8X/EXT16X.

bool baudclk_out

 Baud rate clock output enable.

bool rx_edge_start

 Start reception on falling edge.

bool noisecancel_en

 Noise cancel enable.

sci_uart_rx_fifo_trigger_t rx_fifo_trigger

void(* p_extpin_ctrl)(uint32_t channel, uint32_t level)

bool bitrate_modulation

 Bitrate Modulation Function enable or disable.

uint32_t baud_rate_error_x_1000

 Baud rate <Maximum percent error> x 1000. baud_rate_error must
be greater than 0 and less than 15000.

uart_mode_t uart_comm_mode

 UART communication mode selection.

uart_rs485_type_t uart_rs485_mode

 UART RS485 communication channel type selection.

ioport_port_pin_t rs485_de_pin

 UART Driver Enable pin.

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,157 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > UART on SCI > uart_on_sci_cfg_t Struct Reference

UART on SCI device Configuration

Field Documentation

◆ p_extpin_ctrl

void(* uart_on_sci_cfg_t::p_extpin_ctrl) (uint32_t channel, uint32_t level)

Pointer to the user callback function to control external GPIO pin control used as RTS signal.

Parameters
[in] channel The UART channel used.

[in] level When level is 0, assert RTS.
When level is 1, deassert
RTS.

◆ rx_fifo_trigger

sci_uart_rx_fifo_trigger_t uart_on_sci_cfg_t::rx_fifo_trigger

Receive FIFO trigger level, unused if channel has no FIFO or if DTC is used.

The documentation for this struct was generated from the following file:

r_sci_uart.h

5.1.5.54 Sigma Delta ADC (SDADC)
Renesas Synergy Software Package Reference » HAL Layer

Driver for the 24-bit Sigma Delta A/D Converter (SDADC). More...

Data Structures

struct sdadc_calibrate_args_t

struct sdadc_channel_cfg_t

struct adc_on_sdadc_cfg_t

struct sdadc_instance_ctrl_t

Macros

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,158 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

#define SDADC_CODE_VERSION_MAJOR (2U)

Enumerations

enum sdadc_vref_src_t { SDADC_VREF_SRC_INTERNAL = 0,
SDADC_VREF_SRC_EXTERNAL = 1 }

enum sdadc_vref_voltage_t {
 SDADC_VREF_VOLTAGE_800_MV = 0,
SDADC_VREF_VOLTAGE_1000_MV = 1,
SDADC_VREF_VOLTAGE_1200_MV = 2,
SDADC_VREF_VOLTAGE_1400_MV = 3,
 SDADC_VREF_VOLTAGE_1600_MV = 4,
SDADC_VREF_VOLTAGE_1800_MV = 5,
SDADC_VREF_VOLTAGE_2000_MV = 6,
SDADC_VREF_VOLTAGE_2200_MV = 7,
 SDADC_VREF_VOLTAGE_2400_MV = 15
}

enum sdadc_channel_input_t { SDADC_CHANNEL_INPUT_DIFFERENTIAL =
0, SDADC_CHANNEL_INPUT_SINGLE_ENDED = 1 }

enum sdadc_channel_stage_1_gain_t {
 SDADC_CHANNEL_STAGE_1_GAIN_1 = 0,
SDADC_CHANNEL_STAGE_1_GAIN_2 = 1,
SDADC_CHANNEL_STAGE_1_GAIN_3 = 2,
SDADC_CHANNEL_STAGE_1_GAIN_4 = 3,
 SDADC_CHANNEL_STAGE_1_GAIN_8 = 4
}

enum sdadc_channel_stage_2_gain_t { SDADC_CHANNEL_STAGE_2_GAIN_1
= 0, SDADC_CHANNEL_STAGE_2_GAIN_2 = 1,
SDADC_CHANNEL_STAGE_2_GAIN_4 = 2,
SDADC_CHANNEL_STAGE_2_GAIN_8 = 3 }

enum sdadc_channel_oversampling_t {
 SDADC_CHANNEL_OVERSAMPLING_64 = 0,
SDADC_CHANNEL_OVERSAMPLING_128 = 1,
SDADC_CHANNEL_OVERSAMPLING_256 = 2,
SDADC_CHANNEL_OVERSAMPLING_512 = 3,
 SDADC_CHANNEL_OVERSAMPLING_1024 = 4,
SDADC_CHANNEL_OVERSAMPLING_2048 = 5
}

enum sdadc_channel_polarity_t { SDADC_CHANNEL_POLARITY_POSITIVE =
0, SDADC_CHANNEL_POLARITY_NEGATIVE = 1 }

enum sdadc_channel_average_t {
 SDADC_CHANNEL_AVERAGE_NONE = 0,
SDADC_CHANNEL_AVERAGE_8 = 12, SDADC_CHANNEL_AVERAGE_16
= 13, SDADC_CHANNEL_AVERAGE_32 = 14,
 SDADC_CHANNEL_AVERAGE_64 = 15
}

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,159 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

enum sdadc_channel_inversion_t { SDADC_CHANNEL_INVERSION_OFF = 0,
SDADC_CHANNEL_INVERSION_ON = 1 }

enum sdadc_channel_count_formula_t {
SDADC_CHANNEL_COUNT_FORMULA_EXPONENTIAL = 0,
SDADC_CHANNEL_COUNT_FORMULA_LINEAR = 1 }

enum sdadc_calibration_t { SDADC_CALIBRATION_INTERNAL_GAIN_OFFSET
= 0, SDADC_CALIBRATION_EXTERNAL_OFFSET = 1,
SDADC_CALIBRATION_EXTERNAL_GAIN = 2 }

Functions

ssp_err_t R_SDADC_Open (adc_ctrl_t *p_api_ctrl, adc_cfg_t const *const p_cfg)

ssp_err_t R_SDADC_ScanConfigure (adc_ctrl_t *p_api_ctrl, adc_channel_cfg_t
const *const p_channel_cfg)

ssp_err_t R_SDADC_SampleStateCountSet (adc_ctrl_t *p_api_ctrl,
adc_sample_state_t *p_sample)

ssp_err_t R_SDADC_InfoGet (adc_ctrl_t *p_api_ctrl, adc_info_t *p_adc_info)

ssp_err_t R_SDADC_ScanStart (adc_ctrl_t *p_api_ctrl)

ssp_err_t R_SDADC_ScanStop (adc_ctrl_t *p_api_ctrl)

ssp_err_t R_SDADC_CheckScanDone (adc_ctrl_t *p_api_ctrl)

ssp_err_t R_SDADC_Read (adc_ctrl_t *p_api_ctrl, adc_register_t const reg_id,
uint16_t *const p_data)

ssp_err_t R_SDADC_Read32 (adc_ctrl_t *p_api_ctrl, adc_register_t const reg_id,
uint32_t *const p_data)

ssp_err_t R_SDADC_OffsetSet (adc_ctrl_t *const p_api_ctrl, adc_register_t const
reg_id, int32_t const offset)

ssp_err_t R_SDADC_Calibrate (adc_ctrl_t *const p_api_ctrl, void *const
p_extend)

ssp_err_t R_SDADC_Close (adc_ctrl_t *p_api_ctrl)

ssp_err_t R_SDADC_VersionGet (ssp_version_t *const p_version)

Detailed Description

Driver for the 24-bit Sigma Delta A/D Converter (SDADC).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,160 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

This module supports the SDADC peripheral. It implements the following interfaces:

ADC Interface

Macro Definition Documentation

◆ SDADC_CODE_VERSION_MAJOR

#define SDADC_CODE_VERSION_MAJOR (2U)

Version of code that implements the API defined in this file

Enumeration Type Documentation

◆ sdadc_calibration_t

enum sdadc_calibration_t

Calibration mode.

Enumerator

SDADC_CALIBRATION_INTERNAL_GAIN_OFFSET Use internal reference to calibrate offset and
gain.

SDADC_CALIBRATION_EXTERNAL_OFFSET Use external reference to calibrate offset.

SDADC_CALIBRATION_EXTERNAL_GAIN Use external reference to calibrate gain.

◆ sdadc_channel_average_t

enum sdadc_channel_average_t

Per channel number of conversions to average before conversion end callback.

Enumerator

SDADC_CHANNEL_AVERAGE_NONE Do not average (callback for each conversion)

SDADC_CHANNEL_AVERAGE_8 Average 8 samples for each conversion end
callback.

SDADC_CHANNEL_AVERAGE_16 Average 16 samples for each conversion end
callback.

SDADC_CHANNEL_AVERAGE_32 Average 32 samples for each conversion end
callback.

SDADC_CHANNEL_AVERAGE_64 Average 64 samples for each conversion end
callback.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,161 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

◆ sdadc_channel_count_formula_t

enum sdadc_channel_count_formula_t

Select a formula to specify the number of conversions. The following symbols are used in the
formulas:

N: Number of conversions
n: sdadc_channel_cfg_t::coefficient_n, do not set to 0 if m is 0
m: sdadc_channel_cfg_t::coefficient_m, do not set to 0 if n is 0

Either m or n must be non-zero.

Enumerator

SDADC_CHANNEL_COUNT_FORMULA_EXPONENTI
AL

N = 32 * (2 ^ n - 1) + m * 2 ^ n.

SDADC_CHANNEL_COUNT_FORMULA_LINEAR N = (32 * n) + m.

◆ sdadc_channel_input_t

enum sdadc_channel_input_t

Per channel input mode.

Enumerator

SDADC_CHANNEL_INPUT_DIFFERENTIAL Differential input.

SDADC_CHANNEL_INPUT_SINGLE_ENDED Single-ended input.

◆ sdadc_channel_inversion_t

enum sdadc_channel_inversion_t

Per channel polarity, valid for negative-side single-ended input only.

Enumerator

SDADC_CHANNEL_INVERSION_OFF Do not invert conversion result.

SDADC_CHANNEL_INVERSION_ON Invert conversion result.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,162 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

◆ sdadc_channel_oversampling_t

enum sdadc_channel_oversampling_t

Per channel oversampling ratio.

Enumerator

SDADC_CHANNEL_OVERSAMPLING_64 Oversampling ratio of 64.

SDADC_CHANNEL_OVERSAMPLING_128 Oversampling ratio of 128.

SDADC_CHANNEL_OVERSAMPLING_256 Oversampling ratio of 256.

SDADC_CHANNEL_OVERSAMPLING_512 Oversampling ratio of 512.

SDADC_CHANNEL_OVERSAMPLING_1024 Oversampling ratio of 1024.

SDADC_CHANNEL_OVERSAMPLING_2048 Oversampling ratio of 2048.

◆ sdadc_channel_polarity_t

enum sdadc_channel_polarity_t

Per channel polarity, valid for single-ended input only.

Enumerator

SDADC_CHANNEL_POLARITY_POSITIVE Positive-side single-ended input.

SDADC_CHANNEL_POLARITY_NEGATIVE Negative-side single-ended input.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,163 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

◆ sdadc_channel_stage_1_gain_t

enum sdadc_channel_stage_1_gain_t

Per channel stage 1 gain options.

Enumerator

SDADC_CHANNEL_STAGE_1_GAIN_1 Gain of 1.

SDADC_CHANNEL_STAGE_1_GAIN_2 Gain of 2.

SDADC_CHANNEL_STAGE_1_GAIN_3 Gain of 3 (only valid for stage 1)

SDADC_CHANNEL_STAGE_1_GAIN_4 Gain of 4.

SDADC_CHANNEL_STAGE_1_GAIN_8 Gain of 8.

◆ sdadc_channel_stage_2_gain_t

enum sdadc_channel_stage_2_gain_t

Per channel stage 2 gain options.

Enumerator

SDADC_CHANNEL_STAGE_2_GAIN_1 Gain of 1.

SDADC_CHANNEL_STAGE_2_GAIN_2 Gain of 2.

SDADC_CHANNEL_STAGE_2_GAIN_4 Gain of 4.

SDADC_CHANNEL_STAGE_2_GAIN_8 Gain of 8.

◆ sdadc_vref_src_t

enum sdadc_vref_src_t

Source of Vref.

Enumerator

SDADC_VREF_SRC_INTERNAL Vref is internally sourced, can be output as
SBIAS.

SDADC_VREF_SRC_EXTERNAL Vref is externally sourced from the VREFI pin.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,164 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

◆ sdadc_vref_voltage_t

enum sdadc_vref_voltage_t

Voltage of Vref.

Enumerator

SDADC_VREF_VOLTAGE_800_MV Vref is 0.8 V.

SDADC_VREF_VOLTAGE_1000_MV Vref is 1.0 V.

SDADC_VREF_VOLTAGE_1200_MV Vref is 1.2 V.

SDADC_VREF_VOLTAGE_1400_MV Vref is 1.4 V.

SDADC_VREF_VOLTAGE_1600_MV Vref is 1.6 V.

SDADC_VREF_VOLTAGE_1800_MV Vref is 1.8 V.

SDADC_VREF_VOLTAGE_2000_MV Vref is 2.0 V.

SDADC_VREF_VOLTAGE_2200_MV Vref is 2.2 V.

SDADC_VREF_VOLTAGE_2400_MV Vref is 2.4 V (only valid for external Vref)

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,165 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

◆ R_SDADC_Calibrate()

ssp_err_t R_SDADC_Calibrate (adc_ctrl_t *const p_api_ctrl, void *const p_extend)

Requires sdadc_calibrate_args_t passed to p_extend. Calibrates the specified channel. Calibration is
not required or supported for single-ended mode. Internal calibration is automatically done during
open() unless it is disabled in the user configuration. This API is provided primarily for external
calibration. A callback with the event ADC_EVENT_CALIBRATION_COMPLETE is called when
calibration completes. The calibration status can also be monitored using adc_api_t::statusGet().
Implements adc_api_t::calibrate().

During external offset calibration, apply a differential voltage of 0 to ANSDnP - ANSDnN, where n is
the input channel and ANSDnP is OPAMP0 for channel 4 and ANSDnN is OPAMP1 for channel 4.
Complete external offset calibration before external gain calibration.

During external gain calibration apply a voltage between 0.4 V / total_gain and 0.8 V / total_gain.
The differential voltage applied during calibration is corrected to a conversion result of 0x7FFFFF,
which is the maximum possible positive differential measurement.

This function clears the offset value. If offset is required after calibration, it must be reapplied after
calibration is complete using adc_api_t::offsetSet.

Return values
SSP_SUCCESS Calibration began successfully.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_IN_USE A conversion or calibration is in progress.

SSP_ERR_NOT_OPEN Instance control block is not open.

Calibration cannot be performed if conversion or calibration is already in progress.

Select software trigger.

Select single scan mode.

Enable calibration.

Set the offset voltage to 0 mV.

Set the calibration mode.

Start calibration.

Confirm that calibration started.

Return the error code

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,166 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

◆ R_SDADC_CheckScanDone()

ssp_err_t R_SDADC_CheckScanDone (adc_ctrl_t * p_api_ctrl)

Returns the status of a scan started by software, including calibration scans. It is not possible to
determine the status of a scan started by a hardware trigger. Implements
adc_api_t::scanStatusGet().

Return values
SSP_SUCCESS No software scan or calibration is in

progress.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_IN_USE A conversion or calibration is in progress.

SSP_ERR_NOT_OPEN Instance control block is not open.

If calibration is in progress, return an error.

Return the scan status of a scan triggered by software.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,167 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

◆ R_SDADC_Close()

ssp_err_t R_SDADC_Close (adc_ctrl_t * p_api_ctrl)

Stops any scan in progress, disables interrupts, and powers down the SDADC peripheral.
Implements adc_api_t::close().

Return values
SSP_SUCCESS Instance control block closed successfully.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Perform parameter checking

Mark driver as closed

Disable hardware triggers.

Stop A/D conversion.

Disable interrupts.

Wait 3 us in normal mode as required by the hardware manual.

Turn off the power of VBIAS, channel, and sigma-delta A/D converter.

Turn off the power of ADBGR, SBIAS, and ADREG.

Stop the input clock for the 24-bit sigma-delta A/D converter (SDADCCLK).

Enter the module-stop state.

Release the hardware lock

Return the error code

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,168 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

◆ R_SDADC_InfoGet()

ssp_err_t R_SDADC_InfoGet (adc_ctrl_t * p_api_ctrl, adc_info_t * p_adc_info)

Returns the address of the lowest number configured channel, the total number of results to be
read in order to read the results of all configured channels, the size of each result, and the ELC
event enumerations. Implements adc_api_t::infoGet().

Return values
SSP_SUCCESS Information stored in p_adc_info.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Retrieve the scan mask of active channels from the control block

Determine the lowest channel that is configured.

Determine the highest channel that is configured.

Determine the size of data that must be read to read all the channels between and including the
highest and lowest channels.

Determine the base address and transfer size.

Specify the peripheral name in the ELC list

Set sensor information to invalid value

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,169 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

◆ R_SDADC_OffsetSet()

ssp_err_t R_SDADC_OffsetSet (adc_ctrl_t *const p_api_ctrl, adc_register_t const reg_id, int32_t
const offset)

Sets the offset. Offset is applied after stage 1 of the input channel. Offset can only be applied when
the channel is configured for differential input. Implements adc_api_t::offsetSet().

Note: The offset is cleared if adc_api_t::calibrate() is called. The offset can be re-applied if
necessary after the the callback with event ADC_EVENT_CALIBRATION_COMPLETE is called.

Parameters
[in] p_api_ctrl See p_ctrl in

adc_api_t::offsetSet().

[in] reg_id See reg_id in
adc_api_t::offsetSet().

[in] offset Must be between -15 and 15,
offset (mV) = 10.9376 mV *
offset_steps / stage 1 gain.

Return values
SSP_SUCCESS Offset updated successfully.

SSP_ERR_INVALID_ARGUMENT An input argument was outside the valid
range.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_IN_USE A conversion or calibration is in progress.

SSP_ERR_NOT_OPEN Instance control block is not open.

Offset cannot be updated if conversion or calibration is in progress.

Set the offset.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,170 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

◆ R_SDADC_Open()

ssp_err_t R_SDADC_Open (adc_ctrl_t * p_api_ctrl, adc_cfg_t const *const p_cfg)

Applies power to the SDADC and initializes the hardware based on the user configuration. As part
of this initialization, the SDADC clock is configured and enabled. If an interrupt priority is non-zero,
enables an interrupt which will call a callback to notify the user when a conversion, scan, or
calibration is complete. For all channels that are configured in differential mode, calibration is
performed unless it is disabled in the user configuration. Implements adc_api_t::open().

Return values
SSP_SUCCESS Configuration and calibration successful.

SSP_ERR_CALIBRATE_FAILED Calibration failed.

SSP_ERR_ASSERTION An input pointer is NULL.

SSP_ERR_INVALID_ARGUMENT An input argument is invalid.

SSP_ERR_IN_USE Control block is already open.

SSP_ERR_IRQ_BSP_DISABLED A required interrupt is disabled

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
Ensure the SDADC exists on the hardware, enable interrupts, and reserve the SDADC hardware
lock.

Initialize the hardware based on the configuration.

Start the SDADC.

Configure the SDADC clock source and divisor to the clock source selected in the clock
configuration.

Set the reference voltage for sensors (internal or external VREF mode).

Set the A/D conversion operation mode (normal or low power mode).

Supply the 24-bit sigma-delta A/D converter clock (SDADCCLK).

Turn on the power of ADBGR, SBIAS, and ADREG.

Stabilization wait time of 2 ms is required between power on of ADBGR/SBIAS/ADREG and
VBIAS/channel/SDADC.

Turn on the power of VBIAS, channel, and sigma-delta A/D converter.

For each channel:

1. Set the oversampling ratio.
2. Set the gain.
3. Select single-end input/differential input.
4. If differential mode is used and calibration during open is not skipped, enable calibration on

this channel.
5. Select the polarity of single-end input (only for single-end mode).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,171 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

Set the A/D conversion count.

1. Select the averaging operation. Select the average data count.
a. Select whether to reverse the A/D conversion results of single-end input (only for

negative-side single end mode).
2. Enable conversion for the channel.

Configure enabled channels and autoscan mode.

If the A/D conversion trigger is ELC hardware events, the hardware events are enabled in
adc_api_t::scanStart().

Mark driver as open by initializing it to "SDAD" - its ASCII equivalent.

If at least one channel is configured for differential mode and calibration is not disabled in the user
configuration, calibrate all PGAs configured for differential mode.

The calibration takes approximately 3.4 ms per channel in normal mode or 27 ms in low power
mode. The open() API blocks waiting for calibration to complete unless calibration is skipped.
Calibration during open can be skipped and handled in at the application level by setting
adc_on_sdadc_cfg_t::skip_internal_calibration to true, then calling adc_api_t::calibrate().

◆ R_SDADC_Read()

ssp_err_t R_SDADC_Read (adc_ctrl_t * p_api_ctrl, adc_register_t const reg_id, uint16_t *const
p_data)

Reads the most recent conversion result from a channel. Truncates 24-bit results to the upper 16
bits. Implements adc_api_t::read().

Return values
SSP_SUCCESS Conversion result in p_data.

SSP_ERR_INVALID_ARGUMENT An input argument was outside the valid
range.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Read the most recent conversion value into a 16-bit result.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,172 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

◆ R_SDADC_Read32()

ssp_err_t R_SDADC_Read32 (adc_ctrl_t * p_api_ctrl, adc_register_t const reg_id, uint32_t *const
p_data)

Reads the most recent conversion result from a channel. Implements adc_api_t::read32().

Return values
SSP_SUCCESS Conversion result in p_data.

SSP_ERR_INVALID_ARGUMENT An input argument was outside the valid
range.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

Read the most recent conversion value into a 32-bit result.

◆ R_SDADC_SampleStateCountSet()

ssp_err_t R_SDADC_SampleStateCountSet (adc_ctrl_t * p_api_ctrl, adc_sample_state_t * p_sample
)

adc_api_t::sampleStateCountSet is not supported on the SDADC.

Return values
SSP_ERR_UNSUPPORTED This API is not supported.

Return the unsupported error.

◆ R_SDADC_ScanConfigure()

ssp_err_t R_SDADC_ScanConfigure (adc_ctrl_t * p_api_ctrl, adc_channel_cfg_t const *const
p_channel_cfg)

Configures the enabled channels of the ADC. Only adc_channel_cfg_t::scan_mask is used.
Implements adc_api_t::scanCfg().

Return values
SSP_SUCCESS Information stored in p_adc_info.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

SSP_ERR_INVALID_ARGUMENT An input argument is invalid.

Update the enabled channels.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,173 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

◆ R_SDADC_ScanStart()

ssp_err_t R_SDADC_ScanStart (adc_ctrl_t * p_api_ctrl)

If the SDADC is configured for hardware triggers, enables hardware triggers. Otherwise, starts a
scan. Implements adc_api_t::scanStart().

Return values
SSP_SUCCESS Scan started or hardware triggers enabled

successfully.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

SSP_ERR_IN_USE A conversion or calibration is in progress.

Conversion cannot be performed if conversion or calibration is already in progress.

If the unit is configured for software triggering, trigger a scan.

Otherwise, enable hardware triggers.

Return the error code

◆ R_SDADC_ScanStop()

ssp_err_t R_SDADC_ScanStop (adc_ctrl_t * p_api_ctrl)

If the SDADC is configured for hardware triggers, disables hardware triggers. Otherwise, stops any
in-progress scan started by software. Implements adc_api_t::scanStop().

Return values
SSP_SUCCESS Scan stopped or hardware triggers disabled

successfully.

SSP_ERR_ASSERTION An input pointer was NULL.

SSP_ERR_NOT_OPEN Instance control block is not open.

If the unit is configured for software triggering, stop the scan.

Otherwise, disable hardware triggers.

Return the error code

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,174 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC)

◆ R_SDADC_VersionGet()

ssp_err_t R_SDADC_VersionGet (ssp_version_t *const p_version)

Gets the API and code version. Implements adc_api_t::versionGet().

Return values
SSP_SUCCESS Version information available in p_version.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Return the version number

 sdadc_calibrate_args_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » Sigma Delta ADC (SDADC)

#include <r_sdadc.h>

Data Fields

adc_register_t channel

 Which channel to calibrate.

sdadc_calibration_t mode

 Calibration mode.

Detailed Description

Structure to pass to the adc_api_t::calibrate p_extend argument.

The documentation for this struct was generated from the following file:

r_sdadc.h

 sdadc_channel_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » Sigma Delta ADC (SDADC)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,175 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC) > sdadc_channel_cfg_t Struct Reference

#include <r_sdadc.h>

Data Fields

sdadc_channel_stage_2_gain
_t

stage_2_gain:2

 Gain of PGA stage 2, must be 1 for single-ended input.

sdadc_channel_stage_1_gain
_t

stage_1_gain:3

 Gain of PGA stage 1, must be 1 for single-ended input.

sdadc_channel_oversamplin
g_t

oversampling:3

 Oversampling ratio, must be 256 in single-ended input.

sdadc_channel_polarity_t polarity:1

 Polarity, valid for single-ended mode only.

sdadc_channel_input_t input:1

 Single-ended or differential input.

uint32_t coefficient_m:5

 See sdadc_channel_count_formula_t.

uint32_t coefficient_n:3

 See sdadc_channel_count_formula_t.

sdadc_channel_average_t average:4

 Number of samples to average for each conversion result.

sdadc_channel_inversion_t invert:1

 Whether to invert negative single-ended input.

sdadc_channel_count_formul
a_t

count_formula:1

 Linear or exponential formula used for number of conversions.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,176 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC) > sdadc_channel_cfg_t Struct Reference

Detailed Description

SDADC per channel configuration.

The documentation for this struct was generated from the following file:

r_sdadc.h

 adc_on_sdadc_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » Sigma Delta ADC (SDADC)

#include <r_sdadc.h>

Data Fields

uint8_t calibration_end_ipl

 Calibration end interrupt priority.

uint8_t conversion_end_ipl

 Conversion end interrupt priority.

bool skip_internal_calibration

 Whether to skip internal calibration of of the PGA during open.

sdadc_vref_src_t vref_src

 Source of Vref (internal or external)

sdadc_vref_voltage_t vref_voltage

sdadc_channel_cfg_t const * p_channel_cfgs [SDADC_MAX_NUM_CHANNELS]

 Configuration for each channel, set to NULL if unused.

Detailed Description

SDADC configuration extension. This extension is required and must be provided in
adc_cfg_t::p_extend.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,177 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC) > adc_on_sdadc_cfg_t Struct Reference

Field Documentation

◆ vref_voltage

sdadc_vref_voltage_t adc_on_sdadc_cfg_t::vref_voltage

Voltage of Vref, required for both internal and external Vref. If Vref is from an external source, the
voltage must match the specified voltage within 3%.

The documentation for this struct was generated from the following file:

r_sdadc.h

 sdadc_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » Sigma Delta ADC (SDADC)

#include <r_sdadc.h>

Data Fields

adc_mode_t mode

 Single scan or continuous mode.

adc_resolution_t resolution

 16 or 24 bit resolution

adc_alignment_t alignment

 Left or right alignment.

void const * p_context

 Placeholder for user data.

R_SDADC0_Type * p_reg

 Base register for this unit.

void(* p_callback)(adc_callback_args_t *p_args)

 User callback pointer.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,178 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC) > sdadc_instance_ctrl_t Struct Reference

adc_trigger_t trigger

 Software or hardware trigger.

uint32_t trigger_enabled

 If set, hardware trigger was enabled before calibration.

uint32_t opened

 Boolean to verify that the Unit has been initialized.

uint32_t scan_mask

 Scan mask of enabled channels.

uint32_t scan_cfg_mask

 Scan mask of configured channels.

uint16_t unit

 SDADC Unit in use.

volatile uint8_t calib_status

 Calibration in progress if set.

IRQn_Type scan_end_irq

 Scan end IRQ number.

IRQn_Type calib_end_irq

 Calibration end IRQ number.

IRQn_Type conv_end_irq

 Conversion end IRQ number.

Detailed Description

ADC instance control block. DO NOT INITIALIZE. Initialized in adc_api_t::open().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,179 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > Sigma Delta ADC (SDADC) > sdadc_instance_ctrl_t Struct Reference

The documentation for this struct was generated from the following file:

r_sdadc.h

5.1.5.55 SDMMC
Renesas Synergy Software Package Reference » HAL Layer

Driver for the SD/MMC Host Interface (SDHI). More...

Data Structures

struct sdmmc_instance_ctrl_t

struct sdmmc_extended_cfg_t

Enumerations

enum sdmmc_card_detect_t { SDMMC_CARD_DETECT_NONE,
SDMMC_CARD_DETECT_CD }

enum sdmmc_write_protect_t { SDMMC_WRITE_PROTECT_NONE,
SDMMC_WRITE_PROTECT_WP }

Functions

ssp_err_t R_SDMMC_Open (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_cfg_t const
*const p_cfg)

ssp_err_t R_SDMMC_Close (sdmmc_ctrl_t *const p_api_ctrl)

ssp_err_t R_SDMMC_Read (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const start_sector, uint32_t const sector_count)

ssp_err_t R_SDMMC_Write (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const *const
p_source, uint32_t const start_sector, uint32_t const sector_count)

ssp_err_t R_SDMMC_Control (sdmmc_ctrl_t *const p_api_ctrl, ssp_command_t
const command, void *p_data)

ssp_err_t R_SDMMC_ReadIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_data, uint32_t const function, uint32_t const address)

ssp_err_t R_SDMMC_WriteIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_data, uint32_t const function, uint32_t const address,
sdmmc_io_write_mode_t const read_after_write)

ssp_err_t R_SDMMC_ReadIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,180 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SDMMC

p_dest, uint32_t const function, uint32_t const address, uint32_t
*const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

ssp_err_t R_SDMMC_WriteIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const
*const p_source, uint32_t const function, uint32_t const address,
uint32_t const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

ssp_err_t R_SDMMC_IoIntEnable (sdmmc_ctrl_t *const p_api_ctrl, bool enable)

ssp_err_t R_SDMMC_VersionGet (ssp_version_t *const p_version)

ssp_err_t R_SDMMC_InfoGet (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_info_t
*const p_info)

ssp_err_t R_SDMMC_Erase (sdmmc_ctrl_t *const p_api_ctrl, uint32_t const
start_sector, uint32_t const sector_count)

Detailed Description

Driver for the SD/MMC Host Interface (SDHI).

SD/MMC driver to access SD, eMMC, and SDIO devices.

Enumeration Type Documentation

◆ sdmmc_card_detect_t

enum sdmmc_card_detect_t

Card detection configuration options.

Enumerator

SDMMC_CARD_DETECT_NONE Card detection unused.

SDMMC_CARD_DETECT_CD Card detection using the SDnCD pin.

◆ sdmmc_write_protect_t

enum sdmmc_write_protect_t

Write protection configuration option

Enumerator

SDMMC_WRITE_PROTECT_NONE Write protection unused.

SDMMC_WRITE_PROTECT_WP write protection using SDnWP pin

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,181 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SDMMC

Function Documentation

◆ R_SDMMC_Close()

ssp_err_t R_SDMMC_Close (sdmmc_ctrl_t *const p_api_ctrl)

Closes an open SD/MMC device. Implements sdmmc_api_t::close().

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

SSP_ERR_NOT_OPEN Driver has not been initialized.

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

Disable SDHI interrupts.

Close the transfer driver.

Turn on module stop bit (turn module off).

Release hardware lock.

◆ R_SDMMC_Control()

ssp_err_t R_SDMMC_Control (sdmmc_ctrl_t *const p_api_ctrl, ssp_command_t const command,
void * p_data)

Sends control commands to and receives the status of the SD/MMC device. Implements
sdmmc_api_t::control().

Return values
SSP_SUCCESS Command executed successfully.

SSP_ERR_ASSERTION Null Pointer.

SSP_ERR_INVALID_ARGUMENT Command is invalid.

SSP_ERR_INVALID_SIZE Block size not in valid range of 1-512 for
SDIO or 512 only for SD cards and eMMC.

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

Get the command status and return to called function.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,182 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SDMMC

◆ R_SDMMC_Erase()

ssp_err_t R_SDMMC_Erase (sdmmc_ctrl_t *const p_api_ctrl, uint32_t const start_sector, uint32_t
const sector_count)

Erases sectors of an SD card or eMMC device. Implements sdmmc_api_t::erase().

This function blocks until erase is complete.

Return values
SSP_SUCCESS Erase operation requested.

SSP_ERR_ASSERTION A required pointer is NULL.

SSP_ERR_NOT_OPEN Driver has not been initialized.

SSP_ERR_CARD_NOT_READY Card was unplugged.

SSP_ERR_TRANSFER_BUSY Driver is busy with a previous operation.

SSP_ERR_WRITE_PROTECTED SD card is Write Protected.

SSP_ERR_ERASE_FAILED Erase operation unsuccessful.

Note
This function is reentrant for different channels.

Send command to set start erase address (CMD35 for eMMC, CMD32 for SD).

Send command to set end erase address (CMD36 for eMMC, CMD33 for SD).

Send erase command (CMD38).

◆ R_SDMMC_InfoGet()

ssp_err_t R_SDMMC_InfoGet (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_info_t *const p_info)

Provides information about the connected device and driver status. Implements
sdmmc_api_t::infoGet().

Return values
SSP_SUCCESS Function executed successfully.

SSP_ERR_ASSERTION Null Pointer.

SSP_ERR_NOT_OPEN Driver has not been initialized.

Note
This function is reentrant.

Copy information stored during open.

Check if the card is busy.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,183 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SDMMC

◆ R_SDMMC_IoIntEnable()

ssp_err_t R_SDMMC_IoIntEnable (sdmmc_ctrl_t *const p_api_ctrl, bool enable)

Enables or disables the SDIO Interrupt. Implements sdmmc_api_t::ioIntEnable().

Return values
SSP_SUCCESS Card enabled or disabled SDIO interrupts

successfully.

SSP_ERR_ASSERTION NULL pointer.

SSP_ERR_TRANSFER_BUSY Driver is busy with a previous operation.

Note
This function is reentrant for different channels.

Make sure the card is not busy.

Enable or disable interrupt.

◆ R_SDMMC_Open()

ssp_err_t R_SDMMC_Open (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_cfg_t const *const p_cfg)

Initializes the SDHI hardware and completes identification and configuration for the SD or eMMC
device. This procedure requires several sequential commands. This API blocks until all identification
and configuration commands are complete.

For SDIO, SDIO interrupts are enabled after card identification is complete. SDIO interrupts can be
disabled using sdmmc_api_t::ioIntEnable().

Implements sdmmc_api_t::open().

Return values
SSP_SUCCESS Port is available and is now open for

read/write/control access.

SSP_ERR_ASSERTION Null Pointer or block size is not in the valid
range of 1-512.

SSP_ERR_INVALID_ARGUMENT Block size must be 512 bytes for SD cards
and eMMC devices. It is configurable for
SDIO only.

SSP_ERR_ALREADY_OPEN Driver has already been opened with this
instance of the control structure.

SSP_ERR_HW_LOCKED The channel specified has already been
opened.

SSP_ERR_CARD_INIT_FAILED Hardware related failure occurred, with the
MCU or with the card itself.

SSP_ERR_IRQ_BSP_DISABLED Access interrupt is not enabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,184 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SDMMC

SSP_ERR_CARD_NOT_INSERTED Card detection is enabled and no card is
plugged in.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet
cgc_api_t::systemClockFreqGet

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

Verify the requested hardware channel exists on the MCU.

Configure interrupts.

Acquire lock before changing vector table or p_ctrl.

Turn off module stop bit (turn module on).

Perform the identification procedure for SD card or eMMC device.

Configure bus clock, block size, and bus width.

Check to see if the card is write protected (SD cards only).

◆ R_SDMMC_Read()

ssp_err_t R_SDMMC_Read (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t const
start_sector, uint32_t const sector_count)

Reads data from an SD or eMMC device. Up to 0x10000 sectors can be read at a time. Implements
sdmmc_api_t::read().

This function blocks until the command is sent and the response is received. A callback with the
event SDMMC_EVENT_TRANSFER_COMPLETE is called when the read data is available.

Return values
SSP_SUCCESS Data read successfully.

SSP_ERR_ASSERTION NULL pointer.

SSP_ERR_NOT_OPEN Driver has not been initialized.

SSP_ERR_CARD_NOT_READY Card was unplugged.

SSP_ERR_TRANSFER_BUSY Driver is busy with a previous operation.

SSP_ERR_READ_FAILED Read operation failed.

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

Configure the transfer interface for reading.

Read data from SD or eMMC device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,185 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SDMMC

◆ R_SDMMC_ReadIo()

ssp_err_t R_SDMMC_ReadIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_data, uint32_t const
function, uint32_t const address)

The Read function reads a one byte register from an SDIO card. Implements sdmmc_api_t::readIo().

This function blocks until the command is sent and the response is received. p_data contains the
register value read when this function returns.

Return values
SSP_SUCCESS Data read successfully.

SSP_ERR_ASSERTION NULL pointer.

SSP_ERR_NOT_OPEN Driver has not been initialized.

SSP_ERR_CARD_NOT_READY Card was unplugged.

SSP_ERR_TRANSFER_BUSY Driver is busy with a previous operation.

SSP_ERR_READ_FAILED Read operation failed.

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

Call SDMMC protocol read function

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,186 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SDMMC

◆ R_SDMMC_ReadIoExt()

ssp_err_t R_SDMMC_ReadIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint32_t
const function, uint32_t const address, uint32_t *const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Reads data from an SDIO card function. Implements sdmmc_api_t::readIoExt().

This function blocks until the command is sent and the response is received. A callback with the
event SDMMC_EVENT_TRANSFER_COMPLETE is called when the read data is available.

Return values
SSP_SUCCESS Data read successfully.

SSP_ERR_ASSERTION NULL pointer, or count is not in the valid
range of 1-512 for byte mode or 1-511 for
block mode.

SSP_ERR_NOT_OPEN Driver has not been initialized.

SSP_ERR_CARD_NOT_READY Card was unplugged.

SSP_ERR_TRANSFER_BUSY Driver is busy with a previous operation.

SSP_ERR_READ_FAILED Read operation failed.

Note
This function is reentrant for different channels. It is not reentrant for the same channel.

Configure the transfer interface for reading.

Read data from SDIO device.

◆ R_SDMMC_VersionGet()

ssp_err_t R_SDMMC_VersionGet (ssp_version_t *const p_version)

Returns the version of the firmware and API. Implements sdmmc_api_t::versionGet().

Return values
SSP_SUCCESS Function executed successfully.

SSP_ERR_ASSERTION Null Pointer.

Note
This function is reentrant.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,187 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SDMMC

◆ R_SDMMC_Write()

ssp_err_t R_SDMMC_Write (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const *const p_source, uint32_t
const start_sector, uint32_t const sector_count)

Writes data to an SD or eMMC device. Up to 0x10000 sectors can be written at a time. Implements
sdmmc_api_t::write().

This function blocks until the command is sent and the response is received. A callback with the
event SDMMC_EVENT_TRANSFER_COMPLETE is called when the all data has been written.

Return values
SSP_SUCCESS Card write finished successfully.

SSP_ERR_ASSERTION Handle or Source address is NULL.

SSP_ERR_NOT_OPEN Driver has not been initialized.

SSP_ERR_CARD_NOT_READY Card was unplugged.

SSP_ERR_TRANSFER_BUSY Driver is busy with a previous operation.

SSP_ERR_WRITE_PROTECTED SD card is Write Protected.

SSP_ERR_WRITE_FAILED Write operation failed.

Note
This function is reentrant for different channels.

Configure the transfer interface for writing.

Call SDMMC protocol write function

Write data to SD or eMMC device.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,188 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SDMMC

◆ R_SDMMC_WriteIo()

ssp_err_t R_SDMMC_WriteIo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_data, uint32_t
const function, uint32_t const address, sdmmc_io_write_mode_t const read_after_write)

Writes a one byte register to an SDIO card. Implements sdmmc_api_t::writeIo().

This function blocks until the command is sent and the response is received. The register has been
written when this function returns. If read_after_write is true, p_data contains the register value
read when this function returns.

Return values
SSP_SUCCESS Card write finished successfully.

SSP_ERR_ASSERTION Handle or Source address is NULL.

SSP_ERR_NOT_OPEN Driver has not been initialized.

SSP_ERR_CARD_NOT_READY Card was unplugged.

SSP_ERR_TRANSFER_BUSY Driver is busy with a previous operation.

SSP_ERR_WRITE_FAILED Write operation failed.

Note
This function is reentrant for different channels.

Call SDMMC protocol write function with valid parameters

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,189 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SDMMC

◆ R_SDMMC_WriteIoExt()

ssp_err_t R_SDMMC_WriteIoExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const *const p_source,
uint32_t const function, uint32_t const address, uint32_t const count, sdmmc_io_transfer_mode_t
transfer_mode, sdmmc_io_address_mode_t address_mode)

Writes data to an SDIO card function. Implements sdmmc_api_t::writeIoExt().

This function blocks until the command is sent and the response is received. A callback with the
event SDMMC_EVENT_TRANSFER_COMPLETE is called when the all data has been written.

Return values
SSP_SUCCESS Card write finished successfully.

SSP_ERR_ASSERTION NULL pointer, or count is not in the valid
range of 1-512 for byte mode or 1-511 for
block mode.

SSP_ERR_NOT_OPEN Driver has not been initialized.

SSP_ERR_CARD_NOT_READY Card was unplugged.

SSP_ERR_TRANSFER_BUSY Driver is busy with a previous operation.

SSP_ERR_WRITE_FAILED Write operation failed.

Note
This function is reentrant for different channels.

Configure the transfer interface for writing.

Write data to SDIO device.

 sdmmc_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SDMMC

#include <r_sdmmc.h>

Data Fields

uint32_t open

 used to determine if channel is open

sdmmc_hw_t hw

 Temporary storage for channel, media type and bus width.

transfer_instance_t const * p_lower_lvl_transfer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,190 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SDMMC > sdmmc_instance_ctrl_t Struct Reference

 Transfer instance used to transfer data with DMA or DTC.

sdmmc_info_t status

 To load various status information.

bool transfer_in_progress

 Flag to detect transfer status.

bool write_protect

 write protect status

void(* p_callback)(sdmmc_callback_args_t *p_args)

 User callback pointer.

void const * p_context

 Placeholder for user data.

R_SDHI0_Type * p_reg

 Base register information.

volatile sdhi_event_t sdhi_event

 Update event status.

IRQn_Type transfer_irq

 Scan end IRQ number.

sdmmc_transfer_dir_t transfer_dir

 Info on read or write operation in progress.

uint8_t * p_transfer_data

 Temporary storage for transfer data.

uint32_t transfer_blocks_total

 Total transfer block count.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,191 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SDMMC > sdmmc_instance_ctrl_t Struct Reference

uint32_t transfer_block_current

 Transfer current block.

uint32_t transfer_block_size

 Transfer block size.

uint32_t aligned_buff [SDMMC_MAX_BLOCK_SIZE/sizeof(uint32_t)]

 Aligned buffer.

Detailed Description

SDMMC instance control block. This is private to the SSP and should not be used or modified by the
application.

The documentation for this struct was generated from the following file:

r_sdmmc.h

 sdmmc_extended_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SDMMC

#include <r_sdmmc.h>

Data Fields

uint32_t block_size

sdmmc_card_detect_t card_detect

sdmmc_write_protect_t write_protect

Detailed Description

Extended SDMMC configuration, to be pointed to p_extend.

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,192 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SDMMC > sdmmc_extended_cfg_t Struct Reference

◆ block_size

uint32_t sdmmc_extended_cfg_t::block_size

Block size in bytes. Block size must be 512 bytes for SD cards and eMMC devices. Block size can be
1-512 bytes for SDIO.

◆ card_detect

sdmmc_card_detect_t sdmmc_extended_cfg_t::card_detect

Whether or not card detection is used.

◆ write_protect

sdmmc_write_protect_t sdmmc_extended_cfg_t::write_protect

Select whether or not to use the write protect pin. Select Not Used if the MCU or device does not
have a write protect pin.

The documentation for this struct was generated from the following file:

r_sdmmc.h

5.1.5.56 SLCDC
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Segment LCD Controller (SLCDC). More...

Data Structures

struct slcdc_instance_ctrl_t

Functions

ssp_err_t R_SLCDC_Open (slcdc_ctrl_t *const p_api_ctrl, slcdc_cfg_t const
*const p_cfg)

ssp_err_t R_SLCDC_Write (slcdc_ctrl_t *const p_api_ctrl, slcdc_size_t const
start_segment, slcdc_size_t const *const p_data, slcdc_size_t const
segment_count)

ssp_err_t R_SLCDC_Modify (slcdc_ctrl_t *const p_api_ctrl, slcdc_size_t const
segment_number, slcdc_size_t const data, slcdc_size_t const

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,193 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SLCDC

data_mask)

ssp_err_t R_SLCDC_Start (slcdc_ctrl_t *const p_api_ctrl)

ssp_err_t R_SLCDC_Stop (slcdc_ctrl_t *const p_api_ctrl)

ssp_err_t R_SLCDC_ContrastIncrease (slcdc_ctrl_t *const p_api_ctrl)

ssp_err_t R_SLCDC_ContrastDecrease (slcdc_ctrl_t *const p_api_ctrl)

ssp_err_t R_SLCDC_SetDisplayArea (slcdc_ctrl_t *const p_api_ctrl,
slcdc_display_area_t const display_area)

ssp_err_t R_SLCDC_Close (slcdc_ctrl_t *const p_api_ctrl)

ssp_err_t R_SLCDC_VersionGet (ssp_version_t *const p_version)

 Retrieve the API version number. More...

Detailed Description

Driver for the Segment LCD Controller (SLCDC).

Summary
Extends SLCDC Interface.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,194 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SLCDC

◆ R_SLCDC_Close()

ssp_err_t R_SLCDC_Close (slcdc_ctrl_t *const p_api_ctrl)

Return values
SSP_SUCCESS Device was opened successfully.

SSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

SSP_ERR_NOT_OPEN Device is not opened or initialized

Clear all the data segment registers.

Disable the LCD display area. Segment pin outputs de-select signal

Disable voltage circuit

Set voltage generator to External

Protect OFF of CGC.

Disable LCD clock

Protect ON of CGC.

Release hardware lock for SLCD

SLCDC Power off - enter module-stop state for the SLCDC

Mark control block close.

◆ R_SLCDC_ContrastDecrease()

ssp_err_t R_SLCDC_ContrastDecrease (slcdc_ctrl_t *const p_api_ctrl)

Return values
SSP_SUCCESS Device was opened successfully.

SSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

SSP_ERR_NOT_OPEN Device is not opened or initialized

SSP_ERR_UNSUPPORTED Unsupported operation

The VLCD setting is valid only when the voltage boost circuit is operating

Verify the new volt is within the range.

Stop the internal voltage boost/capacitor split circuit.

Set new voltage value.

Wait 5ms minimum as per HW manual

Enable the voltage boost circuit or capacitor split circuit.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,195 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SLCDC

◆ R_SLCDC_ContrastIncrease()

ssp_err_t R_SLCDC_ContrastIncrease (slcdc_ctrl_t *const p_api_ctrl)

Return values
SSP_SUCCESS Device was opened successfully.

SSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

SSP_ERR_NOT_OPEN Device is not opened or initialized

SSP_ERR_UNSUPPORTED Unsupported operation

The VLCD setting is valid only when the voltage boost circuit is operating

Verify the new volt is within the range.

Stop the internal voltage boost/capacitor split circuit.

Set new voltage value.

Wait 5ms minimum as per HW manual

Enable the voltage boost circuit or capacitor split circuit.

◆ R_SLCDC_Modify()

ssp_err_t R_SLCDC_Modify (slcdc_ctrl_t *const p_api_ctrl, slcdc_size_t const segment_number,
slcdc_size_t const data, slcdc_size_t const data_mask)

Return values
SSP_SUCCESS Device was opened successfully.

SSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

SSP_ERR_INVALID_ARGUMENT Invalid parameter in the argument.

SSP_ERR_NOT_OPEN Device is not opened or initialized

Masks the data being displayed.

Specifies the data to rewrite.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,196 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SLCDC

◆ R_SLCDC_Open()

ssp_err_t R_SLCDC_Open (slcdc_ctrl_t *const p_api_ctrl, slcdc_cfg_t const *const p_cfg)

Return values
SSP_SUCCESS Device was opened successfully.

SSP_ERR_ASSERTION Pointer to the control block or the
configuration structure is NULL.

SSP_ERR_HW_LOCKED SLCDC resource is locked.

Returns
See Common Error Codes for other possible return codes. This function calls

fmi_api_t::productFeatureGet
Configure the SLCDC driver

Record the configuration on the device for later use

Mark control block state open so subsequent calls know the device is open.

◆ R_SLCDC_SetDisplayArea()

ssp_err_t R_SLCDC_SetDisplayArea (slcdc_ctrl_t *const p_api_ctrl, slcdc_display_area_t const
display_area)

Return values
SSP_SUCCESS Device was opened successfully.

SSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

SSP_ERR_UNSUPPORTED Unsupported operation

SSP_ERR_NOT_OPEN Device is not opened or initialized

SSP_ERR_NOT_ENABLED RTC not enabled for blink operation

Returns
See Common Error Codes for other possible return codes. This function calls

fmi_api_t::productFeatureGet
When the number of time slices is eight, LCD display data registers (A-pattern, B-pattern, or
blinking display) cannot be selected.

Set the LCD display data area.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,197 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SLCDC

◆ R_SLCDC_Start()

ssp_err_t R_SLCDC_Start (slcdc_ctrl_t *const p_api_ctrl)

Return values
SSP_SUCCESS Device was opened successfully.

SSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

SSP_ERR_NOT_OPEN Device is not opened or initialized

Enable the voltage boost circuit or capacitor split circuit.

Enable the LCD display.

◆ R_SLCDC_Stop()

ssp_err_t R_SLCDC_Stop (slcdc_ctrl_t *const p_api_ctrl)

Return values
SSP_SUCCESS Device was opened successfully.

SSP_ERR_ASSERTION Pointer to the control block structure is
NULL.

SSP_ERR_NOT_OPEN Device is not opened or initialized

Disable the LCD display

Disable the voltage boost circuit or capacitor split circuit.

◆ R_SLCDC_VersionGet()

ssp_err_t R_SLCDC_VersionGet (ssp_version_t *const p_version)

Retrieve the API version number.

Return values
SSP_SUCCESS Successful return.

SSP_ERR_ASSERTION The parameter p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,198 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SLCDC

◆ R_SLCDC_Write()

ssp_err_t R_SLCDC_Write (slcdc_ctrl_t *const p_api_ctrl, slcdc_size_t const start_segment,
slcdc_size_t const *const p_data, slcdc_size_t const segment_count)

Return values
SSP_SUCCESS Device was opened successfully.

SSP_ERR_ASSERTION Pointer to the control block structure and
display data is NULL

SSP_ERR_INVALID_ARGUMENT Invalid parameter in the argument.

SSP_ERR_NOT_OPEN Device is not opened or initialized

Get the register address of the specified segment and write data to it.

 slcdc_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SLCDC

#include <r_slcdc.h>

Data Fields

slcdc_display_state_t state

 Status of SLCD module.

slcdc_cfg_t info

 SLCDC config info.

void const * p_context

 Pointer to the higher level device context.

R_LCD_Type * p_reg

 Pointer to register base address.

Detailed Description

SLCDC control block. DO NOT INITIALIZE. Initialization occurs when slcdc_api_t::open is called

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,199 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SLCDC > slcdc_instance_ctrl_t Struct Reference

The documentation for this struct was generated from the following file:

r_slcdc.h

5.1.5.57 SSI
Renesas Synergy Software Package Reference » HAL Layer

Driver for the Serial Sound Interface (SSI). More...

Data Structures

struct ssi_instance_ctrl_t

struct i2s_on_ssi_cfg_t

Enumerations

enum ssi_audio_clock_t { SSI_AUDIO_CLOCK_EXTERNAL = 0,
SSI_AUDIO_CLOCK_GTIOC1A = 1 }

Functions

ssp_err_t R_SSI_Open (i2s_ctrl_t *const p_api_ctrl, i2s_cfg_t const *const p_cfg)

 Opens the SSI. Implements i2s_api_t::open. More...

ssp_err_t R_SSI_Stop (i2s_ctrl_t *const p_api_ctrl, i2s_dir_t const dir)

 Stops SSI. Implements i2s_api_t::stop. More...

ssp_err_t R_SSI_Close (i2s_ctrl_t *const p_api_ctrl)

 Closes SSI. Implements i2s_api_t::close. More...

ssp_err_t R_SSI_Write (i2s_ctrl_t *const p_api_ctrl, uint8_t const *const p_src,
uint16_t const bytes)

 Writes data buffer to SSI. Implements i2s_api_t::write. More...

ssp_err_t R_SSI_Read (i2s_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint16_t const bytes)

 Reads data into provided buffer. Implements i2s_api_t::read. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,200 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SSI

ssp_err_t R_SSI_WriteRead (i2s_ctrl_t *const p_api_ctrl, uint8_t const *const
p_src, uint8_t *const p_dest, uint16_t const bytes)

 Writes from source buffer and reads data into destination buffer.
Implements i2s_api_t::writeRead. More...

ssp_err_t R_SSI_Mute (i2s_ctrl_t *const p_api_ctrl, i2s_mute_t const
mute_enable)

 Mutes SSI. Implements i2s_api_t::mute. More...

ssp_err_t R_SSI_InfoGet (i2s_ctrl_t *const p_api_ctrl, i2s_info_t *const p_info)

 Get I2S information and store it in provided pointer p_info.
Implements i2s_api_t::infoGet. More...

ssp_err_t R_SSI_VersionGet (ssp_version_t *const p_version)

 Sets driver version based on compile time macros. More...

Detailed Description

Driver for the Serial Sound Interface (SSI).

Summary
Extends I2S Interface.

Enumeration Type Documentation

◆ ssi_audio_clock_t

enum ssi_audio_clock_t

Clock source. Selects GPT channel 1 or AUDIO_CLK input pin.

Enumerator

SSI_AUDIO_CLOCK_EXTERNAL Audio clock source is the AUDIO_CLK input pin.

SSI_AUDIO_CLOCK_GTIOC1A Audio clock source is internal connection to
GPT channel 1 output.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,201 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SSI

◆ R_SSI_Close()

ssp_err_t R_SSI_Close (i2s_ctrl_t *const p_api_ctrl)

Closes SSI. Implements i2s_api_t::close.

This function powers down the SSI and closes the lower level timer and transfer drivers if they are
used.

Return values
SSP_SUCCESS Device closed successfully.

SSP_ERR_ASSERTION The pointer to p_ctrl null.

SSP_ERR_NOT_OPEN The channel is not opened.

Stop feeding clock to SSI peripheral to deactivate it.

If a timer instance is provided, close the timer instance.

If a transfer instance is provided for write, close the transfer instance.

If a transfer instance is provided for read, close the transfer instance.

Release HW lock.

◆ R_SSI_InfoGet()

ssp_err_t R_SSI_InfoGet (i2s_ctrl_t *const p_api_ctrl, i2s_info_t *const p_info)

Get I2S information and store it in provided pointer p_info. Implements i2s_api_t::infoGet.

Return values
SSP_SUCCESS Information stored successfully.

SSP_ERR_ASSERTION The p_ctrl or p_info parameter was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Get the SSI hardware status information.

If SSI hardware status is idle, set status to stopped. Otherwise, set status to in use.

Get the sampling frequency information.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,202 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SSI

◆ R_SSI_Mute()

ssp_err_t R_SSI_Mute (i2s_ctrl_t *const p_api_ctrl, i2s_mute_t const mute_enable)

Mutes SSI. Implements i2s_api_t::mute.

Data is still written while mute is enabled, but the transmit line outputs zeros.

Return values
SSP_SUCCESS Transmission is muted.

SSP_ERR_ASSERTION The pointer to p_ctrl was null.

SSP_ERR_NOT_OPEN The channel is not opened.

Enables the mute if MUTE_ON is set. Otherwise, disables the mute.

◆ R_SSI_Open()

ssp_err_t R_SSI_Open (i2s_ctrl_t *const p_api_ctrl, i2s_cfg_t const *const p_cfg)

Opens the SSI. Implements i2s_api_t::open.

This function calculates the clock divisor based on the input audio clock frequency and the
requested sampling frequency. It sets this clock divisor and the configurations specified in i2s_cfg_t
. It also opens the timer and transfer interfaces if they are provided.

Return values
SSP_SUCCESS Ready for I2S communication.

SSP_ERR_ASSERTION The pointer to p_ctrl or p_cfg is null.

SSP_ERR_IN_USE The requested channel has already been
opened or hardware has been locked.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
fmi_api_t::eventInfoGet
transfer_api_t::open
timer_api_t::open

Configure dependent timer and transfer drivers.

Configure interrupts.

Mark driver as open by initializing it to "SSI" in its ASCII equivalent.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,203 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SSI

◆ R_SSI_Read()

ssp_err_t R_SSI_Read (i2s_ctrl_t *const p_api_ctrl, uint8_t *const p_dest, uint16_t const bytes)

Reads data into provided buffer. Implements i2s_api_t::read.

This function resets the transfer if the transfer interface is used, or reads the length of data
available in the FIFO then stores the remaining read buffer in the control block to be filled in the
ISR.

Read() cannot be called if another write(), read() or writeRead() operation is in progress. Read can
be called when the SSI is idle, or after the I2S_EVENT_RX_FULL event.

Return values
SSP_SUCCESS Read initiated successfully.

SSP_ERR_ASSERTION The pointer to p_ctrl or p_dest was null, or
bytes requested was 0.

SSP_ERR_NOT_OPEN The channel is not opened.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset
timer_api_t::start

If a transfer instance is provided for read, reset the transfer. Otherwise unload the receive FIFO.

Make sure reception is enabled.

◆ R_SSI_Stop()

ssp_err_t R_SSI_Stop (i2s_ctrl_t *const p_api_ctrl, i2s_dir_t const dir)

Stops SSI. Implements i2s_api_t::stop.

This function disables the transfer if the transfer interface is used, or sends a stop signal to stop
writing data in the ISR if interrupt driven mode is used.

Return values
SSP_SUCCESS I2S communication stop request issued.

SSP_ERR_ASSERTION The pointer to p_ctrl null.

SSP_ERR_NOT_OPEN The channel is not opened.

Returns
See Common Error Codes or lower level drivers for other possible return codes.

Stop is complete after an I2S_EVENT_IDLE interrupt.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,204 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SSI

◆ R_SSI_VersionGet()

ssp_err_t R_SSI_VersionGet (ssp_version_t *const p_version)

Sets driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

◆ R_SSI_Write()

ssp_err_t R_SSI_Write (i2s_ctrl_t *const p_api_ctrl, uint8_t const *const p_src, uint16_t const
bytes)

Writes data buffer to SSI. Implements i2s_api_t::write.

This function resets the transfer if the transfer interface is used, or writes the length of data that
fits in the FIFO then stores the remaining write buffer in the control block to be written in the ISR.

Write() cannot be called if another write(), read() or writeRead() operation is in progress. Write can
be called when the SSI is idle, or after the I2S_EVENT_TX_EMPTY event.

Return values
SSP_SUCCESS Write initiated successfully.

SSP_ERR_ASSERTION The pointer to p_ctrl or p_src was null, or
bytes requested was 0.

SSP_ERR_IN_USE Another transfer is in progress, data was not
written.

SSP_ERR_NOT_OPEN The channel is not opened.

SSP_ERR_UNDERFLOW The transmit FIFO underflowed before it was
reloaded.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset
timer_api_t::start

If a transfer instance is provided for write, reset the transfer. Otherwise load the transmit FIFO.

Make sure transmission is enabled.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,205 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SSI

◆ R_SSI_WriteRead()

ssp_err_t R_SSI_WriteRead (i2s_ctrl_t *const p_api_ctrl, uint8_t const *const p_src, uint8_t *const
p_dest, uint16_t const bytes)

Writes from source buffer and reads data into destination buffer. Implements i2s_api_t::writeRead.

This function calls R_SSI_Write and R_SSI_Read.

writeRead() cannot be called if another write(), read() or writeRead() operation is in progress.
writeRead() can be called when the SSI is idle, or after the I2S_EVENT_RX_FULL event.

Return values
SSP_SUCCESS Write and read initiated successfully.

SSP_ERR_ASSERTION The pointer to p_ctrl, p_src, or p_dest was
null, or bytes requested was 0.

SSP_ERR_NOT_OPEN The channel is not opened.

SSP_ERR_UNDERFLOW The transmit FIFO underflowed before it was
reloaded.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

transfer_api_t::reset
timer_api_t::start

If a transfer instance is provided for read, reset the transfer.

If a transfer instance is provided for write, reset the transfer.

Make sure transmission is enabled.

 ssi_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SSI

#include <r_ssi.h>

Data Fields

void(* p_callback)(i2s_callback_args_t *p_args)

void const * p_context

R_SSI0_Type * p_reg

 Pointer to SSI register base address.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,206 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SSI > ssi_instance_ctrl_t Struct Reference

timer_instance_t const * p_timer

 Timer used to generate audio clock.

transfer_instance_t const * p_transfer_tx

 Transfer used for hardware acceleration during write.

transfer_instance_t const * p_transfer_rx

 Transfer used for hardware acceleration during read.

uint32_t const * p_tx_src

uint32_t tx_src_bytes

uint32_t * p_rx_dest

uint32_t rx_dest_bytes

uint32_t sampling_freq_hz

 Sampling frequency in Hertz.

uint8_t channel

 Channel number.

uint8_t fifo_access_bytes

 Byte access to FIFO.

bool tx_in_use

 True if a transmission is in progress.

bool rx_in_use

 True if a reception is in progress.

bool zeros_written

 True if zeros have been transmitted.

IRQn_Type txi_irq

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,207 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SSI > ssi_instance_ctrl_t Struct Reference

 Transmit IRQ number.

IRQn_Type rxi_irq

 Receive IRQ number.

IRQn_Type int_irq

 Idle/Error IRQ number.

uint32_t open

 Whether or not this control block is initialized.

Detailed Description

Channel instance control block. DO NOT INITIALIZE. Initialization occurs when i2s_api_t::open is
called.

Field Documentation

◆ p_callback

void(* ssi_instance_ctrl_t::p_callback) (i2s_callback_args_t *p_args)

Callback provided when an I2S ISR occurs. NULL indicates no CPU interrupt.

◆ p_context

void const* ssi_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in i2s_callback_args_t.

◆ p_rx_dest

uint32_t* ssi_instance_ctrl_t::p_rx_dest

Destination buffer pointer used to fill from hardware FIFO in receive ISR.

◆ p_tx_src

uint32_t const* ssi_instance_ctrl_t::p_tx_src

Source buffer pointer used to fill hardware FIFO from transmit ISR.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,208 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SSI > ssi_instance_ctrl_t Struct Reference

◆ rx_dest_bytes

uint32_t ssi_instance_ctrl_t::rx_dest_bytes

Size of destination buffer used to fill from hardware FIFO in receive ISR.

◆ tx_src_bytes

uint32_t ssi_instance_ctrl_t::tx_src_bytes

Size of source buffer used to fill hardware FIFO from transmit ISR.

The documentation for this struct was generated from the following file:

r_ssi.h

 i2s_on_ssi_cfg_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SSI

#include <r_ssi.h>

Data Fields

ssi_audio_clock_t audio_clock

 Audio clock source, default is SSI_AUDIO_CLOCK_EXTERNAL.

Detailed Description

SSI configuration extension. This extension is optional.

The documentation for this struct was generated from the following file:

r_ssi.h

5.1.5.58 WDT
Renesas Synergy Software Package Reference » HAL Layer

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,209 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > WDT

Driver for the Watchdog Timer (WDT). More...

Data Structures

struct wdt_instance_ctrl_t

Functions

ssp_err_t R_WDT_Open (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t const *const
p_cfg)

 Configure the WDT in register start mode. In auto-start_mode the
NMI callback can be registered. Implements wdt_api_t::open. More...

ssp_err_t R_WDT_CfgGet (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t *const p_cfg)

 Read the configuration of the WDT in both register-start and auto-
start modes. Implements wdt_api_t::cfgGet. More...

ssp_err_t R_WDT_TimeoutGet (wdt_ctrl_t *const p_api_ctrl,
wdt_timeout_values_t *const p_timeout)

 Read timeout information for the watchdog timer. Implements
wdt_api_t::timeoutGet. More...

ssp_err_t R_WDT_Refresh (wdt_ctrl_t *const p_api_ctrl)

 Refresh the watchdog timer. Implements wdt_api_t::refresh. More...

ssp_err_t R_WDT_StatusGet (wdt_ctrl_t *const p_api_ctrl, wdt_status_t *const
p_status)

 Read the WDT status flags. Implements wdt_api_t::statusGet. More...

ssp_err_t R_WDT_StatusClear (wdt_ctrl_t *const p_api_ctrl, const wdt_status_t
status)

 Clear the WDT status and error flags. Implements
wdt_api_t::statusClear. More...

ssp_err_t R_WDT_CounterGet (wdt_ctrl_t *const p_api_ctrl, uint32_t *const
p_count)

 Read the current count value of the WDT. Implements
wdt_api_t::counterGet. More...

ssp_err_t R_WDT_VersionGet (ssp_version_t *const p_data)

 Return WDT HAL driver version. Implements wdt_api_t::versionGet.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,210 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > WDT

More...

Detailed Description

Driver for the Watchdog Timer (WDT).

Summary
This module supports the Watchdog Timer (WDT). It implements the WDT Interface. The WDT HAL
APIs provide the ability to configure the operation of the WDT (when used in register start mode),
refresh the watchdog, read the timer value and read and clear status flags.

Function Documentation

◆ R_WDT_CfgGet()

ssp_err_t R_WDT_CfgGet (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t *const p_cfg)

Read the configuration of the WDT in both register-start and auto-start modes. Implements
wdt_api_t::cfgGet.

Return values
SSP_SUCCESS WDT successfully configured.

SSP_ERR_ASSERTION Null Pointer.

SSP_ERR_NOT_OPEN Instance control block is not initialized.

Note
This function is reentrant.

Register-start mode.

Get timeout value from WDTCR register.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,211 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > WDT

◆ R_WDT_CounterGet()

ssp_err_t R_WDT_CounterGet (wdt_ctrl_t *const p_api_ctrl, uint32_t *const p_count)

Read the current count value of the WDT. Implements wdt_api_t::counterGet.

Return values
SSP_SUCCESS WDT current count successfully read.

SSP_ERR_ASSERTION Null pointer passed as a parameter.

SSP_ERR_NOT_OPEN Instance control block is not initialized.

Note
This function is reentrant.

Read the WDT status

Get WDT down counter value

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,212 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > WDT

◆ R_WDT_Open()

ssp_err_t R_WDT_Open (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t const *const p_cfg)

Configure the WDT in register start mode. In auto-start_mode the NMI callback can be registered.
Implements wdt_api_t::open.

This function should only be called once as WDT configuration registers can only be written to once
so subsequent calls will have no effect.

Return values
SSP_SUCCESS WDT successfully configured.

SSP_ERR_ASSERTION Null Pointer(s).

SSP_ERR_INVALID_ARGUMENT One or more configuration options is invalid.

SSP_ERR_INVALID_MODE An attempt to open the WDT in register-
start mode when the OFS0 register is
configured for auto-start mode. Or to open
the WDT in auto-start mode when the OSF0
is configured for register start mode.

Returns
See Common Error Codes or functions called by this function for other possible return
codes. This function calls:

fmi_api_t::productFeatureGet
Note

This function is reentrant. In auto-start mode the only valid configuration option is for registering the callback for
the NMI ISR if NMI output has been selected.

g_wdt_version is accessed by the ASSERT macro only and so compiler toolchain can issue a
warning that it is not accessed. The code below eliminates this warning and also ensures this data
structure is not optimised away.

Eliminate toolchain warning when NMI output is not being used.

Check the expected start mode matches the OSF0 configuration.

Lock the IWDT Hardware Resource

Initialize global pointer to WDT for NMI callback use.

Configuration only valid when WDT operating in register-start mode.

Register-start mode.

Register callback with BSP NMI ISR.

Enable the WDT underflow/refresh error interrupt (will generate an NMI).

Start the timer by performing a refresh.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,213 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > WDT

◆ R_WDT_Refresh()

ssp_err_t R_WDT_Refresh (wdt_ctrl_t *const p_api_ctrl)

Refresh the watchdog timer. Implements wdt_api_t::refresh.

In addition to refreshing the watchdog counter this function can be used, in register start mode to
start the counter.

Return values
SSP_SUCCESS WDT successfully refreshed.

SSP_ERR_NOT_OPEN Instance control block is not initialized.

Note
This function is reentrant. This function only returns SSP_SUCCESS. If the refresh fails due to being performed
outside of the permitted refresh period the device will either reset or trigger an NMI ISR to run. This function must
not be called before calling R_WDT_Open().

Refresh the WDT Down counter

◆ R_WDT_StatusClear()

ssp_err_t R_WDT_StatusClear (wdt_ctrl_t *const p_api_ctrl, const wdt_status_t status)

Clear the WDT status and error flags. Implements wdt_api_t::statusClear.

Return values
SSP_SUCCESS WDT flag(s) successfully cleared.

SSP_ERR_ASSERTION Null pointer as a parameter.

SSP_ERR_NOT_OPEN Instance control block is not initialized.

Note
This function is reentrant.

Write zero to clear flags.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,214 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > WDT

◆ R_WDT_StatusGet()

ssp_err_t R_WDT_StatusGet (wdt_ctrl_t *const p_api_ctrl, wdt_status_t *const p_status)

Read the WDT status flags. Implements wdt_api_t::statusGet.

Indicates both status and error conditions.

Return values
SSP_SUCCESS WDT status successfully read.

SSP_ERR_ASSERTION Null pointer as a parameter.

SSP_ERR_NOT_OPEN Instance control block is not initialized.

Note
This function is reentrant. When the WDT is configured to output a reset on underflow or refresh error reading the
status and error flags serves no purpose as they will always indicate that no underflow has occurred and there is
no refresh error. Reading the status and error flags is only valid when interrupt request output is enabled.

Read the WDT status

Get the value of refresh or underflow error flag

◆ R_WDT_TimeoutGet()

ssp_err_t R_WDT_TimeoutGet (wdt_ctrl_t *const p_api_ctrl, wdt_timeout_values_t *const
p_timeout)

Read timeout information for the watchdog timer. Implements wdt_api_t::timeoutGet.

Return values
SSP_SUCCESS WDT timeout value successfully read.

SSP_ERR_ASSERTION Null Pointer.

SSP_ERR_ABORTED Invalid clock divider for this watchdog

Note
This function is reentrant. This function must not be called before calling R_WDT_Open().

Read the configuration of the WDT

Get the frequency of the clock supplying the WDT

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,215 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > WDT

◆ R_WDT_VersionGet()

ssp_err_t R_WDT_VersionGet (ssp_version_t *const p_data)

Return WDT HAL driver version. Implements wdt_api_t::versionGet.

Return values
SSP_SUCCESS Version information successfully read.

SSP_ERR_ASSERTION Null pointer passed as a parameter

Note
This function is reentrant.

 wdt_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » WDT

#include <r_wdt.h>

Data Fields

uint32_t wdt_open

void const * p_context

R_WDT_Type * p_reg

 Pointer to register base address.

void(* p_callback)(wdt_callback_args_t *p_args)

 Callback provided when a WDT NMI ISR occurs.

Detailed Description

WDT control block. DO NOT INITIALIZE. Initialization occurs when wdt_api_t::open is called.

Field Documentation

◆ p_context

void const* wdt_instance_ctrl_t::p_context

Placeholder for user data. Passed to the user callback in wdt_callback_args_t.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,216 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > WDT > wdt_instance_ctrl_t Struct Reference

◆ wdt_open

uint32_t wdt_instance_ctrl_t::wdt_open

Indicates whether the open() API has been successfully called.

The documentation for this struct was generated from the following file:

r_wdt.h

5.1.5.59 SCE Module
Renesas Synergy Software Package Reference » HAL Layer

Primitive cryptographic functions. More...

Modules

SCE AES

 Primitive cryptographic functions.

SCE HRK AES

 Primitive cryptographic functions.

SCE ARC4

 Primitive cryptographic functions.

SCE DSA

 Primitive cryptographic functions.

SCE HASH

 Primitive cryptographic functions.

SCE_ECC

 Primitive cryptographic functions.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,217 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module

SCE_KEY_INSTALLATION

 Primitive cryptographic functions.

SCE_RSA

 Primitive cryptographic functions.

SCE_TDES

 Primitive cryptographic functions.

SCE_TRNG

 Primitive cryptographic functions.

SCE_INTERFACE_GET

 Get Interface for Crypto HAL modules.

Functions

uint32_t R_SCE_Open (crypto_ctrl_t *const p_ctrl, crypto_cfg_t const *const
p_cfg)

 SCE Initialization - Opens the module and initializes the SCE. More...

uint32_t R_SCE_VersionGet (ssp_version_t *const p_version)

 Sets driver version based on compile time macros. More...

uint32_t R_SCE_StatusGet (uint32_t *p_status)

 This function indicates if the SCE has been initialized or not. The
status returned is as follows:
CRYPTO_SCE_COMMON_MODULE_CLOSED = 0 when the module is
closed. CRYPTO_SCE_COMMON_MODULE_OPENED = 1 when the
module is opened. More...

uint32_t R_SCE_Close (crypto_ctrl_t *const p_ctrl)

 Close SCE driver. Close R_SCE driver by setting driver status to
CRYPTO_SCE_COMMON_MODULE_CLOSED. More...

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,218 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module

Primitive cryptographic functions.

Initializes the SCE module cryptographic operations.

Crypto API interface on SCE

Function Documentation

◆ R_SCE_Close()

uint32_t R_SCE_Close (crypto_ctrl_t *const p_ctrl)

Close SCE driver. Close R_SCE driver by setting driver status to
CRYPTO_SCE_COMMON_MODULE_CLOSED.

Parameters
[in] p_ctrl control structure for SCE

block

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION p_ctrl input parameter is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,219 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module

◆ R_SCE_Open()

uint32_t R_SCE_Open (crypto_ctrl_t *const p_ctrl, crypto_cfg_t const *const p_cfg)

SCE Initialization - Opens the module and initializes the SCE.

Parameters
[in,out] p_ctrl control structure for the SCE

module

[in] p_cfg configuration structure for
the SCE module

Returns an uint32_t integer indicating:

Return values
SF_CRYPTO_SUCCESS if the initialization is successful.

SSP_ERR_CRYPTO_SCE_FAIL if the initialization failed.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

if the SCE hardware resource is busy.

SSP_ERR_CRYPTO_SCE_ALREADY_OPEN if the module is already open.

SSP_ERR_ASSERTION NULL input parameter(s).

Get the list of API interfaces available to interfaceGet API.

◆ R_SCE_StatusGet()

uint32_t R_SCE_StatusGet (uint32_t * p_status)

This function indicates if the SCE has been initialized or not. The status returned is as follows:
CRYPTO_SCE_COMMON_MODULE_CLOSED = 0 when the module is closed.
CRYPTO_SCE_COMMON_MODULE_OPENED = 1 when the module is opened.

Parameters
[in] p_status pointer to uint32_t. This

memory location is updated
with the SCE module
initialization status.

Return values
SF_CRYPTO_SUCCESS API returned Successfully.

SSP_ERR_ASSERTION The parameter p_status is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,220 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module

◆ R_SCE_VersionGet()

uint32_t R_SCE_VersionGet (ssp_version_t *const p_version)

Sets driver version based on compile time macros.

Parameters
[out] p_version version info for the SCE

implementation

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

 SCE AES
Renesas Synergy Software Package Reference » HAL Layer » SCE Module

Primitive cryptographic functions. More...

Functions

uint32_t R_SCE_AES_Open (aes_ctrl_t *const p_ctrl, aes_cfg_t const *const
p_cfg)

 AES Open function. More...

uint32_t R_SCE_AES_VersionGet (ssp_version_t *const p_version)

 Sets driver version based on compile time macros. More...

uint32_t R_SCE_AES_Close (aes_ctrl_t *const p_ctrl)

 AES Close function. More...

uint32_t R_SCE_AES_128CbcEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 128-bit CBC mode implementation for encrypt interface API.
More...

uint32_t R_SCE_AES_128CbcDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,221 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Decrypt num_words words of input data from buffer p_source using
the 128-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_128CtrEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 128-bit CTR mode implementation for encrypt interface API.
More...

uint32_t R_SCE_AES_128EcbEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 128-bit ECB mode implementation for encrypt interface API.
More...

uint32_t R_SCE_AES_128EcbDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 128-bit ECB mode implementation for decrypt interface API.
More...

uint32_t R_SCE_AES_128GcmOpen (aes_ctrl_t *const p_ctrl, aes_cfg_t const
*const p_cfg)

 AES GCM 128-bit Open function. More...

uint32_t R_SCE_AES_128GcmEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Encrypt num_words words of input data from buffer p_source using
the 128-bit AES p_key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_128GcmGetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t
num_words, uint32_t *p_dest)

 Get AES 128-bit GCM Authentication Tag data. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,222 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

uint32_t R_SCE_AES_128GcmSetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t
num_words, uint32_t *p_source)

 Sets the expected authentication tag value for the AES-GCM
Decryption related functions. Copies the provided tag value to the
corresponding internal control structure member. More...

uint32_t R_SCE_AES_128GcmDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Decrypt num_words words of input data from buffer p_source using
the 128-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_128GcmZeroPaddingEncrypt (aes_ctrl_t *const p_ctrl,
const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes, uint32_t
*p_source, uint32_t *p_dest)

 Encrypt num_bytes bytes of input data from buffer p_source using
the 128-bit AES p_key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_bytes bytes of data. More...

uint32_t R_SCE_AES_128GcmZeroPaddingDecrypt (aes_ctrl_t *const p_ctrl,
const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes, uint32_t
*p_source, uint32_t *p_dest)

 Decrypt num_bytes bytes of input data from buffer p_source using
the 128-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_bytes bytes of data. More...

uint32_t R_SCE_AES_128XtsEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 128-bit XTS mode implementation for encrypt interface API
Encrypt num_words words of input data from buffer p_source using
the 128-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_128XtsDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,223 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 128-bit XTS mode implementation for decrypt interface API
Decrypt num_words words of input data from buffer p_source using
the 128-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_192CbcEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 192-bit CBC mode implementation for encrypt interface API
Encrypt num_words words of input data from buffer p_source using
the 192-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for at least
num_words words of data. More...

uint32_t R_SCE_AES_192CbcDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 192-bit CBC mode implementation for decrypt interface API
Decrypt num_words words of input data from buffer p_source using
the 192-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for at least
num_words words of data. More...

uint32_t R_SCE_AES_192CtrEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 192-bit CTR mode implementation for encrypt and decrypt
interface APIs Encrypt num_words words of input data from buffer
p_source using the 192-bit AES key from buffer p_key and
initialization vector from buffer p_iv. The result will be written to the
output buffer from p_dest. The p_dest array is assumed to have
space for atleast num_words words of data. More...

uint32_t R_SCE_AES_192EcbEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 192-bit ECB mode implementation for encrypt interface API.
More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,224 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

uint32_t R_SCE_AES_192EcbDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 192-bit ECB mode implementation for decrypt interface API
Decrypt num_words words of input data from buffer p_source using
the 192-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_192GcmOpen (aes_ctrl_t *const p_ctrl, aes_cfg_t const
*const p_cfg)

 AES GCM 192-bit Open function. More...

uint32_t R_SCE_AES_192GcmEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Encrypt num_words words of input data from buffer p_source using
the 192-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_192GcmGetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t
num_words, uint32_t *p_dest)

 Get AES 192-bit GCM Authentication Tag data. More...

uint32_t R_SCE_AES_192GcmSetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t
num_words, uint32_t *p_source)

 Sets the expected authentication tag value for the AES-GCM
Decryption related functions. Copies the provided tag value to the
corresponding internal control structure member return success.
More...

uint32_t R_SCE_AES_192GcmDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Decrypt num_words words of input data from buffer p_source using
the 192-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_192GcmZeroPaddingEncrypt (aes_ctrl_t *const p_ctrl,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,225 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes, uint32_t
*p_source, uint32_t *p_dest)

 Encrypt num_bytes bytes of input data from buffer p_source using
the 128-bit AES p_key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_bytes bytes of data. More...

uint32_t R_SCE_AES_192GcmZeroPaddingDecrypt (aes_ctrl_t *const p_ctrl,
const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes, uint32_t
*p_source, uint32_t *p_dest)

 Decrypt num_bytes bytes of input data from buffer p_source using
the 128-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_bytes bytes of data. More...

uint32_t R_SCE_AES_256CbcEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 256-bit CBC mode implementation for encrypt interface API
Encrypt num_words words of input data from buffer p_source using
the 256-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_256CbcDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 256-bit CBC mode implementation for decrypt interface API
Decrypt num_words words of input data from buffer p_source using
the 256-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_256CtrEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 256-bit CTR mode implementation for encrypt and decrypt
interface APIs Encrypt num_words words of input data from buffer
p_source using the 256-bit AES key from buffer p_key and
initialization vector from buffer p_iv. The result will be written to the
output buffer from p_dest. The p_dest array is assumed to have
space for atleast num_words words of data. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,226 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

uint32_t R_SCE_AES_256EcbEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 256-bit ECB mode implementation for encrypt interface API
Encrypt num_words words of input data from buffer p_source using
the 256-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_256EcbDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Decrypt num_words words of input data from buffer p_source using
the 256-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_256GcmOpen (aes_ctrl_t *const p_ctrl, aes_cfg_t const
*const p_cfg)

 AES GCM 256-bit Open function. More...

uint32_t R_SCE_AES_256GcmEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Encrypt num_words words of input data from buffer p_source using
the 256-bit AES p_key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_256GcmGetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t
num_words, uint32_t *p_dest)

 Get AES 256-bit GCM Authentication Tag data. More...

uint32_t R_SCE_AES_256GcmSetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t
num_words, uint32_t *p_source)

 Sets the expected authentication tag value for the AES-GCM
Decryption related functions. Copies the provided tag value to the
corresponding internal control structure member return success.
More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,227 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

uint32_t R_SCE_AES_256GcmDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Decrypt num_words words of input data from buffer p_source using
the 256-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_256GcmZeroPaddingEncrypt (aes_ctrl_t *const p_ctrl,
const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes, uint32_t
*p_source, uint32_t *p_dest)

 Encrypt num_bytes bytes of input data from buffer p_source using
the 128-bit AES p_key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_bytes bytes of data. More...

uint32_t R_SCE_AES_256GcmZeroPaddingDecrypt (aes_ctrl_t *const p_ctrl,
const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes, uint32_t
*p_source, uint32_t *p_dest)

 Decrypt num_bytes bytes of input data from buffer p_source using
the 256-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_bytes bytes of data. More...

uint32_t R_SCE_AES_256XtsEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 256-bit XTS mode implementation for encrypt interface API
Encrypt num_words words of input data from buffer p_source using
the 256-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_AES_256XtsDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 AES 256-bit XTS mode implementation for decrypt interface API
Decrypt num_words words of input data from buffer p_source using
the 256-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,228 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

uint32_t R_SCE_AES_EImpl_CreateKey (aes_ctrl_t *const p_ctrl, uint32_t
num_words, uint32_t *p_key)

 AES Create Key function, which is not implemented. More...

uint32_t R_SCE_AES_EImpl_EncryptFinal (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t input_num_words, uint32_t
*p_source, uint32_t output_num_words, uint32_t *p_dest)

 AES Encrypt input Key Final function, which is not implemented.
More...

uint32_t R_SCE_AES_EImpl_ZeroPaddingEncrypt (aes_ctrl_t *const p_ctrl,
const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes, uint32_t
*p_source, uint32_t *p_dest)

 AES Zero padding encrypt function, which is not implemented.
More...

uint32_t R_SCE_AES_EImpl_ZeroPaddingDecrypt (aes_ctrl_t *const p_ctrl,
const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes, uint32_t
*p_source, uint32_t *p_dest)

 AES Zero padding decrypt function, which is not implemented.
More...

uint32_t R_SCE_AES_EImpl_SetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t
num_words, uint32_t *p_source)

 AES Set GCM Tag function, which is not implemented. More...

uint32_t R_SCE_AES_EImpl_GetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t
num_words, uint32_t *p_dest)

 AES Get GCM Tag function, which is not implemented. More...

uint32_t R_SCE_AES_EImpl_AddAdditionalAuthenticationData (aes_ctrl_t
*const p_ctrl, const uint32_t *p_key, uint32_t *p_iv, uint32_t
num_words, uint32_t *p_source)

 AES Adding additional authentication data function, which is not
implemented. More...

Variables

const aes_api_t g_aes128cbc_on_sce

const aes_api_t g_aes128ctr_on_sce

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,229 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

const aes_api_t g_aes128ecb_on_sce

const aes_api_t g_aes128gcm_on_sce

const aes_api_t g_aes128xts_on_sce

const aes_api_t g_aes192cbc_on_sce

const aes_api_t g_aes192ctr_on_sce

const aes_api_t g_aes192ecb_on_sce

const aes_api_t g_aes192gcm_on_sce

const aes_api_t g_aes256cbc_on_sce

const aes_api_t g_aes256ctr_on_sce

const aes_api_t g_aes256ecb_on_sce

const aes_api_t g_aes256gcm_on_sce

const aes_api_t g_aes256xts_on_sce

Detailed Description

Primitive cryptographic functions.

AES key generation, encryption and decryption functions for plain-text / raw keys.

AES encryption and decryption functions

AES 256-bit CBC mode implementation for encryption and decryption functions

AES 256-bit CTR mode implementation for encryption and decryption functions

AES 256-bit ECB mode implementation for encryption and decryption functions

AES 256-bit XTS mode implementation for encryption and decryption functions

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,230 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_128CbcDecrypt()

uint32_t R_SCE_AES_128CbcDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_words words of input data from buffer p_source using the 128-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL or of invalid
format.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

◆ R_SCE_AES_128CbcEncrypt()

uint32_t R_SCE_AES_128CbcEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 128-bit CBC mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using the 128-bit AES key from buffer
key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL or of invalid
format.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,231 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_128CtrEncrypt()

uint32_t R_SCE_AES_128CtrEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 128-bit CTR mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using the 128-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL or of invalid
format.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,232 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_128EcbDecrypt()

uint32_t R_SCE_AES_128EcbDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 128-bit ECB mode implementation for decrypt interface API.

Decrypt num_words words of input data from buffer p_source using the 128-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL or of invalid
format.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
The contents of p_iv buffer are ignored in ECB chaining mode. NULL value is acceptable.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,233 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_128EcbEncrypt()

uint32_t R_SCE_AES_128EcbEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 128-bit ECB mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using the 128-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL or of invalid
format.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
The contents of p_iv buffer are ignored in ECB chaining mode. NULL value is acceptable.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,234 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_128GcmDecrypt()

uint32_t R_SCE_AES_128GcmDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_words words of input data from buffer p_source using the 128-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
For description of memcpy, memcmp and memset functions refer to C Standard library <string.h>

◆ R_SCE_AES_128GcmEncrypt()

uint32_t R_SCE_AES_128GcmEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypt num_words words of input data from buffer p_source using the 128-bit AES p_key from
buffer p_key and initialization vector from buffer p_iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,235 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_128GcmGetGcmTag()

uint32_t R_SCE_AES_128GcmGetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t
* p_dest)

Get AES 128-bit GCM Authentication Tag data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

◆ R_SCE_AES_128GcmOpen()

uint32_t R_SCE_AES_128GcmOpen (aes_ctrl_t *const p_ctrl, aes_cfg_t const *const p_cfg)

AES GCM 128-bit Open function.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

◆ R_SCE_AES_128GcmSetGcmTag()

uint32_t R_SCE_AES_128GcmSetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t
* p_source)

Sets the expected authentication tag value for the AES-GCM Decryption related functions. Copies
the provided tag value to the corresponding internal control structure member.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,236 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_128GcmZeroPaddingDecrypt()

uint32_t R_SCE_AES_128GcmZeroPaddingDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t *
p_key, uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_bytes bytes of input data from buffer p_source using the 128-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_bytes bytes of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_bytes bytes of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
For description of memcpy, memcmp and memset functions refer to C Standard library <string.h>

◆ R_SCE_AES_128GcmZeroPaddingEncrypt()

uint32_t R_SCE_AES_128GcmZeroPaddingEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

Encrypt num_bytes bytes of input data from buffer p_source using the 128-bit AES p_key from
buffer p_key and initialization vector from buffer p_iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast num_bytes bytes of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least (num_bytes/16+1)*16 bytes of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
this function is not thread safe.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,237 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_128XtsDecrypt()

uint32_t R_SCE_AES_128XtsDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 128-bit XTS mode implementation for decrypt interface API Decrypt num_words words of input
data from buffer p_source using the 128-bit AES key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

◆ R_SCE_AES_128XtsEncrypt()

uint32_t R_SCE_AES_128XtsEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 128-bit XTS mode implementation for encrypt interface API Encrypt num_words words of input
data from buffer p_source using the 128-bit AES key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,238 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_192CbcDecrypt()

uint32_t R_SCE_AES_192CbcDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 192-bit CBC mode implementation for decrypt interface API Decrypt num_words words of input
data from buffer p_source using the 192-bit AES key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for at least num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 24 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

◆ R_SCE_AES_192CbcEncrypt()

uint32_t R_SCE_AES_192CbcEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 192-bit CBC mode implementation for encrypt interface API Encrypt num_words words of input
data from buffer p_source using the 192-bit AES key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for at least num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 24 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,239 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_192CtrEncrypt()

uint32_t R_SCE_AES_192CtrEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 192-bit CTR mode implementation for encrypt and decrypt interface APIs Encrypt num_words
words of input data from buffer p_source using the 192-bit AES key from buffer p_key and
initialization vector from buffer p_iv. The result will be written to the output buffer from p_dest. The
p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 24 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

◆ R_SCE_AES_192EcbDecrypt()

uint32_t R_SCE_AES_192EcbDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 192-bit ECB mode implementation for decrypt interface API Decrypt num_words words of input
data from buffer p_source using the 192-bit AES key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 24 bytes of AES key data and
The contents of p_iv buffer are ignored in ECB chaining mode. NULL value is acceptable.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,240 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_192EcbEncrypt()

uint32_t R_SCE_AES_192EcbEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 192-bit ECB mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using the 192-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 24 bytes of AES key data and
The contents of p_iv buffer are ignored in ECB chaining mode. NULL value is acceptable.

◆ R_SCE_AES_192GcmDecrypt()

uint32_t R_SCE_AES_192GcmDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_words words of input data from buffer p_source using the 192-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
For description of memcpy, memcmp and memset functions refer to C Standard library <string.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,241 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_192GcmEncrypt()

uint32_t R_SCE_AES_192GcmEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypt num_words words of input data from buffer p_source using the 192-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

◆ R_SCE_AES_192GcmGetGcmTag()

uint32_t R_SCE_AES_192GcmGetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t
* p_dest)

Get AES 192-bit GCM Authentication Tag data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,242 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_192GcmOpen()

uint32_t R_SCE_AES_192GcmOpen (aes_ctrl_t *const p_ctrl, aes_cfg_t const *const p_cfg)

AES GCM 192-bit Open function.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

◆ R_SCE_AES_192GcmSetGcmTag()

uint32_t R_SCE_AES_192GcmSetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t
* p_source)

Sets the expected authentication tag value for the AES-GCM Decryption related functions. Copies
the provided tag value to the corresponding internal control structure member return success.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,243 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_192GcmZeroPaddingDecrypt()

uint32_t R_SCE_AES_192GcmZeroPaddingDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t *
p_key, uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_bytes bytes of input data from buffer p_source using the 128-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_bytes bytes of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_bytes bytes of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
For description of memcpy, memcmp and memset functions refer to C Standard library <string.h>

◆ R_SCE_AES_192GcmZeroPaddingEncrypt()

uint32_t R_SCE_AES_192GcmZeroPaddingEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

Encrypt num_bytes bytes of input data from buffer p_source using the 128-bit AES p_key from
buffer p_key and initialization vector from buffer p_iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast num_bytes bytes of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_bytes bytes of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data
this function is not thread safe.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,244 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_256CbcDecrypt()

uint32_t R_SCE_AES_256CbcDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 256-bit CBC mode implementation for decrypt interface API Decrypt num_words words of input
data from buffer p_source using the 256-bit AES key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

◆ R_SCE_AES_256CbcEncrypt()

uint32_t R_SCE_AES_256CbcEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 256-bit CBC mode implementation for encrypt interface API Encrypt num_words words of input
data from buffer p_source using the 256-bit AES key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,245 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_256CtrEncrypt()

uint32_t R_SCE_AES_256CtrEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 256-bit CTR mode implementation for encrypt and decrypt interface APIs Encrypt num_words
words of input data from buffer p_source using the 256-bit AES key from buffer p_key and
initialization vector from buffer p_iv. The result will be written to the output buffer from p_dest. The
p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

◆ R_SCE_AES_256EcbDecrypt()

uint32_t R_SCE_AES_256EcbDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_words words of input data from buffer p_source using the 256-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Note
The contents of p_iv buffer are ignored in ECB chaining mode. NULL value is acceptable.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,246 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_256EcbEncrypt()

uint32_t R_SCE_AES_256EcbEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 256-bit ECB mode implementation for encrypt interface API Encrypt num_words words of input
data from buffer p_source using the 256-bit AES key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Note
The contents of p_iv buffer are ignored in ECB chaining mode. NULL value is acceptable.

◆ R_SCE_AES_256GcmDecrypt()

uint32_t R_SCE_AES_256GcmDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_words words of input data from buffer p_source using the 256-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
For description of memcpy, memcmp and memset functions refer to C Standard library <string.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,247 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_256GcmEncrypt()

uint32_t R_SCE_AES_256GcmEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypt num_words words of input data from buffer p_source using the 256-bit AES p_key from
buffer p_key and initialization vector from buffer p_iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

◆ R_SCE_AES_256GcmGetGcmTag()

uint32_t R_SCE_AES_256GcmGetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t
* p_dest)

Get AES 256-bit GCM Authentication Tag data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,248 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_256GcmOpen()

uint32_t R_SCE_AES_256GcmOpen (aes_ctrl_t *const p_ctrl, aes_cfg_t const *const p_cfg)

AES GCM 256-bit Open function.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

◆ R_SCE_AES_256GcmSetGcmTag()

uint32_t R_SCE_AES_256GcmSetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t
* p_source)

Sets the expected authentication tag value for the AES-GCM Decryption related functions. Copies
the provided tag value to the corresponding internal control structure member return success.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,249 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_256GcmZeroPaddingDecrypt()

uint32_t R_SCE_AES_256GcmZeroPaddingDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t *
p_key, uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_bytes bytes of input data from buffer p_source using the 256-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_bytes bytes of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_bytes bytes of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
For description of memcpy, memcmp and memset functions refer to C Standard library <string.h>

◆ R_SCE_AES_256GcmZeroPaddingEncrypt()

uint32_t R_SCE_AES_256GcmZeroPaddingEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

Encrypt num_bytes bytes of input data from buffer p_source using the 128-bit AES p_key from
buffer p_key and initialization vector from buffer p_iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast num_bytes bytes of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_bytes bytes of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
this function is not thread safe.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,250 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_256XtsDecrypt()

uint32_t R_SCE_AES_256XtsDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 256-bit XTS mode implementation for decrypt interface API Decrypt num_words words of input
data from buffer p_source using the 256-bit AES key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

◆ R_SCE_AES_256XtsEncrypt()

uint32_t R_SCE_AES_256XtsEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

AES 256-bit XTS mode implementation for encrypt interface API Encrypt num_words words of input
data from buffer p_source using the 256-bit AES key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,251 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_Close()

uint32_t R_SCE_AES_Close (aes_ctrl_t *const p_ctrl)

AES Close function.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL or of invalid
format.

◆ R_SCE_AES_EImpl_AddAdditionalAuthenticationData()

uint32_t R_SCE_AES_EImpl_AddAdditionalAuthenticationData (aes_ctrl_t *const p_ctrl, const
uint32_t * p_key, uint32_t * p_iv, uint32_t num_words, uint32_t * p_source)

AES Adding additional authentication data function, which is not implemented.

Parameters
[in] p_ctrl pointer to the control

structure

[in] p_key pointer to the AES plain-text
key

[in] p_iv is a pointer to initialization
vector. For ECB mode this
parameter is unused. NULL
value is acceptable.

[in] num_words data buffer size in words.
Each work is 4-bytes and
multiples of 4.

[in] p_source input data buffer

Return values
SSP_ERR_CRYPTO_NOT_IMPLEMENTED This function is not implemented.

SSP_ERR_ASSERTION An input parameter is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,252 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_EImpl_CreateKey()

uint32_t R_SCE_AES_EImpl_CreateKey (aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t *
p_key)

AES Create Key function, which is not implemented.

SCE/AES implementation of AES API.

Return values
SSP_ERR_CRYPTO_NOT_IMPLEMENTED This function is not implemented.

SSP_ERR_ASSERTION An input parameter is NULL.

◆ R_SCE_AES_EImpl_EncryptFinal()

uint32_t R_SCE_AES_EImpl_EncryptFinal (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t
* p_iv, uint32_t input_num_words, uint32_t * p_source, uint32_t output_num_words, uint32_t *
p_dest)

AES Encrypt input Key Final function, which is not implemented.

Parameters
[in] p_ctrl pointer to the control

structure

[in] p_key pointer to the AES plain-text
key

[in] p_iv is a pointer to initialization
vector. For ECB mode this
parameter is unused. NULL
value is acceptable.

[in] input_num_words input data buffer size in
words. Each word is 4-bytes
and multiples of 4.

[in] p_source input data buffer

[out] output_num_words output data buffer size in
words. Each word is 4-bytes
and multiples of 4.

[in,out] p_dest output data buffer

Return values
SSP_ERR_CRYPTO_NOT_IMPLEMENTED This function is not implemented.

SSP_ERR_ASSERTION An input parameter is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,253 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_EImpl_GetGcmTag()

uint32_t R_SCE_AES_EImpl_GetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t *
p_dest)

AES Get GCM Tag function, which is not implemented.

Parameters
[in] p_ctrl pointer to the control

structure

[in] num_words data buffer size in words.
Each work is 4-bytes and
multiples of 4.

[in,out] p_dest output data buffer

Return values
SSP_ERR_CRYPTO_NOT_IMPLEMENTED This function is not implemented.

SSP_ERR_ASSERTION An input parameter is NULL.

◆ R_SCE_AES_EImpl_SetGcmTag()

uint32_t R_SCE_AES_EImpl_SetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words, uint32_t *
p_source)

AES Set GCM Tag function, which is not implemented.

Parameters
[in] p_ctrl pointer to the control

structure

[in] num_words data buffer size in words.
Each work is 4-bytes and
multiples of 4.

[in] p_source input data buffer

Return values
SSP_ERR_CRYPTO_NOT_IMPLEMENTED This function is not implemented.

SSP_ERR_ASSERTION An input parameter is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,254 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_EImpl_ZeroPaddingDecrypt()

uint32_t R_SCE_AES_EImpl_ZeroPaddingDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

AES Zero padding decrypt function, which is not implemented.

Parameters
[in] p_ctrl pointer to the control

structure

[in] p_key pointer to the AES plain-text
key

[in] p_iv is a pointer to initialization
vector. For ECB mode this
parameter is unused. NULL
value is acceptable.

[in] num_bytes data buffer size in bytes.

[in] p_source input data buffer

[in,out] p_dest output data buffer

Return values
SSP_ERR_CRYPTO_NOT_IMPLEMENTED This function is not implemented.

SSP_ERR_ASSERTION An input parameter is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,255 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_EImpl_ZeroPaddingEncrypt()

uint32_t R_SCE_AES_EImpl_ZeroPaddingEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

AES Zero padding encrypt function, which is not implemented.

Parameters
[in] p_ctrl pointer to the control

structure

[in] p_key pointer to the AES plain-text
key

[in] p_iv is a pointer to initialization
vector. For ECB mode this
parameter is unused. NULL
value is acceptable.

[in] num_bytes data buffer size in bytes.

[in] p_source input data buffer

[in,out] p_dest output data buffer

Return values
SSP_ERR_CRYPTO_NOT_IMPLEMENTED This function is not implemented.

SSP_ERR_ASSERTION An input parameter is NULL.

◆ R_SCE_AES_Open()

uint32_t R_SCE_AES_Open (aes_ctrl_t *const p_ctrl, aes_cfg_t const *const p_cfg)

AES Open function.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL or of invalid
format.

SSP_ERR_CRYPTO_NOT_OPEN Crypto HAL Common module is not Opened.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,256 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ R_SCE_AES_VersionGet()

uint32_t R_SCE_AES_VersionGet (ssp_version_t *const p_version)

Sets driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Variable Documentation

◆ g_aes128cbc_on_sce

const aes_api_t g_aes128cbc_on_sce

=

{

 .open = R_SCE_AES_Open,

 .encrypt = R_SCE_AES_128CbcEncrypt,

 .decrypt = R_SCE_AES_128CbcDecrypt,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .zeroPaddingEncrypt = R_SCE_AES_EImpl_ZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_EImpl_ZeroPaddingDecrypt,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

 .setGcmTag = R_SCE_AES_EImpl_SetGcmTag,

 .getGcmTag = R_SCE_AES_EImpl_GetGcmTag

}

AES 128-bit CBC mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,257 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ g_aes128ctr_on_sce

const aes_api_t g_aes128ctr_on_sce

=

{

 .open = R_SCE_AES_Open,

 .encrypt = R_SCE_AES_128CtrEncrypt,

 .decrypt = R_SCE_AES_128CtrEncrypt,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .zeroPaddingEncrypt = R_SCE_AES_EImpl_ZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_EImpl_ZeroPaddingDecrypt,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

 .setGcmTag = R_SCE_AES_EImpl_SetGcmTag,

 .getGcmTag = R_SCE_AES_EImpl_GetGcmTag

}

AES 128-bit CTR mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,258 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ g_aes128ecb_on_sce

const aes_api_t g_aes128ecb_on_sce

=

{

 .open = R_SCE_AES_Open,

 .encrypt = R_SCE_AES_128EcbEncrypt,

 .decrypt = R_SCE_AES_128EcbDecrypt,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .zeroPaddingEncrypt = R_SCE_AES_EImpl_ZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_EImpl_ZeroPaddingDecrypt,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

 .setGcmTag = R_SCE_AES_EImpl_SetGcmTag,

 .getGcmTag = R_SCE_AES_EImpl_GetGcmTag

}

AES 128-bit ECB mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,259 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ g_aes128gcm_on_sce

const aes_api_t g_aes128gcm_on_sce

=

{

 .open = R_SCE_AES_128GcmOpen,

 .encrypt = R_SCE_AES_128GcmEncrypt,

 .decrypt = R_SCE_AES_128GcmDecrypt,

 .getGcmTag = R_SCE_AES_128GcmGetGcmTag,

 .setGcmTag = R_SCE_AES_128GcmSetGcmTag,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .zeroPaddingEncrypt = R_SCE_AES_128GcmZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_128GcmZeroPaddingDecrypt,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData

}

AES 128-bit GCM mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,260 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ g_aes128xts_on_sce

const aes_api_t g_aes128xts_on_sce

=

{

 .open = R_SCE_AES_Open,

 .encrypt = R_SCE_AES_128XtsEncrypt,

 .decrypt = R_SCE_AES_128XtsDecrypt,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .zeroPaddingEncrypt = R_SCE_AES_EImpl_ZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_EImpl_ZeroPaddingDecrypt,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

 .setGcmTag = R_SCE_AES_EImpl_SetGcmTag,

 .getGcmTag = R_SCE_AES_EImpl_GetGcmTag

}

AES 128-bit CCM mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,261 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ g_aes192cbc_on_sce

const aes_api_t g_aes192cbc_on_sce

=

{

 .open = R_SCE_AES_Open,

 .encrypt = R_SCE_AES_192CbcEncrypt,

 .decrypt = R_SCE_AES_192CbcDecrypt,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .zeroPaddingEncrypt = R_SCE_AES_EImpl_ZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_EImpl_ZeroPaddingDecrypt,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

 .setGcmTag = R_SCE_AES_EImpl_SetGcmTag,

 .getGcmTag = R_SCE_AES_EImpl_GetGcmTag

}

AES 192-bit CBC mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,262 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ g_aes192ctr_on_sce

const aes_api_t g_aes192ctr_on_sce

=

{

 .open = R_SCE_AES_Open,

 .encrypt = R_SCE_AES_192CtrEncrypt,

 .decrypt = R_SCE_AES_192CtrEncrypt,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .zeroPaddingEncrypt = R_SCE_AES_EImpl_ZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_EImpl_ZeroPaddingDecrypt,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

 .setGcmTag = R_SCE_AES_EImpl_SetGcmTag,

 .getGcmTag = R_SCE_AES_EImpl_GetGcmTag

}

AES 192-bit CTR mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,263 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ g_aes192ecb_on_sce

const aes_api_t g_aes192ecb_on_sce

=

{

 .open = R_SCE_AES_Open,

 .encrypt = R_SCE_AES_192EcbEncrypt,

 .decrypt = R_SCE_AES_192EcbDecrypt,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .zeroPaddingEncrypt = R_SCE_AES_EImpl_ZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_EImpl_ZeroPaddingDecrypt,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

 .setGcmTag = R_SCE_AES_EImpl_SetGcmTag,

 .getGcmTag = R_SCE_AES_EImpl_GetGcmTag

}

AES 192-bit ECB mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,264 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ g_aes192gcm_on_sce

const aes_api_t g_aes192gcm_on_sce

=

{

 .open = R_SCE_AES_192GcmOpen,

 .encrypt = R_SCE_AES_192GcmEncrypt,

 .decrypt = R_SCE_AES_192GcmDecrypt,

 .getGcmTag = R_SCE_AES_192GcmGetGcmTag,

 .setGcmTag = R_SCE_AES_192GcmSetGcmTag,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .zeroPaddingEncrypt = R_SCE_AES_192GcmZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_192GcmZeroPaddingDecrypt,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

}

AES 192-bit GCM mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,265 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ g_aes256cbc_on_sce

const aes_api_t g_aes256cbc_on_sce

=

{

 .open = R_SCE_AES_Open,

 .encrypt = R_SCE_AES_256CbcEncrypt,

 .decrypt = R_SCE_AES_256CbcDecrypt,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .zeroPaddingEncrypt = R_SCE_AES_EImpl_ZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_EImpl_ZeroPaddingDecrypt,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

 .setGcmTag = R_SCE_AES_EImpl_SetGcmTag,

 .getGcmTag = R_SCE_AES_EImpl_GetGcmTag

}

AES 256-bit CBC mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,266 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ g_aes256ctr_on_sce

const aes_api_t g_aes256ctr_on_sce

=

{

 .open = R_SCE_AES_Open,

 .encrypt = R_SCE_AES_256CtrEncrypt,

 .decrypt = R_SCE_AES_256CtrEncrypt,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .zeroPaddingEncrypt = R_SCE_AES_EImpl_ZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_EImpl_ZeroPaddingDecrypt,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

 .setGcmTag = R_SCE_AES_EImpl_SetGcmTag,

 .getGcmTag = R_SCE_AES_EImpl_GetGcmTag

}

AES 256-bit CTR mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,267 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ g_aes256ecb_on_sce

const aes_api_t g_aes256ecb_on_sce

=

{

 .open = R_SCE_AES_Open,

 .encrypt = R_SCE_AES_256EcbEncrypt,

 .decrypt = R_SCE_AES_256EcbDecrypt,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .zeroPaddingEncrypt = R_SCE_AES_EImpl_ZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_EImpl_ZeroPaddingDecrypt,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

 .setGcmTag = R_SCE_AES_EImpl_SetGcmTag,

 .getGcmTag = R_SCE_AES_EImpl_GetGcmTag

}

AES 256-bit ECB mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,268 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ g_aes256gcm_on_sce

const aes_api_t g_aes256gcm_on_sce

=

{

 .open = R_SCE_AES_256GcmOpen,

 .encrypt = R_SCE_AES_256GcmEncrypt,

 .decrypt = R_SCE_AES_256GcmDecrypt,

 .getGcmTag = R_SCE_AES_256GcmGetGcmTag,

 .setGcmTag = R_SCE_AES_256GcmSetGcmTag,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .zeroPaddingEncrypt = R_SCE_AES_256GcmZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_256GcmZeroPaddingDecrypt,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

}

AES 256-bit GCM mode implementation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,269 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE AES

◆ g_aes256xts_on_sce

const aes_api_t g_aes256xts_on_sce

=

{

 .open = R_SCE_AES_Open,

 .encrypt = R_SCE_AES_256XtsEncrypt,

 .decrypt = R_SCE_AES_256XtsDecrypt,

 .close = R_SCE_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .createKey = R_SCE_AES_EImpl_CreateKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .zeroPaddingEncrypt = R_SCE_AES_EImpl_ZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_EImpl_ZeroPaddingDecrypt,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

 .setGcmTag = R_SCE_AES_EImpl_SetGcmTag,

 .getGcmTag = R_SCE_AES_EImpl_GetGcmTag

}

AES 256-bit XTS mode implementation

 SCE HRK AES
Renesas Synergy Software Package Reference » HAL Layer » SCE Module

Primitive cryptographic functions. More...

Functions

uint32_t R_SCE_HRK_AES_Open (aes_ctrl_t *const p_ctrl, aes_cfg_t const
*const p_cfg)

 AES Open function. More...

uint32_t R_SCE_HRK_AES_Close (aes_ctrl_t *const p_ctrl)

 AES Close function. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,270 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

uint32_t R_SCE_HRK_AES_128CreateEncryptedKey (aes_ctrl_t *const p_ctrl,
uint32_t num_words, uint32_t *p_key)

 Encrypted Wrapped key creation for AES 128-bit applies for CBC,
ECB, CTR, GCM chaining mode implementations. Create a
num_words words of wrapped key for AES XTS chaining mode. The
result will be written to the output buffer p_key. The p_key array is
assumed to have space for at least num_words words of data.
More...

uint32_t R_SCE_HRK_AES_192CreateEncryptedKey (aes_ctrl_t *const p_ctrl,
uint32_t num_words, uint32_t *p_key)

 Encrypted Wrapped key creation for AES 192-bit applies for CBC,
ECB, CTR, GCM chaining mode implementations. Create a
num_words words of wrapped key for AES XTS chaining mode. The
result will be written to the output buffer p_key. The p_key array is
assumed to have space for at least num_words words of data.
More...

uint32_t R_SCE_HRK_AES_256CreateEncryptedKey (aes_ctrl_t *const p_ctrl,
uint32_t num_words, uint32_t *p_key)

 Encrypted Wrapped key creation for AES 256-bit applies for CBC,
ECB, CTR, GCM chaining mode implementations. Create a
num_words words of wrapped key for AES XTS chaining mode. The
result will be written to the output buffer p_key. The p_key array is
assumed to have space for at least num_words words of data.
More...

uint32_t R_SCE_HRK_AES_128CbcEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted Key AES 128-bit CBC mode implementation for encrypt
interface API. More...

uint32_t R_SCE_HRK_AES_128CbcDecrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted Key AES 128-bit CBC mode implementation for decrypt
interface API. More...

uint32_t R_SCE_HRK_AES_128CtrEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted Key AES 128-bit CTR mode implementation for encrypt
interface API. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,271 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

uint32_t R_SCE_HRK_AES_128EcbEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted Key AES 128-bit ECB mode implementation for encrypt
interface API. More...

uint32_t R_SCE_HRK_AES_128EcbDecrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted Key AES 128-bit ECB mode implementation for decrypt
interface API. More...

uint32_t R_SCE_HRK_AES_128GcmOpen (aes_ctrl_t *const p_ctrl, aes_cfg_t
const *const p_cfg)

 AES Open function. More...

uint32_t R_SCE_HRK_AES_128GcmEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypt num_words words of input data from buffer p_source using
the 128-bit AES p_key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_HRK_AES_128GcmZeroPaddingEncrypt (aes_ctrl_t *const
p_ctrl, const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes,
uint32_t *p_source, uint32_t *p_dest)

 Encrypt num_bytes bytes of input data from buffer p_source using
the 128-bit AES p_key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_bytes bytes of data and padded with 0's to make 16-byte block.
More...

uint32_t R_SCE_HRK_AES_128GcmGetGcmTag (aes_ctrl_t *const p_ctrl,
uint32_t num_words, uint32_t *p_dest)

 Get AES 128-bit GCM authentication tag data. More...

uint32_t R_SCE_HRK_AES_128GcmSetGcmTag (aes_ctrl_t *const p_ctrl,
uint32_t num_words, uint32_t *p_source)

 Sets the expected authentication tag value for the AES-GCM-HRK

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,272 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

Decryption related functions. Copies the provided tag value to the
corresponding internal control structure member return success.
More...

uint32_t R_SCE_HRK_AES_128GcmDecrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Decrypt num_words words of input data from buffer p_source using
the 128-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_HRK_AES_128GcmZeroPaddingDecrypt (aes_ctrl_t *const
p_ctrl, const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes,
uint32_t *p_source, uint32_t *p_dest)

 Decrypt num_bytes of input data from buffer p_source using the
128-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_bytes bytes of data and padded with 0's to make 16-byte block.
More...

uint32_t R_SCE_HRK_AES_128XtsCreateEncryptedKey (aes_ctrl_t *const
p_ctrl, uint32_t num_words, uint32_t *p_key)

 Encrypted Wrapped key creation for AES 1286-bit XTS mode
implementation. More...

uint32_t R_SCE_HRK_AES_128XtsEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted Key AES 128-bit XTS mode implementation for encrypt
interface API. More...

uint32_t R_SCE_HRK_AES_128XtsDecrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted Key AES 128-bit XTS mode implementation for decrypt
interface API. More...

uint32_t R_SCE_HRK_AES_192CbcEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted key AES 192-bit CBC mode implementation for encrypt

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,273 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

interface API. More...

uint32_t R_SCE_HRK_AES_192CbcDecrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted key AES 192-bit CBC mode implementation for decrypt
interface API. More...

uint32_t R_SCE_HRK_AES_192CtrEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted key AES 192-bit CTR mode implementation for encrypt
interface API. More...

uint32_t R_SCE_HRK_AES_192EcbEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted key AES 192-bit ECB mode implementation for encrypt
interface API. More...

uint32_t R_SCE_HRK_AES_192EcbDecrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted key AES 192-bit ECB mode implementation for decrypt
interface API. More...

uint32_t R_SCE_HRK_AES_192GcmOpen (aes_ctrl_t *const p_ctrl, aes_cfg_t
const *const p_cfg)

 AES Open function. More...

uint32_t R_SCE_HRK_AES_192GcmEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypt num_words words of input data from buffer p_source using
the 192-bit AES p_key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_HRK_AES_192GcmGetGcmTag (aes_ctrl_t *const p_ctrl,
uint32_t num_words, uint32_t *p_dest)

 Get AES 192-bit GCM authentication tag data. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,274 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

uint32_t R_SCE_HRK_AES_192GcmSetGcmTag (aes_ctrl_t *const p_ctrl,
uint32_t num_words, uint32_t *p_source)

 Sets the expected authentication tag value for the AES-GCM-HRK
Decryption related functions. Copies the provided tag value to the
corresponding internal control structure member return success.
More...

uint32_t R_SCE_HRK_AES_192GcmDecrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Decrypt num_words words of input data from buffer p_source using
the 192-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_HRK_AES_192GcmZeroPaddingEncrypt (aes_ctrl_t *const
p_ctrl, const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes,
uint32_t *p_source, uint32_t *p_dest)

 Encrypt num_bytes bytes of input data from buffer p_source using
the 192-bit AES p_key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_bytes bytes of data and padded with 0's to make 16-byte block.
More...

uint32_t R_SCE_HRK_AES_192GcmZeroPaddingDecrypt (aes_ctrl_t *const
p_ctrl, const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes,
uint32_t *p_source, uint32_t *p_dest)

 Decrypt num_bytes bytes of input data from buffer p_source using
the 192-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_bytes bytes of data and padded with 0's to make 16-byte block.
More...

uint32_t R_SCE_HRK_AES_256CbcEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted AES 256-bit CBC mode implementation for encrypt
interface API. More...

uint32_t R_SCE_HRK_AES_256CbcDecrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,275 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

*p_source, uint32_t *p_dest)

 Encrypted AES 256-bit ECB mode implementation for decrypt
interface API. More...

uint32_t R_SCE_HRK_AES_256CtrEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted key AES 256-bit CTR mode implementation for encrypt
interface API. More...

uint32_t R_SCE_HRK_AES_256EcbEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted key AES 256-bit ECB mode implementation for encrypt
interface API. More...

uint32_t R_SCE_HRK_AES_256EcbDecrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted key AES 256-bit ECB mode implementation for decrypt
interface API. More...

uint32_t R_SCE_HRK_AES_256GcmOpen (aes_ctrl_t *const p_ctrl, aes_cfg_t
const *const p_cfg)

 AES Open function. More...

uint32_t R_SCE_HRK_AES_256GcmEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypt num_words words of input data from buffer p_source using
the 256-bit AES p_key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_HRK_AES_256GcmGetGcmTag (aes_ctrl_t *const p_ctrl,
uint32_t num_words, uint32_t *p_dest)

 Get AES 256-bit GCM authentication tag data. More...

uint32_t R_SCE_HRK_AES_256GcmSetGcmTag (aes_ctrl_t *const p_ctrl,
uint32_t num_words, uint32_t *p_source)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,276 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

 Sets the expected authentication tag value for the AES-GCM-HRK
Decryption related functions. Copies the provided tag value to the
corresponding internal control structure member return success.
More...

uint32_t R_SCE_HRK_AES_256GcmDecrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Decrypt num_words words of input data from buffer p_source using
the 256-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_words words of data. More...

uint32_t R_SCE_HRK_AES_256GcmZeroPaddingEncrypt (aes_ctrl_t *const
p_ctrl, const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes,
uint32_t *p_source, uint32_t *p_dest)

 Encrypt num_bytes bytes of input data from buffer p_source using
the 256-bit AES p_key from buffer p_key and initialization vector
from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_bytes bytes of data and padded with 0's to make 16-byte block.
More...

uint32_t R_SCE_HRK_AES_256GcmZeroPaddingDecrypt (aes_ctrl_t *const
p_ctrl, const uint32_t *p_key, uint32_t *p_iv, uint32_t num_bytes,
uint32_t *p_source, uint32_t *p_dest)

 Decrypt num_bytes bytes of input data from buffer p_source using
the 256-bit AES key from buffer p_key and initialization vector from
buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast
num_bytes bytes of data and padded with 0's to make 16-byte block.
More...

uint32_t R_SCE_HRK_AES_256XtsCreateEncryptedKey (aes_ctrl_t *const
p_ctrl, uint32_t num_words, uint32_t *p_key)

 Encrypted Wrapped key creation for AES 256-bit XTS mode
implementation. More...

uint32_t R_SCE_HRK_AES_256XtsEncrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted key AES 256-bit XTS mode implementation for encrypt
interface API. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,277 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

uint32_t R_SCE_HRK_AES_256XtsDecrypt (aes_ctrl_t *const p_ctrl, const
uint32_t *p_key, uint32_t *p_iv, uint32_t num_words, uint32_t
*p_source, uint32_t *p_dest)

 Encrypted key AES 256-bit XTS mode implementation for decrypt
interface API. More...

Variables

const aes_api_t g_aes128ecb_on_sceHrk

const aes_api_t g_aes192gcm_on_sceHrk

Detailed Description

Primitive cryptographic functions.

AES key generation, encryption and decryption functions for wrapped keys.

SCE HRK Encrypted Key AES Cipher implementation functions

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,278 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128CbcDecrypt()

uint32_t R_SCE_HRK_AES_128CbcDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted Key AES 128-bit CBC mode implementation for decrypt interface API.

Decrypt num_words words of input data from buffer p_source using the wrapped 128-bit AES key
from buffer p_key and initialization vector from buffer p_iv. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for at least num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 128-bit AES key generated using the
R_SCE_HRK_AES_128CreateEncryptedKey().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,279 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128CbcEncrypt()

uint32_t R_SCE_HRK_AES_128CbcEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted Key AES 128-bit CBC mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using the wrapped 128-bit AES key
from buffer p_key and initialization vector from buffer p_iv. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for at least num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 128-bit AES key generated using the
R_SCE_HRK_AES_128CreateEncryptedKey().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,280 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128CreateEncryptedKey()

uint32_t R_SCE_HRK_AES_128CreateEncryptedKey (aes_ctrl_t *const p_ctrl, uint32_t num_words,
uint32_t * p_key)

Encrypted Wrapped key creation for AES 128-bit applies for CBC, ECB, CTR, GCM chaining mode
implementations. Create a num_words words of wrapped key for AES XTS chaining mode. The
result will be written to the output buffer p_key. The p_key array is assumed to have space for at
least num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_INVALID_SIZE Insufficient buffer size to accommodate
created key

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_ctrl parameter is not used

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,281 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128CtrEncrypt()

uint32_t R_SCE_HRK_AES_128CtrEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t
* p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted Key AES 128-bit CTR mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using a wrapped 128-bit AES key
from buffer p_key and initialization vector from buffer p_iv. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 128-bit AES key generated using the
R_SCE_HRK_AES_128CreateEncryptedKey().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,282 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128EcbDecrypt()

uint32_t R_SCE_HRK_AES_128EcbDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted Key AES 128-bit ECB mode implementation for decrypt interface API.

Decrypt num_words words of input data from buffer p_source using the wrapped 128-bit AES key
from buffer p_key and initialization vector from buffer p_iv. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 128-bit AES key generated using the
R_SCE_HRK_AES_128CreateEncryptedKey().
The contents of p_iv buffer are ignored and can be NULL in ECB chaining mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,283 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128EcbEncrypt()

uint32_t R_SCE_HRK_AES_128EcbEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted Key AES 128-bit ECB mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using the wrapped 128-bit AES key
from buffer p_key and initialization vector from buffer p_iv. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for at least num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 128-bit AES key generated using the
R_SCE_HRK_AES_128CreateEncryptedKey().
The contents of p_iv buffer are ignored and can be NULL in ECB chaining mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,284 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128GcmDecrypt()

uint32_t R_SCE_HRK_AES_128GcmDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_words words of input data from buffer p_source using the 128-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,285 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128GcmEncrypt()

uint32_t R_SCE_HRK_AES_128GcmEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypt num_words words of input data from buffer p_source using the 128-bit AES p_key from
buffer p_key and initialization vector from buffer p_iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

◆ R_SCE_HRK_AES_128GcmGetGcmTag()

uint32_t R_SCE_HRK_AES_128GcmGetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words,
uint32_t * p_dest)

Get AES 128-bit GCM authentication tag data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,286 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128GcmOpen()

uint32_t R_SCE_HRK_AES_128GcmOpen (aes_ctrl_t *const p_ctrl, aes_cfg_t const *const p_cfg)

AES Open function.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

◆ R_SCE_HRK_AES_128GcmSetGcmTag()

uint32_t R_SCE_HRK_AES_128GcmSetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words,
uint32_t * p_source)

Sets the expected authentication tag value for the AES-GCM-HRK Decryption related functions.
Copies the provided tag value to the corresponding internal control structure member return
success.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,287 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128GcmZeroPaddingDecrypt()

uint32_t R_SCE_HRK_AES_128GcmZeroPaddingDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t *
p_key, uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_bytes of input data from buffer p_source using the 128-bit AES key from buffer p_key
and initialization vector from buffer p_iv. The result will be written to the output buffer from p_dest.
The p_dest array is assumed to have space for atleast num_bytes bytes of data and padded with
0's to make 16-byte block.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_bytes bytes of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
p_dest to be padded with '0's to make 16-byte block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,288 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128GcmZeroPaddingEncrypt()

uint32_t R_SCE_HRK_AES_128GcmZeroPaddingEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t *
p_key, uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

Encrypt num_bytes bytes of input data from buffer p_source using the 128-bit AES p_key from
buffer p_key and initialization vector from buffer p_iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast num_bytes bytes of data and
padded with 0's to make 16-byte block.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_bytes bytes of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
p_dest to be padded with '0's to make 16-byte block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,289 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128XtsCreateEncryptedKey()

uint32_t R_SCE_HRK_AES_128XtsCreateEncryptedKey (aes_ctrl_t *const p_ctrl, uint32_t
num_words, uint32_t * p_key)

Encrypted Wrapped key creation for AES 1286-bit XTS mode implementation.

Create a num_words words of wrapped key for AES XTS chaining mode. The result will be written to
the output buffer p_key. The p_key array is assumed to have space for at least num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_INVALID_SIZE Insufficient buffer size to accommodate
created key

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4 and must be less than 128M

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,290 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128XtsDecrypt()

uint32_t R_SCE_HRK_AES_128XtsDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t
* p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted Key AES 128-bit XTS mode implementation for decrypt interface API.

Decrypt num_words words of input data from buffer p_source using a wrapped 128-bit AES key
from buffer p_key and initialization vector from buffer p_iv. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Invalid Key

SSP_ERR_INVALID_SIZE Invalid size

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4 and must be less than 128M
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 128-bit AES key generated using the
R_SCE_HRK_AES_128CreateEncryptedKey().

Verify the upper-limit of num_words

HW_SCE_AES_128XtsDecryptUsingEncryptedKey takes a pointer (InData_Len) whose value is in
number of bits

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,291 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_128XtsEncrypt()

uint32_t R_SCE_HRK_AES_128XtsEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t
* p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted Key AES 128-bit XTS mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using the 128-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Invalid Key

SSP_ERR_INVALID_SIZE Invalid size

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4 and must be less than 128M
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 128-bit AES key generated using the
R_SCE_HRK_AES_128XtsCreateEncryptedKey().

Verify the upper-limit of num_words

HW_SCE_AES_128XtsEncryptUsingEncryptedKey takes a pointer (InData_Len) whose value is in
number of bits

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,292 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_192CbcDecrypt()

uint32_t R_SCE_HRK_AES_192CbcDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted key AES 192-bit CBC mode implementation for decrypt interface API.

Decrypt num_words words of input data from buffer p_source using a wrapped 192-bit AES key
from buffer p_key and initialization vector from buffer p_iv. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for at least num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 192-bit AES key generated using the
R_SCE_HRK_AES_192CreateEncryptedKey().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,293 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_192CbcEncrypt()

uint32_t R_SCE_HRK_AES_192CbcEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted key AES 192-bit CBC mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using the 192-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for at least num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 192-bit AES key generated using R_SCE_HRK_AES_192CreateEncryptedKey().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,294 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_192CreateEncryptedKey()

uint32_t R_SCE_HRK_AES_192CreateEncryptedKey (aes_ctrl_t *const p_ctrl, uint32_t num_words,
uint32_t * p_key)

Encrypted Wrapped key creation for AES 192-bit applies for CBC, ECB, CTR, GCM chaining mode
implementations. Create a num_words words of wrapped key for AES XTS chaining mode. The
result will be written to the output buffer p_key. The p_key array is assumed to have space for at
least num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_INVALID_SIZE Insufficient buffer size to accommodate
created key

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_ctrl parameter is not used

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,295 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_192CtrEncrypt()

uint32_t R_SCE_HRK_AES_192CtrEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t
* p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted key AES 192-bit CTR mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using a wrapped 192-bit AES key
from buffer p_key and initialization vector from buffer p_iv. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for at least num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 192-bit AES key generated using the
R_SCE_HRK_AES_192CreateEncryptedKey().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,296 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_192EcbDecrypt()

uint32_t R_SCE_HRK_AES_192EcbDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted key AES 192-bit ECB mode implementation for decrypt interface API.

Decrypt num_words words of input data from buffer p_source using a wrapped 192-bit AES key
from buffer p_key and initialization vector from buffer p_iv. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for at least num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 192-bit AES key generated using the
R_SCE_HRK_AES_192CreateEncryptedKey().
The contents of p_iv buffer are ignored and can be NULL in ECB chaining mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,297 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_192EcbEncrypt()

uint32_t R_SCE_HRK_AES_192EcbEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted key AES 192-bit ECB mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using the 192-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 192-bit AES key generated using the
R_SCE_HRK_AES_192CreateEncryptedKey().
The contents of p_iv buffer are ignored and can be NULL in ECB chaining mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,298 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_192GcmDecrypt()

uint32_t R_SCE_HRK_AES_192GcmDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_words words of input data from buffer p_source using the 192-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,299 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_192GcmEncrypt()

uint32_t R_SCE_HRK_AES_192GcmEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypt num_words words of input data from buffer p_source using the 192-bit AES p_key from
buffer p_key and initialization vector from buffer p_iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

◆ R_SCE_HRK_AES_192GcmGetGcmTag()

uint32_t R_SCE_HRK_AES_192GcmGetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words,
uint32_t * p_dest)

Get AES 192-bit GCM authentication tag data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,300 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_192GcmOpen()

uint32_t R_SCE_HRK_AES_192GcmOpen (aes_ctrl_t *const p_ctrl, aes_cfg_t const *const p_cfg)

AES Open function.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

◆ R_SCE_HRK_AES_192GcmSetGcmTag()

uint32_t R_SCE_HRK_AES_192GcmSetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words,
uint32_t * p_source)

Sets the expected authentication tag value for the AES-GCM-HRK Decryption related functions.
Copies the provided tag value to the corresponding internal control structure member return
success.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,301 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_192GcmZeroPaddingDecrypt()

uint32_t R_SCE_HRK_AES_192GcmZeroPaddingDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t *
p_key, uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_bytes bytes of input data from buffer p_source using the 192-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_bytes bytes of data and padded
with 0's to make 16-byte block.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_bytes bytes of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
p_dest to be padded with '0's to make 16-byte block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,302 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_192GcmZeroPaddingEncrypt()

uint32_t R_SCE_HRK_AES_192GcmZeroPaddingEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t *
p_key, uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

Encrypt num_bytes bytes of input data from buffer p_source using the 192-bit AES p_key from
buffer p_key and initialization vector from buffer p_iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast num_bytes bytes of data and
padded with 0's to make 16-byte block.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_bytes bytes of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
p_dest to be padded with '0's to make 16-byte block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,303 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_256CbcDecrypt()

uint32_t R_SCE_HRK_AES_256CbcDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted AES 256-bit ECB mode implementation for decrypt interface API.

Decrypt num_words words of input data from buffer p_source using a wrapped 256-bit AES key
from buffer p_key and initialization vector from buffer p_iv. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for at least num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 256-bit AES key generated using the
R_SCE_HRK_AES_256CreateEncryptedKey().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,304 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_256CbcEncrypt()

uint32_t R_SCE_HRK_AES_256CbcEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted AES 256-bit CBC mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using the 256-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for at least num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 256-bit AES key generated using the
R_SCE_HRK_AES_256CreateEncryptedKey().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,305 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_256CreateEncryptedKey()

uint32_t R_SCE_HRK_AES_256CreateEncryptedKey (aes_ctrl_t *const p_ctrl, uint32_t num_words,
uint32_t * p_key)

Encrypted Wrapped key creation for AES 256-bit applies for CBC, ECB, CTR, GCM chaining mode
implementations. Create a num_words words of wrapped key for AES XTS chaining mode. The
result will be written to the output buffer p_key. The p_key array is assumed to have space for at
least num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_INVALID_SIZE Insufficient buffer size to accommodate
created key

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_ctrl parameter is not used

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,306 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_256CtrEncrypt()

uint32_t R_SCE_HRK_AES_256CtrEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t
* p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted key AES 256-bit CTR mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using a wrapped 256-bit AES key
from buffer p_key and initialization vector from buffer p_iv. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for at least num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 256-bit AES key generated using the
R_SCE_HRK_AES_256CreateEncryptedKey().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,307 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_256EcbDecrypt()

uint32_t R_SCE_HRK_AES_256EcbDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted key AES 256-bit ECB mode implementation for decrypt interface API.

Decrypt num_words words of input data from buffer p_source using the 256-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for at least num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 256-bit AES key generated using the
R_SCE_HRK_AES_256CreateEncryptedKey().
The contents of p_iv buffer are ignored and can be NULL in ECB chaining mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,308 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_256EcbEncrypt()

uint32_t R_SCE_HRK_AES_256EcbEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted key AES 256-bit ECB mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using a wrapped 256-bit AES key
from buffer p_key and initialization vector from buffer p_iv. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for at least num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 256-bit AES key generated using the
R_SCE_HRK_AES_256CreateEncryptedKey().
The contents of p_iv buffer are ignored and can be NULL in ECB chaining mode.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,309 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_256GcmDecrypt()

uint32_t R_SCE_HRK_AES_256GcmDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_words words of input data from buffer p_source using the 256-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

◆ R_SCE_HRK_AES_256GcmEncrypt()

uint32_t R_SCE_HRK_AES_256GcmEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key,
uint32_t * p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypt num_words words of input data from buffer p_source using the 256-bit AES p_key from
buffer p_key and initialization vector from buffer p_iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,310 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_256GcmGetGcmTag()

uint32_t R_SCE_HRK_AES_256GcmGetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words,
uint32_t * p_dest)

Get AES 256-bit GCM authentication tag data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

◆ R_SCE_HRK_AES_256GcmOpen()

uint32_t R_SCE_HRK_AES_256GcmOpen (aes_ctrl_t *const p_ctrl, aes_cfg_t const *const p_cfg)

AES Open function.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

◆ R_SCE_HRK_AES_256GcmSetGcmTag()

uint32_t R_SCE_HRK_AES_256GcmSetGcmTag (aes_ctrl_t *const p_ctrl, uint32_t num_words,
uint32_t * p_source)

Sets the expected authentication tag value for the AES-GCM-HRK Decryption related functions.
Copies the provided tag value to the corresponding internal control structure member return
success.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,311 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_256GcmZeroPaddingDecrypt()

uint32_t R_SCE_HRK_AES_256GcmZeroPaddingDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t *
p_key, uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

Decrypt num_bytes bytes of input data from buffer p_source using the 256-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for atleast num_bytes bytes of data and padded
with 0's to make 16-byte block.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

SSP_ERR_CRYPTO_NOT_IMPLEMENTED This function is not implemented.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_bytes bytes of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
p_dest to be padded with '0's to make 16-byte block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,312 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_256GcmZeroPaddingEncrypt()

uint32_t R_SCE_HRK_AES_256GcmZeroPaddingEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t *
p_key, uint32_t * p_iv, uint32_t num_bytes, uint32_t * p_source, uint32_t * p_dest)

Encrypt num_bytes bytes of input data from buffer p_source using the 256-bit AES p_key from
buffer p_key and initialization vector from buffer p_iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast num_bytes bytes of data and
padded with 0's to make 16-byte block.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Plain text key is passed

SSP_ERR_ASSERTION An input parameter is NULL.

SSP_ERR_CRYPTO_NOT_IMPLEMENTED This function is not implemented.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least num_bytes bytes of data.
The p_key buffer must contain 16 bytes of AES key data and
the p_iv buffer must have at least 16 bytes of random data.
p_dest to be padded with '0's to make 16-byte block.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,313 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_256XtsCreateEncryptedKey()

uint32_t R_SCE_HRK_AES_256XtsCreateEncryptedKey (aes_ctrl_t *const p_ctrl, uint32_t
num_words, uint32_t * p_key)

Encrypted Wrapped key creation for AES 256-bit XTS mode implementation.

Create a num_words words of wrapped key for AES XTS chaining mode. The result will be written to
the output buffer p_key. The p_key array is assumed to have space for at least num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_INVALID_SIZE Insufficient buffer size to accommodate
created key

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,314 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_256XtsDecrypt()

uint32_t R_SCE_HRK_AES_256XtsDecrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t
* p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted key AES 256-bit XTS mode implementation for decrypt interface API.

Decrypt num_words words of input data from buffer p_source using a wrapped 256-bit AES key
from buffer p_key and initialization vector from buffer p_iv. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for at least num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Invalid Key

SSP_ERR_INVALID_SIZE Invalid size

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4 and must be less than 128M
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 256-bit AES key generated using the
R_SCE_HRK_AES_256XtsCreateEncryptedKey().

Verify the upper-limit of num_words

HW_SCE_AES_256XtsDecryptUsingEncryptedKey takes a pointer (InData_Len) whose value is in
number of bits

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,315 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_256XtsEncrypt()

uint32_t R_SCE_HRK_AES_256XtsEncrypt (aes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t
* p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypted key AES 256-bit XTS mode implementation for encrypt interface API.

Encrypt num_words words of input data from buffer p_source using the 256-bit AES key from buffer
p_key and initialization vector from buffer p_iv. The result will be written to the output buffer from
p_dest. The p_dest array is assumed to have space for at least num_words words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

SSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX Invalid Key

SSP_ERR_INVALID_SIZE Invalid size

SSP_ERR_ASSERTION An input parameter is NULL.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
num_words must be a multiple of 4 and must be less than 128M
p_dest must have space to hold at least num_words words of data.
The p_key is a wrapped/encrypted 256-bit AES key generated using the
R_SCE_HRK_AES_256XtsCreateEncryptedKey().

Verify the upper-limit of num_words

HW_SCE_AES_256XtsEncryptUsingEncryptedKey takes a pointer (InData_Len) whose value is in
number of bits

◆ R_SCE_HRK_AES_Close()

uint32_t R_SCE_HRK_AES_Close (aes_ctrl_t *const p_ctrl)

AES Close function.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,316 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ R_SCE_HRK_AES_Open()

uint32_t R_SCE_HRK_AES_Open (aes_ctrl_t *const p_ctrl, aes_cfg_t const *const p_cfg)

AES Open function.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

Variable Documentation

◆ g_aes128ecb_on_sceHrk

const aes_api_t g_aes128ecb_on_sceHrk

=

{

 .open = R_SCE_HRK_AES_Open,

 .encrypt = R_SCE_HRK_AES_128EcbEncrypt,

 .decrypt = R_SCE_HRK_AES_128EcbDecrypt,

 .close = R_SCE_HRK_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .createKey = R_SCE_HRK_AES_128CreateEncryptedKey,

 .encryptFinal = R_SCE_AES_EImpl_EncryptFinal,

 .zeroPaddingEncrypt = R_SCE_AES_EImpl_ZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_AES_EImpl_ZeroPaddingDecrypt,

 .addAdditionalAuthenticationData =

R_SCE_AES_EImpl_AddAdditionalAuthenticationData,

 .setGcmTag = R_SCE_AES_EImpl_SetGcmTag,

 .getGcmTag = R_SCE_AES_EImpl_GetGcmTag

}

HRK Supported global structure definitions

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,317 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HRK AES

◆ g_aes192gcm_on_sceHrk

const aes_api_t g_aes192gcm_on_sceHrk

=

{

 .open = R_SCE_HRK_AES_192GcmOpen,

 .createKey = R_SCE_HRK_AES_192CreateEncryptedKey,

 .encrypt = R_SCE_HRK_AES_192GcmEncrypt,

 .decrypt = R_SCE_HRK_AES_192GcmDecrypt,

 .getGcmTag = R_SCE_HRK_AES_192GcmGetGcmTag,

 .setGcmTag = R_SCE_HRK_AES_192GcmSetGcmTag,

 .close = R_SCE_HRK_AES_Close,

 .versionGet = R_SCE_AES_VersionGet,

 .zeroPaddingEncrypt = R_SCE_HRK_AES_192GcmZeroPaddingEncrypt,

 .zeroPaddingDecrypt = R_SCE_HRK_AES_192GcmZeroPaddingDecrypt

}

AES 192-bit GCM HRK mode implementation

 SCE ARC4
Renesas Synergy Software Package Reference » HAL Layer » SCE Module

Primitive cryptographic functions. More...

Functions

uint32_t R_SCE_ARC4_Open (arc4_ctrl_t *const p_ctrl, arc4_cfg_t const *const
p_cfg)

uint32_t R_SCE_ARC4_Close (arc4_ctrl_t *const p_ctrl)

uint32_t R_SCE_ARC4_Process (arc4_ctrl_t *const p_ctrl, uint32_t num_bytes,
uint8_t *p_source, uint8_t *p_dest)

 ARC4 Encrypt or decrypt source data and output result to destination
buffer. More...

uint32_t R_SCE_ARC4_VersionGet (ssp_version_t *const p_version)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,318 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE ARC4

 Sets driver version based on compile time macros. More...

uint32_t R_SCE_ARC4_KeySet (arc4_ctrl_t *const p_ctrl, uint32_t length,
uint8_t const *p_key)

 Sets user provided for use with subsequent encryptions. More...

Detailed Description

Primitive cryptographic functions.

ARC4 encryption and decryption functions

Function Documentation

◆ R_SCE_ARC4_Close()

uint32_t R_SCE_ARC4_Close (arc4_ctrl_t *const p_ctrl)

ARC4 Finalization

Return values
SF_CRYPTO_SUCCESS successful

◆ R_SCE_ARC4_KeySet()

uint32_t R_SCE_ARC4_KeySet (arc4_ctrl_t *const p_ctrl, uint32_t length, uint8_t const * p_key)

Sets user provided for use with subsequent encryptions.

Return values
SF_CRYPTO_SUCCESS KeySet successful

SSP_ERR_NOT_OPEN Module not opened.

SSP_ERR_ASSERTION One of input parameter is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,319 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE ARC4

◆ R_SCE_ARC4_Open()

uint32_t R_SCE_ARC4_Open (arc4_ctrl_t *const p_ctrl, arc4_cfg_t const *const p_cfg)

ARC4 Initialization

Return values
SF_CRYPTO_SUCCESS successful.

SSP_ERR_CRYPTO_SCE_ALREADY_OPEN ARC4 module is already in open state and is
usable for the given p_ctrl parameter.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_NOT_OPEN Crypto HAL Common module is not Opened.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

◆ R_SCE_ARC4_Process()

uint32_t R_SCE_ARC4_Process (arc4_ctrl_t *const p_ctrl, uint32_t num_bytes, uint8_t * p_source,
uint8_t * p_dest)

ARC4 Encrypt or decrypt source data and output result to destination buffer.

Return values
SSP_ERR_CRYPTO_INVALID_STATE Invalid state, ensure that key data is

configured either using the open() or using
the keyset() function.

SSP_ERR_CRYPTO_INVALID_SIZE invalid num_bytes passed. Should be a
multiple of 16.

SF_CRYPTO_SUCCESS successful.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_SCE_FAIL An internal error has occurred.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Hardware is busy, unable to encrypt at this
time.

Encrypt or decrypt input data using the previously configured key data

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,320 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE ARC4

◆ R_SCE_ARC4_VersionGet()

uint32_t R_SCE_ARC4_VersionGet (ssp_version_t *const p_version)

Sets driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

 SCE DSA
Renesas Synergy Software Package Reference » HAL Layer » SCE Module

Primitive cryptographic functions. More...

Functions

uint32_t R_SCE_DSA_Open (dsa_ctrl_t *const p_ctrl, dsa_cfg_t const *const
p_cfg)

uint32_t R_SCE_DSA_VersionGet (ssp_version_t *const p_version)

 Sets driver version based on compile time macros. More...

uint32_t R_SCE_DSA_Close (dsa_ctrl_t *const p_ctrl)

uint32_t R_SCE_DSA_1024_160SignatureVerify (const uint32_t *p_key, const
uint32_t *p_domain, uint32_t imaxcnt, uint32_t *p_signature,
uint32_t *p_paddedHash)

 Signature verification using (1024-bit,160-bit) DSA public key.
More...

uint32_t R_SCE_DSA_1024_160SignatureGenerate (const uint32_t *p_key,
const uint32_t *p_domain, uint32_t imaxcnt, uint32_t *p_source,
uint32_t *p_dest)

 Signature generation using (1024-bit,160-bit) DSA private key.
More...

uint32_t R_SCE_DSA_1024_160HashSignatureVerify (dsa_ctrl_t *const p_ctrl,
const uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_signature, uint32_t *p_paddedHash)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,321 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

 Signature verification using (1024-bit,160-bit) DSA public key.
More...

uint32_t R_SCE_DSA_1024_160HashSignatureGenerate (dsa_ctrl_t *const
p_ctrl, const uint32_t *p_key, const uint32_t *p_domain, uint32_t
imaxcnt, uint32_t *p_source, uint32_t *p_dest)

 Signature generation using (1024-bit,160-bit) DSA private key.
More...

uint32_t R_SCE_DSA_2048_224SignatureVerify (const uint32_t *p_key, const
uint32_t *p_domain, uint32_t imaxcnt, uint32_t *p_signature,
uint32_t *p_paddedHash)

 Signature verification using (2048-bit,224-bit) DSA public key.
More...

uint32_t R_SCE_DSA_2048_224SignatureGenerate (const uint32_t *p_key,
const uint32_t *p_domain, uint32_t imaxcnt, uint32_t *p_source,
uint32_t *p_dest)

 Signature generation using (2048-bit,224-bit) DSA private key.
More...

uint32_t R_SCE_DSA_2048_224HashSignatureVerify (dsa_ctrl_t *const p_ctrl,
const uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_signature, uint32_t *p_paddedHash)

 Signature verification using (2048-bit,224-bit) DSA public key.
More...

uint32_t R_SCE_DSA_2048_224HashSignatureGenerate (dsa_ctrl_t *const
p_ctrl, const uint32_t *p_key, const uint32_t *p_domain, uint32_t
imaxcnt, uint32_t *p_source, uint32_t *p_dest)

 Signature generation using (2048-bit,224-bit) DSA private key.
More...

uint32_t R_SCE_DSA_2048_256SignatureVerify (const uint32_t *p_key, const
uint32_t *p_domain, uint32_t imaxcnt, uint32_t *p_signature,
uint32_t *p_paddedHash)

 Signature verification using (2048-bit,256-bit) DSA public key.
More...

uint32_t R_SCE_DSA_2048_256SignatureGenerate (const uint32_t *p_key,
const uint32_t *p_domain, uint32_t imaxcnt, uint32_t *p_source,
uint32_t *p_dest)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,322 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

 Signature generation using (2048-bit,256-bit) DSA private key.
More...

uint32_t R_SCE_DSA_2048_256HashSignatureVerify (dsa_ctrl_t *const p_ctrl,
const uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_signature, uint32_t *p_paddedHash)

 Signature verification using (2048-bit,256-bit) DSA public key.
More...

uint32_t R_SCE_DSA_2048_256HashSignatureGenerate (dsa_ctrl_t *const
p_ctrl, const uint32_t *p_key, const uint32_t *p_domain, uint32_t
imaxcnt, uint32_t *p_source, uint32_t *p_dest)

 Signature generation using (2048-bit,256-bit) DSA private key.
More...

Variables

const dsa_api_t g_dsa1024_160_on_sce

const dsa_api_t g_dsa2048_224_on_sce

const dsa_api_t g_dsa2048_256_on_sce

Detailed Description

Primitive cryptographic functions.

Primitive cryptographic functions (L=2048,N=256) DSA.

DSA signature generation and verification functions

DSA signature generation and verification functions (L=1024,N=160) DSA

DSA signature generation and verification functions (L=2048,N=224) DSA

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,323 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ R_SCE_DSA_1024_160HashSignatureGenerate()

uint32_t R_SCE_DSA_1024_160HashSignatureGenerate (dsa_ctrl_t *const p_ctrl, const uint32_t *
p_key, const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using (1024-bit,160-bit) DSA private key.

Sign imaxcnt words of input data from buffer p_source using the (L=1024,N=160)-bit DSA private
key from buffer p_key and domain parameters from buffer p_domain. The result will be written to
the output buffer from p_dest. The p_dest array is assumed to have space for atleast 2*imaxcnt
words of data.

Return values
SF_CRYPTO_SUCCESS Call successful

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE DSA module must have been initialized by calling dsa_api_t::open

Note
p_dest must have space to hold at least 2*imaxcnt words of data.
The p_key buffer must contain a valid DSA private key data and p_domain should contain DSA domain parameters
in the order (Q || P || G) where Q is 5 words, P is 32 words and G is 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,324 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ R_SCE_DSA_1024_160HashSignatureVerify()

uint32_t R_SCE_DSA_1024_160HashSignatureVerify (dsa_ctrl_t *const p_ctrl, const uint32_t *
p_key, const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_signature, uint32_t *
p_paddedHash)

Signature verification using (1024-bit,160-bit) DSA public key.

Verify DSA signature data from buffer p_signature of length 2*imaxcnt words using
(L=1024,N=160) DSA public key from buffer p_key. The buffer p_paddedHash indicates the
message buffer from which the DSA signature should have been generated.

Return values
SF_CRYPTO_SUCCESS Call successful

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL Incorrect signature

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE DSA module must have been initialized by calling dsa_api_t::open

Note
The p_key buffer must contain 32 words of DSA public key data
The p_domain buffer must contain (20+128+128) bytes of data in the format (Q || P || G) where Q is 5 words, P is
32 words and G is 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,325 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ R_SCE_DSA_1024_160SignatureGenerate()

uint32_t R_SCE_DSA_1024_160SignatureGenerate (const uint32_t * p_key, const uint32_t *
p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using (1024-bit,160-bit) DSA private key.

Sign imaxcnt words of input data from buffer p_source using the (L=1024,N=160)-bit DSA private
key from buffer p_key and domain parameters from buffer p_domain. The result will be written to
the output buffer from p_dest. The p_dest array is assumed to have space for atleast 2*imaxcnt
words of data.

Return values
SF_CRYPTO_SUCCESS Call successful

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE DSA module must have been initialized by calling dsa_api_t::open

Note
p_dest must have space to hold at least 2*imaxcnt words of data.
The p_key buffer must contain a valid DSA private key data and p_domain should contain DSA domain parameters
in the order (Q || P || G) where Q is 5 words, P is 32 words and G is 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,326 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ R_SCE_DSA_1024_160SignatureVerify()

uint32_t R_SCE_DSA_1024_160SignatureVerify (const uint32_t * p_key, const uint32_t *
p_domain, uint32_t imaxcnt, uint32_t * p_signature, uint32_t * p_paddedHash)

Signature verification using (1024-bit,160-bit) DSA public key.

Verify DSA signature data from buffer p_signature of length 2*imaxcnt words using
(L=1024,N=160) DSA public key from buffer p_key. The buffer p_paddedHash indicates the
message buffer from which the DSA signature should have been generated.

Return values
SF_CRYPTO_SUCCESS Call successful

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL Incorrect signature

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE DSA module must have been initialized by calling dsa_api_t::open

Note
The p_key buffer must contain 32 words of DSA public key data
The p_domain buffer must contain (20+128+128) bytes of data in the format (Q || P || G) where Q is 5 words, P is
32 words and G is 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,327 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ R_SCE_DSA_2048_224HashSignatureGenerate()

uint32_t R_SCE_DSA_2048_224HashSignatureGenerate (dsa_ctrl_t *const p_ctrl, const uint32_t *
p_key, const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using (2048-bit,224-bit) DSA private key.

Sign imaxcnt words of input data from buffer p_source using the (L=2048,N=224)-bit DSA private
key from buffer key and domain parameters from buffer p_domain. The result will be written to the
output buffer from p_dest. The p_dest array is assumed to have space for atleast imaxcnt words of
data.

Return values
SF_CRYPTO_SUCCESS Call successful

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE DSA module must have been initialized by calling dsa_api_t::open

Note
p_dest must have space to hold at least 2*imaxcnt words of data.
The key buffer must contain 7 words of DSA private key data
p_domain must contain valid DSA domain parameters

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,328 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ R_SCE_DSA_2048_224HashSignatureVerify()

uint32_t R_SCE_DSA_2048_224HashSignatureVerify (dsa_ctrl_t *const p_ctrl, const uint32_t *
p_key, const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_signature, uint32_t *
p_paddedHash)

Signature verification using (2048-bit,224-bit) DSA public key.

Verify DSA signature from buffer p_signature using the given DSA public key p_key with domain
parameters from p_domain for the input message hash p_paddedHash

Return values
SF_CRYPTO_SUCCESS Call successful

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL Signature verification failed.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE DSA module must have been initialized by calling dsa_api_t::open

Note
The p_key buffer must contain 64 words of DSA public key data
The p_domain buffer must contain (28+256+256) bytes of data in the format (Q || P || G) where Q is 7 words, P is
64 words and G is 64 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,329 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ R_SCE_DSA_2048_224SignatureGenerate()

uint32_t R_SCE_DSA_2048_224SignatureGenerate (const uint32_t * p_key, const uint32_t *
p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using (2048-bit,224-bit) DSA private key.

Sign imaxcnt words of input data from buffer p_source using the (L=2048,N=224)-bit DSA private
key from buffer key and domain parameters from buffer p_domain. The result will be written to the
output buffer from p_dest. The p_dest array is assumed to have space for atleast imaxcnt words of
data.

Return values
SF_CRYPTO_SUCCESS Call successful

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE DSA module must have been initialized by calling dsa_api_t::open

Note
p_dest must have space to hold at least 2*imaxcnt words of data.
The key buffer must contain 7 words of DSA private key data
p_domain must contain valid DSA domain parameters

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,330 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ R_SCE_DSA_2048_224SignatureVerify()

uint32_t R_SCE_DSA_2048_224SignatureVerify (const uint32_t * p_key, const uint32_t *
p_domain, uint32_t imaxcnt, uint32_t * p_signature, uint32_t * p_paddedHash)

Signature verification using (2048-bit,224-bit) DSA public key.

Verify DSA signature data from buffer p_signature of length (2 * 'imaxcnt' words) using
(L=2048,N=224) DSA public key. from buffer p_key. The buffer p_paddedHash indicates the
message buffer from which the DSA signature should have been generated.

Return values
SF_CRYPTO_SUCCESS Call successful

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL Signature verification failed.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE DSA module must have been initialized by calling dsa_api_t::open

Note
The p_key buffer must contain 256 bytes of DSA public key data.
The p_domain buffer must contain (28+256+256) bytes of data in the format (Q || P || G).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,331 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ R_SCE_DSA_2048_256HashSignatureGenerate()

uint32_t R_SCE_DSA_2048_256HashSignatureGenerate (dsa_ctrl_t *const p_ctrl, const uint32_t *
p_key, const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using (2048-bit,256-bit) DSA private key.

Generate signature for the buffer p_paddedHash with the given DSA private key p_key for the
domain parameters p_domain. The result will be written to the buffer p_dest

Sign imaxcnt words of input data from buffer p_source using the (L=2048,N=256)-bit DSA private
key from buffer key and domain parameters from buffer p_domain. The result will be written to the
output buffer from p_dest. The p_dest array is assumed to have space for atleast imaxcnt words of
data.

Return values
SF_CRYPTO_SUCCESS Call successful

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE DSA module must have been initialized by calling dsa_api_t::open

Note
p_dest must have space to hold at least 2*imaxcnt words of data.
The key buffer must contain 8 words of DSA private key data

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,332 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ R_SCE_DSA_2048_256HashSignatureVerify()

uint32_t R_SCE_DSA_2048_256HashSignatureVerify (dsa_ctrl_t *const p_ctrl, const uint32_t *
p_key, const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_signature, uint32_t *
p_paddedHash)

Signature verification using (2048-bit,256-bit) DSA public key.

Verify DSA signature from buffer p_signature using the given DSA public key p_key with domain
parameters from p_domain for the input message hash p_paddedHash

Return values
SF_CRYPTO_SUCCESS Call successful.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL Signature verification failed.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Precondition
SCE DSA module must have been initialized by calling dsa_api_t::open

Note
The p_key buffer must contain 256 bytes of DSA public key data
The p_domain buffer must contain (32+256+256) bytes of data in the format (Q || P || G).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,333 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ R_SCE_DSA_2048_256SignatureGenerate()

uint32_t R_SCE_DSA_2048_256SignatureGenerate (const uint32_t * p_key, const uint32_t *
p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using (2048-bit,256-bit) DSA private key.

Generate signature for the buffer p_paddedHash with the given DSA private key p_key for the
domain parameters p_domain. The result will be written to the buffer p_dest

Sign imaxcnt words of input data from buffer p_source using the (L=2048,N=256)-bit DSA private
key from buffer key and domain parameters from buffer p_domain. The result will be written to the
output buffer from p_dest. The p_dest array is assumed to have space for atleast imaxcnt words of
data.

Return values
SF_CRYPTO_SUCCESS Call successful

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE DSA module must have been initialized by calling dsa_api_t::open

Note
p_dest must have space to hold at least 2*imaxcnt words of data.
The key buffer must contain 8 words of DSA private key data

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,334 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ R_SCE_DSA_2048_256SignatureVerify()

uint32_t R_SCE_DSA_2048_256SignatureVerify (const uint32_t * p_key, const uint32_t *
p_domain, uint32_t imaxcnt, uint32_t * p_signature, uint32_t * p_paddedHash)

Signature verification using (2048-bit,256-bit) DSA public key.

Verify DSA signature data from buffer p_signature of length (2 * 'imaxcnt' words) using
(L=2048,N=224) DSA public key. from buffer p_key. The buffer p_paddedHash indicates the
message buffer from which the DSA signature should have been generated.

Return values
SF_CRYPTO_SUCCESS Call successful.

SSP_ERR_ASSERTION An input parameter is invalid.

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL Signature verification failed.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Precondition
SCE DSA module must have been initialized by calling dsa_api_t::open

Note
The p_key buffer must contain 256 bytes of DSA public key data
The p_domain buffer must contain (32+256+256) bytes of data in the format (Q || P || G).

◆ R_SCE_DSA_Close()

uint32_t R_SCE_DSA_Close (dsa_ctrl_t *const p_ctrl)

Close DSA driver

Return values
SF_CRYPTO_SUCCESS Call successful

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,335 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ R_SCE_DSA_Open()

uint32_t R_SCE_DSA_Open (dsa_ctrl_t *const p_ctrl, dsa_cfg_t const *const p_cfg)

DSA Initialization

Return values
SF_CRYPTO_SUCCESS Call successful

SSP_ERR_ASSERTION The parameter p_ctrl or p_cfg is NULL.

SSP_ERR_CRYPTO_NOT_OPEN Crypto HAL Common module is not Opened.

Precondition
SCE module must have been initialized by calling crypto_api_t::open

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

◆ R_SCE_DSA_VersionGet()

uint32_t R_SCE_DSA_VersionGet (ssp_version_t *const p_version)

Sets driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Variable Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,336 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ g_dsa1024_160_on_sce

const dsa_api_t g_dsa1024_160_on_sce

=

{

 .open = R_SCE_DSA_Open,

 .sign = R_SCE_DSA_1024_160SignatureGenerate,

 .verify = R_SCE_DSA_1024_160SignatureVerify,

 .close = R_SCE_DSA_Close,

 .versionGet = R_SCE_DSA_VersionGet,

 .hashSign = R_SCE_DSA_1024_160HashSignatureGenerate,

 .hashVerify = R_SCE_DSA_1024_160HashSignatureVerify

}

SCE/DSA implementation of DSA API.

◆ g_dsa2048_224_on_sce

const dsa_api_t g_dsa2048_224_on_sce

=

{

 .open = R_SCE_DSA_Open,

 .sign = R_SCE_DSA_2048_224SignatureGenerate,

 .verify = R_SCE_DSA_2048_224SignatureVerify,

 .close = R_SCE_DSA_Close,

 .versionGet = R_SCE_DSA_VersionGet,

 .hashSign = R_SCE_DSA_2048_224HashSignatureGenerate,

 .hashVerify = R_SCE_DSA_2048_224HashSignatureVerify,

}

SCE/DSA implementation of DSA API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,337 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE DSA

◆ g_dsa2048_256_on_sce

const dsa_api_t g_dsa2048_256_on_sce

=

{

 .open = R_SCE_DSA_Open,

 .sign = R_SCE_DSA_2048_256SignatureGenerate,

 .verify = R_SCE_DSA_2048_256SignatureVerify,

 .close = R_SCE_DSA_Close,

 .versionGet = R_SCE_DSA_VersionGet,

 .hashSign = R_SCE_DSA_2048_256HashSignatureGenerate,

 .hashVerify = R_SCE_DSA_2048_256HashSignatureVerify

}

SCE/DSA implementation of DSA API.

 SCE HASH
Renesas Synergy Software Package Reference » HAL Layer » SCE Module

Primitive cryptographic functions. More...

Functions

uint32_t R_SCE_HASH_VersionGet (ssp_version_t *const p_version)

 Sets driver version based on compile time macros. More...

uint32_t R_SCE_MD5_Open (hash_ctrl_t *const p_ctrl, hash_cfg_t const *const
p_cfg)

 SCE MD5 open function. More...

uint32_t R_SCE_MD5_Close (hash_ctrl_t *const p_ctrl)

 SCE MD5 Close function. More...

uint32_t R_SCE_MD5_UpdateHash (const uint32_t *p_msg, uint32_t
num_words, uint32_t *p_digest)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,338 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HASH

 MD5 Update Hash function. More...

uint32_t R_SCE_MD5_HashUpdate (hash_ctrl_t *const p_ctrl, const uint32_t
*p_msg, uint32_t num_words, uint32_t *p_digest)

 MD5 HashUpdate Function. More...

uint32_t R_SCE_SHA1_Open (hash_ctrl_t *const p_ctrl, hash_cfg_t const *const
p_cfg)

 SCE SHA1 open function using the SCE block. More...

uint32_t R_SCE_SHA1_Close (hash_ctrl_t *const p_ctrl)

 SCE SHA1 Close function. More...

uint32_t R_SCE_SHA1_UpdateHash (const uint32_t *p_msg, uint32_t
num_words, uint32_t *p_digest)

 Computes the SHA1 message digest of the input message. More...

uint32_t R_SCE_SHA1_HashUpdate (hash_ctrl_t *const p_ctrl, const uint32_t
*p_msg, uint32_t num_words, uint32_t *p_digest)

 Computes the SHA1 message digest of the input message. More...

uint32_t R_SCE_SHA256_Open (hash_ctrl_t *const p_ctrl, hash_cfg_t const
*const p_cfg)

 SCE SHA256 HASH Initialization. More...

uint32_t R_SCE_SHA256_Close (hash_ctrl_t *const p_ctrl)

 SCE SHA256 Close function. More...

uint32_t R_SCE_SHA256_UpdateHash (const uint32_t *p_msg, uint32_t
num_words, uint32_t *p_digest)

 Update hash value using the given input message from buffer
p_source of num_words words, write the result to p_digest More...

uint32_t R_SCE_SHA256_HashUpdate (hash_ctrl_t *const p_ctrl, const uint32_t
*p_msg, uint32_t num_words, uint32_t *p_digest)

 Update hash value using the given input message from buffer
p_source of num_words words, write the result to p_digest More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,339 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HASH

Variables

const hash_api_t g_md5_hash_on_sce

const hash_api_t g_sha1_hash_on_sce

const hash_api_t g_sha256_hash_on_sce

Detailed Description

Primitive cryptographic functions.

HASH functions

message hashing/digest functions

message hasing/digest functions

Function Documentation

◆ R_SCE_HASH_VersionGet()

uint32_t R_SCE_HASH_VersionGet (ssp_version_t *const p_version)

Sets driver version based on compile time macros.

SCE HASH Get Version

Parameters
[in] p_version pointer to ssp_version_t

structure where the version
info will be stored

Return values
SF_CRYPTO_SUCCESS Version information is returned successfully.

SSP_ERR_ASSERTION The parameter p_version is NULL.

◆ R_SCE_MD5_Close()

uint32_t R_SCE_MD5_Close (hash_ctrl_t *const p_ctrl)

SCE MD5 Close function.

Return values
SF_CRYPTO_SUCCESS Module closed successfully.

SSP_ERR_ASSERTION The input parameter is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,340 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HASH

◆ R_SCE_MD5_HashUpdate()

uint32_t R_SCE_MD5_HashUpdate (hash_ctrl_t *const p_ctrl, const uint32_t * p_msg, uint32_t
num_words, uint32_t * p_digest)

MD5 HashUpdate Function.

Compute the MD5 message digest for the given input message buffer p_msg of length num_words
words. The length of the message buffer needs to be a multiple of 64 bytes. Generally the content
of the message buffer are the padded value as given by Message||stopbit||zero padding||Message
length.

The initial hash value given in buffer p_digest will be used and this buffer will be updated with the
computed MD5 message digest value.

Return values
SF_CRYPTO_SUCCESS Function completed successfully.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

SSP_ERR_ASSERTION Input parameter p_digest is NULL.

Note
: The final message digest has to be byte swapped / the order of the bytes have to be
: reversed (the output of the intermediate updates do not have to be swapped).
: The message length has to be byte swapped (the endianness has to be reversed).

◆ R_SCE_MD5_Open()

uint32_t R_SCE_MD5_Open (hash_ctrl_t *const p_ctrl, hash_cfg_t const *const p_cfg)

SCE MD5 open function.

Return values
SF_CRYPTO_SUCCESS Module opened successfully.

SSP_ERR_ASSERTION At least one of the input parameters is
NULL.

SSP_ERR_CRYPTO_NOT_OPEN Crypto HAL Common module is not Opened.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,341 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HASH

◆ R_SCE_MD5_UpdateHash()

uint32_t R_SCE_MD5_UpdateHash (const uint32_t * p_msg, uint32_t num_words, uint32_t *
p_digest)

MD5 Update Hash function.

Compute the MD5 message digest for the given input message buffer p_msg of length num_words
words. The length of the message buffer needs to be a multiple of 64 bytes. Generally the content
of the message buffer are the padded value as given by Message||stopbit||zero padding||Message
length.

The initial hash value given in buffer p_digest will be used and this buffer will be updated with the
computed MD5 message digest value.

Return values
SF_CRYPTO_SUCCESS Function completed successfully.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

SSP_ERR_ASSERTION At least one of the input parameters is
NULL.

Note
: The final message digest has to be byte swapped / the order of the bytes have to be
: reversed (the output of the intermediate updates do not have to be swapped).
: The message length has to be byte swapped (the endianness has to be reversed).

◆ R_SCE_SHA1_Close()

uint32_t R_SCE_SHA1_Close (hash_ctrl_t *const p_ctrl)

SCE SHA1 Close function.

Return values
SF_CRYPTO_SUCCESS Module is closed successfully.

SSP_ERR_ASSERTION The input parameter is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,342 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HASH

◆ R_SCE_SHA1_HashUpdate()

uint32_t R_SCE_SHA1_HashUpdate (hash_ctrl_t *const p_ctrl, const uint32_t * p_msg, uint32_t
num_words, uint32_t * p_digest)

Computes the SHA1 message digest of the input message.

Compute the SHA1 message digest for the given input message buffer p_msg of length num_words
words. The length of the message buffer needs to be a multiple of 64 bytes. Generally the content
of the message buffer are the padded value as given by Message||stopbit||zero padding||Message
length.

The initial hash value given in buffer p_digest will be used and this buffer will be updated with the
computed SHA1 message digest value.

Return values
SSP_ERR_ASSERTION Input parameter p_digest is NULL.

SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

◆ R_SCE_SHA1_Open()

uint32_t R_SCE_SHA1_Open (hash_ctrl_t *const p_ctrl, hash_cfg_t const *const p_cfg)

SCE SHA1 open function using the SCE block.

SHA1 HASH Initialization

Return values
SF_CRYPTO_SUCCESS open successful

SSP_ERR_ASSERTION At least one of the input parameters is
NULL.

SSP_ERR_CRYPTO_NOT_OPEN Crypto HAL Common module is not Opened.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,343 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HASH

◆ R_SCE_SHA1_UpdateHash()

uint32_t R_SCE_SHA1_UpdateHash (const uint32_t * p_msg, uint32_t num_words, uint32_t *
p_digest)

Computes the SHA1 message digest of the input message.

Compute the SHA1 message digest for the given input message buffer p_msg of length num_words
words. The length of the message buffer needs to be a multiple of 64 bytes. Generally the content
of the message buffer are the padded value as given by Message||stopbit||zero padding||Message
length.

The initial hash value given in buffer p_digest will be used and this buffer will be updated with the
computed SHA1 message digest value.

Return values
SSP_ERR_ASSERTION At least one of the input parameters is

NULL.

SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

◆ R_SCE_SHA256_Close()

uint32_t R_SCE_SHA256_Close (hash_ctrl_t *const p_ctrl)

SCE SHA256 Close function.

Return values
SSP_ERR_ASSERTION The input parameter is NULL.

SF_CRYPTO_SUCCESS Module closed successfully.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,344 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HASH

◆ R_SCE_SHA256_HashUpdate()

uint32_t R_SCE_SHA256_HashUpdate (hash_ctrl_t *const p_ctrl, const uint32_t * p_msg, uint32_t
num_words, uint32_t * p_digest)

Update hash value using the given input message from buffer p_source of num_words words, write
the result to p_digest

Compute the SHA256 message digest for the given input message buffer p_msg of length
num_words words. The length of the message buffer needs to be a multiple of 64 bytes. Generally
the contents of the message buffer are the padded value as given by Message||stopbit||zero
padding||Message length.

The initial hash value as given in buffer p_digest will be used and this buffer will be updated with
the computed SHA256 message digest value.

Return values
SSP_ERR_ASSERTION Input parameter p_digest is NULL.

SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

◆ R_SCE_SHA256_Open()

uint32_t R_SCE_SHA256_Open (hash_ctrl_t *const p_ctrl, hash_cfg_t const *const p_cfg)

SCE SHA256 HASH Initialization.

Return values
SSP_ERR_ASSERTION At least one of the input parameters is

NULL.

SF_CRYPTO_SUCCESS successful completion.

SSP_ERR_CRYPTO_NOT_OPEN Crypto HAL Common module is not Opened.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,345 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HASH

◆ R_SCE_SHA256_UpdateHash()

uint32_t R_SCE_SHA256_UpdateHash (const uint32_t * p_msg, uint32_t num_words, uint32_t *
p_digest)

Update hash value using the given input message from buffer p_source of num_words words, write
the result to p_digest

Compute the SHA256 message digest for the given input message buffer p_msg of length
num_words words. The length of the message buffer needs to be a multiple of 64 bytes. Generally
the contents of the message buffer are the padded value as given by Message||stopbit||zero
padding||Message length.

The initial hash value as given in buffer p_digest will be used and this buffer will be updated with
the computed SHA256 message digest value.

Return values
SSP_ERR_ASSERTION At least one of the input parameters is

NULL.

SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Variable Documentation

◆ g_md5_hash_on_sce

const hash_api_t g_md5_hash_on_sce

=

{

 .open = R_SCE_MD5_Open,

 .updateHash = R_SCE_MD5_UpdateHash,

 .close = R_SCE_MD5_Close,

 .versionGet = R_SCE_HASH_VersionGet,

 .hashUpdate = R_SCE_MD5_HashUpdate

}

MD5 implementation of HASH API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,346 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE HASH

◆ g_sha1_hash_on_sce

const hash_api_t g_sha1_hash_on_sce

=

{

 .open = R_SCE_SHA1_Open,

 .updateHash = R_SCE_SHA1_UpdateHash,

 .close = R_SCE_SHA1_Close,

 .versionGet = R_SCE_HASH_VersionGet,

 .hashUpdate = R_SCE_SHA1_HashUpdate

}

SHA1 implementation of HASH API.

◆ g_sha256_hash_on_sce

const hash_api_t g_sha256_hash_on_sce

=

{

 .open = R_SCE_SHA256_Open,

 .updateHash = R_SCE_SHA256_UpdateHash,

 .close = R_SCE_SHA256_Close,

 .versionGet = R_SCE_HASH_VersionGet,

 .hashUpdate = R_SCE_SHA256_HashUpdate

}

SHA256 implementation of HASH API.

 SCE_ECC
Renesas Synergy Software Package Reference » HAL Layer » SCE Module

Primitive cryptographic functions. More...

Functions

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,347 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

ssp_err_t R_SCE_ECC_Open (ecc_ctrl_t *const p_ctrl, ecc_cfg_t const *const
p_cfg)

 ECC Initialization. More...

ssp_err_t R_SCE_ECC_Close (ecc_ctrl_t *const p_ctrl)

 ECC Close function. More...

ssp_err_t R_SCE_ECC_VersionGet (ssp_version_t *const p_version)

 Sets driver version based on compile time macros. More...

ssp_err_t R_SCE_ECC_192ScalarMultiplication (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_k, r_crypto_data_handle_t *const p_p,
r_crypto_data_handle_t *const p_r)

 Perform scalar multiplication of a scalar pointed by p_k (k) with a
point pointed by p_p (P) and return the result at location pointed by
p_r (R=kP). Ensure the domain parameter, p_domain, exists and is
valid. More...

ssp_err_t R_SCE_ECC_192KeyCreate (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const p_key_public)

 Generate public and private key pair for elliptic curve cryptography
on 192 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point,
exists and is valid. More...

ssp_err_t R_SCE_ECC_192PrivateKeySign (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const msg_digest,
r_crypto_data_handle_t *const signature_r, r_crypto_data_handle_t
*const signature_s)

 Generate signature of ECDSA on 192 bit of prime field. Ensure the
domain parameter, p_domain, exists and is valid. Ensure the
p_generator point, generator_point, exists and is valid. More...

ssp_err_t R_SCE_ECC_192PublicKeyVerify (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_public, r_crypto_data_handle_t *const msg_digest,
r_crypto_data_handle_t *const signature_r, r_crypto_data_handle_t
*const signature_s)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,348 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

 Signature verification of ECDSA on 192 bit of prime field. Ensure the
domain parameter, p_domain, exists and is valid. Ensure the
p_generator point, generator_point, exists and is valid. More...

ssp_err_t R_SCE_HRK_ECC_192ScalarMultiplication (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_key_index, r_crypto_data_handle_t *const p_p,
r_crypto_data_handle_t *const p_r)

 Perform scalar multiplication of p_key_index (k) (wrapped key) with a
point pointed by p_p (P) and return the result at location pointed by
p_r (R=kP). Ensure the domain parameter, p_domain, exists and is
valid. More...

ssp_err_t R_SCE_HRK_ECC_192KeyCreate (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_index, r_crypto_data_handle_t *const p_key_public)

 Generate public key and wrapped key for elliptic curve cryptography
on 192 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point,
exists and is valid. p_key_index is the wrapped key. More...

ssp_err_t R_SCE_HRK_ECC_192PrivateKeySign (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_index, r_crypto_data_handle_t *const msg_digest,
r_crypto_data_handle_t *const signature_r, r_crypto_data_handle_t
*const signature_s)

 Generate signature of ECDSA on 192 bit of prime field. Ensure the
domain parameter, p_domain, exists and is valid. Ensure the
p_generator point, generator_point, exists and is valid. p_key_index
is the wrapped key. More...

ssp_err_t R_SCE_ECC_224ScalarMultiplication (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_k, r_crypto_data_handle_t *const p_p,
r_crypto_data_handle_t *const p_r)

 Perform scalar multiplication of a scalar pointed by p_k (k) with a
point pointed by p_p (P) and return the result at location pointed by
p_r (R=kP). Ensure the domain parameter, p_domain, exists and is
valid. More...

ssp_err_t R_SCE_ECC_224KeyCreate (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const p_key_public)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,349 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

 Generate public and private key pair for elliptic curve cryptography
on 224 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point,
exists and is valid. More...

ssp_err_t R_SCE_ECC_224PrivateKeySign (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const msg_digest,
r_crypto_data_handle_t *const signature_r, r_crypto_data_handle_t
*const signature_s)

 Generate signature of ECDSA on 224 bit of prime field. Ensure the
domain parameter, p_domain, exists and is valid. Ensure the
p_generator point, generator_point, exists and is valid. More...

ssp_err_t R_SCE_ECC_224PublicKeyVerify (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_public, r_crypto_data_handle_t *const msg_digest,
r_crypto_data_handle_t *const signature_r, r_crypto_data_handle_t
*const signature_s)

 Signature verification of ECDSA on 224 bit of prime field. Ensure the
domain parameter, p_domain, exists and is valid. Ensure the
p_generator point, generator_point, exists and is valid. More...

ssp_err_t R_SCE_HRK_ECC_224ScalarMultiplication (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_key_index, r_crypto_data_handle_t *const p_p,
r_crypto_data_handle_t *const p_r)

 Perform scalar multiplication of p_key_index (k) (wrapped key) with a
point pointed by p_p (P) and return the result at location pointed by
p_r (R=kP). Ensure the domain parameter, p_domain, exists and is
valid. More...

ssp_err_t R_SCE_HRK_ECC_224KeyCreate (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_index, r_crypto_data_handle_t *const p_key_public)

 Generate public key and wrapped key for elliptic curve cryptography
on 224 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point,
exists and is valid. p_key_index is the wrapped key. More...

ssp_err_t R_SCE_HRK_ECC_224PrivateKeySign (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,350 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

p_key_index, r_crypto_data_handle_t *const msg_digest,
r_crypto_data_handle_t *const signature_r, r_crypto_data_handle_t
*const signature_s)

 Generate signature of ECDSA on 224 bit of prime field. Ensure the
domain parameter, p_domain, exists and is valid. Ensure the
p_generator point, generator_point, exists and is valid. p_key_index
is the wrapped key. More...

ssp_err_t R_SCE_ECC_256ScalarMultiplication (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_k, r_crypto_data_handle_t *const p_p,
r_crypto_data_handle_t *const p_r)

 Perform scalar multiplication of a scalar pointed by p_k (k) with a
point pointed by p_p (P) and return the result at location pointed by
p_r (R=kP). Ensure the domain parameter, p_domain, exists and is
valid. More...

ssp_err_t R_SCE_ECC_256KeyCreate (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const p_key_public)

 Generate public and private key pair for elliptic curve cryptography
on 256 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point,
exists and is valid. More...

ssp_err_t R_SCE_ECC_256PrivateKeySign (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const msg_digest,
r_crypto_data_handle_t *const signature_r, r_crypto_data_handle_t
*const signature_s)

 Generate signature of ECDSA on 256 bit of prime field. Ensure the
domain parameter, p_domain, exists and is valid. Ensure the
p_generator point, generator_point, exists and is valid. More...

ssp_err_t R_SCE_ECC_256PublicKeyVerify (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_public, r_crypto_data_handle_t *const msg_digest,
r_crypto_data_handle_t *const signature_r, r_crypto_data_handle_t
*const signature_s)

 Signature verification of ECDSA on 256 bit of prime field. Ensure the
domain parameter, p_domain, exists and is valid. Ensure the
p_generator point, generator_point, exists and is valid. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,351 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

ssp_err_t R_SCE_HRK_ECC_256ScalarMultiplication (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_key_index, r_crypto_data_handle_t *const p_p,
r_crypto_data_handle_t *const p_r)

 Perform scalar multiplication of p_key_index (k) (wrapped key) with a
point pointed by p_p (P) and return the result at location pointed by
p_r (R=kP). Ensure the domain parameter, p_domain, exists and is
valid. More...

ssp_err_t R_SCE_HRK_ECC_256KeyCreate (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_index, r_crypto_data_handle_t *const p_key_public)

 Generate public key and wrapped key for elliptic curve cryptography
on 256 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point,
exists and is valid. p_key_index is the wrapped key. More...

ssp_err_t R_SCE_HRK_ECC_256PrivateKeySign (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_index, r_crypto_data_handle_t *const msg_digest,
r_crypto_data_handle_t *const signature_r, r_crypto_data_handle_t
*const signature_s)

 Generate signature of ECDSA on 256 bit of prime field. Ensure the
domain parameter, p_domain, exists and is valid. Ensure the
p_generator point, generator_point, exists and is valid. p_key_index
is the wrapped key. More...

ssp_err_t R_SCE_ECC_384ScalarMultiplication (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_k, r_crypto_data_handle_t *const p_p,
r_crypto_data_handle_t *const p_r)

 Perform scalar multiplication of a scalar pointed by p_k (k) with a
point pointed by p_p (P) and return the result at location pointed by
p_r (R=kP). Ensure the domain parameter, p_domain, exists and is
valid. More...

ssp_err_t R_SCE_ECC_384KeyCreate (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const p_key_public)

 Generate public and private key pair for elliptic curve cryptography
on 384 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point,
exists and is valid. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,352 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

ssp_err_t R_SCE_ECC_384PrivateKeySign (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const msg_digest,
r_crypto_data_handle_t *const signature_r, r_crypto_data_handle_t
*const signature_s)

 Generate signature of ECDSA on 384 bit of prime field. Ensure the
domain parameter, p_domain, exists and is valid. Ensure the
p_generator point, generator_point, exists and is valid. More...

ssp_err_t R_SCE_ECC_384PublicKeyVerify (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_public, r_crypto_data_handle_t *const msg_digest,
r_crypto_data_handle_t *const signature_r, r_crypto_data_handle_t
*const signature_s)

 Signature verification of ECDSA on 384 bit of prime field. Ensure the
domain parameter, p_domain, exists and is valid. Ensure the
p_generator point, generator_point, exists and is valid. More...

ssp_err_t R_SCE_HRK_ECC_384ScalarMultiplication (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_key_index, r_crypto_data_handle_t *const p_p,
r_crypto_data_handle_t *const p_r)

 Perform scalar multiplication of p_key_index (k) (wrapped key) with a
point pointed by p_p (P) and return the result at location pointed by
p_r (R=kP). Ensure the domain parameter, p_domain, exists and is
valid. More...

ssp_err_t R_SCE_HRK_ECC_384KeyCreate (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_index, r_crypto_data_handle_t *const p_key_public)

 Generate public key and wrapped key for elliptic curve cryptography
on 384 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point,
exists and is valid. p_key_index is the wrapped key. More...

ssp_err_t R_SCE_HRK_ECC_384PrivateKeySign (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t
*const p_generator_point, r_crypto_data_handle_t *const
p_key_index, r_crypto_data_handle_t *const msg_digest,
r_crypto_data_handle_t *const signature_r, r_crypto_data_handle_t
*const signature_s)

 Generate signature of ECDSA on 384 bit of prime field. Ensure the
domain parameter, p_domain, exists and is valid. Ensure the

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,353 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

p_generator point, generator_point, exists and is valid. p_key_index
is the wrapped key. More...

Variables

const ecc_api_t g_ecc192_on_sce

const ecc_api_t g_ecc192_on_sce_hrk

const ecc_api_t g_ecc224_on_sce

const ecc_api_t g_ecc224_on_sce_hrk

const ecc_api_t g_ecc256_on_sce

const ecc_api_t g_ecc256_on_sce_hrk

const ecc_api_t g_ecc384_on_sce

const ecc_api_t g_ecc384_on_sce_hrk

Detailed Description

Primitive cryptographic functions.

ECC 192-bit implementation for scalar multiplication, key generation, signature generation and
signature verification functions

ECC 224-bit implementation for scalar multiplication, key generation, signature generation and
signature verification functions

ECC 256-bit implementation for scalar multiplication, key generation, signature generation and
signature verification functions

ECC 384-bit implementation for scalar multiplication, key generation, signature generation and
signature verification functions

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,354 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_192KeyCreate()

ssp_err_t R_SCE_ECC_192KeyCreate (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const p_key_public)

Generate public and private key pair for elliptic curve cryptography on 192 bit of prime field.
Ensure the domain parameter, p_domain, exists and is valid. Ensure the p_generator point,
generator_point, exists and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_192_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (24 words).
(a||b||p||n - 6 words each)
p_generator_point must be of size ECC_192_GENERATOR_POINT_LENGTH_WORDS (12 words).
p_key_private must have space to hold at least ECC_192_PRIVATE_KEY_LENGTH_WORDS (6 words) of output
data.
p_key_public must have space to hold at least ECC_192_PUBLIC_KEY_LENGTH_WORDS (12 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,355 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_192PrivateKeySign()

ssp_err_t R_SCE_ECC_192PrivateKeySign (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const
signature_r, r_crypto_data_handle_t *const signature_s)

Generate signature of ECDSA on 192 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point, exists and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_192_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (24 words).
(a||b||p||n - 6 words each)
p_generator_point must be of size ECC_192_GENERATOR_POINT_LENGTH_WORDS (12 words).
p_key_private must be of size ECC_192_PRIVATE_KEY_LENGTH_WORDS (6 words).
msg_digest must be of size ECC_192_MESSAGE_DIGEST_LENGTH_WORDS (6 words).
signature_r must have space to hold at least ECC_192_SIGNATURE_R_LENGTH_WORDS (6 words) of output
data.
signature_s must have space to hold at least ECC_192_SIGNATURE_S_LENGTH_WORDS (6 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,356 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_192PublicKeyVerify()

ssp_err_t R_SCE_ECC_192PublicKeyVerify (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_public, r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const
signature_r, r_crypto_data_handle_t *const signature_s)

Signature verification of ECDSA on 192 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point, exists and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL Verification failure.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_192_GENERATOR_POINT_LENGTH_WORDS (24 words). (a||b||p||n - 6 words
each)
p_generator_point must be of size ECC_192_GENERATOR_POINT_LENGTH_WORDS (12 words).
p_key_public must be of size ECC_192_PUBLIC_KEY_LENGTH_WORDS (12 words).
msg_digest must be of size ECC_192_MESSAGE_DIGEST_LENGTH_WORDS (6 words).
signature_r must be of size ECC_192_SIGNATURE_R_LENGTH_WORDS (6 words).
signature_s must be of size ECC_192_SIGNATURE_S_LENGTH_WORDS (6 words).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,357 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_192ScalarMultiplication()

ssp_err_t R_SCE_ECC_192ScalarMultiplication (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t
*const p_domain, r_crypto_data_handle_t *const p_k, r_crypto_data_handle_t *const p_p,
r_crypto_data_handle_t *const p_r)

Perform scalar multiplication of a scalar pointed by p_k (k) with a point pointed by p_p (P) and
return the result at location pointed by p_r (R=kP). Ensure the domain parameter, p_domain, exists
and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_192_DOMAIN_PARAMETER_WITHOUT_ORDER_LENGTH_WORDS (18
words). (a||b||p - 6 words each)
p_k must be of size ECC_192_PRIVATE_KEY_LENGTH_WORDS (6 words).
p_p must be of size ECC_192_POINT_ON_CURVE_LENGTH_WORDS (12 words).
p_r must have space to hold at least ECC_192_POINT_ON_CURVE_LENGTH_WORDS (12 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,358 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_224KeyCreate()

ssp_err_t R_SCE_ECC_224KeyCreate (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const p_key_public)

Generate public and private key pair for elliptic curve cryptography on 224 bit of prime field.
Ensure the domain parameter, p_domain, exists and is valid. Ensure the p_generator point,
generator_point, exists and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_224_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (28 words).
(a||b||p||n - 7 words each)
p_generator_point must be of size ECC_224_GENERATOR_POINT_LENGTH_WORDS (14 words).
p_key_private must have space to hold at least ECC_224_PRIVATE_KEY_LENGTH_WORDS (7 words) of output
data.
p_key_public must have space to hold at least ECC_224_PUBLIC_KEY_LENGTH_WORDS (14 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,359 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_224PrivateKeySign()

ssp_err_t R_SCE_ECC_224PrivateKeySign (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const
signature_r, r_crypto_data_handle_t *const signature_s)

Generate signature of ECDSA on 224 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point, exists and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_224_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (28 words).
(a||b||p||n - 7 words each)
p_generator_point must be of size ECC_224_GENERATOR_POINT_LENGTH_WORDS (14 words).
p_key_private must be of size ECC_224_PRIVATE_KEY_LENGTH_WORDS (7 words).
msg_digest must be of size ECC_224_MESSAGE_DIGEST_LENGTH_WORDS (7 words).
signature_r must have space to hold at least ECC_224_SIGNATURE_R_LENGTH_WORDS (7 words) of output
data.
signature_s must have space to hold at least ECC_224_SIGNATURE_S_LENGTH_WORDS (7 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,360 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_224PublicKeyVerify()

ssp_err_t R_SCE_ECC_224PublicKeyVerify (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_public, r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const
signature_r, r_crypto_data_handle_t *const signature_s)

Signature verification of ECDSA on 224 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point, exists and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL Verification failure.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_224_GENERATOR_POINT_LENGTH_WORDS (28 words). (a||b||p||n - 7 words
each)
p_generator_point must be of size ECC_224_GENERATOR_POINT_LENGTH_WORDS (14 words).
p_key_public must be of size ECC_224_PUBLIC_KEY_LENGTH_WORDS (14 words).
msg_digest must be of size ECC_224_MESSAGE_DIGEST_LENGTH_WORDS (7 words).
signature_r must be of size ECC_224_SIGNATURE_R_LENGTH_WORDS (7 words).
signature_s must be of size ECC_224_SIGNATURE_S_LENGTH_WORDS (7 words).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,361 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_224ScalarMultiplication()

ssp_err_t R_SCE_ECC_224ScalarMultiplication (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t
*const p_domain, r_crypto_data_handle_t *const p_k, r_crypto_data_handle_t *const p_p,
r_crypto_data_handle_t *const p_r)

Perform scalar multiplication of a scalar pointed by p_k (k) with a point pointed by p_p (P) and
return the result at location pointed by p_r (R=kP). Ensure the domain parameter, p_domain, exists
and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_224_DOMAIN_PARAMETER_WITHOUT_ORDER_LENGTH_WORDS (21
words). (a||b||p - 7 words each)
p_k must be of size ECC_224_PRIVATE_KEY_LENGTH_WORDS (7 words).
p_p must be of size ECC_224_POINT_ON_CURVE_LENGTH_WORDS (14 words).
p_r must have space to hold at least ECC_224_POINT_ON_CURVE_LENGTH_WORDS (14 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,362 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_256KeyCreate()

ssp_err_t R_SCE_ECC_256KeyCreate (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const p_key_public)

Generate public and private key pair for elliptic curve cryptography on 256 bit of prime field.
Ensure the domain parameter, p_domain, exists and is valid. Ensure the p_generator point,
generator_point, exists and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_256_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (32 words).
(a||b||p||n - 8 words each)
p_generator_point must be of size ECC_256_GENERATOR_POINT_LENGTH_WORDS (16 words).
p_key_private must have space to hold at least ECC_256_PRIVATE_KEY_LENGTH_WORDS (8 words) of output
data.
p_key_public must have space to hold at least ECC_256_PUBLIC_KEY_LENGTH_WORDS (16 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,363 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_256PrivateKeySign()

ssp_err_t R_SCE_ECC_256PrivateKeySign (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const
signature_r, r_crypto_data_handle_t *const signature_s)

Generate signature of ECDSA on 256 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point, exists and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_256_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (32 words).
(a||b||p||n - 8 words each)
p_generator_point must be of size ECC_256_GENERATOR_POINT_LENGTH_WORDS (16 words).
p_key_private must be of size ECC_256_PRIVATE_KEY_LENGTH_WORDS (8 words).
msg_digest must be of size ECC_256_MESSAGE_DIGEST_LENGTH_WORDS (8 words).
signature_r must have space to hold at least ECC_256_SIGNATURE_R_LENGTH_WORDS (8 words) of output
data.
signature_s must have space to hold at least ECC_256_SIGNATURE_S_LENGTH_WORDS (8 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,364 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_256PublicKeyVerify()

ssp_err_t R_SCE_ECC_256PublicKeyVerify (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_public, r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const
signature_r, r_crypto_data_handle_t *const signature_s)

Signature verification of ECDSA on 256 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point, exists and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL Verification failure.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_256_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (32 words).
(a||b||p||n - 8 words each)
p_generator_point must be of size ECC_256_GENERATOR_POINT_LENGTH_WORDS (16 words).
p_key_public must be of size ECC_256_PUBLIC_KEY_LENGTH_WORDS (16 words).
msg_digest must be of size ECC_256_MESSAGE_DIGEST_LENGTH_WORDS (8 words).
signature_r must be of size ECC_256_SIGNATURE_R_LENGTH_WORDS (8 words).
signature_s must be of size ECC_256_SIGNATURE_S_LENGTH_WORDS (8 words).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,365 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_256ScalarMultiplication()

ssp_err_t R_SCE_ECC_256ScalarMultiplication (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t
*const p_domain, r_crypto_data_handle_t *const p_k, r_crypto_data_handle_t *const p_p,
r_crypto_data_handle_t *const p_r)

Perform scalar multiplication of a scalar pointed by p_k (k) with a point pointed by p_p (P) and
return the result at location pointed by p_r (R=kP). Ensure the domain parameter, p_domain, exists
and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_256_DOMAIN_PARAMETER_WITHOUT_ORDER_LENGTH_WORDS (24
words). (a||b||p - 8 words each)
p_k must be of size ECC_256_PRIVATE_KEY_LENGTH_WORDS (8 words).
p_p must be of size ECC_256_POINT_ON_CURVE_LENGTH_WORDS (16 words).
p_r must have space to hold at least ECC_256_POINT_ON_CURVE_LENGTH_WORDS (16 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,366 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_384KeyCreate()

ssp_err_t R_SCE_ECC_384KeyCreate (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const p_key_public)

Generate public and private key pair for elliptic curve cryptography on 384 bit of prime field.
Ensure the domain parameter, p_domain, exists and is valid. Ensure the p_generator point,
generator_point, exists and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_384_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (48 words).
(a||b||p||n - 12 words each)
p_generator_point must be of size ECC_384_GENERATOR_POINT_LENGTH_WORDS (24 words).
p_key_private must have space to hold at least ECC_384_PRIVATE_KEY_LENGTH_WORDS (12 words) of output
data.
p_key_public must have space to hold at least ECC_384_PUBLIC_KEY_LENGTH_WORDS (24 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,367 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_384PrivateKeySign()

ssp_err_t R_SCE_ECC_384PrivateKeySign (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_private, r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const
signature_r, r_crypto_data_handle_t *const signature_s)

Generate signature of ECDSA on 384 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point, exists and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_384_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (48 words).
(a||b||p||n - 12 words each)
p_generator_point must be of size ECC_384_GENERATOR_POINT_LENGTH_WORDS (24 words).
p_key_private must be of size ECC_384_PRIVATE_KEY_LENGTH_WORDS (12 words).
msg_digest must be of size ECC_384_MESSAGE_DIGEST_LENGTH_WORDS (12 words).
signature_r must have space to hold at least ECC_384_SIGNATURE_R_LENGTH_WORDS (12 words) of output
data.
signature_s must have space to hold at least ECC_384_SIGNATURE_S_LENGTH_WORDS (12 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,368 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_384PublicKeyVerify()

ssp_err_t R_SCE_ECC_384PublicKeyVerify (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_public, r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const
signature_r, r_crypto_data_handle_t *const signature_s)

Signature verification of ECDSA on 384 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point, exists and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL Verification failure.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_384_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (48 words).
(a||b||p||n - 12 words each)
p_generator_point must be of size ECC_384_GENERATOR_POINT_LENGTH_WORDS (24 words).
p_key_public must be of size ECC_384_PUBLIC_KEY_LENGTH_WORDS (24 words).
msg_digest must be of size ECC_384_MESSAGE_DIGEST_LENGTH_WORDS (12 words).
signature_r must be of size ECC_384_SIGNATURE_R_LENGTH_WORDS (12 words).
signature_s must be of size ECC_384_SIGNATURE_S_LENGTH_WORDS (12 words).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,369 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_384ScalarMultiplication()

ssp_err_t R_SCE_ECC_384ScalarMultiplication (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t
*const p_domain, r_crypto_data_handle_t *const p_k, r_crypto_data_handle_t *const p_p,
r_crypto_data_handle_t *const p_r)

Perform scalar multiplication of a scalar pointed by p_k (k) with a point pointed by p_p (P) and
return the result at location pointed by p_r (R=kP). Ensure the domain parameter, p_domain, exists
and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_384_DOMAIN_PARAMETER_WITHOUT_ORDER_LENGTH_WORDS (36
words). (a||b||p - 12 words each)
p_k must be of size ECC_384_PRIVATE_KEY_LENGTH_WORDS (12 words).
p_p must be of size ECC_384_POINT_ON_CURVE_LENGTH_WORDS (24 words).
p_r must have space to hold at least ECC_384_POINT_ON_CURVE_LENGTH_WORDS (24 words) of output
data.

◆ R_SCE_ECC_Close()

ssp_err_t R_SCE_ECC_Close (ecc_ctrl_t *const p_ctrl)

ECC Close function.

Return values
SSP_SUCCESS Normal end

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,370 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_ECC_Open()

ssp_err_t R_SCE_ECC_Open (ecc_ctrl_t *const p_ctrl, ecc_cfg_t const *const p_cfg)

ECC Initialization.

Name of module used by error logger macro

Return values
SSP_SUCCESS Normal end

SSP_ERR_ASSERTION Any of the input parameters are NULL.

SSP_ERR_CRYPTO_NOT_OPEN Crypto HAL Common module is not Opened.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

◆ R_SCE_ECC_VersionGet()

ssp_err_t R_SCE_ECC_VersionGet (ssp_version_t *const p_version)

Sets driver version based on compile time macros.

Return values
SSP_SUCCESS Normal end

SSP_ERR_ASSERTION The parameter p_version is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,371 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_HRK_ECC_192KeyCreate()

ssp_err_t R_SCE_HRK_ECC_192KeyCreate (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_index, r_crypto_data_handle_t *const p_key_public)

Generate public key and wrapped key for elliptic curve cryptography on 192 bit of prime field.
Ensure the domain parameter, p_domain, exists and is valid. Ensure the p_generator point,
generator_point, exists and is valid. p_key_index is the wrapped key.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_192_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (24 words).
(a||b||p||n - 6 words each)
p_generator_point must be of size ECC_192_GENERATOR_POINT_LENGTH_WORDS (12 words).
p_key_index must have space to hold at least ECC_192_PRIVATE_KEY_HRK_LENGTH_WORDS (13 words) of
output data.
p_key_public must have space to hold at least ECC_192_PUBLIC_KEY_LENGTH_WORDS (12 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,372 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_HRK_ECC_192PrivateKeySign()

ssp_err_t R_SCE_HRK_ECC_192PrivateKeySign (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t
*const p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t
*const p_key_index, r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const
signature_r, r_crypto_data_handle_t *const signature_s)

Generate signature of ECDSA on 192 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point, exists and is valid. p_key_index
is the wrapped key.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_192_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (24 words).
(a||b||p||n - 6 words each)
p_generator_point must be of size ECC_192_GENERATOR_POINT_LENGTH_WORDS (12 words).
p_key_index must be of size ECC_192_PRIVATE_KEY_HRK_LENGTH_WORDS (13 words).
msg_digest must be of size ECC_192_MESSAGE_DIGEST_LENGTH_WORDS (6 words).
signature_r must have space to hold at least ECC_192_SIGNATURE_R_LENGTH_WORDS (6 words) of output
data.
signature_s must have space to hold at least ECC_192_SIGNATURE_R_LENGTH_WORDS (6 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,373 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_HRK_ECC_192ScalarMultiplication()

ssp_err_t R_SCE_HRK_ECC_192ScalarMultiplication (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t *const p_key_index,
r_crypto_data_handle_t *const p_p, r_crypto_data_handle_t *const p_r)

Perform scalar multiplication of p_key_index (k) (wrapped key) with a point pointed by p_p (P) and
return the result at location pointed by p_r (R=kP). Ensure the domain parameter, p_domain, exists
and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
It is optional to concatenate the Order - 'n' to the 'p_domain' input buffer, i.e. both (a||b||p) and (a||b||p||n) are
supported.
p_domain must be either of size ECC_192_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (24
words) - (a||b||p||n - 6 words each) OR of size
ECC_192_DOMAIN_PARAMETER_WITHOUT_ORDER_LENGTH_WORDS (18 words) - (a||b||p - 6 words
each).
p_key_index must be of size ECC_192_PRIVATE_KEY_HRK_LENGTH_WORDS (13 words).
p_p must be of size ECC_192_GENERATOR_POINT_LENGTH_WORDS (12 words).
p_r must have space to hold at least ECC_192_GENERATOR_POINT_LENGTH_WORDS (12 words) of output
data.
p_key_index is generated using generateKey API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,374 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_HRK_ECC_224KeyCreate()

ssp_err_t R_SCE_HRK_ECC_224KeyCreate (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_index, r_crypto_data_handle_t *const p_key_public)

Generate public key and wrapped key for elliptic curve cryptography on 224 bit of prime field.
Ensure the domain parameter, p_domain, exists and is valid. Ensure the p_generator point,
generator_point, exists and is valid. p_key_index is the wrapped key.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_224_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (28 words).
(a||b||p||n - 7 words each)
p_generator_point must be of size ECC_224_GENERATOR_POINT_LENGTH_WORDS (14 words).
p_key_index must have space to hold at least ECC_224_PRIVATE_KEY_HRK_LENGTH_WORDS (13 words) of
output data.
p_key_public must have space to hold at least ECC_224_PUBLIC_KEY_LENGTH_WORDS (14 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,375 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_HRK_ECC_224PrivateKeySign()

ssp_err_t R_SCE_HRK_ECC_224PrivateKeySign (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t
*const p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t
*const p_key_index, r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const
signature_r, r_crypto_data_handle_t *const signature_s)

Generate signature of ECDSA on 224 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point, exists and is valid. p_key_index
is the wrapped key.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_224_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (28 words).
(a||b||p||n - 7 words each)
p_generator_point must be of size ECC_224_GENERATOR_POINT_LENGTH_WORDS (14 words).
p_key_index must be of size ECC_224_PRIVATE_KEY_HRK_LENGTH_WORDS (13 words).
msg_digest must be of size ECC_224_MESSAGE_DIGEST_LENGTH_WORDS (7 words).
signature_r must have space to hold at least ECC_224_SIGNATURE_R_LENGTH_WORDS (7 words) of output
data.
signature_s must have space to hold at least ECC_224_SIGNATURE_R_LENGTH_WORDS (7 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,376 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_HRK_ECC_224ScalarMultiplication()

ssp_err_t R_SCE_HRK_ECC_224ScalarMultiplication (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t *const p_key_index,
r_crypto_data_handle_t *const p_p, r_crypto_data_handle_t *const p_r)

Perform scalar multiplication of p_key_index (k) (wrapped key) with a point pointed by p_p (P) and
return the result at location pointed by p_r (R=kP). Ensure the domain parameter, p_domain, exists
and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
It is optional to concatenate the Order - 'n' to the 'p_domain' input buffer, i.e. both (a||b||p) and (a||b||p||n) are
supported.
p_domain must be either of size ECC_224_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (28
words) - (a||b||p||n - 7 words each) OR of size
ECC_224_DOMAIN_PARAMETER_WITHOUT_ORDER_LENGTH_WORDS (21 words) - (a||b||p - 7 words
each).
p_key_index must be of size ECC_224_PRIVATE_KEY_HRK_LENGTH_WORDS (13 words).
p_p must be of size ECC_224_GENERATOR_POINT_LENGTH_WORDS (14 words).
p_r must have space to hold at least ECC_224_GENERATOR_POINT_LENGTH_WORDS (14 words) of output
data.
p_key_index is generated using generateKey API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,377 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_HRK_ECC_256KeyCreate()

ssp_err_t R_SCE_HRK_ECC_256KeyCreate (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_index, r_crypto_data_handle_t *const p_key_public)

Generate public key and wrapped key for elliptic curve cryptography on 256 bit of prime field.
Ensure the domain parameter, p_domain, exists and is valid. Ensure the p_generator point,
generator_point, exists and is valid. p_key_index is the wrapped key.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_256_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (32 words).
(a||b||p||n - 8 words each)
p_generator_point must be of size ECC_256_GENERATOR_POINT_LENGTH_WORDS (16 words).
p_key_index must have space to hold at least ECC_256_PRIVATE_KEY_HRK_LENGTH_WORDS (13 words) of
output data.
p_key_public must have space to hold at least ECC_256_PUBLIC_KEY_LENGTH_WORDS (16 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,378 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_HRK_ECC_256PrivateKeySign()

ssp_err_t R_SCE_HRK_ECC_256PrivateKeySign (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t
*const p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t
*const p_key_index, r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const
signature_r, r_crypto_data_handle_t *const signature_s)

Generate signature of ECDSA on 256 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point, exists and is valid. p_key_index
is the wrapped key.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_256_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (32 words).
(a||b||p||n - 8 words each)
p_generator_point must be of size ECC_256_GENERATOR_POINT_LENGTH_WORDS (16 words).
p_key_index must be of size ECC_256_PRIVATE_KEY_HRK_LENGTH_WORDS (13 words).
msg_digest must be of size ECC_256_MESSAGE_DIGEST_LENGTH_WORDS (8 words).
signature_r must have space to hold at least ECC_256_SIGNATURE_S_LENGTH_WORDS (8 words) of output
data.
signature_s must have space to hold at least ECC_256_SIGNATURE_S_LENGTH_WORDS (8 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,379 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_HRK_ECC_256ScalarMultiplication()

ssp_err_t R_SCE_HRK_ECC_256ScalarMultiplication (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t *const p_key_index,
r_crypto_data_handle_t *const p_p, r_crypto_data_handle_t *const p_r)

Perform scalar multiplication of p_key_index (k) (wrapped key) with a point pointed by p_p (P) and
return the result at location pointed by p_r (R=kP). Ensure the domain parameter, p_domain, exists
and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
It is optional to concatenate the Order - 'n' to the 'p_domain' input buffer, i.e. both (a||b||p) and (a||b||p||n) are
supported.
p_domain must be either of size ECC_256_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (32
words) - (a||b||p||n - 8 words each) OR of size
ECC_256_DOMAIN_PARAMETER_WITHOUT_ORDER_LENGTH_WORDS (24 words) - (a||b||p - 8 words
each).
p_key_index must be of size ECC_256_PRIVATE_KEY_HRK_LENGTH_WORDS (13 words).
p_p must be of size ECC_256_POINT_ON_CURVE_LENGTH_WORDS (16 words).
p_r must have space to hold at least ECC_256_POINT_ON_CURVE_LENGTH_WORDS (16 words) of output
data.
p_key_index is generated using generateKey API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,380 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_HRK_ECC_384KeyCreate()

ssp_err_t R_SCE_HRK_ECC_384KeyCreate (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t *const
p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t *const
p_key_index, r_crypto_data_handle_t *const p_key_public)

Generate public key and wrapped key for elliptic curve cryptography on 384 bit of prime field.
Ensure the domain parameter, p_domain, exists and is valid. Ensure the p_generator point,
generator_point, exists and is valid. p_key_index is the wrapped key.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_384_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (48 words).
(a||b||p||n - 12 words each)
p_generator_point must be of size ECC_384_GENERATOR_POINT_LENGTH_WORDS (24 words).
p_key_index must have space to hold at least ECC_384_PRIVATE_KEY_HRK_LENGTH_WORDS (17 words) of
output data.
p_key_public must have space to hold at least ECC_384_PUBLIC_KEY_LENGTH_WORDS (24 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,381 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_HRK_ECC_384PrivateKeySign()

ssp_err_t R_SCE_HRK_ECC_384PrivateKeySign (ecc_ctrl_t *const p_ctrl, r_crypto_data_handle_t
*const p_domain, r_crypto_data_handle_t *const p_generator_point, r_crypto_data_handle_t
*const p_key_index, r_crypto_data_handle_t *const msg_digest, r_crypto_data_handle_t *const
signature_r, r_crypto_data_handle_t *const signature_s)

Generate signature of ECDSA on 384 bit of prime field. Ensure the domain parameter, p_domain,
exists and is valid. Ensure the p_generator point, generator_point, exists and is valid. p_key_index
is the wrapped key.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
p_domain must be of size ECC_384_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (48 words).
(a||b||p||n - 12 words each)
p_generator_point must be of size ECC_384_GENERATOR_POINT_LENGTH_WORDS (24 words).
p_key_index must be of size ECC_384_PRIVATE_KEY_HRK_LENGTH_WORDS (17 words).
msg_digest must be of size ECC_384_MESSAGE_DIGEST_LENGTH_WORDS (12 words).
signature_r must have space to hold at least ECC_384_SIGNATURE_S_LENGTH_WORDS (12 words) of output
data.
signature_s must have space to hold at least ECC_384_SIGNATURE_S_LENGTH_WORDS (12 words) of output
data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,382 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ R_SCE_HRK_ECC_384ScalarMultiplication()

ssp_err_t R_SCE_HRK_ECC_384ScalarMultiplication (ecc_ctrl_t *const p_ctrl,
r_crypto_data_handle_t *const p_domain, r_crypto_data_handle_t *const p_key_index,
r_crypto_data_handle_t *const p_p, r_crypto_data_handle_t *const p_r)

Perform scalar multiplication of p_key_index (k) (wrapped key) with a point pointed by p_p (P) and
return the result at location pointed by p_r (R=kP). Ensure the domain parameter, p_domain, exists
and is valid.

Return values
SSP_SUCCESS Normal end.

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_INVALID_SIZE invalid input buffer length(s).

SSP_ERR_CRYPTO_SCE_FAIL Internal Error.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred.

Note
In case of failure, output buffer(s) may get partially updated. Data length field of output data handle(s) will not be
updated to the expected return buffer size and will be unchanged in case the API fails. The caller must check the
return status before using the output data.

Precondition
SCE module must have been initialized by calling the functions R_SCE_Open()

Note
It is optional to concatenate the Order - 'n' to the 'p_domain' input buffer, i.e. both (a||b||p) and (a||b||p||n) are
supported.
p_domain must be either of size ECC_384_DOMAIN_PARAMETER_WITH_ORDER_LENGTH_WORDS (48
words) - (a||b||p||n - 12 words each) OR of size
ECC_384_DOMAIN_PARAMETER_WITHOUT_ORDER_LENGTH_WORDS (36 words) - (a||b||p - 12 words
each).
p_key_index must be of size ECC_384_PRIVATE_KEY_HRK_LENGTH_WORDS (17 words).
p_p must be of size ECC_384_POINT_ON_CURVE_LENGTH_WORDS (24 words).
p_r must have space to hold at least ECC_384_POINT_ON_CURVE_LENGTH_WORDS (24 words) of output
data.
p_key_index is generated using generateKey API.

Variable Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,383 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ g_ecc192_on_sce

const ecc_api_t g_ecc192_on_sce

=

{

 .open = R_SCE_ECC_Open,

 .close = R_SCE_ECC_Close,

 .scalarMultiplication = R_SCE_ECC_192ScalarMultiplication,

 .keyCreate = R_SCE_ECC_192KeyCreate,

 .sign = R_SCE_ECC_192PrivateKeySign,

 .verify = R_SCE_ECC_192PublicKeyVerify,

 .versionGet = R_SCE_ECC_VersionGet

}

Exported global variablesSCE/ECC implementation of ECC API.

◆ g_ecc192_on_sce_hrk

const ecc_api_t g_ecc192_on_sce_hrk

=

{

 .open = R_SCE_ECC_Open,

 .close = R_SCE_ECC_Close,

 .scalarMultiplication = R_SCE_HRK_ECC_192ScalarMultiplication,

 .keyCreate = R_SCE_HRK_ECC_192KeyCreate,

 .sign = R_SCE_HRK_ECC_192PrivateKeySign,

 .verify = R_SCE_ECC_192PublicKeyVerify,

 .versionGet = R_SCE_ECC_VersionGet

}

Exported global variablesSCE/ECC implementation of ECC API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,384 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ g_ecc224_on_sce

const ecc_api_t g_ecc224_on_sce

=

{

 .open = R_SCE_ECC_Open,

 .close = R_SCE_ECC_Close,

 .scalarMultiplication = R_SCE_ECC_224ScalarMultiplication,

 .keyCreate = R_SCE_ECC_224KeyCreate,

 .sign = R_SCE_ECC_224PrivateKeySign,

 .verify = R_SCE_ECC_224PublicKeyVerify,

 .versionGet = R_SCE_ECC_VersionGet

}

Exported global variablesSCE/ECC implementation of ECC API.

◆ g_ecc224_on_sce_hrk

const ecc_api_t g_ecc224_on_sce_hrk

=

{

 .open = R_SCE_ECC_Open,

 .close = R_SCE_ECC_Close,

 .scalarMultiplication = R_SCE_HRK_ECC_224ScalarMultiplication,

 .keyCreate = R_SCE_HRK_ECC_224KeyCreate,

 .sign = R_SCE_HRK_ECC_224PrivateKeySign,

 .verify = R_SCE_ECC_224PublicKeyVerify,

 .versionGet = R_SCE_ECC_VersionGet

}

Exported global variablesSCE/ECC implementation of ECC API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,385 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ g_ecc256_on_sce

const ecc_api_t g_ecc256_on_sce

=

{

 .open = R_SCE_ECC_Open,

 .close = R_SCE_ECC_Close,

 .scalarMultiplication = R_SCE_ECC_256ScalarMultiplication,

 .keyCreate = R_SCE_ECC_256KeyCreate,

 .sign = R_SCE_ECC_256PrivateKeySign,

 .verify = R_SCE_ECC_256PublicKeyVerify,

 .versionGet = R_SCE_ECC_VersionGet

}

Exported global variablesSCE/ECC implementation of ECC API.

◆ g_ecc256_on_sce_hrk

const ecc_api_t g_ecc256_on_sce_hrk

=

{

 .open = R_SCE_ECC_Open,

 .close = R_SCE_ECC_Close,

 .scalarMultiplication = R_SCE_HRK_ECC_256ScalarMultiplication,

 .keyCreate = R_SCE_HRK_ECC_256KeyCreate,

 .sign = R_SCE_HRK_ECC_256PrivateKeySign,

 .verify = R_SCE_ECC_256PublicKeyVerify,

 .versionGet = R_SCE_ECC_VersionGet

}

Exported global variablesSCE/ECC implementation of ECC API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,386 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_ECC

◆ g_ecc384_on_sce

const ecc_api_t g_ecc384_on_sce

=

{

 .open = R_SCE_ECC_Open,

 .close = R_SCE_ECC_Close,

 .scalarMultiplication = R_SCE_ECC_384ScalarMultiplication,

 .keyCreate = R_SCE_ECC_384KeyCreate,

 .sign = R_SCE_ECC_384PrivateKeySign,

 .verify = R_SCE_ECC_384PublicKeyVerify,

 .versionGet = R_SCE_ECC_VersionGet

}

Exported global variablesSCE/ECC implementation of ECC API.

◆ g_ecc384_on_sce_hrk

const ecc_api_t g_ecc384_on_sce_hrk

=

{

 .open = R_SCE_ECC_Open,

 .close = R_SCE_ECC_Close,

 .scalarMultiplication = R_SCE_HRK_ECC_384ScalarMultiplication,

 .keyCreate = R_SCE_HRK_ECC_384KeyCreate,

 .sign = R_SCE_HRK_ECC_384PrivateKeySign,

 .verify = R_SCE_ECC_384PublicKeyVerify,

 .versionGet = R_SCE_ECC_VersionGet

}

Exported global variablesSCE/ECC implementation of ECC API.

 SCE_KEY_INSTALLATION
Renesas Synergy Software Package Reference » HAL Layer » SCE Module

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,387 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

Primitive cryptographic functions. More...

Data Structures

struct key_installation_instance_ctrl_t

Functions

ssp_err_t R_SCE_KEY_INSTALLATION_Open (key_installation_ctrl_t *const p_ctrl,
key_installation_cfg_t const *const p_cfg)

 Function to open the Key Installation module. More...

ssp_err_t R_SCE_KEY_INSTALLATION_Close (key_installation_ctrl_t *const
p_ctrl)

 Function to close the Key Installation module. More...

ssp_err_t R_SCE_KEY_INSTALLATION_VersionGet (ssp_version_t *const
p_version)

 Gets Key Installation Driver API and Code version based on compile
time macros. More...

ssp_err_t R_SCE_KEY_INSTALLATION_KeyInstall (key_installation_ctrl_t *const
p_ctrl, r_crypto_data_handle_t const *const p_user_key_rsa_modulus,
key_installation_key_t const *const p_user_key,
key_installation_key_shared_index_t const shared_index,
key_installation_key_t const *const p_session_key, uint32_t const
*const p_iv, key_installation_key_t *const p_key_data)

 Key Installation function accepts the user's encrypted key, a shared
index, session key, and IV then returns the wrapped key. More...

ssp_err_t r_sce_key_installation_verify_shared_index (uint32_t const *const
p_shared_index)

 Subroutine to verify that the shared index is using a valid
enumeration for the Key Install API. More...

ssp_err_t r_sce_key_installation_verify_session_key_length
(key_installation_key_size_t key_size, uint32_t data_length)

 Subroutine to verify the user provided (input) session key size and
buffer length. More...

ssp_err_t r_sce_key_installation_aes (key_installation_key_t const *const

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,388 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

p_user_key, key_installation_key_shared_index_t const shared_index,
key_installation_key_t const *const p_session_key, uint32_t const
*const p_iv, key_installation_key_t *const p_key_data)

 Sub-routine to install user's AES encrypted key which is generated
outside of the Synergy platform and processed using the DLM
Service. More...

ssp_err_t r_sce_key_installation_aes_192_bits (key_installation_key_t const
*const p_user_key, key_installation_key_shared_index_t const
shared_index, key_installation_key_t const *const p_session_key,
uint32_t const *const p_iv, key_installation_key_t *const p_key_data)

 Sub-routine to install AES 192-bit encrypted user provided key which
is generated outside of Synergy platform using the DLM Service,
applies to ECB, GCM, CTR, CBC chaining modes. More...

ssp_err_t r_sce_key_installation_aes_128_and_256_bits (key_installation_key_t
const *const p_user_key, key_installation_key_shared_index_t const
shared_index, key_installation_key_t const *const p_session_key,
uint32_t const *const p_iv, key_installation_key_t *const p_key_data)

 Sub-routine to install AES 128/256-bit encrypted user provided key
which is generated outside of Synergy platform with the DLM
Service, applies to ECB, GCM, CTR, CBC and XTS chaining modes.
More...

ssp_err_t r_sce_key_installation_aes_xts (key_installation_key_t const *const
p_user_key, key_installation_key_shared_index_t const shared_index,
key_installation_key_t const *const p_session_key, uint32_t const
*const p_iv, key_installation_key_t *const p_key_data)

 Subroutine to call AES Key installation hardware procedures for XTS
chaining mode. More...

ssp_err_t r_sce_key_installation_aes_verify_key_lengths (key_installation_key_t
const *const p_user_key, key_installation_key_t const *const
p_session_key, key_installation_key_t *const p_key_data)

 Subroutine to verify that the key_size and key lengths provided for
the AES key, are valid to proceed with the Key Install API. More...

ssp_err_t r_sce_key_installation_aes_verify_user_encrypted_key_length
(key_installation_key_size_t key_size, uint32_t data_length)

 Subroutine to verify the user provided (input) encrypted AES key size
and buffer length. More...

ssp_err_t r_sce_key_installation_aes_verify_user_encrypted_key_length_helper
(key_installation_key_size_t key_size, uint32_t data_length)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,389 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

 Helper function to verify the user provided (input) encrypted AES key
buffer length. More...

ssp_err_t r_sce_key_installation_aes_verify_user_encrypted_xts_key_length
(key_installation_key_size_t key_size, uint32_t data_length)

 Subroutine to verify the user provided (input) encrypted AES key
buffer length. More...

ssp_err_t r_sce_key_installation_aes_verify_out_wrapped_key_length
(key_installation_key_size_t key_size, uint32_t data_length)

 Subroutine to verify the Output buffer installed key buffer length.
More...

ssp_err_t r_sce_key_installation_aes_verify_out_wrapped_xtskey_length
(key_installation_key_size_t key_size, uint32_t data_length)

 Subroutine to verify the Output buffer installed key buffer length.
More...

void r_sce_key_installation_aes_fill_wrapped_key_out_length
(key_installation_key_size_t key_size, uint32_t *data_length)

 Private helper function to fill the output wrapped key length. More...

ssp_err_t r_sce_key_installation_ecc (key_installation_key_t const *const
p_user_key, key_installation_key_shared_index_t const shared_index,
key_installation_key_t const *const p_session_key, uint32_t const
*const p_iv, key_installation_key_t *const p_key_data)

 Sub-routine to install ECC 192/256-bit encrypted user provided key
which is generated outside of Synergy platform. More...

ssp_err_t r_sce_key_installation_ecc_verify_key_lengths (key_installation_key_t
const *const p_user_key, key_installation_key_t const *const
p_session_key, key_installation_key_t *const p_key_data)

 Subroutine to verify that the provided key lengths are sufficient or
not, before proceeding with key Installation API call. More...

ssp_err_t r_sce_key_installation_ecc_verify_user_encrypted_key_length
(key_installation_key_size_t key_size, uint32_t data_length)

 Subroutine to verify the user provided (input) encrypted ECC key
size and buffer length. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,390 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

ssp_err_t r_sce_key_installation_ecc_verify_out_wrapped_key_length
(key_installation_key_size_t key_size, uint32_t data_length)

 Subroutine to verify the Output buffer installed key buffer length.
More...

void r_sce_key_installation_ecc_fill_wrapped_key_out_length
(key_installation_key_size_t key_size, uint32_t *data_length)

 Private helper function to fill the output wrapped key length. More...

ssp_err_t r_sce_key_installation_rsa (r_crypto_data_handle_t const *const
p_user_key_rsa_modulus, key_installation_key_t const *const
p_user_key, key_installation_key_shared_index_t const shared_index,
key_installation_key_t const *const p_session_key, uint32_t const
*const p_iv, key_installation_key_t *const p_key_data)

 Sub-routine to install RSA 1024/2048-bit encrypted user provided
key which is generated outside of Synergy platform. More...

ssp_err_t r_sce_key_installation_rsa_verify_key_lengths
(r_crypto_data_handle_t const *const p_user_key_rsa_modulus,
key_installation_key_t const *const p_user_key,
key_installation_key_t const *const p_session_key,
key_installation_key_t *const p_key_data)

 Subroutine to verify that the provided key lengths are sufficient or
not, before proceeding with key Installation API call. More...

ssp_err_t r_sce_key_installation_rsa_verify_user_encrypted_key_length
(key_installation_key_size_t key_size, uint32_t data_length)

 Subroutine to verify the user provided (input) encrypted RSA key
buffer length. More...

void r_sce_key_installation_rsa_fill_wrapped_key_out_length
(key_installation_key_size_t key_size, uint32_t *data_length)

 Private helper function to fill the output wrapped key length. More...

ssp_err_t r_sce_key_installation_rsa_verify_out_wrapped_key_length_including_
modulus (key_installation_key_size_t key_size, uint32_t data_length)

 Subroutine to verify the length of (output buffer) installed key buffer.
This length includes exponent, modulus and extra space for key
wrapping. More...

ssp_err_t r_sce_key_installation_rsa_verify_modulus
(key_installation_key_size_t key_size, uint32_t data_length)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,391 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

 Subroutine to verify the modulus of RSA key. More...

Variables

const key_installation_api_t g_key_installation_on_sce

Detailed Description

Primitive cryptographic functions.

key installation functions

Function Documentation

◆ r_sce_key_installation_aes()

ssp_err_t r_sce_key_installation_aes (key_installation_key_t const *const p_user_key,
key_installation_key_shared_index_t const shared_index, key_installation_key_t const *const
p_session_key, uint32_t const *const p_iv, key_installation_key_t *const p_key_data)

Sub-routine to install user's AES encrypted key which is generated outside of the Synergy platform
and processed using the DLM Service.

Parameters
[in] p_user_key Pointer to a user provided

AES encrypted key.

[in] shared_index Shared Key Index that is
returned by the DLM
Service, accompanied by the
Session Key that follows.

[in] p_session_key Pointer to the Session Key
returned by the DLM
Service, accompanied by the
previous Shared Key Index
parameter.

[in] p_iv Pointer to the IV used to
encrypt the User Key.

[in,out] p_key_data Pointer to wrapped installed
AES key.

Return values
SSP_SUCCESS AES Key Installation is successful.

SSP_ERR_INVALID_ARGUMENT Input key size is invalid.

SSP_ERR_UNSUPPORTED Input key formats are not supported.

SSP_ERR_CRYPTO_INVALID_SIZE Input key buffer lengths are invalid.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,392 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_aes_128_and_256_bits()

ssp_err_t r_sce_key_installation_aes_128_and_256_bits (key_installation_key_t const *const
p_user_key, key_installation_key_shared_index_t const shared_index, key_installation_key_t const
*const p_session_key, uint32_t const *const p_iv, key_installation_key_t *const p_key_data)

Sub-routine to install AES 128/256-bit encrypted user provided key which is generated outside of
Synergy platform with the DLM Service, applies to ECB, GCM, CTR, CBC and XTS chaining modes.

Parameters
[in] p_user_key Pointer to a user provided

AES encrypted key.

[in] shared_index Shared Key Index that is
returned by the DLM
Service, accompanied by the
Session Key that follows.

[in] p_session_key Pointer to the Session Key
returned by the DLM
Service, accompanied by the
previous Shared Key Index
parameter.

[in] p_iv Pointer to the IV used to
encrypt the User Key.

[in,out] p_key_data Pointer to wrapped installed
AES key.

Return values
SSP_SUCCESS AES Key Installation is successful.

SSP_ERR_INVALID_ARGUMENT Input key size is invalid.

SSP_ERR_UNSUPPORTED Input key formats are not supported.

SSP_ERR_CRYPTO_INVALID_SIZE Input key buffer lengths are invalid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

SSP_ERR_CRYPTO_SCE_FAIL Key Installation failed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,393 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_aes_192_bits()

ssp_err_t r_sce_key_installation_aes_192_bits (key_installation_key_t const *const p_user_key,
key_installation_key_shared_index_t const shared_index, key_installation_key_t const *const
p_session_key, uint32_t const *const p_iv, key_installation_key_t *const p_key_data)

Sub-routine to install AES 192-bit encrypted user provided key which is generated outside of
Synergy platform using the DLM Service, applies to ECB, GCM, CTR, CBC chaining modes.

Parameters
[in] p_user_key Pointer to a user provided

AES encrypted key.

[in] shared_index Shared Key Index that is
returned by the DLM
Service, accompanied by the
Session Key that follows.

[in] p_session_key Pointer to the Session Key
returned by the DLM
Service, accompanied by the
previous Shared Key Index
parameter.

[in] p_iv Pointer to the IV used to
encrypt the User Key.

[in,out] p_key_data Pointer to wrapped installed
AES key.

Return values
SSP_SUCCESS AES Key Installation is successful.

SSP_ERR_INVALID_ARGUMENT Input key size is invalid.

SSP_ERR_UNSUPPORTED Input key formats are not supported.

SSP_ERR_CRYPTO_INVALID_SIZE Input key buffer lengths are invalid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

SSP_ERR_CRYPTO_SCE_FAIL Key Installation failed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,394 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_aes_fill_wrapped_key_out_length()

void r_sce_key_installation_aes_fill_wrapped_key_out_length (key_installation_key_size_t key_size,
uint32_t * data_length)

Private helper function to fill the output wrapped key length.

Parameters
[in] key_size Indicates users encrypted

AES key sizes -
128/192/256-bit.

[in,out] data_length Pointer to the length of the
wrapped key data in the
buffer in WORDS, filled by
this routine.

Note
The user key_size should be validated before this private function is called.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,395 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_aes_verify_key_lengths()

ssp_err_t r_sce_key_installation_aes_verify_key_lengths (key_installation_key_t const *const
p_user_key, key_installation_key_t const *const p_session_key, key_installation_key_t *const
p_key_data)

Subroutine to verify that the key_size and key lengths provided for the AES key, are valid to
proceed with the Key Install API.

Parameters
[in] p_user_key Indicates AES key sizes -

128/192/256-bits, supported
chaining modes CBC, ECB,
GCM, CTR. 128/256-bits,
supported chaining modes -
XTS.

[in] p_session_key Pointer to the Session Key
returned by the DLM
Service.

[in] p_key_data Pointer to wrapped installed
AES key.

Return values
SSP_SUCCESS Key lengths (user provided encrypted input

key and output wrapped buffer which holds
installed key) are sufficient, and can
proceed with key installation API call.

SSP_ERR_INVALID_ARGUMENT User provided key_size is invalid.

SSP_ERR_CRYPTO_INVALID_SIZE Either Input key buffer lengths or Output
key buffer length is not valid for AES Key
installation API operation.

Note
This function is not a user API but an internal function for "keyInstallation" API to verify whether passed key buffer
lengths are sufficient for Key Installation API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,396 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_aes_verify_out_wrapped_key_length()

ssp_err_t r_sce_key_installation_aes_verify_out_wrapped_key_length (key_installation_key_size_t
key_size, uint32_t data_length)

Subroutine to verify the Output buffer installed key buffer length.

Parameters
[in] key_size Indicates user's encrypted

AES key sizes -
128/192/256-bits.

[in] data_length Length of output wrapped
key data in the buffer in
WORDS.

Return values
SSP_SUCCESS Output wrapped Key buffer length is

sufficient and can proceed with Key
installation API call.

SSP_ERR_CRYPTO_INVALID_SIZE Output wrapped key buffer length is not
sufficient.

Note
This function is not a user API but an internal function for "keyInstallation" API to verify whether passed user key
buffer length is sufficient for Key Installation API call. The user key_size should be validated before this private
function is called.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,397 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_aes_verify_out_wrapped_xtskey_length()

ssp_err_t r_sce_key_installation_aes_verify_out_wrapped_xtskey_length (
key_installation_key_size_t key_size, uint32_t data_length)

Subroutine to verify the Output buffer installed key buffer length.

Parameters
[in] key_size Indicates user's encrypted

AES key sizes - 128/256-bit
XTS key.

[in] data_length Length of wrapped key data
in the buffer in WORDS.

Return values
SSP_SUCCESS Output wrapped Key buffer length is

sufficient and can proceed with Key
installation API call.

SSP_ERR_CRYPTO_INVALID_SIZE Output wrapped key buffer length is not
sufficient.

Note
This function is not a user API but an internal function for "keyInstallation" API to verify whether passed user key
buffer length is sufficient for Key Installation API call. The user key_size should be validated before this private
function is called.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,398 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_aes_verify_user_encrypted_key_length()

ssp_err_t r_sce_key_installation_aes_verify_user_encrypted_key_length (key_installation_key_size_t
 key_size, uint32_t data_length)

Subroutine to verify the user provided (input) encrypted AES key size and buffer length.

Parameters
[in] key_size Indicates AES key sizes -

128/192/256-bits.

[in] data_length Length of AES encrypted key
data buffer in WORDS..

Return values
SSP_SUCCESS User provided encrypted input Key length is

sufficient and can proceed with Key
installation API call.

SSP_ERR_INVALID_ARGUMENT User provided Input encrypted key size
argument is invalid.

SSP_ERR_CRYPTO_INVALID_SIZE User provided Input encrypted key buffer
length is not sufficient.

Note
This function is not a user API but an internal function for "keyInstallation" API to verify whether passed user key
buffer length is sufficient for Key Installation API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,399 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_aes_verify_user_encrypted_key_length_helper()

ssp_err_t r_sce_key_installation_aes_verify_user_encrypted_key_length_helper (
key_installation_key_size_t key_size, uint32_t data_length)

Helper function to verify the user provided (input) encrypted AES key buffer length.

Parameters
[in] key_size Indicates AES key sizes -

128/192/256-bits.

[in] data_length Length of AES encrypted key
data buffer in WORDS.

Return values
SSP_SUCCESS User provided encrypted input Key buffer

length is sufficient and can proceed with
Key installation API call.

SSP_ERR_CRYPTO_INVALID_SIZE User provided Input encrypted key buffer
length is invalid.

Note
This function is not a user API but an internal function for "keyInstallation" API to verify whether passed user key
buffer length is sufficient for Key Installation API call. The user key_size should be validated before this private
function is called. The user key_size should be validated before this private function is called.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,400 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_aes_verify_user_encrypted_xts_key_length()

ssp_err_t r_sce_key_installation_aes_verify_user_encrypted_xts_key_length (
key_installation_key_size_t key_size, uint32_t data_length)

Subroutine to verify the user provided (input) encrypted AES key buffer length.

Parameters
[in] key_size Indicates AES key sizes -

128/256-bit XTS.

[in] data_length Length of AES encrypted key
data buffer in WORDS.

Return values
SSP_SUCCESS User provided encrypted input Key length is

sufficient and can proceed with Key
installation API call.

SSP_ERR_CRYPTO_INVALID_SIZE User provided Input encrypted key buffer
length is invalid.

Note
This function is not a user API but an internal function for "keyInstallation" API to verify whether passed user key
buffer length is sufficient for Key Installation API call. The user key_size should be validated before this private
function is called.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,401 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_aes_xts()

ssp_err_t r_sce_key_installation_aes_xts (key_installation_key_t const *const p_user_key,
key_installation_key_shared_index_t const shared_index, key_installation_key_t const *const
p_session_key, uint32_t const *const p_iv, key_installation_key_t *const p_key_data)

Subroutine to call AES Key installation hardware procedures for XTS chaining mode.

Parameters
[in] p_user_key Pointer to a user provided

AES encrypted key.

[in] shared_index Shared Key Index that is
returned by the DLM
Service, accompanied by the
Session Key that follows.

[in] p_session_key Pointer to the Session Key
returned by the DLM
Service, accompanied by the
previous Shared Key Index
parameter.

[in] p_iv Pointer to the IV used to
encrypt the User Key.

[in,out] p_key_data Pointer to wrapped installed
AES key.

Return values
SSP_SUCCESS AES Key Installation is successful.

SSP_ERR_UNSUPPORTED Input key formats are not supported.

SSP_ERR_CRYPTO_INVALID_SIZE Input key buffer lengths are invalid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

SSP_ERR_CRYPTO_SCE_FAIL Key Installation failed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,402 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ R_SCE_KEY_INSTALLATION_Close()

ssp_err_t R_SCE_KEY_INSTALLATION_Close (key_installation_ctrl_t *const p_ctrl)

Function to close the Key Installation module.

Return values
SSP_SUCCESS Normal end

SSP_ERR_ASSERTION NULL input parameter(s).

Note
This API must be called once Key Installation is done.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,403 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_ecc()

ssp_err_t r_sce_key_installation_ecc (key_installation_key_t const *const p_user_key,
key_installation_key_shared_index_t const shared_index, key_installation_key_t const *const
p_session_key, uint32_t const *const p_iv, key_installation_key_t *const p_key_data)

Sub-routine to install ECC 192/256-bit encrypted user provided key which is generated outside of
Synergy platform.

Parameters
[in] p_user_key Pointer to a user provided

ECC encrypted key.

[in] shared_index Shared Key Index that is
returned by the DLM
Service, accompanied by the
Session Key that follows.

[in] p_session_key Pointer to the Session Key
returned by the DLM
Service, accompanied by the
previous Shared Key Index
parameter.

[in] p_iv Pointer to the IV used to
encrypt the User Key.

[in,out] p_key_data Pointer to wrapped installed
ECC key.

Return values
SF_CRYPTO_SUCCESS ECC Key Installation is successful.

SSP_ERR_INVALID_ARGUMENT Input key size is invalid.

SSP_ERR_UNSUPPORTED Input key formats are not supported.

SSP_ERR_CRYPTO_INVALID_SIZE Input key buffer lengths are invalid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

SSP_ERR_CRYPTO_SCE_FAIL Key Installation failed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,404 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_ecc_fill_wrapped_key_out_length()

void r_sce_key_installation_ecc_fill_wrapped_key_out_length (key_installation_key_size_t key_size,
uint32_t * data_length)

Private helper function to fill the output wrapped key length.

Parameters
[in] key_size Indicates users encrypted

ECC key sizes - 192/256-bit.

[in,out] data_length Pointer to the length of the
wrapped key data in the
buffer in WORDS, filled by
this routine.

Note
The user key_size should be validated before this private function is called.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,405 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_ecc_verify_key_lengths()

ssp_err_t r_sce_key_installation_ecc_verify_key_lengths (key_installation_key_t const *const
p_user_key, key_installation_key_t const *const p_session_key, key_installation_key_t *const
p_key_data)

Subroutine to verify that the provided key lengths are sufficient or not, before proceeding with key
Installation API call.

Parameters
[in] p_user_key Indicates ECC key sizes -

192/224/256/384-bits.

[in] p_session_key Pointer to the Session Key
returned by the DLM
Service.

[in] p_key_data Pointer to wrapped installed
ECC key.

Return values
SF_CRYPTO_SUCCESS Key lengths (user provided encrypted input

key, Renesas provided install key, and
output wrapped buffer which holds installed
key) are sufficient, and can proceed with
key installation API call.

SSP_ERR_INVALID_ARGUMENT User provided Input encrypted key size
argument is invalid.

SSP_ERR_CRYPTO_INVALID_SIZE Either Input key buffer lengths or Output
key buffer length is not valid for ECC Key
installation API operation.

Note
This function is not a user API but an internal function for "keyInstallation" API to verify whether passed key buffer
lengths are sufficient for Key Installation API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,406 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_ecc_verify_out_wrapped_key_length()

ssp_err_t r_sce_key_installation_ecc_verify_out_wrapped_key_length (key_installation_key_size_t
key_size, uint32_t data_length)

Subroutine to verify the Output buffer installed key buffer length.

Parameters
[in] key_size Indicates user's encrypted

ECC key sizes - 192/256-bit.

[in] data_length The length of the output
wrapped key data in the
buffer in WORDS.

Return values
SF_CRYPTO_SUCCESS Output wrapped Key buffer length is

sufficient and can proceed with Key
installation API call.

SSP_ERR_CRYPTO_INVALID_SIZE Output wrapped key buffer length is not
sufficient.

Note
This function is not a user API but an internal function for "keyInstallation" API to verify whether passed user key
buffer length is sufficient for Key Installation API call. The user key_size should be validated before this private
function is called.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,407 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_ecc_verify_user_encrypted_key_length()

ssp_err_t r_sce_key_installation_ecc_verify_user_encrypted_key_length (key_installation_key_size_t
 key_size, uint32_t data_length)

Subroutine to verify the user provided (input) encrypted ECC key size and buffer length.

Parameters
[in] key_size Indicates ECC key sizes.

[in] data_length The length of the encrypted
ECC key data in the buffer in
WORDS.

Return values
SF_CRYPTO_SUCCESS User provided encrypted input Key size and

buffer length is valid and can proceed with
Key installation API call.

SSP_ERR_INVALID_ARGUMENT User provided Input encrypted key size
argument is invalid.

SSP_ERR_CRYPTO_INVALID_SIZE User provided Input encrypted key buffer
length is invalid.

Note
This function is not a user API but an internal function for "keyInstallation" API to verify whether passed user key
buffer length is sufficient for Key Installation API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,408 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ R_SCE_KEY_INSTALLATION_KeyInstall()

ssp_err_t R_SCE_KEY_INSTALLATION_KeyInstall (key_installation_ctrl_t *const p_ctrl,
r_crypto_data_handle_t const *const p_user_key_rsa_modulus, key_installation_key_t const *const
p_user_key, key_installation_key_shared_index_t const shared_index, key_installation_key_t const
*const p_session_key, uint32_t const *const p_iv, key_installation_key_t *const p_key_data)

Key Installation function accepts the user's encrypted key, a shared index, session key, and IV then
returns the wrapped key.

Return values
SSP_SUCCESS Successful Key install.

SSP_ERR_ASSERTION The parameters p_ctrl or p_user_key or
p_session_key or p_iv or p_key_data is
NULL.

SSP_ERR_INVALID_ARGUMENT If one or more conditions below are true -

1. Input key_size of user provided
encrypted key

2. In case of RSA key installation,
p_user_key_rsa_modulus is set to
NULL.

3. In case of RSA key installation,
p_data field of
p_user_key_rsa_modulus is set to
NULL.

SSP_ERR_UNSUPPORTED Input key formats are not supported.

SSP_ERR_CRYPTO_NOT_IMPLEMENTED RSA/ ECC execution is not yet available.

SSP_ERR_CRYPTO_INVALID_SIZE Incoming buffer length (user provided
encrypted key or session key or output key
data) is invalid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

SSP_ERR_CRYPTO_SCE_FAIL Key Installation failed.

Note
It is the responsibility of the caller to store the key.
For key installations other than RSA, p_user_key_rsa_modulus should be set to NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,409 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ R_SCE_KEY_INSTALLATION_Open()

ssp_err_t R_SCE_KEY_INSTALLATION_Open (key_installation_ctrl_t *const p_ctrl,
key_installation_cfg_t const *const p_cfg)

Function to open the Key Installation module.

Parameters
[in,out] p_ctrl Pointer to Key Installation

control block.

[in] p_cfg Pointer to Key Installation
configuration structure.

Return values
SSP_SUCCESS Normal end

SSP_ERR_ASSERTION NULL input parameter(s).

Precondition
SCE module must have been initialized by calling crypto_api_t::open

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,410 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_rsa()

ssp_err_t r_sce_key_installation_rsa (r_crypto_data_handle_t const *const
p_user_key_rsa_modulus, key_installation_key_t const *const p_user_key,
key_installation_key_shared_index_t const shared_index, key_installation_key_t const *const
p_session_key, uint32_t const *const p_iv, key_installation_key_t *const p_key_data)

Sub-routine to install RSA 1024/2048-bit encrypted user provided key which is generated outside of
Synergy platform.

Parameters
[in] p_user_key_rsa_modulus RSA key modulus.

[in] p_user_key Pointer to a user provided
RSA encrypted key.

[in] shared_index Shared Key Index that is
returned by the DLM
Service, accompanied by the
Session Key that follows.

[in] p_session_key Pointer to the Session Key
returned by the DLM
Service, accompanied by the
previous Shared Key Index
parameter.

[in] p_iv Pointer to the IV used to
encrypt the User Key.

[in,out] p_key_data Pointer to wrapped installed
RSA key.

Return values
SSP_SUCCESS RSA Key Installation is successful.

SSP_ERR_INVALID_ARGUMENT Input key size is invalid.

SSP_ERR_UNSUPPORTED Input key formats are not supported.

SSP_ERR_CRYPTO_INVALID_SIZE RSA modulus or input key buffer lengths are
invalid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

SSP_ERR_CRYPTO_SCE_FAIL Key Installation failed.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,411 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_rsa_fill_wrapped_key_out_length()

void r_sce_key_installation_rsa_fill_wrapped_key_out_length (key_installation_key_size_t key_size,
uint32_t * data_length)

Private helper function to fill the output wrapped key length.

Parameters
[in] key_size Indicates users encrypted

RSA key sizes -
1024/2048-bit.

[in,out] data_length Pointer to the length of the
wrapped key data in the
buffer in WORDS, filled by
this routine.

Note
The user key_size should be validated before this private function is called.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,412 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_rsa_verify_key_lengths()

ssp_err_t r_sce_key_installation_rsa_verify_key_lengths (r_crypto_data_handle_t const *const
p_user_key_rsa_modulus, key_installation_key_t const *const p_user_key, key_installation_key_t
const *const p_session_key, key_installation_key_t *const p_key_data)

Subroutine to verify that the provided key lengths are sufficient or not, before proceeding with key
Installation API call.

Parameters
[in] p_user_key_rsa_modulus RSA key modulus.

[in] p_user_key Indicates RSA key sizes -
1024/2048-bits.

[in] p_session_key Pointer to the Session Key
returned by the DLM
Service.

[in] p_key_data Pointer to wrapped installed
RSA key.

Return values
SSP_SUCCESS Key lengths (user provided encrypted input

key, Renesas provided install key, and
output wrapped buffer which holds installed
key) are sufficient, and can proceed with
key installation API call.

SSP_ERR_INVALID_ARGUMENT User provided key_size is invalid.

SSP_ERR_CRYPTO_INVALID_SIZE Either Input key buffer lengths or Output
key buffer length is not valid for RSA Key
installation API operation.

Note
This function is not a user API but an internal function for "keyInstallation" API to verify whether passed key buffer
lengths are sufficient for Key Installation API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,413 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_rsa_verify_modulus()

ssp_err_t r_sce_key_installation_rsa_verify_modulus (key_installation_key_size_t key_size,
uint32_t data_length)

Subroutine to verify the modulus of RSA key.

Parameters
[in] key_size Size of user key to be

installed.

[in] data_length Length of user's input RSA
modulus, 1024/2048-bit

Return values
SSP_ERR_CRYPTO_INVALID_SIZE Invalid modulus length.

SSP_ERR_INVALID_ARGUMENT This is the return code for one or more
cases below -

1. Invalid Key Size is provided.

SSP_SUCCESS Valid modulus length.

◆ r_sce_key_installation_rsa_verify_out_wrapped_key_length_including_modulus()

ssp_err_t r_sce_key_installation_rsa_verify_out_wrapped_key_length_including_modulus (
key_installation_key_size_t key_size, uint32_t data_length)

Subroutine to verify the length of (output buffer) installed key buffer. This length includes
exponent, modulus and extra space for key wrapping.

Parameters
[in] key_size Size of user key to be

installed.

[in] data_length Length of user's input RSA
modulus, 1024/2048-bit.

Return values
SSP_ERR_CRYPTO_INVALID_SIZE Output wrapped key buffer length is not

sufficient.

SSP_ERR_INVALID_ARGUMENT Invalid Key Size is provided.

SSP_SUCCESS Output wrapped key buffer length has
sufficient space to store the returned key.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,414 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_rsa_verify_user_encrypted_key_length()

ssp_err_t r_sce_key_installation_rsa_verify_user_encrypted_key_length (key_installation_key_size_t
key_size, uint32_t data_length)

Subroutine to verify the user provided (input) encrypted RSA key buffer length.

Parameters
[in] key_size Indicates RSA key sizes -

1024/2048-bits.

[in] data_length The length of the encrypted
RSA key data in the buffer in
WORDS.

Return values
SSP_SUCCESS User provided encrypted input Key length is

sufficient and can proceed with Key
installation API call.

SSP_ERR_INVALID_ARGUMENT User provided Input encrypted key size
argument is invalid.

SSP_ERR_CRYPTO_INVALID_SIZE User provided Input encrypted key buffer
length is not sufficient.

Note
This function is not a user API but an internal function for "keyInstallation" API to verify whether passed user key
buffer length is sufficient for Key Installation API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,415 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ r_sce_key_installation_verify_session_key_length()

ssp_err_t r_sce_key_installation_verify_session_key_length (key_installation_key_size_t key_size,
uint32_t data_length)

Subroutine to verify the user provided (input) session key size and buffer length.

Parameters
[in] key_size Indicates the expected

session key size for all
operations.

[in] data_length Length of session key data
buffer in WORDS.

Return values
SSP_SUCCESS User provided encrypted input Key length is

sufficient and can proceed with Key
installation API call.

SSP_ERR_INVALID_ARGUMENT User provided Input encrypted key size
argument is invalid.

SSP_ERR_CRYPTO_INVALID_SIZE User provided Input encrypted key buffer
length is not sufficient.

Note
This function is not a user API but an internal function for "keyInstallation" API to verify whether passed user key
buffer length is sufficient for Key Installation API call.

◆ r_sce_key_installation_verify_shared_index()

ssp_err_t r_sce_key_installation_verify_shared_index (uint32_t const *const p_shared_index)

Subroutine to verify that the shared index is using a valid enumeration for the Key Install API.

Parameters
[in] p_shared_index Shared Key Index that is

returned by the DLM
Service.

Return values
SSP_SUCCESS Shared Index is sufficient, can proceed with

key installation API call.

SSP_ERR_INVALID_ARGUMENT User provided an invalid shared_index
value.

Note
This function is not a user API but an internal function for "keyInstallation" API to verify whether passed shared
index is sufficient for Key Installation API call.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,416 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION

◆ R_SCE_KEY_INSTALLATION_VersionGet()

ssp_err_t R_SCE_KEY_INSTALLATION_VersionGet (ssp_version_t *const p_version)

Gets Key Installation Driver API and Code version based on compile time macros.

Return values
SSP_SUCCESS Successful in getting the module version.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Variable Documentation

◆ g_key_installation_on_sce

const key_installation_api_t g_key_installation_on_sce

=

{

 .open = R_SCE_KEY_INSTALLATION_Open,

 .close = R_SCE_KEY_INSTALLATION_Close,

 .versionGet = R_SCE_KEY_INSTALLATION_VersionGet,

 .keyInstall = R_SCE_KEY_INSTALLATION_KeyInstall

}

SCE/Key_Installation API implementation.

 key_installation_instance_ctrl_t Struct Reference
Renesas Synergy Software Package Reference » HAL Layer » SCE Module » SCE_KEY_INSTALLATION

#include <r_sce_key_installation.h>

Data Fields

crypto_ctrl_t * p_crypto_ctrl

 pointer to crypto engine control structure

crypto_api_t const * p_crypto_api

 pointer to crypto engine API

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,417 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_KEY_INSTALLATION > key_installation_instance_ctrl_t Struct Reference

Detailed Description

Key Installation Interface control structure

The documentation for this struct was generated from the following file:

r_sce_key_installation.h

 SCE_RSA
Renesas Synergy Software Package Reference » HAL Layer » SCE Module

Primitive cryptographic functions. More...

Macros

#define RSA_KEYLENGTH (1024U)

#define UINT32_BITS (32)

#define UINT32_BYTES (4)

#define RSA_MODULUS_SIZE ((RSA_KEYLENGTH)/(UINT32_BITS))

#define RSA_PRIVATE_EXPONENT_SIZE (RSA_MODULUS_SIZE)

#define RSA_PUBLIC_EXPONENT_SIZE (1)

#define RSA_PUBLIC_KEYSIZE ((RSA_PUBLIC_EXPONENT_SIZE)+(
RSA_MODULUS_SIZE))

#define RSA_PRIVATE_KEYSIZE ((RSA_PRIVATE_EXPONENT_SIZE)+(
RSA_MODULUS_SIZE))

#define RSA_PRIVATE_CRT_KEYSIZE ((5*(RSA_MODULUS_SIZE))/2)

#define RSA_KEYLENGTH (2048U)

#define UINT32_BITS (32)

#define UINT32_BYTES (4)

#define RSA_MODULUS_SIZE ((RSA_KEYLENGTH)/(UINT32_BITS))

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,418 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

#define RSA_PRIVATE_EXPONENT_SIZE (RSA_MODULUS_SIZE)

#define RSA_PUBLIC_EXPONENT_SIZE (1)

#define RSA_PUBLIC_KEYSIZE ((RSA_PUBLIC_EXPONENT_SIZE)+(
RSA_MODULUS_SIZE))

#define RSA_PRIVATE_KEYSIZE ((RSA_PRIVATE_EXPONENT_SIZE)+(
RSA_MODULUS_SIZE))

#define RSA_PRIVATE_CRT_KEYSIZE ((5*(RSA_MODULUS_SIZE))/2)

Functions

uint32_t R_SCE_RSA_Open (rsa_ctrl_t *const p_ctrl, rsa_cfg_t const *const
p_cfg)

uint32_t R_SCE_RSA_VersionGet (ssp_version_t *const p_version)

 Sets driver version based on compile time macros. More...

uint32_t R_SCE_RSA_Close (rsa_ctrl_t *const p_ctrl)

uint32_t R_SCE_HRK_RSA_1024PublicKeyEncrypt (rsa_ctrl_t *const p_ctrl,
const uint32_t *p_key, const uint32_t *p_domain, uint32_t
num_words, uint32_t *p_source, uint32_t *p_dest)

 Encrypt using 1024-bit RSA public key. More...

uint32_t R_SCE_HRK_RSA_1024PublicKeyVerify (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t num_words,
uint32_t *p_signature, uint32_t *p_padded_hash)

 Signature Verification using 1024-bit RSA public key. More...

uint32_t R_SCE_HRK_RSA_1024PrivateKeyDecrypt (rsa_ctrl_t *const p_ctrl,
const uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Decrypt using 1024-bit RSA private key in wrapped format. More...

uint32_t R_SCE_HRK_RSA_1024PrivateKeySign (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Signature generation using 1024-bit RSA private key in wrapped
format. More...

uint32_t R_SCE_HRK_RSA_1024PrivateCrtKeyDecrypt (rsa_ctrl_t *const p_ctrl,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,419 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

const uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Decrypt using 1024-bit RSA wrapped private key in CRT format.
More...

uint32_t R_SCE_HRK_RSA_1024PrivateCrtKeySign (rsa_ctrl_t *const p_ctrl,
const uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Signature generation using 1024-bit RSA wrapped private key
represented in CRT format. More...

uint32_t R_SCE_HRK_RSA_1024KeyCreate (rsa_ctrl_t *const p_ctrl, rsa_key_t
*p_private_key, rsa_key_t *p_public_key)

 Creation of 1024-bit RSA Key pair in with private key in wrapped
format. More...

uint32_t R_SCE_HRK_RSA_2048PublicKeyEncrypt (rsa_ctrl_t *const p_ctrl,
const uint32_t *p_key, const uint32_t *p_domain, uint32_t
num_words, uint32_t *p_source, uint32_t *p_dest)

 Encrypt using 2048-bit RSA public key. More...

uint32_t R_SCE_HRK_RSA_2048PublicKeyVerify (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t num_words,
uint32_t *p_signature, uint32_t *p_padded_hash)

 Signature Verification using 2048-bit RSA public key. More...

uint32_t R_SCE_HRK_RSA_2048PrivateKeyDecrypt (rsa_ctrl_t *const p_ctrl,
const uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Decrypt using 2048-bit RSA private key in wrapped format. More...

uint32_t R_SCE_HRK_RSA_2048PrivateKeySign (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Signature generation using 2048-bit RSA private key in wrapped
format. More...

uint32_t R_SCE_HRK_RSA_2048PrivateCrtKeyDecrypt (rsa_ctrl_t *const p_ctrl,
const uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Decrypt using 2048-bit RSA wrapped private key in CRT format.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,420 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

More...

uint32_t R_SCE_HRK_RSA_2048PrivateCrtKeySign (rsa_ctrl_t *const p_ctrl,
const uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Signature generation using 2048-bit RSA wrapped private key
represented in CRT format. More...

uint32_t R_SCE_HRK_RSA_2048KeyCreate (rsa_ctrl_t *const p_ctrl, rsa_key_t
*p_private_key, rsa_key_t *p_public_key)

 Creation of 2048-bit RSA Key pair in with private key in wrapped
format. More...

uint32_t R_SCE_RSA_1024PublicKeyEncrypt (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t num_words,
uint32_t *p_source, uint32_t *p_dest)

 Encryption using 1024-bit RSA public key. More...

uint32_t R_SCE_RSA_1024PublicKeyVerify (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t num_words,
uint32_t *p_signature, uint32_t *p_padded_hash)

 Signature Verification using 1024-bit RSA public key. More...

uint32_t R_SCE_RSA_1024PrivateKeyDecrypt (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Decrypt using 1024-bit RSA private key (standard format) More...

uint32_t R_SCE_RSA_1024PrivateKeySign (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Signature generation using 1024-bit RSA private key. More...

uint32_t R_SCE_RSA_1024PrivateCrtKeyDecrypt (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Decrypt using 1024-bit RSA private key (CRT format) More...

uint32_t R_SCE_RSA_1024PrivateCrtKeySign (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,421 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

uint32_t *p_source, uint32_t *p_dest)

 Signature generation using 1024-bit RSA private key represented in
CRT format. More...

uint32_t R_SCE_RSA_1024KeyCreate (rsa_ctrl_t *const p_ctrl, rsa_key_t
*p_private_key, rsa_key_t *p_public_key)

 Creation of 1024-bit RSA Key pair in plain text format. More...

uint32_t R_SCE_RSA_2048PublicKeyEncrypt (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Encrypt using 2048-bit RSA public key. More...

uint32_t R_SCE_RSA_2048PublicKeyVerify (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_signature, uint32_t *p_paddedHash)

 Signature Verification using 2048-bit RSA public key. More...

uint32_t R_SCE_RSA_2048PrivateKeyDecrypt (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Decrypt using 2048-bit RSA private key (standard format) More...

uint32_t R_SCE_RSA_2048PrivateKeySign (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Signature generation using 2048-bit RSA private key. More...

uint32_t R_SCE_RSA_2048PrivateCrtKeyDecrypt (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Decrypt using 2048-bit RSA private key (CRT format) More...

uint32_t R_SCE_RSA_2048PrivateCrtKeySign (rsa_ctrl_t *const p_ctrl, const
uint32_t *p_key, const uint32_t *p_domain, uint32_t imaxcnt,
uint32_t *p_source, uint32_t *p_dest)

 Signature generation using 2048-bit RSA private key represented in
CRT format. More...

uint32_t R_SCE_RSA_2048KeyCreate (rsa_ctrl_t *const p_ctrl, rsa_key_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,422 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

*p_private_key, rsa_key_t *p_public_key)

 Creation of 2048-bit RSA Key pair in plain text format. More...

Variables

const rsa_api_t g_rsa1024_on_sce_hrk

const rsa_api_t g_rsa2048_on_sce_hrk

const rsa_api_t g_rsa1024_on_sce

Detailed Description

Primitive cryptographic functions.

RSA 1024-bit implementation for key generation, encryption, decryption, signature generation and
signature verification functions for wrapped keys.

RSA 2048-bit implementation for key generation, encryption, decryption, signature generation and
signature verification functions for wrapped keys.

RSA 1024-bit implementation for key generation, encryption, decryption, signature generation and
signature verification functions for plain-text/ raw keys.

RSA 2048-bit implementation for key generation, encryption, decryption, signature generation and
signature verification functions for plain-text/ raw keys.

RSA common functions

Macro Definition Documentation

◆ RSA_KEYLENGTH [1/2]

#define RSA_KEYLENGTH (1024U)

RSA Keylength in bits

◆ RSA_KEYLENGTH [2/2]

#define RSA_KEYLENGTH (2048U)

RSA Keylength in bits

◆ RSA_MODULUS_SIZE [1/2]

#define RSA_MODULUS_SIZE ((RSA_KEYLENGTH)/(UINT32_BITS))

rsa modulus data size in words

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,423 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ RSA_MODULUS_SIZE [2/2]

#define RSA_MODULUS_SIZE ((RSA_KEYLENGTH)/(UINT32_BITS))

rsa modulus data size in words

◆ RSA_PRIVATE_CRT_KEYSIZE [1/2]

#define RSA_PRIVATE_CRT_KEYSIZE ((5*(RSA_MODULUS_SIZE))/2)

RSA private key in CRT format size in words

◆ RSA_PRIVATE_CRT_KEYSIZE [2/2]

#define RSA_PRIVATE_CRT_KEYSIZE ((5*(RSA_MODULUS_SIZE))/2)

RSA private key in CRT format size in words

◆ RSA_PRIVATE_EXPONENT_SIZE [1/2]

#define RSA_PRIVATE_EXPONENT_SIZE (RSA_MODULUS_SIZE)

rsa private exponent data size in words

◆ RSA_PRIVATE_EXPONENT_SIZE [2/2]

#define RSA_PRIVATE_EXPONENT_SIZE (RSA_MODULUS_SIZE)

rsa private exponent data size in words

◆ RSA_PRIVATE_KEYSIZE [1/2]

#define RSA_PRIVATE_KEYSIZE ((RSA_PRIVATE_EXPONENT_SIZE)+(RSA_MODULUS_SIZE))

rsa private key size in words

◆ RSA_PRIVATE_KEYSIZE [2/2]

#define RSA_PRIVATE_KEYSIZE ((RSA_PRIVATE_EXPONENT_SIZE)+(RSA_MODULUS_SIZE))

rsa private key size in words

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,424 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ RSA_PUBLIC_EXPONENT_SIZE [1/2]

#define RSA_PUBLIC_EXPONENT_SIZE (1)

rsa public exponent data size in words

◆ RSA_PUBLIC_EXPONENT_SIZE [2/2]

#define RSA_PUBLIC_EXPONENT_SIZE (1)

rsa public exponent data size in words

◆ RSA_PUBLIC_KEYSIZE [1/2]

#define RSA_PUBLIC_KEYSIZE ((RSA_PUBLIC_EXPONENT_SIZE)+(RSA_MODULUS_SIZE))

rsa public key size in words

◆ RSA_PUBLIC_KEYSIZE [2/2]

#define RSA_PUBLIC_KEYSIZE ((RSA_PUBLIC_EXPONENT_SIZE)+(RSA_MODULUS_SIZE))

rsa public key size in words

◆ UINT32_BITS [1/2]

#define UINT32_BITS (32)

uint32_t word size in bits

◆ UINT32_BITS [2/2]

#define UINT32_BITS (32)

uint32_t word size in bits

◆ UINT32_BYTES [1/2]

#define UINT32_BYTES (4)

uint32_t word size in bytes

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,425 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ UINT32_BYTES [2/2]

#define UINT32_BYTES (4)

uint32_t word size in bytes

Function Documentation

◆ R_SCE_HRK_RSA_1024KeyCreate()

uint32_t R_SCE_HRK_RSA_1024KeyCreate (rsa_ctrl_t *const p_ctrl, rsa_key_t * p_private_key,
rsa_key_t * p_public_key)

Creation of 1024-bit RSA Key pair in with private key in wrapped format.

RSA private key is created based on the key_format specified by p_private_key.
RSA_KEY_FORMAT_WRAPPED_PRIVATE_KEY specifies a wrapped standard format key.
RSA_KEY_FORMAT_WRAPPED_PRIVATE_CRT_KEY specifies a wrapped CRT format key.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Key creation was successful.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer may not be empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

SSP_ERR_CRYPTO_INVALID_SIZE An input parameter of invalid size.

SSP_ERR_CRYPTO_UNKNOWN An input parameter is of unknown type.

Note
The buffers to hold the keys must be adequate for the key formats requested.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,426 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_HRK_RSA_1024PrivateCrtKeyDecrypt()

uint32_t R_SCE_HRK_RSA_1024PrivateCrtKeyDecrypt (rsa_ctrl_t *const p_ctrl, const uint32_t *
p_key, const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Decrypt using 1024-bit RSA wrapped private key in CRT format.

Decrypt imaxcnt words of input data from buffer p_source using the 1024-bit RSA wrapped private
key in CRT format, from buffer key . The result will be written to the output buffer from p_dest. The
p_dest array is assumed to have space for at least imaxcnt words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter may be NULL or of
invalid format/size.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
'p_domain' is unused and can be passed as NULL.
The p_key pointer to 85-word buffer with Wrapped 1024-bit RSA key CRT parameters.
imaxcnt must be equal to RSA MODULUS size (RSA Private Key_size / number of bits per word). For example,
RSA MODULUS size for RSA 1024-bit private key = 1024/32 = 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,427 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_HRK_RSA_1024PrivateCrtKeySign()

uint32_t R_SCE_HRK_RSA_1024PrivateCrtKeySign (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using 1024-bit RSA wrapped private key represented in CRT format.

Sign imaxcnt words of input data from buffer p_source using the 1024-bit RSA wrapped private key
in CRT format, from buffer p_key. The result will be written to the output buffer from p_dest. The
p_dest array is assumed to have space for at least imaxcnt words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter may be NULL or of
invalid format.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
'p_domain' is unused and can be passed as NULL.
The p_key pointer to 85-word buffer with 1024-bit RSA key CRT parameters
imaxcnt must be equal to RSA MODULUS size (RSA Private Key_size / number of bits per word). For example,
RSA MODULUS size for RSA 1024-bit private key = 1024/32 = 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,428 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_HRK_RSA_1024PrivateKeyDecrypt()

uint32_t R_SCE_HRK_RSA_1024PrivateKeyDecrypt (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Decrypt using 1024-bit RSA private key in wrapped format.

Decrypt imaxcnt words of input data from buffer p_source using the 1024-bit RSA private key from
buffer p_key. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for atleast imaxcnt words of data.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Decrypt operation was successful.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty or/and Input
parameter is not valid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
The p_key buffer must contain 64 words of RSA private key data followed by 64 words of RSA key modulus data
imaxcnt must be equal to RSA MODULUS size (RSA Public Key_size / number of bits per word). For example, RSA
MODULUS size for RSA 1024-bit Public key = 1024/32 = 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,429 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_HRK_RSA_1024PrivateKeySign()

uint32_t R_SCE_HRK_RSA_1024PrivateKeySign (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using 1024-bit RSA private key in wrapped format.

Sign imaxcnt words of input data from buffer p_source using the 1024-bit RSA private key from
buffer p_key and domain parameters from buffer p_domain. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast imaxcnt words of data.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Signature generation was successful.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty or/and Input
parameter is not valid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
The p_key buffer must contain 64 words of RSA private key data followed by 64 words of RSA key modulus data
imaxcnt must be equal to RSA MODULUS size (RSA Public Key_size / number of bits per word). For example, RSA
MODULUS size for RSA 1024-bit Public key = 1024/32 = 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,430 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_HRK_RSA_1024PublicKeyEncrypt()

uint32_t R_SCE_HRK_RSA_1024PublicKeyEncrypt (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypt using 1024-bit RSA public key.

Encrypt num_words words of input data from buffer p_source using the 1024-bit RSA public key
from buffer p_key and domain parameters from p_domain. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast num_words words of
data.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty or/and Input
parameter is not valid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 132 bytes of RSA public key data in the format (public_exponent || public_modulus),
where public_exponent is 1 words of data and public_modulus is 32 words of data
num_words must be equal to RSA MODULUS size in bytes (RSA Public Key_size / bits per byte). For example, RSA
MODULUS size for RSA 1024-bit Public key = 1024/8 = 128 bytes or 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,431 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_HRK_RSA_1024PublicKeyVerify()

uint32_t R_SCE_HRK_RSA_1024PublicKeyVerify (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t num_words, uint32_t * p_signature, uint32_t *
p_padded_hash)

Signature Verification using 1024-bit RSA public key.

Verify RSA signature data from buffer p_signature of length num_words using 1024-bit RSA public
key. The buffer p_padded_hash indicates the message buffer from which the RSA signature should
have been generated.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Normal end, valid signature

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL incorrect signature or/and Input parameter
p_padded_hash is invalid.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
The p_key buffer must contain 132 bytes of RSA public key data in the format (public_exponent || public_modulus)
where public_exponent is 1 word and public_modulus is 32 words.
Length of the p_key, p_signature and p_padded_hash must each be equal to num_words. For RSA 1024-bit key,
num_words should be equal to 32.
num_words must be equal to RSA MODULUS size (RSA Public Key_size / number of bits per word). For example,
RSA MODULUS size for RSA 1024-bit Public key = 1024/32 = 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,432 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_HRK_RSA_2048KeyCreate()

uint32_t R_SCE_HRK_RSA_2048KeyCreate (rsa_ctrl_t *const p_ctrl, rsa_key_t * p_private_key,
rsa_key_t * p_public_key)

Creation of 2048-bit RSA Key pair in with private key in wrapped format.

RSA private key is created based on the key_format specified by p_private_key.
RSA_KEY_FORMAT_WRAPPED_PRIVATE_KEY specifies a wrapped standard format key.
RSA_KEY_FORMAT_PLAIN_TEXT_CRT_KEY specifies the CRT parameters to be created.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Key creation was successful.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer may not be empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

SSP_ERR_CRYPTO_INVALID_SIZE An input parameter of invalid size.

SSP_ERR_CRYPTO_UNKNOWN An input parameter is of unknown type.

Note
The buffers to hold the keys must be adequate for the key formats requested.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,433 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_HRK_RSA_2048PrivateCrtKeyDecrypt()

uint32_t R_SCE_HRK_RSA_2048PrivateCrtKeyDecrypt (rsa_ctrl_t *const p_ctrl, const uint32_t *
p_key, const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Decrypt using 2048-bit RSA wrapped private key in CRT format.

Decrypt imaxcnt words of input data from buffer p_source using the 2048-bit RSA private key in
Wrapped CRT format, from buffer key . The result will be written to the output buffer from p_dest.
The p_dest array is assumed to have space for at least imaxcnt words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter may be NULL or of
invalid format/size.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
'p_domain' is unused and can be passed as NULL.
The p_key pointer to 165-word buffer with Wrapped 1024-bit RSA key CRT parameters.
imaxcnt must be equal to RSA MODULUS size (RSA Private Key_size / number of bits per word). For example,
RSA MODULUS size for RSA 1024-bit private key = 2048/32 = 64 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,434 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_HRK_RSA_2048PrivateCrtKeySign()

uint32_t R_SCE_HRK_RSA_2048PrivateCrtKeySign (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using 2048-bit RSA wrapped private key represented in CRT format.

Sign imaxcnt words of input data from buffer p_source using the 2048-bit RSA wrapped private key
in CRT format, from buffer p_key. The result will be written to the output buffer from p_dest. The
p_dest array is assumed to have space for at least imaxcnt words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter may be NULL or of
invalid format.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
'p_domain' is unused and can be passed as NULL.
The p_key pointer to 165-word buffer with 2048-bit RSA key CRT parameters
imaxcnt must be equal to RSA MODULUS size (RSA Private Key_size / number of bits per word). For example,
RSA MODULUS size for RSA 1024-bit private key = 2048/32 = 64 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,435 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_HRK_RSA_2048PrivateKeyDecrypt()

uint32_t R_SCE_HRK_RSA_2048PrivateKeyDecrypt (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Decrypt using 2048-bit RSA private key in wrapped format.

Decrypt imaxcnt words of input data from buffer p_source using the 2048-bit RSA private key from
buffer p_key. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for atleast imaxcnt words of data.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Decrypt operation was successful.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty or/and Input
parameter is not valid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
The p_key buffer must contain 64 words of RSA private key data followed by 64 words of RSA key modulus data

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,436 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_HRK_RSA_2048PrivateKeySign()

uint32_t R_SCE_HRK_RSA_2048PrivateKeySign (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using 2048-bit RSA private key in wrapped format.

Sign imaxcnt words of input data from buffer p_source using the 2048-bit RSA private key from
buffer p_key and domain parameters from buffer p_domain. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast imaxcnt words of data.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Signature generation was successful.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty or/and Input
parameter is not valid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
The p_key buffer must contain 64 words of RSA private key data followed by 64 words of RSA key modulus data

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,437 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_HRK_RSA_2048PublicKeyEncrypt()

uint32_t R_SCE_HRK_RSA_2048PublicKeyEncrypt (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encrypt using 2048-bit RSA public key.

Encrypt num_words words of input data from buffer p_source using the 2048-bit RSA public key
from buffer p_key and domain parameters from p_domain. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast num_words words of
data.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty or/and Input
parameter is not valid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 260 bytes of RSA public key data in the format (public_exponent || public_modulus),
where public_exponent is 1 words of data and public_modulus is 64 words of data
num_words must be equal to RSA MODULUS size in bytes (RSA Public Key_size / bits per byte). For example, RSA
MODULUS size for RSA 2048-bit Public key = 2048/8 = 256 bytes or 64 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,438 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_HRK_RSA_2048PublicKeyVerify()

uint32_t R_SCE_HRK_RSA_2048PublicKeyVerify (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t num_words, uint32_t * p_signature, uint32_t *
p_padded_hash)

Signature Verification using 2048-bit RSA public key.

Verify RSA signature data from buffer p_signature of length num_words using 2048-bit RSA public
key. The buffer p_padded_hash indicates the message buffer from which the RSA signature should
have been generated.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Normal end, valid signature

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL incorrect signature or/and Input parameter
p_padded_hash is invalid.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
The p_key buffer must contain 260 bytes of RSA public key data in the format (public_exponent || public_modulus)
where public_exponent is 1 word and public_modulus is 64 words.
Length of the p_key, p_signature and p_padded_hash must each be equal to num_words. For RSA 2048-bit key,
num_words should be equal to 64.
num_words must be equal to RSA MODULUS size (RSA Public Key_size / number of bits per word). For example,
RSA MODULUS size for RSA 2048-bit Public key = 2048/32 = 64 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,439 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_1024KeyCreate()

uint32_t R_SCE_RSA_1024KeyCreate (rsa_ctrl_t *const p_ctrl, rsa_key_t * p_private_key, rsa_key_t
* p_public_key)

Creation of 1024-bit RSA Key pair in plain text format.

RSA private key is created based on the key_format specified by p_private_key.
RSA_KEY_FORMAT_PLAIN_TEXT_PRIVATE_KEY specifies a standard format private key.
RSA_KEY_FORMAT_PLAIN_TEXT_CRT_KEY specifies the CRT parameters to be created.

Return values
SSP_ERR_ASSERTION An input parameter may be NULL or of

invalid format.

SF_CRYPTO_SUCCESS Key creation was successful.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer may not be empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

SSP_ERR_CRYPTO_INVALID_SIZE An input parameter of invalid size.

SSP_ERR_CRYPTO_UNKNOWN An input parameter is of unknown type.

Note
The buffers to hold the keys must be adequate for the key formats requested.
The RSA CRT key consists of the exponent2 || prime2 || exponent1 || prime1 || coefficient, in that order.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,440 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_1024PrivateCrtKeyDecrypt()

uint32_t R_SCE_RSA_1024PrivateCrtKeyDecrypt (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Decrypt using 1024-bit RSA private key (CRT format)

Decrypt imaxcnt words of input data from buffer p_source using the 1024-bit RSA private key from
buffer key and domain parameters from buffer p_domain. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast imaxcnt words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter may be NULL or of
invalid format.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
The p_key pointer to 80-word buffer with 1024-bit RSA key CRT parameters (d mod (q-1) || q || d mod (p-1) || p ||
q^-1 mod p)
imaxcnt must be equal to RSA MODULUS size (RSA Private Key_size / number of bits per word). For example,
RSA MODULUS size for RSA 1024-bit private key = 1024/32 = 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,441 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_1024PrivateCrtKeySign()

uint32_t R_SCE_RSA_1024PrivateCrtKeySign (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key, const
uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using 1024-bit RSA private key represented in CRT format.

Sign imaxcnt words of input data from buffer p_source using the 1024-bit RSA private key from
buffer p_key and domain parameters from buffer p_domain. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast imaxcnt words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter may be NULL or of
invalid format.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
The p_key pointer to 80-word buffer with 1024-bit RSA key CRT parameters (d mod (q-1) || q || d mod (p-1) || p ||
q^-1 mod p)
imaxcnt must be equal to RSA MODULUS size (RSA Private Key_size / number of bits per word). For example,
RSA MODULUS size for RSA 1024-bit private key = 1024/32 = 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,442 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_1024PrivateKeyDecrypt()

uint32_t R_SCE_RSA_1024PrivateKeyDecrypt (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Decrypt using 1024-bit RSA private key (standard format)

Decrypt imaxcnt words of input data from buffer p_source using the 1024-bit RSA private key from
buffer p_key. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for atleast imaxcnt words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter may be NULL or of
invalid format.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty or/and Input
parameter is not valid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
The p_key buffer must contain 32 words of RSA private key data followed by 32 words of RSA key modulus data
imaxcnt must be equal to RSA MODULUS size (RSA Private Key_size / number of bits per word). For example,
RSA MODULUS size for RSA 1024-bit private key = 1024/32 = 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,443 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_1024PrivateKeySign()

uint32_t R_SCE_RSA_1024PrivateKeySign (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key, const
uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using 1024-bit RSA private key.

Sign imaxcnt words of input data from buffer p_source using the 1024-bit RSA private key from
buffer p_key and domain parameters from buffer p_domain. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast imaxcnt words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter may be NULL or of
invalid format.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty or/and Input
parameter is not valid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
The p_key buffer must contain 32 words of RSA private key data followed by 32 words of RSA key modulus data
imaxcnt must be equal to RSA MODULUS size (RSA Private Key_size / number of bits per word). For example,
RSA MODULUS size for RSA 1024-bit private key = 1024/32 = 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,444 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_1024PublicKeyEncrypt()

uint32_t R_SCE_RSA_1024PublicKeyEncrypt (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key, const
uint32_t * p_domain, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Encryption using 1024-bit RSA public key.

Encrypt num_words words of input data from buffer p_source using the 1024-bit RSA public key
from buffer p_key and domain parameters from p_domain. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast num_words words of
data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter may be NULL or of
invalid format.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty or/and Input
parameter is not valid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open

Note
p_dest must have space to hold at least num_words words of data.
The p_key buffer must contain 132 bytes of RSA public key data in the format (public_exponent || public_modulus),
where public_exponent is 1 words of data and public_modulus is 32 words of data
num_words must be equal to RSA MODULUS size (RSA Public Key_size / number of bits per word). For example,
RSA MODULUS size for RSA 1024-bit Public key = 1024/32 = 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,445 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_1024PublicKeyVerify()

uint32_t R_SCE_RSA_1024PublicKeyVerify (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key, const
uint32_t * p_domain, uint32_t num_words, uint32_t * p_signature, uint32_t * p_padded_hash)

Signature Verification using 1024-bit RSA public key.

Verify RSA signature data from buffer p_signature of length num_words using 1024-bit RSA public
key. The buffer p_padded_hash indicates the message buffer from which the RSA signature should
have been generated.

Return values
SF_CRYPTO_SUCCESS Normal end, valid signature

SSP_ERR_ASSERTION An input parameter may be NULL or of
invalid format.

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL incorrect signature or/and Input parameter
p_padded_hash is invalid.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
The p_key buffer must contain 132 bytes of RSA public key data in the format (public_exponent || public_modulus)
where public_exponent is 1 word and public_modulus is 32 words.
Length of the p_key, p_signature and p_padded_hash must each be equal to num_words. For RSA 1024-bit key,
num_words should be equal to 32.
num_words must be equal to RSA MODULUS size (RSA Public Key_size / number of bits per word). For example,
RSA MODULUS size for RSA 1024-bit Pubic key = 1024/32 = 32 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,446 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_2048KeyCreate()

uint32_t R_SCE_RSA_2048KeyCreate (rsa_ctrl_t *const p_ctrl, rsa_key_t * p_private_key, rsa_key_t
* p_public_key)

Creation of 2048-bit RSA Key pair in plain text format.

RSA private key is created based on the key_format specified by p_private_key.
RSA_KEY_FORMAT_PLAIN_TEXT_PRIVATE_KEY specifies a standard format private key.
RSA_KEY_FORMAT_PLAIN_TEXT_CRT_KEY specifies the CRT parameters to be created.

Return values
SSP_ERR_ASSERTION An input parameter may be NULL or of

invalid format.

SF_CRYPTO_SUCCESS Key creation was successful.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer may not be empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

SSP_ERR_CRYPTO_INVALID_SIZE An input parameter of invalid size.

SSP_ERR_CRYPTO_UNKNOWN An input parameter is of unknown type.

Note
The buffers to hold the keys must be adequate for the key formats requested.
The RSA CRT key consists of the exponent2 || prime2 || exponent1 || prime1 || coefficient, in that order.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,447 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_2048PrivateCrtKeyDecrypt()

uint32_t R_SCE_RSA_2048PrivateCrtKeyDecrypt (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Decrypt using 2048-bit RSA private key (CRT format)

Decrypt imaxcnt words of input data from buffer p_source using the 2048-bit RSA private key from
buffer p_key and domain parameters from buffer p_domain. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast imaxcnt words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter may be NULL or of
invalid format.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
The p_key buffer must contain pointer to 160-word buffer with 2048-bit RSA key CRT parameters (d mod (q-1) || q
|| d mod (p-1) || p || q^-1 mod p)
imaxcnt must be equal to RSA MODULUS size (RSA Key private size / number of bits per word). For example, RSA
MODULUS size for RSA 2048-bit private key = 2048/32 = 64 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,448 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_2048PrivateCrtKeySign()

uint32_t R_SCE_RSA_2048PrivateCrtKeySign (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key, const
uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using 2048-bit RSA private key represented in CRT format.

Sign imaxcnt words of input data from buffer p_source using the 2048-bit RSA private key from
buffer p_key and domain parameters from buffer p_domain. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast imaxcnt words of data.

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter may be NULL or of
invalid format.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
The p_key buffer must contain pointer to 160-word buffer with 2048-bit RSA key CRT parameters (d mod (q-1) || q
|| d mod (p-1) || p || q^-1 mod p)
imaxcnt must be equal to RSA MODULUS size (RSA Key private size / number of bits per word). For example, RSA
MODULUS size for RSA 2048-bit private key = 2048/32 = 64 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,449 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_2048PrivateKeyDecrypt()

uint32_t R_SCE_RSA_2048PrivateKeyDecrypt (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key,
const uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Decrypt using 2048-bit RSA private key (standard format)

Decrypt imaxcnt words of input data from buffer p_source using the 2048-bit RSA private key from
buffer p_key. The result will be written to the output buffer from p_dest. The p_dest array is
assumed to have space for atleast imaxcnt words of data.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty or/and Input
parameter is not valid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
The p_key buffer must contain 64 words of RSA private key data followed by 64 words of RSA key modulus data
imaxcnt must be equal to RSA MODULUS size (RSA Key private size / number of bits per word). For example, RSA
MODULUS size for RSA 2048-bit private key = 2048/32 = 64 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,450 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_2048PrivateKeySign()

uint32_t R_SCE_RSA_2048PrivateKeySign (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key, const
uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Signature generation using 2048-bit RSA private key.

Sign imaxcnt words of input data from buffer p_source using the 2048-bit RSA private key from
buffer p_key and domain parameters from buffer p_domain. The result will be written to the output
buffer from p_dest. The p_dest array is assumed to have space for atleast imaxcnt words of data.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty or/and Input
parameter is not valid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
p_dest must have space to hold at least imaxcnt words of data.
The p_key buffer must contain 64 words of RSA private key data followed by 64 words of RSA key modulus data
imaxcnt must be equal to RSA MODULUS size (RSA Key private size / number of bits per word). For example, RSA
MODULUS size for RSA 2048-bit private key = 2048/32 = 64 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,451 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_2048PublicKeyEncrypt()

uint32_t R_SCE_RSA_2048PublicKeyEncrypt (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key, const
uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_source, uint32_t * p_dest)

Encrypt using 2048-bit RSA public key.

Encrypt imaxcnt words of input data from buffer p_source using the 2048-bit RSA public key from
buffer p_key and domain parameters from p_domain. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast imaxcnt words of data.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Normal end

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty or/and Input
parameter is not valid.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open

Note
p_dest must have space to hold at least imaxcnt words of data.
The p_key buffer must contain 260 bytes of RSA public key data in the format (public_exponent || public_modulus),
where public_exponent is 1 words of data and public_modulus is 64 words of data
imaxcnt must be equal to RSA MODULUS size (RSA Public Key_size / number of bits per word). For example, RSA
MODULUS size for RSA 2048-bit Public key = 2048/32 = 64 words.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,452 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_2048PublicKeyVerify()

uint32_t R_SCE_RSA_2048PublicKeyVerify (rsa_ctrl_t *const p_ctrl, const uint32_t * p_key, const
uint32_t * p_domain, uint32_t imaxcnt, uint32_t * p_signature, uint32_t * p_paddedHash)

Signature Verification using 2048-bit RSA public key.

Verify RSA signature data from buffer p_signature of length imaxcnt using 2048-bit RSA public key.
The buffer p_padded_hash indicates the message buffer from which the RSA signature should have
been generated.

Return values
SSP_ERR_ASSERTION An input parameter is NULL or of invalid

format.

SF_CRYPTO_SUCCESS Normal end, valid signature

SSP_ERR_CRYPTO_SCE_VERIFY_FAIL incorrect signature or/and Input parameter
p_padded_hash is invalid.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

resource conflict occurred

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Note
The p_key buffer must contain 260 bytes of RSA public key data in the format (public_exponent || public_modulus)
where public_exponent is 1 word and public_modulus is 64 words.
Length of the p_key, p_signature and p_padded_hash must each be equal to num_words. For RSA 2048-bit key,
num_words should be equal to 64.
imaxcnt must be equal to RSA MODULUS size (RSA Public Key_size / number of bits per word). For example, RSA
MODULUS size for RSA 2048-bit Public key = 2048/32 = 64 words.

◆ R_SCE_RSA_Close()

uint32_t R_SCE_RSA_Close (rsa_ctrl_t *const p_ctrl)

Close RSA driver

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL or of invalid
format.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,453 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ R_SCE_RSA_Open()

uint32_t R_SCE_RSA_Open (rsa_ctrl_t *const p_ctrl, rsa_cfg_t const *const p_cfg)

RSA Initialization

Return values
SF_CRYPTO_SUCCESS Normal end

SSP_ERR_ASSERTION An input parameter is NULL or of invalid
format.

SSP_ERR_CRYPTO_NOT_OPEN Crypto HAL Common module is not Opened.

Precondition
SCE module must have been initialized by calling crypto_api_t::open.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

◆ R_SCE_RSA_VersionGet()

uint32_t R_SCE_RSA_VersionGet (ssp_version_t *const p_version)

Sets driver version based on compile time macros.

Return values
SSP_CRYPTO_SUCCESS Successful in getting the module version.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Variable Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,454 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ g_rsa1024_on_sce

const rsa_api_t g_rsa1024_on_sce

=

{

 .open = R_SCE_RSA_Open,

 .encrypt = R_SCE_RSA_1024PublicKeyEncrypt,

 .decrypt = R_SCE_RSA_1024PrivateKeyDecrypt,

 .decryptCrt = R_SCE_RSA_1024PrivateCrtKeyDecrypt,

 .sign = R_SCE_RSA_1024PrivateKeySign,

 .signCrt = R_SCE_RSA_1024PrivateCrtKeySign,

 .verify = R_SCE_RSA_1024PublicKeyVerify,

 .close = R_SCE_RSA_Close,

 .versionGet = R_SCE_RSA_VersionGet,

 .keyCreate = R_SCE_RSA_1024KeyCreate

}

SCE/RSA implementation of RSA API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,455 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ g_rsa1024_on_sce_hrk

const rsa_api_t g_rsa1024_on_sce_hrk

=

{

 .open = R_SCE_RSA_Open,

 .encrypt = R_SCE_HRK_RSA_1024PublicKeyEncrypt,

 .decrypt = R_SCE_HRK_RSA_1024PrivateKeyDecrypt,

 .decryptCrt = R_SCE_HRK_RSA_1024PrivateCrtKeyDecrypt,

 .sign = R_SCE_HRK_RSA_1024PrivateKeySign,

 .signCrt = R_SCE_HRK_RSA_1024PrivateCrtKeySign,

 .verify = R_SCE_HRK_RSA_1024PublicKeyVerify,

 .close = R_SCE_RSA_Close,

 .versionGet = R_SCE_RSA_VersionGet,

 .keyCreate = R_SCE_HRK_RSA_1024KeyCreate

}

SCE/RSA implementation of RSA API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,456 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_RSA

◆ g_rsa2048_on_sce_hrk

const rsa_api_t g_rsa2048_on_sce_hrk

=

{

 .open = R_SCE_RSA_Open,

 .encrypt = R_SCE_HRK_RSA_2048PublicKeyEncrypt,

 .decrypt = R_SCE_HRK_RSA_2048PrivateKeyDecrypt,

 .decryptCrt = R_SCE_HRK_RSA_2048PrivateCrtKeyDecrypt,

 .sign = R_SCE_HRK_RSA_2048PrivateKeySign,

 .signCrt = R_SCE_HRK_RSA_2048PrivateCrtKeySign,

 .verify = R_SCE_HRK_RSA_2048PublicKeyVerify,

 .close = R_SCE_RSA_Close,

 .versionGet = R_SCE_RSA_VersionGet,

 .keyCreate = R_SCE_HRK_RSA_2048KeyCreate

}

SCE/RSA implementation of RSA API.

 SCE_TDES
Renesas Synergy Software Package Reference » HAL Layer » SCE Module

Primitive cryptographic functions. More...

Functions

uint32_t R_SCE_TDES_Open (tdes_ctrl_t *const p_ctrl, tdes_cfg_t const *const
p_cfg)

 TDES Initialization. More...

uint32_t R_SCE_TDES_VersionGet (ssp_version_t *const p_version)

 Sets driver version based on compile time macros. More...

uint32_t R_SCE_TDES_Close (tdes_ctrl_t *const p_ctrl)

 Close TDES module. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,457 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_TDES

uint32_t R_SCE_TDES_192CbcEncrypt (tdes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Triple DES Encryption with CBC mode. More...

uint32_t R_SCE_TDES_192CbcDecrypt (tdes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Triple DES Decryption with CBC mode. More...

uint32_t R_SCE_TDES_192CtrEncrypt (tdes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Triple DES Encryption with CTR mode. More...

uint32_t R_SCE_TDES_192EcbEncrypt (tdes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Triple DES Encryption with ECB mode. More...

uint32_t R_SCE_TDES_192EcbDecrypt (tdes_ctrl_t *const p_ctrl, const uint32_t
*p_key, uint32_t *p_iv, uint32_t num_words, uint32_t *p_source,
uint32_t *p_dest)

 Triple DES Decryption with ECB mode. Decrypt num_words words of
input data from buffer p_source using the 192-bit TDES key from
buffer key and initialization vector from buffer iv. The result will be
written to the output buffer from p_dest. The p_dest array is
assumed to have space for atleast num_words words of data. More...

Variables

const tdes_api_t g_tdes192ecb_on_sce

Detailed Description

Primitive cryptographic functions.

Triple DES encryption and decryption functions

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,458 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_TDES

◆ R_SCE_TDES_192CbcDecrypt()

uint32_t R_SCE_TDES_192CbcDecrypt (tdes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Triple DES Decryption with CBC mode.

Decrypt num_words words of input data from buffer p_source using the 192-bit TDES key from
buffer key and initialization vector from buffer iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SSP_ERR_ASSERTION One of the input parameters is NULL or

invalid.

SF_CRYPTO_SUCCESS Function returned successfully.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

Precondition
SCE module must have been initialized.

Note
p_dest must have space to hold at least num_words words of data.
The key buffer must contain 24 bytes of TDES key data and
the iv buffer must have 8 bytes of random data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,459 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_TDES

◆ R_SCE_TDES_192CbcEncrypt()

uint32_t R_SCE_TDES_192CbcEncrypt (tdes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Triple DES Encryption with CBC mode.

Encrypt num_words words of input data from buffer p_source using the 192-bit TDES key from
buffer key and initialization vector from buffer iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for at least num_words words of data.

Return values
SSP_ERR_ASSERTION One of the input parameters is NULL or

invalid.

SF_CRYPTO_SUCCESS Function returned successfully.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

Precondition
SCE module must have been initialized.

Note
p_dest must have space to hold at least num_words words of data.
The key buffer must contain 24 bytes of TDES key data and
the iv buffer must have 8 bytes of random data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,460 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_TDES

◆ R_SCE_TDES_192CtrEncrypt()

uint32_t R_SCE_TDES_192CtrEncrypt (tdes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Triple DES Encryption with CTR mode.

Encrypt num_words words of input data from buffer p_source using the 192-bit TDES key from
buffer key and initialization vector from buffer iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for at least num_words words of data.

Return values
SSP_ERR_ASSERTION One of the input parameters is NULL or

invalid.

SF_CRYPTO_SUCCESS Function returned successfully.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

Precondition
SCE module must have been initialized.

Note
p_dest must have space to hold at least num_words words of data.
The key buffer must contain 24 bytes of TDES key data and
the iv buffer must have 8 bytes of random data.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,461 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_TDES

◆ R_SCE_TDES_192EcbDecrypt()

uint32_t R_SCE_TDES_192EcbDecrypt (tdes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Triple DES Decryption with ECB mode. Decrypt num_words words of input data from buffer
p_source using the 192-bit TDES key from buffer key and initialization vector from buffer iv. The
result will be written to the output buffer from p_dest. The p_dest array is assumed to have space
for atleast num_words words of data.

Return values
SSP_ERR_ASSERTION One of the input parameters is NULL or

invalid.

SF_CRYPTO_SUCCESS Function returned successfully.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

Precondition
SCE module must have been initialized.

Note
p_dest must have space to hold at least num_words words of data.
The key buffer must contain 24 bytes of TDES key data and
The contents of iv buffer are ignored in ECB chaining mode.

To prevent compiler warning for unused parameter.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,462 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_TDES

◆ R_SCE_TDES_192EcbEncrypt()

uint32_t R_SCE_TDES_192EcbEncrypt (tdes_ctrl_t *const p_ctrl, const uint32_t * p_key, uint32_t *
p_iv, uint32_t num_words, uint32_t * p_source, uint32_t * p_dest)

Triple DES Encryption with ECB mode.

Encrypt num_words words of input data from buffer p_source using the 192-bit TDES key from
buffer key and initialization vector from buffer iv. The result will be written to the output buffer
from p_dest. The p_dest array is assumed to have space for atleast num_words words of data.

Return values
SSP_ERR_ASSERTION One of the input parameters is NULL or

invalid.

SF_CRYPTO_SUCCESS Function returned successfully.

SSP_ERR_CRYPTO_SCE_FAIL Internal I/O buffer is not empty.

SSP_ERR_CRYPTO_SCE_RESOURCE_CONFLIC
T

Resource conflict occurred.

Precondition
SCE module must have been initialized.

Note
Block size for TDES is 64-bits (8 bytes or 2 words). Hence num_words must be a multiple of 2.
p_dest must have space to hold at least num_words words of data.
The key buffer must contain 24 bytes of TDES key data.
The contents of iv buffer are ignored in ECB chaining mode.

To prevent compiler warning for unused parameter.

◆ R_SCE_TDES_Close()

uint32_t R_SCE_TDES_Close (tdes_ctrl_t *const p_ctrl)

Close TDES module.

Return values
SF_CRYPTO_SUCCESS Module closed successfully.

SSP_ERR_ASSERTION The parameter p_ctrl is NULL.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,463 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_TDES

◆ R_SCE_TDES_Open()

uint32_t R_SCE_TDES_Open (tdes_ctrl_t *const p_ctrl, tdes_cfg_t const *const p_cfg)

TDES Initialization.

Return values
SF_CRYPTO_SUCCESS Module opened successfully.

SSP_ERR_ASSERTION One of the input parameter is NULL.

SSP_ERR_CRYPTO_NOT_OPEN Crypto HAL Common module is not Opened.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

◆ R_SCE_TDES_VersionGet()

uint32_t R_SCE_TDES_VersionGet (ssp_version_t *const p_version)

Sets driver version based on compile time macros.

Return values
SF_CRYPTO_SUCCESS Returned the driver version successfully.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Variable Documentation

◆ g_tdes192ecb_on_sce

const tdes_api_t g_tdes192ecb_on_sce

=

{

 .open = R_SCE_TDES_Open,

 .encrypt = R_SCE_TDES_192EcbEncrypt,

 .decrypt = R_SCE_TDES_192EcbDecrypt,

 .close = R_SCE_TDES_Close,

 .versionGet = R_SCE_TDES_VersionGet

}

SCE/TDES implementation of TDES API.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,464 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_TDES

 SCE_TRNG
Renesas Synergy Software Package Reference » HAL Layer » SCE Module

Primitive cryptographic functions. More...

Functions

uint32_t R_SCE_TRNG_Open (trng_ctrl_t *const p_ctrl, trng_cfg_t const *const
p_cfg)

uint32_t R_SCE_TRNG_VersionGet (ssp_version_t *const p_version)

 Sets driver version based on compile time macros. More...

uint32_t R_SCE_TRNG_Read (trng_ctrl_t *const p_ctrl, uint32_t *const p_dest,
uint32_t nwords)

uint32_t R_SCE_TRNG_Close (trng_ctrl_t *const p_ctrl)

Variables

const trng_api_t g_trng_on_sce

Detailed Description

Primitive cryptographic functions.

random number generation functions

Function Documentation

◆ R_SCE_TRNG_Close()

uint32_t R_SCE_TRNG_Close (trng_ctrl_t *const p_ctrl)

Close the TRNG interface driver

Return values
SF_CRYPTO_SUCCESS TRNG module was closed successfully.

SSP_ERR_ASSERTION NULL input parameter(s).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,465 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_TRNG

◆ R_SCE_TRNG_Open()

uint32_t R_SCE_TRNG_Open (trng_ctrl_t *const p_ctrl, trng_cfg_t const *const p_cfg)

SCE_TRNG example: extern const r_sce_t g_<interface>_on_sce;

Open the TRNG driver for reading random data from the hardware TRNG module TRNG Initialization

Return values
SF_CRYPTO_SUCCESS random number generation successful

SF_CRPYTO_ERR_CRYPTO_RESOURCE_CONF
LICT

SCE resource is busy

SF_CRYPTO_ERR_CRYPTO_SCEFAIL SCE internal I/O is not empty

SSP_ERR_ASSERTION NULL input parameter(s).

SSP_ERR_CRYPTO_NOT_OPEN Crypto HAL Common module is not Opened.

Get status of Crypto HAL common module

Return error code of Crypto HAL common module is not open

◆ R_SCE_TRNG_Read()

uint32_t R_SCE_TRNG_Read (trng_ctrl_t *const p_ctrl, uint32_t *const p_rngbuf, uint32_t nwords
)

Generate nwords of random number words (4-bytes each) and store them in p_rngbuf buffer SCE
hardware TRNG module will be used for generating the random data.

Return values
SF_CRYPTO_SUCCESS random number generation successful

SSP_ERR_CRYPTO_RNG_FATAL_ERROR HW_SCE_RNG_Read failed to generate
128-bit (16-byte) random number in
p_ctrl->nattempts number of attempts.

SF_CRPYTO_ERR_CRYPTO_RESOURCE_CONF
LICT

SCE resource is busy

SF_CRYPTO_ERR_CRYPTO_SCEFAIL SCE internal I/O is not empty

SSP_ERR_ASSERTION NULL input parameter(s).

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,466 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_TRNG

◆ R_SCE_TRNG_VersionGet()

uint32_t R_SCE_TRNG_VersionGet (ssp_version_t *const p_version)

Sets driver version based on compile time macros.

Return values
SSP_SUCCESS Successful close.

SSP_ERR_ASSERTION The parameter p_version is NULL.

Variable Documentation

◆ g_trng_on_sce

const trng_api_t g_trng_on_sce

=

{

 .open = R_SCE_TRNG_Open,

 .read = R_SCE_TRNG_Read,

 .close = R_SCE_TRNG_Close,

 .versionGet = R_SCE_TRNG_VersionGet

}

SCE/TRNG implementation of RNG API.

 SCE_INTERFACE_GET
Renesas Synergy Software Package Reference » HAL Layer » SCE Module

Get Interface for Crypto HAL modules. More...

Functions

uint32_t R_SCE_InterfaceGet (crypto_interface_get_param_t *const
interface_info, void *const p_interface)

 Get the HAL interface global object based on the service/algorithm
requested. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,467 / 5,198

Synergy Software Package

User’s Manual
API Reference > Renesas Synergy Software Package Reference > HAL Layer > SCE Module > SCE_INTERFACE_GET

Detailed Description

Get Interface for Crypto HAL modules.

Function Documentation

◆ R_SCE_InterfaceGet()

uint32_t R_SCE_InterfaceGet (crypto_interface_get_param_t *const interface_info, void *const
p_interface)

Get the HAL interface global object based on the service/algorithm requested.

Return values
SSP_SUCCESS Valid interface has been returned.

SSP_ERR_ASSERTION One or more invalid input parameters.

SSP_ERR_INVALID_ARGUMENT Invalid request. Input parameters could not
be resolved into a valid HAL interface.

5.2 Board Support Package

Common BSP includes. More...

Modules

Supported MCUs

 Supported MCUs in this version of the BSP.

Common BSP Code

 Code common to all BSPs.

Detailed Description

Common BSP includes.

The BSP is responsible for getting the MCU from reset to the user application (i.e. the main function).
Before reaching the user application the BSP sets up the stacks, heap, clocks, interrupts, and C
runtime environment. The BSP is configurable to allow users to modify the process to meet design
requirements.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,468 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs

5.2.1 Supported MCUs
Board Support Package

Supported MCUs in this version of the BSP. More...

Modules

S124

 Code that is common to S124 MCUs.

S128

 Code that is common to S128 MCUs.

S1JA

 Code that is common to S1JA MCUs.

S3A1

 Code that is common to S3A1 MCUs.

S3A3

 Code that is common to S3A3 MCUs.

S3A6

 Code that is common to S3A6 MCUs.

S3A7

 Code that is common to S3A7 MCUs.

S5D3

 Code that is common to S5D3 MCUs.

S5D5

 Code that is common to S5D5 MCUs.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,469 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs

S5D9

 Code that is common to S5D9 MCUs.

S7G2

 Code that is common to S7G2 MCUs.

Functions

ssp_err_t R_SSP_VersionGet (ssp_pack_version_t *const p_version)

 Set SSP version based on compile time macros. More...

Detailed Description

Supported MCUs in this version of the BSP.

The BSP has code specific to a MCU and a board. The code that is specific to a MCU can be shared
amongst boards that use the MCU.

Function Documentation

◆ R_SSP_VersionGet()

ssp_err_t R_SSP_VersionGet (ssp_pack_version_t *const p_version)

Set SSP version based on compile time macros.

Parameters
[out] p_version Memory address to return

version information to.

Return values
SSP_SUCCESS Version information stored.

SSP_ERR_ASSERTION The parameter p_version is NULL.

5.2.1.1 S124
Board Support Package » Supported MCUs

Code that is common to S124 MCUs. More...

Modules

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,470 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124

Analog Connections

Cache Functions

Clock Initialization

Hardware Locks

Module Start and Stop

ROM Registers

Enumerations

enum elc_peripheral_t

enum elc_event_t

Detailed Description

Code that is common to S124 MCUs.

Implements functions that are common to S124 MCUs.

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU1

Note
This list may change based on device. This list is for S124.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

 Analog Connections
Board Support Package » Supported MCUs » S124

Enumerations

enum analog_connect_t {

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,471 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P012
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,472 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF5,
FLAG_SET),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P109 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P110 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_P400 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,473 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_P408 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS4,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS7,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,474 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS7,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS7,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,475 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,476 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P007
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,477 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P007 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,478 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,479 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,480 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,481 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,482 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,483 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,484 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,485 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR)
}

Detailed Description

This group contains a list of enumerations that can be used with the Analog Connect Interface.

Enumeration Type Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,486 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

◆ analog_connect_t

enum analog_connect_t

List of analog connections that can be made on S124

Note
This list may change based on device. This list is for S124.

Enumerator

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P012

Connect ACMPHS0 IVREF to PORT0 P012.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80
_DA

Connect ACMPHS1 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P000

Connect ACMPHS2 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_
P001

Connect ACMPHS2 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80
_DA

Connect ACMPHS2 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82
_DA

Connect ACMPHS2 IVREF to DAC82 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,487 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP0 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
2_AMPO

Connect ACMPLP1 IVCMP to OPAMP2 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P500

Connect ACMPHS0 IVCMP to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1
_P100

Connect ACMPHS0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_
P101

Connect ACMPHS0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P109

Connect ACMPLP0 IVREF0 to PORT1 P109.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,488 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P110

Connect ACMPLP1 IVREF1 to PORT1 P110.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_
P400

Connect ACMPLP0 IVCMP to PORT4 P400.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
0_AMPO

Connect ACMPLP0 IVCMP to OPAMP0 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_
P408

Connect ACMPLP1 IVCMP to PORT4 P408.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP1 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_OPAMP0_AMPO_BREAK Break all connections to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
014

Connect OPAMP0 AMPO to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
013

Connect OPAMP0 AMPO to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
003

Connect OPAMP0 AMPO to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
002

Connect OPAMP0 AMPO to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPM_BREAK Break all connections to OPAMP0 AMPM.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
501

Connect OPAMP0 AMPM to PORT5 P501.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
500

Connect OPAMP0 AMPM to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
014

Connect OPAMP0 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
013

Connect OPAMP0 AMPM to PORT0 P013.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,489 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
003

Connect OPAMP0 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0
_AMPO

Connect OPAMP0 AMPM to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPP_BREAK Break all connections to OPAMP0 AMPP.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P
500

Connect OPAMP0 AMPP to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
014

Connect OPAMP0 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
013

Connect OPAMP0 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
002

Connect OPAMP0 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_
DA

Connect OPAMP0 AMPP to DAC120 DA.

ANALOG_CONNECT_OPAMP1_AMPM_BREAK Break all connections to OPAMP1 AMPM.

ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P
014

Connect OPAMP1 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1
_AMPO

Connect OPAMP1 AMPM to OPAMP1 AMPO.

ANALOG_CONNECT_OPAMP1_AMPP_BREAK Break all connections to OPAMP1 AMPP.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
014

Connect OPAMP1 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
013

Connect OPAMP1 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
003

Connect OPAMP1 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
002

Connect OPAMP1 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_D
A

Connect OPAMP1 AMPP to DAC80 DA.

ANALOG_CONNECT_OPAMP2_AMPM_BREAK Break all connections to OPAMP2 AMPM.

ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P
003

Connect OPAMP2 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2
_AMPO

Connect OPAMP2 AMPM to OPAMP2 AMPO.

ANALOG_CONNECT_OPAMP2_AMPP_BREAK Break all connections to OPAMP2 AMPP.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P Connect OPAMP2 AMPP to PORT0 P003.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,490 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

003

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
002

Connect OPAMP2 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_D
A

Connect OPAMP2 AMPP to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,491 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

_P103 Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,492 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P004

Connect ACMPHS0 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P007

Connect ACMPHS0 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P015

Connect ACMPHS0 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALO
G0_VREF

Connect ACMPHS0 IVCMP to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P005

Connect ACMPHS0 IVREF to PORT0 P005.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P006

Connect ACMPHS0 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P000

Connect ACMPHS1 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P002

Connect ACMPHS1 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P003

Connect ACMPHS1 IVCMP to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P007

Connect ACMPHS1 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P000

Connect ACMPHS1 IVREF to PORT0 P000.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,493 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P001

Connect ACMPHS1 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P002

Connect ACMPHS1 IVREF to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P003

Connect ACMPHS1 IVREF to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P006

Connect ACMPHS1 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,494 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,495 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,496 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,497 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,498 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,499 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,500 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,501 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,502 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

 Cache Functions
Board Support Package » Supported MCUs » S124

Enumerations

enum bsp_cache_state_t

Detailed Description

This module implements cache functions.

Enumeration Type Documentation

◆ bsp_cache_state_t

enum bsp_cache_state_t

Cache enum. Passed into cache functions such as R_BSP_CacheOff() and R_BSP_CacheSet.

 Clock Initialization
Board Support Package » Supported MCUs » S124

Functions

void bsp_clock_init (void)

 Sets up system clocks. More...

uint32_t bsp_cpu_clock_get (void)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,503 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Clock Initialization

 Returns frequency of CPU clock in Hz. More...

Detailed Description

Functions in this file configure the system clocks based upon the macros in bsp_clock_cfg.h.

Function Documentation

◆ bsp_clock_init()

void bsp_clock_init (void)

Sets up system clocks.

MOCO is default clock out of reset. Enable new clock if chosen. S124 has no PLL.

If the system clock has failed to start call the unrecoverable error handler.

MOCO, LOCO, and subclock do not have stabilization flags that can be checked.

Wait for clock source to stabilize

Set which clock to use for system clock and divisors for all system clocks.

If the system clock has failed to be configured properly call the unrecoverable error handler.

◆ bsp_cpu_clock_get()

uint32_t bsp_cpu_clock_get (void)

Returns frequency of CPU clock in Hz.

Return values
Frequency of the CPU in Hertz

 Hardware Locks
Board Support Package » Supported MCUs » S124

Functions

SSP_HW_LOCK_DEFINE (ADC, 0U, 0U)

SSP_HW_LOCK_DEFINE (AES, 0U, 0U)

SSP_HW_LOCK_DEFINE (AGT, 0U, 0U)

SSP_HW_LOCK_DEFINE (BSC, 0U, 1U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,504 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Hardware Locks

SSP_HW_LOCK_DEFINE (CAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CAN, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_HS, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_LP, 0U, 0U)

SSP_HW_LOCK_DEFINE (CRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CTSU, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DOC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (ELC, 0U, 0U)

SSP_HW_LOCK_DEFINE (FCU, 0U, 0U)

SSP_HW_LOCK_DEFINE (GPT, 0U, 0U)

SSP_HW_LOCK_DEFINE (ICU, 0U, 0U)

SSP_HW_LOCK_DEFINE (IIC, 0U, 0U)

SSP_HW_LOCK_DEFINE (IWDT, 0U, 0U)

SSP_HW_LOCK_DEFINE (KEY, 0U, 0U)

SSP_HW_LOCK_DEFINE (LPM, 1U, 0U)

SSP_HW_LOCK_DEFINE (LVD, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPS, 0U, 0U)

SSP_HW_LOCK_DEFINE (POEG, 0U, 0U)

SSP_HW_LOCK_DEFINE (SPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (RTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCI, 0U, 0U)

SSP_HW_LOCK_DEFINE (TRNG, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,505 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Hardware Locks

SSP_HW_LOCK_DEFINE (TSN, 0U, 0U)

SSP_HW_LOCK_DEFINE (USB, 0U, 0U)

SSP_HW_LOCK_DEFINE (WDT, 0U, 0U)

Detailed Description

This file allocates hardware locks used in Atomic Locking.

Function Documentation

◆ SSP_HW_LOCK_DEFINE() [1/31]

SSP_HW_LOCK_DEFINE (ADC , 0U , 0U)

Used to allocated hardware locks. Parameters are as follows:

1. IP name (ssp_ip_t enum without the SSP_IP_ prefix).
2. Unit number (used for blocks with variations like USB, not to be confused with ADC unit).
3. Channel numberADC

◆ SSP_HW_LOCK_DEFINE() [2/31]

SSP_HW_LOCK_DEFINE (AES , 0U , 0U)

AES

◆ SSP_HW_LOCK_DEFINE() [3/31]

SSP_HW_LOCK_DEFINE (AGT , 0U , 0U)

AGT

◆ SSP_HW_LOCK_DEFINE() [4/31]

SSP_HW_LOCK_DEFINE (BSC , 0U , 1U)

BSC

◆ SSP_HW_LOCK_DEFINE() [5/31]

SSP_HW_LOCK_DEFINE (CAC , 0U , 0U)

CAC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,506 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [6/31]

SSP_HW_LOCK_DEFINE (CAN , 0U , 0U)

CAN

◆ SSP_HW_LOCK_DEFINE() [7/31]

SSP_HW_LOCK_DEFINE (COMP_HS , 0U , 0U)

COMP_HS

◆ SSP_HW_LOCK_DEFINE() [8/31]

SSP_HW_LOCK_DEFINE (COMP_LP , 0U , 0U)

COMP_LP

◆ SSP_HW_LOCK_DEFINE() [9/31]

SSP_HW_LOCK_DEFINE (CRC , 0U , 0U)

CRC

◆ SSP_HW_LOCK_DEFINE() [10/31]

SSP_HW_LOCK_DEFINE (CTSU , 0U , 0U)

CTSU

◆ SSP_HW_LOCK_DEFINE() [11/31]

SSP_HW_LOCK_DEFINE (DAC , 0U , 0U)

DAC

◆ SSP_HW_LOCK_DEFINE() [12/31]

SSP_HW_LOCK_DEFINE (DOC , 0U , 0U)

DOC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,507 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [13/31]

SSP_HW_LOCK_DEFINE (DTC , 0U , 0U)

DTC

◆ SSP_HW_LOCK_DEFINE() [14/31]

SSP_HW_LOCK_DEFINE (ELC , 0U , 0U)

ELC

◆ SSP_HW_LOCK_DEFINE() [15/31]

SSP_HW_LOCK_DEFINE (FCU , 0U , 0U)

FCU

◆ SSP_HW_LOCK_DEFINE() [16/31]

SSP_HW_LOCK_DEFINE (GPT , 0U , 0U)

GPT

◆ SSP_HW_LOCK_DEFINE() [17/31]

SSP_HW_LOCK_DEFINE (ICU , 0U , 0U)

ICU

◆ SSP_HW_LOCK_DEFINE() [18/31]

SSP_HW_LOCK_DEFINE (IIC , 0U , 0U)

IIC

◆ SSP_HW_LOCK_DEFINE() [19/31]

SSP_HW_LOCK_DEFINE (IWDT , 0U , 0U)

IWDT

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,508 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [20/31]

SSP_HW_LOCK_DEFINE (KEY , 0U , 0U)

KEY

◆ SSP_HW_LOCK_DEFINE() [21/31]

SSP_HW_LOCK_DEFINE (LPM , 1U , 0U)

LPM

◆ SSP_HW_LOCK_DEFINE() [22/31]

SSP_HW_LOCK_DEFINE (LVD , 0U , 0U)

LVD

◆ SSP_HW_LOCK_DEFINE() [23/31]

SSP_HW_LOCK_DEFINE (OPS , 0U , 0U)

OPS

◆ SSP_HW_LOCK_DEFINE() [24/31]

SSP_HW_LOCK_DEFINE (POEG , 0U , 0U)

POEG

◆ SSP_HW_LOCK_DEFINE() [25/31]

SSP_HW_LOCK_DEFINE (SPI , 0U , 0U)

SPI

◆ SSP_HW_LOCK_DEFINE() [26/31]

SSP_HW_LOCK_DEFINE (RTC , 0U , 0U)

RTC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,509 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [27/31]

SSP_HW_LOCK_DEFINE (SCI , 0U , 0U)

SCI

◆ SSP_HW_LOCK_DEFINE() [28/31]

SSP_HW_LOCK_DEFINE (TRNG , 0U , 0U)

TRNG

◆ SSP_HW_LOCK_DEFINE() [29/31]

SSP_HW_LOCK_DEFINE (TSN , 0U , 0U)

TSN

◆ SSP_HW_LOCK_DEFINE() [30/31]

SSP_HW_LOCK_DEFINE (USB , 0U , 0U)

USB

◆ SSP_HW_LOCK_DEFINE() [31/31]

SSP_HW_LOCK_DEFINE (WDT , 0U , 0U)

WDT

 Module Start and Stop
Board Support Package » Supported MCUs » S124

Macros

#define BSP_COMPILE_TIME_ASSERT(e) ((void) sizeof(char[1 - 2 * !(e)]))

Functions

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

 Stop module (enter module stop). Stopping a module disables clocks
to the peripheral to save power. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,510 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Module Start and Stop

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

 Stop module (enter module stop) even if the module is used for
multiple channels. More...

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

 Start module (cancel module stop). Starting a module enables clocks
to the peripheral and allows registers to be set. More...

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool
*const p_stop)

Detailed Description

Module start and stop functions are provided to enable or disable peripherals.

Macro Definition Documentation

◆ BSP_COMPILE_TIME_ASSERT

#define BSP_COMPILE_TIME_ASSERT (e) ((void) sizeof(char[1 - 2 * !(e)]))

Used to generate a compiler error (divided by 0 error) if the assertion fails. This is used in place of
"#error" for expressions that cannot be evaluated by the preprocessor like sizeof().

Function Documentation

◆ R_BSP_ModuleStart()

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

Start module (cancel module stop). Starting a module enables clocks to the peripheral and allows
registers to be set.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is started

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,511 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Module Start and Stop

◆ R_BSP_ModuleStateGet()

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool *const p_stop)

The g_bsp_module_stop array must have entries for each ssp_ip_t enum value.

Save the current module state

◆ R_BSP_ModuleStop()

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

Stop module (enter module stop). Stopping a module disables clocks to the peripheral to save
power.

Note
Some module stop bits are shared between peripherals. Modules with shared module stop bits cannot be stopped to
prevent unintentionally stopping related modules.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit, or module
stop bit is shared and entering module stop
is not supported because it could affect
other modules.

◆ R_BSP_ModuleStopAlways()

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

Stop module (enter module stop) even if the module is used for multiple channels.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,512 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S124 > Module Start and Stop

 ROM Registers
Board Support Package » Supported MCUs » S124

Macros

#define BSP_ROM_REG_OFS1_SETTING
 (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

Detailed Description

Defines MCU registers that are in ROM (e.g. OFS) and must be set at compile-time. All registers can
be set using bsp_cfg.h.

Macro Definition Documentation

◆ BSP_ROM_REG_OFS1_SETTING

#define BSP_ROM_REG_OFS1_SETTING (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

OR in the HOCO frequency setting from bsp_clock_cfg.h with the OFS1 setting from bsp_cfg.h.

5.2.1.2 S128
Board Support Package » Supported MCUs

Code that is common to S128 MCUs. More...

Modules

Analog Connections

Cache Functions

Clock Initialization

Hardware Locks

Module Start and Stop

ROM Registers

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,513 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128

Detailed Description

Code that is common to S128 MCUs.

Implements functions that are common to S128 MCUs.

 Analog Connections
Board Support Package » Supported MCUs » S128

Enumerations

enum analog_connect_t {
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P012
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,514 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF5,
FLAG_SET),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P109 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P110 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,515 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_P400 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_P408 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS4,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,516 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

 ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS7,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS7,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,517 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,518 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,519 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P007
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P007 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF4,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,520 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,521 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,522 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,523 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,524 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,525 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,526 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,527 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,528 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR)
}

Detailed Description

This group contains a list of enumerations that can be used with the Analog Connect Interface.

Enumeration Type Documentation

◆ analog_connect_t

enum analog_connect_t

List of analog connections that can be made on S128

Note
This list may change based on device. This list is for S128.

Enumerator

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P012

Connect ACMPHS0 IVREF to PORT0 P012.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80
_DA

Connect ACMPHS1 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P000

Connect ACMPHS2 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_
P001

Connect ACMPHS2 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80
_DA

Connect ACMPHS2 IVREF to DAC80 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,529 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82
_DA

Connect ACMPHS2 IVREF to DAC82 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP0 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
2_AMPO

Connect ACMPLP1 IVCMP to OPAMP2 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P500

Connect ACMPHS0 IVCMP to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1
_P100

Connect ACMPHS0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_
P101

Connect ACMPHS0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,530 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P109

Connect ACMPLP0 IVREF0 to PORT1 P109.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P110

Connect ACMPLP1 IVREF1 to PORT1 P110.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_
P400

Connect ACMPLP0 IVCMP to PORT4 P400.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
0_AMPO

Connect ACMPLP0 IVCMP to OPAMP0 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_
P408

Connect ACMPLP1 IVCMP to PORT4 P408.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP1 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_OPAMP0_AMPO_BREAK Break all connections to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
014

Connect OPAMP0 AMPO to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
013

Connect OPAMP0 AMPO to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
003

Connect OPAMP0 AMPO to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
002

Connect OPAMP0 AMPO to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPM_BREAK Break all connections to OPAMP0 AMPM.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,531 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
501

Connect OPAMP0 AMPM to PORT5 P501.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
500

Connect OPAMP0 AMPM to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
014

Connect OPAMP0 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
013

Connect OPAMP0 AMPM to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
003

Connect OPAMP0 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0
_AMPO

Connect OPAMP0 AMPM to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPP_BREAK Break all connections to OPAMP0 AMPP.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P
500

Connect OPAMP0 AMPP to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
014

Connect OPAMP0 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
013

Connect OPAMP0 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
002

Connect OPAMP0 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_
DA

Connect OPAMP0 AMPP to DAC120 DA.

ANALOG_CONNECT_OPAMP1_AMPM_BREAK Break all connections to OPAMP1 AMPM.

ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P
014

Connect OPAMP1 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1
_AMPO

Connect OPAMP1 AMPM to OPAMP1 AMPO.

ANALOG_CONNECT_OPAMP1_AMPP_BREAK Break all connections to OPAMP1 AMPP.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
014

Connect OPAMP1 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
013

Connect OPAMP1 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
003

Connect OPAMP1 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
002

Connect OPAMP1 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_D
A

Connect OPAMP1 AMPP to DAC80 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,532 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_OPAMP2_AMPM_BREAK Break all connections to OPAMP2 AMPM.

ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P
003

Connect OPAMP2 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2
_AMPO

Connect OPAMP2 AMPM to OPAMP2 AMPO.

ANALOG_CONNECT_OPAMP2_AMPP_BREAK Break all connections to OPAMP2 AMPP.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
003

Connect OPAMP2 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
002

Connect OPAMP2 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_D
A

Connect OPAMP2 AMPP to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,533 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,534 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P004

Connect ACMPHS0 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P007

Connect ACMPHS0 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P015

Connect ACMPHS0 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALO
G0_VREF

Connect ACMPHS0 IVCMP to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P005

Connect ACMPHS0 IVREF to PORT0 P005.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P006

Connect ACMPHS0 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P000

Connect ACMPHS1 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P002

Connect ACMPHS1 IVCMP to PORT0 P002.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,535 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P003

Connect ACMPHS1 IVCMP to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P007

Connect ACMPHS1 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P000

Connect ACMPHS1 IVREF to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P001

Connect ACMPHS1 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P002

Connect ACMPHS1 IVREF to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P003

Connect ACMPHS1 IVREF to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P006

Connect ACMPHS1 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,536 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,537 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,538 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,539 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,540 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,541 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,542 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,543 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,544 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Analog Connections

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

 Cache Functions
Board Support Package » Supported MCUs » S128

Enumerations

enum bsp_cache_state_t

Detailed Description

This module implements cache functions.

Enumeration Type Documentation

◆ bsp_cache_state_t

enum bsp_cache_state_t

Cache enum. Passed into cache functions such as R_BSP_CacheOff() and R_BSP_CacheSet.

 Clock Initialization

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,545 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Clock Initialization

Board Support Package » Supported MCUs » S128

Functions

void bsp_clock_init (void)

 Sets up system clocks. More...

uint32_t bsp_cpu_clock_get (void)

 Returns frequency of CPU clock in Hz. More...

Detailed Description

Functions in this file configure the system clocks based upon the macros in bsp_clock_cfg.h.

Function Documentation

◆ bsp_clock_init()

void bsp_clock_init (void)

Sets up system clocks.

MOCO is default clock out of reset. Enable new clock if chosen. S124 has no PLL.

If the system clock has failed to start call the unrecoverable error handler.

MOCO, LOCO, and subclock do not have stabilization flags that can be checked.

Wait for clock source to stabilize

Set which clock to use for system clock and divisors for all system clocks.

If the system clock has failed to be configured properly call the unrecoverable error handler.

◆ bsp_cpu_clock_get()

uint32_t bsp_cpu_clock_get (void)

Returns frequency of CPU clock in Hz.

Return values
Frequency of the CPU in Hertz

 Hardware Locks
Board Support Package » Supported MCUs » S128

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,546 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Hardware Locks

Functions

SSP_HW_LOCK_DEFINE (ADC, 0U, 0U)

SSP_HW_LOCK_DEFINE (AES, 0U, 0U)

SSP_HW_LOCK_DEFINE (AGT, 0U, 0U)

SSP_HW_LOCK_DEFINE (BSC, 0U, 1U)

SSP_HW_LOCK_DEFINE (CAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CAN, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_HS, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_LP, 0U, 0U)

SSP_HW_LOCK_DEFINE (CRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CTSU, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAC, 1U, 0U)

SSP_HW_LOCK_DEFINE (DOC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (ELC, 0U, 0U)

SSP_HW_LOCK_DEFINE (FCU, 0U, 0U)

SSP_HW_LOCK_DEFINE (GPT, 0U, 0U)

SSP_HW_LOCK_DEFINE (ICU, 0U, 0U)

SSP_HW_LOCK_DEFINE (IIC, 0U, 0U)

SSP_HW_LOCK_DEFINE (IWDT, 0U, 0U)

SSP_HW_LOCK_DEFINE (KEY, 0U, 0U)

SSP_HW_LOCK_DEFINE (LPM, 1U, 0U)

SSP_HW_LOCK_DEFINE (LVD, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPAMP, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPS, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,547 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Hardware Locks

SSP_HW_LOCK_DEFINE (POEG, 0U, 0U)

SSP_HW_LOCK_DEFINE (SPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (RTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCI, 0U, 0U)

SSP_HW_LOCK_DEFINE (TRNG, 0U, 0U)

SSP_HW_LOCK_DEFINE (TSN, 0U, 0U)

SSP_HW_LOCK_DEFINE (USB, 0U, 0U)

SSP_HW_LOCK_DEFINE (WDT, 0U, 0U)

Detailed Description

This file allocates hardware locks used in Atomic Locking.

Function Documentation

◆ SSP_HW_LOCK_DEFINE() [1/32]

SSP_HW_LOCK_DEFINE (ADC , 0U , 0U)

Used to allocated hardware locks. Parameters are as follows:

1. IP name (ssp_ip_t enum without the SSP_IP_ prefix).
2. Unit number (used for blocks with variations like USB, not to be confused with ADC unit).
3. Channel numberADC

◆ SSP_HW_LOCK_DEFINE() [2/32]

SSP_HW_LOCK_DEFINE (AES , 0U , 0U)

AES

◆ SSP_HW_LOCK_DEFINE() [3/32]

SSP_HW_LOCK_DEFINE (AGT , 0U , 0U)

AGT

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,548 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [4/32]

SSP_HW_LOCK_DEFINE (BSC , 0U , 1U)

BSC

◆ SSP_HW_LOCK_DEFINE() [5/32]

SSP_HW_LOCK_DEFINE (CAC , 0U , 0U)

CAC

◆ SSP_HW_LOCK_DEFINE() [6/32]

SSP_HW_LOCK_DEFINE (CAN , 0U , 0U)

CAN

◆ SSP_HW_LOCK_DEFINE() [7/32]

SSP_HW_LOCK_DEFINE (COMP_HS , 0U , 0U)

COMP_HS

◆ SSP_HW_LOCK_DEFINE() [8/32]

SSP_HW_LOCK_DEFINE (COMP_LP , 0U , 0U)

COMP_LP

◆ SSP_HW_LOCK_DEFINE() [9/32]

SSP_HW_LOCK_DEFINE (CRC , 0U , 0U)

CRC

◆ SSP_HW_LOCK_DEFINE() [10/32]

SSP_HW_LOCK_DEFINE (CTSU , 0U , 0U)

CTSU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,549 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [11/32]

SSP_HW_LOCK_DEFINE (DAC , 1U , 0U)

DAC

◆ SSP_HW_LOCK_DEFINE() [12/32]

SSP_HW_LOCK_DEFINE (DOC , 0U , 0U)

DOC

◆ SSP_HW_LOCK_DEFINE() [13/32]

SSP_HW_LOCK_DEFINE (DTC , 0U , 0U)

DTC

◆ SSP_HW_LOCK_DEFINE() [14/32]

SSP_HW_LOCK_DEFINE (ELC , 0U , 0U)

ELC

◆ SSP_HW_LOCK_DEFINE() [15/32]

SSP_HW_LOCK_DEFINE (FCU , 0U , 0U)

FCU

◆ SSP_HW_LOCK_DEFINE() [16/32]

SSP_HW_LOCK_DEFINE (GPT , 0U , 0U)

GPT

◆ SSP_HW_LOCK_DEFINE() [17/32]

SSP_HW_LOCK_DEFINE (ICU , 0U , 0U)

ICU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,550 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [18/32]

SSP_HW_LOCK_DEFINE (IIC , 0U , 0U)

IIC

◆ SSP_HW_LOCK_DEFINE() [19/32]

SSP_HW_LOCK_DEFINE (IWDT , 0U , 0U)

IWDT

◆ SSP_HW_LOCK_DEFINE() [20/32]

SSP_HW_LOCK_DEFINE (KEY , 0U , 0U)

KEY

◆ SSP_HW_LOCK_DEFINE() [21/32]

SSP_HW_LOCK_DEFINE (LPM , 1U , 0U)

LPM

◆ SSP_HW_LOCK_DEFINE() [22/32]

SSP_HW_LOCK_DEFINE (LVD , 0U , 0U)

LVD

◆ SSP_HW_LOCK_DEFINE() [23/32]

SSP_HW_LOCK_DEFINE (OPAMP , 0U , 0U)

OPAMP

◆ SSP_HW_LOCK_DEFINE() [24/32]

SSP_HW_LOCK_DEFINE (OPS , 0U , 0U)

OPS

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,551 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [25/32]

SSP_HW_LOCK_DEFINE (POEG , 0U , 0U)

POEG

◆ SSP_HW_LOCK_DEFINE() [26/32]

SSP_HW_LOCK_DEFINE (SPI , 0U , 0U)

SPI

◆ SSP_HW_LOCK_DEFINE() [27/32]

SSP_HW_LOCK_DEFINE (RTC , 0U , 0U)

RTC

◆ SSP_HW_LOCK_DEFINE() [28/32]

SSP_HW_LOCK_DEFINE (SCI , 0U , 0U)

SCI

◆ SSP_HW_LOCK_DEFINE() [29/32]

SSP_HW_LOCK_DEFINE (TRNG , 0U , 0U)

TRNG

◆ SSP_HW_LOCK_DEFINE() [30/32]

SSP_HW_LOCK_DEFINE (TSN , 0U , 0U)

TSN

◆ SSP_HW_LOCK_DEFINE() [31/32]

SSP_HW_LOCK_DEFINE (USB , 0U , 0U)

USB

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,552 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [32/32]

SSP_HW_LOCK_DEFINE (WDT , 0U , 0U)

WDT

 Module Start and Stop
Board Support Package » Supported MCUs » S128

Macros

#define BSP_COMPILE_TIME_ASSERT(e) ((void) sizeof(char[1 - 2 * !(e)]))

Functions

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

 Stop module (enter module stop). Stopping a module disables clocks
to the peripheral to save power. More...

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

 Stop module (enter module stop) even if the module is used for
multiple channels. More...

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

 Start module (cancel module stop). Starting a module enables clocks
to the peripheral and allows registers to be set. More...

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool
*const p_stop)

Detailed Description

Module start and stop functions are provided to enable or disable peripherals.

Macro Definition Documentation

◆ BSP_COMPILE_TIME_ASSERT

#define BSP_COMPILE_TIME_ASSERT (e) ((void) sizeof(char[1 - 2 * !(e)]))

Used to generate a compiler error (divided by 0 error) if the assertion fails. This is used in place of
"#error" for expressions that cannot be evaluated by the preprocessor like sizeof().

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,553 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Module Start and Stop

Function Documentation

◆ R_BSP_ModuleStart()

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

Start module (cancel module stop). Starting a module enables clocks to the peripheral and allows
registers to be set.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is started

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit.

◆ R_BSP_ModuleStateGet()

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool *const p_stop)

The g_bsp_module_stop array must have entries for each ssp_ip_t enum value.

Save the current module state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,554 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > Module Start and Stop

◆ R_BSP_ModuleStop()

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

Stop module (enter module stop). Stopping a module disables clocks to the peripheral to save
power.

Note
Some module stop bits are shared between peripherals. Modules with shared module stop bits cannot be stopped to
prevent unintentionally stopping related modules.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit, or module
stop bit is shared and entering module stop
is not supported because it could affect
other modules.

◆ R_BSP_ModuleStopAlways()

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

Stop module (enter module stop) even if the module is used for multiple channels.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

 ROM Registers
Board Support Package » Supported MCUs » S128

Macros

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,555 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S128 > ROM Registers

#define BSP_ROM_REG_OFS1_SETTING
 (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

#define BSP_ROM_REG_MPU_CONTROL_SETTING

Detailed Description

Defines MCU registers that are in ROM (e.g. OFS) and must be set at compile-time. All registers can
be set using bsp_cfg.h.

Macro Definition Documentation

◆ BSP_ROM_REG_MPU_CONTROL_SETTING

#define BSP_ROM_REG_MPU_CONTROL_SETTING

((0xFFFFFCF0U) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC0_ENABL

E << 8) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC1_ENABL

E << 9) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION0_E

NABLE) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION1_E

NABLE << 1) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION2_E

NABLE << 2) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION3_E

NABLE << 3))

Build up SECMPUAC register based on MPU settings.

◆ BSP_ROM_REG_OFS1_SETTING

#define BSP_ROM_REG_OFS1_SETTING (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

OR in the HOCO frequency setting from bsp_clock_cfg.h with the OFS1 setting from bsp_cfg.h.

5.2.1.3 S1JA

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,556 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA

Board Support Package » Supported MCUs

Code that is common to S1JA MCUs. More...

Modules

Analog Connections

Cache Functions

Clock Initialization

Hardware Locks

Module Start and Stop

ROM Registers

Detailed Description

Code that is common to S1JA MCUs.

Implements functions that are common to S1JA MCUs.

 Analog Connections
Board Support Package » Supported MCUs » S1JA

Enumerations

enum analog_connect_t {
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P012
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,557 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,558 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF5,
FLAG_SET),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P109 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P110 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_P400 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_P408 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, BREAK,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,559 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS4,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,560 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS7,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS7,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,561 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,562 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P007
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P000 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,563 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P007 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,564 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,565 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,566 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,567 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,568 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,569 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,570 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,571 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR)
}

Detailed Description

This group contains a list of enumerations that can be used with the Analog Connect Interface.

Enumeration Type Documentation

◆ analog_connect_t

enum analog_connect_t

List of analog connections that can be made on S1JA

Note
This list may change based on device. This list is for S1JA.

Enumerator

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,572 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P012

Connect ACMPHS0 IVREF to PORT0 P012.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80
_DA

Connect ACMPHS1 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P000

Connect ACMPHS2 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_
P001

Connect ACMPHS2 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80
_DA

Connect ACMPHS2 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82
_DA

Connect ACMPHS2 IVREF to DAC82 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP0 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
2_AMPO

Connect ACMPLP1 IVCMP to OPAMP2 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,573 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P500

Connect ACMPHS0 IVCMP to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1
_P100

Connect ACMPHS0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_
P101

Connect ACMPHS0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P109

Connect ACMPLP0 IVREF0 to PORT1 P109.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P110

Connect ACMPLP1 IVREF1 to PORT1 P110.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_
P400

Connect ACMPLP0 IVCMP to PORT4 P400.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
0_AMPO

Connect ACMPLP0 IVCMP to OPAMP0 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_
P408

Connect ACMPLP1 IVCMP to PORT4 P408.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP1 IVCMP to OPAMP1 AMPO.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,574 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_OPAMP0_AMPO_BREAK Break all connections to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
014

Connect OPAMP0 AMPO to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
013

Connect OPAMP0 AMPO to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
003

Connect OPAMP0 AMPO to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
002

Connect OPAMP0 AMPO to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPM_BREAK Break all connections to OPAMP0 AMPM.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
501

Connect OPAMP0 AMPM to PORT5 P501.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
500

Connect OPAMP0 AMPM to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
014

Connect OPAMP0 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
013

Connect OPAMP0 AMPM to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
003

Connect OPAMP0 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0
_AMPO

Connect OPAMP0 AMPM to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPP_BREAK Break all connections to OPAMP0 AMPP.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P
500

Connect OPAMP0 AMPP to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
014

Connect OPAMP0 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
013

Connect OPAMP0 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
002

Connect OPAMP0 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_
DA

Connect OPAMP0 AMPP to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,575 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_OPAMP1_AMPM_BREAK Break all connections to OPAMP1 AMPM.

ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P
014

Connect OPAMP1 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1
_AMPO

Connect OPAMP1 AMPM to OPAMP1 AMPO.

ANALOG_CONNECT_OPAMP1_AMPP_BREAK Break all connections to OPAMP1 AMPP.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
014

Connect OPAMP1 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
013

Connect OPAMP1 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
003

Connect OPAMP1 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
002

Connect OPAMP1 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_D
A

Connect OPAMP1 AMPP to DAC80 DA.

ANALOG_CONNECT_OPAMP2_AMPM_BREAK Break all connections to OPAMP2 AMPM.

ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P
003

Connect OPAMP2 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2
_AMPO

Connect OPAMP2 AMPM to OPAMP2 AMPO.

ANALOG_CONNECT_OPAMP2_AMPP_BREAK Break all connections to OPAMP2 AMPP.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
003

Connect OPAMP2 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
002

Connect OPAMP2 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_D
A

Connect OPAMP2 AMPP to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5 Connect ACMPLP1 IVREF1 to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,576 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

_P500

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,577 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

P501 Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P004

Connect ACMPHS0 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P007

Connect ACMPHS0 IVCMP to PORT0 P007.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,578 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P015

Connect ACMPHS0 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALO
G0_VREF

Connect ACMPHS0 IVCMP to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P005

Connect ACMPHS0 IVREF to PORT0 P005.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P006

Connect ACMPHS0 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P000

Connect ACMPHS1 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P002

Connect ACMPHS1 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P003

Connect ACMPHS1 IVCMP to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P007

Connect ACMPHS1 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P000

Connect ACMPHS1 IVREF to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P001

Connect ACMPHS1 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P002

Connect ACMPHS1 IVREF to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P003

Connect ACMPHS1 IVREF to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P006

Connect ACMPHS1 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,579 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,580 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,581 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,582 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,583 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,584 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,585 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,586 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,587 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,588 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Cache Functions

 Cache Functions
Board Support Package » Supported MCUs » S1JA

Enumerations

enum bsp_cache_state_t

Detailed Description

This module implements cache functions.

Enumeration Type Documentation

◆ bsp_cache_state_t

enum bsp_cache_state_t

Cache enum. Passed into cache functions such as R_BSP_CacheOff() and R_BSP_CacheSet.

 Clock Initialization
Board Support Package » Supported MCUs » S1JA

Functions

void bsp_clock_init (void)

 Sets up system clocks. More...

uint32_t bsp_cpu_clock_get (void)

 Returns frequency of CPU clock in Hz. More...

__STATIC_INLINE void bsp_clocks_mem_wait_set (uint32_t setting)

 This function sets the value of the MEMWAIT register which controls
wait cycles for flash read access. More...

__STATIC_INLINE uint32_t bsp_clocks_mem_wait_get (void)

 This function gets the value of the MEMWAIT register. More...

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t *p_args)

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,589 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Clock Initialization

Functions in this file configure the system clocks based upon the macros in bsp_clock_cfg.h.

Function Documentation

◆ bsp_clock_init()

void bsp_clock_init (void)

Sets up system clocks.

MOCO is default clock out of reset. Enable new clock if chosen. S1JA has no PLL.

If the system clock has failed to start call the unrecoverable error handler.

MOCO, LOCO, and subclock do not have stabilization flags that can be checked.

Wait for clock source to stabilize

Set which clock to use for system clock and divisors for all system clocks.

If the system clock has failed to be configured properly call the unrecoverable error handler.

◆ bsp_clock_set_callback()

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t * p_args)

The current frequency must be less than 32 MHz and the mcu must be in high speed mode, before
changing wait cycles to 0.

< No MEMWAIT cycles

◆ bsp_clocks_mem_wait_get()

__STATIC_INLINE uint32_t bsp_clocks_mem_wait_get (void)

This function gets the value of the MEMWAIT register.

Return values
MEMWAIT setting

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,590 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Clock Initialization

◆ bsp_clocks_mem_wait_set()

__STATIC_INLINE void bsp_clocks_mem_wait_set (uint32_t setting)

This function sets the value of the MEMWAIT register which controls wait cycles for flash read
access.

Parameters
[in] setting

Return values
none

◆ bsp_cpu_clock_get()

uint32_t bsp_cpu_clock_get (void)

Returns frequency of CPU clock in Hz.

Return values
Frequency of the CPU in Hertz

 Hardware Locks
Board Support Package » Supported MCUs » S1JA

Functions

SSP_HW_LOCK_DEFINE (ADC, 0U, 0U)

SSP_HW_LOCK_DEFINE (AES, 0U, 0U)

SSP_HW_LOCK_DEFINE (AGT, 0U, 0U)

SSP_HW_LOCK_DEFINE (BSC, 0U, 1U)

SSP_HW_LOCK_DEFINE (CAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CAN, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_HS, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_LP, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,591 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Hardware Locks

SSP_HW_LOCK_DEFINE (CRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CTSU, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DOC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (ELC, 0U, 0U)

SSP_HW_LOCK_DEFINE (FCU, 0U, 0U)

SSP_HW_LOCK_DEFINE (GPT, 0U, 0U)

SSP_HW_LOCK_DEFINE (ICU, 0U, 0U)

SSP_HW_LOCK_DEFINE (IIC, 0U, 0U)

SSP_HW_LOCK_DEFINE (IWDT, 0U, 0U)

SSP_HW_LOCK_DEFINE (KEY, 0U, 0U)

SSP_HW_LOCK_DEFINE (LPM, 1U, 0U)

SSP_HW_LOCK_DEFINE (LVD, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPAMP, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPS, 0U, 0U)

SSP_HW_LOCK_DEFINE (POEG, 0U, 0U)

SSP_HW_LOCK_DEFINE (SPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (RTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SDADC, 0U, 0U)

SSP_HW_LOCK_DEFINE (TRNG, 0U, 0U)

SSP_HW_LOCK_DEFINE (TSN, 0U, 0U)

SSP_HW_LOCK_DEFINE (USB, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,592 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Hardware Locks

SSP_HW_LOCK_DEFINE (WDT, 0U, 0U)

Detailed Description

This file allocates hardware locks used in Atomic Locking.

Function Documentation

◆ SSP_HW_LOCK_DEFINE() [1/33]

SSP_HW_LOCK_DEFINE (ADC , 0U , 0U)

Used to allocated hardware locks. Parameters are as follows:

1. IP name (ssp_ip_t enum without the SSP_IP_ prefix).
2. Unit number (used for blocks with variations like USB, not to be confused with ADC unit).
3. Channel numberADC

◆ SSP_HW_LOCK_DEFINE() [2/33]

SSP_HW_LOCK_DEFINE (AES , 0U , 0U)

AES

◆ SSP_HW_LOCK_DEFINE() [3/33]

SSP_HW_LOCK_DEFINE (AGT , 0U , 0U)

AGT

◆ SSP_HW_LOCK_DEFINE() [4/33]

SSP_HW_LOCK_DEFINE (BSC , 0U , 1U)

BSC

◆ SSP_HW_LOCK_DEFINE() [5/33]

SSP_HW_LOCK_DEFINE (CAC , 0U , 0U)

CAC

◆ SSP_HW_LOCK_DEFINE() [6/33]

SSP_HW_LOCK_DEFINE (CAN , 0U , 0U)

CAN

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,593 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [7/33]

SSP_HW_LOCK_DEFINE (COMP_HS , 0U , 0U)

COMP_HS

◆ SSP_HW_LOCK_DEFINE() [8/33]

SSP_HW_LOCK_DEFINE (COMP_LP , 0U , 0U)

COMP_LP

◆ SSP_HW_LOCK_DEFINE() [9/33]

SSP_HW_LOCK_DEFINE (CRC , 0U , 0U)

CRC

◆ SSP_HW_LOCK_DEFINE() [10/33]

SSP_HW_LOCK_DEFINE (CTSU , 0U , 0U)

CTSU

◆ SSP_HW_LOCK_DEFINE() [11/33]

SSP_HW_LOCK_DEFINE (DAC , 0U , 0U)

DAC

◆ SSP_HW_LOCK_DEFINE() [12/33]

SSP_HW_LOCK_DEFINE (DOC , 0U , 0U)

DOC

◆ SSP_HW_LOCK_DEFINE() [13/33]

SSP_HW_LOCK_DEFINE (DTC , 0U , 0U)

DTC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,594 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [14/33]

SSP_HW_LOCK_DEFINE (ELC , 0U , 0U)

ELC

◆ SSP_HW_LOCK_DEFINE() [15/33]

SSP_HW_LOCK_DEFINE (FCU , 0U , 0U)

FCU

◆ SSP_HW_LOCK_DEFINE() [16/33]

SSP_HW_LOCK_DEFINE (GPT , 0U , 0U)

GPT

◆ SSP_HW_LOCK_DEFINE() [17/33]

SSP_HW_LOCK_DEFINE (ICU , 0U , 0U)

ICU

◆ SSP_HW_LOCK_DEFINE() [18/33]

SSP_HW_LOCK_DEFINE (IIC , 0U , 0U)

IIC

◆ SSP_HW_LOCK_DEFINE() [19/33]

SSP_HW_LOCK_DEFINE (IWDT , 0U , 0U)

IWDT

◆ SSP_HW_LOCK_DEFINE() [20/33]

SSP_HW_LOCK_DEFINE (KEY , 0U , 0U)

KEY

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,595 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [21/33]

SSP_HW_LOCK_DEFINE (LPM , 1U , 0U)

LPM

◆ SSP_HW_LOCK_DEFINE() [22/33]

SSP_HW_LOCK_DEFINE (LVD , 0U , 0U)

LVD

◆ SSP_HW_LOCK_DEFINE() [23/33]

SSP_HW_LOCK_DEFINE (OPAMP , 0U , 0U)

OPAMP

◆ SSP_HW_LOCK_DEFINE() [24/33]

SSP_HW_LOCK_DEFINE (OPS , 0U , 0U)

OPS

◆ SSP_HW_LOCK_DEFINE() [25/33]

SSP_HW_LOCK_DEFINE (POEG , 0U , 0U)

POEG

◆ SSP_HW_LOCK_DEFINE() [26/33]

SSP_HW_LOCK_DEFINE (SPI , 0U , 0U)

SPI

◆ SSP_HW_LOCK_DEFINE() [27/33]

SSP_HW_LOCK_DEFINE (RTC , 0U , 0U)

RTC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,596 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [28/33]

SSP_HW_LOCK_DEFINE (SCI , 0U , 0U)

SCI

◆ SSP_HW_LOCK_DEFINE() [29/33]

SSP_HW_LOCK_DEFINE (SDADC , 0U , 0U)

SDADC

◆ SSP_HW_LOCK_DEFINE() [30/33]

SSP_HW_LOCK_DEFINE (TRNG , 0U , 0U)

TRNG

◆ SSP_HW_LOCK_DEFINE() [31/33]

SSP_HW_LOCK_DEFINE (TSN , 0U , 0U)

TSN

◆ SSP_HW_LOCK_DEFINE() [32/33]

SSP_HW_LOCK_DEFINE (USB , 0U , 0U)

USB

◆ SSP_HW_LOCK_DEFINE() [33/33]

SSP_HW_LOCK_DEFINE (WDT , 0U , 0U)

WDT

 Module Start and Stop
Board Support Package » Supported MCUs » S1JA

Macros

#define BSP_COMPILE_TIME_ASSERT(e) ((void) sizeof(char[1 - 2 * !(e)]))

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,597 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Module Start and Stop

Functions

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

 Stop module (enter module stop). Stopping a module disables clocks
to the peripheral to save power. More...

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

 Stop module (enter module stop) even if the module is used for
multiple channels. More...

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

 Start module (cancel module stop). Starting a module enables clocks
to the peripheral and allows registers to be set. More...

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool
*const p_stop)

Detailed Description

Module start and stop functions are provided to enable or disable peripherals.

Macro Definition Documentation

◆ BSP_COMPILE_TIME_ASSERT

#define BSP_COMPILE_TIME_ASSERT (e) ((void) sizeof(char[1 - 2 * !(e)]))

Used to generate a compiler error (divided by 0 error) if the assertion fails. This is used in place of
"#error" for expressions that cannot be evaluated by the preprocessor like sizeof().

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,598 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Module Start and Stop

◆ R_BSP_ModuleStart()

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

Start module (cancel module stop). Starting a module enables clocks to the peripheral and allows
registers to be set.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is started

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit.

◆ R_BSP_ModuleStateGet()

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool *const p_stop)

The g_bsp_module_stop array must have entries for each ssp_ip_t enum value.

Save the current module state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,599 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > Module Start and Stop

◆ R_BSP_ModuleStop()

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

Stop module (enter module stop). Stopping a module disables clocks to the peripheral to save
power.

Note
Some module stop bits are shared between peripherals. Modules with shared module stop bits cannot be stopped to
prevent unintentionally stopping related modules.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit, or module
stop bit is shared and entering module stop
is not supported because it could affect
other modules.

◆ R_BSP_ModuleStopAlways()

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

Stop module (enter module stop) even if the module is used for multiple channels.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

 ROM Registers
Board Support Package » Supported MCUs » S1JA

Macros

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,600 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S1JA > ROM Registers

#define BSP_ROM_REG_OFS1_SETTING
 (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

#define BSP_ROM_REG_MPU_CONTROL_SETTING

Detailed Description

Defines MCU registers that are in ROM (e.g. OFS) and must be set at compile-time. All registers can
be set using bsp_cfg.h.

Macro Definition Documentation

◆ BSP_ROM_REG_MPU_CONTROL_SETTING

#define BSP_ROM_REG_MPU_CONTROL_SETTING

((0xFFFFFCF0U) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC0_ENABL

E << 8) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC1_ENABL

E << 9) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION0_E

NABLE) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION1_E

NABLE << 1) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION2_E

NABLE << 2) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION3_E

NABLE << 3))

Build up SECMPUAC register based on MPU settings.

◆ BSP_ROM_REG_OFS1_SETTING

#define BSP_ROM_REG_OFS1_SETTING (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

OR in the HOCO frequency setting from bsp_clock_cfg.h with the OFS1 setting from bsp_cfg.h.

5.2.1.4 S3A1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,601 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1

Board Support Package » Supported MCUs

Code that is common to S3A1 MCUs. More...

Modules

Analog Connections

Cache Functions

Clock Initialization

Hardware Locks

Module Start and Stop

ROM Registers

Enumerations

enum elc_peripheral_t

enum elc_event_t

Detailed Description

Code that is common to S3A1 MCUs.

Implements functions that are common to S3A1 MCUs.

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU1

Note
This list may change based on device. This list is for S3A7.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,602 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

 Analog Connections
Board Support Package » Supported MCUs » S3A1

Enumerations

enum analog_connect_t {
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P012
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,603 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF5,
FLAG_SET),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P109 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P110 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_P400 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,604 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_P408 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS4,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P014 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,605 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS7,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS7,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,606 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,607 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,608 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P007
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P007 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,609 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,610 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,611 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

 ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,612 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,613 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,614 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,615 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,616 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR)
}

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,617 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

This group contains a list of enumerations that can be used with the Analog Connect Interface.

Enumeration Type Documentation

◆ analog_connect_t

enum analog_connect_t

List of analog connections that can be made on S3A1

Note
This list may change based on device. This list is for S3A1.

Enumerator

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P012

Connect ACMPHS0 IVREF to PORT0 P012.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80
_DA

Connect ACMPHS1 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P000

Connect ACMPHS2 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_
P001

Connect ACMPHS2 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80
_DA

Connect ACMPHS2 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82
_DA

Connect ACMPHS2 IVREF to DAC82 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80 Connect ACMPLP0 IVREF0 to DAC80 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,618 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

_DA

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP0 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
2_AMPO

Connect ACMPLP1 IVCMP to OPAMP2 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P500

Connect ACMPHS0 IVCMP to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1
_P100

Connect ACMPHS0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_
P101

Connect ACMPHS0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,619 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

_P109 Connect ACMPLP0 IVREF0 to PORT1 P109.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P110

Connect ACMPLP1 IVREF1 to PORT1 P110.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_
P400

Connect ACMPLP0 IVCMP to PORT4 P400.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
0_AMPO

Connect ACMPLP0 IVCMP to OPAMP0 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_
P408

Connect ACMPLP1 IVCMP to PORT4 P408.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP1 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_OPAMP0_AMPO_BREAK Break all connections to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
014

Connect OPAMP0 AMPO to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
013

Connect OPAMP0 AMPO to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
003

Connect OPAMP0 AMPO to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
002

Connect OPAMP0 AMPO to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPM_BREAK Break all connections to OPAMP0 AMPM.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
501

Connect OPAMP0 AMPM to PORT5 P501.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
500

Connect OPAMP0 AMPM to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P Connect OPAMP0 AMPM to PORT0 P014.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,620 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

014

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
013

Connect OPAMP0 AMPM to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
003

Connect OPAMP0 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0
_AMPO

Connect OPAMP0 AMPM to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPP_BREAK Break all connections to OPAMP0 AMPP.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P
500

Connect OPAMP0 AMPP to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
014

Connect OPAMP0 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
013

Connect OPAMP0 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
002

Connect OPAMP0 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_
DA

Connect OPAMP0 AMPP to DAC120 DA.

ANALOG_CONNECT_OPAMP1_AMPM_BREAK Break all connections to OPAMP1 AMPM.

ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P
014

Connect OPAMP1 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1
_AMPO

Connect OPAMP1 AMPM to OPAMP1 AMPO.

ANALOG_CONNECT_OPAMP1_AMPP_BREAK Break all connections to OPAMP1 AMPP.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
014

Connect OPAMP1 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
013

Connect OPAMP1 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
003

Connect OPAMP1 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
002

Connect OPAMP1 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_D
A

Connect OPAMP1 AMPP to DAC80 DA.

ANALOG_CONNECT_OPAMP2_AMPM_BREAK Break all connections to OPAMP2 AMPM.

ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P
003

Connect OPAMP2 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2
_AMPO

Connect OPAMP2 AMPM to OPAMP2 AMPO.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,621 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_OPAMP2_AMPP_BREAK Break all connections to OPAMP2 AMPP.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
003

Connect OPAMP2 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
002

Connect OPAMP2 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_D
A

Connect OPAMP2 AMPP to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,622 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,623 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P004

Connect ACMPHS0 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P007

Connect ACMPHS0 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P015

Connect ACMPHS0 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALO
G0_VREF

Connect ACMPHS0 IVCMP to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P005

Connect ACMPHS0 IVREF to PORT0 P005.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P006

Connect ACMPHS0 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P000

Connect ACMPHS1 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P002

Connect ACMPHS1 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P003

Connect ACMPHS1 IVCMP to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P007

Connect ACMPHS1 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,624 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P000

Connect ACMPHS1 IVREF to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P001

Connect ACMPHS1 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P002

Connect ACMPHS1 IVREF to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P003

Connect ACMPHS1 IVREF to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P006

Connect ACMPHS1 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,625 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,626 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,627 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,628 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,629 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,630 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,631 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,632 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,633 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

 Cache Functions
Board Support Package » Supported MCUs » S3A1

Enumerations

enum bsp_cache_state_t

Detailed Description

This module implements cache functions.

Enumeration Type Documentation

◆ bsp_cache_state_t

enum bsp_cache_state_t

Cache enum. Passed into cache functions such as R_BSP_CacheOff() and R_BSP_CacheSet.

 Clock Initialization
Board Support Package » Supported MCUs » S3A1

Functions

void bsp_clock_init (void)

 Sets up system clocks. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,634 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Clock Initialization

uint32_t bsp_cpu_clock_get (void)

 Returns frequency of CPU clock in Hz. More...

__STATIC_INLINE void bsp_clocks_mem_wait_set (uint32_t setting)

 This function sets the value of the MEMWAIT register which controls
wait cycles for flash read access. More...

__STATIC_INLINE uint32_t bsp_clocks_mem_wait_get (void)

 This function gets the value of the MEMWAIT register. More...

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t *p_args)

Detailed Description

Functions in this file configure the system clocks based upon the macros in bsp_clock_cfg.h.

Function Documentation

◆ bsp_clock_init()

void bsp_clock_init (void)

Sets up system clocks.

MOCO is default clock out of reset. Enable new clock if chosen.

PLL Source clock is always the main oscillator.

Need to start PLL source clock and let it stabilize before starting PLL

Set PLL Divider.

Set PLL Multiplier.

PLL Source clock is always the main oscillator.

Wait for PLL clock source to stabilize

If the system clock has failed to start call the unrecoverable error handler.

MOCO, LOCO, and subclock do not have stabilization flags that can be checked.

Wait for clock source to stabilize

Set which clock to use for system clock and divisors for all system clocks.

If the system clock has failed to be configured properly call the unrecoverable error handler.

If the USB clock source requested is HOCO set the corresponding bit in the USBCKCR register

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,635 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Clock Initialization

◆ bsp_clock_set_callback()

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t * p_args)

The current frequency must be less than 32 MHz and the mcu must be in high speed mode, before
changing wait cycles to 0.

< No MEMWAIT cycles

◆ bsp_clocks_mem_wait_get()

__STATIC_INLINE uint32_t bsp_clocks_mem_wait_get (void)

This function gets the value of the MEMWAIT register.

Return values
MEMWAIT setting

◆ bsp_clocks_mem_wait_set()

__STATIC_INLINE void bsp_clocks_mem_wait_set (uint32_t setting)

This function sets the value of the MEMWAIT register which controls wait cycles for flash read
access.

Parameters
[in] setting

Return values
none

◆ bsp_cpu_clock_get()

uint32_t bsp_cpu_clock_get (void)

Returns frequency of CPU clock in Hz.

Return values
Frequency of the CPU in Hertz

 Hardware Locks

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,636 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Hardware Locks

Board Support Package » Supported MCUs » S3A1

Functions

SSP_HW_LOCK_DEFINE (ADC, 0U, 0U)

SSP_HW_LOCK_DEFINE (AGT, 0U, 0U)

SSP_HW_LOCK_DEFINE (BSC, 0U, 1U)

SSP_HW_LOCK_DEFINE (CAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CAN, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_LP, 0U, 0U)

SSP_HW_LOCK_DEFINE (CRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CTSU, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAAD, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DOC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DMAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (ELC, 0U, 0U)

SSP_HW_LOCK_DEFINE (FCU, 0U, 0U)

SSP_HW_LOCK_DEFINE (GPT, 0U, 0U)

SSP_HW_LOCK_DEFINE (ICU, 0U, 0U)

SSP_HW_LOCK_DEFINE (IIC, 0U, 0U)

SSP_HW_LOCK_DEFINE (IWDT, 0U, 0U)

SSP_HW_LOCK_DEFINE (KEY, 0U, 0U)

SSP_HW_LOCK_DEFINE (LPM, 1U, 0U)

SSP_HW_LOCK_DEFINE (LVD, 0U, 0U)

SSP_HW_LOCK_DEFINE (MMF, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,637 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Hardware Locks

SSP_HW_LOCK_DEFINE (MPU, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPAMP, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPS, 0U, 0U)

SSP_HW_LOCK_DEFINE (POEG, 0U, 0U)

SSP_HW_LOCK_DEFINE (QSPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (RTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCE, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SLCDC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SSI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SDHIMMC, 0U, 0U)

SSP_HW_LOCK_DEFINE (TSN, 0U, 0U)

SSP_HW_LOCK_DEFINE (USB, 0U, 0U)

SSP_HW_LOCK_DEFINE (WDT, 0U, 0U)

Detailed Description

This file allocates hardware locks used in Atomic Locking.

Function Documentation

◆ SSP_HW_LOCK_DEFINE() [1/38]

SSP_HW_LOCK_DEFINE (ADC , 0U , 0U)

Used to allocated hardware locks. Parameters are as follows:

1. IP name (ssp_ip_t enum without the SSP_IP_ prefix).
2. Unit number (used for blocks with variations like USB, not to be confused with ADC unit).
3. Channel numberADC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,638 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [2/38]

SSP_HW_LOCK_DEFINE (AGT , 0U , 0U)

AGT

◆ SSP_HW_LOCK_DEFINE() [3/38]

SSP_HW_LOCK_DEFINE (BSC , 0U , 1U)

BSC

◆ SSP_HW_LOCK_DEFINE() [4/38]

SSP_HW_LOCK_DEFINE (CAC , 0U , 0U)

CAC

◆ SSP_HW_LOCK_DEFINE() [5/38]

SSP_HW_LOCK_DEFINE (CAN , 0U , 0U)

CAN

◆ SSP_HW_LOCK_DEFINE() [6/38]

SSP_HW_LOCK_DEFINE (COMP_LP , 0U , 0U)

COMP_LP

◆ SSP_HW_LOCK_DEFINE() [7/38]

SSP_HW_LOCK_DEFINE (CRC , 0U , 0U)

CRC

◆ SSP_HW_LOCK_DEFINE() [8/38]

SSP_HW_LOCK_DEFINE (CTSU , 0U , 0U)

CTSU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,639 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [9/38]

SSP_HW_LOCK_DEFINE (DAAD , 0U , 0U)

DAAD

◆ SSP_HW_LOCK_DEFINE() [10/38]

SSP_HW_LOCK_DEFINE (DAC , 0U , 0U)

DAC

◆ SSP_HW_LOCK_DEFINE() [11/38]

SSP_HW_LOCK_DEFINE (DOC , 0U , 0U)

DOC

◆ SSP_HW_LOCK_DEFINE() [12/38]

SSP_HW_LOCK_DEFINE (DMAC , 0U , 0U)

DMAC

◆ SSP_HW_LOCK_DEFINE() [13/38]

SSP_HW_LOCK_DEFINE (DTC , 0U , 0U)

DTC

◆ SSP_HW_LOCK_DEFINE() [14/38]

SSP_HW_LOCK_DEFINE (ELC , 0U , 0U)

ELC

◆ SSP_HW_LOCK_DEFINE() [15/38]

SSP_HW_LOCK_DEFINE (FCU , 0U , 0U)

FCU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,640 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [16/38]

SSP_HW_LOCK_DEFINE (GPT , 0U , 0U)

GPT

◆ SSP_HW_LOCK_DEFINE() [17/38]

SSP_HW_LOCK_DEFINE (ICU , 0U , 0U)

ICU

◆ SSP_HW_LOCK_DEFINE() [18/38]

SSP_HW_LOCK_DEFINE (IIC , 0U , 0U)

IIC

◆ SSP_HW_LOCK_DEFINE() [19/38]

SSP_HW_LOCK_DEFINE (IWDT , 0U , 0U)

IWDT

◆ SSP_HW_LOCK_DEFINE() [20/38]

SSP_HW_LOCK_DEFINE (KEY , 0U , 0U)

KEY

◆ SSP_HW_LOCK_DEFINE() [21/38]

SSP_HW_LOCK_DEFINE (LPM , 1U , 0U)

LPM

◆ SSP_HW_LOCK_DEFINE() [22/38]

SSP_HW_LOCK_DEFINE (LVD , 0U , 0U)

LVD

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,641 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [23/38]

SSP_HW_LOCK_DEFINE (MMF , 0U , 0U)

MMF

◆ SSP_HW_LOCK_DEFINE() [24/38]

SSP_HW_LOCK_DEFINE (MPU , 0U , 0U)

MPU

◆ SSP_HW_LOCK_DEFINE() [25/38]

SSP_HW_LOCK_DEFINE (OPAMP , 0U , 0U)

OPAMP

◆ SSP_HW_LOCK_DEFINE() [26/38]

SSP_HW_LOCK_DEFINE (OPS , 0U , 0U)

OPS

◆ SSP_HW_LOCK_DEFINE() [27/38]

SSP_HW_LOCK_DEFINE (POEG , 0U , 0U)

POEG

◆ SSP_HW_LOCK_DEFINE() [28/38]

SSP_HW_LOCK_DEFINE (QSPI , 0U , 0U)

QSPI

◆ SSP_HW_LOCK_DEFINE() [29/38]

SSP_HW_LOCK_DEFINE (SPI , 0U , 0U)

SPI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,642 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [30/38]

SSP_HW_LOCK_DEFINE (RTC , 0U , 0U)

RTC

◆ SSP_HW_LOCK_DEFINE() [31/38]

SSP_HW_LOCK_DEFINE (SCE , 0U , 0U)

SCE

◆ SSP_HW_LOCK_DEFINE() [32/38]

SSP_HW_LOCK_DEFINE (SCI , 0U , 0U)

SCI

◆ SSP_HW_LOCK_DEFINE() [33/38]

SSP_HW_LOCK_DEFINE (SLCDC , 0U , 0U)

SLCDC

◆ SSP_HW_LOCK_DEFINE() [34/38]

SSP_HW_LOCK_DEFINE (SSI , 0U , 0U)

SSI

◆ SSP_HW_LOCK_DEFINE() [35/38]

SSP_HW_LOCK_DEFINE (SDHIMMC , 0U , 0U)

SDHIMMC

◆ SSP_HW_LOCK_DEFINE() [36/38]

SSP_HW_LOCK_DEFINE (TSN , 0U , 0U)

TSN

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,643 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [37/38]

SSP_HW_LOCK_DEFINE (USB , 0U , 0U)

USB

◆ SSP_HW_LOCK_DEFINE() [38/38]

SSP_HW_LOCK_DEFINE (WDT , 0U , 0U)

WDT

 Module Start and Stop
Board Support Package » Supported MCUs » S3A1

Macros

#define BSP_COMPILE_TIME_ASSERT(e) ((void) sizeof(char[1 - 2 * !(e)]))

Functions

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

 Stop module (enter module stop). Stopping a module disables clocks
to the peripheral to save power. More...

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

 Stop module (enter module stop) even if the module is used for
multiple channels. More...

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

 Start module (cancel module stop). Starting a module enables clocks
to the peripheral and allows registers to be set. More...

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool
*const p_stop)

Detailed Description

Module start and stop functions are provided to enable or disable peripherals.

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,644 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Module Start and Stop

◆ BSP_COMPILE_TIME_ASSERT

#define BSP_COMPILE_TIME_ASSERT (e) ((void) sizeof(char[1 - 2 * !(e)]))

Used to generate a compiler error (divided by 0 error) if the assertion fails. This is used in place of
"#error" for expressions that cannot be evaluated by the preprocessor like sizeof().

Function Documentation

◆ R_BSP_ModuleStart()

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

Start module (cancel module stop). Starting a module enables clocks to the peripheral and allows
registers to be set.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is started

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit.

◆ R_BSP_ModuleStateGet()

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool *const p_stop)

The g_bsp_module_stop array must have entries for each ssp_ip_t enum value.

Save the current module state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,645 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > Module Start and Stop

◆ R_BSP_ModuleStop()

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

Stop module (enter module stop). Stopping a module disables clocks to the peripheral to save
power.

Note
Some module stop bits are shared between peripherals. Modules with shared module stop bits cannot be stopped to
prevent unintentionally stopping related modules.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit, or module
stop bit is shared and entering module stop
is not supported because it could affect
other modules.

◆ R_BSP_ModuleStopAlways()

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

Stop module (enter module stop) even if the module is used for multiple channels.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

 ROM Registers
Board Support Package » Supported MCUs » S3A1

Macros

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,646 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A1 > ROM Registers

#define BSP_ROM_REG_OFS1_SETTING
 (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

#define BSP_ROM_REG_MPU_CONTROL_SETTING

Detailed Description

Defines MCU registers that are in ROM (e.g. OFS) and must be set at compile-time. All registers can
be set using bsp_cfg.h.

Macro Definition Documentation

◆ BSP_ROM_REG_MPU_CONTROL_SETTING

#define BSP_ROM_REG_MPU_CONTROL_SETTING

((0xFFFFFCF0U) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC0_ENABL

E << 8) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC1_ENABL

E << 9) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION0_E

NABLE) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION1_E

NABLE << 1) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION2_E

NABLE << 2) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION3_E

NABLE << 3))

Build up SECMPUAC register based on MPU settings.

◆ BSP_ROM_REG_OFS1_SETTING

#define BSP_ROM_REG_OFS1_SETTING (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

OR in the HOCO frequency setting from bsp_clock_cfg.h with the OFS1 setting from bsp_cfg.h.

5.2.1.5 S3A3

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,647 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3

Board Support Package » Supported MCUs

Code that is common to S3A3 MCUs. More...

Modules

Analog Connections

Cache Functions

Clock Initialization

Hardware Locks

Module Start and Stop

ROM Registers

Detailed Description

Code that is common to S3A3 MCUs.

Implements functions that are common to S3A3 MCUs.

 Analog Connections
Board Support Package » Supported MCUs » S3A3

Enumerations

enum analog_connect_t {
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P012
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,648 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,649 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF5,
FLAG_SET),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P109 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P110 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_P400 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_P408 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, BREAK,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,650 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS4,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,651 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS7,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS7,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,652 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,653 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P007
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P000 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,654 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P007 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,655 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,656 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,657 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,658 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,659 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,660 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,661 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,662 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR)
}

Detailed Description

This group contains a list of enumerations that can be used with the Analog Connect Interface.

Enumeration Type Documentation

◆ analog_connect_t

enum analog_connect_t

List of analog connections that can be made on S3A3

Note
This list may change based on device. This list is for S3A3.

Enumerator

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,663 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P012

Connect ACMPHS0 IVREF to PORT0 P012.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80
_DA

Connect ACMPHS1 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P000

Connect ACMPHS2 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_
P001

Connect ACMPHS2 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80
_DA

Connect ACMPHS2 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82
_DA

Connect ACMPHS2 IVREF to DAC82 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP0 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
2_AMPO

Connect ACMPLP1 IVCMP to OPAMP2 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,664 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P500

Connect ACMPHS0 IVCMP to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1
_P100

Connect ACMPHS0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_
P101

Connect ACMPHS0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P109

Connect ACMPLP0 IVREF0 to PORT1 P109.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P110

Connect ACMPLP1 IVREF1 to PORT1 P110.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_
P400

Connect ACMPLP0 IVCMP to PORT4 P400.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
0_AMPO

Connect ACMPLP0 IVCMP to OPAMP0 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_
P408

Connect ACMPLP1 IVCMP to PORT4 P408.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP1 IVCMP to OPAMP1 AMPO.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,665 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_OPAMP0_AMPO_BREAK Break all connections to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
014

Connect OPAMP0 AMPO to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
013

Connect OPAMP0 AMPO to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
003

Connect OPAMP0 AMPO to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
002

Connect OPAMP0 AMPO to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPM_BREAK Break all connections to OPAMP0 AMPM.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
501

Connect OPAMP0 AMPM to PORT5 P501.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
500

Connect OPAMP0 AMPM to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
014

Connect OPAMP0 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
013

Connect OPAMP0 AMPM to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
003

Connect OPAMP0 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0
_AMPO

Connect OPAMP0 AMPM to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPP_BREAK Break all connections to OPAMP0 AMPP.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P
500

Connect OPAMP0 AMPP to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
014

Connect OPAMP0 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
013

Connect OPAMP0 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
002

Connect OPAMP0 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_
DA

Connect OPAMP0 AMPP to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,666 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_OPAMP1_AMPM_BREAK Break all connections to OPAMP1 AMPM.

ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P
014

Connect OPAMP1 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1
_AMPO

Connect OPAMP1 AMPM to OPAMP1 AMPO.

ANALOG_CONNECT_OPAMP1_AMPP_BREAK Break all connections to OPAMP1 AMPP.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
014

Connect OPAMP1 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
013

Connect OPAMP1 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
003

Connect OPAMP1 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
002

Connect OPAMP1 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_D
A

Connect OPAMP1 AMPP to DAC80 DA.

ANALOG_CONNECT_OPAMP2_AMPM_BREAK Break all connections to OPAMP2 AMPM.

ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P
003

Connect OPAMP2 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2
_AMPO

Connect OPAMP2 AMPM to OPAMP2 AMPO.

ANALOG_CONNECT_OPAMP2_AMPP_BREAK Break all connections to OPAMP2 AMPP.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
003

Connect OPAMP2 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
002

Connect OPAMP2 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_D
A

Connect OPAMP2 AMPP to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5 Connect ACMPLP1 IVREF1 to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,667 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

_P500

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,668 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

P501 Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P004

Connect ACMPHS0 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P007

Connect ACMPHS0 IVCMP to PORT0 P007.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,669 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P015

Connect ACMPHS0 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALO
G0_VREF

Connect ACMPHS0 IVCMP to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P005

Connect ACMPHS0 IVREF to PORT0 P005.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P006

Connect ACMPHS0 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P000

Connect ACMPHS1 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P002

Connect ACMPHS1 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P003

Connect ACMPHS1 IVCMP to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P007

Connect ACMPHS1 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P000

Connect ACMPHS1 IVREF to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P001

Connect ACMPHS1 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P002

Connect ACMPHS1 IVREF to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P003

Connect ACMPHS1 IVREF to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P006

Connect ACMPHS1 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,670 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,671 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,672 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,673 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,674 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,675 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,676 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,677 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,678 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,679 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Cache Functions

 Cache Functions
Board Support Package » Supported MCUs » S3A3

Enumerations

enum bsp_cache_state_t

Detailed Description

This module implements cache functions.

Enumeration Type Documentation

◆ bsp_cache_state_t

enum bsp_cache_state_t

Cache enum. Passed into cache functions such as R_BSP_CacheOff() and R_BSP_CacheSet.

 Clock Initialization
Board Support Package » Supported MCUs » S3A3

Macros

#define CGC_SRAM_ZERO_WAIT_CYCLES (0U)

 Specify zero wait states for SRAM.

#define CGC_SRAM_ONE_WAIT_CYCLES (1U)

 Specify one wait states for SRAM.

Functions

void bsp_clock_init (void)

 Sets up system clocks. More...

uint32_t bsp_cpu_clock_get (void)

 Returns frequency of CPU clock in Hz. More...

__STATIC_INLINE void bsp_clocks_mem_wait_set (uint32_t setting)

 This function sets the value of the MEMWAIT register which controls
wait cycles for flash read access. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,680 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Clock Initialization

__STATIC_INLINE uint32_t bsp_clocks_mem_wait_get (void)

 This function gets the value of the MEMWAIT register. More...

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t *p_args)

Detailed Description

Functions in this file configure the system clocks based upon the macros in bsp_clock_cfg.h.

Function Documentation

◆ bsp_clock_init()

void bsp_clock_init (void)

Sets up system clocks.

MOCO is default clock out of reset. Enable new clock if chosen.

PLL Source clock is always the main oscillator.

Need to start PLL source clock and let it stabilize before starting PLL

Set PLL Divider.

Set PLL Multiplier.

PLL Source clock is always the main oscillator.

Wait for PLL clock source to stabilize

If the system clock has failed to start call the unrecoverable error handler.

Enable ROM cache

MOCO, LOCO, and subclock do not have stabilization flags that can be checked.

Wait for clock source to stabilize

Set which clock to use for system clock and divisors for all system clocks.

If the system clock has failed to be configured properly call the unrecoverable error handler.

If the USB clock source requested is HOCO set the corresponding bit in the USBCKCR register

◆ bsp_clock_set_callback()

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t * p_args)

The current frequency must be less than 32 MHz and the mcu must be in high speed mode, before
changing wait cycles to 0.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,681 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Clock Initialization

◆ bsp_clocks_mem_wait_get()

__STATIC_INLINE uint32_t bsp_clocks_mem_wait_get (void)

This function gets the value of the MEMWAIT register.

Return values
MEMWAIT setting

◆ bsp_clocks_mem_wait_set()

__STATIC_INLINE void bsp_clocks_mem_wait_set (uint32_t setting)

This function sets the value of the MEMWAIT register which controls wait cycles for flash read
access.

Return values
none

◆ bsp_cpu_clock_get()

uint32_t bsp_cpu_clock_get (void)

Returns frequency of CPU clock in Hz.

Return values
Frequency of the CPU in Hertz

 Hardware Locks
Board Support Package » Supported MCUs » S3A3

Functions

SSP_HW_LOCK_DEFINE (ADC, 0U, 0U)

SSP_HW_LOCK_DEFINE (AGT, 0U, 0U)

SSP_HW_LOCK_DEFINE (BSC, 0U, 1U)

SSP_HW_LOCK_DEFINE (CAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CAN, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,682 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Hardware Locks

SSP_HW_LOCK_DEFINE (COMP_HS, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_LP, 0U, 0U)

SSP_HW_LOCK_DEFINE (CRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CTSU, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAAD, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DOC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DMAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (ELC, 0U, 0U)

SSP_HW_LOCK_DEFINE (FCU, 0U, 0U)

SSP_HW_LOCK_DEFINE (GPT, 0U, 0U)

SSP_HW_LOCK_DEFINE (ICU, 0U, 0U)

SSP_HW_LOCK_DEFINE (IIC, 0U, 0U)

SSP_HW_LOCK_DEFINE (IRDA, 0U, 0U)

SSP_HW_LOCK_DEFINE (IWDT, 0U, 0U)

SSP_HW_LOCK_DEFINE (KEY, 0U, 0U)

SSP_HW_LOCK_DEFINE (LPM, 1U, 0U)

SSP_HW_LOCK_DEFINE (LVD, 0U, 0U)

SSP_HW_LOCK_DEFINE (MMF, 0U, 0U)

SSP_HW_LOCK_DEFINE (MPU, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPAMP, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPS, 0U, 0U)

SSP_HW_LOCK_DEFINE (POEG, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,683 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Hardware Locks

SSP_HW_LOCK_DEFINE (QSPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (RTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCE, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SLCDC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SSI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SDHIMMC, 0U, 0U)

SSP_HW_LOCK_DEFINE (TSN, 0U, 0U)

SSP_HW_LOCK_DEFINE (USB, 0U, 0U)

SSP_HW_LOCK_DEFINE (WDT, 0U, 0U)

Detailed Description

This file allocates hardware locks used in Atomic Locking.

Function Documentation

◆ SSP_HW_LOCK_DEFINE() [1/40]

SSP_HW_LOCK_DEFINE (ADC , 0U , 0U)

Used to allocated hardware locks. Parameters are as follows:

1. IP name (ssp_ip_t enum without the SSP_IP_ prefix).
2. Unit number (used for blocks with variations like USB, not to be confused with ADC unit).
3. Channel numberADC

◆ SSP_HW_LOCK_DEFINE() [2/40]

SSP_HW_LOCK_DEFINE (AGT , 0U , 0U)

AGT

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,684 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [3/40]

SSP_HW_LOCK_DEFINE (BSC , 0U , 1U)

BSC

◆ SSP_HW_LOCK_DEFINE() [4/40]

SSP_HW_LOCK_DEFINE (CAC , 0U , 0U)

CAC

◆ SSP_HW_LOCK_DEFINE() [5/40]

SSP_HW_LOCK_DEFINE (CAN , 0U , 0U)

CAN

◆ SSP_HW_LOCK_DEFINE() [6/40]

SSP_HW_LOCK_DEFINE (COMP_HS , 0U , 0U)

COMP_HS

◆ SSP_HW_LOCK_DEFINE() [7/40]

SSP_HW_LOCK_DEFINE (COMP_LP , 0U , 0U)

COMP_LP

◆ SSP_HW_LOCK_DEFINE() [8/40]

SSP_HW_LOCK_DEFINE (CRC , 0U , 0U)

CRC

◆ SSP_HW_LOCK_DEFINE() [9/40]

SSP_HW_LOCK_DEFINE (CTSU , 0U , 0U)

CTSU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,685 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [10/40]

SSP_HW_LOCK_DEFINE (DAAD , 0U , 0U)

DAAD

◆ SSP_HW_LOCK_DEFINE() [11/40]

SSP_HW_LOCK_DEFINE (DAC , 0U , 0U)

DAC

◆ SSP_HW_LOCK_DEFINE() [12/40]

SSP_HW_LOCK_DEFINE (DOC , 0U , 0U)

DOC

◆ SSP_HW_LOCK_DEFINE() [13/40]

SSP_HW_LOCK_DEFINE (DMAC , 0U , 0U)

DMAC

◆ SSP_HW_LOCK_DEFINE() [14/40]

SSP_HW_LOCK_DEFINE (DTC , 0U , 0U)

DTC

◆ SSP_HW_LOCK_DEFINE() [15/40]

SSP_HW_LOCK_DEFINE (ELC , 0U , 0U)

ELC

◆ SSP_HW_LOCK_DEFINE() [16/40]

SSP_HW_LOCK_DEFINE (FCU , 0U , 0U)

FCU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,686 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [17/40]

SSP_HW_LOCK_DEFINE (GPT , 0U , 0U)

GPT

◆ SSP_HW_LOCK_DEFINE() [18/40]

SSP_HW_LOCK_DEFINE (ICU , 0U , 0U)

ICU

◆ SSP_HW_LOCK_DEFINE() [19/40]

SSP_HW_LOCK_DEFINE (IIC , 0U , 0U)

IIC

◆ SSP_HW_LOCK_DEFINE() [20/40]

SSP_HW_LOCK_DEFINE (IRDA , 0U , 0U)

IRDA

◆ SSP_HW_LOCK_DEFINE() [21/40]

SSP_HW_LOCK_DEFINE (IWDT , 0U , 0U)

IWDT

◆ SSP_HW_LOCK_DEFINE() [22/40]

SSP_HW_LOCK_DEFINE (KEY , 0U , 0U)

KEY

◆ SSP_HW_LOCK_DEFINE() [23/40]

SSP_HW_LOCK_DEFINE (LPM , 1U , 0U)

LPM

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,687 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [24/40]

SSP_HW_LOCK_DEFINE (LVD , 0U , 0U)

LVD

◆ SSP_HW_LOCK_DEFINE() [25/40]

SSP_HW_LOCK_DEFINE (MMF , 0U , 0U)

MMF

◆ SSP_HW_LOCK_DEFINE() [26/40]

SSP_HW_LOCK_DEFINE (MPU , 0U , 0U)

MPU

◆ SSP_HW_LOCK_DEFINE() [27/40]

SSP_HW_LOCK_DEFINE (OPAMP , 0U , 0U)

OPAMP

◆ SSP_HW_LOCK_DEFINE() [28/40]

SSP_HW_LOCK_DEFINE (OPS , 0U , 0U)

OPS

◆ SSP_HW_LOCK_DEFINE() [29/40]

SSP_HW_LOCK_DEFINE (POEG , 0U , 0U)

POEG

◆ SSP_HW_LOCK_DEFINE() [30/40]

SSP_HW_LOCK_DEFINE (QSPI , 0U , 0U)

QSPI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,688 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [31/40]

SSP_HW_LOCK_DEFINE (SPI , 0U , 0U)

SPI

◆ SSP_HW_LOCK_DEFINE() [32/40]

SSP_HW_LOCK_DEFINE (RTC , 0U , 0U)

RTC

◆ SSP_HW_LOCK_DEFINE() [33/40]

SSP_HW_LOCK_DEFINE (SCE , 0U , 0U)

SCE

◆ SSP_HW_LOCK_DEFINE() [34/40]

SSP_HW_LOCK_DEFINE (SCI , 0U , 0U)

SCI

◆ SSP_HW_LOCK_DEFINE() [35/40]

SSP_HW_LOCK_DEFINE (SLCDC , 0U , 0U)

SLCDC

◆ SSP_HW_LOCK_DEFINE() [36/40]

SSP_HW_LOCK_DEFINE (SSI , 0U , 0U)

SSI

◆ SSP_HW_LOCK_DEFINE() [37/40]

SSP_HW_LOCK_DEFINE (SDHIMMC , 0U , 0U)

SDHIMMC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,689 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [38/40]

SSP_HW_LOCK_DEFINE (TSN , 0U , 0U)

TSN

◆ SSP_HW_LOCK_DEFINE() [39/40]

SSP_HW_LOCK_DEFINE (USB , 0U , 0U)

USB

◆ SSP_HW_LOCK_DEFINE() [40/40]

SSP_HW_LOCK_DEFINE (WDT , 0U , 0U)

WDT

 Module Start and Stop
Board Support Package » Supported MCUs » S3A3

Macros

#define BSP_COMPILE_TIME_ASSERT(e) ((void) sizeof(char[1 - 2 * !(e)]))

Functions

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

 Stop module (enter module stop). Stopping a module disables clocks
to the peripheral to save power. More...

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

 Stop module (enter module stop) even if the module is used for
multiple channels. More...

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

 Start module (cancel module stop). Starting a module enables clocks
to the peripheral and allows registers to be set. More...

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool
*const p_stop)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,690 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Module Start and Stop

Detailed Description

Module start and stop functions are provided to enable or disable peripherals.

Macro Definition Documentation

◆ BSP_COMPILE_TIME_ASSERT

#define BSP_COMPILE_TIME_ASSERT (e) ((void) sizeof(char[1 - 2 * !(e)]))

Used to generate a compiler error (divided by 0 error) if the assertion fails. This is used in place of
"#error" for expressions that cannot be evaluated by the preprocessor like sizeof().

Function Documentation

◆ R_BSP_ModuleStart()

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

Start module (cancel module stop). Starting a module enables clocks to the peripheral and allows
registers to be set.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is started

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit.

◆ R_BSP_ModuleStateGet()

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool *const p_stop)

The g_bsp_module_stop array must have entries for each ssp_ip_t enum value.

Save the current module state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,691 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > Module Start and Stop

◆ R_BSP_ModuleStop()

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

Stop module (enter module stop). Stopping a module disables clocks to the peripheral to save
power.

Note
Some module stop bits are shared between peripherals. Modules with shared module stop bits cannot be stopped to
prevent unintentionally stopping related modules.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit, or module
stop bit is shared and entering module stop
is not supported because it could affect
other modules.

◆ R_BSP_ModuleStopAlways()

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

Stop module (enter module stop) even if the module is used for multiple channels.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

 ROM Registers
Board Support Package » Supported MCUs » S3A3

Macros

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,692 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A3 > ROM Registers

#define BSP_ROM_REG_OFS1_SETTING
 (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

#define BSP_ROM_REG_MPU_CONTROL_SETTING

Detailed Description

Defines MCU registers that are in ROM (e.g. OFS) and must be set at compile-time. All registers can
be set using bsp_cfg.h.

Macro Definition Documentation

◆ BSP_ROM_REG_MPU_CONTROL_SETTING

#define BSP_ROM_REG_MPU_CONTROL_SETTING

((0xFFFFFCF0U) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC0_ENABL

E << 8) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC1_ENABL

E << 9) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION0_E

NABLE) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION1_E

NABLE << 1) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION2_E

NABLE << 2) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION3_E

NABLE << 3) \

)

Build up SECMPUAC register based on MPU settings.

◆ BSP_ROM_REG_OFS1_SETTING

#define BSP_ROM_REG_OFS1_SETTING (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

OR in the HOCO frequency setting from bsp_clock_cfg.h with the OFS1 setting from bsp_cfg.h.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,693 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6

5.2.1.6 S3A6
Board Support Package » Supported MCUs

Code that is common to S3A6 MCUs. More...

Modules

Analog Connections

Cache Functions

Clock Initialization

Hardware Locks

Module Start and Stop

ROM Registers

Detailed Description

Code that is common to S3A6 MCUs.

Implements functions that are common to S3A6 MCUs.

 Analog Connections
Board Support Package » Supported MCUs » S3A6

Enumerations

enum analog_connect_t {
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P012
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,694 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,695 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF5,
FLAG_SET),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P109 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P110 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_P400 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_P408 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,696 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS4,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,697 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS7,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS7,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,698 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,699 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P007
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,700 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

FLAG_SET),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P007 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,701 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,702 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,703 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,704 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,705 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,706 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,707 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,708 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR)
}

Detailed Description

This group contains a list of enumerations that can be used with the Analog Connect Interface.

Enumeration Type Documentation

◆ analog_connect_t

enum analog_connect_t

List of analog connections that can be made on S3A6

Note
This list may change based on device. This list is for S3A6.

Enumerator

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_ Connect ACMPLP1 IVREF to PORT1 P103.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,709 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

P103

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P012

Connect ACMPHS0 IVREF to PORT0 P012.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80
_DA

Connect ACMPHS1 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P000

Connect ACMPHS2 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_
P001

Connect ACMPHS2 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80
_DA

Connect ACMPHS2 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82
_DA

Connect ACMPHS2 IVREF to DAC82 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP0 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
2_AMPO

Connect ACMPLP1 IVCMP to OPAMP2 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,710 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

G0_VREF Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P500

Connect ACMPHS0 IVCMP to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1
_P100

Connect ACMPHS0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_
P101

Connect ACMPHS0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P109

Connect ACMPLP0 IVREF0 to PORT1 P109.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P110

Connect ACMPLP1 IVREF1 to PORT1 P110.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_
P400

Connect ACMPLP0 IVCMP to PORT4 P400.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
0_AMPO

Connect ACMPLP0 IVCMP to OPAMP0 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_
P408

Connect ACMPLP1 IVCMP to PORT4 P408.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,711 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP1 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_OPAMP0_AMPO_BREAK Break all connections to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
014

Connect OPAMP0 AMPO to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
013

Connect OPAMP0 AMPO to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
003

Connect OPAMP0 AMPO to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
002

Connect OPAMP0 AMPO to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPM_BREAK Break all connections to OPAMP0 AMPM.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
501

Connect OPAMP0 AMPM to PORT5 P501.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
500

Connect OPAMP0 AMPM to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
014

Connect OPAMP0 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
013

Connect OPAMP0 AMPM to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
003

Connect OPAMP0 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0
_AMPO

Connect OPAMP0 AMPM to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPP_BREAK Break all connections to OPAMP0 AMPP.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P
500

Connect OPAMP0 AMPP to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
014

Connect OPAMP0 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
013

Connect OPAMP0 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
002

Connect OPAMP0 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,712 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

DA Connect OPAMP0 AMPP to DAC120 DA.

ANALOG_CONNECT_OPAMP1_AMPM_BREAK Break all connections to OPAMP1 AMPM.

ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P
014

Connect OPAMP1 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1
_AMPO

Connect OPAMP1 AMPM to OPAMP1 AMPO.

ANALOG_CONNECT_OPAMP1_AMPP_BREAK Break all connections to OPAMP1 AMPP.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
014

Connect OPAMP1 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
013

Connect OPAMP1 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
003

Connect OPAMP1 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
002

Connect OPAMP1 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_D
A

Connect OPAMP1 AMPP to DAC80 DA.

ANALOG_CONNECT_OPAMP2_AMPM_BREAK Break all connections to OPAMP2 AMPM.

ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P
003

Connect OPAMP2 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2
_AMPO

Connect OPAMP2 AMPM to OPAMP2 AMPO.

ANALOG_CONNECT_OPAMP2_AMPP_BREAK Break all connections to OPAMP2 AMPP.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
003

Connect OPAMP2 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
002

Connect OPAMP2 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_D
A

Connect OPAMP2 AMPP to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,713 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,714 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P004

Connect ACMPHS0 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P007

Connect ACMPHS0 IVCMP to PORT0 P007.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,715 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P015

Connect ACMPHS0 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALO
G0_VREF

Connect ACMPHS0 IVCMP to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P005

Connect ACMPHS0 IVREF to PORT0 P005.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P006

Connect ACMPHS0 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P000

Connect ACMPHS1 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P002

Connect ACMPHS1 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P003

Connect ACMPHS1 IVCMP to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P007

Connect ACMPHS1 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P000

Connect ACMPHS1 IVREF to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P001

Connect ACMPHS1 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P002

Connect ACMPHS1 IVREF to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P003

Connect ACMPHS1 IVREF to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P006

Connect ACMPHS1 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,716 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,717 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,718 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,719 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,720 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,721 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,722 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,723 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,724 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,725 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Cache Functions

 Cache Functions
Board Support Package » Supported MCUs » S3A6

Enumerations

enum bsp_cache_state_t

Detailed Description

This module implements cache functions.

Enumeration Type Documentation

◆ bsp_cache_state_t

enum bsp_cache_state_t

Cache enum. Passed into cache functions such as R_BSP_CacheOff() and R_BSP_CacheSet.

 Clock Initialization
Board Support Package » Supported MCUs » S3A6

Macros

#define CGC_SRAM_ZERO_WAIT_CYCLES (0U)

 Specify zero wait states for SRAM.

#define CGC_SRAM_ONE_WAIT_CYCLES (1U)

 Specify one wait states for SRAM.

Functions

void bsp_clock_init (void)

 Sets up system clocks. More...

uint32_t bsp_cpu_clock_get (void)

 Returns frequency of CPU clock in Hz. More...

__STATIC_INLINE void bsp_clocks_mem_wait_set (uint32_t setting)

 This function sets the value of the MEMWAIT register which controls
wait cycles for flash read access. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,726 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Clock Initialization

__STATIC_INLINE uint32_t bsp_clocks_mem_wait_get (void)

 This function gets the value of the MEMWAIT register. More...

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t *p_args)

Detailed Description

Functions in this file configure the system clocks based upon the macros in bsp_clock_cfg.h.

Function Documentation

◆ bsp_clock_init()

void bsp_clock_init (void)

Sets up system clocks.

MOCO is default clock out of reset. Enable new clock if chosen.

PLL Source clock is always the main oscillator.

Need to start PLL source clock and let it stabilize before starting PLL

Set PLL Divider.

Set PLL Multiplier.

PLL Source clock is always the main oscillator.

Wait for PLL clock source to stabilize

If the system clock has failed to start call the unrecoverable error handler.

Enable ROM cache

MOCO, LOCO, and subclock do not have stabilization flags that can be checked.

Wait for clock source to stabilize

Set which clock to use for system clock and divisors for all system clocks.

If the system clock has failed to be configured properly call the unrecoverable error handler.

If the USB clock source requested is HOCO set the corresponding bit in the USBCKCR register

◆ bsp_clock_set_callback()

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t * p_args)

The current frequency must be less than 32 MHz and the mcu must be in high speed mode, before
changing wait cycles to 0.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,727 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Clock Initialization

◆ bsp_clocks_mem_wait_get()

__STATIC_INLINE uint32_t bsp_clocks_mem_wait_get (void)

This function gets the value of the MEMWAIT register.

Return values
MEMWAIT setting

◆ bsp_clocks_mem_wait_set()

__STATIC_INLINE void bsp_clocks_mem_wait_set (uint32_t setting)

This function sets the value of the MEMWAIT register which controls wait cycles for flash read
access.

Return values
none

◆ bsp_cpu_clock_get()

uint32_t bsp_cpu_clock_get (void)

Returns frequency of CPU clock in Hz.

Return values
Frequency of the CPU in Hertz

 Hardware Locks
Board Support Package » Supported MCUs » S3A6

Functions

SSP_HW_LOCK_DEFINE (ADC, 0U, 0U)

SSP_HW_LOCK_DEFINE (AGT, 0U, 0U)

SSP_HW_LOCK_DEFINE (BSC, 0U, 1U)

SSP_HW_LOCK_DEFINE (CAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CAN, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,728 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Hardware Locks

SSP_HW_LOCK_DEFINE (COMP_HS, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_LP, 0U, 0U)

SSP_HW_LOCK_DEFINE (CRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CTSU, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAAD, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DOC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DMAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (ELC, 0U, 0U)

SSP_HW_LOCK_DEFINE (FCU, 0U, 0U)

SSP_HW_LOCK_DEFINE (GPT, 0U, 0U)

SSP_HW_LOCK_DEFINE (ICU, 0U, 0U)

SSP_HW_LOCK_DEFINE (IIC, 0U, 0U)

SSP_HW_LOCK_DEFINE (IRDA, 0U, 0U)

SSP_HW_LOCK_DEFINE (IWDT, 0U, 0U)

SSP_HW_LOCK_DEFINE (KEY, 0U, 0U)

SSP_HW_LOCK_DEFINE (LPM, 1U, 0U)

SSP_HW_LOCK_DEFINE (LVD, 0U, 0U)

SSP_HW_LOCK_DEFINE (MMF, 0U, 0U)

SSP_HW_LOCK_DEFINE (MPU, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPAMP, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPS, 0U, 0U)

SSP_HW_LOCK_DEFINE (POEG, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,729 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Hardware Locks

SSP_HW_LOCK_DEFINE (QSPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (RTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCE, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SLCDC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SSI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SDHIMMC, 0U, 0U)

SSP_HW_LOCK_DEFINE (TSN, 0U, 0U)

SSP_HW_LOCK_DEFINE (USB, 0U, 0U)

SSP_HW_LOCK_DEFINE (WDT, 0U, 0U)

Detailed Description

This file allocates hardware locks used in Atomic Locking.

Function Documentation

◆ SSP_HW_LOCK_DEFINE() [1/40]

SSP_HW_LOCK_DEFINE (ADC , 0U , 0U)

Used to allocated hardware locks. Parameters are as follows:

1. IP name (ssp_ip_t enum without the SSP_IP_ prefix).
2. Unit number (used for blocks with variations like USB, not to be confused with ADC unit).
3. Channel numberADC

◆ SSP_HW_LOCK_DEFINE() [2/40]

SSP_HW_LOCK_DEFINE (AGT , 0U , 0U)

AGT

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,730 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [3/40]

SSP_HW_LOCK_DEFINE (BSC , 0U , 1U)

BSC

◆ SSP_HW_LOCK_DEFINE() [4/40]

SSP_HW_LOCK_DEFINE (CAC , 0U , 0U)

CAC

◆ SSP_HW_LOCK_DEFINE() [5/40]

SSP_HW_LOCK_DEFINE (CAN , 0U , 0U)

CAN

◆ SSP_HW_LOCK_DEFINE() [6/40]

SSP_HW_LOCK_DEFINE (COMP_HS , 0U , 0U)

COMP_HS

◆ SSP_HW_LOCK_DEFINE() [7/40]

SSP_HW_LOCK_DEFINE (COMP_LP , 0U , 0U)

COMP_LP

◆ SSP_HW_LOCK_DEFINE() [8/40]

SSP_HW_LOCK_DEFINE (CRC , 0U , 0U)

CRC

◆ SSP_HW_LOCK_DEFINE() [9/40]

SSP_HW_LOCK_DEFINE (CTSU , 0U , 0U)

CTSU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,731 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [10/40]

SSP_HW_LOCK_DEFINE (DAAD , 0U , 0U)

DAAD

◆ SSP_HW_LOCK_DEFINE() [11/40]

SSP_HW_LOCK_DEFINE (DAC , 0U , 0U)

DAC

◆ SSP_HW_LOCK_DEFINE() [12/40]

SSP_HW_LOCK_DEFINE (DOC , 0U , 0U)

DOC

◆ SSP_HW_LOCK_DEFINE() [13/40]

SSP_HW_LOCK_DEFINE (DMAC , 0U , 0U)

DMAC

◆ SSP_HW_LOCK_DEFINE() [14/40]

SSP_HW_LOCK_DEFINE (DTC , 0U , 0U)

DTC

◆ SSP_HW_LOCK_DEFINE() [15/40]

SSP_HW_LOCK_DEFINE (ELC , 0U , 0U)

ELC

◆ SSP_HW_LOCK_DEFINE() [16/40]

SSP_HW_LOCK_DEFINE (FCU , 0U , 0U)

FCU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,732 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [17/40]

SSP_HW_LOCK_DEFINE (GPT , 0U , 0U)

GPT

◆ SSP_HW_LOCK_DEFINE() [18/40]

SSP_HW_LOCK_DEFINE (ICU , 0U , 0U)

ICU

◆ SSP_HW_LOCK_DEFINE() [19/40]

SSP_HW_LOCK_DEFINE (IIC , 0U , 0U)

IIC

◆ SSP_HW_LOCK_DEFINE() [20/40]

SSP_HW_LOCK_DEFINE (IRDA , 0U , 0U)

IRDA

◆ SSP_HW_LOCK_DEFINE() [21/40]

SSP_HW_LOCK_DEFINE (IWDT , 0U , 0U)

IWDT

◆ SSP_HW_LOCK_DEFINE() [22/40]

SSP_HW_LOCK_DEFINE (KEY , 0U , 0U)

KEY

◆ SSP_HW_LOCK_DEFINE() [23/40]

SSP_HW_LOCK_DEFINE (LPM , 1U , 0U)

LPM

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,733 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [24/40]

SSP_HW_LOCK_DEFINE (LVD , 0U , 0U)

LVD

◆ SSP_HW_LOCK_DEFINE() [25/40]

SSP_HW_LOCK_DEFINE (MMF , 0U , 0U)

MMF

◆ SSP_HW_LOCK_DEFINE() [26/40]

SSP_HW_LOCK_DEFINE (MPU , 0U , 0U)

MPU

◆ SSP_HW_LOCK_DEFINE() [27/40]

SSP_HW_LOCK_DEFINE (OPAMP , 0U , 0U)

OPAMP

◆ SSP_HW_LOCK_DEFINE() [28/40]

SSP_HW_LOCK_DEFINE (OPS , 0U , 0U)

OPS

◆ SSP_HW_LOCK_DEFINE() [29/40]

SSP_HW_LOCK_DEFINE (POEG , 0U , 0U)

POEG

◆ SSP_HW_LOCK_DEFINE() [30/40]

SSP_HW_LOCK_DEFINE (QSPI , 0U , 0U)

QSPI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,734 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [31/40]

SSP_HW_LOCK_DEFINE (SPI , 0U , 0U)

SPI

◆ SSP_HW_LOCK_DEFINE() [32/40]

SSP_HW_LOCK_DEFINE (RTC , 0U , 0U)

RTC

◆ SSP_HW_LOCK_DEFINE() [33/40]

SSP_HW_LOCK_DEFINE (SCE , 0U , 0U)

SCE

◆ SSP_HW_LOCK_DEFINE() [34/40]

SSP_HW_LOCK_DEFINE (SCI , 0U , 0U)

SCI

◆ SSP_HW_LOCK_DEFINE() [35/40]

SSP_HW_LOCK_DEFINE (SLCDC , 0U , 0U)

SLCDC

◆ SSP_HW_LOCK_DEFINE() [36/40]

SSP_HW_LOCK_DEFINE (SSI , 0U , 0U)

SSI

◆ SSP_HW_LOCK_DEFINE() [37/40]

SSP_HW_LOCK_DEFINE (SDHIMMC , 0U , 0U)

SDHIMMC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,735 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [38/40]

SSP_HW_LOCK_DEFINE (TSN , 0U , 0U)

TSN

◆ SSP_HW_LOCK_DEFINE() [39/40]

SSP_HW_LOCK_DEFINE (USB , 0U , 0U)

USB

◆ SSP_HW_LOCK_DEFINE() [40/40]

SSP_HW_LOCK_DEFINE (WDT , 0U , 0U)

WDT

 Module Start and Stop
Board Support Package » Supported MCUs » S3A6

Macros

#define BSP_COMPILE_TIME_ASSERT(e) ((void) sizeof(char[1 - 2 * !(e)]))

Functions

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

 Stop module (enter module stop). Stopping a module disables clocks
to the peripheral to save power. More...

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

 Stop module (enter module stop) even if the module is used for
multiple channels. More...

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

 Start module (cancel module stop). Starting a module enables clocks
to the peripheral and allows registers to be set. More...

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool
*const p_stop)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,736 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Module Start and Stop

Detailed Description

Module start and stop functions are provided to enable or disable peripherals.

Macro Definition Documentation

◆ BSP_COMPILE_TIME_ASSERT

#define BSP_COMPILE_TIME_ASSERT (e) ((void) sizeof(char[1 - 2 * !(e)]))

Used to generate a compiler error (divided by 0 error) if the assertion fails. This is used in place of
"#error" for expressions that cannot be evaluated by the preprocessor like sizeof().

Function Documentation

◆ R_BSP_ModuleStart()

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

Start module (cancel module stop). Starting a module enables clocks to the peripheral and allows
registers to be set.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is started

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit.

◆ R_BSP_ModuleStateGet()

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool *const p_stop)

The g_bsp_module_stop array must have entries for each ssp_ip_t enum value.

Save the current module state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,737 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > Module Start and Stop

◆ R_BSP_ModuleStop()

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

Stop module (enter module stop). Stopping a module disables clocks to the peripheral to save
power.

Note
Some module stop bits are shared between peripherals. Modules with shared module stop bits cannot be stopped to
prevent unintentionally stopping related modules.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit, or module
stop bit is shared and entering module stop
is not supported because it could affect
other modules.

◆ R_BSP_ModuleStopAlways()

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

Stop module (enter module stop) even if the module is used for multiple channels.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

 ROM Registers
Board Support Package » Supported MCUs » S3A6

Macros

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,738 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A6 > ROM Registers

#define BSP_ROM_REG_OFS1_SETTING
 (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

#define BSP_ROM_REG_MPU_CONTROL_SETTING

Detailed Description

Defines MCU registers that are in ROM (e.g. OFS) and must be set at compile-time. All registers can
be set using bsp_cfg.h.

Macro Definition Documentation

◆ BSP_ROM_REG_MPU_CONTROL_SETTING

#define BSP_ROM_REG_MPU_CONTROL_SETTING

((0xFFFFFCF0U) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC0_ENABL

E << 8) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC1_ENABL

E << 9) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION0_E

NABLE) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION1_E

NABLE << 1) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION2_E

NABLE << 2) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION3_E

NABLE << 3) \

)

Build up SECMPUAC register based on MPU settings.

◆ BSP_ROM_REG_OFS1_SETTING

#define BSP_ROM_REG_OFS1_SETTING (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

OR in the HOCO frequency setting from bsp_clock_cfg.h with the OFS1 setting from bsp_cfg.h.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,739 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7

5.2.1.7 S3A7
Board Support Package » Supported MCUs

Code that is common to S3A7 MCUs. More...

Modules

Analog Connections

Cache Functions

Clock Initialization

Hardware Locks

Module Start and Stop

ROM Registers

Enumerations

enum elc_peripheral_t

enum elc_event_t

Detailed Description

Code that is common to S3A7 MCUs.

Implements functions that are common to S3A7 MCUs.

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU1

Note
This list may change based on device. This list is for S3A7.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,740 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7

 Analog Connections
Board Support Package » Supported MCUs » S3A7

Enumerations

enum analog_connect_t {
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P012
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP1_AMPO =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,741 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF5,
FLAG_SET),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P109 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P110 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_P400 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,742 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_P408 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS4,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,743 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS7,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS7,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,744 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,745 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,746 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P007
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P007 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,747 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,748 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,749 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,750 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,751 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,752 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,753 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,754 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR)
}

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,755 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

This group contains a list of enumerations that can be used with the Analog Connect Interface.

Enumeration Type Documentation

◆ analog_connect_t

enum analog_connect_t

List of analog connections that can be made on S3A7

Note
This list may change based on device. This list is for S3A7.

Enumerator

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P012

Connect ACMPHS0 IVREF to PORT0 P012.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80
_DA

Connect ACMPHS1 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P000

Connect ACMPHS2 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_
P001

Connect ACMPHS2 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80
_DA

Connect ACMPHS2 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82
_DA

Connect ACMPHS2 IVREF to DAC82 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80 Connect ACMPLP0 IVREF0 to DAC80 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,756 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

_DA

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP0 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
2_AMPO

Connect ACMPLP1 IVCMP to OPAMP2 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P500

Connect ACMPHS0 IVCMP to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1
_P100

Connect ACMPHS0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_
P101

Connect ACMPHS0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,757 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

_P109 Connect ACMPLP0 IVREF0 to PORT1 P109.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P110

Connect ACMPLP1 IVREF1 to PORT1 P110.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_
P400

Connect ACMPLP0 IVCMP to PORT4 P400.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
0_AMPO

Connect ACMPLP0 IVCMP to OPAMP0 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_
P408

Connect ACMPLP1 IVCMP to PORT4 P408.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP1 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_OPAMP0_AMPO_BREAK Break all connections to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
014

Connect OPAMP0 AMPO to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
013

Connect OPAMP0 AMPO to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
003

Connect OPAMP0 AMPO to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
002

Connect OPAMP0 AMPO to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPM_BREAK Break all connections to OPAMP0 AMPM.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
501

Connect OPAMP0 AMPM to PORT5 P501.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
500

Connect OPAMP0 AMPM to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P Connect OPAMP0 AMPM to PORT0 P014.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,758 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

014

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
013

Connect OPAMP0 AMPM to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
003

Connect OPAMP0 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0
_AMPO

Connect OPAMP0 AMPM to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPP_BREAK Break all connections to OPAMP0 AMPP.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P
500

Connect OPAMP0 AMPP to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
014

Connect OPAMP0 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
013

Connect OPAMP0 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
002

Connect OPAMP0 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_
DA

Connect OPAMP0 AMPP to DAC120 DA.

ANALOG_CONNECT_OPAMP1_AMPM_BREAK Break all connections to OPAMP1 AMPM.

ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P
014

Connect OPAMP1 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1
_AMPO

Connect OPAMP1 AMPM to OPAMP1 AMPO.

ANALOG_CONNECT_OPAMP1_AMPP_BREAK Break all connections to OPAMP1 AMPP.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
014

Connect OPAMP1 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
013

Connect OPAMP1 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
003

Connect OPAMP1 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
002

Connect OPAMP1 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_D
A

Connect OPAMP1 AMPP to DAC80 DA.

ANALOG_CONNECT_OPAMP2_AMPM_BREAK Break all connections to OPAMP2 AMPM.

ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P
003

Connect OPAMP2 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2
_AMPO

Connect OPAMP2 AMPM to OPAMP2 AMPO.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,759 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_OPAMP2_AMPP_BREAK Break all connections to OPAMP2 AMPP.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
003

Connect OPAMP2 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
002

Connect OPAMP2 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_D
A

Connect OPAMP2 AMPP to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,760 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,761 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P004

Connect ACMPHS0 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P007

Connect ACMPHS0 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P015

Connect ACMPHS0 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALO
G0_VREF

Connect ACMPHS0 IVCMP to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P005

Connect ACMPHS0 IVREF to PORT0 P005.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P006

Connect ACMPHS0 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P000

Connect ACMPHS1 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P002

Connect ACMPHS1 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P003

Connect ACMPHS1 IVCMP to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P007

Connect ACMPHS1 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,762 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P000

Connect ACMPHS1 IVREF to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P001

Connect ACMPHS1 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P002

Connect ACMPHS1 IVREF to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P003

Connect ACMPHS1 IVREF to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P006

Connect ACMPHS1 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,763 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,764 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,765 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,766 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,767 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,768 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,769 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,770 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,771 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

 Cache Functions
Board Support Package » Supported MCUs » S3A7

Enumerations

enum bsp_cache_state_t

Detailed Description

This module implements cache functions.

Enumeration Type Documentation

◆ bsp_cache_state_t

enum bsp_cache_state_t

Cache enum. Passed into cache functions such as R_BSP_CacheOff() and R_BSP_CacheSet.

 Clock Initialization
Board Support Package » Supported MCUs » S3A7

Macros

#define CGC_SRAM_ZERO_WAIT_CYCLES (0U)

 Specify zero wait states for SRAM.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,772 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Clock Initialization

#define CGC_SRAM_ONE_WAIT_CYCLES (1U)

 Specify one wait states for SRAM.

Functions

void bsp_clock_init (void)

 Sets up system clocks. More...

uint32_t bsp_cpu_clock_get (void)

 Returns frequency of CPU clock in Hz. More...

__STATIC_INLINE void bsp_clocks_mem_wait_set (uint32_t setting)

 This function sets the value of the MEMWAIT register which controls
wait cycles for flash read access. More...

__STATIC_INLINE uint32_t bsp_clocks_mem_wait_get (void)

 This function gets the value of the MEMWAIT register. More...

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t *p_args)

Detailed Description

Functions in this file configure the system clocks based upon the macros in bsp_clock_cfg.h.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,773 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Clock Initialization

◆ bsp_clock_init()

void bsp_clock_init (void)

Sets up system clocks.

MOCO is default clock out of reset. Enable new clock if chosen.

PLL Source clock is always the main oscillator.

Need to start PLL source clock and let it stabilize before starting PLL

Set PLL Divider.

Set PLL Multiplier.

PLL Source clock is always the main oscillator.

Wait for PLL clock source to stabilize

If the system clock has failed to start call the unrecoverable error handler.

MOCO, LOCO, and subclock do not have stabilization flags that can be checked.

Wait for clock source to stabilize

Set which clock to use for system clock and divisors for all system clocks.

If the system clock has failed to be configured properly call the unrecoverable error handler.

◆ bsp_clock_set_callback()

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t * p_args)

The current frequency must be less than 32 MHz and the mcu must be in high speed mode, before
changing wait cycles to 0.

< No MEMWAIT cycles

◆ bsp_clocks_mem_wait_get()

__STATIC_INLINE uint32_t bsp_clocks_mem_wait_get (void)

This function gets the value of the MEMWAIT register.

Return values
MEMWAIT setting

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,774 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Clock Initialization

◆ bsp_clocks_mem_wait_set()

__STATIC_INLINE void bsp_clocks_mem_wait_set (uint32_t setting)

This function sets the value of the MEMWAIT register which controls wait cycles for flash read
access.

Parameters
[in] setting

Return values
none

◆ bsp_cpu_clock_get()

uint32_t bsp_cpu_clock_get (void)

Returns frequency of CPU clock in Hz.

Return values
Frequency of the CPU in Hertz

 Hardware Locks
Board Support Package » Supported MCUs » S3A7

Functions

SSP_HW_LOCK_DEFINE (ADC, 0U, 0U)

SSP_HW_LOCK_DEFINE (AGT, 0U, 0U)

SSP_HW_LOCK_DEFINE (BSC, 0U, 1U)

SSP_HW_LOCK_DEFINE (CAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CAN, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_HS, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_LP, 0U, 0U)

SSP_HW_LOCK_DEFINE (CRC, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,775 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Hardware Locks

SSP_HW_LOCK_DEFINE (CTSU, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAAD, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DOC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DMAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (ELC, 0U, 0U)

SSP_HW_LOCK_DEFINE (FCU, 0U, 0U)

SSP_HW_LOCK_DEFINE (GPT, 0U, 0U)

SSP_HW_LOCK_DEFINE (ICU, 0U, 0U)

SSP_HW_LOCK_DEFINE (IIC, 0U, 0U)

SSP_HW_LOCK_DEFINE (IRDA, 0U, 0U)

SSP_HW_LOCK_DEFINE (IWDT, 0U, 0U)

SSP_HW_LOCK_DEFINE (KEY, 0U, 0U)

SSP_HW_LOCK_DEFINE (LPM, 1U, 0U)

SSP_HW_LOCK_DEFINE (LVD, 0U, 0U)

SSP_HW_LOCK_DEFINE (MMF, 0U, 0U)

SSP_HW_LOCK_DEFINE (MPU, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPAMP, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPS, 0U, 0U)

SSP_HW_LOCK_DEFINE (POEG, 0U, 0U)

SSP_HW_LOCK_DEFINE (QSPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (RTC, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,776 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Hardware Locks

SSP_HW_LOCK_DEFINE (SCE, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SLCDC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SSI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SDHIMMC, 0U, 0U)

SSP_HW_LOCK_DEFINE (TSN, 0U, 0U)

SSP_HW_LOCK_DEFINE (USB, 0U, 0U)

SSP_HW_LOCK_DEFINE (WDT, 0U, 0U)

Detailed Description

This file allocates hardware locks used in Atomic Locking.

Function Documentation

◆ SSP_HW_LOCK_DEFINE() [1/40]

SSP_HW_LOCK_DEFINE (ADC , 0U , 0U)

Used to allocated hardware locks. Parameters are as follows:

1. IP name (ssp_ip_t enum without the SSP_IP_ prefix).
2. Unit number (used for blocks with variations like USB, not to be confused with ADC unit).
3. Channel numberADC

◆ SSP_HW_LOCK_DEFINE() [2/40]

SSP_HW_LOCK_DEFINE (AGT , 0U , 0U)

AGT

◆ SSP_HW_LOCK_DEFINE() [3/40]

SSP_HW_LOCK_DEFINE (BSC , 0U , 1U)

BSC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,777 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [4/40]

SSP_HW_LOCK_DEFINE (CAC , 0U , 0U)

CAC

◆ SSP_HW_LOCK_DEFINE() [5/40]

SSP_HW_LOCK_DEFINE (CAN , 0U , 0U)

CAN

◆ SSP_HW_LOCK_DEFINE() [6/40]

SSP_HW_LOCK_DEFINE (COMP_HS , 0U , 0U)

COMP_HS

◆ SSP_HW_LOCK_DEFINE() [7/40]

SSP_HW_LOCK_DEFINE (COMP_LP , 0U , 0U)

COMP_LP

◆ SSP_HW_LOCK_DEFINE() [8/40]

SSP_HW_LOCK_DEFINE (CRC , 0U , 0U)

CRC

◆ SSP_HW_LOCK_DEFINE() [9/40]

SSP_HW_LOCK_DEFINE (CTSU , 0U , 0U)

CTSU

◆ SSP_HW_LOCK_DEFINE() [10/40]

SSP_HW_LOCK_DEFINE (DAAD , 0U , 0U)

DAAD

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,778 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [11/40]

SSP_HW_LOCK_DEFINE (DAC , 0U , 0U)

DAC

◆ SSP_HW_LOCK_DEFINE() [12/40]

SSP_HW_LOCK_DEFINE (DOC , 0U , 0U)

DOC

◆ SSP_HW_LOCK_DEFINE() [13/40]

SSP_HW_LOCK_DEFINE (DMAC , 0U , 0U)

DMAC

◆ SSP_HW_LOCK_DEFINE() [14/40]

SSP_HW_LOCK_DEFINE (DTC , 0U , 0U)

DTC

◆ SSP_HW_LOCK_DEFINE() [15/40]

SSP_HW_LOCK_DEFINE (ELC , 0U , 0U)

ELC

◆ SSP_HW_LOCK_DEFINE() [16/40]

SSP_HW_LOCK_DEFINE (FCU , 0U , 0U)

FCU

◆ SSP_HW_LOCK_DEFINE() [17/40]

SSP_HW_LOCK_DEFINE (GPT , 0U , 0U)

GPT

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,779 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [18/40]

SSP_HW_LOCK_DEFINE (ICU , 0U , 0U)

ICU

◆ SSP_HW_LOCK_DEFINE() [19/40]

SSP_HW_LOCK_DEFINE (IIC , 0U , 0U)

IIC

◆ SSP_HW_LOCK_DEFINE() [20/40]

SSP_HW_LOCK_DEFINE (IRDA , 0U , 0U)

IRDA

◆ SSP_HW_LOCK_DEFINE() [21/40]

SSP_HW_LOCK_DEFINE (IWDT , 0U , 0U)

IWDT

◆ SSP_HW_LOCK_DEFINE() [22/40]

SSP_HW_LOCK_DEFINE (KEY , 0U , 0U)

KEY

◆ SSP_HW_LOCK_DEFINE() [23/40]

SSP_HW_LOCK_DEFINE (LPM , 1U , 0U)

LPM

◆ SSP_HW_LOCK_DEFINE() [24/40]

SSP_HW_LOCK_DEFINE (LVD , 0U , 0U)

LVD

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,780 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [25/40]

SSP_HW_LOCK_DEFINE (MMF , 0U , 0U)

MMF

◆ SSP_HW_LOCK_DEFINE() [26/40]

SSP_HW_LOCK_DEFINE (MPU , 0U , 0U)

MPU

◆ SSP_HW_LOCK_DEFINE() [27/40]

SSP_HW_LOCK_DEFINE (OPAMP , 0U , 0U)

OPAMP

◆ SSP_HW_LOCK_DEFINE() [28/40]

SSP_HW_LOCK_DEFINE (OPS , 0U , 0U)

OPS

◆ SSP_HW_LOCK_DEFINE() [29/40]

SSP_HW_LOCK_DEFINE (POEG , 0U , 0U)

POEG

◆ SSP_HW_LOCK_DEFINE() [30/40]

SSP_HW_LOCK_DEFINE (QSPI , 0U , 0U)

QSPI

◆ SSP_HW_LOCK_DEFINE() [31/40]

SSP_HW_LOCK_DEFINE (SPI , 0U , 0U)

SPI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,781 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [32/40]

SSP_HW_LOCK_DEFINE (RTC , 0U , 0U)

RTC

◆ SSP_HW_LOCK_DEFINE() [33/40]

SSP_HW_LOCK_DEFINE (SCE , 0U , 0U)

SCE

◆ SSP_HW_LOCK_DEFINE() [34/40]

SSP_HW_LOCK_DEFINE (SCI , 0U , 0U)

SCI

◆ SSP_HW_LOCK_DEFINE() [35/40]

SSP_HW_LOCK_DEFINE (SLCDC , 0U , 0U)

SLCDC

◆ SSP_HW_LOCK_DEFINE() [36/40]

SSP_HW_LOCK_DEFINE (SSI , 0U , 0U)

SSI

◆ SSP_HW_LOCK_DEFINE() [37/40]

SSP_HW_LOCK_DEFINE (SDHIMMC , 0U , 0U)

SDHIMMC

◆ SSP_HW_LOCK_DEFINE() [38/40]

SSP_HW_LOCK_DEFINE (TSN , 0U , 0U)

TSN

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,782 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [39/40]

SSP_HW_LOCK_DEFINE (USB , 0U , 0U)

USB

◆ SSP_HW_LOCK_DEFINE() [40/40]

SSP_HW_LOCK_DEFINE (WDT , 0U , 0U)

WDT

 Module Start and Stop
Board Support Package » Supported MCUs » S3A7

Macros

#define BSP_COMPILE_TIME_ASSERT(e) ((void) sizeof(char[1 - 2 * !(e)]))

Functions

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

 Stop module (enter module stop). Stopping a module disables clocks
to the peripheral to save power. More...

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

 Stop module (enter module stop) even if the module is used for
multiple channels. More...

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

 Start module (cancel module stop). Starting a module enables clocks
to the peripheral and allows registers to be set. More...

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool
*const p_stop)

Detailed Description

Module start and stop functions are provided to enable or disable peripherals.

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,783 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Module Start and Stop

◆ BSP_COMPILE_TIME_ASSERT

#define BSP_COMPILE_TIME_ASSERT (e) ((void) sizeof(char[1 - 2 * !(e)]))

Used to generate a compiler error (divided by 0 error) if the assertion fails. This is used in place of
"#error" for expressions that cannot be evaluated by the preprocessor like sizeof().

Function Documentation

◆ R_BSP_ModuleStart()

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

Start module (cancel module stop). Starting a module enables clocks to the peripheral and allows
registers to be set.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is started

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit.

◆ R_BSP_ModuleStateGet()

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool *const p_stop)

The g_bsp_module_stop array must have entries for each ssp_ip_t enum value.

Save the current module state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,784 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > Module Start and Stop

◆ R_BSP_ModuleStop()

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

Stop module (enter module stop). Stopping a module disables clocks to the peripheral to save
power.

Note
Some module stop bits are shared between peripherals. Modules with shared module stop bits cannot be stopped to
prevent unintentionally stopping related modules.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit, or module
stop bit is shared and entering module stop
is not supported because it could affect
other modules.

◆ R_BSP_ModuleStopAlways()

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

Stop module (enter module stop) even if the module is used for multiple channels.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

 ROM Registers
Board Support Package » Supported MCUs » S3A7

Macros

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,785 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S3A7 > ROM Registers

#define BSP_ROM_REG_OFS1_SETTING
 (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

#define BSP_ROM_REG_MPU_CONTROL_SETTING

Detailed Description

Defines MCU registers that are in ROM (e.g. OFS) and must be set at compile-time. All registers can
be set using bsp_cfg.h.

Macro Definition Documentation

◆ BSP_ROM_REG_MPU_CONTROL_SETTING

#define BSP_ROM_REG_MPU_CONTROL_SETTING

((0xFFFFFCFEU) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC0_ENABL

E << 8) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC1_ENABL

E << 9) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION0_E

NABLE))

Build up SECMPUAC register based on MPU settings.

◆ BSP_ROM_REG_OFS1_SETTING

#define BSP_ROM_REG_OFS1_SETTING (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFF8FFFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 12))

OR in the HOCO frequency setting from bsp_clock_cfg.h with the OFS1 setting from bsp_cfg.h.

5.2.1.8 S5D3
Board Support Package » Supported MCUs

Code that is common to S5D3 MCUs. More...

Modules

Analog Connections

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,786 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3

Cache Functions

Clock Initialization

Hardware Locks

Module Start and Stop

ROM Registers

Detailed Description

Code that is common to S5D3 MCUs.

Implements functions that are common to S5D3 MCUs.

 Analog Connections
Board Support Package » Supported MCUs » S5D3

Enumerations

enum analog_connect_t {
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P012
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_P001

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,787 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,788 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF5,
FLAG_SET),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P109 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P110 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_P400 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_P408 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS3,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,789 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS4,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS7,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,790 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

FLAG_CLEAR),
ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS7,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,791 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,792 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P007
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P007 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,793 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,794 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,795 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,796 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,797 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,798 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,799 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,800 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,801 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR)
}

Detailed Description

This group contains a list of enumerations that can be used with the Analog Connect Interface.

Enumeration Type Documentation

◆ analog_connect_t

enum analog_connect_t

List of analog connections that can be made on S5D3

Note
This list may change based on device. This list is for S5D3.

Enumerator

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P012

Connect ACMPHS0 IVREF to PORT0 P012.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0 Connect ACMPHS1 IVCMP to PORT0 P015.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,802 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

_P015

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80
_DA

Connect ACMPHS1 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P000

Connect ACMPHS2 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_
P001

Connect ACMPHS2 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80
_DA

Connect ACMPHS2 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82
_DA

Connect ACMPHS2 IVREF to DAC82 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP0 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
2_AMPO

Connect ACMPLP1 IVCMP to OPAMP2 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P500

Connect ACMPHS0 IVCMP to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,803 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

_P013 Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1
_P100

Connect ACMPHS0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_
P101

Connect ACMPHS0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P109

Connect ACMPLP0 IVREF0 to PORT1 P109.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P110

Connect ACMPLP1 IVREF1 to PORT1 P110.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_
P400

Connect ACMPLP0 IVCMP to PORT4 P400.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
0_AMPO

Connect ACMPLP0 IVCMP to OPAMP0 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_
P408

Connect ACMPLP1 IVCMP to PORT4 P408.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP1 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,804 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_OPAMP0_AMPO_BREAK Break all connections to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
014

Connect OPAMP0 AMPO to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
013

Connect OPAMP0 AMPO to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
003

Connect OPAMP0 AMPO to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
002

Connect OPAMP0 AMPO to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPM_BREAK Break all connections to OPAMP0 AMPM.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
501

Connect OPAMP0 AMPM to PORT5 P501.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
500

Connect OPAMP0 AMPM to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
014

Connect OPAMP0 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
013

Connect OPAMP0 AMPM to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
003

Connect OPAMP0 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0
_AMPO

Connect OPAMP0 AMPM to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPP_BREAK Break all connections to OPAMP0 AMPP.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P
500

Connect OPAMP0 AMPP to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
014

Connect OPAMP0 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
013

Connect OPAMP0 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
002

Connect OPAMP0 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_
DA

Connect OPAMP0 AMPP to DAC120 DA.

ANALOG_CONNECT_OPAMP1_AMPM_BREAK Break all connections to OPAMP1 AMPM.

ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P
014

Connect OPAMP1 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1
_AMPO

Connect OPAMP1 AMPM to OPAMP1 AMPO.

ANALOG_CONNECT_OPAMP1_AMPP_BREAK Break all connections to OPAMP1 AMPP.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,805 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
014

Connect OPAMP1 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
013

Connect OPAMP1 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
003

Connect OPAMP1 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
002

Connect OPAMP1 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_D
A

Connect OPAMP1 AMPP to DAC80 DA.

ANALOG_CONNECT_OPAMP2_AMPM_BREAK Break all connections to OPAMP2 AMPM.

ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P
003

Connect OPAMP2 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2
_AMPO

Connect OPAMP2 AMPM to OPAMP2 AMPO.

ANALOG_CONNECT_OPAMP2_AMPP_BREAK Break all connections to OPAMP2 AMPP.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
003

Connect OPAMP2 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
002

Connect OPAMP2 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_D
A

Connect OPAMP2 AMPP to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,806 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,807 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P004

Connect ACMPHS0 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P007

Connect ACMPHS0 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P015

Connect ACMPHS0 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALO
G0_VREF

Connect ACMPHS0 IVCMP to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P005

Connect ACMPHS0 IVREF to PORT0 P005.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P006

Connect ACMPHS0 IVREF to PORT0 P006.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,808 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P000

Connect ACMPHS1 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P002

Connect ACMPHS1 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P003

Connect ACMPHS1 IVCMP to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P007

Connect ACMPHS1 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P000

Connect ACMPHS1 IVREF to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P001

Connect ACMPHS1 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P002

Connect ACMPHS1 IVREF to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P003

Connect ACMPHS1 IVREF to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P006

Connect ACMPHS1 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,809 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,810 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,811 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,812 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,813 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,814 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,815 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,816 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,817 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Analog Connections

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

 Cache Functions
Board Support Package » Supported MCUs » S5D3

Enumerations

enum bsp_cache_state_t

Detailed Description

This module implements cache functions.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,818 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Cache Functions

Enumeration Type Documentation

◆ bsp_cache_state_t

enum bsp_cache_state_t

Cache enum. Passed into cache functions such as R_BSP_CacheOff() and R_BSP_CacheSet.

 Clock Initialization
Board Support Package » Supported MCUs » S5D3

Macros

#define CGC_SYS_CLOCK_FREQ_NO_RAM_WAITS (60000000U)

#define CGC_SYS_CLOCK_FREQ_ONE_ROM_WAITS (40000000U)

#define CGC_SYS_CLOCK_FREQ_TWO_ROM_WAITS (80000000U)

#define CGC_SRAM_ZERO_WAIT_CYCLES (0U)

 Specify zero wait states for SRAM.

#define CGC_SRAM_ONE_WAIT_CYCLES (1U)

 Specify one wait states for SRAM.

Functions

void bsp_clock_init (void)

 Sets up system clocks. More...

uint32_t bsp_cpu_clock_get (void)

 Returns frequency of CPU clock in Hz. More...

__STATIC_INLINE void bsp_clocks_rom_wait_set (uint8_t setting)

 This function sets the value of the ROMWT register which is used to
specify wait states required when accessing Flash ROM. More...

__STATIC_INLINE uint32_t bsp_clocks_rom_wait_get (void)

 This function gets the value of the ROMWT register. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,819 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Clock Initialization

__STATIC_INLINE void bsp_clocks_sram_wait_set (uint32_t setting)

 This function sets the RAM wait state settings for both the SRAM0
and SRAM0(ECC) RAM memory. More...

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t *p_args)

Detailed Description

Functions in this file configure the system clocks based upon the macros in bsp_clock_cfg.h.

Macro Definition Documentation

◆ CGC_SYS_CLOCK_FREQ_NO_RAM_WAITS

#define CGC_SYS_CLOCK_FREQ_NO_RAM_WAITS (60000000U)

SRAM requires 1 wait state be inserted at ICLK > 60 MHz. SRAMHS is always no wait state

◆ CGC_SYS_CLOCK_FREQ_ONE_ROM_WAITS

#define CGC_SYS_CLOCK_FREQ_ONE_ROM_WAITS (40000000U)

FLASH requires 1 wait state be inserted when (40 MHz < ICLK <= 80 MHz)

◆ CGC_SYS_CLOCK_FREQ_TWO_ROM_WAITS

#define CGC_SYS_CLOCK_FREQ_TWO_ROM_WAITS (80000000U)

FLASH requires 2 wait states be inserted when (80 MHz < ICLK <= 120 MHz)

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,820 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Clock Initialization

◆ bsp_clock_init()

void bsp_clock_init (void)

Sets up system clocks.

MOCO is default clock out of reset. Enable new clock if chosen.

Need to start PLL source clock and let it stabilize before starting PLL

Set PLL Divider.

Set PLL Multiplier.

Set PLL Source clock.

Wait for PLL clock source to stabilize

If the system clock has failed to start call the unrecoverable error handler.

MOCO, LOCO, and subclock do not have stabilization flags that can be checked.

Wait for clock source to stabilize

Set which clock to use for system clock and divisors for all system clocks.

If the system clock has failed to be configured properly call the unrecoverable error handler.

Set USB clock divisor.

Configure BCLK

Configure SDRAM Clock

◆ bsp_clock_set_callback()

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t * p_args)

Wait states for low speed RAM (SRAM0 and SRAM1)

No wait: ICLK <= 60 MHz

1 wait: ICLK > 60 MHz

Calculate the Wait states for ROM

Set the wait state BEFORE we change iclk

In this case we need to set the wait state AFTER we change iclk

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,821 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Clock Initialization

◆ bsp_clocks_rom_wait_get()

__STATIC_INLINE uint32_t bsp_clocks_rom_wait_get (void)

This function gets the value of the ROMWT register.

Return values
MEMWAIT setting

◆ bsp_clocks_rom_wait_set()

__STATIC_INLINE void bsp_clocks_rom_wait_set (uint8_t setting)

This function sets the value of the ROMWT register which is used to specify wait states required
when accessing Flash ROM.

Parameters
[in] setting The number of wait states to

be used.

Return values
none

◆ bsp_clocks_sram_wait_set()

__STATIC_INLINE void bsp_clocks_sram_wait_set (uint32_t setting)

This function sets the RAM wait state settings for both the SRAM0 and SRAM0(ECC) RAM memory.

Parameters
[in] setting The number of wait states to

be used.

Return values
none

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,822 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Clock Initialization

◆ bsp_cpu_clock_get()

uint32_t bsp_cpu_clock_get (void)

Returns frequency of CPU clock in Hz.

Return values
Frequency of the CPU in Hertz

 Hardware Locks
Board Support Package » Supported MCUs » S5D3

Functions

SSP_HW_LOCK_DEFINE (ADC, 0U, 0U)

SSP_HW_LOCK_DEFINE (AGT, 0U, 0U)

SSP_HW_LOCK_DEFINE (CAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CAN, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_HS, 0U, 0U)

SSP_HW_LOCK_DEFINE (CRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CTSU, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DOC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DMAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (ELC, 0U, 0U)

SSP_HW_LOCK_DEFINE (FCU, 0U, 0U)

SSP_HW_LOCK_DEFINE (GPT, 0U, 0U)

SSP_HW_LOCK_DEFINE (ICU, 0U, 0U)

SSP_HW_LOCK_DEFINE (IIC, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,823 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Hardware Locks

SSP_HW_LOCK_DEFINE (IRDA, 0U, 0U)

SSP_HW_LOCK_DEFINE (IWDT, 0U, 0U)

SSP_HW_LOCK_DEFINE (KEY, 0U, 0U)

SSP_HW_LOCK_DEFINE (LVD, 0U, 0U)

SSP_HW_LOCK_DEFINE (MMF, 0U, 0U)

SSP_HW_LOCK_DEFINE (MPU, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPS, 0U, 0U)

SSP_HW_LOCK_DEFINE (POEG, 0U, 0U)

SSP_HW_LOCK_DEFINE (QSPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (RTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCE, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SSI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SDHIMMC, 0U, 0U)

SSP_HW_LOCK_DEFINE (TSN, 0U, 0U)

SSP_HW_LOCK_DEFINE (USB, 0U, 0U)

SSP_HW_LOCK_DEFINE (WDT, 0U, 0U)

Detailed Description

This file allocates hardware locks used in Atomic Locking.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,824 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [1/35]

SSP_HW_LOCK_DEFINE (ADC , 0U , 0U)

Used to allocated hardware locks. Parameters are as follows:

1. IP name (ssp_ip_t enum without the SSP_IP_ prefix).
2. Unit number (used for blocks with variations like USB, not to be confused with ADC unit).
3. Channel numberADC

◆ SSP_HW_LOCK_DEFINE() [2/35]

SSP_HW_LOCK_DEFINE (AGT , 0U , 0U)

AGT

◆ SSP_HW_LOCK_DEFINE() [3/35]

SSP_HW_LOCK_DEFINE (CAC , 0U , 0U)

CAC

◆ SSP_HW_LOCK_DEFINE() [4/35]

SSP_HW_LOCK_DEFINE (CAN , 0U , 0U)

CAN

◆ SSP_HW_LOCK_DEFINE() [5/35]

SSP_HW_LOCK_DEFINE (COMP_HS , 0U , 0U)

COMP_HS

◆ SSP_HW_LOCK_DEFINE() [6/35]

SSP_HW_LOCK_DEFINE (CRC , 0U , 0U)

CRC

◆ SSP_HW_LOCK_DEFINE() [7/35]

SSP_HW_LOCK_DEFINE (CTSU , 0U , 0U)

CTSU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,825 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [8/35]

SSP_HW_LOCK_DEFINE (DAC , 0U , 0U)

DAC

◆ SSP_HW_LOCK_DEFINE() [9/35]

SSP_HW_LOCK_DEFINE (DOC , 0U , 0U)

DOC

◆ SSP_HW_LOCK_DEFINE() [10/35]

SSP_HW_LOCK_DEFINE (DMAC , 0U , 0U)

DMAC

◆ SSP_HW_LOCK_DEFINE() [11/35]

SSP_HW_LOCK_DEFINE (DTC , 0U , 0U)

DTC

◆ SSP_HW_LOCK_DEFINE() [12/35]

SSP_HW_LOCK_DEFINE (ELC , 0U , 0U)

ELC

◆ SSP_HW_LOCK_DEFINE() [13/35]

SSP_HW_LOCK_DEFINE (FCU , 0U , 0U)

FCU

◆ SSP_HW_LOCK_DEFINE() [14/35]

SSP_HW_LOCK_DEFINE (GPT , 0U , 0U)

GPT

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,826 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [15/35]

SSP_HW_LOCK_DEFINE (ICU , 0U , 0U)

ICU

◆ SSP_HW_LOCK_DEFINE() [16/35]

SSP_HW_LOCK_DEFINE (IIC , 0U , 0U)

IIC

◆ SSP_HW_LOCK_DEFINE() [17/35]

SSP_HW_LOCK_DEFINE (IRDA , 0U , 0U)

IRDA

◆ SSP_HW_LOCK_DEFINE() [18/35]

SSP_HW_LOCK_DEFINE (IWDT , 0U , 0U)

IWDT

◆ SSP_HW_LOCK_DEFINE() [19/35]

SSP_HW_LOCK_DEFINE (KEY , 0U , 0U)

KEY

◆ SSP_HW_LOCK_DEFINE() [20/35]

SSP_HW_LOCK_DEFINE (LVD , 0U , 0U)

LVD

◆ SSP_HW_LOCK_DEFINE() [21/35]

SSP_HW_LOCK_DEFINE (MMF , 0U , 0U)

MMF

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,827 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [22/35]

SSP_HW_LOCK_DEFINE (MPU , 0U , 0U)

MPU

◆ SSP_HW_LOCK_DEFINE() [23/35]

SSP_HW_LOCK_DEFINE (OPS , 0U , 0U)

OPS

◆ SSP_HW_LOCK_DEFINE() [24/35]

SSP_HW_LOCK_DEFINE (POEG , 0U , 0U)

POEG

◆ SSP_HW_LOCK_DEFINE() [25/35]

SSP_HW_LOCK_DEFINE (QSPI , 0U , 0U)

QSPI

◆ SSP_HW_LOCK_DEFINE() [26/35]

SSP_HW_LOCK_DEFINE (SPI , 0U , 0U)

SPI

◆ SSP_HW_LOCK_DEFINE() [27/35]

SSP_HW_LOCK_DEFINE (RTC , 0U , 0U)

RTC

◆ SSP_HW_LOCK_DEFINE() [28/35]

SSP_HW_LOCK_DEFINE (SCE , 0U , 0U)

SCE

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,828 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [29/35]

SSP_HW_LOCK_DEFINE (SCI , 0U , 0U)

SCI

◆ SSP_HW_LOCK_DEFINE() [30/35]

SSP_HW_LOCK_DEFINE (SRC , 0U , 0U)

SRC

◆ SSP_HW_LOCK_DEFINE() [31/35]

SSP_HW_LOCK_DEFINE (SSI , 0U , 0U)

SSI

◆ SSP_HW_LOCK_DEFINE() [32/35]

SSP_HW_LOCK_DEFINE (SDHIMMC , 0U , 0U)

SDHIMMC

◆ SSP_HW_LOCK_DEFINE() [33/35]

SSP_HW_LOCK_DEFINE (TSN , 0U , 0U)

TSN

◆ SSP_HW_LOCK_DEFINE() [34/35]

SSP_HW_LOCK_DEFINE (USB , 0U , 0U)

USB

◆ SSP_HW_LOCK_DEFINE() [35/35]

SSP_HW_LOCK_DEFINE (WDT , 0U , 0U)

WDT

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,829 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Module Start and Stop

 Module Start and Stop
Board Support Package » Supported MCUs » S5D3

Macros

#define BSP_COMPILE_TIME_ASSERT(e) ((void) sizeof(char[1 - 2 * !(e)]))

Functions

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

 Stop module (enter module stop). Stopping a module disables clocks
to the peripheral to save power. More...

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

 Stop module (enter module stop) even if the module is used for
multiple channels. More...

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

 Start module (cancel module stop). Starting a module enables clocks
to the peripheral and allows registers to be set. More...

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool
*const p_stop)

Detailed Description

Module start and stop functions are provided to enable or disable peripherals.

Macro Definition Documentation

◆ BSP_COMPILE_TIME_ASSERT

#define BSP_COMPILE_TIME_ASSERT (e) ((void) sizeof(char[1 - 2 * !(e)]))

Used to generate a compiler error (divided by 0 error) if the assertion fails. This is used in place of
"#error" for expressions that cannot be evaluated by the preprocessor like sizeof().

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,830 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Module Start and Stop

◆ R_BSP_ModuleStart()

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

Start module (cancel module stop). Starting a module enables clocks to the peripheral and allows
registers to be set.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is started

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit.

◆ R_BSP_ModuleStateGet()

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool *const p_stop)

The g_bsp_module_stop array must have entries for each ssp_ip_t enum value.

Save the current module state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,831 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > Module Start and Stop

◆ R_BSP_ModuleStop()

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

Stop module (enter module stop). Stopping a module disables clocks to the peripheral to save
power.

Note
Some module stop bits are shared between peripherals. Modules with shared module stop bits cannot be stopped to
prevent unintentionally stopping related modules.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit, or module
stop bit is shared and entering module stop
is not supported because it could affect
other modules.

◆ R_BSP_ModuleStopAlways()

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

Stop module (enter module stop) even if the module is used for multiple channels.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

 ROM Registers
Board Support Package » Supported MCUs » S5D3

Macros

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,832 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D3 > ROM Registers

#define BSP_ROM_REG_OFS1_SETTING
 (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFFF9FFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 9))

#define BSP_ROM_REG_MPU_CONTROL_SETTING

Detailed Description

Defines MCU registers that are in ROM (e.g. OFS) and must be set at compile-time. All registers can
be set using bsp_cfg.h.

Macro Definition Documentation

◆ BSP_ROM_REG_MPU_CONTROL_SETTING

#define BSP_ROM_REG_MPU_CONTROL_SETTING

((0xFFFFFCF0U) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC0_ENABL

E << 8) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC1_ENABL

E << 9) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION0_E

NABLE) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION1_E

NABLE << 1) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION2_E

NABLE << 2) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION3_E

NABLE << 3))

Build up SECMPUAC register based on MPU settings.

◆ BSP_ROM_REG_OFS1_SETTING

#define BSP_ROM_REG_OFS1_SETTING (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFFF9FFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 9))

OR in the HOCO frequency setting from bsp_clock_cfg.h with the OFS1 setting from bsp_cfg.h.

5.2.1.9 S5D5

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,833 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5

Board Support Package » Supported MCUs

Code that is common to S5D5 MCUs. More...

Modules

Analog Connections

Cache Functions

Clock Initialization

Hardware Locks

Module Start and Stop

ROM Registers

Detailed Description

Code that is common to S5D5 MCUs.

Implements functions that are common to S5D5 MCUs.

 Analog Connections
Board Support Package » Supported MCUs » S5D5

Enumerations

enum analog_connect_t {
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P012
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,834 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,835 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF5,
FLAG_SET),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P109 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P110 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_P400 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_P408 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, BREAK,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,836 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS4,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,837 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS7,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS7,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,838 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,839 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P007
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P000 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,840 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P007 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,841 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,842 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,843 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,844 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,845 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,846 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,847 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,848 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR)
}

Detailed Description

This group contains a list of enumerations that can be used with the Analog Connect Interface.

Enumeration Type Documentation

◆ analog_connect_t

enum analog_connect_t

List of analog connections that can be made on S5D5

Note
This list may change based on device. This list is for S5D5.

Enumerator

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,849 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P012

Connect ACMPHS0 IVREF to PORT0 P012.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80
_DA

Connect ACMPHS1 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P000

Connect ACMPHS2 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_
P001

Connect ACMPHS2 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80
_DA

Connect ACMPHS2 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82
_DA

Connect ACMPHS2 IVREF to DAC82 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP0 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
2_AMPO

Connect ACMPLP1 IVCMP to OPAMP2 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,850 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P500

Connect ACMPHS0 IVCMP to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1
_P100

Connect ACMPHS0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_
P101

Connect ACMPHS0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P109

Connect ACMPLP0 IVREF0 to PORT1 P109.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P110

Connect ACMPLP1 IVREF1 to PORT1 P110.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_
P400

Connect ACMPLP0 IVCMP to PORT4 P400.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
0_AMPO

Connect ACMPLP0 IVCMP to OPAMP0 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_
P408

Connect ACMPLP1 IVCMP to PORT4 P408.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP1 IVCMP to OPAMP1 AMPO.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,851 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_OPAMP0_AMPO_BREAK Break all connections to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
014

Connect OPAMP0 AMPO to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
013

Connect OPAMP0 AMPO to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
003

Connect OPAMP0 AMPO to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
002

Connect OPAMP0 AMPO to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPM_BREAK Break all connections to OPAMP0 AMPM.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
501

Connect OPAMP0 AMPM to PORT5 P501.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
500

Connect OPAMP0 AMPM to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
014

Connect OPAMP0 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
013

Connect OPAMP0 AMPM to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
003

Connect OPAMP0 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0
_AMPO

Connect OPAMP0 AMPM to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPP_BREAK Break all connections to OPAMP0 AMPP.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P
500

Connect OPAMP0 AMPP to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
014

Connect OPAMP0 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
013

Connect OPAMP0 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
002

Connect OPAMP0 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_
DA

Connect OPAMP0 AMPP to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,852 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_OPAMP1_AMPM_BREAK Break all connections to OPAMP1 AMPM.

ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P
014

Connect OPAMP1 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1
_AMPO

Connect OPAMP1 AMPM to OPAMP1 AMPO.

ANALOG_CONNECT_OPAMP1_AMPP_BREAK Break all connections to OPAMP1 AMPP.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
014

Connect OPAMP1 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
013

Connect OPAMP1 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
003

Connect OPAMP1 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
002

Connect OPAMP1 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_D
A

Connect OPAMP1 AMPP to DAC80 DA.

ANALOG_CONNECT_OPAMP2_AMPM_BREAK Break all connections to OPAMP2 AMPM.

ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P
003

Connect OPAMP2 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2
_AMPO

Connect OPAMP2 AMPM to OPAMP2 AMPO.

ANALOG_CONNECT_OPAMP2_AMPP_BREAK Break all connections to OPAMP2 AMPP.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
003

Connect OPAMP2 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
002

Connect OPAMP2 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_D
A

Connect OPAMP2 AMPP to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5 Connect ACMPLP1 IVREF1 to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,853 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

_P500

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,854 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

P501 Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P004

Connect ACMPHS0 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P007

Connect ACMPHS0 IVCMP to PORT0 P007.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,855 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P015

Connect ACMPHS0 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALO
G0_VREF

Connect ACMPHS0 IVCMP to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P005

Connect ACMPHS0 IVREF to PORT0 P005.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P006

Connect ACMPHS0 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P000

Connect ACMPHS1 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P002

Connect ACMPHS1 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P003

Connect ACMPHS1 IVCMP to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P007

Connect ACMPHS1 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P000

Connect ACMPHS1 IVREF to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P001

Connect ACMPHS1 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P002

Connect ACMPHS1 IVREF to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P003

Connect ACMPHS1 IVREF to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P006

Connect ACMPHS1 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,856 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,857 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,858 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,859 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,860 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,861 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,862 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,863 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,864 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,865 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Cache Functions

 Cache Functions
Board Support Package » Supported MCUs » S5D5

Enumerations

enum bsp_cache_state_t

Detailed Description

This module implements cache functions.

Enumeration Type Documentation

◆ bsp_cache_state_t

enum bsp_cache_state_t

Cache enum. Passed into cache functions such as R_BSP_CacheOff() and R_BSP_CacheSet.

 Clock Initialization
Board Support Package » Supported MCUs » S5D5

Macros

#define CGC_SYS_CLOCK_FREQ_NO_RAM_WAITS (60000000U)

#define CGC_SYS_CLOCK_FREQ_ONE_ROM_WAITS (40000000U)

#define CGC_SYS_CLOCK_FREQ_TWO_ROM_WAITS (80000000U)

#define CGC_SRAM_ZERO_WAIT_CYCLES (0U)

 Specify zero wait states for SRAM.

#define CGC_SRAM_ONE_WAIT_CYCLES (1U)

 Specify one wait states for SRAM.

Functions

void bsp_clock_init (void)

 Sets up system clocks. More...

uint32_t bsp_cpu_clock_get (void)

 Returns frequency of CPU clock in Hz. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,866 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Clock Initialization

__STATIC_INLINE void bsp_clocks_rom_wait_set (uint8_t setting)

 This function sets the value of the ROMWT register which is used to
specify wait states required when accessing Flash ROM. More...

__STATIC_INLINE uint32_t bsp_clocks_rom_wait_get (void)

 This function gets the value of the ROMWT register. More...

__STATIC_INLINE void bsp_clocks_sram_wait_set (uint32_t setting)

 This function sets the RAM wait state settings for both the SRAM0
and SRAM0(ECC) RAM memory. More...

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t *p_args)

Detailed Description

Functions in this file configure the system clocks based upon the macros in bsp_clock_cfg.h.

Macro Definition Documentation

◆ CGC_SYS_CLOCK_FREQ_NO_RAM_WAITS

#define CGC_SYS_CLOCK_FREQ_NO_RAM_WAITS (60000000U)

SRAM requires 1 wait state be inserted at ICLK > 60 MHz. SRAMHS is always no wait state

◆ CGC_SYS_CLOCK_FREQ_ONE_ROM_WAITS

#define CGC_SYS_CLOCK_FREQ_ONE_ROM_WAITS (40000000U)

FLASH requires 1 wait state be inserted when (40 MHz < ICLK <= 80 MHz)

◆ CGC_SYS_CLOCK_FREQ_TWO_ROM_WAITS

#define CGC_SYS_CLOCK_FREQ_TWO_ROM_WAITS (80000000U)

FLASH requires 2 wait states be inserted when (80 MHz < ICLK <= 120 MHz)

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,867 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Clock Initialization

◆ bsp_clock_init()

void bsp_clock_init (void)

Sets up system clocks.

MOCO is default clock out of reset. Enable new clock if chosen.

Need to start PLL source clock and let it stabilize before starting PLL

Set PLL Divider.

Set PLL Multiplier.

Set PLL Source clock.

Wait for PLL clock source to stabilize

If the system clock has failed to start call the unrecoverable error handler.

Enable ROM cache

MOCO, LOCO, and subclock do not have stabilization flags that can be checked.

Wait for clock source to stabilize

Set which clock to use for system clock and divisors for all system clocks.

If the system clock has failed to be configured properly call the unrecoverable error handler.

Set USB clock divisor.

Configure BCLK

Configure SDRAM Clock

◆ bsp_clock_set_callback()

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t * p_args)

Wait states for low speed RAM (SRAM0 and SRAM1)

No wait: ICLK <= 60 MHz

1 wait: ICLK > 60 MHz

Calculate the Wait states for ROM

Set the wait state BEFORE we change iclk

In this case we need to set the wait state AFTER we change iclk

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,868 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Clock Initialization

◆ bsp_clocks_rom_wait_get()

__STATIC_INLINE uint32_t bsp_clocks_rom_wait_get (void)

This function gets the value of the ROMWT register.

Return values
MEMWAIT setting

◆ bsp_clocks_rom_wait_set()

__STATIC_INLINE void bsp_clocks_rom_wait_set (uint8_t setting)

This function sets the value of the ROMWT register which is used to specify wait states required
when accessing Flash ROM.

Parameters
[in] setting The number of wait states to

be used.

Return values
none

◆ bsp_clocks_sram_wait_set()

__STATIC_INLINE void bsp_clocks_sram_wait_set (uint32_t setting)

This function sets the RAM wait state settings for both the SRAM0 and SRAM0(ECC) RAM memory.

Parameters
[in] setting The number of wait states to

be used.

Return values
none

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,869 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Clock Initialization

◆ bsp_cpu_clock_get()

uint32_t bsp_cpu_clock_get (void)

Returns frequency of CPU clock in Hz.

Return values
Frequency of the CPU in Hertz

 Hardware Locks
Board Support Package » Supported MCUs » S5D5

Functions

SSP_HW_LOCK_DEFINE (ADC, 0U, 0U)

SSP_HW_LOCK_DEFINE (AGT, 0U, 0U)

SSP_HW_LOCK_DEFINE (BSC, 0U, 1U)

SSP_HW_LOCK_DEFINE (CAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CAN, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_HS, 0U, 0U)

SSP_HW_LOCK_DEFINE (CRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CTSU, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAAD, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DOC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DMAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DRW, 0U, 0U)

SSP_HW_LOCK_DEFINE (DTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (ELC, 0U, 0U)

SSP_HW_LOCK_DEFINE (EPTPC, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,870 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Hardware Locks

SSP_HW_LOCK_DEFINE (ETHER, 0U, 0U)

SSP_HW_LOCK_DEFINE (FCU, 0U, 0U)

SSP_HW_LOCK_DEFINE (GLCDC, 0U, 0U)

SSP_HW_LOCK_DEFINE (GPT, 0U, 0U)

SSP_HW_LOCK_DEFINE (ICU, 0U, 0U)

SSP_HW_LOCK_DEFINE (IIC, 0U, 0U)

SSP_HW_LOCK_DEFINE (IRDA, 0U, 0U)

SSP_HW_LOCK_DEFINE (IWDT, 0U, 0U)

SSP_HW_LOCK_DEFINE (JPEG, 0U, 0U)

SSP_HW_LOCK_DEFINE (KEY, 0U, 0U)

SSP_HW_LOCK_DEFINE (LPM, 1U, 0U)

SSP_HW_LOCK_DEFINE (LVD, 0U, 0U)

SSP_HW_LOCK_DEFINE (MMF, 0U, 0U)

SSP_HW_LOCK_DEFINE (MPU, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPS, 0U, 0U)

SSP_HW_LOCK_DEFINE (PDC, 0U, 0U)

SSP_HW_LOCK_DEFINE (POEG, 0U, 0U)

SSP_HW_LOCK_DEFINE (QSPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (RTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCE, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SSI, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,871 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Hardware Locks

SSP_HW_LOCK_DEFINE (SDHIMMC, 0U, 0U)

SSP_HW_LOCK_DEFINE (TSN, 0U, 0U)

SSP_HW_LOCK_DEFINE (USB, 0U, 0U)

SSP_HW_LOCK_DEFINE (WDT, 0U, 0U)

Detailed Description

This file allocates hardware locks used in Atomic Locking.

Function Documentation

◆ SSP_HW_LOCK_DEFINE() [1/44]

SSP_HW_LOCK_DEFINE (ADC , 0U , 0U)

Used to allocated hardware locks. Parameters are as follows:

1. IP name (ssp_ip_t enum without the SSP_IP_ prefix).
2. Unit number (used for blocks with variations like USB, not to be confused with ADC unit).
3. Channel numberADC

◆ SSP_HW_LOCK_DEFINE() [2/44]

SSP_HW_LOCK_DEFINE (AGT , 0U , 0U)

AGT

◆ SSP_HW_LOCK_DEFINE() [3/44]

SSP_HW_LOCK_DEFINE (BSC , 0U , 1U)

BSC

◆ SSP_HW_LOCK_DEFINE() [4/44]

SSP_HW_LOCK_DEFINE (CAC , 0U , 0U)

CAC

◆ SSP_HW_LOCK_DEFINE() [5/44]

SSP_HW_LOCK_DEFINE (CAN , 0U , 0U)

CAN

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,872 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [6/44]

SSP_HW_LOCK_DEFINE (COMP_HS , 0U , 0U)

COMP_HS

◆ SSP_HW_LOCK_DEFINE() [7/44]

SSP_HW_LOCK_DEFINE (CRC , 0U , 0U)

CRC

◆ SSP_HW_LOCK_DEFINE() [8/44]

SSP_HW_LOCK_DEFINE (CTSU , 0U , 0U)

CTSU

◆ SSP_HW_LOCK_DEFINE() [9/44]

SSP_HW_LOCK_DEFINE (DAAD , 0U , 0U)

DAAD

◆ SSP_HW_LOCK_DEFINE() [10/44]

SSP_HW_LOCK_DEFINE (DAC , 0U , 0U)

DAC

◆ SSP_HW_LOCK_DEFINE() [11/44]

SSP_HW_LOCK_DEFINE (DOC , 0U , 0U)

DOC

◆ SSP_HW_LOCK_DEFINE() [12/44]

SSP_HW_LOCK_DEFINE (DMAC , 0U , 0U)

DMAC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,873 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [13/44]

SSP_HW_LOCK_DEFINE (DRW , 0U , 0U)

DRW

◆ SSP_HW_LOCK_DEFINE() [14/44]

SSP_HW_LOCK_DEFINE (DTC , 0U , 0U)

DTC

◆ SSP_HW_LOCK_DEFINE() [15/44]

SSP_HW_LOCK_DEFINE (ELC , 0U , 0U)

ELC

◆ SSP_HW_LOCK_DEFINE() [16/44]

SSP_HW_LOCK_DEFINE (EPTPC , 0U , 0U)

EPTPC

◆ SSP_HW_LOCK_DEFINE() [17/44]

SSP_HW_LOCK_DEFINE (ETHER , 0U , 0U)

ETHER

◆ SSP_HW_LOCK_DEFINE() [18/44]

SSP_HW_LOCK_DEFINE (FCU , 0U , 0U)

FCU

◆ SSP_HW_LOCK_DEFINE() [19/44]

SSP_HW_LOCK_DEFINE (GLCDC , 0U , 0U)

GLCDC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,874 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [20/44]

SSP_HW_LOCK_DEFINE (GPT , 0U , 0U)

GPT

◆ SSP_HW_LOCK_DEFINE() [21/44]

SSP_HW_LOCK_DEFINE (ICU , 0U , 0U)

ICU

◆ SSP_HW_LOCK_DEFINE() [22/44]

SSP_HW_LOCK_DEFINE (IIC , 0U , 0U)

IIC

◆ SSP_HW_LOCK_DEFINE() [23/44]

SSP_HW_LOCK_DEFINE (IRDA , 0U , 0U)

IRDA

◆ SSP_HW_LOCK_DEFINE() [24/44]

SSP_HW_LOCK_DEFINE (IWDT , 0U , 0U)

IWDT

◆ SSP_HW_LOCK_DEFINE() [25/44]

SSP_HW_LOCK_DEFINE (JPEG , 0U , 0U)

JPEG

◆ SSP_HW_LOCK_DEFINE() [26/44]

SSP_HW_LOCK_DEFINE (KEY , 0U , 0U)

KEY

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,875 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [27/44]

SSP_HW_LOCK_DEFINE (LPM , 1U , 0U)

LPM

◆ SSP_HW_LOCK_DEFINE() [28/44]

SSP_HW_LOCK_DEFINE (LVD , 0U , 0U)

LVD

◆ SSP_HW_LOCK_DEFINE() [29/44]

SSP_HW_LOCK_DEFINE (MMF , 0U , 0U)

MMF

◆ SSP_HW_LOCK_DEFINE() [30/44]

SSP_HW_LOCK_DEFINE (MPU , 0U , 0U)

MPU

◆ SSP_HW_LOCK_DEFINE() [31/44]

SSP_HW_LOCK_DEFINE (OPS , 0U , 0U)

OPS

◆ SSP_HW_LOCK_DEFINE() [32/44]

SSP_HW_LOCK_DEFINE (PDC , 0U , 0U)

PDC

◆ SSP_HW_LOCK_DEFINE() [33/44]

SSP_HW_LOCK_DEFINE (POEG , 0U , 0U)

POEG

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,876 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [34/44]

SSP_HW_LOCK_DEFINE (QSPI , 0U , 0U)

QSPI

◆ SSP_HW_LOCK_DEFINE() [35/44]

SSP_HW_LOCK_DEFINE (SPI , 0U , 0U)

SPI

◆ SSP_HW_LOCK_DEFINE() [36/44]

SSP_HW_LOCK_DEFINE (RTC , 0U , 0U)

RTC

◆ SSP_HW_LOCK_DEFINE() [37/44]

SSP_HW_LOCK_DEFINE (SCE , 0U , 0U)

SCE

◆ SSP_HW_LOCK_DEFINE() [38/44]

SSP_HW_LOCK_DEFINE (SCI , 0U , 0U)

SCI

◆ SSP_HW_LOCK_DEFINE() [39/44]

SSP_HW_LOCK_DEFINE (SRC , 0U , 0U)

SRC

◆ SSP_HW_LOCK_DEFINE() [40/44]

SSP_HW_LOCK_DEFINE (SSI , 0U , 0U)

SSI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,877 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [41/44]

SSP_HW_LOCK_DEFINE (SDHIMMC , 0U , 0U)

SDHIMMC

◆ SSP_HW_LOCK_DEFINE() [42/44]

SSP_HW_LOCK_DEFINE (TSN , 0U , 0U)

TSN

◆ SSP_HW_LOCK_DEFINE() [43/44]

SSP_HW_LOCK_DEFINE (USB , 0U , 0U)

USB

◆ SSP_HW_LOCK_DEFINE() [44/44]

SSP_HW_LOCK_DEFINE (WDT , 0U , 0U)

WDT

 Module Start and Stop
Board Support Package » Supported MCUs » S5D5

Macros

#define BSP_COMPILE_TIME_ASSERT(e) ((void) sizeof(char[1 - 2 * !(e)]))

Functions

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

 Stop module (enter module stop). Stopping a module disables clocks
to the peripheral to save power. More...

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

 Stop module (enter module stop) even if the module is used for
multiple channels. More...

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,878 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Module Start and Stop

 Start module (cancel module stop). Starting a module enables clocks
to the peripheral and allows registers to be set. More...

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool
*const p_stop)

Detailed Description

Module start and stop functions are provided to enable or disable peripherals.

Macro Definition Documentation

◆ BSP_COMPILE_TIME_ASSERT

#define BSP_COMPILE_TIME_ASSERT (e) ((void) sizeof(char[1 - 2 * !(e)]))

Used to generate a compiler error (divided by 0 error) if the assertion fails. This is used in place of
"#error" for expressions that cannot be evaluated by the preprocessor like sizeof().

Function Documentation

◆ R_BSP_ModuleStart()

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

Start module (cancel module stop). Starting a module enables clocks to the peripheral and allows
registers to be set.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is started

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit.

◆ R_BSP_ModuleStateGet()

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool *const p_stop)

The g_bsp_module_stop array must have entries for each ssp_ip_t enum value.

Save the current module state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,879 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > Module Start and Stop

◆ R_BSP_ModuleStop()

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

Stop module (enter module stop). Stopping a module disables clocks to the peripheral to save
power.

Note
Some module stop bits are shared between peripherals. Modules with shared module stop bits cannot be stopped to
prevent unintentionally stopping related modules.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit, or module
stop bit is shared and entering module stop
is not supported because it could affect
other modules.

◆ R_BSP_ModuleStopAlways()

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

Stop module (enter module stop) even if the module is used for multiple channels.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

 ROM Registers
Board Support Package » Supported MCUs » S5D5

Macros

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,880 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D5 > ROM Registers

#define BSP_ROM_REG_OFS1_SETTING
 (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFFF9FFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 9))

#define BSP_ROM_REG_MPU_CONTROL_SETTING

Detailed Description

Defines MCU registers that are in ROM (e.g. OFS) and must be set at compile-time. All registers can
be set using bsp_cfg.h.

Macro Definition Documentation

◆ BSP_ROM_REG_MPU_CONTROL_SETTING

#define BSP_ROM_REG_MPU_CONTROL_SETTING

((0xFFFFFCF0U) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC0_ENABL

E << 8) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC1_ENABL

E << 9) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION0_E

NABLE) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION1_E

NABLE << 1) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION2_E

NABLE << 2) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION3_E

NABLE << 3))

Build up SECMPUAC register based on MPU settings.

◆ BSP_ROM_REG_OFS1_SETTING

#define BSP_ROM_REG_OFS1_SETTING (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFFF9FFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 9))

OR in the HOCO frequency setting from bsp_clock_cfg.h with the OFS1 setting from bsp_cfg.h.

5.2.1.10 S5D9

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,881 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9

Board Support Package » Supported MCUs

Code that is common to S5D9 MCUs. More...

Modules

Analog Connections

Cache Functions

Clock Initialization

Hardware Locks

Module Start and Stop

ROM Registers

Detailed Description

Code that is common to S5D9 MCUs.

Implements functions that are common to S5D9 MCUs.

 Analog Connections
Board Support Package » Supported MCUs » S5D9

Enumerations

enum analog_connect_t {
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P012
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,882 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,883 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF5,
FLAG_SET),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P109 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P110 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_P400 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_P408 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, BREAK,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,884 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS4,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,885 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS7,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS7,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,886 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,887 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P007
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P000 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,888 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P007 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,889 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,890 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,891 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,892 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,893 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,894 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,895 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,896 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR)
}

Detailed Description

This group contains a list of enumerations that can be used with the Analog Connect Interface.

Enumeration Type Documentation

◆ analog_connect_t

enum analog_connect_t

List of analog connections that can be made on S5D9

Note
This list may change based on device. This list is for S5D9.

Enumerator

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,897 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P012

Connect ACMPHS0 IVREF to PORT0 P012.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80
_DA

Connect ACMPHS1 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P000

Connect ACMPHS2 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_
P001

Connect ACMPHS2 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80
_DA

Connect ACMPHS2 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82
_DA

Connect ACMPHS2 IVREF to DAC82 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP0 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
2_AMPO

Connect ACMPLP1 IVCMP to OPAMP2 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,898 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P500

Connect ACMPHS0 IVCMP to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1
_P100

Connect ACMPHS0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_
P101

Connect ACMPHS0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P109

Connect ACMPLP0 IVREF0 to PORT1 P109.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P110

Connect ACMPLP1 IVREF1 to PORT1 P110.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_
P400

Connect ACMPLP0 IVCMP to PORT4 P400.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
0_AMPO

Connect ACMPLP0 IVCMP to OPAMP0 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_
P408

Connect ACMPLP1 IVCMP to PORT4 P408.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP1 IVCMP to OPAMP1 AMPO.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,899 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_OPAMP0_AMPO_BREAK Break all connections to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
014

Connect OPAMP0 AMPO to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
013

Connect OPAMP0 AMPO to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
003

Connect OPAMP0 AMPO to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
002

Connect OPAMP0 AMPO to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPM_BREAK Break all connections to OPAMP0 AMPM.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
501

Connect OPAMP0 AMPM to PORT5 P501.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
500

Connect OPAMP0 AMPM to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
014

Connect OPAMP0 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
013

Connect OPAMP0 AMPM to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
003

Connect OPAMP0 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0
_AMPO

Connect OPAMP0 AMPM to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPP_BREAK Break all connections to OPAMP0 AMPP.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P
500

Connect OPAMP0 AMPP to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
014

Connect OPAMP0 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
013

Connect OPAMP0 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
002

Connect OPAMP0 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_
DA

Connect OPAMP0 AMPP to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,900 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_OPAMP1_AMPM_BREAK Break all connections to OPAMP1 AMPM.

ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P
014

Connect OPAMP1 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1
_AMPO

Connect OPAMP1 AMPM to OPAMP1 AMPO.

ANALOG_CONNECT_OPAMP1_AMPP_BREAK Break all connections to OPAMP1 AMPP.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
014

Connect OPAMP1 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
013

Connect OPAMP1 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
003

Connect OPAMP1 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
002

Connect OPAMP1 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_D
A

Connect OPAMP1 AMPP to DAC80 DA.

ANALOG_CONNECT_OPAMP2_AMPM_BREAK Break all connections to OPAMP2 AMPM.

ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P
003

Connect OPAMP2 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2
_AMPO

Connect OPAMP2 AMPM to OPAMP2 AMPO.

ANALOG_CONNECT_OPAMP2_AMPP_BREAK Break all connections to OPAMP2 AMPP.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
003

Connect OPAMP2 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
002

Connect OPAMP2 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_D
A

Connect OPAMP2 AMPP to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5 Connect ACMPLP1 IVREF1 to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,901 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

_P500

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,902 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

P501 Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P004

Connect ACMPHS0 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P007

Connect ACMPHS0 IVCMP to PORT0 P007.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,903 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P015

Connect ACMPHS0 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALO
G0_VREF

Connect ACMPHS0 IVCMP to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P005

Connect ACMPHS0 IVREF to PORT0 P005.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P006

Connect ACMPHS0 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P000

Connect ACMPHS1 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P002

Connect ACMPHS1 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P003

Connect ACMPHS1 IVCMP to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P007

Connect ACMPHS1 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P000

Connect ACMPHS1 IVREF to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P001

Connect ACMPHS1 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P002

Connect ACMPHS1 IVREF to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P003

Connect ACMPHS1 IVREF to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P006

Connect ACMPHS1 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,904 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,905 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,906 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,907 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,908 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,909 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,910 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,911 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,912 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,913 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Cache Functions

 Cache Functions
Board Support Package » Supported MCUs » S5D9

Enumerations

enum bsp_cache_state_t

Detailed Description

This module implements cache functions.

Enumeration Type Documentation

◆ bsp_cache_state_t

enum bsp_cache_state_t

Cache enum. Passed into cache functions such as R_BSP_CacheOff() and R_BSP_CacheSet.

 Clock Initialization
Board Support Package » Supported MCUs » S5D9

Macros

#define CGC_SYS_CLOCK_FREQ_NO_RAM_WAITS (60000000U)

#define CGC_SYS_CLOCK_FREQ_ONE_ROM_WAITS (40000000U)

#define CGC_SYS_CLOCK_FREQ_TWO_ROM_WAITS (80000000U)

#define CGC_SRAM_ZERO_WAIT_CYCLES (0U)

 Specify zero wait states for SRAM.

#define CGC_SRAM_ONE_WAIT_CYCLES (1U)

 Specify one wait states for SRAM.

Functions

void bsp_clock_init (void)

 Sets up system clocks. More...

uint32_t bsp_cpu_clock_get (void)

 Returns frequency of CPU clock in Hz. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,914 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Clock Initialization

__STATIC_INLINE void bsp_clocks_rom_wait_set (uint8_t setting)

 This function sets the value of the ROMWT register which is used to
specify wait states required when accessing Flash ROM. More...

__STATIC_INLINE uint32_t bsp_clocks_rom_wait_get (void)

 This function gets the value of the ROMWT register. More...

__STATIC_INLINE void bsp_clocks_sram_wait_set (uint32_t setting)

 This function sets the RAM wait state settings for the SRAM0, SRAM0
ECC and SRAM1 RAM memory. More...

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t *p_args)

Detailed Description

Functions in this file configure the system clocks based upon the macros in bsp_clock_cfg.h.

Macro Definition Documentation

◆ CGC_SYS_CLOCK_FREQ_NO_RAM_WAITS

#define CGC_SYS_CLOCK_FREQ_NO_RAM_WAITS (60000000U)

SRAM requires 1 wait state be inserted at ICLK > 60 MHz. SRAMHS is always no wait state

◆ CGC_SYS_CLOCK_FREQ_ONE_ROM_WAITS

#define CGC_SYS_CLOCK_FREQ_ONE_ROM_WAITS (40000000U)

FLASH requires 1 wait state be inserted when (40 MHz < ICLK <= 80 MHz)

◆ CGC_SYS_CLOCK_FREQ_TWO_ROM_WAITS

#define CGC_SYS_CLOCK_FREQ_TWO_ROM_WAITS (80000000U)

FLASH requires 2 wait states be inserted when (80 MHz < ICLK <= 120 MHz)

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,915 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Clock Initialization

◆ bsp_clock_init()

void bsp_clock_init (void)

Sets up system clocks.

MOCO is default clock out of reset. Enable new clock if chosen.

Need to start PLL source clock and let it stabilize before starting PLL

Set PLL Divider.

Set PLL Multiplier.

Set PLL Source clock.

Wait for PLL clock source to stabilize

If the system clock has failed to start call the unrecoverable error handler.

Enable ROM cache

MOCO, LOCO, and subclock do not have stabilization flags that can be checked.

Wait for clock source to stabilize

Set which clock to use for system clock and divisors for all system clocks.

If the system clock has failed to be configured properly call the unrecoverable error handler.

Set USB clock divisor.

Configure BCLK

Configure SDRAM Clock

◆ bsp_clock_set_callback()

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t * p_args)

Wait states for low speed RAM (SRAM0 and SRAM1)

No wait: ICLK <= 60 MHz

1 wait: ICLK > 60 MHz

Calculate the Wait states for ROM

Set the wait state BEFORE we change iclk

In this case we need to set the wait state AFTER we change iclk

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,916 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Clock Initialization

◆ bsp_clocks_rom_wait_get()

__STATIC_INLINE uint32_t bsp_clocks_rom_wait_get (void)

This function gets the value of the ROMWT register.

Return values
MEMWAIT setting

◆ bsp_clocks_rom_wait_set()

__STATIC_INLINE void bsp_clocks_rom_wait_set (uint8_t setting)

This function sets the value of the ROMWT register which is used to specify wait states required
when accessing Flash ROM.

Parameters
[in] setting The number of wait states to

be used.

Return values
none

◆ bsp_clocks_sram_wait_set()

__STATIC_INLINE void bsp_clocks_sram_wait_set (uint32_t setting)

This function sets the RAM wait state settings for the SRAM0, SRAM0 ECC and SRAM1 RAM
memory.

Parameters
[in] setting The number of wait states to

be used.

Return values
none

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,917 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Clock Initialization

◆ bsp_cpu_clock_get()

uint32_t bsp_cpu_clock_get (void)

Returns frequency of CPU clock in Hz.

Return values
Frequency of the CPU in Hertz

 Hardware Locks
Board Support Package » Supported MCUs » S5D9

Functions

SSP_HW_LOCK_DEFINE (ADC, 0U, 0U)

SSP_HW_LOCK_DEFINE (AGT, 0U, 0U)

SSP_HW_LOCK_DEFINE (BSC, 0U, 1U)

SSP_HW_LOCK_DEFINE (CAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CAN, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_HS, 0U, 0U)

SSP_HW_LOCK_DEFINE (CRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CTSU, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAAD, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DOC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DMAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DRW, 0U, 0U)

SSP_HW_LOCK_DEFINE (DTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (ELC, 0U, 0U)

SSP_HW_LOCK_DEFINE (EPTPC, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,918 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Hardware Locks

SSP_HW_LOCK_DEFINE (ETHER, 0U, 0U)

SSP_HW_LOCK_DEFINE (FCU, 0U, 0U)

SSP_HW_LOCK_DEFINE (GLCDC, 0U, 0U)

SSP_HW_LOCK_DEFINE (GPT, 0U, 0U)

SSP_HW_LOCK_DEFINE (ICU, 0U, 0U)

SSP_HW_LOCK_DEFINE (IIC, 0U, 0U)

SSP_HW_LOCK_DEFINE (IRDA, 0U, 0U)

SSP_HW_LOCK_DEFINE (IWDT, 0U, 0U)

SSP_HW_LOCK_DEFINE (JPEG, 0U, 0U)

SSP_HW_LOCK_DEFINE (KEY, 0U, 0U)

SSP_HW_LOCK_DEFINE (LPM, 1U, 0U)

SSP_HW_LOCK_DEFINE (LVD, 0U, 0U)

SSP_HW_LOCK_DEFINE (MMF, 0U, 0U)

SSP_HW_LOCK_DEFINE (MPU, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPS, 0U, 0U)

SSP_HW_LOCK_DEFINE (PDC, 0U, 0U)

SSP_HW_LOCK_DEFINE (POEG, 0U, 0U)

SSP_HW_LOCK_DEFINE (QSPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (RTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCE, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SSI, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,919 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Hardware Locks

SSP_HW_LOCK_DEFINE (SDHIMMC, 0U, 0U)

SSP_HW_LOCK_DEFINE (TSN, 0U, 0U)

SSP_HW_LOCK_DEFINE (USB, 0U, 0U)

SSP_HW_LOCK_DEFINE (WDT, 0U, 0U)

Detailed Description

This file allocates hardware locks used in Atomic Locking.

Function Documentation

◆ SSP_HW_LOCK_DEFINE() [1/44]

SSP_HW_LOCK_DEFINE (ADC , 0U , 0U)

Used to allocated hardware locks. Parameters are as follows:

1. IP name (ssp_ip_t enum without the SSP_IP_ prefix).
2. Unit number (used for blocks with variations like USB, not to be confused with ADC unit).
3. Channel numberADC

◆ SSP_HW_LOCK_DEFINE() [2/44]

SSP_HW_LOCK_DEFINE (AGT , 0U , 0U)

AGT

◆ SSP_HW_LOCK_DEFINE() [3/44]

SSP_HW_LOCK_DEFINE (BSC , 0U , 1U)

BSC

◆ SSP_HW_LOCK_DEFINE() [4/44]

SSP_HW_LOCK_DEFINE (CAC , 0U , 0U)

CAC

◆ SSP_HW_LOCK_DEFINE() [5/44]

SSP_HW_LOCK_DEFINE (CAN , 0U , 0U)

CAN

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,920 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [6/44]

SSP_HW_LOCK_DEFINE (COMP_HS , 0U , 0U)

COMP_HS

◆ SSP_HW_LOCK_DEFINE() [7/44]

SSP_HW_LOCK_DEFINE (CRC , 0U , 0U)

CRC

◆ SSP_HW_LOCK_DEFINE() [8/44]

SSP_HW_LOCK_DEFINE (CTSU , 0U , 0U)

CTSU

◆ SSP_HW_LOCK_DEFINE() [9/44]

SSP_HW_LOCK_DEFINE (DAAD , 0U , 0U)

DAAD

◆ SSP_HW_LOCK_DEFINE() [10/44]

SSP_HW_LOCK_DEFINE (DAC , 0U , 0U)

DAC

◆ SSP_HW_LOCK_DEFINE() [11/44]

SSP_HW_LOCK_DEFINE (DOC , 0U , 0U)

DOC

◆ SSP_HW_LOCK_DEFINE() [12/44]

SSP_HW_LOCK_DEFINE (DMAC , 0U , 0U)

DMAC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,921 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [13/44]

SSP_HW_LOCK_DEFINE (DRW , 0U , 0U)

DRW

◆ SSP_HW_LOCK_DEFINE() [14/44]

SSP_HW_LOCK_DEFINE (DTC , 0U , 0U)

DTC

◆ SSP_HW_LOCK_DEFINE() [15/44]

SSP_HW_LOCK_DEFINE (ELC , 0U , 0U)

ELC

◆ SSP_HW_LOCK_DEFINE() [16/44]

SSP_HW_LOCK_DEFINE (EPTPC , 0U , 0U)

EPTPC

◆ SSP_HW_LOCK_DEFINE() [17/44]

SSP_HW_LOCK_DEFINE (ETHER , 0U , 0U)

ETHER

◆ SSP_HW_LOCK_DEFINE() [18/44]

SSP_HW_LOCK_DEFINE (FCU , 0U , 0U)

FCU

◆ SSP_HW_LOCK_DEFINE() [19/44]

SSP_HW_LOCK_DEFINE (GLCDC , 0U , 0U)

GLCDC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,922 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [20/44]

SSP_HW_LOCK_DEFINE (GPT , 0U , 0U)

GPT

◆ SSP_HW_LOCK_DEFINE() [21/44]

SSP_HW_LOCK_DEFINE (ICU , 0U , 0U)

ICU

◆ SSP_HW_LOCK_DEFINE() [22/44]

SSP_HW_LOCK_DEFINE (IIC , 0U , 0U)

IIC

◆ SSP_HW_LOCK_DEFINE() [23/44]

SSP_HW_LOCK_DEFINE (IRDA , 0U , 0U)

IRDA

◆ SSP_HW_LOCK_DEFINE() [24/44]

SSP_HW_LOCK_DEFINE (IWDT , 0U , 0U)

IWDT

◆ SSP_HW_LOCK_DEFINE() [25/44]

SSP_HW_LOCK_DEFINE (JPEG , 0U , 0U)

JPEG

◆ SSP_HW_LOCK_DEFINE() [26/44]

SSP_HW_LOCK_DEFINE (KEY , 0U , 0U)

KEY

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,923 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [27/44]

SSP_HW_LOCK_DEFINE (LPM , 1U , 0U)

LPM

◆ SSP_HW_LOCK_DEFINE() [28/44]

SSP_HW_LOCK_DEFINE (LVD , 0U , 0U)

LVD

◆ SSP_HW_LOCK_DEFINE() [29/44]

SSP_HW_LOCK_DEFINE (MMF , 0U , 0U)

MMF

◆ SSP_HW_LOCK_DEFINE() [30/44]

SSP_HW_LOCK_DEFINE (MPU , 0U , 0U)

MPU

◆ SSP_HW_LOCK_DEFINE() [31/44]

SSP_HW_LOCK_DEFINE (OPS , 0U , 0U)

OPS

◆ SSP_HW_LOCK_DEFINE() [32/44]

SSP_HW_LOCK_DEFINE (PDC , 0U , 0U)

PDC

◆ SSP_HW_LOCK_DEFINE() [33/44]

SSP_HW_LOCK_DEFINE (POEG , 0U , 0U)

POEG

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,924 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [34/44]

SSP_HW_LOCK_DEFINE (QSPI , 0U , 0U)

QSPI

◆ SSP_HW_LOCK_DEFINE() [35/44]

SSP_HW_LOCK_DEFINE (SPI , 0U , 0U)

SPI

◆ SSP_HW_LOCK_DEFINE() [36/44]

SSP_HW_LOCK_DEFINE (RTC , 0U , 0U)

RTC

◆ SSP_HW_LOCK_DEFINE() [37/44]

SSP_HW_LOCK_DEFINE (SCE , 0U , 0U)

SCE

◆ SSP_HW_LOCK_DEFINE() [38/44]

SSP_HW_LOCK_DEFINE (SCI , 0U , 0U)

SCI

◆ SSP_HW_LOCK_DEFINE() [39/44]

SSP_HW_LOCK_DEFINE (SRC , 0U , 0U)

SRC

◆ SSP_HW_LOCK_DEFINE() [40/44]

SSP_HW_LOCK_DEFINE (SSI , 0U , 0U)

SSI

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,925 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [41/44]

SSP_HW_LOCK_DEFINE (SDHIMMC , 0U , 0U)

SDHIMMC

◆ SSP_HW_LOCK_DEFINE() [42/44]

SSP_HW_LOCK_DEFINE (TSN , 0U , 0U)

TSN

◆ SSP_HW_LOCK_DEFINE() [43/44]

SSP_HW_LOCK_DEFINE (USB , 0U , 0U)

USB

◆ SSP_HW_LOCK_DEFINE() [44/44]

SSP_HW_LOCK_DEFINE (WDT , 0U , 0U)

WDT

 Module Start and Stop
Board Support Package » Supported MCUs » S5D9

Macros

#define BSP_COMPILE_TIME_ASSERT(e) ((void) sizeof(char[1 - 2 * !(e)]))

Functions

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

 Stop module (enter module stop). Stopping a module disables clocks
to the peripheral to save power. More...

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

 Stop module (enter module stop) even if the module is used for
multiple channels. More...

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,926 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Module Start and Stop

 Start module (cancel module stop). Starting a module enables clocks
to the peripheral and allows registers to be set. More...

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool
*const p_stop)

Detailed Description

Module start and stop functions are provided to enable or disable peripherals.

Macro Definition Documentation

◆ BSP_COMPILE_TIME_ASSERT

#define BSP_COMPILE_TIME_ASSERT (e) ((void) sizeof(char[1 - 2 * !(e)]))

Used to generate a compiler error (divided by 0 error) if the assertion fails. This is used in place of
"#error" for expressions that cannot be evaluated by the preprocessor like sizeof().

Function Documentation

◆ R_BSP_ModuleStart()

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

Start module (cancel module stop). Starting a module enables clocks to the peripheral and allows
registers to be set.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is started

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit.

◆ R_BSP_ModuleStateGet()

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool *const p_stop)

The g_bsp_module_stop array must have entries for each ssp_ip_t enum value.

Save the current module state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,927 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > Module Start and Stop

◆ R_BSP_ModuleStop()

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

Stop module (enter module stop). Stopping a module disables clocks to the peripheral to save
power.

Note
Some module stop bits are shared between peripherals. Modules with shared module stop bits cannot be stopped to
prevent unintentionally stopping related modules.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit, or module
stop bit is shared and entering module stop
is not supported because it could affect
other modules.

◆ R_BSP_ModuleStopAlways()

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

Stop module (enter module stop) even if the module is used for multiple channels.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

 ROM Registers
Board Support Package » Supported MCUs » S5D9

Macros

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,928 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S5D9 > ROM Registers

#define BSP_ROM_REG_OFS1_SETTING
 (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFFF9FFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 9))

#define BSP_ROM_REG_MPU_CONTROL_SETTING

Detailed Description

Defines MCU registers that are in ROM (e.g. OFS) and must be set at compile-time. All registers can
be set using bsp_cfg.h.

Macro Definition Documentation

◆ BSP_ROM_REG_MPU_CONTROL_SETTING

#define BSP_ROM_REG_MPU_CONTROL_SETTING

((0xFFFFFCF0U) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC0_ENABL

E << 8) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_PC1_ENABL

E << 9) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION0_E

NABLE) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION1_E

NABLE << 1) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION2_E

NABLE << 2) | \

 ((uint32_t)BSP_CFG_ROM_REG_MPU_REGION3_E

NABLE << 3))

Build up SECMPUAC register based on MPU settings.

◆ BSP_ROM_REG_OFS1_SETTING

#define BSP_ROM_REG_OFS1_SETTING (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFFF9FFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 9))

OR in the HOCO frequency setting from bsp_clock_cfg.h with the OFS1 setting from bsp_cfg.h.

5.2.1.11 S7G2

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,929 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2

Board Support Package » Supported MCUs

Code that is common to S7G2 MCUs. More...

Modules

Analog Connections

Cache Functions

Clock Initialization

Hardware Locks

Module Start and Stop

ROM Registers

Enumerations

enum elc_peripheral_t

enum elc_event_t

Detailed Description

Code that is common to S7G2 MCUs.

Implements functions that are common to S7G2 MCUs.

Enumeration Type Documentation

◆ elc_event_t

enum elc_event_t

Sources of event signals to be linked to other peripherals or the CPU1

Note
This list may change based on device. This list is for S7G2.

◆ elc_peripheral_t

enum elc_peripheral_t

Possible peripherals to be linked to event signals

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,930 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

 Analog Connections
Board Support Package » Supported MCUs » S7G2

Enumerations

enum analog_connect_t {
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P012
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,931 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF5,
FLAG_SET),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P109 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P110 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_P400 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,932 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_P408 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0OS, AMPOS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P013
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS4,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P014 =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,933 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS1,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP0PS, AMPPS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P014 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS0,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P013 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS2,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS3,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP1PS, AMPPS7,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPM_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, BREAK,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS0,
FLAG_CLEAR),
ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2_AMPO =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2MS, AMPMS7,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_BREAK =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, BREAK,
FLAG_CLEAR),
 ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P003 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS0,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS1,
FLAG_CLEAR), ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_DA =
ANALOG_CONNECT_DEFINE(OPAMP, 0, AMP2PS, AMPPS7,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,934 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,935 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1_P101 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1_P103 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81_DA
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS5,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CRVS6,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_P100
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_P503 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_P102
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL4,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL0, CMPSEL6,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP0_IVREF0 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, CLEAR_C1VRF2,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,936 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP1_IVREF1 =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPSEL1, C1VRF2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P007
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P007 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P015
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP5,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P003
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF4,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_P014
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF5,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C0VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_P101
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C0VRF,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,937 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

FLAG_CLEAR),
ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, C1VRF,
FLAG_CLEAR), ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_P103
= ANALOG_CONNECT_DEFINE(ACMPLP, 0, COMPMDR, CLEAR_C1VRF,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,938 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,939 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

 ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,940 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,941 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,942 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP1,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,943 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0_P000 =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_PGA0
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 0, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0_P001 =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_PGA1
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 1, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0_P002 =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_PGA2
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 2, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP1,
FLAG_CLEAR),

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,944 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

 ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0_P004 =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_PGA3
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 3, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0_P005 =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_PGA4
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 4, CMPSEL1, IVREF3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5_P502
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC121_DA
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0_P006 =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP2,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_PGA5
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL0, IVCMP3,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P500
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF0,
FLAG_CLEAR), ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_P501
= ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF1,
FLAG_CLEAR),
 ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALOG0_VREF =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF2,
FLAG_SET), ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC120_DA =
ANALOG_CONNECT_DEFINE(ACMPHS, 5, CMPSEL1, IVREF3,
FLAG_CLEAR)
}

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,945 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

This group contains a list of enumerations that can be used with the Analog Connect Interface.

Enumeration Type Documentation

◆ analog_connect_t

enum analog_connect_t

List of analog connections that can be made on S7G2

Note
This list may change based on device. This list is for S7G2.

Enumerator

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P012

Connect ACMPHS0 IVREF to PORT0 P012.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC80
_DA

Connect ACMPHS1 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P000

Connect ACMPHS2 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT0_
P001

Connect ACMPHS2 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC80
_DA

Connect ACMPHS2 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC82
_DA

Connect ACMPHS2 IVREF to DAC82 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80 Connect ACMPLP0 IVREF0 to DAC80 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,946 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

_DA

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP0 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
2_AMPO

Connect ACMPLP1 IVCMP to OPAMP2 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P500

Connect ACMPHS0 IVCMP to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P013

Connect ACMPHS0 IVCMP to PORT0 P013.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT1
_P100

Connect ACMPHS0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT1_
P101

Connect ACMPHS0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC80
_DA

Connect ACMPHS0 IVREF to DAC80 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,947 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

_P109 Connect ACMPLP0 IVREF0 to PORT1 P109.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P110

Connect ACMPLP1 IVREF1 to PORT1 P110.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT4_
P400

Connect ACMPLP0 IVCMP to PORT4 P400.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_OPAMP
0_AMPO

Connect ACMPLP0 IVCMP to OPAMP0 AMPO.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT4_
P408

Connect ACMPLP1 IVCMP to PORT4 P408.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_OPAMP
1_AMPO

Connect ACMPLP1 IVCMP to OPAMP1 AMPO.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_OPAMP0_AMPO_BREAK Break all connections to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
014

Connect OPAMP0 AMPO to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
013

Connect OPAMP0 AMPO to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
003

Connect OPAMP0 AMPO to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPO_TO_PORT0_P
002

Connect OPAMP0 AMPO to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPM_BREAK Break all connections to OPAMP0 AMPM.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
501

Connect OPAMP0 AMPM to PORT5 P501.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT5_P
500

Connect OPAMP0 AMPM to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P Connect OPAMP0 AMPM to PORT0 P014.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,948 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

014

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
013

Connect OPAMP0 AMPM to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPM_TO_PORT0_P
003

Connect OPAMP0 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP0_AMPM_TO_OPAMP0
_AMPO

Connect OPAMP0 AMPM to OPAMP0 AMPO.

ANALOG_CONNECT_OPAMP0_AMPP_BREAK Break all connections to OPAMP0 AMPP.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT5_P
500

Connect OPAMP0 AMPP to PORT5 P500.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
014

Connect OPAMP0 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
013

Connect OPAMP0 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP0_AMPP_TO_PORT0_P
002

Connect OPAMP0 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP0_AMPP_TO_DAC120_
DA

Connect OPAMP0 AMPP to DAC120 DA.

ANALOG_CONNECT_OPAMP1_AMPM_BREAK Break all connections to OPAMP1 AMPM.

ANALOG_CONNECT_OPAMP1_AMPM_TO_PORT0_P
014

Connect OPAMP1 AMPM to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPM_TO_OPAMP1
_AMPO

Connect OPAMP1 AMPM to OPAMP1 AMPO.

ANALOG_CONNECT_OPAMP1_AMPP_BREAK Break all connections to OPAMP1 AMPP.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
014

Connect OPAMP1 AMPP to PORT0 P014.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
013

Connect OPAMP1 AMPP to PORT0 P013.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
003

Connect OPAMP1 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP1_AMPP_TO_PORT0_P
002

Connect OPAMP1 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP1_AMPP_TO_DAC80_D
A

Connect OPAMP1 AMPP to DAC80 DA.

ANALOG_CONNECT_OPAMP2_AMPM_BREAK Break all connections to OPAMP2 AMPM.

ANALOG_CONNECT_OPAMP2_AMPM_TO_PORT0_P
003

Connect OPAMP2 AMPM to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPM_TO_OPAMP2
_AMPO

Connect OPAMP2 AMPM to OPAMP2 AMPO.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,949 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_OPAMP2_AMPP_BREAK Break all connections to OPAMP2 AMPP.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
003

Connect OPAMP2 AMPP to PORT0 P003.

ANALOG_CONNECT_OPAMP2_AMPP_TO_PORT0_P
002

Connect OPAMP2 AMPP to PORT0 P002.

ANALOG_CONNECT_OPAMP2_AMPP_TO_DAC81_D
A

Connect OPAMP2 AMPP to DAC81 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,950 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT1
_P101

Connect ACMPLP0 IVREF0 to PORT1 P101.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_DAC80
_DA

Connect ACMPLP0 IVREF0 to DAC80 DA.

ANALOG_CONNECT_ACMPLP0_IVREF0_TO_PORT5
_P502

Connect ACMPLP0 IVREF0 to PORT5 P502.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT1
_P103

Connect ACMPLP1 IVREF1 to PORT1 P103.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_DAC81
_DA

Connect ACMPLP1 IVREF1 to DAC81 DA.

ANALOG_CONNECT_ACMPLP1_IVREF1_TO_PORT5
_P500

Connect ACMPLP1 IVREF1 to PORT5 P500.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT1_
P100

Connect ACMPLP0 IVCMP to PORT1 P100.

ANALOG_CONNECT_ACMPLP0_IVCMP_TO_PORT5_
P503

Connect ACMPLP0 IVCMP to PORT5 P503.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,951 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP0 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT1_
P102

Connect ACMPLP1 IVCMP to PORT1 P102.

ANALOG_CONNECT_ACMPLP1_IVCMP_TO_PORT5_
P501

Connect ACMPLP1 IVCMP to PORT5 P501.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
0_IVREF0

Connect ACMPLP1 IVREF to ACMPLP0 IVREF0.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ACMPLP
1_IVREF1

Connect ACMPLP1 IVREF to ACMPLP1 IVREF1.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P004

Connect ACMPHS0 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P007

Connect ACMPHS0 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P015

Connect ACMPHS0 IVCMP to PORT0 P015.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ANALO
G0_VREF

Connect ACMPHS0 IVCMP to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P005

Connect ACMPHS0 IVREF to PORT0 P005.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P006

Connect ACMPHS0 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT0_
P014

Connect ACMPHS0 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P000

Connect ACMPHS1 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P002

Connect ACMPHS1 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P003

Connect ACMPHS1 IVCMP to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P007

Connect ACMPHS1 IVCMP to PORT0 P007.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P015

Connect ACMPHS1 IVCMP to PORT0 P015.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,952 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P000

Connect ACMPHS1 IVREF to PORT0 P000.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P001

Connect ACMPHS1 IVREF to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P002

Connect ACMPHS1 IVREF to PORT0 P002.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P003

Connect ACMPHS1 IVREF to PORT0 P003.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P006

Connect ACMPHS1 IVREF to PORT0 P006.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT0_
P014

Connect ACMPHS1 IVREF to PORT0 P014.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP0_IVREF_TO_PORT1_
P101

Connect ACMPLP0 IVREF to PORT1 P101.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_ANALO
G0_VREF

Connect ACMPLP1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPLP1_IVREF_TO_PORT1_
P103

Connect ACMPLP1 IVREF to PORT1 P103.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,953 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,954 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,955 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,956 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,957 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,958 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,959 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT5
_P502

Connect ACMPHS0 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_DAC12
1_DA

Connect ACMPHS0 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_PORT0
_P000

Connect ACMPHS0 IVCMP to PORT0 P000.

ANALOG_CONNECT_ACMPHS0_IVCMP_TO_ADC0_
PGA0

Connect ACMPHS0 IVCMP to ADC0 PGA0.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P500

Connect ACMPHS0 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_PORT5_
P501

Connect ACMPHS0 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS0 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS0_IVREF_TO_DAC12
0_DA

Connect ACMPHS0 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT5
_P502

Connect ACMPHS1 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_DAC12
1_DA

Connect ACMPHS1 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_PORT0
_P001

Connect ACMPHS1 IVCMP to PORT0 P001.

ANALOG_CONNECT_ACMPHS1_IVCMP_TO_ADC0_
PGA1

Connect ACMPHS1 IVCMP to ADC0 PGA1.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P500

Connect ACMPHS1 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_PORT5_
P501

Connect ACMPHS1 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS1 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS1_IVREF_TO_DAC12
0_DA

Connect ACMPHS1 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT5
_P502

Connect ACMPHS2 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_DAC12
1_DA

Connect ACMPHS2 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_PORT0
_P002

Connect ACMPHS2 IVCMP to PORT0 P002.

ANALOG_CONNECT_ACMPHS2_IVCMP_TO_ADC0_
PGA2

Connect ACMPHS2 IVCMP to ADC0 PGA2.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,960 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P500

Connect ACMPHS2 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_PORT5_
P501

Connect ACMPHS2 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS2 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS2_IVREF_TO_DAC12
0_DA

Connect ACMPHS2 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT5
_P502

Connect ACMPHS3 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_DAC12
1_DA

Connect ACMPHS3 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_PORT0
_P004

Connect ACMPHS3 IVCMP to PORT0 P004.

ANALOG_CONNECT_ACMPHS3_IVCMP_TO_ADC1_
PGA3

Connect ACMPHS3 IVCMP to ADC1 PGA3.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P500

Connect ACMPHS3 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_PORT5_
P501

Connect ACMPHS3 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS3 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS3_IVREF_TO_DAC12
0_DA

Connect ACMPHS3 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT5
_P502

Connect ACMPHS4 IVCMP to PORT5 P502.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_DAC12
1_DA

Connect ACMPHS4 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_PORT0
_P005

Connect ACMPHS4 IVCMP to PORT0 P005.

ANALOG_CONNECT_ACMPHS4_IVCMP_TO_ADC1_
PGA4

Connect ACMPHS4 IVCMP to ADC1 PGA4.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P500

Connect ACMPHS4 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_PORT5_
P501

Connect ACMPHS4 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS4 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS4_IVREF_TO_DAC12
0_DA

Connect ACMPHS4 IVREF to DAC120 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT5
_P502

Connect ACMPHS5 IVCMP to PORT5 P502.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,961 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Analog Connections

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_DAC12
1_DA

Connect ACMPHS5 IVCMP to DAC121 DA.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_PORT0
_P006

Connect ACMPHS5 IVCMP to PORT0 P006.

ANALOG_CONNECT_ACMPHS5_IVCMP_TO_ADC1_
PGA5

Connect ACMPHS5 IVCMP to ADC1 PGA5.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P500

Connect ACMPHS5 IVREF to PORT5 P500.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_PORT5_
P501

Connect ACMPHS5 IVREF to PORT5 P501.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_ANALO
G0_VREF

Connect ACMPHS5 IVREF to ANALOG0 VREF.

ANALOG_CONNECT_ACMPHS5_IVREF_TO_DAC12
0_DA

Connect ACMPHS5 IVREF to DAC120 DA.

 Cache Functions
Board Support Package » Supported MCUs » S7G2

Enumerations

enum bsp_cache_state_t

Detailed Description

This module implements cache functions.

Enumeration Type Documentation

◆ bsp_cache_state_t

enum bsp_cache_state_t

Cache enum. Passed into cache functions such as R_BSP_CacheOff() and R_BSP_CacheSet.

 Clock Initialization
Board Support Package » Supported MCUs » S7G2

Macros

#define CGC_SRAM_ZERO_WAIT_CYCLES (0U)

 Specify zero wait states for SRAM.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,962 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Clock Initialization

#define CGC_SRAM_ONE_WAIT_CYCLES (1U)

 Specify one wait states for SRAM.

#define CGC_ROM_ZERO_WAIT_CYCLES (0U)

 Specify zero wait states for ROM.

#define CGC_ROM_ONE_WAIT_CYCLES (1U)

 Specify one wait states for ROM.

#define CGC_ROM_TWO_WAIT_CYCLES (2U)

 Specify two wait states for ROM.

Functions

void bsp_clock_init (void)

 Sets up system clocks. More...

uint32_t bsp_cpu_clock_get (void)

 Returns frequency of CPU clock in Hz. More...

__STATIC_INLINE void bsp_clocks_rom_wait_set (uint8_t setting)

 This function sets the value of the ROMWT register which is used to
specify wait states required when accessing Flash ROM. More...

__STATIC_INLINE uint32_t bsp_clocks_rom_wait_get (void)

 This function gets the value of the ROMWT register. More...

__STATIC_INLINE void bsp_clocks_sram_wait_set (uint32_t setting)

 This function sets the RAM wait state settings for both the SRAM0
and SRAM1 RAM memory. More...

__STATIC_INLINE void bsp_clocks_hsram_wait_set (uint32_t setting)

 This function sets the RAM wait state settings for High Speed RAM
memory. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,963 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Clock Initialization

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t *p_args)

 This function sets the ROM and RAM wait state settings for a
requested system clock change (PRE) or a just updated system clock
change (POST) More...

Detailed Description

Functions in this file configure the system clocks based upon the macros in bsp_clock_cfg.h.

Function Documentation

◆ bsp_clock_init()

void bsp_clock_init (void)

Sets up system clocks.

MOCO is default clock out of reset. Enable new clock if chosen.

Need to start PLL source clock and let it stabilize before starting PLL

Set PLL Divider.

Set PLL Multiplier.

Set PLL Source clock.

Wait for PLL clock source to stabilize

If the system clock has failed to start call the unrecoverable error handler.

MOCO, LOCO, and subclock do not have stabilization flags that can be checked.

Wait for clock source to stabilize

Set which clock to use for system clock and divisors for all system clocks.

If the system clock has failed to be configured properly call the unrecoverable error handler.

Set USB clock divisor.

Configure BCLK

Configure SDRAM Clock

◆ bsp_clock_set_callback()

ssp_err_t bsp_clock_set_callback (bsp_clock_set_callback_args_t * p_args)

This function sets the ROM and RAM wait state settings for a requested system clock change (PRE)
or a just updated system clock change (POST)

Parameters
[in] p_args Pre/Post request and clock

frequency information

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,964 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Clock Initialization

Return values
return SSP_SUCCESS

The current frequency must be less than 32 MHz and the mcu must be in high speed mode, before
changing wait cycles to 0.

< No MEMWAIT cycles

The current frequency must be less than 32 MHz and the mcu must be in high speed mode, before
changing wait cycles to 0.

< No MEMWAIT cycles

The current frequency must be less than 32 MHz and the mcu must be in high speed mode, before
changing wait cycles to 0.

The current frequency must be less than 32 MHz and the mcu must be in high speed mode, before
changing wait cycles to 0.

The current frequency must be less than 32 MHz and the mcu must be in high speed mode, before
changing wait cycles to 0.

< No MEMWAIT cycles

Wait states for low speed RAM (SRAM0 and SRAM1)

No wait: ICLK <= 60 MHz

1 wait: ICLK > 60 MHz

Calculate the Wait states for ROM

Set the wait state BEFORE we change iclk

In this case we need to set the wait state AFTER we change iclk

Wait states for low speed RAM (SRAM0 and SRAM1)

No wait: ICLK <= 60 MHz

1 wait: ICLK > 60 MHz

Calculate the Wait states for ROM

Set the wait state BEFORE we change iclk

In this case we need to set the wait state AFTER we change iclk

Wait states for low speed RAM (SRAM0 and SRAM1)

No wait: ICLK <= 60 MHz

1 wait: ICLK > 60 MHz

Calculate the Wait states for ROM

Set the wait state BEFORE we change iclk

In this case we need to set the wait state AFTER we change iclk

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,965 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Clock Initialization

◆ bsp_clocks_hsram_wait_set()

__STATIC_INLINE void bsp_clocks_hsram_wait_set (uint32_t setting)

This function sets the RAM wait state settings for High Speed RAM memory.

Parameters
[in] setting The number of wait states to

be used.

Return values
none

◆ bsp_clocks_rom_wait_get()

__STATIC_INLINE uint32_t bsp_clocks_rom_wait_get (void)

This function gets the value of the ROMWT register.

Return values
MEMWAIT setting

◆ bsp_clocks_rom_wait_set()

__STATIC_INLINE void bsp_clocks_rom_wait_set (uint8_t setting)

This function sets the value of the ROMWT register which is used to specify wait states required
when accessing Flash ROM.

Parameters
[in] setting The number of wait states to

be used.

Return values
none

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,966 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Clock Initialization

◆ bsp_clocks_sram_wait_set()

__STATIC_INLINE void bsp_clocks_sram_wait_set (uint32_t setting)

This function sets the RAM wait state settings for both the SRAM0 and SRAM1 RAM memory.

Parameters
[in] setting The number of wait states to

be used.

Return values
none

◆ bsp_cpu_clock_get()

uint32_t bsp_cpu_clock_get (void)

Returns frequency of CPU clock in Hz.

Return values
Frequency of the CPU in Hertz

 Hardware Locks
Board Support Package » Supported MCUs » S7G2

Functions

SSP_HW_LOCK_DEFINE (ADC, 0U, 0U)

SSP_HW_LOCK_DEFINE (AGT, 0U, 0U)

SSP_HW_LOCK_DEFINE (BSC, 0U, 1U)

SSP_HW_LOCK_DEFINE (CAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CAN, 0U, 0U)

SSP_HW_LOCK_DEFINE (COMP_HS, 0U, 0U)

SSP_HW_LOCK_DEFINE (CRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (CTSU, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,967 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Hardware Locks

SSP_HW_LOCK_DEFINE (DAAD, 0U, 0U)

SSP_HW_LOCK_DEFINE (DAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DOC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DMAC, 0U, 0U)

SSP_HW_LOCK_DEFINE (DRW, 0U, 0U)

SSP_HW_LOCK_DEFINE (DTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (ELC, 0U, 0U)

SSP_HW_LOCK_DEFINE (EPTPC, 0U, 0U)

SSP_HW_LOCK_DEFINE (ETHER, 0U, 0U)

SSP_HW_LOCK_DEFINE (FCU, 0U, 0U)

SSP_HW_LOCK_DEFINE (GLCDC, 0U, 0U)

SSP_HW_LOCK_DEFINE (GPT, 0U, 0U)

SSP_HW_LOCK_DEFINE (ICU, 0U, 0U)

SSP_HW_LOCK_DEFINE (IIC, 0U, 0U)

SSP_HW_LOCK_DEFINE (IRDA, 0U, 0U)

SSP_HW_LOCK_DEFINE (IWDT, 0U, 0U)

SSP_HW_LOCK_DEFINE (JPEG, 0U, 0U)

SSP_HW_LOCK_DEFINE (KEY, 0U, 0U)

SSP_HW_LOCK_DEFINE (LPM, 1U, 0U)

SSP_HW_LOCK_DEFINE (LVD, 0U, 0U)

SSP_HW_LOCK_DEFINE (MMF, 0U, 0U)

SSP_HW_LOCK_DEFINE (MPU, 0U, 0U)

SSP_HW_LOCK_DEFINE (OPS, 0U, 0U)

SSP_HW_LOCK_DEFINE (PDC, 0U, 0U)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,968 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Hardware Locks

SSP_HW_LOCK_DEFINE (POEG, 0U, 0U)

SSP_HW_LOCK_DEFINE (QSPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SPI, 0U, 0U)

SSP_HW_LOCK_DEFINE (RTC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCE, 0U, 0U)

SSP_HW_LOCK_DEFINE (SCI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SRC, 0U, 0U)

SSP_HW_LOCK_DEFINE (SSI, 0U, 0U)

SSP_HW_LOCK_DEFINE (SDHIMMC, 0U, 0U)

SSP_HW_LOCK_DEFINE (TSN, 0U, 0U)

SSP_HW_LOCK_DEFINE (USB, 0U, 0U)

SSP_HW_LOCK_DEFINE (WDT, 0U, 0U)

Detailed Description

This file allocates hardware locks used in Atomic Locking.

Function Documentation

◆ SSP_HW_LOCK_DEFINE() [1/44]

SSP_HW_LOCK_DEFINE (ADC , 0U , 0U)

Used to allocated hardware locks. Parameters are as follows:

1. IP name (ssp_ip_t enum without the SSP_IP_ prefix).
2. Unit number (used for blocks with variations like USB, not to be confused with ADC unit).
3. Channel numberADC

◆ SSP_HW_LOCK_DEFINE() [2/44]

SSP_HW_LOCK_DEFINE (AGT , 0U , 0U)

AGT

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,969 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [3/44]

SSP_HW_LOCK_DEFINE (BSC , 0U , 1U)

BSC

◆ SSP_HW_LOCK_DEFINE() [4/44]

SSP_HW_LOCK_DEFINE (CAC , 0U , 0U)

CAC

◆ SSP_HW_LOCK_DEFINE() [5/44]

SSP_HW_LOCK_DEFINE (CAN , 0U , 0U)

CAN

◆ SSP_HW_LOCK_DEFINE() [6/44]

SSP_HW_LOCK_DEFINE (COMP_HS , 0U , 0U)

COMP_HS

◆ SSP_HW_LOCK_DEFINE() [7/44]

SSP_HW_LOCK_DEFINE (CRC , 0U , 0U)

CRC

◆ SSP_HW_LOCK_DEFINE() [8/44]

SSP_HW_LOCK_DEFINE (CTSU , 0U , 0U)

CTSU

◆ SSP_HW_LOCK_DEFINE() [9/44]

SSP_HW_LOCK_DEFINE (DAAD , 0U , 0U)

DAAD

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,970 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [10/44]

SSP_HW_LOCK_DEFINE (DAC , 0U , 0U)

DAC

◆ SSP_HW_LOCK_DEFINE() [11/44]

SSP_HW_LOCK_DEFINE (DOC , 0U , 0U)

DOC

◆ SSP_HW_LOCK_DEFINE() [12/44]

SSP_HW_LOCK_DEFINE (DMAC , 0U , 0U)

DMAC

◆ SSP_HW_LOCK_DEFINE() [13/44]

SSP_HW_LOCK_DEFINE (DRW , 0U , 0U)

DRW

◆ SSP_HW_LOCK_DEFINE() [14/44]

SSP_HW_LOCK_DEFINE (DTC , 0U , 0U)

DTC

◆ SSP_HW_LOCK_DEFINE() [15/44]

SSP_HW_LOCK_DEFINE (ELC , 0U , 0U)

ELC

◆ SSP_HW_LOCK_DEFINE() [16/44]

SSP_HW_LOCK_DEFINE (EPTPC , 0U , 0U)

EPTPC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,971 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [17/44]

SSP_HW_LOCK_DEFINE (ETHER , 0U , 0U)

ETHER

◆ SSP_HW_LOCK_DEFINE() [18/44]

SSP_HW_LOCK_DEFINE (FCU , 0U , 0U)

FCU

◆ SSP_HW_LOCK_DEFINE() [19/44]

SSP_HW_LOCK_DEFINE (GLCDC , 0U , 0U)

GLCDC

◆ SSP_HW_LOCK_DEFINE() [20/44]

SSP_HW_LOCK_DEFINE (GPT , 0U , 0U)

GPT

◆ SSP_HW_LOCK_DEFINE() [21/44]

SSP_HW_LOCK_DEFINE (ICU , 0U , 0U)

ICU

◆ SSP_HW_LOCK_DEFINE() [22/44]

SSP_HW_LOCK_DEFINE (IIC , 0U , 0U)

IIC

◆ SSP_HW_LOCK_DEFINE() [23/44]

SSP_HW_LOCK_DEFINE (IRDA , 0U , 0U)

IRDA

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,972 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [24/44]

SSP_HW_LOCK_DEFINE (IWDT , 0U , 0U)

IWDT

◆ SSP_HW_LOCK_DEFINE() [25/44]

SSP_HW_LOCK_DEFINE (JPEG , 0U , 0U)

JPEG

◆ SSP_HW_LOCK_DEFINE() [26/44]

SSP_HW_LOCK_DEFINE (KEY , 0U , 0U)

KEY

◆ SSP_HW_LOCK_DEFINE() [27/44]

SSP_HW_LOCK_DEFINE (LPM , 1U , 0U)

LPM

◆ SSP_HW_LOCK_DEFINE() [28/44]

SSP_HW_LOCK_DEFINE (LVD , 0U , 0U)

LVD

◆ SSP_HW_LOCK_DEFINE() [29/44]

SSP_HW_LOCK_DEFINE (MMF , 0U , 0U)

MMF

◆ SSP_HW_LOCK_DEFINE() [30/44]

SSP_HW_LOCK_DEFINE (MPU , 0U , 0U)

MPU

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,973 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [31/44]

SSP_HW_LOCK_DEFINE (OPS , 0U , 0U)

OPS

◆ SSP_HW_LOCK_DEFINE() [32/44]

SSP_HW_LOCK_DEFINE (PDC , 0U , 0U)

PDC

◆ SSP_HW_LOCK_DEFINE() [33/44]

SSP_HW_LOCK_DEFINE (POEG , 0U , 0U)

POEG

◆ SSP_HW_LOCK_DEFINE() [34/44]

SSP_HW_LOCK_DEFINE (QSPI , 0U , 0U)

QSPI

◆ SSP_HW_LOCK_DEFINE() [35/44]

SSP_HW_LOCK_DEFINE (SPI , 0U , 0U)

SPI

◆ SSP_HW_LOCK_DEFINE() [36/44]

SSP_HW_LOCK_DEFINE (RTC , 0U , 0U)

RTC

◆ SSP_HW_LOCK_DEFINE() [37/44]

SSP_HW_LOCK_DEFINE (SCE , 0U , 0U)

SCE

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,974 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Hardware Locks

◆ SSP_HW_LOCK_DEFINE() [38/44]

SSP_HW_LOCK_DEFINE (SCI , 0U , 0U)

SCI

◆ SSP_HW_LOCK_DEFINE() [39/44]

SSP_HW_LOCK_DEFINE (SRC , 0U , 0U)

SRC

◆ SSP_HW_LOCK_DEFINE() [40/44]

SSP_HW_LOCK_DEFINE (SSI , 0U , 0U)

SSI

◆ SSP_HW_LOCK_DEFINE() [41/44]

SSP_HW_LOCK_DEFINE (SDHIMMC , 0U , 0U)

SDHIMMC

◆ SSP_HW_LOCK_DEFINE() [42/44]

SSP_HW_LOCK_DEFINE (TSN , 0U , 0U)

TSN

◆ SSP_HW_LOCK_DEFINE() [43/44]

SSP_HW_LOCK_DEFINE (USB , 0U , 0U)

USB

◆ SSP_HW_LOCK_DEFINE() [44/44]

SSP_HW_LOCK_DEFINE (WDT , 0U , 0U)

WDT

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,975 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Module Start and Stop

 Module Start and Stop
Board Support Package » Supported MCUs » S7G2

Macros

#define BSP_COMPILE_TIME_ASSERT(e) ((void) sizeof(char[1 - 2 * !(e)]))

Functions

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

 Stop module (enter module stop). Stopping a module disables clocks
to the peripheral to save power. More...

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

 Stop module (enter module stop) even if the module is used for
multiple channels. More...

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

 Start module (cancel module stop). Starting a module enables clocks
to the peripheral and allows registers to be set. More...

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool
*const p_stop)

Detailed Description

Module start and stop functions are provided to enable or disable peripherals.

Macro Definition Documentation

◆ BSP_COMPILE_TIME_ASSERT

#define BSP_COMPILE_TIME_ASSERT (e) ((void) sizeof(char[1 - 2 * !(e)]))

Used to generate a compiler error (divided by 0 error) if the assertion fails. This is used in place of
"#error" for expressions that cannot be evaluated by the preprocessor like sizeof().

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,976 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Module Start and Stop

◆ R_BSP_ModuleStart()

ssp_err_t R_BSP_ModuleStart (ssp_feature_t const *const p_feature)

Start module (cancel module stop). Starting a module enables clocks to the peripheral and allows
registers to be set.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is started

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit.

◆ R_BSP_ModuleStateGet()

ssp_err_t R_BSP_ModuleStateGet (ssp_feature_t const *const p_feature, bool *const p_stop)

The g_bsp_module_stop array must have entries for each ssp_ip_t enum value.

Save the current module state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,977 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > Module Start and Stop

◆ R_BSP_ModuleStop()

ssp_err_t R_BSP_ModuleStop (ssp_feature_t const *const p_feature)

Stop module (enter module stop). Stopping a module disables clocks to the peripheral to save
power.

Note
Some module stop bits are shared between peripherals. Modules with shared module stop bits cannot be stopped to
prevent unintentionally stopping related modules.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

SSP_ERR_INVALID_ARGUMENT Module has no module stop bit, or module
stop bit is shared and entering module stop
is not supported because it could affect
other modules.

◆ R_BSP_ModuleStopAlways()

ssp_err_t R_BSP_ModuleStopAlways (ssp_feature_t const *const p_feature)

Stop module (enter module stop) even if the module is used for multiple channels.

Parameters
[in] p_feature Pointer to definition of the

feature, defined by
ssp_feature_t.

Return values
SSP_SUCCESS Module is stopped

SSP_ERR_ASSERTION p_feature::id is invalid

 ROM Registers
Board Support Package » Supported MCUs » S7G2

Macros

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,978 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Supported MCUs > S7G2 > ROM Registers

#define BSP_ROM_REG_OFS1_SETTING
 (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFFF9FFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 9))

Detailed Description

Defines MCU registers that are in ROM (e.g. OFS) and must be set at compile-time. All registers can
be set using bsp_cfg.h.

Macro Definition Documentation

◆ BSP_ROM_REG_OFS1_SETTING

#define BSP_ROM_REG_OFS1_SETTING (((uint32_t)BSP_CFG_ROM_REG_OFS1 & 0xFFFFF9FFU) |
((uint32_t)BSP_CFG_HOCO_FREQUENCY << 9))

OR in the HOCO frequency setting from bsp_clock_cfg.h with the OFS1 setting from bsp_cfg.h.

5.2.2 Common BSP Code
Board Support Package

Code common to all BSPs. More...

Modules

Common BSP LED Code and Types

 Common support for board LEDs.

Compiler Support

Software Delay

 Common function to implement a software delay.

Error Checking

Module specific feature overrides

Grouped Interrupt Support

Interrupt Initialization

Atomic Locking

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,979 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code

Register Protection

BSP_MCU_SBRK

Macros

#define BSP_IRQ_DISABLED (0xFFU)

#define SSP_ASSERT_FAIL

#define SSP_ERROR_LOG(err, module, version)

#define SSP_ASSERT(a)

#define SSP_ERROR_RETURN(a, err, module, version)

#define SSP_CRITICAL_SECTION_DEFINE uint32_t old_mask_level = 0U

#define SSP_CRITICAL_SECTION_ENTER

#define SSP_CRITICAL_SECTION_EXIT __set_PRIMASK(old_mask_level)

Functions

ssp_err_t R_BSP_VersionGet (ssp_version_t *p_version)

 Set BSP version based on compile time macros. More...

ssp_err_t R_SSP_VersionGet (ssp_pack_version_t *const p_version)

 Set SSP version based on compile time macros. More...

void bsp_init_internal (void *p_args)

 Default initialization function, used only if bsp_init is not defined in
the user application.

Detailed Description

Code common to all BSPs.

Implements functions that are common to all BSPs.

Macro Definition Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,980 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code

◆ BSP_IRQ_DISABLED

#define BSP_IRQ_DISABLED (0xFFU)

Used to signify that an ELC event is not able to be used as an interrupt.

◆ SSP_ASSERT

#define SSP_ASSERT (a)

{ \

 if ((a)) \

 { \

 (void) 0;/* Do nothing */ \

 } \

 else \

 { \

 SSP_ASSERT_FAIL; \

 return SSP_ERR_ASSERTION; \

 } \

 }

Default assertion calls SSP_ASSERT_FAIL if condition "a" is false. Used to identify incorrect use of
API's in SSP functions.

◆ SSP_ASSERT_FAIL

#define SSP_ASSERT_FAIL

Function call to insert before returning assertion error.

◆ SSP_CRITICAL_SECTION_DEFINE

#define SSP_CRITICAL_SECTION_DEFINE uint32_t old_mask_level = 0U

This check is performed to select suitable ASM API with respect to core This macro defines a
variable for saving previous mask value

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,981 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code

◆ SSP_CRITICAL_SECTION_ENTER

#define SSP_CRITICAL_SECTION_ENTER

old_mask_level = __get_PRIMASK(); \

 __set_PRIMASK(1U)

This macro defined to get the mask value

◆ SSP_CRITICAL_SECTION_EXIT

#define SSP_CRITICAL_SECTION_EXIT __set_PRIMASK(old_mask_level)

This macro defined to restore the old mask value

◆ SSP_ERROR_LOG

#define SSP_ERROR_LOG (err, module, version)

This function is called before returning an error code. To stop on a runtime error, define
ssp_error_log in user code and do required debugging (breakpoints, stack dump, etc) in this
function.

◆ SSP_ERROR_RETURN

#define SSP_ERROR_RETURN (a, err, module, version)

{ \

 if ((a)) \

 { \

 (void) 0; /* Do nothing */ \

 } \

 else \

 { \

 SSP_ERROR_LOG((err), (module), (version)); \

 return (err); \

 } \

 }

All SSP error codes are returned using this macro. Calls SSP_ERROR_LOG function if condition "a" is
false. Used to identify runtime errors in SSP functions.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,982 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code

Function Documentation

◆ R_BSP_VersionGet()

ssp_err_t R_BSP_VersionGet (ssp_version_t * p_version)

Set BSP version based on compile time macros.

Parameters
[out] p_version Memory address to return

version information to.

Return values
SSP_SUCCESS Version information stored.

SSP_ERR_ASSERTION The parameter p_version is NULL.

◆ R_SSP_VersionGet()

ssp_err_t R_SSP_VersionGet (ssp_pack_version_t *const p_version)

Set SSP version based on compile time macros.

Parameters
[out] p_version Memory address to return

version information to.

Return values
SSP_SUCCESS Version information stored.

SSP_ERR_ASSERTION The parameter p_version is NULL.

5.2.2.1 Common BSP LED Code and Types
Board Support Package » Common BSP Code

Common support for board LEDs. More...

Data Structures

struct bsp_leds_t

ssp_err_t R_BSP_LedsGet (bsp_leds_t *p_leds)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,983 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Common BSP LED Code and Types

 Return information about the LEDs on the current board. More...

Detailed Description

Common support for board LEDs.

Contains types and functions that allow for common use of LEDs on boards

Function Documentation

◆ R_BSP_LedsGet()

ssp_err_t R_BSP_LedsGet (bsp_leds_t * p_leds)

Return information about the LEDs on the current board.

Structure with LED information.

Parameters
[out] p_leds Pointer to structure where

LED info is stored.

 bsp_leds_t Struct Reference
Board Support Package » Common BSP Code » Common BSP LED Code and Types

#include <bsp_common_leds.h>

Data Fields

uint16_t led_count

 The number of LEDs on this board.

ioport_port_pin_t const * p_leds

 Pointer to an array of IOPORT pins for controlling LEDs.

Detailed Description

Information on how many LEDs and what pins they are on.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,984 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Common BSP LED Code and Types > bsp_leds_t Struct Reference

The documentation for this struct was generated from the following file:

bsp_common_leds.h

5.2.2.2 Compiler Support
Board Support Package » Common BSP Code

Detailed Description

The macros in this file are defined based upon which compiler is being used. The macros abstract
common section names and gives a common way to place code in a particular section. Some macros
have a version that ends in V2. These were created to unify the usage between compilers while
retaining backwards compatibility in the existing macros and should be preferred in new code.

Description of macros:

BSP_SECTION_STACK - Name of section where stack(s) are stored
BSP_SECTION_HEAP - Name of section where heap(s) are stored
BSP_SECTION_VECTOR - Name of section where vector table is stored
BSP_SECTION_ROM_REGISTERS - Name of section where ROM registers are located
BSP_PLACE_IN_SECTION - Macro for placing code in a particular section
BSP_ALIGN_VARIABLE - Macro for specifiying a minimum alignment in bytes
BSP_PACKED - Macro for setting a 1 byte alignment to remove padding
BSP_DONT_REMOVE - Keyword to tell linker/compiler to not optimize out a variable or
function

Note
Currently supported compilers are GCC and IAR

5.2.2.3 Software Delay
Board Support Package » Common BSP Code

Common function to implement a software delay. More...

Functions

void R_BSP_SoftwareDelay (uint32_t delay, bsp_delay_units_t units)

 Delay the specified duration in units and return. More...

Detailed Description

Common function to implement a software delay.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,985 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Software Delay

Implements a software delay function for all BSPs.

Function Documentation

◆ R_BSP_SoftwareDelay()

void R_BSP_SoftwareDelay (uint32_t delay, bsp_delay_units_t units)

Delay the specified duration in units and return.

Parameters
[in] delay The number of 'units' to

delay.

[in] units The 'base'
(bsp_delay_units_t) for the
units specified. Valid values
are:
BSP_DELAY_UNITS_SECONDS
, BSP_DELAY_UNITS_MILLISE
CONDS, BSP_DELAY_UNITS_
MICROSECONDS.
For example:
At 1 MHz one cycle takes 1
microsecond (.000001
seconds).
At 12 MHz one cycle takes
1/12 microsecond or 83
nanoseconds.
Therefore one run through
software_delay_loop() takes:
~ (83 *
DELAY_LOOP_CYCLES) or
332 ns. A delay of 2 us
therefore requires
2000ns/332ns or 6 loops.

The 'theoretical' maximum delay that may be obtained is determined by a full 32 bit loop count
and the system clock rate. @240MHz: ((0xFFFFFFFF loops * 4 cycles /loop) / 240000000) = 71
seconds. @32MHz: ((0xFFFFFFFF loops * 4 cycles /loop) / 32000000) = 536 seconds

Note that requests for very large delays will be affected by rounding in the calculations and the
actual delay achieved may be slightly less. @32 MHz, for example, a request for 532 seconds will
be closer to 536 seconds.

Note also that if the calculations result in a loop_cnt of zero, the software_delay_loop() function is
not called at all. In this case the requested delay is too small (nanoseconds) to be carried out by
the loop itself, and the overhead associated with executing the code to just get to this point has
certainly satisfied the requested delay.

Note
This function calls bsp_cpu_clock_get() which ultimately calls R_CGC_SystemClockFreqGet() and therefore
requires that the BSP has already initialized the CGC (which it does as part of the Sysinit). Care should be taken to
ensure this remains the case if in the future this function were to be called as part of the BSP initialization.

Return values

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,986 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Software Delay

None.

Convert the requested time to microseconds.

Get the system clock frequency in Hz.

Get the # of nanoseconds/cycle.

Only delay if the supplied parameters constitute a delay.

5.2.2.4 Error Checking
Board Support Package » Common BSP Code

Macros

#define BSP_STACK_ALIGNMENT (8)

Detailed Description

This file performs build time error checking where possible.

Macro Definition Documentation

◆ BSP_STACK_ALIGNMENT

#define BSP_STACK_ALIGNMENT (8)

Stacks (and heap) must be sized and aligned to an integer multiple of this number.

5.2.2.5 Module specific feature overrides
Board Support Package » Common BSP Code

Data Structures

struct bsp_feature_sci_t

struct bsp_feature_rspi_t

struct bsp_feature_lvd_t

struct bsp_feature_acmphs_t

struct bsp_feature_adc_t

struct bsp_feature_can_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,987 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides

struct bsp_feature_dac_t

struct bsp_feature_flash_lp

struct bsp_feature_flash_hp

struct bsp_feature_ctsu_t

struct bsp_feature_ioport_t

struct bsp_feature_cgc_t

struct bsp_feature_opamp_t

struct bsp_feature_sdhi_t

struct bsp_feature_ssi_t

struct bsp_feature_icu_t

struct bsp_feature_lpmv2_t

struct bsp_feature_riic_t

Functions

void R_BSP_FeatureSciGet (bsp_feature_sci_t *p_sci_feature)

void R_BSP_FeatureRspiGet (bsp_feature_rspi_t *p_rspi_feature)

void R_BSP_FeatureLvdGet (bsp_feature_lvd_t *p_lvd_feature)

void R_BSP_FeatureAcmphsGet (bsp_feature_acmphs_t
*p_acmphs_feature)

void R_BSP_FeatureAdcGet (bsp_feature_adc_t *p_adc_feature)

void R_BSP_FeatureCtsuGet (bsp_feature_ctsu_t *p_ctsu_feature)

void R_BSP_FeatureIoportGet (bsp_feature_ioport_t *p_ioport_feature)

void R_BSP_FeatureCgcGet (bsp_feature_cgc_t const **pp_cgc_feature)

void R_BSP_FeatureCanGet (bsp_feature_can_t *p_can_feature)

void R_BSP_FeatureDacGet (bsp_feature_dac_t *p_dac_feature)

void R_BSP_FeatureFlashLpGet (bsp_feature_flash_lp *p_flash_lp_feature)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,988 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides

void R_BSP_FeatureOpampGet (bsp_feature_opamp_t *const
p_opamp_feature)

void R_BSP_FeatureSdhiGet (bsp_feature_sdhi_t *p_sdhi_feature)

void R_BSP_FeatureSsiGet (bsp_feature_ssi_t *p_ssi_feature)

void R_BSP_FeatureICUGet (bsp_feature_icu_t *p_icu_feature)

void R_BSP_FeatureLPMV2Get (bsp_feature_lpmv2_t *p_lpmv2_feature)

void R_BSP_FeatureRIICGet (bsp_feature_riic_t *p_riic_feature)

Detailed Description

This group contains lookup functions that provide MCU specific feature information that is not
available in the factory flash.

Function Documentation

◆ R_BSP_FeatureAcmphsGet()

void R_BSP_FeatureAcmphsGet (bsp_feature_acmphs_t * p_acmphs_feature)

Get MCU specific ACMPHS features

Parameters
[out] p_acmphs_feature Pointer to structure to store

ACMPHS features.

◆ R_BSP_FeatureAdcGet()

void R_BSP_FeatureAdcGet (bsp_feature_adc_t * p_adc_feature)

Get MCU specific ADC features

Parameters
[out] p_adc_feature Pointer to structure to store

ADC features.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,989 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides

◆ R_BSP_FeatureCanGet()

void R_BSP_FeatureCanGet (bsp_feature_can_t * p_can_feature)

Get MCU specific CAN features

Parameters
[out] p_can_feature Pointer to structure to store

CAN features.

◆ R_BSP_FeatureCgcGet()

void R_BSP_FeatureCgcGet (bsp_feature_cgc_t const ** pp_cgc_feature)

Get MCU specific CGC features

Parameters
[out] pp_cgc_feature Pointer to structure to store

pointer to CGC features.

◆ R_BSP_FeatureCtsuGet()

void R_BSP_FeatureCtsuGet (bsp_feature_ctsu_t * p_ctsu_feature)

Get MCU specific CTSU features

Parameters
[out] p_ctsu_feature Pointer to structure to store

CTSU features.

◆ R_BSP_FeatureDacGet()

void R_BSP_FeatureDacGet (bsp_feature_dac_t * p_dac_feature)

Get MCU specific DAC features

Parameters
[out] p_dac_feature Pointer to structure to store

DAC features.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,990 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides

◆ R_BSP_FeatureFlashLpGet()

void R_BSP_FeatureFlashLpGet (bsp_feature_flash_lp * p_flash_lp_feature)

Get MCU specific FLASH LP features

Parameters
[out] p_flash_lp_feature Pointer to structure to store

Flash LP features.

S124 uses 1 macro of 128K and single access for Code Flash. It can therefore access 128K as a
single macro and it's Code Flash memory is effectively organized as a single macro of 128K,
yielding a total of 128K Code Flash.

S128 uses 1 macro of 256K and single access for Code Flash. It can therefore access 256K as a
single macro and it's Code Flash memory is effectively organized as a single macro of 256K,
yielding a total of 256K Code Flash.

S1JA uses 2 macros of 128K and double access for Code Flash. It can therefore access 256K as a
single macro and it's Code Flash memory is effectively organized as 1 macro of 256K each, yielding
a total of 256K Code Flash.

S3A1 uses 4 macros of 256K and double access for Code Flash. It can therefore access 512K as a
single macro and it's Code Flash memory is effectively organized as 2 macros of 512K each,
yielding a total of 1MB Code Flash. This generates a macro boundary at 512K which is important for
blank checking.

S3A7 uses 4 macros of 256K and double access for Code Flash. It can therefore access 512K as a
single macro and it's Code Flash memory is effectively organized as 2 macros of 512K each,
yielding a total of 1MB Code Flash. This generates a macro boundary at 512K which is important for
blank checking.

◆ R_BSP_FeatureICUGet()

void R_BSP_FeatureICUGet (bsp_feature_icu_t * p_icu_feature)

Get MCU specific DMAC features

Parameters
[out] p_icu_feature Pointer to structure to store

DMAC features.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,991 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides

◆ R_BSP_FeatureIoportGet()

void R_BSP_FeatureIoportGet (bsp_feature_ioport_t * p_ioport_feature)

Get MCU specific I/O port features

Parameters
[out] p_ioport_feature Pointer to structure to store

I/O port features.

◆ R_BSP_FeatureLPMV2Get()

void R_BSP_FeatureLPMV2Get (bsp_feature_lpmv2_t * p_lpmv2_feature)

Get MCU specific LPMV2 features

Parameters
[out] p_lpmv2_feature Pointer to structure to store

LPMV2 features.

◆ R_BSP_FeatureLvdGet()

void R_BSP_FeatureLvdGet (bsp_feature_lvd_t * p_lvd_feature)

Get MCU specific LVD features.

Parameters
[out] p_lvd_feature Pointer to structure to store

LVD features.

◆ R_BSP_FeatureOpampGet()

void R_BSP_FeatureOpampGet (bsp_feature_opamp_t *const p_opamp_feature)

Get MCU specific OPAMP features

Parameters
[out] p_opamp_feature Pointer to structure to store

OPAMP features.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,992 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides

◆ R_BSP_FeatureRIICGet()

void R_BSP_FeatureRIICGet (bsp_feature_riic_t * p_riic_feature)

Get MCU specific RIIC features

Parameters
[out] p_riic_feature Pointer to structure to store

RIIC features.

< Initialize the input rise time for standard and fast mode

< Initialize the input rise time for fastplus mode

< Initialize the input rise time for standard and fast mode

< Initialize the input rise time for fastplus mode

< Initialize the input rise time for standard and fast mode

< Initialize the input rise time for fastplus mode

< Initialize the input rise time for standard and fast mode

< Initialize the input rise time for fastplus mode

< Initialize the input rise time for standard and fast mode

< Initialize the input rise time for fastplus mode

< Initialize the input rise time for standard and fast mode

< Initialize the input rise time for fastplus mode

< Initialize the input rise time for standard and fast mode

< Initialize the input rise time for fastplus mode

< Initialize the input rise time for standard and fast mode

< Initialize the input rise time for fastplus mode

< Initialize the input rise time for standard and fast mode

< Initialize the input rise time for fastplus mode

< Initialize the input rise time for standard and fast mode

< Initialize the input rise time for fastplus mode

< Initialize the input rise time for standard and fast mode

< Initialize the input rise time for fastplus mode

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,993 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides

◆ R_BSP_FeatureRspiGet()

void R_BSP_FeatureRspiGet (bsp_feature_rspi_t * p_rspi_feature)

Get MCU specific RSPI features.

Parameters
[out] p_rspi_feature Pointer to structure to store

RSPI features.

◆ R_BSP_FeatureSciGet()

void R_BSP_FeatureSciGet (bsp_feature_sci_t * p_sci_feature)

Get MCU specific SCI features.

Parameters
[out] p_sci_feature Pointer to structure to store

SCI features.

◆ R_BSP_FeatureSdhiGet()

void R_BSP_FeatureSdhiGet (bsp_feature_sdhi_t * p_sdhi_feature)

Get MCU specific SDHI features

Parameters
[out] p_sdhi_feature Pointer to structure to store

SDHI features.

◆ R_BSP_FeatureSsiGet()

void R_BSP_FeatureSsiGet (bsp_feature_ssi_t * p_ssi_feature)

Get MCU specific SSI features

Parameters
[out] p_ssi_feature Pointer to structure to store

SSI features.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,994 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_sci_t Struct Reference

 bsp_feature_sci_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint8_t clock

 Which clock the SCI is connected to.

Detailed Description

SCI MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_rspi_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint8_t clock

 Which clock the RSPI is connected to.

Detailed Description

RSPI MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,995 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_lvd_t Struct Reference

 bsp_feature_lvd_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint8_t monitor_1_low_threshold

 Monitor 1 lowest valid voltage threshold.

uint8_t monitor_1_hi_threshold

 Monitor 1 highest valid voltage threshold.

uint8_t monitor_2_low_threshold

 Monitor 2 lowest valid voltage threshold.

uint8_t monitor_2_hi_threshold

 Monitor 2 highest valid voltage threshold.

uint32_t has_digital_filter: 1

 Whether or not LVD has a digital filter.

uint32_t negation_delay_clock

 Clock required for LVD signal negation delay after reset.

Detailed Description

LVD MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_acmphs_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,996 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_acmphs_t Struct Reference

#include <bsp_feature.h>

Data Fields

uint32_t min_wait_time_us

 Minimum stabilization wait time in microseconds.

Detailed Description

ACMPHS MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_adc_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint8_t has_sample_hold_reg: 1

 Whether or not sample and hold registers are present.

uint8_t group_b_sensors_allowed: 1

 Whether or not sensors are allowed on group b.

uint8_t sensors_exclusive: 1

 Whether or not sensors can be used with other sensors/channels.

uint8_t tsn_calibration_available: 1

 Identify if the TSN calibration data is available.

uint8_t tsn_control_available: 1

 Identify if the TSN control register is available.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,997 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_adc_t Struct Reference

int16_t tsn_slope

 TSN slope in micro-volts/°C.

uint32_t sensor_min_sampling_time

 The minimum sampling time required by the on-chip temperature
and voltage sensor in nsec.

uint32_t clock_source

 The conversion clock used by the ADC peripheral.

uint8_t addition_supported: 1

 Whether addition is supported or not in this MCU.

uint8_t calibration_reg_available: 1

 Whether CALEXE register is available.

uint8_t reference_voltage: 1

 Whether external or internal ref voltage.

Detailed Description

ADC MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_can_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint8_t mclock_only: 1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,998 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_can_t Struct Reference

 Whether or not MCLK is the only valid clock.

uint8_t check_pclkb_ratio: 1

 Whether clock:PCLKB must be 2:1.

uint8_t clock

 Which clock to compare PCLKB to.

Detailed Description

CAN MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_dac_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint8_t has_davrefcr: 1

 Whether or not DAC has DAVREFCR register.

uint8_t has_chargepump: 1

 Whether or not DAC has DAPC register.

Detailed Description

DAC MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 4,999 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_dac_t Struct Reference

 bsp_feature_flash_lp Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint8_t flash_clock_src

 Source clock for Flash (ie. FCLK or ICLK)

uint8_t flash_cf_macros

 Number of implemented code flash hardware macros.

uint32_t cf_macro_size

 The size of the implemented Code Flash macro.

Detailed Description

FLASH LP MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_flash_hp Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint8_t cf_block_size_write

 Code Flash Block size write.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,000 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_flash_hp Struct Reference

Detailed Description

FLASH HP MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_ctsu_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint8_t ctsucr0_mask

 Mask of valid bits in CTSUCR0.

uint8_t ctsucr1_mask

 Mask of valid bits in CTSUCR1.

uint8_t ctsumch0_mask

 Mask of valid bits in CTSUMCH0.

uint8_t ctsumch1_mask

 Mask of valid bits in CTSUMCH1.

uint8_t ctsuchac_register_count

 Number of CTSUCHAC registers.

uint8_t ctsuchtrc_register_count

 Number of CTSUCHTRC registers.

Detailed Description

CTSU MCU specific features.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,001 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_ctsu_t Struct Reference

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_ioport_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint8_t has_ethernet: 1

 Whether or not MCU has Ethernet port configurations.

uint8_t has_vbatt_pins: 1

 Whether or not MCU has pins on vbatt domain.

Detailed Description

I/O port MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_cgc_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint32_t high_speed_freq_hz

 Frequency above which high speed mode must be used.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,002 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_cgc_t Struct Reference

uint32_t middle_speed_max_freq_hz

 Max frequency for middle speed, 0 indicates not available.

uint32_t low_speed_max_freq_hz

 Max frequency for low speed, 0 indicates not available.

uint32_t low_voltage_max_freq_hz

 Max frequency for low voltage, 0 indicates not available.

uint32_t low_speed_pclk_div_min

 Minimum divisor for peripheral clocks when using oscillator stop
detect.

uint32_t low_voltage_pclk_div_min

 Minimum divisor for peripheral clocks when using oscillator stop
detect.

uint32_t hoco_freq_hz

 HOCO frequency.

uint32_t main_osc_freq_hz

 Main oscillator frequency.

uint8_t modrv_mask

 Mask for MODRV in MOMCR.

uint8_t modrv_shift

 Offset of lowest bit of MODRV in MOMCR.

uint8_t sodrv_mask

 Mask for SODRV in SOMCR.

uint8_t sodrv_shift

 Offset of lowest bit of SODRV in SOMCR.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,003 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_cgc_t Struct Reference

uint8_t pll_div_max

 Maximum PLL divisor.

uint8_t pll_mul_min

 Minimum PLL multiplier.

uint8_t pll_mul_max

 Maximum PLL multiplier.

uint8_t mainclock_drive

 Main clock drive capacity.

uint32_t iclk_div: 4

 ICLK divisor.

uint32_t pllccr_type: 2

 0: No PLL, 1: PLLCCR, 2: PLLCCR2

uint32_t pll_src_configurable: 1

 Whether or not PLL clock source is configurable.

uint32_t has_subosc_speed: 1

 Whether or not MCU has subosc speed mode.

uint32_t has_lcd_clock: 1

 Whether or not MCU has LCD clock.

uint32_t has_sdram_clock: 1

 Whether or not MCU has SDRAM clock.

uint32_t has_usb_clock_div: 1

 Whether or not MCU has USB clock divisor.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,004 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_cgc_t Struct Reference

uint32_t has_pclka: 1

 Whether or not MCU has PCLKA clock.

uint32_t has_pclkb: 1

 Whether or not MCU has PCLKB clock.

uint32_t has_pclkc: 1

 Whether or not MCU has PCLKC clock.

uint32_t has_pclkd: 1

 Whether or not MCU has PCLKD clock.

uint32_t has_fclk: 1

 Whether or not MCU has FCLK clock.

uint32_t has_bclk: 1

 Whether or not MCU has BCLK clock.

uint32_t has_sdadc_clock: 1

 Whether or not MCU has SDADC clock.

uint32_t set_bck_with_pckb: 1

 Whether or not BCK bits should be set with PCKB bits.

Detailed Description

CGC MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_opamp_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,005 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_opamp_t Struct Reference

#include <bsp_feature.h>

Data Fields

uint16_t min_wait_time_lp_us

 Minimum wait time in low power mode.

uint16_t min_wait_time_ms_us

 Minimum wait time in middle speed mode.

uint16_t min_wait_time_hs_us

 Minimum wait time in high speed mode.

Detailed Description

OPAMP MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_sdhi_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint32_t has_card_detection: 1

 Whether or not MCU has card detection.

uint32_t supports_8_bit_mmc: 1

 Whether or not MCU supports 8-bit MMC.

uint32_t max_clock_frequency

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,006 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_sdhi_t Struct Reference

 Maximum clock rate supported by the peripheral.

Detailed Description

SDHI MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_ssi_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint8_t fifo_num_stages

 Number of FIFO stages on this MCU.

Detailed Description

SSI MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_icu_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint8_t has_ir_flag: 1

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,007 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_icu_t Struct Reference

 Whether or not MCU has IR flag in DELSRn register.

Detailed Description

DMAC MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_lpmv2_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint8_t has_dssby: 1

 Whether or not MCU has Deep software standby mode.

Detailed Description

LPMV2 MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

 bsp_feature_riic_t Struct Reference
Board Support Package » Common BSP Code » Module specific feature overrides

#include <bsp_feature.h>

Data Fields

uint32_t riic_std_fast_rise_time

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,008 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Module specific feature overrides > bsp_feature_riic_t Struct Reference

 Input rise time for the riic peripheral for standard and fast mode.

uint32_t riic_fastplus_rise_time

 Input rise time for the riic peripheral for the fast plus mode.

Detailed Description

RIIC MCU specific features.

The documentation for this struct was generated from the following file:

bsp_feature.h

5.2.2.6 Grouped Interrupt Support
Board Support Package » Common BSP Code

Functions

ssp_err_t R_BSP_GroupIrqWrite (bsp_grp_irq_t irq,
void(*p_callback)(bsp_grp_irq_t irq))

 Register a callback function for supported interrupts. If NULL is
passed for the callback argument then any previously registered
callbacks are unregistered. More...

void NMI_Handler (void)

 Non-maskable interrupt handler. This exception is defined by the
BSP, unlike other system exceptions, because there are many
sources that map to the NMI exception. More...

Detailed Description

Support for grouped interrupts. Grouped interrupts occur when multiple interrupt events trigger the
same interrupt vector. When this common vector is triggered the activation source must be
discovered. The functions in this file allow users to register a callback function for a single interrupt
source in an interrupt group.

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,009 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Grouped Interrupt Support

◆ NMI_Handler()

void NMI_Handler (void)

Non-maskable interrupt handler. This exception is defined by the BSP, unlike other system
exceptions, because there are many sources that map to the NMI exception.

Determine what is the cause of this interrupt.

IWDT underflow/refresh error interrupt is requested.

Clear IWDT flag.

WDT underflow/refresh error interrupt is requested.

Clear WDT flag.

Voltage monitoring 1 interrupt is requested.

Clear LVD1 flag.

Voltage monitoring 2 interrupt is requested.

Clear LVD2 flag.

Oscillation stop detection interrupt is requested.

Clear oscillation stop detect flag.

NMI pin interrupt is requested.

Clear NMI pin interrupt flag.

RAM Parity Error interrupt is requested.

Clear RAM parity error flag.

RAM ECC Error interrupt is requested.

Clear RAM ECC error flag.

Determine what is the cause of this interrupt.

IWDT underflow/refresh error interrupt is requested.

Clear IWDT flag.

WDT underflow/refresh error interrupt is requested.

Clear WDT flag.

Voltage monitoring 1 interrupt is requested.

Clear LVD1 flag.

Voltage monitoring 2 interrupt is requested.

Clear LVD2 flag.

Oscillation stop detection interrupt is requested.

Clear oscillation stop detect flag.

NMI pin interrupt is requested.

Clear NMI pin interrupt flag.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,010 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Grouped Interrupt Support

RAM Parity Error interrupt is requested.

Clear RAM parity error flag.

RAM ECC Error interrupt is requested.

Clear RAM ECC error flag.

MPU Stack Error interrupt is requested.

Clear MPU Stack error flag.

Determine what is the cause of this interrupt.

IWDT underflow/refresh error interrupt is requested.

Clear IWDT flag.

WDT underflow/refresh error interrupt is requested.

Clear WDT flag.

Voltage monitoring 1 interrupt is requested.

Clear LVD1 flag.

Voltage monitoring 2 interrupt is requested.

Clear LVD2 flag.

Oscillation stop detection interrupt is requested.

Clear oscillation stop detect flag.

NMI pin interrupt is requested.

Clear NMI pin interrupt flag.

RAM Parity Error interrupt is requested.

Clear RAM parity error flag.

RAM ECC Error interrupt is requested.

Clear RAM ECC error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Slave error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Master error flag.

MPU Stack Error interrupt is requested.

Clear MPU Stack error flag.

Determine what is the cause of this interrupt.

IWDT underflow/refresh error interrupt is requested.

Clear IWDT flag.

WDT underflow/refresh error interrupt is requested.

Clear WDT flag.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,011 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Grouped Interrupt Support

Voltage monitoring 1 interrupt is requested.

Clear LVD1 flag.

Voltage monitoring 2 interrupt is requested.

Clear LVD2 flag.

VBATT Monitor interrupt is requested.

Clear VBATT flag.

Oscillation stop detection interrupt is requested.

Clear oscillation stop detect flag.

NMI pin interrupt is requested.

Clear NMI pin interrupt flag.

RAM Parity Error interrupt is requested.

Clear RAM parity error flag.

RAM ECC Error interrupt is requested.

Clear RAM ECC error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Slave error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Master error flag.

MPU Stack Error interrupt is requested.

Clear MPU Stack error flag.

Determine what is the cause of this interrupt.

IWDT underflow/refresh error interrupt is requested.

Clear IWDT flag.

WDT underflow/refresh error interrupt is requested.

Clear WDT flag.

Voltage monitoring 1 interrupt is requested.

Clear LVD1 flag.

Voltage monitoring 2 interrupt is requested.

Clear LVD2 flag.

VBATT Monitor interrupt is requested.

Clear VBATT flag.

Oscillation stop detection interrupt is requested.

Clear oscillation stop detect flag.

NMI pin interrupt is requested.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,012 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Grouped Interrupt Support

Clear NMI pin interrupt flag.

RAM Parity Error interrupt is requested.

Clear RAM parity error flag.

RAM ECC Error interrupt is requested.

Clear RAM ECC error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Slave error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Master error flag.

MPU Stack Error interrupt is requested.

Clear MPU Stack error flag.

Determine what is the cause of this interrupt.

IWDT underflow/refresh error interrupt is requested.

Clear IWDT flag.

WDT underflow/refresh error interrupt is requested.

Clear WDT flag.

Voltage monitoring 1 interrupt is requested.

Clear LVD1 flag.

Voltage monitoring 2 interrupt is requested.

Clear LVD2 flag.

VBATT Monitor interrupt is requested.

Clear VBATT flag.

Oscillation stop detection interrupt is requested.

Clear oscillation stop detect flag.

NMI pin interrupt is requested.

Clear NMI pin interrupt flag.

RAM Parity Error interrupt is requested.

Clear RAM parity error flag.

RAM ECC Error interrupt is requested.

Clear RAM ECC error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Slave error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Master error flag.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,013 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Grouped Interrupt Support

MPU Stack Error interrupt is requested.

Clear MPU Stack error flag.

Determine what is the cause of this interrupt.

IWDT underflow/refresh error interrupt is requested.

Clear IWDT flag.

WDT underflow/refresh error interrupt is requested.

Clear WDT flag.

Voltage monitoring 1 interrupt is requested.

Clear LVD1 flag.

Voltage monitoring 2 interrupt is requested.

Clear LVD2 flag.

VBATT Monitor interrupt is requested.

Clear VBATT flag.

Oscillation stop detection interrupt is requested.

Clear oscillation stop detect flag.

NMI pin interrupt is requested.

Clear NMI pin interrupt flag.

RAM Parity Error interrupt is requested.

Clear RAM parity error flag.

RAM ECC Error interrupt is requested.

Clear RAM ECC error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Slave error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Master error flag.

MPU Stack Error interrupt is requested.

Clear MPU Stack error flag.

Determine what is the cause of this interrupt.

IWDT underflow/refresh error interrupt is requested.

Clear IWDT flag.

WDT underflow/refresh error interrupt is requested.

Clear WDT flag.

Voltage monitoring 1 interrupt is requested.

Clear LVD1 flag.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,014 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Grouped Interrupt Support

Voltage monitoring 2 interrupt is requested.

Clear LVD2 flag.

Oscillation stop detection interrupt is requested.

Clear oscillation stop detect flag.

NMI pin interrupt is requested.

Clear NMI pin interrupt flag.

RAM Parity Error interrupt is requested.

Clear RAM parity error flag.

RAM ECC Error interrupt is requested.

Clear RAM ECC error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Slave error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Master error flag.

MPU Stack Error interrupt is requested.

Clear MPU Stack error flag.

Determine what is the cause of this interrupt.

IWDT underflow/refresh error interrupt is requested.

Clear IWDT flag.

WDT underflow/refresh error interrupt is requested.

Clear WDT flag.

Voltage monitoring 1 interrupt is requested.

Clear LVD1 flag.

Voltage monitoring 2 interrupt is requested.

Clear LVD2 flag.

VBATT Monitor interrupt is requested.

Clear VBATT flag.

Oscillation stop detection interrupt is requested.

Clear oscillation stop detect flag.

NMI pin interrupt is requested.

Clear NMI pin interrupt flag.

RAM Parity Error interrupt is requested.

Clear RAM parity error flag.

RAM ECC Error interrupt is requested.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,015 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Grouped Interrupt Support

Clear RAM ECC error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Slave error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Master error flag.

MPU Stack Error interrupt is requested.

Clear MPU Stack error flag.

Determine what is the cause of this interrupt.

IWDT underflow/refresh error interrupt is requested.

Clear IWDT flag.

WDT underflow/refresh error interrupt is requested.

Clear WDT flag.

Voltage monitoring 1 interrupt is requested.

Clear LVD1 flag.

Voltage monitoring 2 interrupt is requested.

Clear LVD2 flag.

VBATT Monitor interrupt is requested.

Clear VBATT flag.

Oscillation stop detection interrupt is requested.

Clear oscillation stop detect flag.

NMI pin interrupt is requested.

Clear NMI pin interrupt flag.

RAM Parity Error interrupt is requested.

Clear RAM parity error flag.

RAM ECC Error interrupt is requested.

Clear RAM ECC error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Slave error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Master error flag.

MPU Stack Error interrupt is requested.

Clear MPU Stack error flag.

Determine what is the cause of this interrupt.

IWDT underflow/refresh error interrupt is requested.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,016 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Grouped Interrupt Support

Clear IWDT flag.

WDT underflow/refresh error interrupt is requested.

Clear WDT flag.

Voltage monitoring 1 interrupt is requested.

Clear LVD1 flag.

Voltage monitoring 2 interrupt is requested.

Clear LVD2 flag.

VBATT Monitor interrupt is requested.

Clear VBATT flag.

Oscillation stop detection interrupt is requested.

Clear oscillation stop detect flag.

NMI pin interrupt is requested.

Clear NMI pin interrupt flag.

RAM Parity Error interrupt is requested.

Clear RAM parity error flag.

RAM ECC Error interrupt is requested.

Clear RAM ECC error flag.

MPU Bus Slave Error interrupt is requested.

Clear MPU Bus Slave error flag.

MPU Bus Master Error interrupt is requested.

Clear MPU Bus Master error flag.

MPU Stack Error interrupt is requested.

Clear MPU Stack error flag.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,017 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Grouped Interrupt Support

◆ R_BSP_GroupIrqWrite()

ssp_err_t R_BSP_GroupIrqWrite (bsp_grp_irq_t irq, void(*)(bsp_grp_irq_t irq) p_callback)

Register a callback function for supported interrupts. If NULL is passed for the callback argument
then any previously registered callbacks are unregistered.

Parameters
[in] irq Interrupt for which to

register a callback.

[in] p_callback Pointer to function to call
when interrupt occurs.

Return values
SSP_SUCCESS Callback registered

Check for valid address.

Callback was NULL. De-register callback.

Register callback.

Check for valid address.

Callback was NULL. De-register callback.

Register callback.

Check for valid address.

Callback was NULL. De-register callback.

Register callback.

5.2.2.7 Interrupt Initialization
Board Support Package » Common BSP Code

Functions

void R_BSP_IrqStatusClear (IRQn_Type irq)

 Clear the interrupt status flag (IR) for a given interrupt. When an
interrupt is triggered the IR bit is set. If it is not cleared in the ISR
then the interrupt will trigger again immediately. More...

void bsp_irq_cfg (void)

 Using the vector table information section that has been built by the
linker and placed into ROM in the .vector_info. section, this function
will initialize the ICU so that configured ELC events will trigger

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,018 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Interrupt Initialization

interrupts in the NVIC.

Detailed Description

This module configures certain ELC events so that they can trigger NVIC interrupts. Which events are
used as interrupts depends on settings in bsp_irq_cfg.h.

Function Documentation

◆ R_BSP_IrqStatusClear()

void R_BSP_IrqStatusClear (IRQn_Type irq)

Clear the interrupt status flag (IR) for a given interrupt. When an interrupt is triggered the IR bit is
set. If it is not cleared in the ISR then the interrupt will trigger again immediately.

Parameters
[in] irq Interrupt for which to clear

the IR bit. Note that the
enums listed for IRQn_Type
are only those for the Cortex
Processor Exceptions
Numbers. In prior releases
this list contained all of the
interrupts enabled for the
specfic MCU but enabled
interrupts are now
configured using the
SSP_VECTOR_DEFINE macro.

Note
This does not work for system exceptions where the IRQn_Type value is < 0.

5.2.2.8 Atomic Locking
Board Support Package » Common BSP Code

Data Structures

struct bsp_lock_t

Functions

ssp_err_t R_BSP_SoftwareLock (bsp_lock_t *p_lock)

 Attempt to acquire the lock that has been sent in. More...

void R_BSP_SoftwareUnlock (bsp_lock_t *p_lock)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,019 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Atomic Locking

 Release hold on lock. More...

ssp_err_t R_BSP_HardwareLock (ssp_feature_t const *const p_feature)

 Attempt to reserve a hardware resource lock. More...

void R_BSP_HardwareUnlock (ssp_feature_t const *const p_feature)

 Release hold on lock. More...

void bsp_init_hardware_locks (void)

 Initialize all of the hardware locks to BSP_LOCK_UNLOCKED.

void R_BSP_SoftwareLockInit (bsp_lock_t *p_lock)

 Initialize lock value to be unlocked. More...

Detailed Description

This module implements atomic locking mechanisms.

Function Documentation

◆ R_BSP_HardwareLock()

ssp_err_t R_BSP_HardwareLock (ssp_feature_t const *const p_feature)

Attempt to reserve a hardware resource lock.

Parameters
[in] p_feature Pointer to the module

specific feature information.

Return values
SSP_SUCCESS Lock was acquired

SSP_ERR_IN_USE Lock was not acquired

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,020 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Atomic Locking

◆ R_BSP_HardwareUnlock()

void R_BSP_HardwareUnlock (ssp_feature_t const *const p_feature)

Release hold on lock.

Parameters
[in] p_feature Pointer to the module

specific feature information.

◆ R_BSP_SoftwareLock()

ssp_err_t R_BSP_SoftwareLock (bsp_lock_t * p_lock)

Attempt to acquire the lock that has been sent in.

Parameters
[in] p_lock Pointer to the structure

which contains the lock to be
acquired.

Return values
SSP_SUCCESS Lock was acquired

SSP_ERR_IN_USE Lock was not acquired

◆ R_BSP_SoftwareLockInit()

void R_BSP_SoftwareLockInit (bsp_lock_t * p_lock)

Initialize lock value to be unlocked.

Parameters
[in] p_lock Pointer to the structure

which contains the lock to
initialize.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,021 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Atomic Locking

◆ R_BSP_SoftwareUnlock()

void R_BSP_SoftwareUnlock (bsp_lock_t * p_lock)

Release hold on lock.

Parameters
[in] p_lock Pointer to the structure

which contains the lock to
unlock.

 bsp_lock_t Struct Reference
Board Support Package » Common BSP Code » Atomic Locking

#include <bsp_locking.h>

Data Fields

uint8_t lock

 A uint8_t is used instead of a enum because the size must be 8-bits.

Detailed Description

Lock structure. Passed into software locking functions such as R_BSP_SoftwareLock() and
R_BSP_SoftwareUnLock.

The documentation for this struct was generated from the following file:

bsp_locking.h

5.2.2.9 Register Protection
Board Support Package » Common BSP Code

Functions

void R_BSP_RegisterProtectEnable (bsp_reg_protect_t regs_to_protect)

 Enable register protection. Registers that are protected cannot be
written to. Register protection is enabled by using the Protect
Register (PRCR) and the MPC's Write-Protect Register (PWPR). More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,022 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Register Protection

void R_BSP_RegisterProtectDisable (bsp_reg_protect_t regs_to_unprotect)

 Disable register protection. Registers that are protected cannot be
written to. Register protection is disabled by using the Protect
Register (PRCR) and the MPC's Write-Protect Register (PWPR). More...

void bsp_register_protect_open (void)

 Initializes variables needed for register protection functionality.
More...

Detailed Description

Important registers are write protected. This module provides APIs for configuring the protection of
these registers. Reference counters are used to ensure proper operation.

Function Documentation

◆ bsp_register_protect_open()

void bsp_register_protect_open (void)

Initializes variables needed for register protection functionality.

Initialize reference counters to 0.

◆ R_BSP_RegisterProtectDisable()

void R_BSP_RegisterProtectDisable (bsp_reg_protect_t regs_to_unprotect)

Disable register protection. Registers that are protected cannot be written to. Register protection is
disabled by using the Protect Register (PRCR) and the MPC's Write-Protect Register (PWPR).

Parameters
[in] regs_to_unprotect Registers which have write

protection disabled.

Get/save the current state of interrupts

Disable protection using PRCR register.

When writing to the PRCR register the upper 8-bits must be the correct key. Set lower bits to 0 to
disable writes.

Increment the protect counter

Restore the interrupt state

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,023 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > Register Protection

◆ R_BSP_RegisterProtectEnable()

void R_BSP_RegisterProtectEnable (bsp_reg_protect_t regs_to_protect)

Enable register protection. Registers that are protected cannot be written to. Register protection is
enabled by using the Protect Register (PRCR) and the MPC's Write-Protect Register (PWPR).

Parameters
[in] regs_to_protect Registers which have write

protection enabled.

Get/save the current state of interrupts

Enable protection using PRCR register.

When writing to the PRCR register the upper 8-bits must be the correct key. Set lower bits to 0 to
disable writes.

Restore the interrupt state

5.2.2.10 BSP_MCU_SBRK
Board Support Package » Common BSP Code

Functions

caddr_t _sbrk (int incr)

 SSP implementation of the standard library _sbrk() function. More...

Detailed Description

Function Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,024 / 5,198

Synergy Software Package

User’s Manual
API Reference > Board Support Package > Common BSP Code > BSP_MCU_SBRK

◆ _sbrk()

caddr_t _sbrk (int incr)

SSP implementation of the standard library _sbrk() function.

Parameters
[in] incr The number of bytes being

asked for by malloc().

Note
This function overrides the _sbrk version that exists in the newlib library that is linked with. That version
improperly relies on the SP as part of it's allocation strategy. This is bad in general and worse in an RTOS
environment. This version insures that we allocate the byte pool requested by malloc() only from our allocated
HEAP area. Also note that newlib is pre-built and forces the pagesize used by malloc() to be 4096. That requires
that we have a HEAP of at least 4096 if we are to support malloc().

Return values
Address of allocated area if successful, -1 otherwise.

< Defined by the linker.

< Defined by the linker.

Need to align heap to word boundary, else will get

hard faults on Cortex-M0. So we assume that heap starts on

word boundary, hence make sure we always add a multiple of

4 to it.

< align value to 4

Heap has overflowed

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,025 / 5,198

Synergy Software Package

User’s Manual
Structure Index

Chapter 6 Structure Index
This section lists SSP structures.

6.1 Data Structures
This section includes SSP structures and members.

 acmphs_instance_ctrl_t

 acmplp_instance_ctrl_t

 adc_api_t

 adc_callback_args_t

 adc_cfg_t

 adc_channel_cfg_t

 adc_info_t

 adc_instance_ctrl_t

 adc_instance_t

 adc_on_sdadc_cfg_t

 adc_sample_state_t

 aes_api_t

 aes_cfg_t

 aes_ctrl_t

 aes_instance_t

 agt_input_capture_extend_t Extension configuration struct for AGT Input
Capture

 agt_input_capture_instance_ctrl_t

 agt_instance_ctrl_t

 analog_connect_api_t

 analog_connect_cfg_t

 analog_connect_instance_t

 analog_connect_table_t

 arc4_api_t

 arc4_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,026 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 arc4_ctrl_t

 arc4_instance_t

 bsp_feature_acmphs_t

 bsp_feature_adc_t

 bsp_feature_can_t

 bsp_feature_cgc_t

 bsp_feature_ctsu_t

 bsp_feature_dac_t

 bsp_feature_flash_hp

 bsp_feature_flash_lp

 bsp_feature_icu_t

 bsp_feature_ioport_t

 bsp_feature_lpmv2_t

 bsp_feature_lvd_t

 bsp_feature_opamp_t

 bsp_feature_riic_t

 bsp_feature_rspi_t

 bsp_feature_sci_t

 bsp_feature_sdhi_t

 bsp_feature_ssi_t

 bsp_leds_t

 bsp_lock_t

 cac_api_t

 cac_callback_args_t

 cac_cfg_t

 cac_instance_ctrl_t

 cac_instance_t

 cac_meas_clock_config_t

 cac_ref_clock_config_t

 can_api_t

 can_bit_timing_cfg_t

 can_callback_args_t

 can_cfg_t

 can_error_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,027 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 can_extended_cfg_t

 can_frame_t

 can_instance_ctrl_t

 can_instance_t

 can_mailbox_t

 can_status_t

 cgc_api_t

 cgc_callback_args_t

 cgc_clock_cfg_t

 cgc_clocks_cfg_t

 cgc_instance_t

 cgc_system_clock_cfg_t

 comparator_api_t

 comparator_callback_args_t

 comparator_cfg_t

 comparator_info_t

 comparator_instance_t

 comparator_status_t

 crc_api_t

 crc_cfg_t

 crc_instance_ctrl_t

 crc_instance_t

 crc_snoop_cfg_t

 crypto_api_t

 crypto_cfg_t

 crypto_ctrl_t

 crypto_instance_t

 crypto_interface_get_param_t

 ctsu_api_t

 ctsu_callback_args_t

 ctsu_cfg_t

 ctsu_correction_info_t

 ctsu_ctsuwr_t

 ctsu_element_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,028 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 ctsu_instance_ctrl_t

 ctsu_instance_t

 ctsu_mutual_buf_t

 ctsu_self_buf_t

 d1_device_synergy

 dac8_extended_cfg_t

 dac8_instance_ctrl_t

 dac_api_t

 dac_cfg_t

 dac_extended_cfg_t

 dac_info_t

 dac_instance_ctrl_t

 dac_instance_t

 display_api_t

 display_brightness_t

 display_callback_args_t

 display_cfg_t

 display_clut_cfg_t

 display_clut_t

 display_color_t

 display_contrast_t

 display_coordinate_t

 display_correction_t

 display_gamma_correction_t

 display_input_cfg_t

 display_instance_t

 display_layer_t

 display_output_cfg_t

 display_runtime_cfg_t

 display_status_t

 display_timing_t

 dmac_instance_ctrl_t

 doc_api_t

 doc_callback_args_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,029 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 doc_cfg_t

 doc_data_t

 doc_instance_ctrl_t

 doc_instance_t

 dsa_api_t

 dsa_cfg_t

 dsa_ctrl_t

 dsa_instance_t

 dtc_instance_ctrl_t

 dtc_reg_t

 ecc_api_t

 ecc_cfg_t

 ecc_ctrl_t

 ecc_instance_t

 elc_api_t

 elc_cfg_t

 elc_instance_t

 elc_link_t

 EMAC_BD

 external_irq_api_t

 external_irq_callback_args_t

 external_irq_cfg_t

 external_irq_instance_t

 flash_api_t

 flash_callback_args_t

 flash_cfg_t

 flash_fmi_block_info_t

 flash_fmi_regions_t

 flash_hp_instance_ctrl_t

 flash_info_t

 flash_instance_t

 flash_lp_instance_ctrl_t

 fmi_api_t

 fmi_instance_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,030 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 gamma_correction_t

 glcd_cfg_t

 glcd_ctrl_t

 glcd_instance_ctrl_t

 gpt_input_capture_extend_t Extension configuration struct for TU Input
Capture

 gpt_input_capture_instance_ctrl_t

 gpt_instance_ctrl_t

 gpt_output_pin_t

 hash_api_t

 hash_cfg_t

 hash_ctrl_t

 hash_instance_t

 i2c_api_master_t

 i2c_api_slave_t

 i2c_callback_args_t

 i2c_cfg_t

 i2c_master_instance_t

 i2c_slave_instance_t

 i2s_api_t

 i2s_callback_args_t

 i2s_cfg_t

 i2s_info_t

 i2s_instance_t

 i2s_on_ssi_cfg_t

 icu_instance_ctrl_t

 in_addr

 input_capture_api_t

 input_capture_callback_args_t

 input_capture_capture_t

 input_capture_cfg_t

 input_capture_info_t

 input_capture_instance_t

 ioport_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,031 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 ioport_cfg_t

 ioport_instance_t

 ioport_pin_cfg_t

 iwdt_instance_ctrl_t

 jpeg_decode_api_t

 jpeg_decode_callback_args_t

 jpeg_decode_cfg_t

 jpeg_decode_instance_ctrl_t

 jpeg_decode_instance_t

 jpeg_encode_api_t

 jpeg_encode_callback_args_t

 jpeg_encode_cfg_t

 jpeg_encode_instance_ctrl_t

 jpeg_encode_instance_t

 jpeg_encode_raw_image_parameters

 key_installation_api_t

 key_installation_cfg_t

 key_installation_instance_ctrl_t

 key_installation_instance_t

 key_installation_key_t

 keymatrix_api_t

 keymatrix_callback_args_t

 keymatrix_cfg_t

 keymatrix_instance_t

 kint_instance_ctrl_t

 lpmv2_api_t

 lpmv2_cfg_t

 lpmv2_instance_t

 lpmv2_mcu_cfg_t

 lvd_api_t

 lvd_callback_args_t

 lvd_cfg_t

 lvd_extend_t

 lvd_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,032 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 lvd_instance_t

 lvd_status_t

 NX_CALLBACK_REC

 NX_DES

 NX_IPV6_HEADER

 nx_mac_address_t

 NX_MD5

 NX_REC

 NX_SECURE_TLS_PHASH_SCE

 NX_SECURE_TLS_PRF_1_SCE

 NX_SECURE_TLS_PRF_SHA_256_SCE

 NX_SHA1

 opamp_api_t

 opamp_cfg_t

 opamp_info_t

 opamp_instance_ctrl_t

 opamp_instance_t

 opamp_on_opamp_cfg_t

 opamp_status_t

 opamp_trim_args_t

 pdc_api_t

 pdc_callback_args_t

 pdc_cfg_t

 pdc_instance_ctrl_t

 pdc_instance_t

 pdc_state_t

 phy_record_t

 ptp_address_t

 ptp_announce_flag_t

 ptp_announce_message_t

 ptp_api_t

 ptp_callback_args_t

 ptp_cfg_t

 ptp_clock_quality_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,033 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 ptp_instance_ctrl_t

 ptp_instance_t

 ptp_message_reception_t

 ptp_timestamp_t

 ptpedmac_api_t

 ptpedmac_callback_args_t

 ptpedmac_cfg_t

 ptpedmac_descriptor_t

 ptpedmac_instance_ctrl_t

 ptpedmac_instance_t

 qspi_api_t

 qspi_cfg_t

 qspi_info_t

 qspi_instance_ctrl_t

 qspi_instance_t

 r_crypto_data_handle_t

 RBLE_GATT_CHAR_128_LIST Data list for characteristic result - 128bit

 RBLE_GATT_CHAR_DESC_128_LIST Special data list for descriptor result - 128bit

 RBLE_GATT_CHAR_DESC_LIST Special data list for descriptor result

 RBLE_GATT_CHAR_LIST Data list for characteristic result

 RBLE_GATT_DESIRED_TYPE Desired UUID

 RBLE_GATT_DISC_CHAR_DESC_REQ Characteristic Descriptor Discovery Request
Structure

 RBLE_GATT_DISC_CHAR_REQ Characteristic Discovery Request Structure

 RBLE_GATT_DISC_SVC_REQ Service Discovery Request Structure

 RBLE_GATT_EVENT RBLE GATT Event Structure

 RBLE_GATT_EXE_WR_CHAR_REQ Execute write characteristic request Structure

 RBLE_GATT_INCL_128_LIST Special data list for include result - 128bit

 RBLE_GATT_INCL_LIST Data list for include result

 RBLE_GATT_INDICATE_REQ Indicate Request Structure

 RBLE_GATT_INFO_DATA Attribute data holder

 RBLE_GATT_NOTIFY_REQ Notify request Structure

 RBLE_GATT_QUERY_RESULT Query result for multiple responses

 RBLE_GATT_READ_CHAR_REQ Read Characteristic Values and Descriptor
Request Structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,034 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 RBLE_GATT_RELIABLE_WRITE Reliable Structure

 RBLE_GATT_SET_DATA Set Data Structure

 RBLE_GATT_SET_PERM Set Permission Structure

 RBLE_GATT_SVC_128_LIST Data list for service result - 128bit

 RBLE_GATT_SVC_LIST Data list for service result

 RBLE_GATT_SVC_RANGE_LIST Service range

 RBLE_GATT_UUID_TYPE UUID with different length Structure

 RBLE_GATT_WRITE_CHAR_REQ Write Characteristic Request Structure

 RBLE_GATT_WRITE_RELIABLE_REQ Write Reliable Characteristic Request Structure

 RBLE_GATT_WRITE_RESP Write Response Structure

 riic_extended_cfg

 riic_instance_ctrl_t

 riic_slave_instance_ctrl_t

 rsa_api_t

 rsa_cfg_t

 rsa_ctrl_t

 rsa_instance_t

 rsa_key_t

 rspi_access_delay_t

 rspi_clock_delay_t

 rspi_instance_ctrl_t

 rspi_loopback_t

 rspi_mosi_idle_t

 rspi_parity_t

 rspi_ssl_negation_delay_t

 rspi_ssl_polarity_t

 rtc_alarm_time_t

 rtc_api_t

 rtc_callback_args_t

 rtc_cfg_t

 rtc_error_adjustment_cfg_t

 rtc_error_adjustment_mode_cfg_t

 rtc_info_t

 rtc_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,035 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 rtc_instance_t

 sb_ble_prf_ias_set_alert_t

 sci_i2c_extended_cfg

 sci_i2c_instance_ctrl_t

 sci_spi_extended_cfg

 sci_spi_instance_ctrl_t

 sci_uart_instance_ctrl_t

 sdadc_calibrate_args_t

 sdadc_channel_cfg_t

 sdadc_instance_ctrl_t

 sdmmc_api_t

 sdmmc_callback_args_t

 sdmmc_cfg_t

 sdmmc_extended_cfg_t

 sdmmc_hw_t

 sdmmc_info_t

 sdmmc_instance_ctrl_t

 sdmmc_instance_t

 sdmmc_priv_csd_reg_ext_t

 sdmmc_priv_csd_reg_t

 sf_adc_periodic_api_t

 sf_adc_periodic_callback_args_t

 sf_adc_periodic_cfg_t

 sf_adc_periodic_instance_ctrl_t

 sf_adc_periodic_instance_t

 sf_audio_playback_api_t

 sf_audio_playback_cfg_t

 sf_audio_playback_common_cfg_t

 sf_audio_playback_common_instance_ctrl_t

 sf_audio_playback_data_t

 sf_audio_playback_data_type_t

 sf_audio_playback_hw_api_t

 sf_audio_playback_hw_callback_args_t

 sf_audio_playback_hw_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,036 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 sf_audio_playback_hw_dac_cfg_t

 sf_audio_playback_hw_dac_instance_ctrl_t

 sf_audio_playback_hw_i2s_cfg_t

 sf_audio_playback_hw_i2s_instance_ctrl_t

 sf_audio_playback_hw_instance_t

 sf_audio_playback_instance_ctrl_t

 sf_audio_playback_instance_t

 sf_audio_record_adc_instance_ctrl_t Control block for audio recording Initialization
occurs when sf_audio_record_api_t::open is
called

 sf_audio_record_api_t

 sf_audio_record_cfg_t

 sf_audio_record_i2s_instance_ctrl_t

 sf_audio_record_instance_t

 sf_ble_addr_t

 sf_ble_addr_verify_ind_t

 sf_ble_adv_data_t

 sf_ble_adv_info_t

 sf_ble_anp_ancp_change_t

 sf_ble_anp_ancp_t

 sf_ble_anp_api_new_alert_ntf_t

 sf_ble_anp_api_new_alert_t

 sf_ble_anp_api_unread_alert_ntf_t

 sf_ble_anp_api_unread_alert_t

 sf_ble_api_t

 sf_ble_attr_info_t

 sf_ble_bas_battery_lvl_ntf_t

 sf_ble_blp_meas_info_t

 sf_ble_blp_meas_recv_data_t

 sf_ble_bonding_req_ind_t

 sf_ble_bonding_response_t

 sf_ble_bonding_start_t

 sf_ble_cfg_t

 sf_ble_char_attribute_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,037 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 sf_ble_char_desc_discovery_rsp_t

 sf_ble_char_discovery_req_t

 sf_ble_char_discovery_rsp_t

 sf_ble_char_multiple_read_req_t

 sf_ble_char_multiple_read_rsp_t

 sf_ble_char_read_by_handle_rsp_t

 sf_ble_char_read_by_uuid_rsp_t

 sf_ble_char_read_req_t

 sf_ble_char_read_rsp_t

 sf_ble_char_write_req_t

 sf_ble_chipset_info_t

 sf_ble_connect_info_t

 sf_ble_connection_t

 sf_ble_ctrl_t

 sf_ble_cts_curr_time_ntf_t

 sf_ble_cts_local_time_t

 sf_ble_cts_ref_time_t

 sf_ble_disconnect_t

 sf_ble_event_info_t

 sf_ble_gatt_attr_event_t

 sf_ble_gatt_notif_ind_event_data_t

 sf_ble_hrp_api_hrmeas_t

 sf_ble_hrp_api_meas_ntf_t

 sf_ble_hrp_cp_change_t

 sf_ble_info_t

 sf_ble_instance_t

 sf_ble_long_attr_info_t

 sf_ble_on_rl78g1d_cfg_t

 sf_ble_onboard_profile_api_t

 sf_ble_onboard_profile_cccd_changed_t

 sf_ble_onboard_profile_cfg_t

 sf_ble_onboard_profile_ctrl_t

 sf_ble_onboard_profile_instance_t

 sf_ble_prf_alert_status_ntf_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,038 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 sf_ble_prf_cts_curr_time_t

 sf_ble_prf_cts_date_time_t

 sf_ble_prf_dis_pnpid_t

 sf_ble_prf_hid_change_event_t

 sf_ble_prf_hid_report_desc_t

 sf_ble_prf_hid_report_ind_t

 sf_ble_prf_htp_temp_info_ind_t

 sf_ble_prf_htp_temp_info_t

 sf_ble_prf_ias_alert_lvl_change_t

 sf_ble_prf_ndcs_time_dst_t

 sf_ble_prf_ringer_cp_change_t

 sf_ble_prf_ringer_setting_ntf_t

 sf_ble_prf_rtus_time_updt_state_t

 sf_ble_prf_scps_scan_intv_t

 sf_ble_prf_tip_write_data_t

 sf_ble_prf_value_t

 sf_ble_provisioning_t

 sf_ble_scan_info_t

 sf_ble_scan_response_data_t

 sf_ble_scan_t

 sf_ble_scps_scan_intv_change_t

 sf_ble_sec_enc_start_ind_t

 sf_ble_sec_info_t

 sf_ble_service_discovery_req_t

 sf_ble_service_discovery_rsp_t

 sf_ble_set_tx_pwr_info_t

 sf_ble_sm_enc_info_t

 sf_ble_sm_key_ind_t

 sf_ble_sm_tk_ind_t

 sf_ble_sm_tk_info_t

 sf_ble_svc_attribute_t

 sf_ble_tip_cp_change_t

 sf_ble_uuid_t

 sf_ble_write_cmd_event_data_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,039 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 sf_block_media_api_t

 sf_block_media_cfg_t

 sf_block_media_instance_t

 sf_block_media_lx_nor_instance_ctrl_t

 sf_block_media_on_lx_nor_cfg_t

 sf_block_media_qspi_instance_ctrl_t

 sf_block_media_ram_instance_ctrl_t

 sf_block_media_sdmmc_instance_ctrl_t

 sf_cellular_api_t

 sf_cellular_at_cmd_set_t

 sf_cellular_callback_args_t

 sf_cellular_cfg_t

 sf_cellular_circular_queue_cfg_t

 sf_cellular_cmd_resp_t

 sf_cellular_command_parameters_info_t

 sf_cellular_comms_extend_cfg_t

 sf_cellular_ctrl_t

 sf_cellular_extended_cfg_t

 sf_cellular_info_t

 sf_cellular_instance_cfg_t

 sf_cellular_instance_t

 sf_cellular_network_status_t

 sf_cellular_nsal_cfg_t

 sf_cellular_op_t

 sf_cellular_provisioning_t

 sf_cellular_qctlcatm1_extended_cfg_t

 sf_cellular_qctlcatm1_socket_cfg_t

 sf_cellular_sim_pin_info_t

 sf_cellular_socket_api_t

 sf_cellular_socket_cfg_t

 sf_cellular_socket_ctrl_t

 sf_cellular_socket_info_t

 sf_cellular_socket_instance_t

 sf_cellular_stats_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,040 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 sf_comms_api_t

 sf_comms_callback_args_t

 sf_comms_cfg_t

 sf_comms_instance_t

 sf_comms_telnet_cfg_t

 sf_comms_telnet_instance_ctrl_t

 sf_console_api_t

 sf_console_callback_args_t

 sf_console_cfg_t

 sf_console_command_t

 sf_console_instance_ctrl_t

 sf_console_instance_t

 sf_console_menu_t

 sf_crypto_api_t

 sf_crypto_callback_args_t

 sf_crypto_cfg_t

 sf_crypto_cipher_aes_init_params_t

 sf_crypto_cipher_api_t

 sf_crypto_cipher_cfg_t

 sf_crypto_cipher_instance_ctrl_t

 sf_crypto_cipher_instance_t

 sf_crypto_cipher_rsa_init_params_t

 sf_crypto_data_handle_t

 sf_crypto_hash_api_t

 sf_crypto_hash_callback_args_t

 sf_crypto_hash_cfg_t

 sf_crypto_hash_context_t

 sf_crypto_hash_instance_ctrl_t

 sf_crypto_hash_instance_t

 sf_crypto_instance_ctrl_t

 sf_crypto_instance_t

 sf_crypto_key_api_t

 sf_crypto_key_cfg_t

 sf_crypto_key_installation_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,041 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 sf_crypto_key_installation_cfg_t

 sf_crypto_key_installation_instance_ctrl_t

 sf_crypto_key_installation_instance_t

 sf_crypto_key_instance_ctrl_t

 sf_crypto_key_instance_t

 sf_crypto_signature_api_t

 sf_crypto_signature_cfg_t

 sf_crypto_signature_context_t

 sf_crypto_signature_instance_ctrl_t

 sf_crypto_signature_instance_t

 sf_crypto_signature_rsa_specific_params_t

 sf_crypto_trng_api_t

 sf_crypto_trng_cfg_t

 sf_crypto_trng_instance_t

 sf_el_fx_callback_args_t

 sf_el_fx_config_t

 sf_el_fx_instance_ctrl_t

 sf_el_fx_media_boot_record_table_info_t

 sf_el_fx_media_ebr_info_t

 sf_el_fx_media_global_open_info_t

 sf_el_fx_media_info_t

 sf_el_fx_media_mbr_info_t

 sf_el_fx_media_partition_data_info_t

 sf_el_fx_media_partition_info_t

 sf_el_fx_t

 sf_el_gx_api_t

 sf_el_gx_callback_args_t

 sf_el_gx_cfg_t

 sf_el_gx_instance_ctrl_t

 sf_el_gx_instance_t

 sf_el_lx_nor_callback_args_t

 sf_el_lx_nor_instance_cfg_t

 sf_el_lx_nor_instance_ctrl_t

 sf_el_lx_nor_memory_settings_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,042 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 sf_el_nx_cfg_t

 sf_el_ux_comms_instance_ctrl_t

 sf_external_irq_api_t

 sf_external_irq_cfg_t

 sf_external_irq_instance_ctrl_t

 sf_external_irq_instance_t

 sf_i2c_api_t

 sf_i2c_bus_t

 sf_i2c_cfg_t

 sf_i2c_instance_ctrl_t

 sf_i2c_instance_t

 sf_jpeg_decode_api_t

 sf_jpeg_decode_cfg_t

 sf_jpeg_decode_instance_ctrl_t

 sf_jpeg_decode_instance_t

 sf_memory_api_t

 sf_memory_cfg_t

 sf_memory_info_t

 sf_memory_instance_t

 sf_memory_qspi_nor_cfg_t

 sf_memory_qspi_nor_instance_ctrl_t

 sf_memory_region_info_t

 sf_message_acquire_cfg_t

 sf_message_api_t

 ►sf_message_buffer_ctrl_t Buffer control block structure

 sf_message_callback_args_t

 sf_message_cfg_t

 sf_message_header_t

 sf_message_instance_ctrl_t

 sf_message_instance_range_t

 sf_message_instance_t

 sf_message_post_cfg_t

 sf_message_post_err_t

 sf_message_subscriber_list_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,043 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 sf_message_subscriber_t

 sf_power_profiles_v2_api_t

 sf_power_profiles_v2_callback_args_t

 sf_power_profiles_v2_cfg_t

 sf_power_profiles_v2_ctrl_t

 sf_power_profiles_v2_instance_t

 sf_power_profiles_v2_low_power_cfg_t

 sf_power_profiles_v2_run_cfg_t

 sf_socket_api_t

 sf_socket_cfg_t

 sf_socket_ctrl_t

 sf_socket_instance_t

 sf_spi_api_t

 sf_spi_bus_t

 sf_spi_cfg_t

 sf_spi_instance_ctrl_t

 sf_spi_instance_t

 sf_thread_monitor_api_t

 sf_thread_monitor_cfg_t

 sf_thread_monitor_counter_min_max_t

 sf_thread_monitor_instance_ctrl_t

 sf_thread_monitor_instance_t

 sf_thread_monitor_thread_counter_t

 sf_touch_ctsu_api_t

 sf_touch_ctsu_button_cfg_t

 sf_touch_ctsu_button_info_t

 sf_touch_ctsu_cfg_t

 sf_touch_ctsu_instance_ctrl_t

 sf_touch_ctsu_instance_t

 sf_touch_ctsu_slider_cfg_t

 sf_touch_ctsu_slider_info_t

 sf_touch_ctsu_wheel_cfg_t

 sf_touch_ctsu_wheel_info_t

 sf_touch_panel_chip_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,044 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 sf_touch_panel_chip_cfg_t

 sf_touch_panel_chip_ft5x06_instance_ctrl_t

 sf_touch_panel_chip_instance_t

 sf_touch_panel_chip_on_ft5x06_cfg_t

 sf_touch_panel_chip_on_sx8654_cfg_t

 sf_touch_panel_chip_sx8654_instance_ctrl_t

 sf_touch_panel_v2_api_t

 sf_touch_panel_v2_calibrate_factors_t

 sf_touch_panel_v2_calibrate_t

 sf_touch_panel_v2_cfg_t

 sf_touch_panel_v2_instance_ctrl_t

 sf_touch_panel_v2_instance_t

 sf_touch_panel_v2_payload_t

 sf_touchpanel_v2_callback_args_t

 sf_uart_comms_cfg_t

 sf_uart_comms_instance_ctrl_t

 sf_wifi_api_t

 sf_wifi_callback_args_t

 sf_wifi_cfg_t

 sf_wifi_ctrl_t

 sf_wifi_info_t

 sf_wifi_instance_t

 sf_wifi_ip_addr_t

 sf_wifi_nsal_callback_args_t

 sf_wifi_nsal_cfg_t

 sf_wifi_on_gt202_cfg_t

 sf_wifi_onchip_stack_api_t

 sf_wifi_onchip_stack_cfg_t

 sf_wifi_onchip_stack_ctrl_t

 sf_wifi_onchip_stack_instance_t

 sf_wifi_onchip_stack_ip_cfg_t

 sf_wifi_provisioning_t

 sf_wifi_qca4010_api_t

 sf_wifi_qca4010_at_cmd_set_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,045 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 sf_wifi_qca4010_cfg_t

 sf_wifi_qca4010_cmd_resp_t

 sf_wifi_qca4010_ctrl_t

 sf_wifi_qca4010_extended_cfg_t

 sf_wifi_qca4010_instance_cfg_t

 sf_wifi_qca4010_instance_t

 sf_wifi_qca4010_ip_addr_t

 sf_wifi_qca4010_onchip_stack_api_t

 sf_wifi_qca4010_onchip_stack_cfg_t

 sf_wifi_qca4010_onchip_stack_ctrl_t

 sf_wifi_qca4010_onchip_stack_instance_t

 sf_wifi_qca4010_onchip_stack_ip_cfg_t

 sf_wifi_qca4010_provisioning_t

 sf_wifi_qca4010_queue_cfg_t

 sf_wifi_qca4010_scan_t

 sf_wifi_qca4010_socket_api_t

 sf_wifi_qca4010_socket_cfg_t

 sf_wifi_qca4010_socket_ctrl_t

 sf_wifi_qca4010_socket_instance_t

 sf_wifi_qca4010_status_t

 sf_wifi_qca4010_uart_extend_cfg_t

 sf_wifi_scan_t

 sf_wifi_stats_t

 sf_wifi_wps_t

 slcdc_api_t

 slcdc_cfg_t

 slcdc_instance_ctrl_t

 slcdc_instance_t

 sockaddr

 sockaddr_in

 spi_api_t

 spi_callback_args_t

 spi_cfg_t

 spi_instance_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,046 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 spi_on_rspi_cfg_t

 ssi_instance_ctrl_t

 ssp_pack_version_t

 ssp_version_t

 st_sf_ble_prf_htp_meas_intv_val_t

 tdes_api_t

 tdes_cfg_t

 tdes_ctrl_t

 tdes_instance_t

 timer_api_t

 timer_callback_args_t

 timer_cfg_t

 timer_info_t

 timer_instance_t

 timer_on_agt_cfg_t

 timer_on_gpt_cfg_t

 transfer_api_t

 transfer_callback_args_t

 transfer_cfg_t

 transfer_info_t

 transfer_instance_t

 transfer_on_dmac_cfg_t

 transfer_properties_t

 trng_api_t

 trng_cfg_t

 trng_ctrl_t

 trng_instance_t

 uart_api_t

 uart_callback_args_t

 uart_cfg_t

 uart_info_t

 uart_instance_t

 uart_on_sci_cfg_t

 UInt64_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,047 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures

 ulpgn_socket_t

 UX_DCD_SYNERGY

 UX_DCD_SYNERGY_ED

 UX_DCD_SYNERGY_PAYLOAD_TRANSFER

 UX_DCD_SYNERGY_TRANSFER

 UX_HCD_SYNERGY

 UX_HCD_SYNERGY_FIFO

 UX_HCD_SYNERGY_PAYLOAD_TRANSFER

 UX_HCD_SYNERGY_TRANSFER

 UX_SYNERGY_ED

 UX_SYNERGY_ISO_TD

 UX_SYNERGY_TD

 wdt_api_t

 wdt_callback_args_t

 wdt_cfg_t

 wdt_instance_ctrl_t

 wdt_instance_t

 wdt_timeout_values_t

6.1.1 d1_device_synergy Struct Reference

#include <sf_tes_2d_drw_base.h>

Detailed Description

Device handle type definition for Synergy implementation.

The documentation for this struct was generated from the following file:

sf_tes_2d_drw_base.h

6.1.2 NX_DES Struct Reference

#include <nx_des.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,048 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > NX_DES Struct Reference

Detailed Description

NetX Component DES Encryption Standard (DES)

The documentation for this struct was generated from the following file:

nx_des.h

6.1.3 NX_IPV6_HEADER Struct Reference

#include <nx_ipv6.h>

Detailed Description

NetX Component Internet Protocol version 6 (IPv6)

The documentation for this struct was generated from the following file:

nx_ipv6.h

6.1.4 NX_MD5 Struct Reference

#include <nx_md5.h>

Detailed Description

NetX Component MD5 Digest Algorithm (MD5)

The documentation for this struct was generated from the following file:

nx_md5.h

6.1.5 NX_SECURE_TLS_PHASH_SCE Struct Reference

#include <nx_crypto_phash_sce.h>

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,049 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > NX_SECURE_TLS_PHASH_SCE Struct Reference

NetX Secure Component Transport Layer Security (TLS)

The documentation for this struct was generated from the following file:

nx_crypto_phash_sce.h

6.1.6 NX_SECURE_TLS_PRF_1_SCE Struct Reference

#include <nx_crypto_tls_prf_1_sce.h>

Detailed Description

NetX Secure Component Transport Layer Security (TLS)

The documentation for this struct was generated from the following file:

nx_crypto_tls_prf_1_sce.h

6.1.7 NX_SECURE_TLS_PRF_SHA_256_SCE Struct Reference

#include <nx_crypto_tls_prf_sha256_sce.h>

Detailed Description

NetX Secure Component Transport Layer Security (TLS)

The documentation for this struct was generated from the following file:

nx_crypto_tls_prf_sha256_sce.h

6.1.8 NX_SHA1 Struct Reference

#include <nx_sha1.h>

Detailed Description

NetX Component SHA1 Digest Algorithm (SHA1)

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,050 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > NX_SHA1 Struct Reference

The documentation for this struct was generated from the following file:

nx_sha1.h

6.1.9 RBLE_GATT_CHAR_128_LIST Struct Reference

Data list for characteristic result - 128bit. More...

#include <rble_api.h>

Data Fields

uint16_t attr_hdl

uint8_t prop

uint16_t pointer_hdl

uint8_t uuid [RBLE_GATT_128BIT_UUID_OCTET]

Detailed Description

Data list for characteristic result - 128bit.

Field Documentation

◆ attr_hdl

uint16_t RBLE_GATT_CHAR_128_LIST::attr_hdl

database element handle

◆ pointer_hdl

uint16_t RBLE_GATT_CHAR_128_LIST::pointer_hdl

pointer handle to UUID

◆ prop

uint8_t RBLE_GATT_CHAR_128_LIST::prop

properties

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,051 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_CHAR_128_LIST Struct Reference

◆ uuid

uint8_t RBLE_GATT_CHAR_128_LIST::uuid[RBLE_GATT_128BIT_UUID_OCTET]

characteristic UUID

The documentation for this struct was generated from the following file:

rble_api.h

6.1.10 RBLE_GATT_CHAR_DESC_128_LIST Struct Reference

Special data list for descriptor result - 128bit. More...

#include <rble_api.h>

Data Fields

uint16_t attr_hdl

uint8_t uuid [RBLE_GATT_128BIT_UUID_OCTET]

Detailed Description

Special data list for descriptor result - 128bit.

Field Documentation

◆ attr_hdl

uint16_t RBLE_GATT_CHAR_DESC_128_LIST::attr_hdl

database element handle

◆ uuid

uint8_t RBLE_GATT_CHAR_DESC_128_LIST::uuid[RBLE_GATT_128BIT_UUID_OCTET]

128-bit descriptor UUID

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,052 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_CHAR_DESC_128_LIST Struct Reference

The documentation for this struct was generated from the following file:

rble_api.h

6.1.11 RBLE_GATT_CHAR_DESC_LIST Struct Reference

Special data list for descriptor result. More...

#include <rble_api.h>

Data Fields

uint16_t attr_hdl

uint16_t desc_hdl

Detailed Description

Special data list for descriptor result.

Field Documentation

◆ attr_hdl

uint16_t RBLE_GATT_CHAR_DESC_LIST::attr_hdl

database element handle

◆ desc_hdl

uint16_t RBLE_GATT_CHAR_DESC_LIST::desc_hdl

descriptor UUID

The documentation for this struct was generated from the following file:

rble_api.h

6.1.12 RBLE_GATT_CHAR_LIST Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,053 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_CHAR_LIST Struct Reference

Data list for characteristic result. More...

#include <rble_api.h>

Data Fields

uint16_t attr_hdl

uint8_t prop

uint16_t pointer_hdl

uint16_t uuid

Detailed Description

Data list for characteristic result.

Field Documentation

◆ attr_hdl

uint16_t RBLE_GATT_CHAR_LIST::attr_hdl

database element handle

◆ pointer_hdl

uint16_t RBLE_GATT_CHAR_LIST::pointer_hdl

pointer handle to UUID

◆ prop

uint8_t RBLE_GATT_CHAR_LIST::prop

properties

◆ uuid

uint16_t RBLE_GATT_CHAR_LIST::uuid

characteristic UUID

The documentation for this struct was generated from the following file:

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,054 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_CHAR_LIST Struct Reference

rble_api.h

6.1.13 RBLE_GATT_DESIRED_TYPE Struct Reference

desired UUID More...

#include <rble_api.h>

Data Fields

uint16_t value_size

uint8_t value [RBLE_GATT_128BIT_UUID_OCTET]

Detailed Description

desired UUID

Field Documentation

◆ value

uint8_t RBLE_GATT_DESIRED_TYPE::value[RBLE_GATT_128BIT_UUID_OCTET]

actual UUID

◆ value_size

uint16_t RBLE_GATT_DESIRED_TYPE::value_size

Size of the UUID

The documentation for this struct was generated from the following file:

rble_api.h

6.1.14 RBLE_GATT_DISC_CHAR_DESC_REQ Struct Reference

Characteristic Descriptor Discovery Request Structure. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,055 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_DISC_CHAR_DESC_REQ Struct Reference

#include <rble_api.h>

Data Fields

uint16_t conhdl

uint16_t start_hdl

uint16_t end_hdl

Detailed Description

Characteristic Descriptor Discovery Request Structure.

Parameters for RBLE_GATT_Discovery_Char_Descriptor_Request

Field Documentation

◆ conhdl

uint16_t RBLE_GATT_DISC_CHAR_DESC_REQ::conhdl

connection handle

◆ end_hdl

uint16_t RBLE_GATT_DISC_CHAR_DESC_REQ::end_hdl

end handle range

◆ start_hdl

uint16_t RBLE_GATT_DISC_CHAR_DESC_REQ::start_hdl

start handle range

The documentation for this struct was generated from the following file:

rble_api.h

6.1.15 RBLE_GATT_DISC_CHAR_REQ Struct Reference

Characteristic Discovery Request Structure. More...

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,056 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_DISC_CHAR_REQ Struct Reference

#include <rble_api.h>

Data Fields

uint8_t req_type

uint16_t conhdl

uint16_t start_hdl

uint16_t end_hdl

RBLE_GATT_DESIRED_TYPE desired_char

Detailed Description

Characteristic Discovery Request Structure.

Parameters for RBLE_GATT_Discovery_Char_Request

Field Documentation

◆ conhdl

uint16_t RBLE_GATT_DISC_CHAR_REQ::conhdl

connection handle

◆ desired_char

RBLE_GATT_DESIRED_TYPE RBLE_GATT_DISC_CHAR_REQ::desired_char

desired UUID in disc service char

◆ end_hdl

uint16_t RBLE_GATT_DISC_CHAR_REQ::end_hdl

end handle range

◆ req_type

uint8_t RBLE_GATT_DISC_CHAR_REQ::req_type

GATT request type

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,057 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_DISC_CHAR_REQ Struct Reference

◆ start_hdl

uint16_t RBLE_GATT_DISC_CHAR_REQ::start_hdl

start handle range

The documentation for this struct was generated from the following file:

rble_api.h

6.1.16 RBLE_GATT_DISC_SVC_REQ Struct Reference

Service Discovery Request Structure. More...

#include <rble_api.h>

Data Fields

uint8_t req_type

uint16_t conhdl

uint16_t start_hdl

uint16_t end_hdl

RBLE_GATT_DESIRED_TYPE desired_svc

Detailed Description

Service Discovery Request Structure.

Parameters for RBLE_GATT_Discovery_Service_Request

Field Documentation

◆ conhdl

uint16_t RBLE_GATT_DISC_SVC_REQ::conhdl

connection handle

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,058 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_DISC_SVC_REQ Struct Reference

◆ desired_svc

RBLE_GATT_DESIRED_TYPE RBLE_GATT_DISC_SVC_REQ::desired_svc

desired service: if 0x0000, discover all

◆ end_hdl

uint16_t RBLE_GATT_DISC_SVC_REQ::end_hdl

end handle range

◆ req_type

uint8_t RBLE_GATT_DISC_SVC_REQ::req_type

GATT request type

◆ start_hdl

uint16_t RBLE_GATT_DISC_SVC_REQ::start_hdl

start handle range

The documentation for this struct was generated from the following file:

rble_api.h

6.1.17 RBLE_GATT_EVENT Struct Reference

rBLE GATT Event Structure More...

#include <rble_api.h>

Data Fields

RBLE_GATT_EVENT_TYPE type

Detailed Description

rBLE GATT Event Structure

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,059 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_EVENT Struct Reference

Field Documentation

◆ type

RBLE_GATT_EVENT_TYPE RBLE_GATT_EVENT::type

type of GATT event

The documentation for this struct was generated from the following file:

rble_api.h

6.1.18 RBLE_GATT_EXE_WR_CHAR_REQ Struct Reference

execute write characteristic request Structure More...

#include <rble_api.h>

Data Fields

uint8_t exe_wr_ena

uint16_t conhdl

Detailed Description

execute write characteristic request Structure

Parameters for RBLE_GATT_Execute_Write_Char_Request

Field Documentation

◆ conhdl

uint16_t RBLE_GATT_EXE_WR_CHAR_REQ::conhdl

connection handle

◆ exe_wr_ena

uint8_t RBLE_GATT_EXE_WR_CHAR_REQ::exe_wr_ena

flag to describe if write or cancel

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,060 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_EXE_WR_CHAR_REQ Struct Reference

The documentation for this struct was generated from the following file:

rble_api.h

6.1.19 RBLE_GATT_INCL_128_LIST Struct Reference

Special data list for include result - 128bit. More...

#include <rble_api.h>

Data Fields

uint16_t attr_hdl

uint16_t start_hdl

uint16_t end_hdl

uint8_t uuid [RBLE_GATT_128BIT_UUID_OCTET]

Detailed Description

Special data list for include result - 128bit.

Field Documentation

◆ attr_hdl

uint16_t RBLE_GATT_INCL_128_LIST::attr_hdl

element handle

◆ end_hdl

uint16_t RBLE_GATT_INCL_128_LIST::end_hdl

end handle

◆ start_hdl

uint16_t RBLE_GATT_INCL_128_LIST::start_hdl

start handle

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,061 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_INCL_128_LIST Struct Reference

◆ uuid

uint8_t RBLE_GATT_INCL_128_LIST::uuid[RBLE_GATT_128BIT_UUID_OCTET]

included 128-bit service UUID

The documentation for this struct was generated from the following file:

rble_api.h

6.1.20 RBLE_GATT_INCL_LIST Struct Reference

Data list for include result. More...

#include <rble_api.h>

Data Fields

uint16_t attr_hdl

uint16_t start_hdl

uint16_t end_hdl

uint16_t uuid

Detailed Description

Data list for include result.

Field Documentation

◆ attr_hdl

uint16_t RBLE_GATT_INCL_LIST::attr_hdl

element handle

◆ end_hdl

uint16_t RBLE_GATT_INCL_LIST::end_hdl

end handle

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,062 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_INCL_LIST Struct Reference

◆ start_hdl

uint16_t RBLE_GATT_INCL_LIST::start_hdl

start handle

◆ uuid

uint16_t RBLE_GATT_INCL_LIST::uuid

included service UUID

The documentation for this struct was generated from the following file:

rble_api.h

6.1.21 RBLE_GATT_INDICATE_REQ Struct Reference

Indicate Request Structure. More...

#include <rble_api.h>

Data Fields

uint16_t conhdl

uint16_t charhdl

Detailed Description

Indicate Request Structure.

Parameters for RBLE_GATT_Indicate_Request

Field Documentation

◆ charhdl

uint16_t RBLE_GATT_INDICATE_REQ::charhdl

characteristic handle

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,063 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_INDICATE_REQ Struct Reference

◆ conhdl

uint16_t RBLE_GATT_INDICATE_REQ::conhdl

connection handle

The documentation for this struct was generated from the following file:

rble_api.h

6.1.22 RBLE_GATT_INFO_DATA Struct Reference

Attribute data holder. More...

#include <rble_api.h>

Data Fields

uint8_t each_len

uint8_t len

uint8_t data [RBLE_GATT_MAX_VALUE]

Detailed Description

Attribute data holder.

Field Documentation

◆ data

uint8_t RBLE_GATT_INFO_DATA::data[RBLE_GATT_MAX_VALUE]

data

◆ each_len

uint8_t RBLE_GATT_INFO_DATA::each_len

each result length

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,064 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_INFO_DATA Struct Reference

◆ len

uint8_t RBLE_GATT_INFO_DATA::len

data length

The documentation for this struct was generated from the following file:

rble_api.h

6.1.23 RBLE_GATT_NOTIFY_REQ Struct Reference

notify request Structure More...

#include <rble_api.h>

Data Fields

uint16_t conhdl

uint16_t charhdl

Detailed Description

notify request Structure

Parameters for RBLE_GATT_Notify_Request

Field Documentation

◆ charhdl

uint16_t RBLE_GATT_NOTIFY_REQ::charhdl

characteristic handle

◆ conhdl

uint16_t RBLE_GATT_NOTIFY_REQ::conhdl

connection handle

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,065 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_NOTIFY_REQ Struct Reference

The documentation for this struct was generated from the following file:

rble_api.h

6.1.24 RBLE_GATT_QUERY_RESULT Struct Reference

Query result for multiple responses. More...

#include <rble_api.h>

Data Fields

uint8_t len

uint8_t value [RBLE_GATT_MAX_VALUE]

Detailed Description

Query result for multiple responses.

Field Documentation

◆ len

uint8_t RBLE_GATT_QUERY_RESULT::len

length of value

◆ value

uint8_t RBLE_GATT_QUERY_RESULT::value[RBLE_GATT_MAX_VALUE]

data result from query

The documentation for this struct was generated from the following file:

rble_api.h

6.1.25 RBLE_GATT_READ_CHAR_REQ Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,066 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_READ_CHAR_REQ Struct Reference

Read Characteristic Values and Descriptor Request Structure. More...

#include <rble_api.h>

Data Fields

uint8_t req_type

uint16_t offset

uint16_t conhdl

uint16_t start_hdl

uint16_t end_hdl

uint16_t nb_uuid

RBLE_GATT_UUID_TYPE uuid [RBLE_GATT_MAX_NB_HDLS]

Detailed Description

Read Characteristic Values and Descriptor Request Structure.

Parameters for RBLE_GATT_Read_Char_Request

Field Documentation

◆ conhdl

uint16_t RBLE_GATT_READ_CHAR_REQ::conhdl

connection handle

◆ end_hdl

uint16_t RBLE_GATT_READ_CHAR_REQ::end_hdl

end handle range

◆ nb_uuid

uint16_t RBLE_GATT_READ_CHAR_REQ::nb_uuid

number of UUID

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,067 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_READ_CHAR_REQ Struct Reference

◆ offset

uint16_t RBLE_GATT_READ_CHAR_REQ::offset

read offset

◆ req_type

uint8_t RBLE_GATT_READ_CHAR_REQ::req_type

request type

◆ start_hdl

uint16_t RBLE_GATT_READ_CHAR_REQ::start_hdl

start handle range

◆ uuid

RBLE_GATT_UUID_TYPE RBLE_GATT_READ_CHAR_REQ::uuid[RBLE_GATT_MAX_NB_HDLS]

characteristic UUID

The documentation for this struct was generated from the following file:

rble_api.h

6.1.26 RBLE_GATT_RELIABLE_WRITE Struct Reference

Reliable Structure. More...

#include <rble_api.h>

Data Fields

uint16_t elmt_hdl

uint16_t size

uint8_t value [RBLE_GATT_MAX_RELIABLE_WRITE_CONTENTS]

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,068 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_RELIABLE_WRITE Struct Reference

Detailed Description

Reliable Structure.

Field Documentation

◆ elmt_hdl

uint16_t RBLE_GATT_RELIABLE_WRITE::elmt_hdl

characteristic handle

◆ size

uint16_t RBLE_GATT_RELIABLE_WRITE::size

value size

◆ value

uint8_t RBLE_GATT_RELIABLE_WRITE::value[RBLE_GATT_MAX_RELIABLE_WRITE_CONTENTS]

value holder

The documentation for this struct was generated from the following file:

rble_api.h

6.1.27 RBLE_GATT_SET_DATA Struct Reference

Set Data Structure. More...

#include <rble_api.h>

Data Fields

uint16_t val_hdl

uint16_t val_len

uint8_t value [RBLE_GATT_MAX_LONG_VALUE]

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,069 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_SET_DATA Struct Reference

Set Data Structure.

Parameters for RBLE_GATT_Set_Data

Field Documentation

◆ val_hdl

uint16_t RBLE_GATT_SET_DATA::val_hdl

value handle

◆ val_len

uint16_t RBLE_GATT_SET_DATA::val_len

size of the value data

◆ value

uint8_t RBLE_GATT_SET_DATA::value[RBLE_GATT_MAX_LONG_VALUE]

value data

The documentation for this struct was generated from the following file:

rble_api.h

6.1.28 RBLE_GATT_SET_PERM Struct Reference

Set Permission Structure. More...

#include <rble_api.h>

Data Fields

uint16_t start_hdl

uint16_t end_hdl

uint16_t perm

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,070 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_SET_PERM Struct Reference

Detailed Description

Set Permission Structure.

Parameters for RBLE_GATT_Set_Permission

Field Documentation

◆ end_hdl

uint16_t RBLE_GATT_SET_PERM::end_hdl

end handle range

◆ perm

uint16_t RBLE_GATT_SET_PERM::perm

Permission of attr

◆ start_hdl

uint16_t RBLE_GATT_SET_PERM::start_hdl

start handle range

The documentation for this struct was generated from the following file:

rble_api.h

6.1.29 RBLE_GATT_SVC_128_LIST Struct Reference

Data list for service result - 128bit. More...

#include <rble_api.h>

Data Fields

uint16_t start_hdl

uint16_t end_hdl

uint8_t attr_hdl [RBLE_GATT_128BIT_UUID_OCTET]

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,071 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_SVC_128_LIST Struct Reference

Detailed Description

Data list for service result - 128bit.

Field Documentation

◆ attr_hdl

uint8_t RBLE_GATT_SVC_128_LIST::attr_hdl[RBLE_GATT_128BIT_UUID_OCTET]

attribute handle

◆ end_hdl

uint16_t RBLE_GATT_SVC_128_LIST::end_hdl

end handle

◆ start_hdl

uint16_t RBLE_GATT_SVC_128_LIST::start_hdl

start handle

The documentation for this struct was generated from the following file:

rble_api.h

6.1.30 RBLE_GATT_SVC_LIST Struct Reference

Data list for service result. More...

#include <rble_api.h>

Data Fields

uint16_t start_hdl

uint16_t end_hdl

uint16_t attr_hdl

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,072 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_SVC_LIST Struct Reference

Data list for service result.

Field Documentation

◆ attr_hdl

uint16_t RBLE_GATT_SVC_LIST::attr_hdl

attribute handle

◆ end_hdl

uint16_t RBLE_GATT_SVC_LIST::end_hdl

end handle

◆ start_hdl

uint16_t RBLE_GATT_SVC_LIST::start_hdl

start handle

The documentation for this struct was generated from the following file:

rble_api.h

6.1.31 RBLE_GATT_SVC_RANGE_LIST Struct Reference

service range More...

#include <rble_api.h>

Data Fields

uint16_t start_hdl

uint16_t end_hdl

Detailed Description

service range

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,073 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_SVC_RANGE_LIST Struct Reference

Field Documentation

◆ end_hdl

uint16_t RBLE_GATT_SVC_RANGE_LIST::end_hdl

end handle

◆ start_hdl

uint16_t RBLE_GATT_SVC_RANGE_LIST::start_hdl

start handle

The documentation for this struct was generated from the following file:

rble_api.h

6.1.32 RBLE_GATT_UUID_TYPE Struct Reference

UUID with different length Structure. More...

#include <rble_api.h>

Data Fields

uint8_t value_size

uint8_t expect_resp_size

uint8_t value [RBLE_GATT_128BIT_UUID_OCTET]

Detailed Description

UUID with different length Structure.

Field Documentation

◆ expect_resp_size

uint8_t RBLE_GATT_UUID_TYPE::expect_resp_size

expected response size - read multiple

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,074 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_UUID_TYPE Struct Reference

◆ value

uint8_t RBLE_GATT_UUID_TYPE::value[RBLE_GATT_128BIT_UUID_OCTET]

actual UUID

◆ value_size

uint8_t RBLE_GATT_UUID_TYPE::value_size

Size of the UUID

The documentation for this struct was generated from the following file:

rble_api.h

6.1.33 RBLE_GATT_WRITE_CHAR_REQ Struct Reference

Write Characteristic Request Structure. More...

#include <rble_api.h>

Data Fields

uint16_t conhdl

uint16_t charhdl

uint16_t wr_offset

uint16_t val_len

uint8_t req_type

uint8_t auto_execute

uint8_t value [RBLE_GATT_MAX_LONG_VALUE]

Detailed Description

Write Characteristic Request Structure.

Parameters for RBLE_GATT_Write_Char_Request

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,075 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_WRITE_CHAR_REQ Struct Reference

Field Documentation

◆ auto_execute

uint8_t RBLE_GATT_WRITE_CHAR_REQ::auto_execute

execute write

◆ charhdl

uint16_t RBLE_GATT_WRITE_CHAR_REQ::charhdl

valid characteristic handle

◆ conhdl

uint16_t RBLE_GATT_WRITE_CHAR_REQ::conhdl

connection handle

◆ req_type

uint8_t RBLE_GATT_WRITE_CHAR_REQ::req_type

request type

◆ val_len

uint16_t RBLE_GATT_WRITE_CHAR_REQ::val_len

size of the value data

◆ value

uint8_t RBLE_GATT_WRITE_CHAR_REQ::value[RBLE_GATT_MAX_LONG_VALUE]

check, maybe union type is required

◆ wr_offset

uint16_t RBLE_GATT_WRITE_CHAR_REQ::wr_offset

offset to write

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,076 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_WRITE_CHAR_REQ Struct Reference

The documentation for this struct was generated from the following file:

rble_api.h

6.1.34 RBLE_GATT_WRITE_RELIABLE_REQ Struct Reference

Write Reliable Characteristic Request Structure. More...

#include <rble_api.h>

Data Fields

uint8_t nb_writes

uint8_t auto_execute

uint16_t conhdl

RBLE_GATT_RELIABLE_WRIT
E

value [RBLE_GATT_MAX_RELIABLE_WRITE_NUM]

Detailed Description

Write Reliable Characteristic Request Structure.

Parameters for RBLE_GATT_Write_Reliable_Request

Field Documentation

◆ auto_execute

uint8_t RBLE_GATT_WRITE_RELIABLE_REQ::auto_execute

automatic execute write

◆ conhdl

uint16_t RBLE_GATT_WRITE_RELIABLE_REQ::conhdl

connection handle

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,077 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_WRITE_RELIABLE_REQ Struct Reference

◆ nb_writes

uint8_t RBLE_GATT_WRITE_RELIABLE_REQ::nb_writes

number of reliable writes

◆ value

RBLE_GATT_RELIABLE_WRITE
RBLE_GATT_WRITE_RELIABLE_REQ::value[RBLE_GATT_MAX_RELIABLE_WRITE_NUM]

number of reliable

The documentation for this struct was generated from the following file:

rble_api.h

6.1.35 RBLE_GATT_WRITE_RESP Struct Reference

Write Response Structure. More...

#include <rble_api.h>

Data Fields

uint16_t conhdl

uint16_t att_hdl

uint8_t att_code

Detailed Description

Write Response Structure.

Parameters for RBLE_GATT_Write_Response

Field Documentation

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,078 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > RBLE_GATT_WRITE_RESP Struct Reference

◆ att_code

uint8_t RBLE_GATT_WRITE_RESP::att_code

ATT code

◆ att_hdl

uint16_t RBLE_GATT_WRITE_RESP::att_hdl

Attribute handle

◆ conhdl

uint16_t RBLE_GATT_WRITE_RESP::conhdl

Connection handle

The documentation for this struct was generated from the following file:

rble_api.h

6.1.36 sdmmc_priv_csd_reg_ext_t Struct Reference

#include <sdcard.h>

Detailed Description

SDMMC card specific data extended

The documentation for this struct was generated from the following file:

sdcard.h

6.1.37 sdmmc_priv_csd_reg_t Struct Reference

#include <sdcard.h>

Detailed Description

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,079 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > sdmmc_priv_csd_reg_t Struct Reference

SDMMC card specific data

The documentation for this struct was generated from the following file:

sdcard.h

6.1.38 sf_cellular_circular_queue_cfg_t Struct Reference

#include <sf_cellular_common_api.h>

Data Fields

uint32_t * p_circular_queue_buffer

 Circular Queue buffer.

ULONG queue_size

 Circular Queue Size.

uint8_t ok_check_index

 Variable to store index for data checking success string response.

uint8_t error_check_index

 Variable to store index for data checking error string response.

TX_QUEUE * p_circular_queue

 Circular Queue.

Detailed Description

Circular queue configuration

The documentation for this struct was generated from the following file:

sf_cellular_common_api.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,080 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > sf_cellular_comms_extend_cfg_t Struct Reference

6.1.39 sf_cellular_comms_extend_cfg_t Struct Reference

#include <sf_cellular_common_api.h>

Data Fields

sf_comms_instance_t const
*

p_sf_comms_instance

 Lower level HAL driver instance.

TX_THREAD * p_sf_comms_rx_thread

 Received data ThreadX ID.

uint8_t * p_sf_comms_rx_thread_stack

 Receive data thread stack memory pointer.

ULONG sf_comms_rx_thread_stack_size

 Receive data thread stack size.

UINT rx_thread_priority

 Receive data thread priority.

uint8_t do_run

 Thread running status.

Detailed Description

SF Communication framework configuration

The documentation for this struct was generated from the following file:

sf_cellular_common_api.h

6.1.40 sf_cellular_extended_cfg_t Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,081 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > sf_cellular_extended_cfg_t Struct Reference

#include <sf_cellular_common_api.h>

Data Fields

sf_cellular_circular_queue_cf
g_t *

p_circular_queue_cfg

 Circular Queue configuration.

sf_cellular_comms_extend_c
fg_t *

p_sf_comms_cfg

 Lower level HAL interface configuration.

ioport_port_pin_t pin_reset

 Port pin used for resetting cellular module.

ioport_level_t reset_level

 Module reset level.

void * p_module_extended_cfg

 Instance specific module configuration.

Detailed Description

SF Cellular framework extended configuration

The documentation for this struct was generated from the following file:

sf_cellular_common_api.h

6.1.41 sf_cellular_instance_cfg_t Struct Reference

#include <sf_cellular_common_api.h>

Data Fields

uint8_t init_done

 Status flag storing driver initialization status.

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,082 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > sf_cellular_instance_cfg_t Struct Reference

uint8_t is_opened

 Status flag storing framework open status.

uint8_t is_data_mode_on

 Status flag storing data mode status.

sf_cellular_cfg_t const * p_cfg

 Instance configuration.

sf_cellular_provisioning_t prov_info

 Provisioning information.

sf_cellular_stats_t celr_stats

 Cellular Statistics information.

TX_MUTEX * p_cellular_mutex

 Mutex for Framework API synchronization.

uint8_t * p_socket_status_buffer

 Buffer to store the socket status information.

uint16_t socket_status_buffer_length

 Size of Socket status buffer.

Detailed Description

SF Cellular framework instance configuration

The documentation for this struct was generated from the following file:

sf_cellular_common_api.h

6.1.42 sf_cellular_qctlcatm1_socket_cfg_t Struct Reference

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,083 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > sf_cellular_qctlcatm1_socket_cfg_t Struct Reference

#include <sf_cellular_qctlcatm1_socket_private_api.h>

Data Fields

uint16_t transpktsize

uint16_t max_backoffs

uint16_t max_rto

Detailed Description

Structure definition for socket parameter configuration

Field Documentation

◆ max_backoffs

uint16_t sf_cellular_qctlcatm1_socket_cfg_t::max_backoffs

Maximum Number of Retransmissions. The range is 3-20, and the default value is 8

◆ max_rto

uint16_t sf_cellular_qctlcatm1_socket_cfg_t::max_rto

The maximum interval time of TCP retransmission. The range is 5-1000, and the default value is
600. Unit: 100ms

◆ transpktsize

uint16_t sf_cellular_qctlcatm1_socket_cfg_t::transpktsize

The max length of the data packet to be sent. The range is 1 -1460, and the default value is 1024.
Unit: byte

The documentation for this struct was generated from the following file:

sf_cellular_qctlcatm1_socket_private_api.h

6.1.43 sf_cellular_socket_info_t Struct Reference

#include <sf_cellular_ryz014catm1_socket_private_api.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,084 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > sf_cellular_socket_info_t Struct Reference

Data Fields

sf_cellular_qctlcatm1_socket
_state_t

state

 Socket state.

uint8_t local_ip [SF_CELLULAR_STR_LEN_16]

 Local IP address to which socket is bind.

uint16_t local_port

 Local port to which socket is bind.

uint8_t remote_ip [SF_CELLULAR_STR_LEN_16]

 Remote IP to which socket is connected. More...

uint16_t remote_port

 Remote port with which socket is connected.

sf_cellular_qctlcatm1_socket
_type_t

sock_type

 Socket type.

uint16_t sin_port

 Port number to which socket need to bind.

uint8_t data_state

 Data Received notification.

int8_t new_conn_fd

 Socket descriptor of new incoming connection.

sf_cellular_ryz014catm1_soc
ket_state_t

state

 Socket state.

sf_cellular_ryz014catm1_soc sock_type

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,085 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > sf_cellular_socket_info_t Struct Reference

ket_type_t

 Socket type.

uint16_t timeout

 Timeout period.

uint16_t pckt_size

 Packet size to be used.

uint16_t tx_timeout

 Data sending timeout.

uint16_t conn_timeout

 Connection timeout.

Detailed Description

Structure definition for socket details information

Field Documentation

◆ remote_ip

uint8_t sf_cellular_socket_info_t::remote_ip

Remote IP to which socket is connected.

Remote ip to which socket is connected.

The documentation for this struct was generated from the following files:

sf_cellular_qctlcatm1_socket_private_api.h
sf_cellular_ryz014catm1_socket_private_api.h

6.1.44 ssp_pack_version_t Union Reference

#include <ssp_version.h>

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,086 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > ssp_pack_version_t Union Reference

Data Fields

uint32_t version_id

struct {

 uint8_t build

 Build version of SSP Pack.

 uint8_t patch

 Patch version of SSP Pack.

 uint8_t minor

 Minor version of SSP Pack.

 uint8_t major

 Major version of SSP Pack.

};

Detailed Description

SSP Pack version structure

Field Documentation

◆ @42

struct { ... }

Code version parameters, little endian order.

◆ version_id

uint32_t ssp_pack_version_t::version_id

Version id

The documentation for this union was generated from the following file:

ssp_version.h

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,087 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > ssp_pack_version_t Union Reference

6.1.45 ssp_version_t Union Reference

#include <ssp_common_api.h>

Data Fields

uint32_t version_id

struct {

 uint8_t
code_version_minor

 Code minor version.

 uint8_t
code_version_major

 Code major version.

 uint8_t api_version_minor

 API minor version.

 uint8_t api_version_major

 API major version.

};

Detailed Description

Common version structure

Field Documentation

◆ @38

struct { ... }

Code version parameters

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,088 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structures > ssp_version_t Union Reference

◆ version_id

uint32_t ssp_version_t::version_id

Version id

The documentation for this union was generated from the following file:

ssp_common_api.h

6.2 Data Structure Index
a | b | c | d | e | f | g | h | i | j | k | l | n | o | p | q | r | s | t | u | w

 a
acmphs_instance_ctrl_t
acmplp_instance_ctrl_t
adc_api_t
adc_callback_args_t
adc_cfg_t
adc_channel_cfg_t
adc_info_t
adc_instance_ctrl_t
adc_instance_t
adc_on_sdadc_cfg_t
adc_sample_state_t
aes_api_t
aes_cfg_t
aes_ctrl_t
aes_instance_t
agt_input_capture_extend_t
agt_input_capture_instance_ctrl_t
agt_instance_ctrl_t
analog_connect_api_t
analog_connect_cfg_t
analog_connect_instance_t
analog_connect_table_t
arc4_api_t
arc4_cfg_t
arc4_ctrl_t
arc4_instance_t

 b
bsp_feature_acmphs_t
bsp_feature_adc_t
bsp_feature_can_t
bsp_feature_cgc_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,089 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

bsp_feature_ctsu_t
bsp_feature_dac_t
bsp_feature_flash_hp
bsp_feature_flash_lp
bsp_feature_icu_t
bsp_feature_ioport_t
bsp_feature_lpmv2_t
bsp_feature_lvd_t
bsp_feature_opamp_t
bsp_feature_riic_t
bsp_feature_rspi_t
bsp_feature_sci_t
bsp_feature_sdhi_t
bsp_feature_ssi_t
bsp_leds_t
bsp_lock_t

 c
cac_api_t
cac_callback_args_t
cac_cfg_t
cac_instance_ctrl_t
cac_instance_t
cac_meas_clock_config_t
cac_ref_clock_config_t
can_api_t
can_bit_timing_cfg_t
can_callback_args_t
can_cfg_t
can_error_t
can_extended_cfg_t
can_frame_t
can_instance_ctrl_t
can_instance_t
can_mailbox_t
can_status_t
cgc_api_t
cgc_callback_args_t
cgc_clock_cfg_t
cgc_clocks_cfg_t
cgc_instance_t
cgc_system_clock_cfg_t
comparator_api_t
comparator_callback_args_t
comparator_cfg_t
comparator_info_t
comparator_instance_t
comparator_status_t
crc_api_t
crc_cfg_t
crc_instance_ctrl_t
crc_instance_t
crc_snoop_cfg_t
crypto_api_t
crypto_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,090 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

crypto_ctrl_t
crypto_instance_t
crypto_interface_get_param_t
ctsu_api_t
ctsu_callback_args_t
ctsu_cfg_t
ctsu_correction_info_t
ctsu_ctsuwr_t
ctsu_element_cfg_t
ctsu_instance_ctrl_t
ctsu_instance_t
ctsu_mutual_buf_t
ctsu_self_buf_t

 d
d1_device_synergy
dac8_extended_cfg_t
dac8_instance_ctrl_t
dac_api_t
dac_cfg_t
dac_extended_cfg_t
dac_info_t
dac_instance_ctrl_t
dac_instance_t
display_api_t
display_brightness_t
display_callback_args_t
display_cfg_t
display_clut_cfg_t
display_clut_t
display_color_t
display_contrast_t
display_coordinate_t
display_correction_t
display_gamma_correction_t
display_input_cfg_t
display_instance_t
display_layer_t
display_output_cfg_t
display_runtime_cfg_t
display_status_t
display_timing_t
dmac_instance_ctrl_t
doc_api_t
doc_callback_args_t
doc_cfg_t
doc_data_t
doc_instance_ctrl_t
doc_instance_t
dsa_api_t
dsa_cfg_t
dsa_ctrl_t
dsa_instance_t
dtc_instance_ctrl_t
dtc_reg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,091 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

 e
ecc_api_t
ecc_cfg_t
ecc_ctrl_t
ecc_instance_t
elc_api_t
elc_cfg_t
elc_instance_t
elc_link_t
EMAC_BD
external_irq_api_t
external_irq_callback_args_t
external_irq_cfg_t
external_irq_instance_t

 f
flash_api_t
flash_callback_args_t
flash_cfg_t
flash_fmi_block_info_t
flash_fmi_regions_t
flash_hp_instance_ctrl_t
flash_info_t
flash_instance_t
flash_lp_instance_ctrl_t
fmi_api_t
fmi_instance_t

 g
gamma_correction_t
glcd_cfg_t
glcd_ctrl_t
glcd_instance_ctrl_t
gpt_input_capture_extend_t
gpt_input_capture_instance_ctrl_t
gpt_instance_ctrl_t
gpt_output_pin_t

 h
hash_api_t
hash_cfg_t
hash_ctrl_t
hash_instance_t

 i
i2c_api_master_t
i2c_api_slave_t
i2c_callback_args_t
i2c_cfg_t
i2c_master_instance_t
i2c_slave_instance_t
i2s_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,092 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

i2s_callback_args_t
i2s_cfg_t
i2s_info_t
i2s_instance_t
i2s_on_ssi_cfg_t
icu_instance_ctrl_t
in_addr
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_Incl_Comp_t::incl_list_u
input_capture_api_t
input_capture_callback_args_t
input_capture_capture_t
input_capture_cfg_t
input_capture_info_t
input_capture_instance_t
ioport_api_t
ioport_cfg_t
ioport_instance_t
ioport_pin_cfg_t
iwdt_instance_ctrl_t

 j
jpeg_decode_api_t
jpeg_decode_callback_args_t
jpeg_decode_cfg_t
jpeg_decode_instance_ctrl_t
jpeg_decode_instance_t
jpeg_encode_api_t
jpeg_encode_callback_args_t
jpeg_encode_cfg_t
jpeg_encode_instance_ctrl_t
jpeg_encode_instance_t
jpeg_encode_raw_image_parameters

 k
key_installation_instance_ctrl_t
key_installation_instance_t
key_installation_key_t
keymatrix_api_t
keymatrix_callback_args_t
keymatrix_cfg_t
keymatrix_instance_t
kint_instance_ctrl_t

 l
lpmv2_api_t
lpmv2_cfg_t
lpmv2_instance_t
lpmv2_mcu_cfg_t
lvd_api_t
lvd_callback_args_t
lvd_cfg_t
lvd_extend_t
lvd_instance_ctrl_t
lvd_instance_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,093 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

lvd_status_t

 n
NX_CALLBACK_REC
NX_DES
NX_IPV6_HEADER
nx_mac_address_t
NX_MD5
NX_REC
NX_SECURE_TLS_PHASH_SCE
NX_SECURE_TLS_PRF_1_SCE
NX_SECURE_TLS_PRF_SHA_256_SCE
NX_SHA1

 o
opamp_api_t
opamp_cfg_t
opamp_info_t
opamp_instance_ctrl_t
opamp_instance_t
opamp_on_opamp_cfg_t
opamp_status_t
opamp_trim_args_t

 p
pdc_api_t
pdc_callback_args_t
pdc_cfg_t
pdc_instance_ctrl_t
pdc_instance_t
pdc_state_t
phy_record_t
ptp_address_t
ptp_announce_flag_t
ptp_announce_message_t
ptp_api_t
ptp_callback_args_t
ptp_cfg_t
ptp_clock_quality_t
ptp_instance_ctrl_t
ptp_instance_t
ptp_message_reception_t
ptp_timestamp_t
ptpedmac_api_t
ptpedmac_callback_args_t
ptpedmac_cfg_t
ptpedmac_descriptor_t
ptpedmac_instance_ctrl_t
ptpedmac_instance_t

 q
qspi_api_t
qspi_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,094 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

qspi_info_t
qspi_instance_ctrl_t
qspi_instance_t

 r
r_crypto_data_handle_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_EVT_GATT_Command_Disallowed_Ind_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Cancel_Write_Char_Resp_t
RBLE_GATT_CHAR_128_LIST
RBLE_GATT_CHAR_DESC_128_LIST
RBLE_GATT_CHAR_DESC_LIST
RBLE_GATT_CHAR_LIST
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Complete_t
RBLE_GATT_DESIRED_TYPE
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_128_Comp_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_Comp_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_128_Comp_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_Comp_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_128_Comp_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_Comp_t
RBLE_GATT_DISC_CHAR_DESC_REQ
RBLE_GATT_DISC_CHAR_REQ
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_128_Comp_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_Comp_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_By_Uuid_Comp_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_Incl_Comp_t
RBLE_GATT_DISC_SVC_REQ
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Discovery_Comp_t
RBLE_GATT_EVENT
RBLE_GATT_EXE_WR_CHAR_REQ
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Cfm_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Ind_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Notif_t
RBLE_GATT_INCL_128_LIST
RBLE_GATT_INCL_LIST
RBLE_GATT_INDICATE_REQ
RBLE_GATT_INFO_DATA
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Notify_Comp_t
RBLE_GATT_NOTIFY_REQ
RBLE_GATT_QUERY_RESULT
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Desc_Resp_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Resp_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Mult_Resp_t
RBLE_GATT_READ_CHAR_REQ
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Resp_t
RBLE_GATT_RELIABLE_WRITE
RBLE_GATT_SET_DATA
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Set_Data_Complete_t
RBLE_GATT_SET_PERM
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Set_Perm_Complete_t
RBLE_GATT_SVC_128_LIST
RBLE_GATT_SVC_LIST
RBLE_GATT_SVC_RANGE_LIST
RBLE_GATT_UUID_TYPE
RBLE_GATT_WRITE_CHAR_REQ

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,095 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Char_Resp_t
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Cmd_Ind_t
RBLE_GATT_WRITE_RELIABLE_REQ
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Reliable_Resp_t
RBLE_GATT_WRITE_RESP
riic_extended_cfg
riic_instance_ctrl_t
riic_slave_instance_ctrl_t
rsa_api_t
rsa_cfg_t
rsa_ctrl_t
rsa_instance_t
rsa_key_t
rspi_access_delay_t
rspi_clock_delay_t
rspi_instance_ctrl_t
rspi_loopback_t
rspi_mosi_idle_t
rspi_parity_t
rspi_ssl_negation_delay_t
rspi_ssl_polarity_t
rtc_alarm_time_t
rtc_api_t
rtc_callback_args_t
rtc_cfg_t
rtc_error_adjustment_cfg_t
rtc_error_adjustment_mode_cfg_t
rtc_info_t
rtc_instance_ctrl_t
rtc_instance_t

 s
sb_ble_prf_ias_set_alert_t
sci_i2c_extended_cfg
sci_i2c_instance_ctrl_t
sci_spi_extended_cfg
sci_spi_instance_ctrl_t
sci_uart_instance_ctrl_t
sdadc_calibrate_args_t
sdadc_channel_cfg_t
sdadc_instance_ctrl_t
sdmmc_api_t
sdmmc_callback_args_t
sdmmc_cfg_t
sdmmc_extended_cfg_t
sdmmc_hw_t
sdmmc_info_t
sdmmc_instance_ctrl_t
sdmmc_instance_t
sdmmc_priv_csd_reg_ext_t
sdmmc_priv_csd_reg_t
sf_adc_periodic_api_t
sf_adc_periodic_callback_args_t
sf_adc_periodic_cfg_t
sf_adc_periodic_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,096 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

sf_adc_periodic_instance_t
sf_audio_playback_api_t
sf_audio_playback_cfg_t
sf_audio_playback_common_cfg_t
sf_audio_playback_common_instance_ctrl_t
sf_audio_playback_data_t
sf_audio_playback_data_type_t
sf_audio_playback_hw_api_t
sf_audio_playback_hw_callback_args_t
sf_audio_playback_hw_cfg_t
sf_audio_playback_hw_dac_cfg_t
sf_audio_playback_hw_dac_instance_ctrl_t
sf_audio_playback_hw_i2s_cfg_t
sf_audio_playback_hw_i2s_instance_ctrl_t
sf_audio_playback_hw_instance_t
st_sf_audio_playback_instance_ctrl
sf_audio_playback_instance_t
sf_audio_record_adc_instance_ctrl_t
sf_audio_record_api_t
sf_audio_record_cfg_t
sf_audio_record_i2s_instance_ctrl_t
sf_audio_record_instance_t
sf_ble_addr_t
sf_ble_addr_verify_ind_t
sf_ble_adv_data_t
sf_ble_adv_info_t
sf_ble_anp_ancp_change_t
sf_ble_anp_ancp_t
sf_ble_anp_api_new_alert_ntf_t
sf_ble_anp_api_new_alert_t
sf_ble_anp_api_unread_alert_ntf_t
sf_ble_anp_api_unread_alert_t
sf_ble_api_t
sf_ble_attr_info_t
sf_ble_bas_battery_lvl_ntf_t
sf_ble_blp_meas_info_t
sf_ble_blp_meas_recv_data_t
sf_ble_bonding_req_ind_t
sf_ble_bonding_response_t
sf_ble_bonding_start_t
sf_ble_cfg_t
sf_ble_char_attribute_t
sf_ble_char_desc_discovery_rsp_t
sf_ble_char_discovery_req_t
sf_ble_char_discovery_rsp_t
sf_ble_char_multiple_read_req_t
sf_ble_char_multiple_read_rsp_t
sf_ble_char_read_by_handle_rsp_t
sf_ble_char_read_by_uuid_rsp_t
sf_ble_char_read_req_t
sf_ble_char_read_rsp_t
sf_ble_char_write_req_t
sf_ble_chipset_info_t
sf_ble_connect_info_t
sf_ble_connection_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,097 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

sf_ble_ctrl_t
sf_ble_cts_curr_time_ntf_t
sf_ble_cts_local_time_t
sf_ble_cts_ref_time_t
sf_ble_disconnect_t
sf_ble_event_info_t
sf_ble_gatt_attr_event_t
sf_ble_gatt_notif_ind_event_data_t
sf_ble_hrp_api_hrmeas_t
sf_ble_hrp_api_meas_ntf_t
sf_ble_hrp_cp_change_t
sf_ble_info_t
sf_ble_instance_t
sf_ble_long_attr_info_t
sf_ble_on_rl78g1d_cfg_t
sf_ble_onboard_profile_api_t
sf_ble_onboard_profile_cccd_changed_t
sf_ble_onboard_profile_cfg_t
sf_ble_onboard_profile_ctrl_t
sf_ble_onboard_profile_instance_t
sf_ble_prf_alert_status_ntf_t
sf_ble_prf_cts_curr_time_t
sf_ble_prf_cts_date_time_t
sf_ble_prf_dis_pnpid_t
sf_ble_prf_hid_change_event_t
sf_ble_prf_hid_report_desc_t
sf_ble_prf_hid_report_ind_t
sf_ble_prf_htp_temp_info_ind_t
sf_ble_prf_htp_temp_info_t
sf_ble_prf_ias_alert_lvl_change_t
sf_ble_prf_ndcs_time_dst_t
sf_ble_prf_ringer_cp_change_t
sf_ble_prf_ringer_setting_ntf_t
sf_ble_prf_rtus_time_updt_state_t
sf_ble_prf_scps_scan_intv_t
sf_ble_prf_tip_write_data_t
sf_ble_prf_value_t
sf_ble_provisioning_t
sf_ble_scan_info_t
sf_ble_scan_response_data_t
sf_ble_scan_t
sf_ble_scps_scan_intv_change_t
sf_ble_sec_enc_start_ind_t
sf_ble_sec_info_t
sf_ble_service_discovery_req_t
sf_ble_service_discovery_rsp_t
sf_ble_set_tx_pwr_info_t
sf_ble_sm_enc_info_t
sf_ble_sm_key_ind_t
sf_ble_sm_tk_ind_t
sf_ble_sm_tk_info_t
sf_ble_svc_attribute_t
sf_ble_tip_cp_change_t
sf_ble_uuid_t
sf_ble_write_cmd_event_data_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,098 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

sf_block_media_api_t
sf_block_media_cfg_t
sf_block_media_instance_t
sf_block_media_lx_nor_instance_ctrl_t
sf_block_media_on_lx_nor_cfg_t
sf_block_media_qspi_instance_ctrl_t
sf_block_media_ram_instance_ctrl_t
sf_block_media_sdmmc_instance_ctrl_t
sf_cellular_api_t
sf_cellular_at_cmd_set_t
sf_cellular_callback_args_t
sf_cellular_cfg_t
sf_cellular_circular_queue_cfg_t
sf_cellular_cmd_resp_t
sf_cellular_command_parameters_info_t
sf_cellular_comms_extend_cfg_t
sf_cellular_ctrl_t
sf_cellular_extended_cfg_t
sf_cellular_info_t
sf_cellular_instance_cfg_t
sf_cellular_instance_t
sf_cellular_network_status_t
sf_cellular_nsal_cfg_t
sf_cellular_op_t
sf_cellular_provisioning_t
sf_cellular_qctlcatm1_extended_cfg_t
sf_cellular_qctlcatm1_socket_cfg_t
sf_cellular_sim_pin_info_t
sf_cellular_socket_api_t
sf_cellular_socket_cfg_t
sf_cellular_socket_ctrl_t
sf_cellular_socket_info_t
sf_cellular_socket_instance_t
sf_cellular_stats_t
sf_comms_api_t
sf_comms_callback_args_t
sf_comms_cfg_t
sf_comms_instance_t
sf_comms_telnet_cfg_t
sf_comms_telnet_instance_ctrl_t
sf_console_api_t
sf_console_callback_args_t
sf_console_cfg_t
sf_console_command_t
sf_console_instance_ctrl_t
sf_console_instance_t
sf_console_menu_t
sf_crypto_api_t
sf_crypto_callback_args_t
sf_crypto_cfg_t
sf_crypto_cipher_aes_init_params_t
sf_crypto_cipher_api_t
sf_crypto_cipher_cfg_t
sf_crypto_cipher_instance_ctrl_t
sf_crypto_cipher_instance_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,099 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

sf_crypto_cipher_rsa_init_params_t
sf_crypto_data_handle_t
sf_crypto_hash_api_t
sf_crypto_hash_callback_args_t
sf_crypto_hash_cfg_t
sf_crypto_hash_context_t
sf_crypto_hash_instance_ctrl_t
sf_crypto_hash_instance_t
sf_crypto_instance_ctrl_t
sf_crypto_instance_t
sf_crypto_key_api_t
sf_crypto_key_cfg_t
sf_crypto_key_installation_api_t
sf_crypto_key_installation_cfg_t
sf_crypto_key_installation_instance_ctrl_t
sf_crypto_key_installation_instance_t
sf_crypto_key_instance_ctrl_t
sf_crypto_key_instance_t
sf_crypto_signature_api_t
sf_crypto_signature_cfg_t
sf_crypto_signature_context_t
sf_crypto_signature_instance_ctrl_t
sf_crypto_signature_instance_t
sf_crypto_signature_rsa_specific_params_t
sf_crypto_trng_api_t
sf_crypto_trng_cfg_t
sf_crypto_trng_instance_t
sf_el_fx_callback_args_t
sf_el_fx_config_t
sf_el_fx_instance_ctrl_t
sf_el_fx_media_boot_record_table_info_t
sf_el_fx_media_ebr_info_t
sf_el_fx_media_global_open_info_t
sf_el_fx_media_info_t
sf_el_fx_media_mbr_info_t
sf_el_fx_media_partition_data_info_t
sf_el_fx_media_partition_info_t
sf_el_fx_t
sf_el_gx_api_t
sf_el_gx_callback_args_t
sf_el_gx_cfg_t
sf_el_gx_instance_ctrl_t
sf_el_gx_instance_t
sf_el_lx_nor_callback_args_t
sf_el_lx_nor_instance_cfg_t
sf_el_lx_nor_instance_ctrl_t
sf_el_lx_nor_memory_settings_t
sf_el_nx_cfg_t
sf_el_ux_comms_instance_ctrl_t
sf_external_irq_api_t
sf_external_irq_cfg_t
sf_external_irq_instance_ctrl_t
sf_external_irq_instance_t
sf_i2c_api_t
sf_i2c_bus_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,100 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

sf_i2c_cfg_t
sf_i2c_instance_ctrl_t
sf_i2c_instance_t
sf_jpeg_decode_api_t
sf_jpeg_decode_cfg_t
sf_jpeg_decode_instance_ctrl_t
sf_jpeg_decode_instance_t
sf_memory_api_t
sf_memory_cfg_t
sf_memory_info_t
sf_memory_instance_t
sf_memory_qspi_nor_cfg_t
sf_memory_qspi_nor_instance_ctrl_t
sf_memory_region_info_t
sf_message_acquire_cfg_t
sf_message_api_t
sf_message_buffer_ctrl_t
sf_message_callback_args_t
sf_message_cfg_t
sf_message_header_t
sf_message_instance_ctrl_t
sf_message_instance_range_t
sf_message_instance_t
sf_message_post_cfg_t
sf_message_post_err_t
sf_message_subscriber_list_t
sf_message_subscriber_t
sf_power_profiles_v2_api_t
sf_power_profiles_v2_callback_args_t
sf_power_profiles_v2_cfg_t
sf_power_profiles_v2_ctrl_t
sf_power_profiles_v2_instance_t
sf_power_profiles_v2_low_power_cfg_t
sf_power_profiles_v2_run_cfg_t
sf_socket_api_t
sf_socket_cfg_t
sf_socket_ctrl_t
sf_socket_instance_t
sf_spi_api_t
sf_spi_bus_t
sf_spi_cfg_t
sf_spi_instance_ctrl_t
sf_spi_instance_t
sf_thread_monitor_api_t
sf_thread_monitor_cfg_t
sf_thread_monitor_counter_min_max_t
sf_thread_monitor_instance_ctrl_t
sf_thread_monitor_instance_t
sf_thread_monitor_thread_counter_t
sf_touch_ctsu_api_t
sf_touch_ctsu_button_cfg_t
sf_touch_ctsu_button_info_t
sf_touch_ctsu_cfg_t
sf_touch_ctsu_instance_ctrl_t
sf_touch_ctsu_instance_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,101 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

sf_touch_ctsu_slider_cfg_t
sf_touch_ctsu_slider_info_t
sf_touch_ctsu_wheel_cfg_t
sf_touch_ctsu_wheel_info_t
sf_touch_panel_chip_api_t
sf_touch_panel_chip_cfg_t
sf_touch_panel_chip_ft5x06_instance_ctrl_t
sf_touch_panel_chip_instance_t
sf_touch_panel_chip_on_ft5x06_cfg_t
sf_touch_panel_chip_on_sx8654_cfg_t
sf_touch_panel_chip_sx8654_instance_ctrl_t
sf_touch_panel_v2_api_t
sf_touch_panel_v2_calibrate_factors_t
sf_touch_panel_v2_calibrate_t
sf_touch_panel_v2_cfg_t
sf_touch_panel_v2_instance_ctrl_t
sf_touch_panel_v2_instance_t
sf_touch_panel_v2_payload_t
sf_touchpanel_v2_callback_args_t
sf_uart_comms_cfg_t
sf_uart_comms_instance_ctrl_t
sf_wifi_api_t
sf_wifi_callback_args_t
sf_wifi_cfg_t
sf_wifi_ctrl_t
sf_wifi_info_t
sf_wifi_instance_t
sf_wifi_ip_addr_t
sf_wifi_nsal_callback_args_t
sf_wifi_nsal_cfg_t
sf_wifi_on_gt202_cfg_t
sf_wifi_onchip_stack_api_t
sf_wifi_onchip_stack_cfg_t
sf_wifi_onchip_stack_ctrl_t
sf_wifi_onchip_stack_instance_t
sf_wifi_onchip_stack_ip_cfg_t
sf_wifi_provisioning_t
sf_wifi_qca4010_api_t
sf_wifi_qca4010_at_cmd_set_t
sf_wifi_qca4010_cfg_t
sf_wifi_qca4010_cmd_resp_t
sf_wifi_qca4010_ctrl_t
sf_wifi_qca4010_extended_cfg_t
sf_wifi_qca4010_instance_cfg_t
sf_wifi_qca4010_instance_t
sf_wifi_qca4010_ip_addr_t
sf_wifi_qca4010_onchip_stack_api_t
sf_wifi_qca4010_onchip_stack_cfg_t
sf_wifi_qca4010_onchip_stack_ctrl_t
sf_wifi_qca4010_onchip_stack_instance_t
sf_wifi_qca4010_onchip_stack_ip_cfg_t
sf_wifi_qca4010_provisioning_t
sf_wifi_qca4010_queue_cfg_t
sf_wifi_qca4010_scan_t
sf_wifi_qca4010_socket_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,102 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

sf_wifi_qca4010_socket_cfg_t
sf_wifi_qca4010_socket_ctrl_t
sf_wifi_qca4010_socket_instance_t
sf_wifi_qca4010_status_t
sf_wifi_qca4010_uart_extend_cfg_t
sf_wifi_scan_t
sf_wifi_stats_t
sf_wifi_wps_t
slcdc_api_t
slcdc_cfg_t
slcdc_instance_ctrl_t
slcdc_instance_t
sockaddr
sockaddr_in
spi_api_t
spi_callback_args_t
spi_cfg_t
spi_instance_t
spi_on_rspi_cfg_t
ssi_instance_ctrl_t
ssp_pack_version_t
ssp_version_t
sf_message_buffer_ctrl_t::st_buffer_ctrl_flag
st_sf_ble_prf_htp_meas_intv_val_t

 t
tdes_api_t
tdes_cfg_t
tdes_ctrl_t
tdes_instance_t
timer_api_t
timer_callback_args_t
timer_cfg_t
timer_info_t
timer_instance_t
timer_on_agt_cfg_t
timer_on_gpt_cfg_t
transfer_api_t
transfer_callback_args_t
transfer_cfg_t
transfer_info_t
transfer_instance_t
transfer_on_dmac_cfg_t
transfer_properties_t
trng_api_t
trng_cfg_t
trng_ctrl_t
trng_instance_t

 u
uart_api_t
uart_callback_args_t
uart_cfg_t
uart_info_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,103 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Structure Index

uart_instance_t
uart_on_sci_cfg_t
UInt64_t
ulpgn_socket_t
UX_DCD_SYNERGY
UX_DCD_SYNERGY_ED
UX_DCD_SYNERGY_PAYLOAD_TRANSFER
UX_DCD_SYNERGY_TRANSFER
UX_HCD_SYNERGY
UX_HCD_SYNERGY_FIFO
UX_HCD_SYNERGY_PAYLOAD_TRANSFER
UX_HCD_SYNERGY_TRANSFER
UX_SYNERGY_ED
UX_SYNERGY_ISO_TD
UX_SYNERGY_TD

 w
wdt_api_t
wdt_callback_args_t
wdt_cfg_t
wdt_instance_ctrl_t
wdt_instance_t
wdt_timeout_values_t

6.3 Data Fields
This section lists SSP data fields.

6.3.1 All Data Fields

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- a -

a : display_color_t
absolute_start_addr : sf_el_lx_nor_memory_settings_t
accept : sf_ble_bonding_response_t
accept_addr : sf_ble_addr_verify_ind_t
access_control : sf_wifi_cfg_t
access_delay : spi_on_rspi_cfg_t
access_ipl : sdmmc_cfg_t
access_tech_name : sf_cellular_network_status_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,104 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

accessWindowClear : flash_api_t
accessWindowSet : flash_api_t
accuracy : sf_ble_cts_ref_time_t
ACLAdd : sf_wifi_api_t
ACLDelete : sf_wifi_api_t
activation_on_rxi : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
activation_on_txi : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
activation_source : transfer_cfg_t
active : sf_thread_monitor_thread_counter_t
active_band : sf_cellular_network_status_t
actual_count : sf_el_fx_media_partition_info_t
actual_hwErr_event : riic_instance_ctrl_t
ad_da_synchronized : dac_cfg_t
adc_calib_available : adc_instance_ctrl_t
add_average_count : adc_cfg_t
add_mask : adc_channel_cfg_t
addAdditionalAuthenticationData : aes_api_t
addition_supported : bsp_feature_adc_t
addr : sf_ble_addr_t , sf_wifi_ip_addr_t , sf_wifi_qca4010_ip_addr_t
addr_high : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
addr_loaded : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
addr_low : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
addr_mode : i2c_cfg_t
addr_remain : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
addr_total : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
addr_type : sf_ble_addr_verify_ind_t , sf_ble_connection_t , sf_ble_scan_t
address : ptp_instance_ctrl_t
address_restarted : riic_instance_ctrl_t
address_type : sf_ble_scan_info_t
adjust_reason : sf_ble_prf_cts_curr_time_t
adjustment_mode : rtc_error_adjustment_mode_cfg_t
adjustment_period : rtc_error_adjustment_mode_cfg_t
adjustment_type : rtc_error_adjustment_cfg_t
adjustment_value : rtc_error_adjustment_cfg_t
adv_chnl_map : sf_ble_adv_info_t
adv_data : sf_ble_adv_info_t
adv_data_length : sf_ble_adv_data_t
adv_filt_policy : sf_ble_adv_info_t
adv_intv_max : sf_ble_adv_info_t
adv_intv_min : sf_ble_adv_info_t
adv_type : sf_ble_adv_info_t
advertisementStart : sf_ble_api_t
advertisementStop : sf_ble_api_t
agt_link : opamp_on_opamp_cfg_t
agtio_output_enabled : timer_on_agt_cfg_t
agto_output_enabled : timer_on_agt_cfg_t
agtoa_output_enable : timer_on_agt_cfg_t
agtob_output_enable : timer_on_agt_cfg_t
airplane_mode : sf_cellular_provisioning_t
alarm_ipl : rtc_cfg_t
alarm_irq : rtc_instance_ctrl_t
alert : sf_ble_anp_api_unread_alert_ntf_t
alert_lvl : sf_ble_prf_ias_alert_lvl_change_t
alert_num : sf_ble_anp_api_new_alert_t
alert_status : sf_ble_prf_alert_status_ntf_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,105 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

aligned_buff : sdmmc_instance_ctrl_t
alignment : adc_cfg_t , adc_instance_ctrl_t , sdadc_instance_ctrl_t
alpha_value : jpeg_decode_cfg_t
api_version_major : ssp_version_t
api_version_minor : ssp_version_t
apn : sf_cellular_provisioning_t
arc4Process : arc4_api_t
argumentFind : sf_console_api_t
att_code :
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Cancel_Write_Char_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Complete_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_128_Comp_t
, RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_By_Uuid_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Discovery_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Desc_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Mult_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Char_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Reliable_Resp_t ,
RBLE_GATT_WRITE_RESP
att_hdl : RBLE_GATT_WRITE_RESP
attr_declare_handle : sf_ble_char_attribute_t
attr_declare_type : sf_ble_char_attribute_t
attr_handle : sf_ble_gatt_attr_event_t , sf_ble_svc_attribute_t
attr_hdl : RBLE_GATT_CHAR_128_LIST , RBLE_GATT_CHAR_DESC_128_LIST ,
RBLE_GATT_CHAR_DESC_LIST , RBLE_GATT_CHAR_LIST ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Desc_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Resp_t ,
RBLE_GATT_INCL_128_LIST , RBLE_GATT_INCL_LIST , RBLE_GATT_SVC_128_LIST ,
RBLE_GATT_SVC_LIST , sf_ble_long_attr_info_t
attr_perm : sf_ble_char_attribute_t
attr_properties : sf_ble_char_attribute_t
attr_type : sf_ble_svc_attribute_t
attr_uuid : sf_ble_char_attribute_t
attr_value_handle : sf_ble_char_attribute_t
attr_value_len : sf_ble_char_attribute_t , sf_ble_svc_attribute_t
atune1 : ctsu_cfg_t
audio_clk_freq_hz : i2s_cfg_t
audio_clock : i2s_on_ssi_cfg_t
auth_req : sf_ble_bonding_req_ind_t
auth_type : sf_ble_sec_enc_start_ind_t , sf_cellular_nsal_cfg_t , sf_cellular_provisioning_t
authorization : sf_ble_api_t
auto_enable : transfer_cfg_t
auto_execute : RBLE_GATT_WRITE_CHAR_REQ , RBLE_GATT_WRITE_RELIABLE_REQ ,
sf_ble_char_write_req_t
autoClearEvent : ptp_api_t
autostart : elc_cfg_t , external_irq_cfg_t , input_capture_cfg_t , keymatrix_cfg_t ,
sf_console_cfg_t , timer_cfg_t , wdt_cfg_t
available : sf_comms_telnet_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,106 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

average : ctsu_instance_ctrl_t , sdadc_channel_cfg_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- b -

b : display_brightness_t , display_color_t , display_contrast_t , display_gamma_correction_t
back_porch : display_timing_t , glcd_ctrl_t
bankSelect : qspi_api_t
base_addr : sf_el_fx_media_ebr_info_t
batt_lvl : sf_ble_bas_battery_lvl_ntf_t
baud_rate : uart_cfg_t
baud_rate_error_x_1000 : sci_uart_instance_ctrl_t , uart_on_sci_cfg_t
baud_rate_prescaler : can_bit_timing_cfg_t
baudclk_out : uart_on_sci_cfg_t
baudSet : uart_api_t
bcast_mode : sf_ble_provisioning_t
bclk_div : cgc_system_clock_cfg_t
bd_addr : sf_ble_addr_verify_ind_t , sf_ble_bonding_req_ind_t , sf_ble_cfg_t ,
sf_ble_chipset_info_t , sf_ble_connection_t , sf_ble_scan_t
bd_buffer_ptr : EMAC_BD
bd_bufsize : EMAC_BD
bd_nx_packet : EMAC_BD
bd_rxdatalength : EMAC_BD
bd_status : EMAC_BD
beacon : sf_wifi_cfg_t
ber : sf_cellular_info_t
bg_color : display_layer_t , display_output_cfg_t
bias_method : slcdc_cfg_t
binfo : sf_touch_ctsu_instance_ctrl_t
bit_order : crc_cfg_t , crc_instance_ctrl_t , spi_cfg_t
bit_width : dac_info_t
bitrate : spi_cfg_t
bitrate_modulation : sci_i2c_extended_cfg , sci_spi_extended_cfg , sci_uart_instance_ctrl_t ,
uart_on_sci_cfg_t
blankCheck : flash_api_t
ble_driver_thread_priority : sf_ble_on_rl78g1d_cfg_t
ble_prf_value : sf_ble_prf_hid_change_event_t
ble_serial_thread_priority : sf_ble_on_rl78g1d_cfg_t
block_pool : sf_message_instance_ctrl_t
block_section_end_addr : flash_fmi_block_info_t
block_section_st_addr : flash_fmi_block_info_t
block_size : flash_fmi_block_info_t , sdmmc_extended_cfg_t , sf_block_media_cfg_t ,
sf_block_media_lx_nor_instance_ctrl_t , sf_block_media_qspi_instance_ctrl_t ,
sf_block_media_ram_instance_ctrl_t , sf_block_media_sdmmc_instance_ctrl_t
block_size_write : flash_fmi_block_info_t
blockReset : transfer_api_t
bonding_mode : sf_ble_provisioning_t
bonding_status : sf_ble_sec_enc_start_ind_t
bondingResponse : sf_ble_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,107 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

bondingStart : sf_ble_api_t
boot_record_table : sf_el_fx_media_info_t
brightness : display_correction_t , display_output_cfg_t
BSP_ALIGN_VARIABLE_V2() : ptpedmac_instance_ctrl_t ,
sf_audio_playback_common_instance_ctrl_t , sf_thread_monitor_instance_ctrl_t ,
sf_touch_panel_v2_instance_ctrl_t
bss_type : sf_wifi_scan_t
bssid : sf_wifi_qca4010_scan_t , sf_wifi_scan_t
buff : sf_el_fx_media_ebr_info_t , sf_el_fx_media_mbr_info_t
buff_len : sf_cellular_cmd_resp_t , sf_wifi_qca4010_cmd_resp_t
buffer : sf_crypto_signature_context_t
buffer_index : sf_adc_periodic_callback_args_t , sf_audio_playback_common_instance_ctrl_t
buffer_keep : sf_message_acquire_cfg_t , sf_message_buffer_ctrl_t::st_buffer_ctrl_flag
buffer_size : sf_audio_record_i2s_instance_ctrl_t , sf_message_cfg_t ,
sf_message_instance_ctrl_t
bufferAcquire : sf_message_api_t
bufferRelease : sf_message_api_t
build : ssp_pack_version_t
bus_width : sdmmc_hw_t , sdmmc_info_t
busClockOutCfg : cgc_api_t
busClockOutDisable : cgc_api_t
busClockOutEnable : cgc_api_t
byte_pool : sf_crypto_instance_ctrl_t
byte_swap : spi_on_rspi_cfg_t
bytes : i2c_callback_args_t , sf_console_callback_args_t
bytes_per_pixel : pdc_cfg_t , pdc_instance_ctrl_t , sf_el_gx_instance_ctrl_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- c -

cac_api_open : cac_instance_ctrl_t
cac_continous_mode : cac_instance_ctrl_t
cac_lock : cac_instance_ctrl_t
cac_lower_limit : cac_cfg_t
cac_meas_clock : cac_cfg_t
cac_ref_clock : cac_cfg_t
cac_upper_limit : cac_cfg_t
cache_state : flash_hp_instance_ctrl_t , flash_lp_instance_ctrl_t
calculate : crc_api_t
calendarAlarmGet : rtc_api_t
calendarAlarmSet : rtc_api_t
calendarCounterStart : rtc_api_t
calendarCounterStop : rtc_api_t
calendarTimeGet : rtc_api_t
calendarTimeSet : rtc_api_t
calib_adc_skip : adc_cfg_t
calib_end_irq : sdadc_instance_ctrl_t
calib_status : sdadc_instance_ctrl_t
calibrate : adc_api_t , sf_touch_panel_v2_api_t , sf_touch_panel_v2_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,108 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

calibration_data : adc_info_t
calibration_end_ipl : adc_on_sdadc_cfg_t
calibration_ongoing : adc_info_t
calibration_reg_available : bsp_feature_adc_t
callback : adc_instance_ctrl_t , sf_console_command_t
callback_used : sf_external_irq_instance_ctrl_t
callbackSet : ctsu_api_t , sf_touch_ctsu_api_t
cancel_freq : sf_touch_ctsu_button_info_t , sf_touch_ctsu_cfg_t
canvasInit : sf_el_gx_api_t
cap : ctsu_cfg_t
capture_count : agt_input_capture_instance_ctrl_t , gpt_input_capture_instance_ctrl_t
capture_data_buffer_size : sf_audio_record_cfg_t
capture_data_size : sf_audio_record_cfg_t , sf_audio_record_i2s_instance_ctrl_t
capture_irq : agt_input_capture_instance_ctrl_t , gpt_input_capture_instance_ctrl_t
capture_irq_ipl : input_capture_cfg_t
captureStart : pdc_api_t
card_detect : sdmmc_extended_cfg_t
card_ipl : sdmmc_cfg_t
card_type : sdmmc_info_t
carry_ipl : rtc_cfg_t
carry_irq : rtc_instance_ctrl_t
carry_isr_triggered : rtc_instance_ctrl_t
category_id : sf_ble_anp_ancp_t , sf_ble_anp_api_new_alert_t ,
sf_ble_anp_api_unread_alert_t
cccd_val : sf_ble_onboard_profile_cccd_changed_t
celr_stats : sf_cellular_instance_cfg_t
cf_block_size_write : bsp_feature_flash_hp
cf_macro_size : bsp_feature_flash_lp
cfgGet : wdt_api_t
chain_mode : transfer_info_t
channel : adc_callback_args_t , agt_input_capture_instance_ctrl_t , agt_instance_ctrl_t ,
can_callback_args_t , can_cfg_t , can_instance_ctrl_t , comparator_callback_args_t ,
comparator_cfg_t , dac8_instance_ctrl_t , dac_cfg_t , dac_instance_ctrl_t ,
dmac_instance_ctrl_t , external_irq_callback_args_t , external_irq_cfg_t ,
gpt_input_capture_instance_ctrl_t , gpt_instance_ctrl_t , i2c_cfg_t , i2s_cfg_t ,
icu_instance_ctrl_t , input_capture_callback_args_t , input_capture_cfg_t , NX_REC ,
opamp_trim_args_t , ptpedmac_callback_args_t , rspi_instance_ctrl_t , sci_spi_instance_ctrl_t
, sci_uart_instance_ctrl_t , sdadc_calibrate_args_t , sdmmc_hw_t , sf_i2c_bus_t , sf_spi_bus_t
, sf_wifi_provisioning_t , sf_wifi_qca4010_provisioning_t , sf_wifi_qca4010_scan_t ,
sf_wifi_qca4010_status_t , sf_wifi_scan_t , spi_callback_args_t , spi_cfg_t , ssi_instance_ctrl_t
, timer_cfg_t , transfer_on_dmac_cfg_t , uart_callback_args_t , uart_cfg_t
channel_opened : dac8_instance_ctrl_t , dac_instance_ctrl_t , rspi_instance_ctrl_t ,
sci_spi_instance_ctrl_t
channel_started : dac8_instance_ctrl_t , dac_instance_ctrl_t
channels : keymatrix_callback_args_t , keymatrix_cfg_t , kint_instance_ctrl_t
char_code : sf_ble_blp_meas_recv_data_t , sf_ble_onboard_profile_cccd_changed_t
char_handle : sf_ble_char_discovery_rsp_t
char_read_type : sf_ble_char_read_req_t
char_write_type : sf_ble_char_write_req_t
charhdl : RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Ind_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Notif_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Notify_Comp_t ,
RBLE_GATT_INDICATE_REQ , RBLE_GATT_NOTIFY_REQ , RBLE_GATT_WRITE_CHAR_REQ
check_pclkb_ratio : bsp_feature_can_t
checkINFABTstatus : ptp_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,109 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

checkWorst10Values : ptp_api_t
chip_select : sf_spi_cfg_t , sf_spi_instance_ctrl_t
chip_select_level_active : sf_spi_cfg_t , sf_spi_instance_ctrl_t
chipset : sf_ble_info_t , sf_cellular_info_t
CHNE : dtc_reg_t
CHNS : dtc_reg_t
cid : sf_cellular_network_status_t
cipher_algorithm_type : sf_crypto_cipher_instance_ctrl_t
cipher_chaining_mode : sf_crypto_cipher_cfg_t , sf_crypto_cipher_instance_ctrl_t
cipherAadUpdate : sf_crypto_cipher_api_t
cipherFinal : sf_crypto_cipher_api_t
cipherInit : sf_crypto_cipher_api_t
cipherUpdate : sf_crypto_cipher_api_t
class_code : sf_message_header_t
class_instance : sf_audio_playback_cfg_t , sf_message_header_t ,
sf_audio_playback_instance_ctrl_t
clearINFABTstatus : ptp_api_t
clearing : adc_cfg_t
clearIOKeep : lpmv2_api_t
clk_accuracy : sf_ble_connect_info_t
clk_phase : spi_cfg_t
clk_polarity : spi_cfg_t
clk_src : uart_on_sci_cfg_t
clksrc : glcd_cfg_t
clock : bsp_feature_can_t , bsp_feature_rspi_t , bsp_feature_sci_t , cac_meas_clock_config_t ,
cac_ref_clock_config_t
clock_delay : spi_on_rspi_cfg_t
clock_div_ratio : glcd_cfg_t
clock_divider : agt_input_capture_extend_t , gpt_input_capture_extend_t
clock_division : pdc_cfg_t , wdt_cfg_t
clock_frequency : timer_info_t
clock_frequency_hz : wdt_timeout_values_t
clock_rate : sdmmc_info_t
clock_source : bsp_feature_adc_t , can_extended_cfg_t , can_instance_ctrl_t , rtc_cfg_t ,
rtc_info_t , rtc_instance_ctrl_t
clockCheck : cgc_api_t
clockOutCfg : cgc_api_t
clockOutDisable : cgc_api_t
clockOutEnable : cgc_api_t
clocksCfg : cgc_api_t
clockStart : cgc_api_t
clockStop : cgc_api_t
close : adc_api_t , aes_api_t , arc4_api_t , cac_api_t , can_api_t , comparator_api_t , crc_api_t
, crypto_api_t , ctsu_api_t , dac_api_t , display_api_t , doc_api_t , dsa_api_t , ecc_api_t ,
external_irq_api_t , flash_api_t , hash_api_t , i2c_api_master_t , i2c_api_slave_t , i2s_api_t ,
input_capture_api_t , jpeg_decode_api_t , jpeg_encode_api_t , key_installation_api_t ,
keymatrix_api_t , lvd_api_t , opamp_api_t , pdc_api_t , ptp_api_t , ptpedmac_api_t ,
qspi_api_t , rsa_api_t , rtc_api_t , sdmmc_api_t , sf_adc_periodic_api_t ,
sf_audio_playback_api_t , sf_audio_playback_hw_api_t , sf_audio_record_api_t , sf_ble_api_t ,
sf_ble_onboard_profile_api_t , sf_block_media_api_t , sf_block_media_lx_nor_instance_ctrl_t ,
sf_block_media_on_lx_nor_cfg_t , sf_cellular_api_t , sf_cellular_socket_api_t , sf_comms_api_t
, sf_console_api_t , sf_crypto_api_t , sf_crypto_cipher_api_t , sf_crypto_hash_api_t ,
sf_crypto_key_api_t , sf_crypto_key_installation_api_t , sf_crypto_signature_api_t ,
sf_crypto_trng_api_t , sf_el_gx_api_t , sf_external_irq_api_t , sf_i2c_api_t ,
sf_jpeg_decode_api_t , sf_memory_api_t , sf_message_api_t , sf_power_profiles_v2_api_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,110 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

sf_socket_api_t , sf_spi_api_t , sf_thread_monitor_api_t , sf_touch_ctsu_api_t ,
sf_touch_panel_chip_api_t , sf_touch_panel_v2_api_t , sf_wifi_api_t ,
sf_wifi_onchip_stack_api_t , sf_wifi_qca4010_api_t , sf_wifi_qca4010_onchip_stack_api_t ,
sf_wifi_qca4010_socket_api_t , slcdc_api_t , spi_api_t , tdes_api_t , timer_api_t ,
transfer_api_t , trng_api_t , uart_api_t
close_option : sf_crypto_cfg_t , sf_crypto_instance_ctrl_t
clut : display_api_t
cmd_index : sf_cellular_command_parameters_info_t
code : sf_message_header_t
code_flash : flash_info_t
code_version_major : ssp_version_t
code_version_minor : ssp_version_t
coefficient_m : sdadc_channel_cfg_t
coefficient_n : sdadc_channel_cfg_t
color_num : display_clut_t
color_order : display_output_cfg_t
color_space : jpeg_decode_cfg_t
command : sf_console_command_t
command_flag : sf_wifi_qca4010_instance_cfg_t
command_id : sf_ble_anp_ancp_t
command_list : sf_console_menu_t
commandSend : sf_cellular_api_t
CommandSend : sf_wifi_qca4010_api_t
common_instance_mutex : sf_audio_playback_common_instance_ctrl_t
communicationAbort : uart_api_t
con_interval : sf_ble_cfg_t , sf_ble_connect_info_t
con_latency : sf_ble_connect_info_t
configure : ptp_api_t , rtc_api_t
conhdl : RBLE_GATT_DISC_CHAR_DESC_REQ , RBLE_GATT_DISC_CHAR_REQ ,
RBLE_GATT_DISC_SVC_REQ ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Cancel_Write_Char_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Complete_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_128_Comp_t
, RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_By_Uuid_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_Incl_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Discovery_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Ind_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Notif_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Notify_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Desc_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Mult_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Char_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Cmd_Ind_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Reliable_Resp_t ,
RBLE_GATT_EXE_WR_CHAR_REQ , RBLE_GATT_INDICATE_REQ , RBLE_GATT_NOTIFY_REQ ,
RBLE_GATT_READ_CHAR_REQ , RBLE_GATT_WRITE_CHAR_REQ ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,111 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

RBLE_GATT_WRITE_RELIABLE_REQ , RBLE_GATT_WRITE_RESP , sf_ble_anp_ancp_change_t ,
sf_ble_anp_api_new_alert_ntf_t , sf_ble_anp_api_unread_alert_ntf_t ,
sf_ble_bas_battery_lvl_ntf_t , sf_ble_blp_meas_recv_data_t , sf_ble_connect_info_t ,
sf_ble_cts_curr_time_ntf_t , sf_ble_disconnect_t , sf_ble_hrp_api_meas_ntf_t ,
sf_ble_hrp_cp_change_t , sf_ble_prf_alert_status_ntf_t , sf_ble_prf_hid_change_event_t ,
sf_ble_prf_hid_report_ind_t , sf_ble_prf_htp_temp_info_ind_t ,
sf_ble_prf_ias_alert_lvl_change_t , sf_ble_prf_ringer_cp_change_t ,
sf_ble_prf_ringer_setting_ntf_t , sf_ble_scps_scan_intv_change_t , sf_ble_sec_enc_start_ind_t
, sf_ble_sm_tk_info_t , sf_ble_tip_cp_change_t , st_sf_ble_prf_htp_meas_intv_val_t
conn_handle : sf_ble_onboard_profile_cccd_changed_t
conn_idx : sf_ble_sm_enc_info_t , sf_ble_sm_key_ind_t
conn_mode : sf_ble_adv_info_t
conn_timeout : sf_cellular_socket_info_t
connect : analog_connect_api_t , sf_ble_api_t
connectMultiple : analog_connect_api_t
context : sf_console_callback_args_t , sf_console_command_t
context_id : sf_cellular_provisioning_t
contextInit : sf_crypto_signature_api_t
continuous_mode : cac_cfg_t
contrast : display_correction_t , display_output_cfg_t
contrastDecrease : slcdc_api_t
contrastIncrease : slcdc_api_t
control : can_api_t , sdmmc_api_t
control_point_val : sf_ble_prf_value_t
control_point_value : sf_ble_anp_ancp_change_t , sf_ble_hrp_cp_change_t ,
sf_ble_tip_cp_change_t
conv_end_irq : sdadc_instance_ctrl_t
conversion_end_ipl : adc_on_sdadc_cfg_t
coordinate : display_layer_t
correction : display_api_t
correction_proc_order : glcd_cfg_t
count_direction : timer_info_t
count_edge : agt_input_capture_extend_t
count_formula : sdadc_channel_cfg_t
count_source : agt_input_capture_extend_t , timer_on_agt_cfg_t
counter : input_capture_callback_args_t , input_capture_capture_t ,
sf_el_fx_media_global_open_info_t
counterGet : timer_api_t , wdt_api_t
countIncrement : sf_thread_monitor_api_t
country_code : sf_cellular_network_status_t
CRA : dtc_reg_t
CRA_b : dtc_reg_t
CRAH : dtc_reg_t
CRAL : dtc_reg_t
CRB : dtc_reg_t
crcResultGet : crc_api_t
createKey : aes_api_t
crossing_detected : lvd_status_t
crypto_ctrl : tdes_ctrl_t
csd_version : sdmmc_info_t
csrk_key : sf_ble_sec_info_t
ctsrts_en : uart_cfg_t
ctsu_clock : ctsu_correction_info_t
ctsuchac0 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchac1 : ctsu_cfg_t , ctsu_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,112 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

ctsuchac2 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchac3 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchac4 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchac_register_count : bsp_feature_ctsu_t
ctsuchtrc0 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchtrc1 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchtrc2 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchtrc3 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchtrc4 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchtrc_register_count : bsp_feature_ctsu_t
ctsucr0_mask : bsp_feature_ctsu_t
ctsucr1 : ctsu_instance_ctrl_t
ctsucr1_mask : bsp_feature_ctsu_t
ctsumch0_mask : bsp_feature_ctsu_t
ctsumch1_mask : bsp_feature_ctsu_t
ctsuso0 : ctsu_ctsuwr_t
ctsuso1 : ctsu_ctsuwr_t
ctsussc : ctsu_ctsuwr_t
ctsuwr : ctsu_correction_info_t
curr_cmd_port : sf_wifi_qca4010_instance_cfg_t
curr_data_port : sf_wifi_qca4010_instance_cfg_t
curr_socket_index : sf_wifi_qca4010_instance_cfg_t
currbuf : trng_ctrl_t
current_buffer_index : sf_audio_record_i2s_instance_ctrl_t
current_count : sf_thread_monitor_thread_counter_t
current_sample_count : sf_adc_periodic_instance_ctrl_t
current_slave : rspi_instance_ctrl_t
current_state : lvd_status_t , sf_ble_prf_rtus_time_updt_state_t
current_time : sf_ble_cts_curr_time_ntf_t , sf_ble_prf_tip_write_data_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- d -

dac_mode : dac8_extended_cfg_t
DAR : dtc_reg_t
data : can_frame_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Mult_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Resp_t ,
RBLE_GATT_INFO_DATA , sf_ble_adv_data_t , sf_ble_attr_info_t , sf_ble_scan_t ,
uart_callback_args_t
data_bits : uart_cfg_t
data_buffer_index : sf_adc_periodic_instance_ctrl_t
data_buffer_length : sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t
data_bytes : sci_uart_instance_ctrl_t
data_enable_polarity : display_output_cfg_t
data_flash : flash_info_t
data_flash_bgo : flash_cfg_t
data_format : dac8_instance_ctrl_t , dac_cfg_t
data_len : sf_ble_char_multiple_read_rsp_t , sf_ble_char_read_by_handle_rsp_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,113 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

sf_ble_char_read_by_uuid_rsp_t , sf_ble_scan_t
data_length : key_installation_key_t , r_crypto_data_handle_t , sf_ble_char_write_req_t ,
sf_ble_gatt_notif_ind_event_data_t , sf_ble_write_cmd_event_data_t ,
sf_crypto_data_handle_t
data_length_code : can_frame_t
data_lines : qspi_instance_ctrl_t
data_size : sf_audio_record_i2s_instance_ctrl_t
data_state : sf_cellular_socket_info_t
data_type : sf_audio_playback_common_instance_ctrl_t
dataGet : ctsu_api_t , sf_touch_ctsu_api_t
dataTypeGet : sf_audio_playback_hw_api_t
dave2d_buffer_cache_enabled : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
day : sf_ble_prf_cts_date_time_t
day_of_week : sf_ble_prf_cts_curr_time_t
dayofweek_match : rtc_alarm_time_t
days_since_update : sf_ble_cts_ref_time_t
decrypt : aes_api_t , rsa_api_t , tdes_api_t
decryptCrt : rsa_api_t
deep_standby_cancel_edge : lpmv2_mcu_cfg_t
deep_standby_cancel_source : lpmv2_mcu_cfg_t
delay : ptp_cfg_t , ptp_instance_ctrl_t
desc_handle : sf_ble_char_desc_discovery_rsp_t
desc_hdl : RBLE_GATT_CHAR_DESC_LIST
desired_char : RBLE_GATT_DISC_CHAR_REQ
desired_svc : RBLE_GATT_DISC_SVC_REQ
dest_addr_mode : transfer_info_t
detection_response : lvd_cfg_t
dev_state : sf_i2c_instance_ctrl_t , sf_spi_instance_ctrl_t
device : ptp_cfg_t , ptp_instance_ctrl_t , sf_el_gx_callback_args_t
device_count : sf_i2c_bus_t , sf_spi_bus_t
device_count_mutex : sf_i2c_bus_t , sf_spi_bus_t
device_type : sdmmc_info_t , sf_ble_prf_hid_report_desc_t
dhcpServerStart : sf_wifi_onchip_stack_api_t , sf_wifi_qca4010_onchip_stack_api_t
dhcpServerStop : sf_wifi_onchip_stack_api_t , sf_wifi_qca4010_onchip_stack_api_t
diagnosis : ctsu_api_t
digfilter : cac_ref_clock_config_t
direct_addr_type : sf_ble_adv_info_t
direct_bd_addr : sf_ble_adv_info_t
disable : elc_api_t , external_irq_api_t , input_capture_api_t , keymatrix_api_t , transfer_api_t
disableINFABTnotification : ptp_api_t
disableTimer : ptp_api_t
disc_mode : sf_ble_adv_info_t
disc_time : sf_ble_cfg_t
disconnect : sf_ble_api_t
discovery_type : sf_ble_char_discovery_req_t , sf_ble_scan_info_t ,
sf_ble_service_discovery_req_t
DISEL : dtc_reg_t
disp_en : sf_ble_sm_tk_info_t
display_cyc : display_timing_t
display_list_flushed : sf_el_gx_instance_ctrl_t
dithering_mode : glcd_cfg_t
dithering_on : display_output_cfg_t
dithering_pattern_A : glcd_cfg_t
dithering_pattern_B : glcd_cfg_t
dithering_pattern_C : glcd_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,114 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

dithering_pattern_D : glcd_cfg_t
divider : cac_meas_clock_config_t , cac_ref_clock_config_t , cgc_clock_cfg_t
DM : dtc_reg_t
dma_req_ipl : sdmmc_cfg_t
do_run : sf_cellular_comms_extend_cfg_t
dodir : doc_data_t
dodsr : doc_data_t
domain_params : sf_crypto_key_cfg_t , sf_crypto_key_instance_ctrl_t
dri_marker : jpeg_encode_cfg_t
drift_freq : sf_touch_ctsu_button_info_t , sf_touch_ctsu_cfg_t
drive_volt_gen : slcdc_cfg_t
driver_packets_queued : NX_REC
driver_rx_bd : NX_REC
driver_rx_bd_index : NX_REC
driver_task_priority : sf_wifi_on_gt202_cfg_t
driver_tx_bd : NX_REC
driver_tx_bd_in_use : NX_REC
driver_tx_bd_index : NX_REC
driver_tx_packet_queue : NX_REC
driver_tx_packet_queue_end : NX_REC
driver_tx_release_index : NX_REC
dst_offset : sf_ble_cts_local_time_t , sf_ble_prf_ndcs_time_dst_t
dtc_state_in_snooze : lpmv2_mcu_cfg_t
dtc_transfer_length : sf_adc_periodic_instance_ctrl_t
dtim : sf_wifi_cfg_t
DTS : dtc_reg_t
dummy_read_completed : riic_instance_ctrl_t
duplicate_filt : sf_ble_scan_info_t
duty_cycle : timer_cfg_t
duty_cycle_unit : timer_cfg_t
dutyCycleSet : timer_api_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- e -

each_len : RBLE_GATT_INFO_DATA
ebr : sf_el_fx_media_boot_record_table_info_t
EcdhSharedSecretCompute : sf_crypto_key_api_t
echo : sf_console_cfg_t , sf_console_instance_ctrl_t
edge : cac_ref_clock_config_t , input_capture_cfg_t
ediv : sf_ble_sec_info_t , sf_ble_sm_enc_info_t , sf_ble_sm_key_ind_t
edmac_ptr : NX_REC
elc_event : adc_info_t , timer_info_t
elc_peripheral : adc_info_t
elem_index : sf_touch_ctsu_button_cfg_t
elmt : RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Cmd_Ind_t
elmt_hdl : RBLE_GATT_RELIABLE_WRITE
enable : display_brightness_t , display_contrast_t , elc_api_t , external_irq_api_t ,
gamma_correction_t , input_capture_api_t , keymatrix_api_t , transfer_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,115 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

enable_charge_pump : dac8_extended_cfg_t , dac_extended_cfg_t
enable_filter : gpt_input_capture_extend_t
enable_level : gpt_input_capture_extend_t
enableINFABTnotification : ptp_api_t
encoded_lines : jpeg_encode_instance_ctrl_t
encrypt : aes_api_t , rsa_api_t , tdes_api_t
encryptFinal : aes_api_t
encryption : sf_wifi_provisioning_t , sf_wifi_qca4010_provisioning_t , sf_wifi_scan_t
end : sf_message_instance_range_t , sf_audio_playback_instance_ctrl_t
end_handle : sf_ble_char_discovery_req_t , sf_ble_service_discovery_req_t ,
sf_ble_service_discovery_rsp_t
end_hdl : RBLE_GATT_DISC_CHAR_DESC_REQ , RBLE_GATT_DISC_CHAR_REQ ,
RBLE_GATT_DISC_SVC_REQ , RBLE_GATT_INCL_128_LIST , RBLE_GATT_INCL_LIST ,
RBLE_GATT_READ_CHAR_REQ , RBLE_GATT_SET_PERM , RBLE_GATT_SVC_128_LIST ,
RBLE_GATT_SVC_LIST , RBLE_GATT_SVC_RANGE_LIST
end_irq : ctsu_cfg_t , ctsu_instance_ctrl_t
endian : display_output_cfg_t , pdc_cfg_t , pdc_instance_ctrl_t
endian_flag : crypto_cfg_t
energy_expended : sf_ble_hrp_api_hrmeas_t
entry_len : RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_Incl_Comp_t
eptpc_flag : ptp_instance_ctrl_t
erase : flash_api_t , qspi_api_t , sdmmc_api_t , sf_memory_api_t
erase_block_count : sf_el_lx_nor_callback_args_t
erase_block_number : sf_el_lx_nor_callback_args_t
erase_sector_count : sdmmc_info_t
eri_ipl : i2c_cfg_t , spi_cfg_t , uart_cfg_t
eri_irq : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , rspi_instance_ctrl_t ,
sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t
err : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , sci_i2c_instance_ctrl_t
err_irq : flash_hp_instance_ctrl_t
err_irq_ipl : flash_cfg_t
error : sf_crypto_callback_args_t , sf_crypto_hash_callback_args_t , sf_el_gx_callback_args_t
error_adjustment_type : rtc_cfg_t
error_adjustment_value : rtc_cfg_t
error_check_index : sf_cellular_circular_queue_cfg_t , sf_wifi_qca4010_queue_cfg_t
error_code : jpeg_decode_instance_ctrl_t
error_ipl : can_cfg_t
error_irq : can_instance_ctrl_t
errorAdjustmentModeSet : rtc_api_t
errorAdjustmentSet : rtc_api_t
ether_frame_type : ptpedmac_callback_args_t
etherc_ptr : NX_REC
event : adc_callback_args_t , cac_callback_args_t , can_callback_args_t , cgc_callback_args_t
, ctsu_callback_args_t , display_callback_args_t , doc_callback_args_t , doc_cfg_t ,
doc_instance_ctrl_t , elc_link_t , flash_callback_args_t , i2c_callback_args_t ,
i2s_callback_args_t , input_capture_callback_args_t , pdc_callback_args_t ,
ptp_callback_args_t , ptpedmac_callback_args_t , rtc_callback_args_t ,
sdmmc_callback_args_t , sf_adc_periodic_callback_args_t ,
sf_audio_playback_hw_callback_args_t , sf_ble_event_info_t , sf_cellular_callback_args_t ,
sf_comms_callback_args_t , sf_crypto_callback_args_t , sf_el_gx_callback_args_t ,
sf_el_lx_nor_callback_args_t , sf_external_irq_cfg_t , sf_message_callback_args_t ,
sf_power_profiles_v2_callback_args_t , sf_wifi_callback_args_t , spi_callback_args_t ,
timer_callback_args_t , uart_callback_args_t
event_class : sf_message_subscriber_list_t
event_type : sf_ble_scan_t , sf_touch_panel_v2_payload_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,116 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

eventflag : sf_block_media_sdmmc_instance_ctrl_t , sf_uart_comms_instance_ctrl_t
eventInfoGet : fmi_api_t
events : sf_jpeg_decode_instance_ctrl_t
exe_wr_ena : RBLE_GATT_EXE_WR_CHAR_REQ
expect_resp_size : RBLE_GATT_UUID_TYPE
expected_result_size : sf_ble_char_multiple_read_req_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- f -

fade_control : display_layer_t
fade_speed : display_layer_t
fade_status : display_status_t
fclk_div : cgc_system_clock_cfg_t
ferr_interrupt_enabled : cac_cfg_t
fifo_access_bytes : ssi_instance_ctrl_t
fifo_addr : UX_HCD_SYNERGY_FIFO
fifo_ctrl : UX_HCD_SYNERGY_FIFO
fifo_depth : sci_uart_instance_ctrl_t
fifo_mode : crc_cfg_t , crc_instance_ctrl_t
fifo_num_stages : bsp_feature_ssi_t
fifo_sel : UX_HCD_SYNERGY_FIFO
filt_policy : sf_ble_scan_info_t
filter : comparator_cfg_t
filter_enable : external_irq_cfg_t
filterDisable : external_irq_api_t
filterEnable : external_irq_api_t
first_coefficient : ctsu_correction_info_t
first_val : ctsu_correction_info_t
flag_stable_meas : sf_ble_blp_meas_info_t , sf_ble_prf_htp_temp_info_t
flags : agt_input_capture_instance_ctrl_t , sf_audio_playback_common_instance_ctrl_t ,
sf_ble_blp_meas_info_t , sf_ble_hrp_api_hrmeas_t , sf_ble_prf_htp_temp_info_t ,
sf_touch_panel_v2_instance_ctrl_t
flash_cf_macros : bsp_feature_flash_lp
flash_clock_src : bsp_feature_flash_lp
flush : sf_memory_api_t
format : display_input_cfg_t , display_output_cfg_t
format_status : sf_el_fx_media_partition_data_info_t
fotaCheck : sf_cellular_api_t
fotaStart : sf_cellular_api_t
fotaStop : sf_cellular_api_t
fractions256 : sf_ble_prf_cts_curr_time_t
fragmentation : sf_wifi_cfg_t
frame_end_ipl : pdc_cfg_t
frame_end_irq : pdc_instance_ctrl_t
frame_format : ptp_cfg_t , ptp_instance_ctrl_t
frame_type : can_mailbox_t
freq_hz_min : sf_spi_bus_t
frequency_error_ipl : cac_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,117 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

frequency_error_irq : cac_instance_ctrl_t
fw_version : sf_cellular_info_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- g -

g : display_brightness_t , display_color_t , display_contrast_t , display_gamma_correction_t
gain : gamma_correction_t
gap_name : sf_ble_provisioning_t
gap_role : sf_ble_provisioning_t
gateway : sf_wifi_onchip_stack_ip_cfg_t , sf_wifi_qca4010_onchip_stack_ip_cfg_t
gattAddCustomProfiles : sf_ble_api_t
gattCharDescDiscovery : sf_ble_api_t
gattCharDiscovery : sf_ble_api_t
gattCharExecuteWrite : sf_ble_api_t
gattCharRead : sf_ble_api_t
gattCharWrite : sf_ble_api_t
gattCharWriteLocal : sf_ble_api_t
gattSendIndicate : sf_ble_api_t
gattSendNotify : sf_ble_api_t
gattServiceDiscovery : sf_ble_api_t
gattWriteResponse : sf_ble_api_t
generator_point : sf_crypto_key_cfg_t , sf_crypto_key_instance_ctrl_t
getGcmTag : aes_api_t
getLocalClock : ptp_api_t
getMasterPortID : ptp_api_t
getMessageReceptionConfig : ptp_api_t
getSyncInfo : ptp_api_t
getWorst10Values : ptp_api_t
global_open : sf_el_fx_media_info_t
group_b_sensors_allowed : bsp_feature_adc_t
gtioca : timer_on_gpt_cfg_t
gtioca_output_enabled : gpt_instance_ctrl_t
gtiocb : timer_on_gpt_cfg_t
gtiocb_output_enabled : gpt_instance_ctrl_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- h -

handle : sf_ble_char_read_by_uuid_rsp_t , sf_ble_char_read_req_t , sf_ble_char_write_req_t ,
sf_ble_gatt_notif_ind_event_data_t , sf_ble_write_cmd_event_data_t
handles : sf_ble_char_multiple_read_req_t
handles_cnt : sf_ble_char_read_req_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,118 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

has_bclk : bsp_feature_cgc_t
has_card_detection : bsp_feature_sdhi_t
has_chargepump : bsp_feature_dac_t
has_davrefcr : bsp_feature_dac_t
has_digital_filter : bsp_feature_lvd_t
has_dssby : bsp_feature_lpmv2_t
has_ethernet : bsp_feature_ioport_t
has_fclk : bsp_feature_cgc_t
has_ir_flag : bsp_feature_icu_t
has_lcd_clock : bsp_feature_cgc_t
has_pclka : bsp_feature_cgc_t
has_pclkb : bsp_feature_cgc_t
has_pclkc : bsp_feature_cgc_t
has_pclkd : bsp_feature_cgc_t
has_sample_hold_reg : bsp_feature_adc_t
has_sdadc_clock : bsp_feature_cgc_t
has_sdram_clock : bsp_feature_cgc_t
has_subosc_speed : bsp_feature_cgc_t
has_usb_clock_div : bsp_feature_cgc_t
has_vbatt_pins : bsp_feature_ioport_t
hash : hash_ctrl_t
hash_context : sf_crypto_hash_instance_ctrl_t
hash_type : sf_crypto_hash_cfg_t , sf_crypto_hash_instance_ctrl_t
hashFinal : sf_crypto_hash_api_t
hashInit : sf_crypto_hash_api_t
hashSign : dsa_api_t
hashUpdate : hash_api_t , sf_crypto_hash_api_t
hashVerify : dsa_api_t
hc : sdmmc_info_t
header : sf_audio_playback_data_t
heart_rate_measure : sf_ble_hrp_api_hrmeas_t
help : sf_console_command_t
high_speed_freq_hz : bsp_feature_cgc_t
high_throughput : sf_wifi_cfg_t
hoco_freq_hz : bsp_feature_cgc_t
hoco_state : cgc_clocks_cfg_t
horizontal_resolution : jpeg_encode_cfg_t , jpeg_encode_raw_image_parameters
horizontal_stride : jpeg_decode_instance_ctrl_t , jpeg_encode_instance_ctrl_t ,
jpeg_encode_raw_image_parameters
horizontal_subsample : jpeg_decode_instance_ctrl_t
horizontalStrideSet : jpeg_decode_api_t , sf_jpeg_decode_api_t
hour : sf_ble_prf_cts_date_time_t
hour_match : rtc_alarm_time_t
hours_since_update : sf_ble_cts_ref_time_t
hs_timing : sdmmc_info_t
hsize : display_input_cfg_t , glcd_ctrl_t
hsize_pixels : sf_touch_panel_chip_on_sx8654_cfg_t ,
sf_touch_panel_chip_sx8654_instance_ctrl_t , sf_touch_panel_v2_cfg_t ,
sf_touch_panel_v2_instance_ctrl_t
hstride : display_input_cfg_t
hsync : pdc_state_t
hsync_polarity : pdc_cfg_t , pdc_instance_ctrl_t
htiming : display_output_cfg_t
hw : sdmmc_cfg_t , sdmmc_instance_ctrl_t
hw_cfg : rtc_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,119 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

hw_mode : sf_wifi_cfg_t , sf_wifi_qca4010_cfg_t , sf_wifi_scan_t
hysteresis : sf_touch_ctsu_button_cfg_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- i -

i2c_hw_err_event : i2c_callback_args_t
iclk_div : bsp_feature_cgc_t , cgc_system_clock_cfg_t
id : can_frame_t , dmac_instance_ctrl_t , dtc_instance_ctrl_t , sf_ble_blp_meas_info_t
id_key : sf_ble_sec_info_t
id_mode : can_cfg_t , can_instance_ctrl_t
idCodeSet : flash_api_t
idle_err_ipl : i2s_cfg_t
ikey_dist : sf_ble_bonding_req_ind_t , sf_ble_bonding_start_t
ikeys : sf_ble_bonding_response_t
image_size : jpeg_encode_callback_args_t
imageParameterSet : jpeg_encode_api_t
imageSizeGet : jpeg_decode_api_t , sf_jpeg_decode_api_t
imageSubsampleSet : jpeg_decode_api_t , sf_jpeg_decode_api_t
imei : sf_cellular_info_t
imsi : sf_cellular_network_status_t
in_progress : transfer_properties_t
in_use : sf_message_buffer_ctrl_t::st_buffer_ctrl_flag
incl :
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_Incl_Comp_t::incl_list_u
index : sf_ble_bonding_req_ind_t , sf_wifi_qca4010_provisioning_t ,
sf_audio_playback_instance_ctrl_t
indicateEvent : ptp_api_t
infabt_flag : ptp_instance_ctrl_t
info : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , sci_i2c_instance_ctrl_t ,
slcdc_instance_ctrl_t
info_transfer : pdc_instance_ctrl_t
infoGet : adc_api_t , can_api_t , comparator_api_t , dac_api_t , flash_api_t , i2s_api_t ,
input_capture_api_t , opamp_api_t , qspi_api_t , rtc_api_t , sdmmc_api_t ,
sf_audio_record_api_t , sf_ble_api_t , sf_cellular_api_t , sf_memory_api_t , sf_wifi_api_t ,
timer_api_t , transfer_api_t , uart_api_t
inherit_frame_layer : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
init : analog_connect_api_t , cgc_api_t , elc_api_t , fmi_api_t , ioport_api_t , lpmv2_api_t
init_done : sf_cellular_instance_cfg_t , sf_wifi_qca4010_instance_cfg_t
init_filt_type : sf_ble_connection_t
init_status : sf_el_fx_media_info_t
input : display_cfg_t , display_runtime_cfg_t , opamp_trim_args_t , sdadc_channel_cfg_t ,
sf_console_instance_ctrl_t
input_data_format : jpeg_decode_cfg_t , jpeg_encode_cfg_t
inputBufferSet : jpeg_decode_api_t , jpeg_encode_api_t , sf_jpeg_decode_api_t
inputRegisterWrite : doc_api_t
inst_idx : sf_ble_onboard_profile_cccd_changed_t , sf_ble_prf_hid_change_event_t ,
sf_ble_prf_hid_report_ind_t
instance_range : sf_message_subscriber_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,120 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

int_irq : ssi_instance_ctrl_t
interfaceGet : crypto_api_t
intv : st_sf_ble_prf_htp_meas_intv_val_t
invert : comparator_cfg_t , sdadc_channel_cfg_t
io_cap : sf_ble_bonding_req_ind_t , sf_ble_bonding_response_t
io_port_state : lpmv2_mcu_cfg_t
iocap : sf_ble_bonding_start_t
ioctl : sf_block_media_api_t
IoIntEnable : sdmmc_api_t
ip_addr : sf_cellular_info_t , sf_wifi_onchip_stack_ip_cfg_t ,
sf_wifi_qca4010_onchip_stack_ip_cfg_t
ip_addr_mode : sf_wifi_onchip_stack_ip_cfg_t , sf_wifi_qca4010_onchip_stack_ip_cfg_t
ip_ptr : NX_REC
ipAddressCfg : sf_wifi_onchip_stack_api_t , sf_wifi_qca4010_onchip_stack_api_t
ir_flag_stat : dmac_instance_ctrl_t
irq : agt_instance_ctrl_t , dmac_instance_ctrl_t , dtc_instance_ctrl_t , flash_hp_instance_ctrl_t
, flash_lp_instance_ctrl_t , gpt_instance_ctrl_t , icu_instance_ctrl_t , kint_instance_ctrl_t ,
NX_REC , pdc_instance_ctrl_t , transfer_info_t
irq_ipl : comparator_cfg_t , doc_cfg_t , external_irq_cfg_t , flash_cfg_t , keymatrix_cfg_t ,
pdc_cfg_t , ptp_cfg_t , ptpedmac_cfg_t , timer_cfg_t , transfer_cfg_t
irqDisable : rtc_api_t
irqEnable : rtc_api_t
is_dac_ramped_up : sf_audio_playback_hw_dac_instance_ctrl_t
is_data_mode_on : sf_cellular_instance_cfg_t , sf_wifi_qca4010_instance_cfg_t
is_opened : sf_cellular_instance_cfg_t , sf_wifi_qca4010_instance_cfg_t
is_signed : sf_audio_playback_data_type_t
iwdt_open : iwdt_instance_ctrl_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- j -

jdti_ipl : jpeg_decode_cfg_t , jpeg_encode_cfg_t
jedi_ipl : jpeg_decode_cfg_t , jpeg_encode_cfg_t
jpegbuffer_size : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- k -

key : sf_wifi_provisioning_t , sf_wifi_qca4010_provisioning_t
key_code : sf_ble_sm_key_ind_t
key_data_length : sf_crypto_signature_context_t
key_format : key_installation_key_t , rsa_key_t
key_size : key_installation_key_t , sf_ble_bonding_start_t , sf_ble_sec_enc_start_ind_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,121 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

sf_crypto_cipher_cfg_t , sf_crypto_cipher_instance_ctrl_t , sf_crypto_key_cfg_t ,
sf_crypto_key_installation_cfg_t , sf_crypto_key_installation_instance_ctrl_t ,
sf_crypto_key_instance_ctrl_t , sf_crypto_signature_cfg_t ,
sf_crypto_signature_instance_ctrl_t
key_type : sf_crypto_cipher_cfg_t , sf_crypto_cipher_instance_ctrl_t , sf_crypto_key_cfg_t ,
sf_crypto_key_installation_cfg_t , sf_crypto_key_installation_instance_ctrl_t ,
sf_crypto_key_instance_ctrl_t , sf_crypto_signature_cfg_t ,
sf_crypto_signature_instance_ctrl_t
keyCreate : ecc_api_t , rsa_api_t
keyGenerate : sf_crypto_key_api_t
keyInstall : key_installation_api_t , sf_crypto_key_installation_api_t
keySet : arc4_api_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- l -

last_payload : sf_touch_panel_chip_ft5x06_instance_ctrl_t ,
sf_touch_panel_chip_sx8654_instance_ctrl_t
lastCaptureGet : input_capture_api_t
layer : display_cfg_t , display_runtime_cfg_t
layerChange : display_api_t
lcdClockCfg : cgc_api_t
lcdClockDisable : cgc_api_t
lcdClockEnable : cgc_api_t
le_scan_interval : sf_ble_prf_scps_scan_intv_t
le_scan_window : sf_ble_prf_scps_scan_intv_t
led_count : bsp_leds_t
len : RBLE_GATT_INFO_DATA , RBLE_GATT_QUERY_RESULT , sf_ble_attr_info_t
length : adc_info_t , arc4_cfg_t , hash_ctrl_t , rsa_key_t , sf_adc_periodic_instance_ctrl_t ,
sf_ble_gatt_attr_event_t , sf_cellular_callback_args_t , sf_wifi_callback_args_t ,
transfer_info_t
line_descending_enable : display_input_cfg_t
line_detect_ipl : display_cfg_t
lines_repeat_enable : display_input_cfg_t
lines_repeat_times : display_input_cfg_t
lines_to_encoded : jpeg_encode_instance_ctrl_t
linesDecodedGet : jpeg_decode_api_t , sf_jpeg_decode_api_t
link_count : elc_cfg_t
link_established : NX_REC
link_list : elc_cfg_t
link_quality : sf_wifi_info_t
linkBreak : elc_api_t
linkCheck : ptpedmac_api_t
linkProcess : ptpedmac_api_t
linkSet : elc_api_t
list : RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_128_Comp_t
, RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_Comp_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,122 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_By_Uuid_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_Incl_Comp_t::incl_list_u
list_128 :
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_128_Comp_t
listen : sf_ble_api_t
loaded : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , sci_i2c_instance_ctrl_t
local_advertise : phy_record_t
local_ip : sf_cellular_nsal_cfg_t , sf_cellular_socket_info_t
local_port : sf_cellular_socket_info_t
local_time : sf_ble_prf_tip_write_data_t
lock : bsp_lock_t , sf_comms_api_t , sf_crypto_api_t , sf_i2c_api_t , sf_spi_api_t
locked : sf_spi_instance_ctrl_t
lockWait : sf_i2c_api_t , sf_spi_api_t
loco_state : cgc_clocks_cfg_t
loop_timeout : sf_audio_playback_data_t
loopback : spi_on_rspi_cfg_t
low_power_mode : lpmv2_cfg_t
low_speed_max_freq_hz : bsp_feature_cgc_t
low_speed_pclk_div_min : bsp_feature_cgc_t
low_voltage_max_freq_hz : bsp_feature_cgc_t
low_voltage_pclk_div_min : bsp_feature_cgc_t
lower_level : sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t
lower_lvl_cfg : sf_i2c_instance_ctrl_t , sf_spi_instance_ctrl_t
lowPowerApply : sf_power_profiles_v2_api_t
lowPowerCfg : lpmv2_api_t
lowPowerModeEnter : lpmv2_api_t
ltk_key : sf_ble_sec_info_t , sf_ble_sm_enc_info_t , sf_ble_sm_key_ind_t
lvd_callback_args : lvd_instance_ctrl_t
lvl : sb_ble_prf_ias_set_alert_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- m -

mac_addr : sf_wifi_callback_args_t , sf_wifi_cfg_t , sf_wifi_qca4010_status_t
macAddressGet : sf_wifi_api_t
macAddressSet : sf_wifi_api_t
mailbox : can_callback_args_t
mailbox_count : can_cfg_t , can_instance_ctrl_t
mailbox_id : can_mailbox_t
mailbox_rx_ipl : can_cfg_t
mailbox_rx_irq : can_instance_ctrl_t
mailbox_tx_ipl : can_cfg_t
mailbox_tx_irq : can_instance_ctrl_t
mailbox_type : can_mailbox_t
main_osc_freq_hz : bsp_feature_cgc_t
mainclock_drive : bsp_feature_cgc_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,123 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

mainosc_state : cgc_clocks_cfg_t
major : ssp_pack_version_t
manufacturer_id : qspi_instance_ctrl_t
masterReadSlaveWrite : i2c_api_slave_t
masterWriteSlaveRead : i2c_api_slave_t
max_backoffs : sf_cellular_qctlcatm1_socket_cfg_t
max_clock_frequency : bsp_feature_sdhi_t
max_clock_rate : sdmmc_info_t
max_enc_size : sf_ble_bonding_req_ind_t
max_eraseable_size : qspi_instance_ctrl_t
max_key_size : sf_ble_bonding_response_t
max_resolution : adc_instance_ctrl_t
max_resp_length : sf_cellular_at_cmd_set_t , sf_wifi_qca4010_at_cmd_set_t
max_rto : sf_cellular_qctlcatm1_socket_cfg_t
max_slaves : sf_ble_cfg_t
max_stations : sf_wifi_cfg_t
maximum_count : sf_thread_monitor_counter_min_max_t ,
sf_thread_monitor_thread_counter_t
mbr : sf_el_fx_media_boot_record_table_info_t
mclock_only : bsp_feature_can_t
md : ctsu_cfg_t , ctsu_instance_ctrl_t
MD : dtc_reg_t
mday_match : rtc_alarm_time_t
meas_info : sf_ble_blp_meas_recv_data_t
meas_sts : sf_ble_blp_meas_info_t
measurement_clock : cac_instance_ctrl_t
measurement_end_ipl : cac_cfg_t
measurement_end_irq : cac_instance_ctrl_t
measurements_info : sf_ble_hrp_api_meas_ntf_t
media_info : sf_el_fx_instance_ctrl_t
media_type : sdmmc_hw_t
mei_interrupt_enabled : cac_cfg_t
memory_capacity : qspi_instance_ctrl_t
memory_end_address : sf_memory_region_info_t
memory_free_sectors : sf_el_fx_media_info_t
memory_pool_size : sf_crypto_cfg_t
memory_start_address : sf_memory_region_info_t
memory_total_sectors : sf_el_fx_media_info_t
memory_type : qspi_instance_ctrl_t
menu_name : sf_console_menu_t
menu_prev : sf_console_menu_t
message_bytes : sf_crypto_hash_context_t
message_bytes_buffered : sf_crypto_hash_context_t
message_format : sf_crypto_signature_rsa_specific_params_t
message_mode : can_cfg_t , can_instance_ctrl_t
mfg_name : sf_cellular_info_t
middle_speed_max_freq_hz : bsp_feature_cgc_t
min : sf_ble_prf_cts_date_time_t
min_match : rtc_alarm_time_t
min_program_size_bytes : qspi_info_t
min_stabilization_wait_us : comparator_info_t , opamp_info_t
min_wait_time_hs_us : bsp_feature_opamp_t
min_wait_time_lp_us : bsp_feature_opamp_t
min_wait_time_ms_us : bsp_feature_opamp_t
min_wait_time_us : bsp_feature_acmphs_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,124 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

minimum_count : sf_thread_monitor_counter_min_max_t ,
sf_thread_monitor_thread_counter_t
minimum_erase_size : sf_memory_region_info_t
minimum_write_size : sf_memory_region_info_t
minor : ssp_pack_version_t
mint_irq : ptp_instance_ctrl_t
moco_state : cgc_clocks_cfg_t
mode : adc_cfg_t , adc_instance_ctrl_t , agt_input_capture_instance_ctrl_t ,
agt_instance_ctrl_t , comparator_cfg_t , gpt_input_capture_instance_ctrl_t ,
input_capture_cfg_t , opamp_on_opamp_cfg_t , sdadc_calibrate_args_t ,
sdadc_instance_ctrl_t , sf_wifi_provisioning_t , sf_wifi_qca4010_provisioning_t ,
sf_wifi_qca4010_status_t , timer_cfg_t , transfer_info_t
mode_fault : spi_cfg_t
modify : slcdc_api_t
modrv_mask : bsp_feature_cgc_t
modrv_shift : bsp_feature_cgc_t
mon_match : rtc_alarm_time_t
monitor_1_hi_threshold : bsp_feature_lvd_t
monitor_1_low_threshold : bsp_feature_lvd_t
monitor_2_hi_threshold : bsp_feature_lvd_t
monitor_2_low_threshold : bsp_feature_lvd_t
monitor_ipl : lvd_cfg_t
monitor_number : lvd_callback_args_t , lvd_cfg_t , lvd_instance_ctrl_t
month : sf_ble_prf_cts_date_time_t
mosi_idle : spi_on_rspi_cfg_t
MRA : dtc_reg_t
MRA_b : dtc_reg_t
MRB : dtc_reg_t
MRB_b : dtc_reg_t
msgbuf : hash_ctrl_t
multicastListAdd : sf_wifi_api_t
multicastListDelete : sf_wifi_api_t
multiple_partitions_status : sf_el_fx_media_partition_info_t
multiplier : cgc_clock_cfg_t
mute : i2s_api_t
mutex : sf_adc_periodic_instance_ctrl_t , sf_audio_record_adc_instance_ctrl_t ,
sf_audio_record_i2s_instance_ctrl_t , sf_block_media_qspi_instance_ctrl_t ,
sf_crypto_instance_ctrl_t , sf_jpeg_decode_instance_ctrl_t ,
sf_thread_monitor_instance_ctrl_t , sf_touch_panel_v2_instance_ctrl_t ,
sf_uart_comms_instance_ctrl_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- n -

nak_response : sf_message_buffer_ctrl_t::st_buffer_ctrl_flag
nattempts : trng_cfg_t , trng_ctrl_t
nb_entry :
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_Comp_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,125 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_128_Comp_t
, RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_Incl_Comp_t
nb_resp :
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_By_Uuid_Comp_t
nb_uuid : RBLE_GATT_READ_CHAR_REQ
nb_writes : RBLE_GATT_WRITE_RELIABLE_REQ
nbiot_band_selection : sf_cellular_qctlcatm1_extended_cfg_t
negation_delay : lvd_extend_t
negation_delay_clock : bsp_feature_lvd_t
netmask : sf_wifi_onchip_stack_ip_cfg_t , sf_wifi_qca4010_onchip_stack_ip_cfg_t
networkConnect : sf_cellular_api_t
networkDisconnect : sf_cellular_api_t
networkStatusGet : sf_cellular_api_t
new_alert : sf_ble_anp_api_new_alert_ntf_t
new_conn_fd : sf_cellular_socket_info_t
new_line : sf_console_instance_ctrl_t
next_dst : sf_ble_prf_tip_write_data_t
next_length : sf_audio_playback_common_instance_ctrl_t
noise_level : sf_wifi_info_t
noisecancel_en : uart_on_sci_cfg_t
nor_driver_initialize : sf_block_media_on_lx_nor_cfg_t
notify_request : riic_slave_instance_ctrl_t
num_address_bytes : qspi_instance_ctrl_t
num_blocks : transfer_info_t
num_buttons : sf_touch_ctsu_cfg_t
num_commands : sf_console_menu_t
num_elements : ctsu_instance_ctrl_t , sf_touch_ctsu_slider_cfg_t , sf_touch_ctsu_wheel_cfg_t
num_erase_sizes : qspi_info_t
num_moving_average : ctsu_cfg_t , ctsu_instance_ctrl_t
num_new_samples : sf_adc_periodic_callback_args_t
num_pref_ops : sf_cellular_cfg_t
num_regions : flash_fmi_regions_t
num_rx : ctsu_cfg_t
num_sliders : sf_touch_ctsu_cfg_t
num_states : adc_sample_state_t
num_tx : ctsu_cfg_t
num_uarts : sf_wifi_qca4010_cfg_t , sf_wifi_qca4010_instance_cfg_t
num_wheels : sf_touch_ctsu_cfg_t
number : sf_touch_ctsu_cfg_t
number_of_buffers : sf_message_instance_ctrl_t
number_of_connections : analog_connect_table_t
number_of_nodes : sf_message_subscriber_list_t
number_of_pins : ioport_cfg_t
number_of_regions : sf_memory_info_t
number_of_subscriber_groups : sf_message_instance_ctrl_t
nwscanseq : sf_cellular_qctlcatm1_extended_cfg_t
nx_driver_phy_polling_requested : NX_REC
nx_state : NX_REC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,126 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- o -

off_freq : sf_touch_ctsu_button_info_t , sf_touch_ctsu_cfg_t
offset : RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Cmd_Ind_t ,
RBLE_GATT_READ_CHAR_REQ , sf_ble_char_read_req_t , sf_ble_char_write_req_t ,
sf_ble_gatt_attr_event_t , sf_ble_write_cmd_event_data_t ,
sf_el_fx_media_partition_data_info_t
offset_byte : dmac_instance_ctrl_t , transfer_on_dmac_cfg_t
offsetSet : adc_api_t
ok_check_index : sf_cellular_circular_queue_cfg_t , sf_wifi_qca4010_queue_cfg_t
on_freq : sf_touch_ctsu_button_info_t , sf_touch_ctsu_cfg_t
onbpClientReadChar : sf_ble_onboard_profile_api_t
onbpClientWriteCCCD : sf_ble_onboard_profile_api_t
onbpClientWriteChar : sf_ble_onboard_profile_api_t
onbpDisable : sf_ble_onboard_profile_api_t
onbpEnable : sf_ble_onboard_profile_api_t
onbpServerSendIndication : sf_ble_onboard_profile_api_t
onbpServerSendNotification : sf_ble_onboard_profile_api_t
onbpServerWriteData : sf_ble_onboard_profile_api_t
one_shot : gpt_instance_ctrl_t
oob_data_flg : sf_ble_bonding_req_ind_t
op : sf_cellular_cfg_t
op_name : sf_cellular_network_status_t , sf_cellular_op_t
op_name_format : sf_cellular_op_t
op_select_mode : sf_cellular_cfg_t
open : adc_api_t , aes_api_t , agt_input_capture_instance_ctrl_t , agt_instance_ctrl_t ,
arc4_api_t , arc4_ctrl_t , cac_api_t , can_api_t , can_instance_ctrl_t , comparator_api_t ,
crc_api_t , crc_instance_ctrl_t , crypto_api_t , ctsu_api_t , ctsu_instance_ctrl_t , dac_api_t ,
display_api_t , doc_api_t , doc_instance_ctrl_t , dsa_api_t , ecc_api_t , external_irq_api_t ,
flash_api_t , gpt_input_capture_instance_ctrl_t , gpt_instance_ctrl_t , hash_api_t ,
i2c_api_master_t , i2c_api_slave_t , i2s_api_t , icu_instance_ctrl_t , input_capture_api_t ,
jpeg_decode_api_t , jpeg_encode_api_t , key_installation_api_t , keymatrix_api_t ,
kint_instance_ctrl_t , lvd_api_t , opamp_api_t , pdc_api_t , pdc_instance_ctrl_t , ptp_api_t ,
ptp_instance_ctrl_t , ptpedmac_api_t , ptpedmac_instance_ctrl_t , qspi_api_t ,
qspi_instance_ctrl_t , riic_instance_ctrl_t , riic_slave_instance_ctrl_t , rsa_api_t , rtc_api_t ,
rtc_instance_ctrl_t , sci_i2c_instance_ctrl_t , sci_uart_instance_ctrl_t , sdmmc_api_t ,
sdmmc_instance_ctrl_t , sf_adc_periodic_api_t , sf_adc_periodic_instance_ctrl_t ,
sf_audio_playback_api_t , sf_audio_playback_common_instance_ctrl_t ,
sf_audio_playback_hw_api_t , sf_audio_record_adc_instance_ctrl_t , sf_audio_record_api_t ,
sf_audio_record_i2s_instance_ctrl_t , sf_ble_api_t , sf_ble_onboard_profile_api_t ,
sf_block_media_api_t , sf_block_media_lx_nor_instance_ctrl_t ,
sf_block_media_qspi_instance_ctrl_t , sf_block_media_ram_instance_ctrl_t ,
sf_block_media_sdmmc_instance_ctrl_t , sf_cellular_api_t , sf_cellular_socket_api_t ,
sf_comms_api_t , sf_console_api_t , sf_crypto_api_t , sf_crypto_cipher_api_t ,
sf_crypto_hash_api_t , sf_crypto_key_api_t , sf_crypto_key_installation_api_t ,
sf_crypto_signature_api_t , sf_crypto_trng_api_t , sf_el_fx_instance_ctrl_t , sf_el_gx_api_t ,
sf_el_lx_nor_instance_ctrl_t , sf_external_irq_api_t , sf_external_irq_instance_ctrl_t ,
sf_i2c_api_t , sf_jpeg_decode_api_t , sf_jpeg_decode_instance_ctrl_t , sf_memory_api_t ,
sf_memory_qspi_nor_instance_ctrl_t , sf_message_api_t , sf_power_profiles_v2_api_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,127 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

sf_power_profiles_v2_ctrl_t , sf_socket_api_t , sf_spi_api_t , sf_thread_monitor_api_t ,
sf_thread_monitor_instance_ctrl_t , sf_touch_ctsu_api_t , sf_touch_ctsu_instance_ctrl_t ,
sf_touch_panel_chip_api_t , sf_touch_panel_v2_api_t , sf_touch_panel_v2_instance_ctrl_t ,
sf_wifi_api_t , sf_wifi_onchip_stack_api_t , sf_wifi_qca4010_api_t ,
sf_wifi_qca4010_onchip_stack_api_t , sf_wifi_qca4010_socket_api_t , slcdc_api_t , spi_api_t ,
ssi_instance_ctrl_t , sf_audio_playback_instance_ctrl_t , tdes_api_t , timer_api_t ,
transfer_api_t , trng_api_t , uart_api_t , wdt_api_t
open_counter : sf_crypto_instance_ctrl_t
open_status : sf_el_fx_media_partition_data_info_t
opened : adc_instance_ctrl_t , flash_hp_instance_ctrl_t , flash_lp_instance_ctrl_t ,
lvd_instance_ctrl_t , opamp_instance_ctrl_t , sdadc_instance_ctrl_t
operating_channel_mask : opamp_status_t
operating_mode : i2s_cfg_t , spi_cfg_t
operation_context : sf_crypto_signature_instance_ctrl_t
operation_mode : can_instance_ctrl_t , sf_crypto_signature_context_t
operation_state : sf_crypto_signature_instance_ctrl_t
operator_code : sf_cellular_network_status_t
oscStopDetect : cgc_api_t
oscStopStatusClear : cgc_api_t
outbuffer_size : jpeg_decode_instance_ctrl_t
output : display_cfg_t
output_amplifier_enabled : dac_cfg_t
output_buffer_size : jpeg_encode_instance_ctrl_t
output_data_format : jpeg_decode_cfg_t , jpeg_encode_cfg_t
output_enabled : gpt_output_pin_t
output_inverted : timer_on_agt_cfg_t
output_port_enable : lpmv2_mcu_cfg_t
outputBufferSet : jpeg_decode_api_t , jpeg_encode_api_t , sf_jpeg_decode_api_t
outputEnable : comparator_api_t
over_current : adc_cfg_t , adc_instance_ctrl_t
overflow_ipl : cac_cfg_t
overflow_irq : agt_input_capture_instance_ctrl_t , cac_instance_ctrl_t ,
gpt_input_capture_instance_ctrl_t
overflow_irq_ipl : input_capture_cfg_t
overflows : input_capture_callback_args_t , input_capture_capture_t
overflows_current : agt_input_capture_instance_ctrl_t , gpt_input_capture_instance_ctrl_t
overflows_last : gpt_input_capture_instance_ctrl_t
oversampling : sdadc_channel_cfg_t
ovf_interrupt_enabled : cac_cfg_t
own_addr_type : sf_ble_adv_info_t , sf_ble_cfg_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- p -

p_address : adc_info_t
p_aglorithm_specific_params : sf_crypto_signature_context_t
p_api : adc_instance_t , aes_instance_t , analog_connect_instance_t , arc4_instance_t ,
cac_instance_t , can_instance_t , cgc_instance_t , comparator_instance_t , crc_instance_t ,
crypto_instance_t , ctsu_instance_t , dac_instance_t , display_instance_t , doc_instance_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,128 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

dsa_instance_t , ecc_instance_t , elc_instance_t , external_irq_instance_t , flash_instance_t ,
fmi_instance_t , hash_instance_t , i2c_master_instance_t , i2c_slave_instance_t ,
i2s_instance_t , input_capture_instance_t , ioport_instance_t , jpeg_decode_instance_t ,
jpeg_encode_instance_t , key_installation_instance_t , keymatrix_instance_t ,
lpmv2_instance_t , lvd_instance_t , opamp_instance_t , pdc_instance_t , ptp_instance_t ,
ptpedmac_instance_t , qspi_instance_t , rsa_instance_t , rtc_instance_t , sdmmc_instance_t ,
sf_adc_periodic_instance_t , sf_audio_playback_hw_instance_t ,
sf_audio_playback_instance_t , sf_audio_record_instance_t , sf_ble_instance_t ,
sf_ble_onboard_profile_instance_t , sf_block_media_instance_t , sf_cellular_instance_t ,
sf_cellular_socket_instance_t , sf_comms_instance_t , sf_console_instance_t ,
sf_crypto_cipher_instance_t , sf_crypto_hash_instance_t , sf_crypto_instance_t ,
sf_crypto_key_installation_instance_t , sf_crypto_key_instance_t ,
sf_crypto_signature_instance_t , sf_crypto_trng_instance_t , sf_el_gx_instance_t ,
sf_external_irq_instance_t , sf_i2c_instance_t , sf_jpeg_decode_instance_t ,
sf_memory_instance_t , sf_message_instance_t , sf_power_profiles_v2_instance_t ,
sf_socket_instance_t , sf_spi_instance_t , sf_thread_monitor_instance_t ,
sf_touch_ctsu_instance_t , sf_touch_panel_chip_instance_t , sf_touch_panel_v2_instance_t ,
sf_wifi_instance_t , sf_wifi_onchip_stack_instance_t , sf_wifi_qca4010_instance_t ,
sf_wifi_qca4010_onchip_stack_instance_t , sf_wifi_qca4010_socket_instance_t ,
slcdc_instance_t , spi_instance_t , tdes_instance_t , timer_instance_t , transfer_instance_t ,
trng_instance_t , uart_instance_t , wdt_instance_t
p_app_ptp_rx_desc : ptpedmac_instance_ctrl_t
p_attr_value : sf_ble_char_attribute_t , sf_ble_svc_attribute_t
p_auth_tag : sf_crypto_cipher_aes_init_params_t
p_base : display_clut_cfg_t , display_input_cfg_t
p_bit_timing : can_cfg_t
p_ble_callback : sf_ble_provisioning_t
p_block_array : flash_fmi_regions_t
p_block_pool_name : sf_message_cfg_t
p_buff : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , sci_i2c_instance_ctrl_t ,
sf_cellular_cmd_resp_t , sf_wifi_qca4010_cmd_resp_t
p_buffer : pdc_callback_args_t , pdc_cfg_t
p_buffer_pool_rx : sf_wifi_cfg_t
p_bus : sf_i2c_cfg_t , sf_i2c_instance_ctrl_t , sf_spi_cfg_t , sf_spi_instance_ctrl_t
p_bus_name : sf_i2c_bus_t , sf_spi_bus_t
p_buttons : sf_touch_ctsu_cfg_t
p_callback : adc_cfg_t , agt_input_capture_instance_ctrl_t , agt_instance_ctrl_t , cac_cfg_t ,
cac_instance_ctrl_t , can_cfg_t , can_instance_ctrl_t , comparator_cfg_t , ctsu_cfg_t ,
ctsu_instance_ctrl_t , display_cfg_t , dmac_instance_ctrl_t , doc_cfg_t , doc_instance_ctrl_t ,
dtc_instance_ctrl_t , external_irq_cfg_t , flash_cfg_t , glcd_instance_ctrl_t ,
gpt_input_capture_instance_ctrl_t , gpt_instance_ctrl_t , i2c_cfg_t , i2s_cfg_t ,
icu_instance_ctrl_t , input_capture_cfg_t , iwdt_instance_ctrl_t , jpeg_decode_cfg_t ,
jpeg_decode_instance_ctrl_t , jpeg_encode_cfg_t , jpeg_encode_instance_ctrl_t ,
keymatrix_cfg_t , lvd_cfg_t , lvd_instance_ctrl_t , pdc_cfg_t , pdc_instance_ctrl_t , ptp_cfg_t ,
ptp_instance_ctrl_t , ptpedmac_cfg_t , ptpedmac_instance_ctrl_t , rspi_instance_ctrl_t ,
rtc_cfg_t , rtc_instance_ctrl_t , sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t ,
sdadc_instance_ctrl_t , sdmmc_cfg_t , sdmmc_instance_ctrl_t , sf_adc_periodic_cfg_t ,
sf_adc_periodic_instance_ctrl_t , sf_audio_playback_cfg_t , sf_audio_playback_hw_cfg_t ,
sf_audio_playback_hw_dac_instance_ctrl_t , sf_audio_playback_hw_i2s_instance_ctrl_t ,
sf_audio_record_adc_instance_ctrl_t , sf_audio_record_cfg_t ,
sf_audio_record_i2s_instance_ctrl_t , sf_crypto_instance_ctrl_t , sf_el_fx_config_t ,
sf_el_fx_instance_ctrl_t , sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t ,
sf_el_lx_nor_instance_cfg_t , sf_el_lx_nor_instance_ctrl_t , sf_message_buffer_ctrl_t ,
sf_message_post_cfg_t , sf_power_profiles_v2_low_power_cfg_t , sf_wifi_cfg_t ,
sf_wifi_provisioning_t , sf_wifi_wps_t , spi_cfg_t , ssi_instance_ctrl_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,129 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

sf_audio_playback_instance_ctrl_t , timer_cfg_t , transfer_cfg_t , uart_cfg_t , wdt_cfg_t ,
wdt_instance_ctrl_t
p_callback_memory : ctsu_instance_ctrl_t
p_callback_rec : NX_REC
p_canvas : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
p_capture_data_buffer : sf_audio_record_adc_instance_ctrl_t , sf_audio_record_cfg_t ,
sf_audio_record_i2s_instance_ctrl_t
p_cellular_mutex : sf_cellular_instance_cfg_t
p_cfg : adc_instance_t , aes_instance_t , analog_connect_instance_t , arc4_instance_t ,
cac_instance_t , can_instance_t , cgc_instance_t , comparator_instance_t , crc_instance_t ,
crypto_instance_t , ctsu_instance_t , dac_instance_t , display_instance_t , doc_instance_t ,
dsa_instance_t , ecc_instance_t , elc_instance_t , external_irq_instance_t , flash_instance_t ,
hash_instance_t , i2c_master_instance_t , i2c_slave_instance_t , i2s_instance_t ,
input_capture_instance_t , ioport_instance_t , jpeg_decode_instance_t ,
jpeg_encode_instance_t , key_installation_instance_t , keymatrix_instance_t ,
lpmv2_instance_t , lvd_instance_t , opamp_instance_t , pdc_instance_t , ptp_instance_t ,
ptpedmac_instance_t , qspi_instance_t , rsa_instance_t , rtc_instance_t , sdmmc_instance_t ,
sf_adc_periodic_instance_t , sf_audio_playback_hw_instance_t ,
sf_audio_playback_instance_t , sf_audio_record_instance_t , sf_ble_instance_t ,
sf_ble_onboard_profile_instance_t , sf_block_media_instance_t , sf_cellular_instance_cfg_t ,
sf_cellular_instance_t , sf_cellular_socket_instance_t , sf_comms_instance_t ,
sf_console_instance_t , sf_crypto_cipher_instance_t , sf_crypto_hash_instance_t ,
sf_crypto_instance_t , sf_crypto_key_installation_instance_t , sf_crypto_key_instance_t ,
sf_crypto_signature_instance_t , sf_crypto_trng_instance_t , sf_el_gx_instance_t ,
sf_external_irq_instance_t , sf_i2c_instance_t , sf_jpeg_decode_instance_t ,
sf_memory_instance_t , sf_message_instance_t , sf_power_profiles_v2_instance_t ,
sf_socket_instance_t , sf_spi_instance_t , sf_thread_monitor_instance_t ,
sf_touch_ctsu_instance_t , sf_touch_panel_chip_instance_t , sf_touch_panel_v2_instance_t ,
sf_wifi_instance_t , sf_wifi_onchip_stack_instance_t , sf_wifi_qca4010_instance_cfg_t ,
sf_wifi_qca4010_instance_t , sf_wifi_qca4010_onchip_stack_instance_t ,
sf_wifi_qca4010_socket_instance_t , slcdc_instance_t , spi_instance_t , tdes_instance_t ,
timer_instance_t , transfer_instance_t , trng_instance_t , uart_instance_t , wdt_instance_t
p_channel_cfg : adc_instance_t
p_channel_cfgs : adc_on_sdadc_cfg_t
p_chap_get_challenge_cb : sf_cellular_nsal_cfg_t
p_chap_get_responder_cb : sf_cellular_nsal_cfg_t
p_chap_get_verify_cb : sf_cellular_nsal_cfg_t
p_char_multiple_read_rsp : sf_ble_char_read_rsp_t
p_char_read_by_handle_rsp : sf_ble_char_read_rsp_t
p_char_read_by_uuid_rsp : sf_ble_char_read_rsp_t
p_chip : sf_touch_panel_v2_instance_ctrl_t
p_chipset : sf_wifi_info_t
p_cipher_context_buffer : sf_crypto_cipher_instance_ctrl_t
p_circular_queue : sf_cellular_circular_queue_cfg_t
p_circular_queue_buffer : sf_cellular_circular_queue_cfg_t
p_circular_queue_cfg : sf_cellular_extended_cfg_t
p_clock_cfg : sf_power_profiles_v2_run_cfg_t
p_clut : display_clut_t
p_cmd : sf_cellular_at_cmd_set_t , sf_wifi_qca4010_at_cmd_set_t
p_cmd_param_callback : sf_cellular_cfg_t
p_cmd_queue_ptr : sf_wifi_qca4010_queue_cfg_t
p_cmd_set : sf_cellular_cfg_t , sf_wifi_qca4010_cfg_t
p_common_cfg : sf_audio_playback_cfg_t
p_common_ctrl : sf_audio_playback_cfg_t , sf_audio_playback_instance_ctrl_t
p_comms : sf_console_cfg_t , sf_console_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,130 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

p_config : sf_el_fx_t
p_connection_table : analog_connect_table_t
p_context : adc_callback_args_t , adc_cfg_t , adc_instance_ctrl_t ,
agt_input_capture_instance_ctrl_t , agt_instance_ctrl_t , cac_callback_args_t , cac_cfg_t ,
cac_instance_ctrl_t , can_callback_args_t , can_cfg_t , can_instance_ctrl_t ,
cgc_callback_args_t , comparator_callback_args_t , comparator_cfg_t , ctsu_callback_args_t ,
ctsu_cfg_t , ctsu_instance_ctrl_t , display_callback_args_t , display_cfg_t ,
dmac_instance_ctrl_t , doc_callback_args_t , doc_cfg_t , doc_instance_ctrl_t ,
dtc_instance_ctrl_t , external_irq_callback_args_t , external_irq_cfg_t , flash_callback_args_t
, flash_cfg_t , glcd_ctrl_t , glcd_instance_ctrl_t , gpt_input_capture_instance_ctrl_t ,
gpt_instance_ctrl_t , i2c_callback_args_t , i2c_cfg_t , i2s_callback_args_t , i2s_cfg_t ,
icu_instance_ctrl_t , input_capture_callback_args_t , input_capture_cfg_t ,
iwdt_instance_ctrl_t , jpeg_decode_callback_args_t , jpeg_decode_cfg_t ,
jpeg_decode_instance_ctrl_t , jpeg_encode_callback_args_t , jpeg_encode_cfg_t ,
jpeg_encode_instance_ctrl_t , keymatrix_callback_args_t , keymatrix_cfg_t ,
lvd_callback_args_t , lvd_cfg_t , pdc_callback_args_t , pdc_cfg_t , pdc_instance_ctrl_t ,
ptp_callback_args_t , ptp_cfg_t , ptp_instance_ctrl_t , ptpedmac_callback_args_t ,
ptpedmac_cfg_t , ptpedmac_instance_ctrl_t , rspi_instance_ctrl_t , rtc_callback_args_t ,
rtc_cfg_t , rtc_instance_ctrl_t , sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t ,
sdadc_instance_ctrl_t , sdmmc_callback_args_t , sdmmc_cfg_t , sdmmc_instance_ctrl_t ,
sf_adc_periodic_callback_args_t , sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t ,
sf_audio_playback_hw_callback_args_t , sf_audio_playback_hw_cfg_t ,
sf_audio_playback_hw_dac_instance_ctrl_t , sf_audio_playback_hw_i2s_instance_ctrl_t ,
sf_audio_record_adc_instance_ctrl_t , sf_audio_record_cfg_t ,
sf_audio_record_i2s_instance_ctrl_t , sf_cellular_callback_args_t , sf_cellular_cfg_t ,
sf_crypto_cfg_t , sf_crypto_instance_ctrl_t , sf_el_fx_callback_args_t , sf_el_fx_config_t ,
sf_el_fx_instance_ctrl_t , sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t ,
sf_el_lx_nor_callback_args_t , sf_el_lx_nor_instance_cfg_t , sf_el_lx_nor_instance_ctrl_t ,
sf_message_buffer_ctrl_t , sf_message_callback_args_t , sf_message_post_cfg_t ,
sf_power_profiles_v2_callback_args_t , sf_power_profiles_v2_low_power_cfg_t ,
sf_touch_ctsu_cfg_t , sf_touch_panel_v2_cfg_t , sf_touch_panel_v2_instance_ctrl_t ,
sf_touchpanel_v2_callback_args_t , sf_wifi_callback_args_t , sf_wifi_cfg_t ,
sf_wifi_qca4010_cfg_t , slcdc_instance_ctrl_t , spi_callback_args_t , spi_cfg_t ,
ssi_instance_ctrl_t , timer_callback_args_t , timer_cfg_t , transfer_callback_args_t ,
transfer_cfg_t , uart_callback_args_t , uart_cfg_t , wdt_callback_args_t , wdt_cfg_t ,
wdt_instance_ctrl_t
p_correction_info : ctsu_instance_ctrl_t
p_crypto_api : aes_cfg_t , aes_ctrl_t , arc4_cfg_t , arc4_ctrl_t , dsa_cfg_t , dsa_ctrl_t ,
ecc_cfg_t , ecc_ctrl_t , hash_cfg_t , hash_ctrl_t , key_installation_instance_ctrl_t , rsa_cfg_t ,
rsa_ctrl_t , tdes_cfg_t , tdes_ctrl_t , trng_cfg_t , trng_ctrl_t
p_crypto_ctrl : aes_ctrl_t , arc4_ctrl_t , dsa_ctrl_t , ecc_ctrl_t , hash_cfg_t ,
key_installation_instance_ctrl_t , rsa_ctrl_t , trng_ctrl_t
p_ctrl : adc_instance_t , aes_instance_t , arc4_instance_t , cac_instance_t , can_instance_t ,
comparator_instance_t , crc_instance_t , crypto_instance_t , ctsu_instance_t , dac_instance_t
, display_instance_t , doc_instance_t , dsa_instance_t , ecc_instance_t ,
external_irq_instance_t , flash_instance_t , hash_instance_t , i2c_master_instance_t ,
i2c_slave_instance_t , i2s_instance_t , input_capture_instance_t , jpeg_decode_instance_t ,
jpeg_encode_instance_t , key_installation_instance_t , keymatrix_instance_t , lvd_instance_t
, opamp_instance_t , pdc_instance_t , ptp_instance_t , ptpedmac_instance_t ,
qspi_instance_t , rsa_instance_t , rtc_instance_t , sdmmc_instance_t ,
sf_adc_periodic_instance_t , sf_audio_playback_hw_instance_t ,
sf_audio_playback_instance_t , sf_audio_record_instance_t , sf_ble_instance_t ,
sf_ble_onboard_profile_instance_t , sf_block_media_instance_t , sf_cellular_instance_t ,
sf_cellular_socket_instance_t , sf_comms_instance_t , sf_console_callback_args_t ,
sf_console_instance_t , sf_crypto_cipher_instance_t , sf_crypto_hash_instance_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,131 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

sf_crypto_instance_t , sf_crypto_key_installation_instance_t , sf_crypto_key_instance_t ,
sf_crypto_signature_instance_t , sf_crypto_trng_instance_t , sf_el_fx_t , sf_el_gx_instance_t ,
sf_external_irq_instance_t , sf_i2c_instance_t , sf_jpeg_decode_instance_t ,
sf_memory_instance_t , sf_message_instance_t , sf_power_profiles_v2_instance_t ,
sf_socket_instance_t , sf_spi_instance_t , sf_thread_monitor_instance_t ,
sf_touch_ctsu_instance_t , sf_touch_panel_chip_instance_t , sf_touch_panel_v2_instance_t ,
sf_wifi_instance_t , sf_wifi_onchip_stack_instance_t , sf_wifi_qca4010_instance_t ,
sf_wifi_qca4010_onchip_stack_instance_t , sf_wifi_qca4010_socket_instance_t ,
slcdc_instance_t , spi_instance_t , tdes_instance_t , timer_instance_t , transfer_instance_t ,
trng_instance_t , uart_instance_t , wdt_instance_t
p_ctsu_cfg : ctsu_instance_ctrl_t
p_ctsu_instance : sf_touch_ctsu_cfg_t , sf_touch_ctsu_instance_ctrl_t
p_ctsuwr : ctsu_instance_ctrl_t
p_current_buffer : pdc_instance_ctrl_t
p_current_menu : sf_console_instance_ctrl_t
p_data : key_installation_key_t , r_crypto_data_handle_t , rsa_key_t ,
sf_audio_playback_data_t , sf_ble_char_multiple_read_rsp_t ,
sf_ble_char_read_by_handle_rsp_t , sf_ble_char_read_by_uuid_rsp_t , sf_ble_char_write_req_t
, sf_ble_event_info_t , sf_ble_gatt_notif_ind_event_data_t , sf_ble_write_cmd_event_data_t ,
sf_cellular_callback_args_t , sf_crypto_data_handle_t , sf_el_fx_media_partition_info_t ,
sf_wifi_callback_args_t , sf_audio_playback_instance_ctrl_t
p_data_buffer : sf_adc_periodic_callback_args_t , sf_adc_periodic_cfg_t ,
sf_adc_periodic_instance_ctrl_t
p_delay_callback : sf_memory_qspi_nor_cfg_t , sf_memory_qspi_nor_instance_ctrl_t
p_delay_callback_context : sf_memory_qspi_nor_cfg_t , sf_memory_qspi_nor_instance_ctrl_t
p_dest : transfer_info_t
p_disconnect_callback : sf_comms_telnet_cfg_t , sf_comms_telnet_instance_ctrl_t
p_display : sf_el_gx_instance_ctrl_t
p_display_instance : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
p_display_runtime_cfg : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
p_drift_buf : sf_touch_ctsu_button_info_t
p_drift_count : sf_touch_ctsu_button_info_t
p_driver_handle : sf_ble_ctrl_t , sf_cellular_ctrl_t , sf_wifi_ctrl_t , sf_wifi_qca4010_ctrl_t
p_elem_index : sf_touch_ctsu_slider_cfg_t , sf_touch_ctsu_wheel_cfg_t
p_elements : ctsu_cfg_t
p_erase_sizes_bytes : qspi_info_t
p_eventflag : sf_wifi_qca4010_extended_cfg_t
p_extend : adc_cfg_t , cac_cfg_t , can_cfg_t , comparator_cfg_t , crc_cfg_t , ctsu_cfg_t ,
display_cfg_t , external_irq_cfg_t , flash_cfg_t , i2c_cfg_t , i2s_cfg_t , input_capture_cfg_t ,
jpeg_decode_instance_ctrl_t , jpeg_encode_instance_ctrl_t , key_installation_cfg_t ,
keymatrix_cfg_t , lpmv2_cfg_t , lvd_cfg_t , opamp_cfg_t , pdc_cfg_t , ptp_cfg_t ,
ptp_instance_ctrl_t , qspi_cfg_t , rtc_cfg_t , sdmmc_cfg_t , sf_adc_periodic_cfg_t ,
sf_audio_playback_common_cfg_t , sf_audio_playback_hw_cfg_t , sf_audio_record_cfg_t ,
sf_ble_cfg_t , sf_ble_onboard_profile_cfg_t , sf_block_media_cfg_t , sf_cellular_cfg_t ,
sf_cellular_nsal_cfg_t , sf_cellular_socket_cfg_t , sf_comms_cfg_t , sf_crypto_cfg_t ,
sf_crypto_cipher_cfg_t , sf_crypto_hash_cfg_t , sf_crypto_key_cfg_t ,
sf_crypto_key_installation_cfg_t , sf_crypto_signature_cfg_t , sf_crypto_trng_cfg_t ,
sf_el_fx_config_t , sf_memory_cfg_t , sf_power_profiles_v2_cfg_t ,
sf_power_profiles_v2_low_power_cfg_t , sf_power_profiles_v2_run_cfg_t , sf_socket_cfg_t ,
sf_thread_monitor_instance_ctrl_t , sf_touch_ctsu_cfg_t , sf_touch_panel_v2_calibrate_t ,
sf_touch_panel_v2_cfg_t , sf_wifi_cfg_t , sf_wifi_onchip_stack_cfg_t , sf_wifi_qca4010_cfg_t ,
sf_wifi_qca4010_socket_cfg_t , spi_cfg_t , timer_cfg_t , transfer_cfg_t , uart_cfg_t , wdt_cfg_t
p_extpin_ctrl : sci_uart_instance_ctrl_t , uart_on_sci_cfg_t
p_framebuffer_a : sf_el_gx_cfg_t
p_framebuffer_b : sf_el_gx_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,132 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

p_framebuffer_read : sf_el_gx_instance_ctrl_t
p_framebuffer_write : sf_el_gx_instance_ctrl_t
p_fwk_common_api : sf_crypto_key_instance_ctrl_t
p_fwk_common_ctrl : sf_crypto_key_instance_ctrl_t
p_gamma_correction : display_output_cfg_t
p_hal_api : sf_crypto_cipher_instance_ctrl_t , sf_crypto_key_instance_ctrl_t ,
sf_crypto_signature_instance_ctrl_t
p_hal_ctrl : sf_crypto_cipher_instance_ctrl_t , sf_crypto_key_instance_ctrl_t ,
sf_crypto_signature_instance_ctrl_t
p_hidden_sector : sf_el_fx_callback_args_t
p_huffman_croma_ac_table : jpeg_encode_cfg_t
p_huffman_croma_dc_table : jpeg_encode_cfg_t
p_huffman_luma_ac_table : jpeg_encode_cfg_t
p_huffman_luma_dc_table : jpeg_encode_cfg_t
p_hysteresis : sf_touch_ctsu_button_info_t
p_info : transfer_cfg_t
p_initial_menu : sf_console_cfg_t
p_interface : sf_wifi_nsal_callback_args_t
p_ioport_pin_tbl : sf_power_profiles_v2_run_cfg_t
p_ioport_pin_tbl_enter : sf_power_profiles_v2_low_power_cfg_t
p_ioport_pin_tbl_exit : sf_power_profiles_v2_low_power_cfg_t
p_ip : sf_cellular_nsal_cfg_t , sf_wifi_nsal_callback_args_t
p_iv : sf_crypto_cipher_aes_init_params_t
p_jpegbuffer : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
p_key : arc4_cfg_t
p_key_data : sf_crypto_signature_context_t
p_leds : bsp_leds_t
p_link_down_cb : sf_cellular_nsal_cfg_t
p_link_up_cb : sf_cellular_nsal_cfg_t
p_lock_mutex : sf_i2c_bus_t , sf_spi_bus_t
p_low_lvl_ble : sf_ble_onboard_profile_cfg_t , sf_ble_onboard_profile_ctrl_t
p_low_lvl_sf_comms : sf_ble_on_rl78g1d_cfg_t
p_low_lvl_timer : sf_ble_on_rl78g1d_cfg_t
p_lower_lvl : sf_el_lx_nor_instance_cfg_t , sf_el_lx_nor_instance_ctrl_t
p_lower_lvl_adc : sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t
p_lower_lvl_adc_periodic : sf_audio_record_adc_instance_ctrl_t
p_lower_lvl_api : sf_i2c_bus_t , sf_spi_bus_t
p_lower_lvl_block_media : sf_el_fx_config_t , sf_el_fx_instance_ctrl_t
p_lower_lvl_cellular : sf_cellular_socket_cfg_t , sf_cellular_socket_ctrl_t
p_lower_lvl_cfg : sf_i2c_cfg_t , sf_spi_cfg_t
p_lower_lvl_common : sf_crypto_key_installation_cfg_t , sf_crypto_trng_cfg_t
p_lower_lvl_common_api : sf_crypto_key_installation_instance_ctrl_t ,
sf_crypto_signature_instance_ctrl_t
p_lower_lvl_common_ctrl : sf_crypto_key_installation_instance_ctrl_t ,
sf_crypto_signature_instance_ctrl_t
p_lower_lvl_crypto : sf_crypto_cfg_t , sf_crypto_instance_ctrl_t
p_lower_lvl_crypto_api : key_installation_cfg_t
p_lower_lvl_crypto_common : sf_crypto_cipher_cfg_t , sf_crypto_hash_cfg_t ,
sf_crypto_hash_instance_ctrl_t , sf_crypto_key_cfg_t , sf_crypto_signature_cfg_t
p_lower_lvl_crypto_trng : sf_crypto_cipher_cfg_t
p_lower_lvl_ctrl : sf_i2c_instance_ctrl_t , sf_spi_instance_ctrl_t
p_lower_lvl_dac : sf_audio_playback_hw_dac_cfg_t ,
sf_audio_playback_hw_dac_instance_ctrl_t
p_lower_lvl_framewrk : sf_touch_panel_chip_ft5x06_instance_ctrl_t ,
sf_touch_panel_chip_on_ft5x06_cfg_t , sf_touch_panel_chip_on_sx8654_cfg_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,133 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

sf_touch_panel_chip_sx8654_instance_ctrl_t
p_lower_lvl_fwk_common_api : sf_crypto_cipher_instance_ctrl_t
p_lower_lvl_fwk_common_ctrl : sf_crypto_cipher_instance_ctrl_t
p_lower_lvl_hw : sf_audio_playback_common_cfg_t ,
sf_audio_playback_common_instance_ctrl_t
p_lower_lvl_i2c : sf_i2c_instance_ctrl_t
p_lower_lvl_i2s : sf_audio_playback_hw_i2s_cfg_t , sf_audio_playback_hw_i2s_instance_ctrl_t
, sf_audio_record_i2s_instance_ctrl_t
p_lower_lvl_icu : sf_wifi_on_gt202_cfg_t
p_lower_lvl_instance : sf_crypto_hash_cfg_t , sf_crypto_hash_instance_ctrl_t ,
sf_crypto_key_installation_cfg_t , sf_crypto_key_installation_instance_ctrl_t ,
sf_crypto_trng_cfg_t
p_lower_lvl_irq : sf_external_irq_cfg_t , sf_external_irq_instance_ctrl_t ,
sf_touch_panel_chip_ft5x06_instance_ctrl_t , sf_touch_panel_chip_on_ft5x06_cfg_t ,
sf_touch_panel_chip_on_sx8654_cfg_t , sf_touch_panel_chip_sx8654_instance_ctrl_t
p_lower_lvl_jpeg_decode : sf_jpeg_decode_cfg_t , sf_jpeg_decode_instance_ctrl_t
p_lower_lvl_lpm : sf_power_profiles_v2_low_power_cfg_t
p_lower_lvl_onchip_wifi : sf_socket_cfg_t , sf_socket_ctrl_t
p_lower_lvl_onchip_wifi_qca4010 : sf_wifi_qca4010_socket_cfg_t ,
sf_wifi_qca4010_socket_ctrl_t
p_lower_lvl_qspi : sf_block_media_qspi_instance_ctrl_t
p_lower_lvl_sdmmc : sf_block_media_sdmmc_instance_ctrl_t
p_lower_lvl_sf_crypto_hash : sf_crypto_signature_cfg_t , sf_crypto_signature_instance_ctrl_t
p_lower_lvl_sf_crypto_trng_ctrl : sf_crypto_cipher_instance_ctrl_t
p_lower_lvl_spi : sf_wifi_on_gt202_cfg_t
p_lower_lvl_timer : sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t ,
sf_audio_playback_hw_dac_cfg_t , sf_audio_playback_hw_dac_instance_ctrl_t
p_lower_lvl_transfer : pdc_cfg_t , pdc_instance_ctrl_t , sdmmc_cfg_t , sdmmc_instance_ctrl_t
, sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t , sf_audio_playback_hw_dac_cfg_t ,
sf_audio_playback_hw_dac_instance_ctrl_t
p_lower_lvl_uart : sf_uart_comms_cfg_t , sf_uart_comms_instance_ctrl_t
p_lower_lvl_wdt : sf_thread_monitor_cfg_t , sf_thread_monitor_instance_ctrl_t
p_lower_lvl_wifi : sf_wifi_onchip_stack_cfg_t , sf_wifi_onchip_stack_ctrl_t
p_lower_lvl_wifi_qca4010 : sf_wifi_qca4010_onchip_stack_cfg_t ,
sf_wifi_qca4010_onchip_stack_ctrl_t
p_lx_nor_flash : sf_el_lx_nor_instance_cfg_t , sf_el_lx_nor_instance_ctrl_t
p_mailbox : can_cfg_t , can_instance_ctrl_t
p_mailbox_mask : can_extended_cfg_t
p_memory_pool : sf_crypto_cfg_t
p_memory_settings : sf_el_lx_nor_instance_cfg_t , sf_el_lx_nor_instance_ctrl_t
p_message : sf_audio_playback_common_cfg_t , sf_audio_playback_common_instance_ctrl_t
p_message_buffer : sf_crypto_hash_context_t
p_message_buffer_org : sf_crypto_hash_context_t
p_message_digest : sf_crypto_hash_context_t
p_message_digest_org : sf_crypto_hash_context_t
p_modifiable_cmd_set : sf_cellular_cfg_t
p_module_extended_cfg : sf_cellular_extended_cfg_t , sf_wifi_qca4010_extended_cfg_t
p_mul_read_req : sf_ble_char_read_req_t
p_mutual_pri_data : ctsu_instance_ctrl_t
p_mutual_raw : ctsu_instance_ctrl_t
p_mutual_snd_data : ctsu_instance_ctrl_t
p_next_buffer : sf_audio_playback_common_instance_ctrl_t
p_nor_flash : sf_block_media_lx_nor_instance_ctrl_t , sf_block_media_on_lx_nor_cfg_t
p_nor_flash_name : sf_block_media_lx_nor_instance_ctrl_t , sf_block_media_on_lx_nor_cfg_t
p_off_count : sf_touch_ctsu_button_info_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,134 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

p_on_count : sf_touch_ctsu_button_info_t
p_owner : sf_audio_playback_instance_ctrl_t
p_pap_generate_login : sf_cellular_nsal_cfg_t
p_pap_verify_login : sf_cellular_nsal_cfg_t
p_pin_cfg_data : ioport_cfg_t
p_position : sf_touch_ctsu_slider_info_t , sf_touch_ctsu_wheel_info_t
p_ppp : sf_cellular_nsal_cfg_t
p_ppp_invalid_packet_cb : sf_cellular_nsal_cfg_t
p_ppp_packet_pool : sf_cellular_nsal_cfg_t
p_ppp_send_byte : sf_cellular_nsal_cfg_t
p_ppp_stack : sf_cellular_nsal_cfg_t
p_prov_callback : sf_cellular_cfg_t
p_ptpedmac_buffer : ptpedmac_instance_ctrl_t
p_puk_pin : sf_cellular_cfg_t
p_qspi : sf_memory_qspi_nor_cfg_t , sf_memory_qspi_nor_instance_ctrl_t
p_quant_croma_table : jpeg_encode_cfg_t
p_quant_luma_table : jpeg_encode_cfg_t
p_queue : sf_audio_playback_common_cfg_t , sf_audio_playback_common_instance_ctrl_t ,
sf_message_post_err_t , sf_message_subscriber_t
p_queue_buffer : sf_wifi_qca4010_queue_cfg_t
p_queue_cfg : sf_wifi_qca4010_extended_cfg_t
p_r_uart_instance : sf_wifi_qca4010_uart_extend_cfg_t
p_ram_buffer : sf_block_media_ram_instance_ctrl_t
p_read_sim_pin_info_callback : sf_cellular_cfg_t
p_recv_callback : sf_cellular_cfg_t
p_reference : sf_touch_ctsu_button_info_t
p_reg : adc_instance_ctrl_t , agt_input_capture_instance_ctrl_t , agt_instance_ctrl_t ,
cac_instance_ctrl_t , can_instance_ctrl_t , crc_instance_ctrl_t , ctsu_instance_ctrl_t ,
dac8_instance_ctrl_t , dac_instance_ctrl_t , dmac_instance_ctrl_t , doc_instance_ctrl_t ,
flash_hp_instance_ctrl_t , flash_lp_instance_ctrl_t , glcd_instance_ctrl_t ,
gpt_input_capture_instance_ctrl_t , gpt_instance_ctrl_t , icu_instance_ctrl_t ,
iwdt_instance_ctrl_t , jpeg_decode_instance_ctrl_t , jpeg_encode_instance_ctrl_t ,
kint_instance_ctrl_t , lvd_instance_ctrl_t , opamp_instance_ctrl_t , pdc_instance_ctrl_t ,
ptp_instance_ctrl_t , ptpedmac_instance_ctrl_t , qspi_instance_ctrl_t , riic_instance_ctrl_t ,
riic_slave_instance_ctrl_t , rspi_instance_ctrl_t , rtc_instance_ctrl_t , sci_i2c_instance_ctrl_t ,
sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t , sdadc_instance_ctrl_t ,
sdmmc_instance_ctrl_t , slcdc_instance_ctrl_t , ssi_instance_ctrl_t , wdt_instance_ctrl_t
p_reg_cfg : ptp_instance_ctrl_t
p_reg_gen : ptp_instance_ctrl_t
p_region_info : sf_el_lx_nor_instance_ctrl_t
p_regions_info : sf_memory_info_t
p_remaining_string : sf_console_callback_args_t
p_resp_buff : sf_wifi_qca4010_instance_cfg_t
p_rx_dest : ssi_instance_ctrl_t
p_rx_dst : sci_uart_instance_ctrl_t
p_sce_api_interfaces : crypto_cfg_t
p_sce_long_plg_end_callback : crypto_cfg_t
p_self_data : ctsu_instance_ctrl_t
p_self_raw : ctsu_instance_ctrl_t
p_service : sf_ble_char_attribute_t
p_sf_comms_cfg : sf_cellular_extended_cfg_t
p_sf_comms_instance : sf_cellular_comms_extend_cfg_t
p_sf_comms_rx_thread : sf_cellular_comms_extend_cfg_t
p_sf_comms_rx_thread_stack : sf_cellular_comms_extend_cfg_t
p_sf_crypto_trng_api : sf_crypto_cipher_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,135 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

p_sf_jpeg_decode_instance : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
p_sim_pin : sf_cellular_cfg_t , sf_cellular_sim_pin_info_t
p_sim_puk : sf_cellular_sim_pin_info_t
p_sliders : sf_touch_ctsu_cfg_t
p_socket_status_buffer : sf_cellular_instance_cfg_t
p_src : transfer_info_t
p_src_transfer : sf_adc_periodic_instance_ctrl_t
p_stream : sf_audio_playback_common_instance_ctrl_t
p_success_resp : sf_cellular_at_cmd_set_t , sf_wifi_qca4010_at_cmd_set_t
p_sync_eventflag : sf_i2c_bus_t , sf_spi_bus_t
p_thread : sf_thread_monitor_thread_counter_t
p_threshold : sf_touch_ctsu_button_info_t , sf_touch_ctsu_slider_info_t ,
sf_touch_ctsu_wheel_info_t
p_timer : i2s_cfg_t , ssi_instance_ctrl_t
p_touch_cfg : sf_touch_ctsu_instance_ctrl_t
p_transfer_data : sdmmc_instance_ctrl_t
p_transfer_rx : ctsu_cfg_t , i2c_cfg_t , i2s_cfg_t , rspi_instance_ctrl_t , sci_i2c_instance_ctrl_t
, sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t , spi_cfg_t , ssi_instance_ctrl_t , uart_cfg_t
p_transfer_tx : ctsu_cfg_t , i2c_cfg_t , i2s_cfg_t , rspi_instance_ctrl_t , sci_i2c_instance_ctrl_t
, sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t , spi_cfg_t , ssi_instance_ctrl_t , uart_cfg_t
p_tsn_calib_regs : adc_instance_ctrl_t
p_tsn_ctrl_regs : adc_instance_ctrl_t
p_tuning_count : ctsu_instance_ctrl_t
p_tuning_diff : ctsu_instance_ctrl_t
p_tx_packet_buffer : sf_wifi_nsal_cfg_t
p_tx_src : sci_uart_instance_ctrl_t , ssi_instance_ctrl_t
p_uart_instance : sf_touch_ctsu_cfg_t
p_uart_instance_objects : sf_wifi_qca4010_instance_cfg_t
p_uart_instances : sf_wifi_qca4010_cfg_t
p_value : sf_ble_gatt_attr_event_t
p_wheels : sf_touch_ctsu_cfg_t
p_wifi_mutex : sf_wifi_qca4010_instance_cfg_t
p_wifi_nsal_cfg : sf_wifi_nsal_callback_args_t
p_work_memory_start : sf_message_cfg_t
page_size : qspi_instance_ctrl_t
pageProgram : qspi_api_t
parent_svc_handle : sf_ble_svc_attribute_t
parity : spi_on_rspi_cfg_t , uart_cfg_t
parse : sf_console_api_t
partition : sf_el_fx_media_info_t
password : sf_cellular_provisioning_t
patch : ssp_pack_version_t
pause : sf_audio_playback_api_t
payload : sf_touch_panel_v2_instance_ctrl_t , sf_touchpanel_v2_callback_args_t
payload_buffer : UX_DCD_SYNERGY_PAYLOAD_TRANSFER ,
UX_HCD_SYNERGY_PAYLOAD_TRANSFER
payload_length : UX_DCD_SYNERGY_PAYLOAD_TRANSFER ,
UX_HCD_SYNERGY_PAYLOAD_TRANSFER
payloadGet : sf_touch_panel_chip_api_t
pckt_size : sf_cellular_socket_info_t
pclk_div : external_irq_cfg_t
pclka_div : cgc_system_clock_cfg_t
pclkb_div : cgc_system_clock_cfg_t
pclkc_div : cgc_system_clock_cfg_t
pclkd_div : cgc_system_clock_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,136 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

pcm_width : i2s_cfg_t
pdp_type : sf_cellular_provisioning_t
peer_addr : sf_ble_connect_info_t
peer_addr_type : sf_ble_connect_info_t
peer_ip : sf_cellular_nsal_cfg_t
pend : sf_message_api_t
pending_operation : sf_memory_qspi_nor_instance_ctrl_t
pending_operation_size : sf_memory_qspi_nor_instance_ctrl_t
period : agt_instance_ctrl_t , timer_cfg_t
period_counts : timer_info_t
periodic_ipl : rtc_cfg_t
periodic_irq : rtc_instance_ctrl_t
periodicIrqRateSet : rtc_api_t
periodSet : timer_api_t
peripheral : elc_link_t
perm : RBLE_GATT_SET_PERM
pga0 : adc_cfg_t , adc_instance_ctrl_t
pga1 : adc_cfg_t , adc_instance_ctrl_t
pga2 : adc_cfg_t , adc_instance_ctrl_t
pga_available : adc_instance_ctrl_t
phy_mode : sf_wifi_qca4010_status_t
pin : ioport_pin_cfg_t , sf_touch_panel_chip_ft5x06_instance_ctrl_t ,
sf_touch_panel_chip_on_ft5x06_cfg_t , sf_touch_panel_chip_on_sx8654_cfg_t ,
sf_touch_panel_chip_sx8654_instance_ctrl_t
pin_cfg : ioport_pin_cfg_t
pin_output : comparator_cfg_t
pin_reset : sf_cellular_extended_cfg_t , sf_wifi_on_gt202_cfg_t ,
sf_wifi_qca4010_extended_cfg_t
pin_select : agt_input_capture_extend_t
pin_slave_select : sf_wifi_on_gt202_cfg_t
pinCfg : ioport_api_t
pinDirectionSet : ioport_api_t
pinEthernetModeCfg : ioport_api_t
pinEventInputRead : ioport_api_t
pinEventOutputWrite : ioport_api_t
ping : sf_cellular_socket_api_t , sf_wifi_qca4010_onchip_stack_api_t
pinRead : ioport_api_t
pinsCfg : ioport_api_t
pint_irq : ptpedmac_instance_ctrl_t
pinWrite : ioport_api_t
pixel_format : jpeg_decode_cfg_t , jpeg_decode_instance_ctrl_t
pixelFormatGet : jpeg_decode_api_t , sf_jpeg_decode_api_t
play : sf_audio_playback_hw_api_t
playing : sf_audio_playback_common_instance_ctrl_t
pll_cfg : cgc_clocks_cfg_t
pll_div_max : bsp_feature_cgc_t
pll_mul_max : bsp_feature_cgc_t
pll_mul_min : bsp_feature_cgc_t
pll_src_configurable : bsp_feature_cgc_t
pll_state : cgc_clocks_cfg_t
pllccr_type : bsp_feature_cgc_t
pointer_hdl : RBLE_GATT_CHAR_128_LIST , RBLE_GATT_CHAR_LIST
polarity : sdadc_channel_cfg_t
polynomial : crc_cfg_t , crc_instance_ctrl_t
portDirectionSet : ioport_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,137 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

portEventInputRead : ioport_api_t
portEventOutputWrite : ioport_api_t
portRead : ioport_api_t
portWrite : ioport_api_t
post : sf_message_api_t
power_lvl : sf_ble_set_tx_pwr_info_t
power_supply_state : lpmv2_mcu_cfg_t
pp_curr_bus_ctrl : sf_i2c_bus_t
pp_curr_ctrl : sf_i2c_bus_t , sf_spi_bus_t
pp_subscriber_group : sf_message_subscriber_list_t
pp_subscriber_lists : sf_message_cfg_t , sf_message_instance_ctrl_t
ppp_stack_size : sf_cellular_nsal_cfg_t
preamble : sf_wifi_cfg_t
preamble_length : phy_record_t
pref_ops : sf_cellular_cfg_t
press_val1 : sf_ble_blp_meas_info_t
press_val2 : sf_ble_blp_meas_info_t
press_val3 : sf_ble_blp_meas_info_t
prevbuf : trng_ctrl_t
pri_ref : ctsu_mutual_buf_t
pri_sen : ctsu_mutual_buf_t
priority : sf_audio_playback_common_cfg_t , sf_cellular_nsal_cfg_t , sf_message_post_cfg_t ,
sf_thread_monitor_cfg_t , sf_touch_panel_v2_cfg_t
priority_group_a : adc_channel_cfg_t
productFeatureGet : fmi_api_t
productId : sf_ble_prf_dis_pnpid_t
productInfoGet : fmi_api_t
productVersion : sf_ble_prf_dis_pnpid_t
profiling_mode_check : sf_thread_monitor_instance_ctrl_t
profiling_mode_enabled : sf_thread_monitor_cfg_t , sf_thread_monitor_instance_ctrl_t
prompt : sf_console_api_t
prop : RBLE_GATT_CHAR_128_LIST , RBLE_GATT_CHAR_LIST
property : sf_ble_char_discovery_rsp_t
protocol_mode_val : sf_ble_prf_value_t
prov_info : sf_cellular_instance_cfg_t , sf_wifi_qca4010_instance_cfg_t
provisionGet : sf_ble_api_t
provisioningGet : sf_cellular_api_t , sf_wifi_api_t
provisioningSet : sf_cellular_api_t , sf_wifi_api_t , sf_wifi_qca4010_api_t
provisionSet : sf_ble_api_t
pulse_count_value : agt_input_capture_extend_t
pulse_period_first_edge : agt_input_capture_instance_ctrl_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- q -

qspi_info : sf_memory_qspi_nor_instance_ctrl_t
quality_factor : jpeg_encode_cfg_t
queue : sf_comms_telnet_instance_ctrl_t , sf_uart_comms_instance_ctrl_t
queue_mem : sf_uart_comms_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,138 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

queue_size : sf_cellular_circular_queue_cfg_t , sf_wifi_qca4010_queue_cfg_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- r -

r : display_brightness_t , display_color_t , display_contrast_t , display_gamma_correction_t
ram_buffer_size : sf_block_media_ram_instance_ctrl_t
rand_num : sf_ble_sec_info_t , sf_ble_sm_enc_info_t , sf_ble_sm_key_ind_t
randomNumberGenerate : sf_crypto_trng_api_t
rate : i2c_cfg_t , sf_ble_blp_meas_info_t
rd_index : ctsu_instance_ctrl_t
read : adc_api_t , cac_api_t , can_api_t , flash_api_t , i2c_api_master_t , i2s_api_t ,
ptpedmac_api_t , qspi_api_t , riic_instance_ctrl_t , riic_slave_instance_ctrl_t ,
sci_i2c_instance_ctrl_t , sdmmc_api_t , sf_block_media_api_t , sf_comms_api_t ,
sf_console_api_t , sf_i2c_api_t , sf_memory_api_t , sf_spi_api_t , spi_api_t , trng_api_t ,
uart_api_t
read32 : adc_api_t
read_bytes_max : uart_info_t
read_irq : ctsu_cfg_t , ctsu_instance_ctrl_t
readIo : sdmmc_api_t
readIoExt : sdmmc_api_t
ready : sdmmc_info_t
reason : sf_ble_disconnect_t
ref : ctsu_self_buf_t
ref_time : sf_ble_prf_tip_write_data_t
reference_clock : cac_instance_ctrl_t
reference_voltage : bsp_feature_adc_t
refresh : wdt_api_t
reg_id : adc_sample_state_t
reg_status : sf_cellular_network_status_t
region_info : sf_memory_qspi_nor_instance_ctrl_t
remain : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , sci_i2c_instance_ctrl_t
remote_ip : sf_cellular_socket_info_t
remote_port : sf_cellular_socket_info_t
rendering_enable : sf_el_gx_instance_ctrl_t
repeat_area : transfer_info_t
repetition : agt_input_capture_instance_ctrl_t , gpt_input_capture_instance_ctrl_t ,
input_capture_cfg_t
report : sf_ble_prf_hid_report_ind_t
report_type : sf_ble_prf_hid_report_desc_t
req_high_throughput : sf_wifi_cfg_t
req_type : RBLE_GATT_DISC_CHAR_REQ , RBLE_GATT_DISC_SVC_REQ ,
RBLE_GATT_READ_CHAR_REQ , RBLE_GATT_WRITE_CHAR_REQ
reserved : sf_ble_blp_meas_info_t , sf_ble_connect_info_t , sf_ble_long_attr_info_t ,
sf_ble_prf_cts_curr_time_t , sf_ble_prf_cts_date_time_t , sf_ble_prf_hid_report_ind_t ,
sf_ble_prf_htp_temp_info_t , sf_ble_prf_ndcs_time_dst_t ,
sf_message_buffer_ctrl_t::st_buffer_ctrl_flag
reserved2 : sf_ble_connect_info_t
reserved3 : sf_ble_connect_info_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,139 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

reset : cac_api_t , flash_api_t , i2c_api_master_t , sf_cellular_api_t , sf_i2c_api_t ,
sf_touch_panel_chip_api_t , sf_touch_panel_v2_api_t , timer_api_t , transfer_api_t
reset_control : wdt_cfg_t
reset_level : sf_cellular_extended_cfg_t , sf_wifi_qca4010_extended_cfg_t
resolution : adc_cfg_t , sdadc_instance_ctrl_t
resource_lock : glcd_ctrl_t
resource_lock_tx_rx : riic_instance_ctrl_t , sci_spi_instance_ctrl_t
resp : RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Cmd_Ind_t
resp_buffer_length : sf_wifi_qca4010_instance_cfg_t
resp_wait_time : sf_cellular_at_cmd_set_t , sf_wifi_qca4010_at_cmd_set_t
response : sf_ble_gatt_attr_event_t
response_required : sf_ble_write_cmd_event_data_t
restart : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
restarted : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t , sf_i2c_instance_ctrl_t
resume : sf_audio_playback_api_t
retry : sf_cellular_at_cmd_set_t
retry_count : sf_cellular_command_parameters_info_t
retry_delay : sf_cellular_at_cmd_set_t , sf_cellular_command_parameters_info_t ,
sf_wifi_qca4010_at_cmd_set_t
riic_fastplus_rise_time : bsp_feature_riic_t
riic_std_fast_rise_time : bsp_feature_riic_t
ringer_cp : sf_ble_prf_ringer_cp_change_t
ringer_setting : sf_ble_prf_ringer_setting_ntf_t
rkey_dist : sf_ble_bonding_req_ind_t , sf_ble_bonding_start_t
rkeys : sf_ble_bonding_response_t
rotation_angle : sf_touch_panel_v2_cfg_t , sf_touch_panel_v2_instance_ctrl_t
rr_interval : sf_ble_hrp_api_hrmeas_t
rr_interval_num : sf_ble_hrp_api_hrmeas_t
rs485_de_pin : sci_uart_instance_ctrl_t , uart_on_sci_cfg_t
rspi_clksyn : spi_on_rspi_cfg_t
rspi_comm : spi_on_rspi_cfg_t
rssi : sf_ble_info_t , sf_ble_scan_t , sf_cellular_info_t , sf_cellular_network_status_t ,
sf_wifi_info_t , sf_wifi_scan_t
rts : sf_wifi_cfg_t
runApply : sf_power_profiles_v2_api_t
rx_bd_space : NX_REC
rx_bytes : sf_cellular_stats_t
rx_bytes_count : sci_uart_instance_ctrl_t
rx_dest_bytes : ssi_instance_ctrl_t
rx_dst_bytes : sci_uart_instance_ctrl_t
rx_edge_start : uart_on_sci_cfg_t
rx_err : sf_cellular_stats_t
rx_fifo_trigger : uart_on_sci_cfg_t
rx_in_use : ssi_instance_ctrl_t
rx_pkts : sf_wifi_stats_t
rx_thread_priority : sf_cellular_comms_extend_cfg_t
rx_transfer_in_progress : sci_uart_instance_ctrl_t
rx_zero_copy : sf_wifi_nsal_cfg_t
rxi_ipl : i2c_cfg_t , i2s_cfg_t , spi_cfg_t , uart_cfg_t
rxi_irq : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , rspi_instance_ctrl_t ,
sci_i2c_instance_ctrl_t , sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t , ssi_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,140 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- s -

s_addr : in_addr
sample_clock_divisor : lvd_extend_t
sample_count : sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t ,
sf_audio_record_adc_instance_ctrl_t , sf_audio_record_cfg_t
sample_hold_mask : adc_channel_cfg_t
sample_hold_states : adc_channel_cfg_t
samples : sf_audio_playback_common_instance_ctrl_t
samples_remaining : sf_audio_playback_instance_ctrl_t
samples_total : sf_audio_playback_instance_ctrl_t
sampleStateCountSet : adc_api_t
sampling_freq_hz : i2s_cfg_t , i2s_info_t , ssi_instance_ctrl_t
sampling_rate_hz : sf_audio_record_cfg_t
SAR : dtc_reg_t
scalarMultiplication : ecc_api_t
scale_bits_max : sf_audio_playback_data_type_t
scan : sf_ble_api_t , sf_wifi_api_t , sf_wifi_qca4010_api_t
scan_cfg_mask : sdadc_instance_ctrl_t
scan_end_b_ipl : adc_cfg_t
scan_end_b_irq : adc_instance_ctrl_t
scan_end_ipl : adc_cfg_t
scan_end_irq : adc_instance_ctrl_t , sdadc_instance_ctrl_t
scan_interval : sf_ble_cfg_t
scan_interval_window_val : sf_ble_scps_scan_intv_change_t
scan_mask : adc_channel_cfg_t , adc_instance_ctrl_t , sdadc_instance_ctrl_t
scan_mask_group_b : adc_channel_cfg_t
scan_mode : sf_ble_scan_info_t
scan_response_data : sf_ble_adv_info_t , sf_ble_scan_response_data_t
scan_response_data_length : sf_ble_scan_response_data_t
scan_trigger : sf_adc_periodic_cfg_t
scan_window : sf_ble_cfg_t
scanbuf : ctsu_correction_info_t
scanCfg : adc_api_t
scanStart : adc_api_t , ctsu_api_t , sf_touch_ctsu_api_t
scanStatusGet : adc_api_t
scanStop : adc_api_t
sda_delay : i2c_cfg_t
sdadcClockCfg : cgc_api_t
sdadcClockDisable : cgc_api_t
sdadcClockEnable : cgc_api_t
sdhi_event : sdmmc_instance_ctrl_t
sdhi_rca : sdmmc_info_t
sdio : sdmmc_info_t
sdio_ipl : sdmmc_cfg_t
sdpa : ctsu_element_cfg_t
sdramClockOutDisable : cgc_api_t
sdramClockOutEnable : cgc_api_t
sec : sf_ble_prf_cts_date_time_t
sec_info : sf_ble_provisioning_t
sec_match : rtc_alarm_time_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,141 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

sec_mode : sf_ble_sec_info_t
second_coefficient : ctsu_correction_info_t
second_val : ctsu_correction_info_t
sector_count : sdmmc_info_t
sector_size : sdmmc_info_t
sectorErase : qspi_api_t
security : sf_wifi_provisioning_t , sf_wifi_qca4010_provisioning_t , sf_wifi_qca4010_scan_t ,
sf_wifi_scan_t
semaphore : sf_crypto_instance_ctrl_t , sf_el_gx_instance_ctrl_t ,
sf_external_irq_instance_ctrl_t , sf_message_buffer_ctrl_t::st_buffer_ctrl_flag ,
sf_touch_panel_v2_instance_ctrl_t
sen : ctsu_self_buf_t
sensor_min_sampling_time : bsp_feature_adc_t
sensors_exclusive : bsp_feature_adc_t
service_domain : sf_cellular_network_status_t
service_handle : sf_ble_service_discovery_rsp_t
set_bck_with_pckb : bsp_feature_cgc_t
setdisplayArea : slcdc_api_t
setExtPromiscuous : ptp_api_t
setGcmTag : aes_api_t
setGradientLimit : ptp_api_t
setLocalClock : ptp_api_t
setMasterPortID : ptp_api_t
setMessageReceptionConfig : ptp_api_t
setMINTevent : ptp_api_t
setTimer : ptp_api_t
setTxPower : sf_ble_api_t
setup : sf_el_gx_api_t
setWorst10Values : ptp_api_t
sf_comms_rx_thread_stack_size : sf_cellular_comms_extend_cfg_t
shortest_pwm_signal : gpt_instance_ctrl_t , timer_on_gpt_cfg_t
sign : dsa_api_t , ecc_api_t , rsa_api_t
signal : gpt_input_capture_extend_t
signal_filter : agt_input_capture_extend_t , gpt_input_capture_extend_t
signCrt : rsa_api_t
signFinal : sf_crypto_signature_api_t
signUpdate : sf_crypto_signature_api_t
sim_status : sf_cellular_sim_pin_info_t
simIDGet : sf_cellular_api_t
simLock : sf_cellular_api_t
simPinSet : sf_cellular_api_t
simUnlock : sf_cellular_api_t
sin_addr : sockaddr , sockaddr_in
sin_family : sockaddr , sockaddr_in
sin_port : sf_cellular_socket_info_t , sockaddr , sockaddr_in
sin_zero : sockaddr , sockaddr_in
sinfo : sf_touch_ctsu_instance_ctrl_t
size : display_clut_cfg_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Ind_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Notif_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Cmd_Ind_t ,
RBLE_GATT_RELIABLE_WRITE , sf_el_fx_media_partition_data_info_t ,
sf_el_lx_nor_memory_settings_t , transfer_info_t
size_bytes : sf_audio_playback_data_t
size_multiplier : sf_adc_periodic_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,142 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

skip_internal_calibration : adc_on_sdadc_cfg_t
slave : i2c_cfg_t
slave_busy : riic_slave_instance_ctrl_t
slave_latency : sf_ble_cfg_t
slaveAddressSet : i2c_api_master_t
slcdc_clock : slcdc_cfg_t
slcdc_clock_setting : slcdc_cfg_t
slope_microvolts : adc_info_t , adc_instance_ctrl_t
SM : dtc_reg_t
snd_ref : ctsu_mutual_buf_t
snd_sen : ctsu_mutual_buf_t
snoop_channel : crc_snoop_cfg_t
snoop_direction : crc_snoop_cfg_t
snoopCfg : crc_api_t
snoopDisable : crc_api_t
snoopEnable : crc_api_t
snooze_cancel_sources : lpmv2_mcu_cfg_t
snooze_end_sources : lpmv2_mcu_cfg_t
snooze_request_source : lpmv2_mcu_cfg_t
snum : ctsu_element_cfg_t
so : ctsu_element_cfg_t
sock_type : sf_cellular_socket_info_t
socket_create_flag : ulpgn_socket_t
socket_queue : sf_wifi_qca4010_instance_cfg_t
socket_recv_buff : ulpgn_socket_t
socket_status_buffer_length : sf_cellular_instance_cfg_t
socketConnect : sf_wifi_qca4010_socket_api_t
socketCreate : sf_wifi_qca4010_socket_api_t
socketDisconnect : sf_wifi_qca4010_socket_api_t
socketRecv : sf_wifi_qca4010_socket_api_t
sockets : sf_wifi_qca4010_socket_ctrl_t
socketSend : sf_wifi_qca4010_socket_api_t
socketStatusGet : sf_wifi_qca4010_socket_api_t
sodrv_mask : bsp_feature_cgc_t
sodrv_shift : bsp_feature_cgc_t
softwareEventGenerate : elc_api_t
source_clock : cgc_clock_cfg_t
spi_mode : qspi_instance_ctrl_t
src_addr_mode : transfer_info_t
ssdiv : ctsu_element_cfg_t
ssid : sf_wifi_provisioning_t , sf_wifi_qca4010_provisioning_t , sf_wifi_qca4010_scan_t ,
sf_wifi_qca4010_status_t , sf_wifi_scan_t
ssid_broadcast : sf_wifi_cfg_t
ssl_level_keep : spi_on_rspi_cfg_t
ssl_neg_delay : spi_on_rspi_cfg_t
ssl_polarity : spi_on_rspi_cfg_t
ssl_select : spi_on_rspi_cfg_t
stage_1_gain : sdadc_channel_cfg_t
stage_2_gain : sdadc_channel_cfg_t
stage_num : rsa_ctrl_t
stamp : sf_ble_blp_meas_info_t , sf_ble_prf_cts_curr_time_t , sf_ble_prf_htp_temp_info_t ,
sf_ble_prf_ndcs_time_dst_t
standby_wake_sources : lpmv2_mcu_cfg_t
start : dac_api_t , display_api_t , display_clut_cfg_t , opamp_api_t , ptp_api_t ,
sf_adc_periodic_api_t , sf_audio_playback_api_t , sf_audio_playback_hw_api_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,143 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

sf_audio_record_api_t , sf_message_instance_range_t , sf_touch_panel_v2_api_t , slcdc_api_t
, timer_api_t , transfer_api_t
start_bitmask : gpt_input_capture_instance_ctrl_t
start_handle : sf_ble_char_discovery_req_t , sf_ble_service_discovery_req_t ,
sf_ble_service_discovery_rsp_t
start_hdl : RBLE_GATT_DISC_CHAR_DESC_REQ , RBLE_GATT_DISC_CHAR_REQ ,
RBLE_GATT_DISC_SVC_REQ , RBLE_GATT_INCL_128_LIST , RBLE_GATT_INCL_LIST ,
RBLE_GATT_READ_CHAR_REQ , RBLE_GATT_SET_PERM , RBLE_GATT_SVC_128_LIST ,
RBLE_GATT_SVC_LIST , RBLE_GATT_SVC_RANGE_LIST
start_interrupt_enabled : riic_slave_instance_ctrl_t
start_mode : wdt_cfg_t
startEncryption : sf_ble_api_t
startMeasurement : cac_api_t
startupAreaSelect : flash_api_t
state : arc4_ctrl_t , comparator_status_t , crypto_ctrl_t , ctsu_instance_ctrl_t ,
display_status_t , glcd_instance_ctrl_t , ptp_cfg_t , ptp_instance_ctrl_t ,
sf_ble_set_tx_pwr_info_t , sf_cellular_socket_info_t , sf_el_gx_instance_ctrl_t ,
sf_jpeg_decode_instance_ctrl_t , sf_message_instance_ctrl_t , sf_uart_comms_instance_ctrl_t
, slcdc_instance_ctrl_t
stateGet : pdc_api_t
station_inactivity_timeout : sf_wifi_cfg_t
statisticsGet : sf_cellular_api_t , sf_wifi_api_t
status : ctsu_correction_info_t , input_capture_info_t , jpeg_decode_callback_args_t ,
jpeg_decode_instance_ctrl_t , jpeg_encode_callback_args_t , jpeg_encode_instance_ctrl_t ,
lvd_callback_args_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Cfm_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Notify_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Set_Data_Complete_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Set_Perm_Complete_t , rtc_info_t
, sdmmc_instance_ctrl_t , sf_ble_connect_info_t , sf_ble_disconnect_t ,
sf_ble_sec_enc_start_ind_t , sf_crypto_cipher_instance_ctrl_t , sf_crypto_hash_instance_ctrl_t
, sf_crypto_instance_ctrl_t , sf_crypto_key_installation_instance_ctrl_t ,
sf_crypto_key_instance_ctrl_t , sf_crypto_signature_instance_ctrl_t ,
sf_el_fx_media_ebr_info_t , sf_el_fx_media_global_open_info_t , sf_el_fx_media_mbr_info_t ,
sf_touch_ctsu_button_info_t , sf_audio_playback_instance_ctrl_t
statusClear : doc_api_t , lvd_api_t , wdt_api_t
statusGet : comparator_api_t , crypto_api_t , display_api_t , doc_api_t , flash_api_t ,
jpeg_decode_api_t , jpeg_encode_api_t , lvd_api_t , opamp_api_t , qspi_api_t ,
sf_crypto_api_t , sf_jpeg_decode_api_t , wdt_api_t
stca_mode : ptp_instance_ctrl_t
stca_sync_mode : ptp_cfg_t
stop : dac_api_t , display_api_t , i2s_api_t , opamp_api_t , ptp_api_t , sf_adc_periodic_api_t ,
sf_audio_playback_api_t , sf_audio_playback_hw_api_t , sf_audio_record_api_t ,
sf_touch_panel_v2_api_t , slcdc_api_t , timer_api_t , transfer_api_t
Stop_ActivationRequest : transfer_api_t
stop_bitmask : gpt_input_capture_instance_ctrl_t
stop_bits : uart_cfg_t
stop_control : wdt_cfg_t
stop_level : gpt_output_pin_t
stopMeasurement : cac_api_t
stream_end : sf_audio_playback_data_t
subosc_state : cgc_clocks_cfg_t
sup_timeout : sf_ble_cfg_t
sup_to : sf_ble_connect_info_t
supports_8_bit_mmc : bsp_feature_sdhi_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,144 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

suppress_carry_event_callback : rtc_instance_ctrl_t
svc_code : sb_ble_prf_ias_set_alert_t
switches : opamp_instance_ctrl_t
sync_edge : display_output_cfg_t
sync_polarity : display_timing_t
sync_width : display_timing_t
synchronization_jump_width : can_bit_timing_cfg_t
sys_cfg : cgc_clocks_cfg_t
system_clock : cgc_clocks_cfg_t
systemClockFreqGet : cgc_api_t
systemClockGet : cgc_api_t
systemClockSet : cgc_api_t
systickUpdate : cgc_api_t
SZ : dtc_reg_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- t -

tcon_de : glcd_cfg_t
tcon_hsync : glcd_cfg_t
tcon_vsync : glcd_cfg_t
tei_ipl : i2c_cfg_t , spi_cfg_t , uart_cfg_t
tei_irq : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , rspi_instance_ctrl_t ,
sci_i2c_instance_ctrl_t , sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t
temp_info : sf_ble_prf_htp_temp_info_ind_t
temp_val : sf_ble_prf_htp_temp_info_t
text : sf_ble_anp_api_new_alert_t
text_size : sf_ble_anp_api_new_alert_t
thread : sf_audio_playback_common_instance_ctrl_t , sf_thread_monitor_instance_ctrl_t ,
sf_touch_panel_v2_instance_ctrl_t
thread_counters : sf_thread_monitor_instance_ctrl_t
threadRegister : sf_thread_monitor_api_t
threadUnregister : sf_thread_monitor_api_t
threshold : gamma_correction_t , sf_touch_ctsu_button_cfg_t , sf_touch_ctsu_slider_cfg_t ,
sf_touch_ctsu_wheel_cfg_t
time : rtc_alarm_time_t
time_segment_1 : can_bit_timing_cfg_t
time_segment_2 : can_bit_timing_cfg_t
time_slice : slcdc_cfg_t
time_source : sf_ble_cts_ref_time_t
time_zone : sf_ble_cts_local_time_t
timeout : sf_cellular_socket_info_t , wdt_cfg_t
timeout_clocks : wdt_timeout_values_t
timeout_mode : riic_extended_cfg , riic_instance_ctrl_t
timeout_period_msec : sf_thread_monitor_instance_ctrl_t
timeout_period_watchdog_clocks : sf_thread_monitor_instance_ctrl_t
timeout_seconds : sf_wifi_wps_t
timeout_ticks : sf_memory_qspi_nor_cfg_t , sf_memory_qspi_nor_instance_ctrl_t
timeoutGet : wdt_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,145 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

timer_channel : ptp_callback_args_t
tk_info : sf_ble_sm_tk_ind_t
tk_key : sf_ble_sm_tk_ind_t
tk_req_status : sf_ble_sm_tk_ind_t
total : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , sci_i2c_instance_ctrl_t
total_count : sf_el_fx_media_partition_info_t
total_cyc : display_timing_t
total_lines_decoded : jpeg_decode_instance_ctrl_t
total_partitions : sf_el_fx_config_t
total_scan_duration : sf_ble_scan_info_t
total_size_bytes : qspi_info_t , qspi_instance_ctrl_t
touchDataGet : sf_touch_panel_v2_api_t
transaction_completed : sci_i2c_instance_ctrl_t
transaction_count : riic_slave_instance_ctrl_t
transfer_block_current : sdmmc_instance_ctrl_t
transfer_block_size : sdmmc_instance_ctrl_t
transfer_blocks : UX_DCD_SYNERGY_PAYLOAD_TRANSFER
transfer_blocks_total : sdmmc_instance_ctrl_t
transfer_dir : sdmmc_instance_ctrl_t
transfer_flag : ptpedmac_instance_ctrl_t
transfer_in_progress : pdc_instance_ctrl_t , sdmmc_info_t , sdmmc_instance_ctrl_t
transfer_irq : sdmmc_instance_ctrl_t
transfer_length_max : transfer_properties_t
transfer_length_remaining : transfer_properties_t
transfer_size : adc_info_t
transfer_times : UX_DCD_SYNERGY_PAYLOAD_TRANSFER
transfer_width : UX_DCD_SYNERGY_PAYLOAD_TRANSFER ,
UX_HCD_SYNERGY_PAYLOAD_TRANSFER
transmit : sf_cellular_api_t , sf_wifi_api_t
transpktsize : sf_cellular_qctlcatm1_socket_cfg_t
trigger : adc_cfg_t , adc_instance_ctrl_t , comparator_cfg_t , dmac_instance_ctrl_t ,
dtc_instance_ctrl_t , external_irq_cfg_t , keymatrix_cfg_t , sdadc_instance_ctrl_t
trigger_channel_0 : opamp_on_opamp_cfg_t
trigger_channel_1 : opamp_on_opamp_cfg_t
trigger_channel_2 : opamp_on_opamp_cfg_t
trigger_channel_3 : opamp_on_opamp_cfg_t
trigger_enabled : sdadc_instance_ctrl_t
trigger_group_b : adc_cfg_t
triggerSet : external_irq_api_t , keymatrix_api_t
trim : opamp_api_t
trim_capable : opamp_instance_ctrl_t
trim_channel : opamp_instance_ctrl_t
trim_input : opamp_instance_ctrl_t
trim_state : opamp_instance_ctrl_t
tsn_calib_available : adc_instance_ctrl_t
tsn_calibration_available : bsp_feature_adc_t
tsn_control_available : bsp_feature_adc_t
tsn_ctrl_available : adc_instance_ctrl_t
tsn_slope : bsp_feature_adc_t
tuning : ctsu_instance_ctrl_t
tuning_mutual_target_value : ctsu_cfg_t , ctsu_instance_ctrl_t
tuning_self_target_value : ctsu_cfg_t , ctsu_instance_ctrl_t
tunning_enable : ctsu_cfg_t
tx_bytes : sf_cellular_stats_t
tx_err : sf_cellular_stats_t , sf_wifi_stats_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,146 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

tx_in_use : ssi_instance_ctrl_t
tx_pkts : sf_wifi_stats_t
tx_power : sf_wifi_cfg_t
tx_src_bytes : sci_uart_instance_ctrl_t , ssi_instance_ctrl_t
tx_timeout : sf_cellular_socket_info_t
tx_zero_copy : sf_wifi_nsal_cfg_t
txi_ipl : i2c_cfg_t , i2s_cfg_t , spi_cfg_t , uart_cfg_t
txi_irq : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , rspi_instance_ctrl_t ,
sci_i2c_instance_ctrl_t , sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t , ssi_instance_ctrl_t
type : can_frame_t , RBLE_GATT_EVENT , sf_audio_playback_data_t ,
sf_ble_prf_htp_temp_info_t
tz_upd_mode : sf_cellular_cfg_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- u -

uart_comm_mode : sci_uart_instance_ctrl_t , uart_on_sci_cfg_t
uart_rs485_mode : sci_uart_instance_ctrl_t , uart_on_sci_cfg_t
underflow_1_ipl : display_cfg_t
underflow_2_ipl : display_cfg_t
uniqueIdGet : fmi_api_t
unit : adc_callback_args_t , adc_cfg_t , adc_instance_ctrl_t , sdadc_instance_ctrl_t ,
timer_cfg_t
unlock : sf_comms_api_t , sf_crypto_api_t , sf_i2c_api_t , sf_spi_api_t
unread_count : sf_ble_anp_api_unread_alert_t
unused : analog_connect_cfg_t
update_bd_addr : sf_ble_cfg_t
update_hz : sf_touch_panel_v2_cfg_t , sf_touch_panel_v2_instance_ctrl_t
update_result : sf_ble_prf_rtus_time_updt_state_t
update_state : sf_ble_prf_tip_write_data_t
updateAnnounceFlags : ptp_api_t
updateAnnounceMsgs : ptp_api_t
updateClockID : ptp_api_t
updateDelayMsgInterval : ptp_api_t
updateDomainNumber : ptp_api_t
updateFlashClockFreq : flash_api_t
updateHash : hash_api_t
updateSyncAnnounceMsgInterval : ptp_api_t
usbClockCfg : cgc_api_t
username : sf_cellular_provisioning_t
uuid : RBLE_GATT_CHAR_128_LIST , RBLE_GATT_CHAR_DESC_128_LIST ,
RBLE_GATT_CHAR_LIST , RBLE_GATT_INCL_128_LIST , RBLE_GATT_INCL_LIST ,
RBLE_GATT_READ_CHAR_REQ , sf_ble_char_desc_discovery_rsp_t ,
sf_ble_char_discovery_req_t , sf_ble_char_discovery_rsp_t , sf_ble_char_read_req_t ,
sf_ble_service_discovery_req_t , sf_ble_service_discovery_rsp_t
uuid128 : sf_ble_uuid_t
uuid16 : sf_ble_uuid_t
uuid32 : sf_ble_uuid_t
uuid_length : sf_ble_uuid_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,147 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

ux_dcd_synergy_D0_fifo_state : UX_DCD_SYNERGY
ux_dcd_synergy_D1_fifo_state : UX_DCD_SYNERGY
ux_dcd_synergy_ep_slave_transfer_request_semaphore : UX_DCD_SYNERGY_ED
ux_dcd_synergy_pipe : UX_DCD_SYNERGY
ux_synergy_next_available_bufnum : UX_HCD_SYNERGY

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- v -

val_hdl : RBLE_GATT_SET_DATA
val_len :
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Desc_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Mult_Resp_t ,
RBLE_GATT_SET_DATA , RBLE_GATT_WRITE_CHAR_REQ , sf_ble_long_attr_info_t
valid_opamps : opamp_instance_ctrl_t
value : RBLE_GATT_DESIRED_TYPE ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Ind_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Notif_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Desc_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Cmd_Ind_t ,
RBLE_GATT_QUERY_RESULT , RBLE_GATT_RELIABLE_WRITE , RBLE_GATT_SET_DATA ,
RBLE_GATT_UUID_TYPE , RBLE_GATT_WRITE_CHAR_REQ , RBLE_GATT_WRITE_RELIABLE_REQ
, sf_ble_long_attr_info_t , sf_ble_prf_hid_report_desc_t
value_handle : sf_ble_char_discovery_rsp_t
value_size : RBLE_GATT_DESIRED_TYPE , RBLE_GATT_UUID_TYPE ,
sf_ble_prf_hid_report_desc_t
variant : gpt_input_capture_instance_ctrl_t , gpt_instance_ctrl_t , input_capture_info_t
vendorId : sf_ble_prf_dis_pnpid_t
vendorIdSource : sf_ble_prf_dis_pnpid_t
verify : dsa_api_t , ecc_api_t , rsa_api_t
verifyFinal : sf_crypto_signature_api_t
verifyUpdate : sf_crypto_signature_api_t
version : sf_ble_chipset_info_t , sf_i2c_api_t , sf_spi_api_t , sf_wifi_ip_addr_t ,
sf_wifi_qca4010_ip_addr_t
version_id : ssp_pack_version_t , ssp_version_t
versionGet : adc_api_t , aes_api_t , analog_connect_api_t , arc4_api_t , cac_api_t , can_api_t
, cgc_api_t , comparator_api_t , crc_api_t , crypto_api_t , ctsu_api_t , dac_api_t ,
display_api_t , doc_api_t , dsa_api_t , ecc_api_t , elc_api_t , external_irq_api_t , flash_api_t ,
fmi_api_t , hash_api_t , i2c_api_master_t , i2c_api_slave_t , i2s_api_t , input_capture_api_t ,
ioport_api_t , jpeg_decode_api_t , jpeg_encode_api_t , key_installation_api_t ,
keymatrix_api_t , lpmv2_api_t , lvd_api_t , opamp_api_t , pdc_api_t , ptp_api_t ,
ptpedmac_api_t , qspi_api_t , rsa_api_t , rtc_api_t , sdmmc_api_t , sf_adc_periodic_api_t ,
sf_audio_playback_api_t , sf_audio_playback_hw_api_t , sf_audio_record_api_t , sf_ble_api_t ,
sf_ble_onboard_profile_api_t , sf_block_media_api_t , sf_cellular_api_t ,
sf_cellular_socket_api_t , sf_comms_api_t , sf_console_api_t , sf_crypto_api_t ,
sf_crypto_cipher_api_t , sf_crypto_hash_api_t , sf_crypto_key_api_t ,
sf_crypto_key_installation_api_t , sf_crypto_signature_api_t , sf_crypto_trng_api_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,148 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

sf_el_gx_api_t , sf_external_irq_api_t , sf_jpeg_decode_api_t , sf_memory_api_t ,
sf_message_api_t , sf_power_profiles_v2_api_t , sf_socket_api_t , sf_thread_monitor_api_t ,
sf_touch_ctsu_api_t , sf_touch_panel_chip_api_t , sf_touch_panel_v2_api_t , sf_wifi_api_t ,
sf_wifi_onchip_stack_api_t , sf_wifi_qca4010_api_t , sf_wifi_qca4010_onchip_stack_api_t ,
sf_wifi_qca4010_socket_api_t , slcdc_api_t , spi_api_t , tdes_api_t , timer_api_t ,
transfer_api_t , trng_api_t , uart_api_t , wdt_api_t
vertical_resolution : jpeg_encode_cfg_t , jpeg_encode_instance_ctrl_t ,
jpeg_encode_raw_image_parameters
voltage_ref : adc_cfg_t , adc_instance_ctrl_t
voltage_slope : lvd_cfg_t
voltage_threshold : lvd_cfg_t
volume : sf_audio_playback_common_instance_ctrl_t
volumeSet : sf_audio_playback_api_t
vref_src : adc_on_sdadc_cfg_t
vref_voltage : adc_on_sdadc_cfg_t
vsize : display_input_cfg_t , glcd_ctrl_t
vsize_pixels : sf_touch_panel_chip_on_sx8654_cfg_t ,
sf_touch_panel_chip_sx8654_instance_ctrl_t , sf_touch_panel_v2_cfg_t ,
sf_touch_panel_v2_instance_ctrl_t
vsync : pdc_state_t
vsync_polarity : pdc_cfg_t , pdc_instance_ctrl_t
vtiming : display_output_cfg_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- w -

wait : sf_external_irq_api_t , sf_jpeg_decode_api_t
wait_option : sf_crypto_cfg_t , sf_crypto_instance_ctrl_t
wave_form : slcdc_cfg_t
wds : sf_wifi_cfg_t
wdt_open : wdt_instance_ctrl_t
whitelistAdd : sf_ble_api_t
whitelistDel : sf_ble_api_t
wifiStatusGet : sf_wifi_qca4010_api_t
window_end : wdt_cfg_t
window_start : wdt_cfg_t
winfo : sf_touch_ctsu_instance_ctrl_t
wmm : sf_wifi_cfg_t
word_length : i2s_cfg_t
work_buffer : aes_ctrl_t
work_memory_size_bytes : sf_message_cfg_t
wps_key : sf_wifi_wps_t
wps_mode : sf_wifi_wps_t
wpsStart : sf_wifi_api_t
wr_index : ctsu_instance_ctrl_t
wr_offset : RBLE_GATT_WRITE_CHAR_REQ
write : can_api_t , dac_api_t , doc_api_t , flash_api_t , i2c_api_master_t , i2s_api_t ,
sdmmc_api_t , sf_block_media_api_t , sf_comms_api_t , sf_console_api_t , sf_i2c_api_t ,
sf_memory_api_t , sf_spi_api_t , slcdc_api_t , spi_api_t , uart_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,149 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > All Data Fields >

write_bytes_max : uart_info_t
write_irq : ctsu_cfg_t , ctsu_instance_ctrl_t
write_protect : sdmmc_extended_cfg_t , sdmmc_instance_ctrl_t
write_protected : sdmmc_info_t
writeIo : sdmmc_api_t
writeIoExt : sdmmc_api_t
writeRead : i2s_api_t , sf_spi_api_t , spi_api_t
ws_continue : i2s_cfg_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- x -

x : display_coordinate_t , sf_touch_panel_v2_calibrate_t , sf_touch_panel_v2_payload_t
x_capture_pixels : pdc_cfg_t , pdc_instance_ctrl_t
x_capture_start_pixel : pdc_cfg_t , pdc_instance_ctrl_t
x_resolution_pixels : pdc_instance_ctrl_t
xip_mode : qspi_instance_ctrl_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- y -

y : display_coordinate_t , sf_touch_panel_v2_calibrate_t , sf_touch_panel_v2_payload_t
y_capture_pixels : pdc_cfg_t , pdc_instance_ctrl_t
y_capture_start_pixel : pdc_cfg_t , pdc_instance_ctrl_t
y_resolution_pixels : pdc_instance_ctrl_t
year : sf_ble_prf_cts_date_time_t
year_match : rtc_alarm_time_t

Here is a list of all documented struct and union fields with links to the struct/union documentation
for each field:

- z -

zeroPaddingDecrypt : aes_api_t
zeroPaddingEncrypt : aes_api_t
zeros_written : ssi_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,150 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Functions

6.3.2 Functions

BSP_ALIGN_VARIABLE_V2() : ptpedmac_instance_ctrl_t ,
sf_audio_playback_common_instance_ctrl_t , sf_thread_monitor_instance_ctrl_t ,
sf_touch_panel_v2_instance_ctrl_t

6.3.3 Variables

- a -

a : display_color_t
absolute_start_addr : sf_el_lx_nor_memory_settings_t
accept : sf_ble_bonding_response_t
accept_addr : sf_ble_addr_verify_ind_t
access_control : sf_wifi_cfg_t
access_delay : spi_on_rspi_cfg_t
access_ipl : sdmmc_cfg_t
access_tech_name : sf_cellular_network_status_t
accessWindowClear : flash_api_t
accessWindowSet : flash_api_t
accuracy : sf_ble_cts_ref_time_t
ACLAdd : sf_wifi_api_t
ACLDelete : sf_wifi_api_t
activation_on_rxi : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
activation_on_txi : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
activation_source : transfer_cfg_t
active : sf_thread_monitor_thread_counter_t
active_band : sf_cellular_network_status_t
actual_count : sf_el_fx_media_partition_info_t
actual_hwErr_event : riic_instance_ctrl_t
ad_da_synchronized : dac_cfg_t
adc_calib_available : adc_instance_ctrl_t
add_average_count : adc_cfg_t
add_mask : adc_channel_cfg_t
addAdditionalAuthenticationData : aes_api_t
addition_supported : bsp_feature_adc_t
addr : sf_ble_addr_t , sf_wifi_ip_addr_t , sf_wifi_qca4010_ip_addr_t
addr_high : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
addr_loaded : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
addr_low : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
addr_mode : i2c_cfg_t
addr_remain : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
addr_total : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
addr_type : sf_ble_addr_verify_ind_t , sf_ble_connection_t , sf_ble_scan_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,151 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

address : ptp_instance_ctrl_t
address_restarted : riic_instance_ctrl_t
address_type : sf_ble_scan_info_t
adjust_reason : sf_ble_prf_cts_curr_time_t
adjustment_mode : rtc_error_adjustment_mode_cfg_t
adjustment_period : rtc_error_adjustment_mode_cfg_t
adjustment_type : rtc_error_adjustment_cfg_t
adjustment_value : rtc_error_adjustment_cfg_t
adv_chnl_map : sf_ble_adv_info_t
adv_data : sf_ble_adv_info_t
adv_data_length : sf_ble_adv_data_t
adv_filt_policy : sf_ble_adv_info_t
adv_intv_max : sf_ble_adv_info_t
adv_intv_min : sf_ble_adv_info_t
adv_type : sf_ble_adv_info_t
advertisementStart : sf_ble_api_t
advertisementStop : sf_ble_api_t
agt_link : opamp_on_opamp_cfg_t
agtio_output_enabled : timer_on_agt_cfg_t
agto_output_enabled : timer_on_agt_cfg_t
agtoa_output_enable : timer_on_agt_cfg_t
agtob_output_enable : timer_on_agt_cfg_t
airplane_mode : sf_cellular_provisioning_t
alarm_ipl : rtc_cfg_t
alarm_irq : rtc_instance_ctrl_t
alert : sf_ble_anp_api_unread_alert_ntf_t
alert_lvl : sf_ble_prf_ias_alert_lvl_change_t
alert_num : sf_ble_anp_api_new_alert_t
alert_status : sf_ble_prf_alert_status_ntf_t
aligned_buff : sdmmc_instance_ctrl_t
alignment : adc_cfg_t , adc_instance_ctrl_t , sdadc_instance_ctrl_t
alpha_value : jpeg_decode_cfg_t
api_version_major : ssp_version_t
api_version_minor : ssp_version_t
apn : sf_cellular_provisioning_t
arc4Process : arc4_api_t
argumentFind : sf_console_api_t
att_code :
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Cancel_Write_Char_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Complete_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_128_Comp_t
, RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_By_Uuid_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Discovery_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Desc_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Mult_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Char_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Reliable_Resp_t ,
RBLE_GATT_WRITE_RESP

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,152 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

att_hdl : RBLE_GATT_WRITE_RESP
attr_declare_handle : sf_ble_char_attribute_t
attr_declare_type : sf_ble_char_attribute_t
attr_handle : sf_ble_gatt_attr_event_t , sf_ble_svc_attribute_t
attr_hdl : RBLE_GATT_CHAR_128_LIST , RBLE_GATT_CHAR_DESC_128_LIST ,
RBLE_GATT_CHAR_DESC_LIST , RBLE_GATT_CHAR_LIST ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Desc_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Resp_t ,
RBLE_GATT_INCL_128_LIST , RBLE_GATT_INCL_LIST , RBLE_GATT_SVC_128_LIST ,
RBLE_GATT_SVC_LIST , sf_ble_long_attr_info_t
attr_perm : sf_ble_char_attribute_t
attr_properties : sf_ble_char_attribute_t
attr_type : sf_ble_svc_attribute_t
attr_uuid : sf_ble_char_attribute_t
attr_value_handle : sf_ble_char_attribute_t
attr_value_len : sf_ble_char_attribute_t , sf_ble_svc_attribute_t
atune1 : ctsu_cfg_t
audio_clk_freq_hz : i2s_cfg_t
audio_clock : i2s_on_ssi_cfg_t
auth_req : sf_ble_bonding_req_ind_t
auth_type : sf_ble_sec_enc_start_ind_t , sf_cellular_nsal_cfg_t , sf_cellular_provisioning_t
authorization : sf_ble_api_t
auto_enable : transfer_cfg_t
auto_execute : RBLE_GATT_WRITE_CHAR_REQ , RBLE_GATT_WRITE_RELIABLE_REQ ,
sf_ble_char_write_req_t
autoClearEvent : ptp_api_t
autostart : elc_cfg_t , external_irq_cfg_t , input_capture_cfg_t , keymatrix_cfg_t ,
sf_console_cfg_t , timer_cfg_t , wdt_cfg_t
available : sf_comms_telnet_instance_ctrl_t
average : ctsu_instance_ctrl_t , sdadc_channel_cfg_t

- b -

b : display_brightness_t , display_color_t , display_contrast_t , display_gamma_correction_t
back_porch : display_timing_t , glcd_ctrl_t
bankSelect : qspi_api_t
base_addr : sf_el_fx_media_ebr_info_t
batt_lvl : sf_ble_bas_battery_lvl_ntf_t
baud_rate : uart_cfg_t
baud_rate_error_x_1000 : sci_uart_instance_ctrl_t , uart_on_sci_cfg_t
baud_rate_prescaler : can_bit_timing_cfg_t
baudclk_out : uart_on_sci_cfg_t
baudSet : uart_api_t
bcast_mode : sf_ble_provisioning_t
bclk_div : cgc_system_clock_cfg_t
bd_addr : sf_ble_addr_verify_ind_t , sf_ble_bonding_req_ind_t , sf_ble_cfg_t ,
sf_ble_chipset_info_t , sf_ble_connection_t , sf_ble_scan_t
bd_buffer_ptr : EMAC_BD
bd_bufsize : EMAC_BD
bd_nx_packet : EMAC_BD
bd_rxdatalength : EMAC_BD

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,153 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

bd_status : EMAC_BD
beacon : sf_wifi_cfg_t
ber : sf_cellular_info_t
bg_color : display_layer_t , display_output_cfg_t
bias_method : slcdc_cfg_t
binfo : sf_touch_ctsu_instance_ctrl_t
bit_order : crc_cfg_t , crc_instance_ctrl_t , spi_cfg_t
bit_width : dac_info_t
bitrate : spi_cfg_t
bitrate_modulation : sci_i2c_extended_cfg , sci_spi_extended_cfg , sci_uart_instance_ctrl_t ,
uart_on_sci_cfg_t
blankCheck : flash_api_t
ble_driver_thread_priority : sf_ble_on_rl78g1d_cfg_t
ble_prf_value : sf_ble_prf_hid_change_event_t
ble_serial_thread_priority : sf_ble_on_rl78g1d_cfg_t
block_pool : sf_message_instance_ctrl_t
block_section_end_addr : flash_fmi_block_info_t
block_section_st_addr : flash_fmi_block_info_t
block_size : flash_fmi_block_info_t , sdmmc_extended_cfg_t , sf_block_media_cfg_t ,
sf_block_media_lx_nor_instance_ctrl_t , sf_block_media_qspi_instance_ctrl_t ,
sf_block_media_ram_instance_ctrl_t , sf_block_media_sdmmc_instance_ctrl_t
block_size_write : flash_fmi_block_info_t
blockReset : transfer_api_t
bonding_mode : sf_ble_provisioning_t
bonding_status : sf_ble_sec_enc_start_ind_t
bondingResponse : sf_ble_api_t
bondingStart : sf_ble_api_t
boot_record_table : sf_el_fx_media_info_t
brightness : display_correction_t , display_output_cfg_t
bss_type : sf_wifi_scan_t
bssid : sf_wifi_qca4010_scan_t , sf_wifi_scan_t
buff : sf_el_fx_media_ebr_info_t , sf_el_fx_media_mbr_info_t
buff_len : sf_cellular_cmd_resp_t , sf_wifi_qca4010_cmd_resp_t
buffer : sf_crypto_signature_context_t
buffer_index : sf_adc_periodic_callback_args_t , sf_audio_playback_common_instance_ctrl_t
buffer_keep : sf_message_acquire_cfg_t , sf_message_buffer_ctrl_t::st_buffer_ctrl_flag
buffer_size : sf_audio_record_i2s_instance_ctrl_t , sf_message_cfg_t ,
sf_message_instance_ctrl_t
bufferAcquire : sf_message_api_t
bufferRelease : sf_message_api_t
build : ssp_pack_version_t
bus_width : sdmmc_hw_t , sdmmc_info_t
busClockOutCfg : cgc_api_t
busClockOutDisable : cgc_api_t
busClockOutEnable : cgc_api_t
byte_pool : sf_crypto_instance_ctrl_t
byte_swap : spi_on_rspi_cfg_t
bytes : i2c_callback_args_t , sf_console_callback_args_t
bytes_per_pixel : pdc_cfg_t , pdc_instance_ctrl_t , sf_el_gx_instance_ctrl_t

- c -

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,154 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

cac_api_open : cac_instance_ctrl_t
cac_continous_mode : cac_instance_ctrl_t
cac_lock : cac_instance_ctrl_t
cac_lower_limit : cac_cfg_t
cac_meas_clock : cac_cfg_t
cac_ref_clock : cac_cfg_t
cac_upper_limit : cac_cfg_t
cache_state : flash_hp_instance_ctrl_t , flash_lp_instance_ctrl_t
calculate : crc_api_t
calendarAlarmGet : rtc_api_t
calendarAlarmSet : rtc_api_t
calendarCounterStart : rtc_api_t
calendarCounterStop : rtc_api_t
calendarTimeGet : rtc_api_t
calendarTimeSet : rtc_api_t
calib_adc_skip : adc_cfg_t
calib_end_irq : sdadc_instance_ctrl_t
calib_status : sdadc_instance_ctrl_t
calibrate : adc_api_t , sf_touch_panel_v2_api_t , sf_touch_panel_v2_instance_ctrl_t
calibration_data : adc_info_t
calibration_end_ipl : adc_on_sdadc_cfg_t
calibration_ongoing : adc_info_t
calibration_reg_available : bsp_feature_adc_t
callback : adc_instance_ctrl_t , sf_console_command_t
callback_used : sf_external_irq_instance_ctrl_t
callbackSet : ctsu_api_t , sf_touch_ctsu_api_t
cancel_freq : sf_touch_ctsu_button_info_t , sf_touch_ctsu_cfg_t
canvasInit : sf_el_gx_api_t
cap : ctsu_cfg_t
capture_count : agt_input_capture_instance_ctrl_t , gpt_input_capture_instance_ctrl_t
capture_data_buffer_size : sf_audio_record_cfg_t
capture_data_size : sf_audio_record_cfg_t , sf_audio_record_i2s_instance_ctrl_t
capture_irq : agt_input_capture_instance_ctrl_t , gpt_input_capture_instance_ctrl_t
capture_irq_ipl : input_capture_cfg_t
captureStart : pdc_api_t
card_detect : sdmmc_extended_cfg_t
card_ipl : sdmmc_cfg_t
card_type : sdmmc_info_t
carry_ipl : rtc_cfg_t
carry_irq : rtc_instance_ctrl_t
carry_isr_triggered : rtc_instance_ctrl_t
category_id : sf_ble_anp_ancp_t , sf_ble_anp_api_new_alert_t ,
sf_ble_anp_api_unread_alert_t
cccd_val : sf_ble_onboard_profile_cccd_changed_t
celr_stats : sf_cellular_instance_cfg_t
cf_block_size_write : bsp_feature_flash_hp
cf_macro_size : bsp_feature_flash_lp
cfgGet : wdt_api_t
chain_mode : transfer_info_t
channel : adc_callback_args_t , agt_input_capture_instance_ctrl_t , agt_instance_ctrl_t ,
can_callback_args_t , can_cfg_t , can_instance_ctrl_t , comparator_callback_args_t ,
comparator_cfg_t , dac8_instance_ctrl_t , dac_cfg_t , dac_instance_ctrl_t ,
dmac_instance_ctrl_t , external_irq_callback_args_t , external_irq_cfg_t ,
gpt_input_capture_instance_ctrl_t , gpt_instance_ctrl_t , i2c_cfg_t , i2s_cfg_t ,
icu_instance_ctrl_t , input_capture_callback_args_t , input_capture_cfg_t , NX_REC ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,155 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

opamp_trim_args_t , ptpedmac_callback_args_t , rspi_instance_ctrl_t , sci_spi_instance_ctrl_t
, sci_uart_instance_ctrl_t , sdadc_calibrate_args_t , sdmmc_hw_t , sf_i2c_bus_t , sf_spi_bus_t
, sf_wifi_provisioning_t , sf_wifi_qca4010_provisioning_t , sf_wifi_qca4010_scan_t ,
sf_wifi_qca4010_status_t , sf_wifi_scan_t , spi_callback_args_t , spi_cfg_t , ssi_instance_ctrl_t
, timer_cfg_t , transfer_on_dmac_cfg_t , uart_callback_args_t , uart_cfg_t
channel_opened : dac8_instance_ctrl_t , dac_instance_ctrl_t , rspi_instance_ctrl_t ,
sci_spi_instance_ctrl_t
channel_started : dac8_instance_ctrl_t , dac_instance_ctrl_t
channels : keymatrix_callback_args_t , keymatrix_cfg_t , kint_instance_ctrl_t
char_code : sf_ble_blp_meas_recv_data_t , sf_ble_onboard_profile_cccd_changed_t
char_handle : sf_ble_char_discovery_rsp_t
char_read_type : sf_ble_char_read_req_t
char_write_type : sf_ble_char_write_req_t
charhdl : RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Ind_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Notif_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Notify_Comp_t ,
RBLE_GATT_INDICATE_REQ , RBLE_GATT_NOTIFY_REQ , RBLE_GATT_WRITE_CHAR_REQ
check_pclkb_ratio : bsp_feature_can_t
checkINFABTstatus : ptp_api_t
checkWorst10Values : ptp_api_t
chip_select : sf_spi_cfg_t , sf_spi_instance_ctrl_t
chip_select_level_active : sf_spi_cfg_t , sf_spi_instance_ctrl_t
chipset : sf_ble_info_t , sf_cellular_info_t
CHNE : dtc_reg_t
CHNS : dtc_reg_t
cid : sf_cellular_network_status_t
cipher_algorithm_type : sf_crypto_cipher_instance_ctrl_t
cipher_chaining_mode : sf_crypto_cipher_cfg_t , sf_crypto_cipher_instance_ctrl_t
cipherAadUpdate : sf_crypto_cipher_api_t
cipherFinal : sf_crypto_cipher_api_t
cipherInit : sf_crypto_cipher_api_t
cipherUpdate : sf_crypto_cipher_api_t
class_code : sf_message_header_t
class_instance : sf_audio_playback_cfg_t , sf_message_header_t ,
sf_audio_playback_instance_ctrl_t
clearINFABTstatus : ptp_api_t
clearing : adc_cfg_t
clearIOKeep : lpmv2_api_t
clk_accuracy : sf_ble_connect_info_t
clk_phase : spi_cfg_t
clk_polarity : spi_cfg_t
clk_src : uart_on_sci_cfg_t
clksrc : glcd_cfg_t
clock : bsp_feature_can_t , bsp_feature_rspi_t , bsp_feature_sci_t , cac_meas_clock_config_t ,
cac_ref_clock_config_t
clock_delay : spi_on_rspi_cfg_t
clock_div_ratio : glcd_cfg_t
clock_divider : agt_input_capture_extend_t , gpt_input_capture_extend_t
clock_division : pdc_cfg_t , wdt_cfg_t
clock_frequency : timer_info_t
clock_frequency_hz : wdt_timeout_values_t
clock_rate : sdmmc_info_t
clock_source : bsp_feature_adc_t , can_extended_cfg_t , can_instance_ctrl_t , rtc_cfg_t ,
rtc_info_t , rtc_instance_ctrl_t
clockCheck : cgc_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,156 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

clockOutCfg : cgc_api_t
clockOutDisable : cgc_api_t
clockOutEnable : cgc_api_t
clocksCfg : cgc_api_t
clockStart : cgc_api_t
clockStop : cgc_api_t
close : adc_api_t , aes_api_t , arc4_api_t , cac_api_t , can_api_t , comparator_api_t , crc_api_t
, crypto_api_t , ctsu_api_t , dac_api_t , display_api_t , doc_api_t , dsa_api_t , ecc_api_t ,
external_irq_api_t , flash_api_t , hash_api_t , i2c_api_master_t , i2c_api_slave_t , i2s_api_t ,
input_capture_api_t , jpeg_decode_api_t , jpeg_encode_api_t , key_installation_api_t ,
keymatrix_api_t , lvd_api_t , opamp_api_t , pdc_api_t , ptp_api_t , ptpedmac_api_t ,
qspi_api_t , rsa_api_t , rtc_api_t , sdmmc_api_t , sf_adc_periodic_api_t ,
sf_audio_playback_api_t , sf_audio_playback_hw_api_t , sf_audio_record_api_t , sf_ble_api_t ,
sf_ble_onboard_profile_api_t , sf_block_media_api_t , sf_block_media_lx_nor_instance_ctrl_t ,
sf_block_media_on_lx_nor_cfg_t , sf_cellular_api_t , sf_cellular_socket_api_t , sf_comms_api_t
, sf_console_api_t , sf_crypto_api_t , sf_crypto_cipher_api_t , sf_crypto_hash_api_t ,
sf_crypto_key_api_t , sf_crypto_key_installation_api_t , sf_crypto_signature_api_t ,
sf_crypto_trng_api_t , sf_el_gx_api_t , sf_external_irq_api_t , sf_i2c_api_t ,
sf_jpeg_decode_api_t , sf_memory_api_t , sf_message_api_t , sf_power_profiles_v2_api_t ,
sf_socket_api_t , sf_spi_api_t , sf_thread_monitor_api_t , sf_touch_ctsu_api_t ,
sf_touch_panel_chip_api_t , sf_touch_panel_v2_api_t , sf_wifi_api_t ,
sf_wifi_onchip_stack_api_t , sf_wifi_qca4010_api_t , sf_wifi_qca4010_onchip_stack_api_t ,
sf_wifi_qca4010_socket_api_t , slcdc_api_t , spi_api_t , tdes_api_t , timer_api_t ,
transfer_api_t , trng_api_t , uart_api_t
close_option : sf_crypto_cfg_t , sf_crypto_instance_ctrl_t
clut : display_api_t
cmd_index : sf_cellular_command_parameters_info_t
code : sf_message_header_t
code_flash : flash_info_t
code_version_major : ssp_version_t
code_version_minor : ssp_version_t
coefficient_m : sdadc_channel_cfg_t
coefficient_n : sdadc_channel_cfg_t
color_num : display_clut_t
color_order : display_output_cfg_t
color_space : jpeg_decode_cfg_t
command : sf_console_command_t
command_flag : sf_wifi_qca4010_instance_cfg_t
command_id : sf_ble_anp_ancp_t
command_list : sf_console_menu_t
commandSend : sf_cellular_api_t
CommandSend : sf_wifi_qca4010_api_t
common_instance_mutex : sf_audio_playback_common_instance_ctrl_t
communicationAbort : uart_api_t
con_interval : sf_ble_cfg_t , sf_ble_connect_info_t
con_latency : sf_ble_connect_info_t
configure : ptp_api_t , rtc_api_t
conhdl : RBLE_GATT_DISC_CHAR_DESC_REQ , RBLE_GATT_DISC_CHAR_REQ ,
RBLE_GATT_DISC_SVC_REQ ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Cancel_Write_Char_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Complete_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_128_Comp_t
, RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_Comp_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,157 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_By_Uuid_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_Incl_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Discovery_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Ind_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Notif_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Notify_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Desc_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Mult_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Char_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Cmd_Ind_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Reliable_Resp_t ,
RBLE_GATT_EXE_WR_CHAR_REQ , RBLE_GATT_INDICATE_REQ , RBLE_GATT_NOTIFY_REQ ,
RBLE_GATT_READ_CHAR_REQ , RBLE_GATT_WRITE_CHAR_REQ ,
RBLE_GATT_WRITE_RELIABLE_REQ , RBLE_GATT_WRITE_RESP , sf_ble_anp_ancp_change_t ,
sf_ble_anp_api_new_alert_ntf_t , sf_ble_anp_api_unread_alert_ntf_t ,
sf_ble_bas_battery_lvl_ntf_t , sf_ble_blp_meas_recv_data_t , sf_ble_connect_info_t ,
sf_ble_cts_curr_time_ntf_t , sf_ble_disconnect_t , sf_ble_hrp_api_meas_ntf_t ,
sf_ble_hrp_cp_change_t , sf_ble_prf_alert_status_ntf_t , sf_ble_prf_hid_change_event_t ,
sf_ble_prf_hid_report_ind_t , sf_ble_prf_htp_temp_info_ind_t ,
sf_ble_prf_ias_alert_lvl_change_t , sf_ble_prf_ringer_cp_change_t ,
sf_ble_prf_ringer_setting_ntf_t , sf_ble_scps_scan_intv_change_t , sf_ble_sec_enc_start_ind_t
, sf_ble_sm_tk_info_t , sf_ble_tip_cp_change_t , st_sf_ble_prf_htp_meas_intv_val_t
conn_handle : sf_ble_onboard_profile_cccd_changed_t
conn_idx : sf_ble_sm_enc_info_t , sf_ble_sm_key_ind_t
conn_mode : sf_ble_adv_info_t
conn_timeout : sf_cellular_socket_info_t
connect : analog_connect_api_t , sf_ble_api_t
connectMultiple : analog_connect_api_t
context : sf_console_callback_args_t , sf_console_command_t
context_id : sf_cellular_provisioning_t
contextInit : sf_crypto_signature_api_t
continuous_mode : cac_cfg_t
contrast : display_correction_t , display_output_cfg_t
contrastDecrease : slcdc_api_t
contrastIncrease : slcdc_api_t
control : can_api_t , sdmmc_api_t
control_point_val : sf_ble_prf_value_t
control_point_value : sf_ble_anp_ancp_change_t , sf_ble_hrp_cp_change_t ,
sf_ble_tip_cp_change_t
conv_end_irq : sdadc_instance_ctrl_t
conversion_end_ipl : adc_on_sdadc_cfg_t
coordinate : display_layer_t
correction : display_api_t
correction_proc_order : glcd_cfg_t
count_direction : timer_info_t
count_edge : agt_input_capture_extend_t
count_formula : sdadc_channel_cfg_t
count_source : agt_input_capture_extend_t , timer_on_agt_cfg_t
counter : input_capture_callback_args_t , input_capture_capture_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,158 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

sf_el_fx_media_global_open_info_t
counterGet : timer_api_t , wdt_api_t
countIncrement : sf_thread_monitor_api_t
country_code : sf_cellular_network_status_t
CRA : dtc_reg_t
CRA_b : dtc_reg_t
CRAH : dtc_reg_t
CRAL : dtc_reg_t
CRB : dtc_reg_t
crcResultGet : crc_api_t
createKey : aes_api_t
crossing_detected : lvd_status_t
crypto_ctrl : tdes_ctrl_t
csd_version : sdmmc_info_t
csrk_key : sf_ble_sec_info_t
ctsrts_en : uart_cfg_t
ctsu_clock : ctsu_correction_info_t
ctsuchac0 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchac1 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchac2 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchac3 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchac4 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchac_register_count : bsp_feature_ctsu_t
ctsuchtrc0 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchtrc1 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchtrc2 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchtrc3 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchtrc4 : ctsu_cfg_t , ctsu_instance_ctrl_t
ctsuchtrc_register_count : bsp_feature_ctsu_t
ctsucr0_mask : bsp_feature_ctsu_t
ctsucr1 : ctsu_instance_ctrl_t
ctsucr1_mask : bsp_feature_ctsu_t
ctsumch0_mask : bsp_feature_ctsu_t
ctsumch1_mask : bsp_feature_ctsu_t
ctsuso0 : ctsu_ctsuwr_t
ctsuso1 : ctsu_ctsuwr_t
ctsussc : ctsu_ctsuwr_t
ctsuwr : ctsu_correction_info_t
curr_cmd_port : sf_wifi_qca4010_instance_cfg_t
curr_data_port : sf_wifi_qca4010_instance_cfg_t
curr_socket_index : sf_wifi_qca4010_instance_cfg_t
currbuf : trng_ctrl_t
current_buffer_index : sf_audio_record_i2s_instance_ctrl_t
current_count : sf_thread_monitor_thread_counter_t
current_sample_count : sf_adc_periodic_instance_ctrl_t
current_slave : rspi_instance_ctrl_t
current_state : lvd_status_t , sf_ble_prf_rtus_time_updt_state_t
current_time : sf_ble_cts_curr_time_ntf_t , sf_ble_prf_tip_write_data_t

- d -

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,159 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

dac_mode : dac8_extended_cfg_t
DAR : dtc_reg_t
data : can_frame_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Mult_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Resp_t ,
RBLE_GATT_INFO_DATA , sf_ble_adv_data_t , sf_ble_attr_info_t , sf_ble_scan_t ,
uart_callback_args_t
data_bits : uart_cfg_t
data_buffer_index : sf_adc_periodic_instance_ctrl_t
data_buffer_length : sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t
data_bytes : sci_uart_instance_ctrl_t
data_enable_polarity : display_output_cfg_t
data_flash : flash_info_t
data_flash_bgo : flash_cfg_t
data_format : dac8_instance_ctrl_t , dac_cfg_t
data_len : sf_ble_char_multiple_read_rsp_t , sf_ble_char_read_by_handle_rsp_t ,
sf_ble_char_read_by_uuid_rsp_t , sf_ble_scan_t
data_length : key_installation_key_t , r_crypto_data_handle_t , sf_ble_char_write_req_t ,
sf_ble_gatt_notif_ind_event_data_t , sf_ble_write_cmd_event_data_t ,
sf_crypto_data_handle_t
data_length_code : can_frame_t
data_lines : qspi_instance_ctrl_t
data_size : sf_audio_record_i2s_instance_ctrl_t
data_state : sf_cellular_socket_info_t
data_type : sf_audio_playback_common_instance_ctrl_t
dataGet : ctsu_api_t , sf_touch_ctsu_api_t
dataTypeGet : sf_audio_playback_hw_api_t
dave2d_buffer_cache_enabled : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
day : sf_ble_prf_cts_date_time_t
day_of_week : sf_ble_prf_cts_curr_time_t
dayofweek_match : rtc_alarm_time_t
days_since_update : sf_ble_cts_ref_time_t
decrypt : aes_api_t , rsa_api_t , tdes_api_t
decryptCrt : rsa_api_t
deep_standby_cancel_edge : lpmv2_mcu_cfg_t
deep_standby_cancel_source : lpmv2_mcu_cfg_t
delay : ptp_cfg_t , ptp_instance_ctrl_t
desc_handle : sf_ble_char_desc_discovery_rsp_t
desc_hdl : RBLE_GATT_CHAR_DESC_LIST
desired_char : RBLE_GATT_DISC_CHAR_REQ
desired_svc : RBLE_GATT_DISC_SVC_REQ
dest_addr_mode : transfer_info_t
detection_response : lvd_cfg_t
dev_state : sf_i2c_instance_ctrl_t , sf_spi_instance_ctrl_t
device : ptp_cfg_t , ptp_instance_ctrl_t , sf_el_gx_callback_args_t
device_count : sf_i2c_bus_t , sf_spi_bus_t
device_count_mutex : sf_i2c_bus_t , sf_spi_bus_t
device_type : sdmmc_info_t , sf_ble_prf_hid_report_desc_t
dhcpServerStart : sf_wifi_onchip_stack_api_t , sf_wifi_qca4010_onchip_stack_api_t
dhcpServerStop : sf_wifi_onchip_stack_api_t , sf_wifi_qca4010_onchip_stack_api_t
diagnosis : ctsu_api_t
digfilter : cac_ref_clock_config_t
direct_addr_type : sf_ble_adv_info_t
direct_bd_addr : sf_ble_adv_info_t
disable : elc_api_t , external_irq_api_t , input_capture_api_t , keymatrix_api_t , transfer_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,160 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

disableINFABTnotification : ptp_api_t
disableTimer : ptp_api_t
disc_mode : sf_ble_adv_info_t
disc_time : sf_ble_cfg_t
disconnect : sf_ble_api_t
discovery_type : sf_ble_char_discovery_req_t , sf_ble_scan_info_t ,
sf_ble_service_discovery_req_t
DISEL : dtc_reg_t
disp_en : sf_ble_sm_tk_info_t
display_cyc : display_timing_t
display_list_flushed : sf_el_gx_instance_ctrl_t
dithering_mode : glcd_cfg_t
dithering_on : display_output_cfg_t
dithering_pattern_A : glcd_cfg_t
dithering_pattern_B : glcd_cfg_t
dithering_pattern_C : glcd_cfg_t
dithering_pattern_D : glcd_cfg_t
divider : cac_meas_clock_config_t , cac_ref_clock_config_t , cgc_clock_cfg_t
DM : dtc_reg_t
dma_req_ipl : sdmmc_cfg_t
do_run : sf_cellular_comms_extend_cfg_t
dodir : doc_data_t
dodsr : doc_data_t
domain_params : sf_crypto_key_cfg_t , sf_crypto_key_instance_ctrl_t
dri_marker : jpeg_encode_cfg_t
drift_freq : sf_touch_ctsu_button_info_t , sf_touch_ctsu_cfg_t
drive_volt_gen : slcdc_cfg_t
driver_packets_queued : NX_REC
driver_rx_bd : NX_REC
driver_rx_bd_index : NX_REC
driver_task_priority : sf_wifi_on_gt202_cfg_t
driver_tx_bd : NX_REC
driver_tx_bd_in_use : NX_REC
driver_tx_bd_index : NX_REC
driver_tx_packet_queue : NX_REC
driver_tx_packet_queue_end : NX_REC
driver_tx_release_index : NX_REC
dst_offset : sf_ble_cts_local_time_t , sf_ble_prf_ndcs_time_dst_t
dtc_state_in_snooze : lpmv2_mcu_cfg_t
dtc_transfer_length : sf_adc_periodic_instance_ctrl_t
dtim : sf_wifi_cfg_t
DTS : dtc_reg_t
dummy_read_completed : riic_instance_ctrl_t
duplicate_filt : sf_ble_scan_info_t
duty_cycle : timer_cfg_t
duty_cycle_unit : timer_cfg_t
dutyCycleSet : timer_api_t

- e -

each_len : RBLE_GATT_INFO_DATA

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,161 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

ebr : sf_el_fx_media_boot_record_table_info_t
EcdhSharedSecretCompute : sf_crypto_key_api_t
echo : sf_console_cfg_t , sf_console_instance_ctrl_t
edge : cac_ref_clock_config_t , input_capture_cfg_t
ediv : sf_ble_sec_info_t , sf_ble_sm_enc_info_t , sf_ble_sm_key_ind_t
edmac_ptr : NX_REC
elc_event : adc_info_t , timer_info_t
elc_peripheral : adc_info_t
elem_index : sf_touch_ctsu_button_cfg_t
elmt : RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Cmd_Ind_t
elmt_hdl : RBLE_GATT_RELIABLE_WRITE
enable : display_brightness_t , display_contrast_t , elc_api_t , external_irq_api_t ,
gamma_correction_t , input_capture_api_t , keymatrix_api_t , transfer_api_t
enable_charge_pump : dac8_extended_cfg_t , dac_extended_cfg_t
enable_filter : gpt_input_capture_extend_t
enable_level : gpt_input_capture_extend_t
enableINFABTnotification : ptp_api_t
encoded_lines : jpeg_encode_instance_ctrl_t
encrypt : aes_api_t , rsa_api_t , tdes_api_t
encryptFinal : aes_api_t
encryption : sf_wifi_provisioning_t , sf_wifi_qca4010_provisioning_t , sf_wifi_scan_t
end : sf_message_instance_range_t , sf_audio_playback_instance_ctrl_t
end_handle : sf_ble_char_discovery_req_t , sf_ble_service_discovery_req_t ,
sf_ble_service_discovery_rsp_t
end_hdl : RBLE_GATT_DISC_CHAR_DESC_REQ , RBLE_GATT_DISC_CHAR_REQ ,
RBLE_GATT_DISC_SVC_REQ , RBLE_GATT_INCL_128_LIST , RBLE_GATT_INCL_LIST ,
RBLE_GATT_READ_CHAR_REQ , RBLE_GATT_SET_PERM , RBLE_GATT_SVC_128_LIST ,
RBLE_GATT_SVC_LIST , RBLE_GATT_SVC_RANGE_LIST
end_irq : ctsu_cfg_t , ctsu_instance_ctrl_t
endian : display_output_cfg_t , pdc_cfg_t , pdc_instance_ctrl_t
endian_flag : crypto_cfg_t
energy_expended : sf_ble_hrp_api_hrmeas_t
entry_len : RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_Incl_Comp_t
eptpc_flag : ptp_instance_ctrl_t
erase : flash_api_t , qspi_api_t , sdmmc_api_t , sf_memory_api_t
erase_block_count : sf_el_lx_nor_callback_args_t
erase_block_number : sf_el_lx_nor_callback_args_t
erase_sector_count : sdmmc_info_t
eri_ipl : i2c_cfg_t , spi_cfg_t , uart_cfg_t
eri_irq : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , rspi_instance_ctrl_t ,
sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t
err : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , sci_i2c_instance_ctrl_t
err_irq : flash_hp_instance_ctrl_t
err_irq_ipl : flash_cfg_t
error : sf_crypto_callback_args_t , sf_crypto_hash_callback_args_t , sf_el_gx_callback_args_t
error_adjustment_type : rtc_cfg_t
error_adjustment_value : rtc_cfg_t
error_check_index : sf_cellular_circular_queue_cfg_t , sf_wifi_qca4010_queue_cfg_t
error_code : jpeg_decode_instance_ctrl_t
error_ipl : can_cfg_t
error_irq : can_instance_ctrl_t
errorAdjustmentModeSet : rtc_api_t
errorAdjustmentSet : rtc_api_t
ether_frame_type : ptpedmac_callback_args_t
etherc_ptr : NX_REC

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,162 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

event : adc_callback_args_t , cac_callback_args_t , can_callback_args_t , cgc_callback_args_t
, ctsu_callback_args_t , display_callback_args_t , doc_callback_args_t , doc_cfg_t ,
doc_instance_ctrl_t , elc_link_t , flash_callback_args_t , i2c_callback_args_t ,
i2s_callback_args_t , input_capture_callback_args_t , pdc_callback_args_t ,
ptp_callback_args_t , ptpedmac_callback_args_t , rtc_callback_args_t ,
sdmmc_callback_args_t , sf_adc_periodic_callback_args_t ,
sf_audio_playback_hw_callback_args_t , sf_ble_event_info_t , sf_cellular_callback_args_t ,
sf_comms_callback_args_t , sf_crypto_callback_args_t , sf_el_gx_callback_args_t ,
sf_el_lx_nor_callback_args_t , sf_external_irq_cfg_t , sf_message_callback_args_t ,
sf_power_profiles_v2_callback_args_t , sf_wifi_callback_args_t , spi_callback_args_t ,
timer_callback_args_t , uart_callback_args_t
event_class : sf_message_subscriber_list_t
event_type : sf_ble_scan_t , sf_touch_panel_v2_payload_t
eventflag : sf_block_media_sdmmc_instance_ctrl_t , sf_uart_comms_instance_ctrl_t
eventInfoGet : fmi_api_t
events : sf_jpeg_decode_instance_ctrl_t
exe_wr_ena : RBLE_GATT_EXE_WR_CHAR_REQ
expect_resp_size : RBLE_GATT_UUID_TYPE
expected_result_size : sf_ble_char_multiple_read_req_t

- f -

fade_control : display_layer_t
fade_speed : display_layer_t
fade_status : display_status_t
fclk_div : cgc_system_clock_cfg_t
ferr_interrupt_enabled : cac_cfg_t
fifo_access_bytes : ssi_instance_ctrl_t
fifo_addr : UX_HCD_SYNERGY_FIFO
fifo_ctrl : UX_HCD_SYNERGY_FIFO
fifo_depth : sci_uart_instance_ctrl_t
fifo_mode : crc_cfg_t , crc_instance_ctrl_t
fifo_num_stages : bsp_feature_ssi_t
fifo_sel : UX_HCD_SYNERGY_FIFO
filt_policy : sf_ble_scan_info_t
filter : comparator_cfg_t
filter_enable : external_irq_cfg_t
filterDisable : external_irq_api_t
filterEnable : external_irq_api_t
first_coefficient : ctsu_correction_info_t
first_val : ctsu_correction_info_t
flag_stable_meas : sf_ble_blp_meas_info_t , sf_ble_prf_htp_temp_info_t
flags : agt_input_capture_instance_ctrl_t , sf_audio_playback_common_instance_ctrl_t ,
sf_ble_blp_meas_info_t , sf_ble_hrp_api_hrmeas_t , sf_ble_prf_htp_temp_info_t ,
sf_touch_panel_v2_instance_ctrl_t
flash_cf_macros : bsp_feature_flash_lp
flash_clock_src : bsp_feature_flash_lp
flush : sf_memory_api_t
format : display_input_cfg_t , display_output_cfg_t
format_status : sf_el_fx_media_partition_data_info_t
fotaCheck : sf_cellular_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,163 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

fotaStart : sf_cellular_api_t
fotaStop : sf_cellular_api_t
fractions256 : sf_ble_prf_cts_curr_time_t
fragmentation : sf_wifi_cfg_t
frame_end_ipl : pdc_cfg_t
frame_end_irq : pdc_instance_ctrl_t
frame_format : ptp_cfg_t , ptp_instance_ctrl_t
frame_type : can_mailbox_t
freq_hz_min : sf_spi_bus_t
frequency_error_ipl : cac_cfg_t
frequency_error_irq : cac_instance_ctrl_t
fw_version : sf_cellular_info_t

- g -

g : display_brightness_t , display_color_t , display_contrast_t , display_gamma_correction_t
gain : gamma_correction_t
gap_name : sf_ble_provisioning_t
gap_role : sf_ble_provisioning_t
gateway : sf_wifi_onchip_stack_ip_cfg_t , sf_wifi_qca4010_onchip_stack_ip_cfg_t
gattAddCustomProfiles : sf_ble_api_t
gattCharDescDiscovery : sf_ble_api_t
gattCharDiscovery : sf_ble_api_t
gattCharExecuteWrite : sf_ble_api_t
gattCharRead : sf_ble_api_t
gattCharWrite : sf_ble_api_t
gattCharWriteLocal : sf_ble_api_t
gattSendIndicate : sf_ble_api_t
gattSendNotify : sf_ble_api_t
gattServiceDiscovery : sf_ble_api_t
gattWriteResponse : sf_ble_api_t
generator_point : sf_crypto_key_cfg_t , sf_crypto_key_instance_ctrl_t
getGcmTag : aes_api_t
getLocalClock : ptp_api_t
getMasterPortID : ptp_api_t
getMessageReceptionConfig : ptp_api_t
getSyncInfo : ptp_api_t
getWorst10Values : ptp_api_t
global_open : sf_el_fx_media_info_t
group_b_sensors_allowed : bsp_feature_adc_t
gtioca : timer_on_gpt_cfg_t
gtioca_output_enabled : gpt_instance_ctrl_t
gtiocb : timer_on_gpt_cfg_t
gtiocb_output_enabled : gpt_instance_ctrl_t

- h -

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,164 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

handle : sf_ble_char_read_by_uuid_rsp_t , sf_ble_char_read_req_t , sf_ble_char_write_req_t ,
sf_ble_gatt_notif_ind_event_data_t , sf_ble_write_cmd_event_data_t
handles : sf_ble_char_multiple_read_req_t
handles_cnt : sf_ble_char_read_req_t
has_bclk : bsp_feature_cgc_t
has_card_detection : bsp_feature_sdhi_t
has_chargepump : bsp_feature_dac_t
has_davrefcr : bsp_feature_dac_t
has_digital_filter : bsp_feature_lvd_t
has_dssby : bsp_feature_lpmv2_t
has_ethernet : bsp_feature_ioport_t
has_fclk : bsp_feature_cgc_t
has_ir_flag : bsp_feature_icu_t
has_lcd_clock : bsp_feature_cgc_t
has_pclka : bsp_feature_cgc_t
has_pclkb : bsp_feature_cgc_t
has_pclkc : bsp_feature_cgc_t
has_pclkd : bsp_feature_cgc_t
has_sample_hold_reg : bsp_feature_adc_t
has_sdadc_clock : bsp_feature_cgc_t
has_sdram_clock : bsp_feature_cgc_t
has_subosc_speed : bsp_feature_cgc_t
has_usb_clock_div : bsp_feature_cgc_t
has_vbatt_pins : bsp_feature_ioport_t
hash : hash_ctrl_t
hash_context : sf_crypto_hash_instance_ctrl_t
hash_type : sf_crypto_hash_cfg_t , sf_crypto_hash_instance_ctrl_t
hashFinal : sf_crypto_hash_api_t
hashInit : sf_crypto_hash_api_t
hashSign : dsa_api_t
hashUpdate : hash_api_t , sf_crypto_hash_api_t
hashVerify : dsa_api_t
hc : sdmmc_info_t
header : sf_audio_playback_data_t
heart_rate_measure : sf_ble_hrp_api_hrmeas_t
help : sf_console_command_t
high_speed_freq_hz : bsp_feature_cgc_t
high_throughput : sf_wifi_cfg_t
hoco_freq_hz : bsp_feature_cgc_t
hoco_state : cgc_clocks_cfg_t
horizontal_resolution : jpeg_encode_cfg_t , jpeg_encode_raw_image_parameters
horizontal_stride : jpeg_decode_instance_ctrl_t , jpeg_encode_instance_ctrl_t ,
jpeg_encode_raw_image_parameters
horizontal_subsample : jpeg_decode_instance_ctrl_t
horizontalStrideSet : jpeg_decode_api_t , sf_jpeg_decode_api_t
hour : sf_ble_prf_cts_date_time_t
hour_match : rtc_alarm_time_t
hours_since_update : sf_ble_cts_ref_time_t
hs_timing : sdmmc_info_t
hsize : display_input_cfg_t , glcd_ctrl_t
hsize_pixels : sf_touch_panel_chip_on_sx8654_cfg_t ,
sf_touch_panel_chip_sx8654_instance_ctrl_t , sf_touch_panel_v2_cfg_t ,
sf_touch_panel_v2_instance_ctrl_t
hstride : display_input_cfg_t
hsync : pdc_state_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,165 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

hsync_polarity : pdc_cfg_t , pdc_instance_ctrl_t
htiming : display_output_cfg_t
hw : sdmmc_cfg_t , sdmmc_instance_ctrl_t
hw_cfg : rtc_cfg_t
hw_mode : sf_wifi_cfg_t , sf_wifi_qca4010_cfg_t , sf_wifi_scan_t
hysteresis : sf_touch_ctsu_button_cfg_t

- i -

i2c_hw_err_event : i2c_callback_args_t
iclk_div : bsp_feature_cgc_t , cgc_system_clock_cfg_t
id : can_frame_t , dmac_instance_ctrl_t , dtc_instance_ctrl_t , sf_ble_blp_meas_info_t
id_key : sf_ble_sec_info_t
id_mode : can_cfg_t , can_instance_ctrl_t
idCodeSet : flash_api_t
idle_err_ipl : i2s_cfg_t
ikey_dist : sf_ble_bonding_req_ind_t , sf_ble_bonding_start_t
ikeys : sf_ble_bonding_response_t
image_size : jpeg_encode_callback_args_t
imageParameterSet : jpeg_encode_api_t
imageSizeGet : jpeg_decode_api_t , sf_jpeg_decode_api_t
imageSubsampleSet : jpeg_decode_api_t , sf_jpeg_decode_api_t
imei : sf_cellular_info_t
imsi : sf_cellular_network_status_t
in_progress : transfer_properties_t
in_use : sf_message_buffer_ctrl_t::st_buffer_ctrl_flag
incl :
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_Incl_Comp_t::incl_list_u
index : sf_ble_bonding_req_ind_t , sf_wifi_qca4010_provisioning_t ,
sf_audio_playback_instance_ctrl_t
indicateEvent : ptp_api_t
infabt_flag : ptp_instance_ctrl_t
info : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , sci_i2c_instance_ctrl_t ,
slcdc_instance_ctrl_t
info_transfer : pdc_instance_ctrl_t
infoGet : adc_api_t , can_api_t , comparator_api_t , dac_api_t , flash_api_t , i2s_api_t ,
input_capture_api_t , opamp_api_t , qspi_api_t , rtc_api_t , sdmmc_api_t ,
sf_audio_record_api_t , sf_ble_api_t , sf_cellular_api_t , sf_memory_api_t , sf_wifi_api_t ,
timer_api_t , transfer_api_t , uart_api_t
inherit_frame_layer : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
init : analog_connect_api_t , cgc_api_t , elc_api_t , fmi_api_t , ioport_api_t , lpmv2_api_t
init_done : sf_cellular_instance_cfg_t , sf_wifi_qca4010_instance_cfg_t
init_filt_type : sf_ble_connection_t
init_status : sf_el_fx_media_info_t
input : display_cfg_t , display_runtime_cfg_t , opamp_trim_args_t , sdadc_channel_cfg_t ,
sf_console_instance_ctrl_t
input_data_format : jpeg_decode_cfg_t , jpeg_encode_cfg_t
inputBufferSet : jpeg_decode_api_t , jpeg_encode_api_t , sf_jpeg_decode_api_t
inputRegisterWrite : doc_api_t
inst_idx : sf_ble_onboard_profile_cccd_changed_t , sf_ble_prf_hid_change_event_t ,
sf_ble_prf_hid_report_ind_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,166 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

instance_range : sf_message_subscriber_t
int_irq : ssi_instance_ctrl_t
interfaceGet : crypto_api_t
intv : st_sf_ble_prf_htp_meas_intv_val_t
invert : comparator_cfg_t , sdadc_channel_cfg_t
io_cap : sf_ble_bonding_req_ind_t , sf_ble_bonding_response_t
io_port_state : lpmv2_mcu_cfg_t
iocap : sf_ble_bonding_start_t
ioctl : sf_block_media_api_t
IoIntEnable : sdmmc_api_t
ip_addr : sf_cellular_info_t , sf_wifi_onchip_stack_ip_cfg_t ,
sf_wifi_qca4010_onchip_stack_ip_cfg_t
ip_addr_mode : sf_wifi_onchip_stack_ip_cfg_t , sf_wifi_qca4010_onchip_stack_ip_cfg_t
ip_ptr : NX_REC
ipAddressCfg : sf_wifi_onchip_stack_api_t , sf_wifi_qca4010_onchip_stack_api_t
ir_flag_stat : dmac_instance_ctrl_t
irq : agt_instance_ctrl_t , dmac_instance_ctrl_t , dtc_instance_ctrl_t , flash_hp_instance_ctrl_t
, flash_lp_instance_ctrl_t , gpt_instance_ctrl_t , icu_instance_ctrl_t , kint_instance_ctrl_t ,
NX_REC , pdc_instance_ctrl_t , transfer_info_t
irq_ipl : comparator_cfg_t , doc_cfg_t , external_irq_cfg_t , flash_cfg_t , keymatrix_cfg_t ,
pdc_cfg_t , ptp_cfg_t , ptpedmac_cfg_t , timer_cfg_t , transfer_cfg_t
irqDisable : rtc_api_t
irqEnable : rtc_api_t
is_dac_ramped_up : sf_audio_playback_hw_dac_instance_ctrl_t
is_data_mode_on : sf_cellular_instance_cfg_t , sf_wifi_qca4010_instance_cfg_t
is_opened : sf_cellular_instance_cfg_t , sf_wifi_qca4010_instance_cfg_t
is_signed : sf_audio_playback_data_type_t
iwdt_open : iwdt_instance_ctrl_t

- j -

jdti_ipl : jpeg_decode_cfg_t , jpeg_encode_cfg_t
jedi_ipl : jpeg_decode_cfg_t , jpeg_encode_cfg_t
jpegbuffer_size : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t

- k -

key : sf_wifi_provisioning_t , sf_wifi_qca4010_provisioning_t
key_code : sf_ble_sm_key_ind_t
key_data_length : sf_crypto_signature_context_t
key_format : key_installation_key_t , rsa_key_t
key_size : key_installation_key_t , sf_ble_bonding_start_t , sf_ble_sec_enc_start_ind_t ,
sf_crypto_cipher_cfg_t , sf_crypto_cipher_instance_ctrl_t , sf_crypto_key_cfg_t ,
sf_crypto_key_installation_cfg_t , sf_crypto_key_installation_instance_ctrl_t ,
sf_crypto_key_instance_ctrl_t , sf_crypto_signature_cfg_t ,
sf_crypto_signature_instance_ctrl_t
key_type : sf_crypto_cipher_cfg_t , sf_crypto_cipher_instance_ctrl_t , sf_crypto_key_cfg_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,167 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

sf_crypto_key_installation_cfg_t , sf_crypto_key_installation_instance_ctrl_t ,
sf_crypto_key_instance_ctrl_t , sf_crypto_signature_cfg_t ,
sf_crypto_signature_instance_ctrl_t
keyCreate : ecc_api_t , rsa_api_t
keyGenerate : sf_crypto_key_api_t
keyInstall : key_installation_api_t , sf_crypto_key_installation_api_t
keySet : arc4_api_t

- l -

last_payload : sf_touch_panel_chip_ft5x06_instance_ctrl_t ,
sf_touch_panel_chip_sx8654_instance_ctrl_t
lastCaptureGet : input_capture_api_t
layer : display_cfg_t , display_runtime_cfg_t
layerChange : display_api_t
lcdClockCfg : cgc_api_t
lcdClockDisable : cgc_api_t
lcdClockEnable : cgc_api_t
le_scan_interval : sf_ble_prf_scps_scan_intv_t
le_scan_window : sf_ble_prf_scps_scan_intv_t
led_count : bsp_leds_t
len : RBLE_GATT_INFO_DATA , RBLE_GATT_QUERY_RESULT , sf_ble_attr_info_t
length : adc_info_t , arc4_cfg_t , hash_ctrl_t , rsa_key_t , sf_adc_periodic_instance_ctrl_t ,
sf_ble_gatt_attr_event_t , sf_cellular_callback_args_t , sf_wifi_callback_args_t ,
transfer_info_t
line_descending_enable : display_input_cfg_t
line_detect_ipl : display_cfg_t
lines_repeat_enable : display_input_cfg_t
lines_repeat_times : display_input_cfg_t
lines_to_encoded : jpeg_encode_instance_ctrl_t
linesDecodedGet : jpeg_decode_api_t , sf_jpeg_decode_api_t
link_count : elc_cfg_t
link_established : NX_REC
link_list : elc_cfg_t
link_quality : sf_wifi_info_t
linkBreak : elc_api_t
linkCheck : ptpedmac_api_t
linkProcess : ptpedmac_api_t
linkSet : elc_api_t
list : RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_128_Comp_t
, RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_By_Uuid_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_Incl_Comp_t::incl_list_u
list_128 :
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_128_Comp_t
listen : sf_ble_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,168 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

loaded : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , sci_i2c_instance_ctrl_t
local_advertise : phy_record_t
local_ip : sf_cellular_nsal_cfg_t , sf_cellular_socket_info_t
local_port : sf_cellular_socket_info_t
local_time : sf_ble_prf_tip_write_data_t
lock : bsp_lock_t , sf_comms_api_t , sf_crypto_api_t , sf_i2c_api_t , sf_spi_api_t
locked : sf_spi_instance_ctrl_t
lockWait : sf_i2c_api_t , sf_spi_api_t
loco_state : cgc_clocks_cfg_t
loop_timeout : sf_audio_playback_data_t
loopback : spi_on_rspi_cfg_t
low_power_mode : lpmv2_cfg_t
low_speed_max_freq_hz : bsp_feature_cgc_t
low_speed_pclk_div_min : bsp_feature_cgc_t
low_voltage_max_freq_hz : bsp_feature_cgc_t
low_voltage_pclk_div_min : bsp_feature_cgc_t
lower_level : sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t
lower_lvl_cfg : sf_i2c_instance_ctrl_t , sf_spi_instance_ctrl_t
lowPowerApply : sf_power_profiles_v2_api_t
lowPowerCfg : lpmv2_api_t
lowPowerModeEnter : lpmv2_api_t
ltk_key : sf_ble_sec_info_t , sf_ble_sm_enc_info_t , sf_ble_sm_key_ind_t
lvd_callback_args : lvd_instance_ctrl_t
lvl : sb_ble_prf_ias_set_alert_t

- m -

mac_addr : sf_wifi_callback_args_t , sf_wifi_cfg_t , sf_wifi_qca4010_status_t
macAddressGet : sf_wifi_api_t
macAddressSet : sf_wifi_api_t
mailbox : can_callback_args_t
mailbox_count : can_cfg_t , can_instance_ctrl_t
mailbox_id : can_mailbox_t
mailbox_rx_ipl : can_cfg_t
mailbox_rx_irq : can_instance_ctrl_t
mailbox_tx_ipl : can_cfg_t
mailbox_tx_irq : can_instance_ctrl_t
mailbox_type : can_mailbox_t
main_osc_freq_hz : bsp_feature_cgc_t
mainclock_drive : bsp_feature_cgc_t
mainosc_state : cgc_clocks_cfg_t
major : ssp_pack_version_t
manufacturer_id : qspi_instance_ctrl_t
masterReadSlaveWrite : i2c_api_slave_t
masterWriteSlaveRead : i2c_api_slave_t
max_backoffs : sf_cellular_qctlcatm1_socket_cfg_t
max_clock_frequency : bsp_feature_sdhi_t
max_clock_rate : sdmmc_info_t
max_enc_size : sf_ble_bonding_req_ind_t
max_eraseable_size : qspi_instance_ctrl_t
max_key_size : sf_ble_bonding_response_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,169 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

max_resolution : adc_instance_ctrl_t
max_resp_length : sf_cellular_at_cmd_set_t , sf_wifi_qca4010_at_cmd_set_t
max_rto : sf_cellular_qctlcatm1_socket_cfg_t
max_slaves : sf_ble_cfg_t
max_stations : sf_wifi_cfg_t
maximum_count : sf_thread_monitor_counter_min_max_t ,
sf_thread_monitor_thread_counter_t
mbr : sf_el_fx_media_boot_record_table_info_t
mclock_only : bsp_feature_can_t
md : ctsu_cfg_t , ctsu_instance_ctrl_t
MD : dtc_reg_t
mday_match : rtc_alarm_time_t
meas_info : sf_ble_blp_meas_recv_data_t
meas_sts : sf_ble_blp_meas_info_t
measurement_clock : cac_instance_ctrl_t
measurement_end_ipl : cac_cfg_t
measurement_end_irq : cac_instance_ctrl_t
measurements_info : sf_ble_hrp_api_meas_ntf_t
media_info : sf_el_fx_instance_ctrl_t
media_type : sdmmc_hw_t
mei_interrupt_enabled : cac_cfg_t
memory_capacity : qspi_instance_ctrl_t
memory_end_address : sf_memory_region_info_t
memory_free_sectors : sf_el_fx_media_info_t
memory_pool_size : sf_crypto_cfg_t
memory_start_address : sf_memory_region_info_t
memory_total_sectors : sf_el_fx_media_info_t
memory_type : qspi_instance_ctrl_t
menu_name : sf_console_menu_t
menu_prev : sf_console_menu_t
message_bytes : sf_crypto_hash_context_t
message_bytes_buffered : sf_crypto_hash_context_t
message_format : sf_crypto_signature_rsa_specific_params_t
message_mode : can_cfg_t , can_instance_ctrl_t
mfg_name : sf_cellular_info_t
middle_speed_max_freq_hz : bsp_feature_cgc_t
min : sf_ble_prf_cts_date_time_t
min_match : rtc_alarm_time_t
min_program_size_bytes : qspi_info_t
min_stabilization_wait_us : comparator_info_t , opamp_info_t
min_wait_time_hs_us : bsp_feature_opamp_t
min_wait_time_lp_us : bsp_feature_opamp_t
min_wait_time_ms_us : bsp_feature_opamp_t
min_wait_time_us : bsp_feature_acmphs_t
minimum_count : sf_thread_monitor_counter_min_max_t ,
sf_thread_monitor_thread_counter_t
minimum_erase_size : sf_memory_region_info_t
minimum_write_size : sf_memory_region_info_t
minor : ssp_pack_version_t
mint_irq : ptp_instance_ctrl_t
moco_state : cgc_clocks_cfg_t
mode : adc_cfg_t , adc_instance_ctrl_t , agt_input_capture_instance_ctrl_t ,
agt_instance_ctrl_t , comparator_cfg_t , gpt_input_capture_instance_ctrl_t ,
input_capture_cfg_t , opamp_on_opamp_cfg_t , sdadc_calibrate_args_t ,
sdadc_instance_ctrl_t , sf_wifi_provisioning_t , sf_wifi_qca4010_provisioning_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,170 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

sf_wifi_qca4010_status_t , timer_cfg_t , transfer_info_t
mode_fault : spi_cfg_t
modify : slcdc_api_t
modrv_mask : bsp_feature_cgc_t
modrv_shift : bsp_feature_cgc_t
mon_match : rtc_alarm_time_t
monitor_1_hi_threshold : bsp_feature_lvd_t
monitor_1_low_threshold : bsp_feature_lvd_t
monitor_2_hi_threshold : bsp_feature_lvd_t
monitor_2_low_threshold : bsp_feature_lvd_t
monitor_ipl : lvd_cfg_t
monitor_number : lvd_callback_args_t , lvd_cfg_t , lvd_instance_ctrl_t
month : sf_ble_prf_cts_date_time_t
mosi_idle : spi_on_rspi_cfg_t
MRA : dtc_reg_t
MRA_b : dtc_reg_t
MRB : dtc_reg_t
MRB_b : dtc_reg_t
msgbuf : hash_ctrl_t
multicastListAdd : sf_wifi_api_t
multicastListDelete : sf_wifi_api_t
multiple_partitions_status : sf_el_fx_media_partition_info_t
multiplier : cgc_clock_cfg_t
mute : i2s_api_t
mutex : sf_adc_periodic_instance_ctrl_t , sf_audio_record_adc_instance_ctrl_t ,
sf_audio_record_i2s_instance_ctrl_t , sf_block_media_qspi_instance_ctrl_t ,
sf_crypto_instance_ctrl_t , sf_jpeg_decode_instance_ctrl_t ,
sf_thread_monitor_instance_ctrl_t , sf_touch_panel_v2_instance_ctrl_t ,
sf_uart_comms_instance_ctrl_t

- n -

nak_response : sf_message_buffer_ctrl_t::st_buffer_ctrl_flag
nattempts : trng_cfg_t , trng_ctrl_t
nb_entry :
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_128_Comp_t
, RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_By_Uuid_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Char_Desc_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_Incl_Comp_t
nb_resp :
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_128_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_All_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Disc_Svc_By_Uuid_Comp_t
nb_uuid : RBLE_GATT_READ_CHAR_REQ
nb_writes : RBLE_GATT_WRITE_RELIABLE_REQ
nbiot_band_selection : sf_cellular_qctlcatm1_extended_cfg_t
negation_delay : lvd_extend_t
negation_delay_clock : bsp_feature_lvd_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,171 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

netmask : sf_wifi_onchip_stack_ip_cfg_t , sf_wifi_qca4010_onchip_stack_ip_cfg_t
networkConnect : sf_cellular_api_t
networkDisconnect : sf_cellular_api_t
networkStatusGet : sf_cellular_api_t
new_alert : sf_ble_anp_api_new_alert_ntf_t
new_conn_fd : sf_cellular_socket_info_t
new_line : sf_console_instance_ctrl_t
next_dst : sf_ble_prf_tip_write_data_t
next_length : sf_audio_playback_common_instance_ctrl_t
noise_level : sf_wifi_info_t
noisecancel_en : uart_on_sci_cfg_t
nor_driver_initialize : sf_block_media_on_lx_nor_cfg_t
notify_request : riic_slave_instance_ctrl_t
num_address_bytes : qspi_instance_ctrl_t
num_blocks : transfer_info_t
num_buttons : sf_touch_ctsu_cfg_t
num_commands : sf_console_menu_t
num_elements : ctsu_instance_ctrl_t , sf_touch_ctsu_slider_cfg_t , sf_touch_ctsu_wheel_cfg_t
num_erase_sizes : qspi_info_t
num_moving_average : ctsu_cfg_t , ctsu_instance_ctrl_t
num_new_samples : sf_adc_periodic_callback_args_t
num_pref_ops : sf_cellular_cfg_t
num_regions : flash_fmi_regions_t
num_rx : ctsu_cfg_t
num_sliders : sf_touch_ctsu_cfg_t
num_states : adc_sample_state_t
num_tx : ctsu_cfg_t
num_uarts : sf_wifi_qca4010_cfg_t , sf_wifi_qca4010_instance_cfg_t
num_wheels : sf_touch_ctsu_cfg_t
number : sf_touch_ctsu_cfg_t
number_of_buffers : sf_message_instance_ctrl_t
number_of_connections : analog_connect_table_t
number_of_nodes : sf_message_subscriber_list_t
number_of_pins : ioport_cfg_t
number_of_regions : sf_memory_info_t
number_of_subscriber_groups : sf_message_instance_ctrl_t
nwscanseq : sf_cellular_qctlcatm1_extended_cfg_t
nx_driver_phy_polling_requested : NX_REC
nx_state : NX_REC

- o -

off_freq : sf_touch_ctsu_button_info_t , sf_touch_ctsu_cfg_t
offset : RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Cmd_Ind_t ,
RBLE_GATT_READ_CHAR_REQ , sf_ble_char_read_req_t , sf_ble_char_write_req_t ,
sf_ble_gatt_attr_event_t , sf_ble_write_cmd_event_data_t ,
sf_el_fx_media_partition_data_info_t
offset_byte : dmac_instance_ctrl_t , transfer_on_dmac_cfg_t
offsetSet : adc_api_t
ok_check_index : sf_cellular_circular_queue_cfg_t , sf_wifi_qca4010_queue_cfg_t
on_freq : sf_touch_ctsu_button_info_t , sf_touch_ctsu_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,172 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

onbpClientReadChar : sf_ble_onboard_profile_api_t
onbpClientWriteCCCD : sf_ble_onboard_profile_api_t
onbpClientWriteChar : sf_ble_onboard_profile_api_t
onbpDisable : sf_ble_onboard_profile_api_t
onbpEnable : sf_ble_onboard_profile_api_t
onbpServerSendIndication : sf_ble_onboard_profile_api_t
onbpServerSendNotification : sf_ble_onboard_profile_api_t
onbpServerWriteData : sf_ble_onboard_profile_api_t
one_shot : gpt_instance_ctrl_t
oob_data_flg : sf_ble_bonding_req_ind_t
op : sf_cellular_cfg_t
op_name : sf_cellular_network_status_t , sf_cellular_op_t
op_name_format : sf_cellular_op_t
op_select_mode : sf_cellular_cfg_t
open : adc_api_t , aes_api_t , agt_input_capture_instance_ctrl_t , agt_instance_ctrl_t ,
arc4_api_t , arc4_ctrl_t , cac_api_t , can_api_t , can_instance_ctrl_t , comparator_api_t ,
crc_api_t , crc_instance_ctrl_t , crypto_api_t , ctsu_api_t , ctsu_instance_ctrl_t , dac_api_t ,
display_api_t , doc_api_t , doc_instance_ctrl_t , dsa_api_t , ecc_api_t , external_irq_api_t ,
flash_api_t , gpt_input_capture_instance_ctrl_t , gpt_instance_ctrl_t , hash_api_t ,
i2c_api_master_t , i2c_api_slave_t , i2s_api_t , icu_instance_ctrl_t , input_capture_api_t ,
jpeg_decode_api_t , jpeg_encode_api_t , key_installation_api_t , keymatrix_api_t ,
kint_instance_ctrl_t , lvd_api_t , opamp_api_t , pdc_api_t , pdc_instance_ctrl_t , ptp_api_t ,
ptp_instance_ctrl_t , ptpedmac_api_t , ptpedmac_instance_ctrl_t , qspi_api_t ,
qspi_instance_ctrl_t , riic_instance_ctrl_t , riic_slave_instance_ctrl_t , rsa_api_t , rtc_api_t ,
rtc_instance_ctrl_t , sci_i2c_instance_ctrl_t , sci_uart_instance_ctrl_t , sdmmc_api_t ,
sdmmc_instance_ctrl_t , sf_adc_periodic_api_t , sf_adc_periodic_instance_ctrl_t ,
sf_audio_playback_api_t , sf_audio_playback_common_instance_ctrl_t ,
sf_audio_playback_hw_api_t , sf_audio_record_adc_instance_ctrl_t , sf_audio_record_api_t ,
sf_audio_record_i2s_instance_ctrl_t , sf_ble_api_t , sf_ble_onboard_profile_api_t ,
sf_block_media_api_t , sf_block_media_lx_nor_instance_ctrl_t ,
sf_block_media_qspi_instance_ctrl_t , sf_block_media_ram_instance_ctrl_t ,
sf_block_media_sdmmc_instance_ctrl_t , sf_cellular_api_t , sf_cellular_socket_api_t ,
sf_comms_api_t , sf_console_api_t , sf_crypto_api_t , sf_crypto_cipher_api_t ,
sf_crypto_hash_api_t , sf_crypto_key_api_t , sf_crypto_key_installation_api_t ,
sf_crypto_signature_api_t , sf_crypto_trng_api_t , sf_el_fx_instance_ctrl_t , sf_el_gx_api_t ,
sf_el_lx_nor_instance_ctrl_t , sf_external_irq_api_t , sf_external_irq_instance_ctrl_t ,
sf_i2c_api_t , sf_jpeg_decode_api_t , sf_jpeg_decode_instance_ctrl_t , sf_memory_api_t ,
sf_memory_qspi_nor_instance_ctrl_t , sf_message_api_t , sf_power_profiles_v2_api_t ,
sf_power_profiles_v2_ctrl_t , sf_socket_api_t , sf_spi_api_t , sf_thread_monitor_api_t ,
sf_thread_monitor_instance_ctrl_t , sf_touch_ctsu_api_t , sf_touch_ctsu_instance_ctrl_t ,
sf_touch_panel_chip_api_t , sf_touch_panel_v2_api_t , sf_touch_panel_v2_instance_ctrl_t ,
sf_wifi_api_t , sf_wifi_onchip_stack_api_t , sf_wifi_qca4010_api_t ,
sf_wifi_qca4010_onchip_stack_api_t , sf_wifi_qca4010_socket_api_t , slcdc_api_t , spi_api_t ,
ssi_instance_ctrl_t , sf_audio_playback_instance_ctrl_t , tdes_api_t , timer_api_t ,
transfer_api_t , trng_api_t , uart_api_t , wdt_api_t
open_counter : sf_crypto_instance_ctrl_t
open_status : sf_el_fx_media_partition_data_info_t
opened : adc_instance_ctrl_t , flash_hp_instance_ctrl_t , flash_lp_instance_ctrl_t ,
lvd_instance_ctrl_t , opamp_instance_ctrl_t , sdadc_instance_ctrl_t
operating_channel_mask : opamp_status_t
operating_mode : i2s_cfg_t , spi_cfg_t
operation_context : sf_crypto_signature_instance_ctrl_t
operation_mode : can_instance_ctrl_t , sf_crypto_signature_context_t
operation_state : sf_crypto_signature_instance_ctrl_t
operator_code : sf_cellular_network_status_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,173 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

oscStopDetect : cgc_api_t
oscStopStatusClear : cgc_api_t
outbuffer_size : jpeg_decode_instance_ctrl_t
output : display_cfg_t
output_amplifier_enabled : dac_cfg_t
output_buffer_size : jpeg_encode_instance_ctrl_t
output_data_format : jpeg_decode_cfg_t , jpeg_encode_cfg_t
output_enabled : gpt_output_pin_t
output_inverted : timer_on_agt_cfg_t
output_port_enable : lpmv2_mcu_cfg_t
outputBufferSet : jpeg_decode_api_t , jpeg_encode_api_t , sf_jpeg_decode_api_t
outputEnable : comparator_api_t
over_current : adc_cfg_t , adc_instance_ctrl_t
overflow_ipl : cac_cfg_t
overflow_irq : agt_input_capture_instance_ctrl_t , cac_instance_ctrl_t ,
gpt_input_capture_instance_ctrl_t
overflow_irq_ipl : input_capture_cfg_t
overflows : input_capture_callback_args_t , input_capture_capture_t
overflows_current : agt_input_capture_instance_ctrl_t , gpt_input_capture_instance_ctrl_t
overflows_last : gpt_input_capture_instance_ctrl_t
oversampling : sdadc_channel_cfg_t
ovf_interrupt_enabled : cac_cfg_t
own_addr_type : sf_ble_adv_info_t , sf_ble_cfg_t

- p -

p_address : adc_info_t
p_aglorithm_specific_params : sf_crypto_signature_context_t
p_api : adc_instance_t , aes_instance_t , analog_connect_instance_t , arc4_instance_t ,
cac_instance_t , can_instance_t , cgc_instance_t , comparator_instance_t , crc_instance_t ,
crypto_instance_t , ctsu_instance_t , dac_instance_t , display_instance_t , doc_instance_t ,
dsa_instance_t , ecc_instance_t , elc_instance_t , external_irq_instance_t , flash_instance_t ,
fmi_instance_t , hash_instance_t , i2c_master_instance_t , i2c_slave_instance_t ,
i2s_instance_t , input_capture_instance_t , ioport_instance_t , jpeg_decode_instance_t ,
jpeg_encode_instance_t , key_installation_instance_t , keymatrix_instance_t ,
lpmv2_instance_t , lvd_instance_t , opamp_instance_t , pdc_instance_t , ptp_instance_t ,
ptpedmac_instance_t , qspi_instance_t , rsa_instance_t , rtc_instance_t , sdmmc_instance_t ,
sf_adc_periodic_instance_t , sf_audio_playback_hw_instance_t ,
sf_audio_playback_instance_t , sf_audio_record_instance_t , sf_ble_instance_t ,
sf_ble_onboard_profile_instance_t , sf_block_media_instance_t , sf_cellular_instance_t ,
sf_cellular_socket_instance_t , sf_comms_instance_t , sf_console_instance_t ,
sf_crypto_cipher_instance_t , sf_crypto_hash_instance_t , sf_crypto_instance_t ,
sf_crypto_key_installation_instance_t , sf_crypto_key_instance_t ,
sf_crypto_signature_instance_t , sf_crypto_trng_instance_t , sf_el_gx_instance_t ,
sf_external_irq_instance_t , sf_i2c_instance_t , sf_jpeg_decode_instance_t ,
sf_memory_instance_t , sf_message_instance_t , sf_power_profiles_v2_instance_t ,
sf_socket_instance_t , sf_spi_instance_t , sf_thread_monitor_instance_t ,
sf_touch_ctsu_instance_t , sf_touch_panel_chip_instance_t , sf_touch_panel_v2_instance_t ,
sf_wifi_instance_t , sf_wifi_onchip_stack_instance_t , sf_wifi_qca4010_instance_t ,
sf_wifi_qca4010_onchip_stack_instance_t , sf_wifi_qca4010_socket_instance_t ,
slcdc_instance_t , spi_instance_t , tdes_instance_t , timer_instance_t , transfer_instance_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,174 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

trng_instance_t , uart_instance_t , wdt_instance_t
p_app_ptp_rx_desc : ptpedmac_instance_ctrl_t
p_attr_value : sf_ble_char_attribute_t , sf_ble_svc_attribute_t
p_auth_tag : sf_crypto_cipher_aes_init_params_t
p_base : display_clut_cfg_t , display_input_cfg_t
p_bit_timing : can_cfg_t
p_ble_callback : sf_ble_provisioning_t
p_block_array : flash_fmi_regions_t
p_block_pool_name : sf_message_cfg_t
p_buff : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , sci_i2c_instance_ctrl_t ,
sf_cellular_cmd_resp_t , sf_wifi_qca4010_cmd_resp_t
p_buffer : pdc_callback_args_t , pdc_cfg_t
p_buffer_pool_rx : sf_wifi_cfg_t
p_bus : sf_i2c_cfg_t , sf_i2c_instance_ctrl_t , sf_spi_cfg_t , sf_spi_instance_ctrl_t
p_bus_name : sf_i2c_bus_t , sf_spi_bus_t
p_buttons : sf_touch_ctsu_cfg_t
p_callback : adc_cfg_t , agt_input_capture_instance_ctrl_t , agt_instance_ctrl_t , cac_cfg_t ,
cac_instance_ctrl_t , can_cfg_t , can_instance_ctrl_t , comparator_cfg_t , ctsu_cfg_t ,
ctsu_instance_ctrl_t , display_cfg_t , dmac_instance_ctrl_t , doc_cfg_t , doc_instance_ctrl_t ,
dtc_instance_ctrl_t , external_irq_cfg_t , flash_cfg_t , glcd_instance_ctrl_t ,
gpt_input_capture_instance_ctrl_t , gpt_instance_ctrl_t , i2c_cfg_t , i2s_cfg_t ,
icu_instance_ctrl_t , input_capture_cfg_t , iwdt_instance_ctrl_t , jpeg_decode_cfg_t ,
jpeg_decode_instance_ctrl_t , jpeg_encode_cfg_t , jpeg_encode_instance_ctrl_t ,
keymatrix_cfg_t , lvd_cfg_t , lvd_instance_ctrl_t , pdc_cfg_t , pdc_instance_ctrl_t , ptp_cfg_t ,
ptp_instance_ctrl_t , ptpedmac_cfg_t , ptpedmac_instance_ctrl_t , rspi_instance_ctrl_t ,
rtc_cfg_t , rtc_instance_ctrl_t , sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t ,
sdadc_instance_ctrl_t , sdmmc_cfg_t , sdmmc_instance_ctrl_t , sf_adc_periodic_cfg_t ,
sf_adc_periodic_instance_ctrl_t , sf_audio_playback_cfg_t , sf_audio_playback_hw_cfg_t ,
sf_audio_playback_hw_dac_instance_ctrl_t , sf_audio_playback_hw_i2s_instance_ctrl_t ,
sf_audio_record_adc_instance_ctrl_t , sf_audio_record_cfg_t ,
sf_audio_record_i2s_instance_ctrl_t , sf_crypto_instance_ctrl_t , sf_el_fx_config_t ,
sf_el_fx_instance_ctrl_t , sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t ,
sf_el_lx_nor_instance_cfg_t , sf_el_lx_nor_instance_ctrl_t , sf_message_buffer_ctrl_t ,
sf_message_post_cfg_t , sf_power_profiles_v2_low_power_cfg_t , sf_wifi_cfg_t ,
sf_wifi_provisioning_t , sf_wifi_wps_t , spi_cfg_t , ssi_instance_ctrl_t ,
sf_audio_playback_instance_ctrl_t , timer_cfg_t , transfer_cfg_t , uart_cfg_t , wdt_cfg_t ,
wdt_instance_ctrl_t
p_callback_memory : ctsu_instance_ctrl_t
p_callback_rec : NX_REC
p_canvas : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
p_capture_data_buffer : sf_audio_record_adc_instance_ctrl_t , sf_audio_record_cfg_t ,
sf_audio_record_i2s_instance_ctrl_t
p_cellular_mutex : sf_cellular_instance_cfg_t
p_cfg : adc_instance_t , aes_instance_t , analog_connect_instance_t , arc4_instance_t ,
cac_instance_t , can_instance_t , cgc_instance_t , comparator_instance_t , crc_instance_t ,
crypto_instance_t , ctsu_instance_t , dac_instance_t , display_instance_t , doc_instance_t ,
dsa_instance_t , ecc_instance_t , elc_instance_t , external_irq_instance_t , flash_instance_t ,
hash_instance_t , i2c_master_instance_t , i2c_slave_instance_t , i2s_instance_t ,
input_capture_instance_t , ioport_instance_t , jpeg_decode_instance_t ,
jpeg_encode_instance_t , key_installation_instance_t , keymatrix_instance_t ,
lpmv2_instance_t , lvd_instance_t , opamp_instance_t , pdc_instance_t , ptp_instance_t ,
ptpedmac_instance_t , qspi_instance_t , rsa_instance_t , rtc_instance_t , sdmmc_instance_t ,
sf_adc_periodic_instance_t , sf_audio_playback_hw_instance_t ,
sf_audio_playback_instance_t , sf_audio_record_instance_t , sf_ble_instance_t ,
sf_ble_onboard_profile_instance_t , sf_block_media_instance_t , sf_cellular_instance_cfg_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,175 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

sf_cellular_instance_t , sf_cellular_socket_instance_t , sf_comms_instance_t ,
sf_console_instance_t , sf_crypto_cipher_instance_t , sf_crypto_hash_instance_t ,
sf_crypto_instance_t , sf_crypto_key_installation_instance_t , sf_crypto_key_instance_t ,
sf_crypto_signature_instance_t , sf_crypto_trng_instance_t , sf_el_gx_instance_t ,
sf_external_irq_instance_t , sf_i2c_instance_t , sf_jpeg_decode_instance_t ,
sf_memory_instance_t , sf_message_instance_t , sf_power_profiles_v2_instance_t ,
sf_socket_instance_t , sf_spi_instance_t , sf_thread_monitor_instance_t ,
sf_touch_ctsu_instance_t , sf_touch_panel_chip_instance_t , sf_touch_panel_v2_instance_t ,
sf_wifi_instance_t , sf_wifi_onchip_stack_instance_t , sf_wifi_qca4010_instance_cfg_t ,
sf_wifi_qca4010_instance_t , sf_wifi_qca4010_onchip_stack_instance_t ,
sf_wifi_qca4010_socket_instance_t , slcdc_instance_t , spi_instance_t , tdes_instance_t ,
timer_instance_t , transfer_instance_t , trng_instance_t , uart_instance_t , wdt_instance_t
p_channel_cfg : adc_instance_t
p_channel_cfgs : adc_on_sdadc_cfg_t
p_chap_get_challenge_cb : sf_cellular_nsal_cfg_t
p_chap_get_responder_cb : sf_cellular_nsal_cfg_t
p_chap_get_verify_cb : sf_cellular_nsal_cfg_t
p_char_multiple_read_rsp : sf_ble_char_read_rsp_t
p_char_read_by_handle_rsp : sf_ble_char_read_rsp_t
p_char_read_by_uuid_rsp : sf_ble_char_read_rsp_t
p_chip : sf_touch_panel_v2_instance_ctrl_t
p_chipset : sf_wifi_info_t
p_cipher_context_buffer : sf_crypto_cipher_instance_ctrl_t
p_circular_queue : sf_cellular_circular_queue_cfg_t
p_circular_queue_buffer : sf_cellular_circular_queue_cfg_t
p_circular_queue_cfg : sf_cellular_extended_cfg_t
p_clock_cfg : sf_power_profiles_v2_run_cfg_t
p_clut : display_clut_t
p_cmd : sf_cellular_at_cmd_set_t , sf_wifi_qca4010_at_cmd_set_t
p_cmd_param_callback : sf_cellular_cfg_t
p_cmd_queue_ptr : sf_wifi_qca4010_queue_cfg_t
p_cmd_set : sf_cellular_cfg_t , sf_wifi_qca4010_cfg_t
p_common_cfg : sf_audio_playback_cfg_t
p_common_ctrl : sf_audio_playback_cfg_t , sf_audio_playback_instance_ctrl_t
p_comms : sf_console_cfg_t , sf_console_instance_ctrl_t
p_config : sf_el_fx_t
p_connection_table : analog_connect_table_t
p_context : adc_callback_args_t , adc_cfg_t , adc_instance_ctrl_t ,
agt_input_capture_instance_ctrl_t , agt_instance_ctrl_t , cac_callback_args_t , cac_cfg_t ,
cac_instance_ctrl_t , can_callback_args_t , can_cfg_t , can_instance_ctrl_t ,
cgc_callback_args_t , comparator_callback_args_t , comparator_cfg_t , ctsu_callback_args_t ,
ctsu_cfg_t , ctsu_instance_ctrl_t , display_callback_args_t , display_cfg_t ,
dmac_instance_ctrl_t , doc_callback_args_t , doc_cfg_t , doc_instance_ctrl_t ,
dtc_instance_ctrl_t , external_irq_callback_args_t , external_irq_cfg_t , flash_callback_args_t
, flash_cfg_t , glcd_ctrl_t , glcd_instance_ctrl_t , gpt_input_capture_instance_ctrl_t ,
gpt_instance_ctrl_t , i2c_callback_args_t , i2c_cfg_t , i2s_callback_args_t , i2s_cfg_t ,
icu_instance_ctrl_t , input_capture_callback_args_t , input_capture_cfg_t ,
iwdt_instance_ctrl_t , jpeg_decode_callback_args_t , jpeg_decode_cfg_t ,
jpeg_decode_instance_ctrl_t , jpeg_encode_callback_args_t , jpeg_encode_cfg_t ,
jpeg_encode_instance_ctrl_t , keymatrix_callback_args_t , keymatrix_cfg_t ,
lvd_callback_args_t , lvd_cfg_t , pdc_callback_args_t , pdc_cfg_t , pdc_instance_ctrl_t ,
ptp_callback_args_t , ptp_cfg_t , ptp_instance_ctrl_t , ptpedmac_callback_args_t ,
ptpedmac_cfg_t , ptpedmac_instance_ctrl_t , rspi_instance_ctrl_t , rtc_callback_args_t ,
rtc_cfg_t , rtc_instance_ctrl_t , sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t ,
sdadc_instance_ctrl_t , sdmmc_callback_args_t , sdmmc_cfg_t , sdmmc_instance_ctrl_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,176 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

sf_adc_periodic_callback_args_t , sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t ,
sf_audio_playback_hw_callback_args_t , sf_audio_playback_hw_cfg_t ,
sf_audio_playback_hw_dac_instance_ctrl_t , sf_audio_playback_hw_i2s_instance_ctrl_t ,
sf_audio_record_adc_instance_ctrl_t , sf_audio_record_cfg_t ,
sf_audio_record_i2s_instance_ctrl_t , sf_cellular_callback_args_t , sf_cellular_cfg_t ,
sf_crypto_cfg_t , sf_crypto_instance_ctrl_t , sf_el_fx_callback_args_t , sf_el_fx_config_t ,
sf_el_fx_instance_ctrl_t , sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t ,
sf_el_lx_nor_callback_args_t , sf_el_lx_nor_instance_cfg_t , sf_el_lx_nor_instance_ctrl_t ,
sf_message_buffer_ctrl_t , sf_message_callback_args_t , sf_message_post_cfg_t ,
sf_power_profiles_v2_callback_args_t , sf_power_profiles_v2_low_power_cfg_t ,
sf_touch_ctsu_cfg_t , sf_touch_panel_v2_cfg_t , sf_touch_panel_v2_instance_ctrl_t ,
sf_touchpanel_v2_callback_args_t , sf_wifi_callback_args_t , sf_wifi_cfg_t ,
sf_wifi_qca4010_cfg_t , slcdc_instance_ctrl_t , spi_callback_args_t , spi_cfg_t ,
ssi_instance_ctrl_t , timer_callback_args_t , timer_cfg_t , transfer_callback_args_t ,
transfer_cfg_t , uart_callback_args_t , uart_cfg_t , wdt_callback_args_t , wdt_cfg_t ,
wdt_instance_ctrl_t
p_correction_info : ctsu_instance_ctrl_t
p_crypto_api : aes_cfg_t , aes_ctrl_t , arc4_cfg_t , arc4_ctrl_t , dsa_cfg_t , dsa_ctrl_t ,
ecc_cfg_t , ecc_ctrl_t , hash_cfg_t , hash_ctrl_t , key_installation_instance_ctrl_t , rsa_cfg_t ,
rsa_ctrl_t , tdes_cfg_t , tdes_ctrl_t , trng_cfg_t , trng_ctrl_t
p_crypto_ctrl : aes_ctrl_t , arc4_ctrl_t , dsa_ctrl_t , ecc_ctrl_t , hash_cfg_t ,
key_installation_instance_ctrl_t , rsa_ctrl_t , trng_ctrl_t
p_ctrl : adc_instance_t , aes_instance_t , arc4_instance_t , cac_instance_t , can_instance_t ,
comparator_instance_t , crc_instance_t , crypto_instance_t , ctsu_instance_t , dac_instance_t
, display_instance_t , doc_instance_t , dsa_instance_t , ecc_instance_t ,
external_irq_instance_t , flash_instance_t , hash_instance_t , i2c_master_instance_t ,
i2c_slave_instance_t , i2s_instance_t , input_capture_instance_t , jpeg_decode_instance_t ,
jpeg_encode_instance_t , key_installation_instance_t , keymatrix_instance_t , lvd_instance_t
, opamp_instance_t , pdc_instance_t , ptp_instance_t , ptpedmac_instance_t ,
qspi_instance_t , rsa_instance_t , rtc_instance_t , sdmmc_instance_t ,
sf_adc_periodic_instance_t , sf_audio_playback_hw_instance_t ,
sf_audio_playback_instance_t , sf_audio_record_instance_t , sf_ble_instance_t ,
sf_ble_onboard_profile_instance_t , sf_block_media_instance_t , sf_cellular_instance_t ,
sf_cellular_socket_instance_t , sf_comms_instance_t , sf_console_callback_args_t ,
sf_console_instance_t , sf_crypto_cipher_instance_t , sf_crypto_hash_instance_t ,
sf_crypto_instance_t , sf_crypto_key_installation_instance_t , sf_crypto_key_instance_t ,
sf_crypto_signature_instance_t , sf_crypto_trng_instance_t , sf_el_fx_t , sf_el_gx_instance_t ,
sf_external_irq_instance_t , sf_i2c_instance_t , sf_jpeg_decode_instance_t ,
sf_memory_instance_t , sf_message_instance_t , sf_power_profiles_v2_instance_t ,
sf_socket_instance_t , sf_spi_instance_t , sf_thread_monitor_instance_t ,
sf_touch_ctsu_instance_t , sf_touch_panel_chip_instance_t , sf_touch_panel_v2_instance_t ,
sf_wifi_instance_t , sf_wifi_onchip_stack_instance_t , sf_wifi_qca4010_instance_t ,
sf_wifi_qca4010_onchip_stack_instance_t , sf_wifi_qca4010_socket_instance_t ,
slcdc_instance_t , spi_instance_t , tdes_instance_t , timer_instance_t , transfer_instance_t ,
trng_instance_t , uart_instance_t , wdt_instance_t
p_ctsu_cfg : ctsu_instance_ctrl_t
p_ctsu_instance : sf_touch_ctsu_cfg_t , sf_touch_ctsu_instance_ctrl_t
p_ctsuwr : ctsu_instance_ctrl_t
p_current_buffer : pdc_instance_ctrl_t
p_current_menu : sf_console_instance_ctrl_t
p_data : key_installation_key_t , r_crypto_data_handle_t , rsa_key_t ,
sf_audio_playback_data_t , sf_ble_char_multiple_read_rsp_t ,
sf_ble_char_read_by_handle_rsp_t , sf_ble_char_read_by_uuid_rsp_t , sf_ble_char_write_req_t
, sf_ble_event_info_t , sf_ble_gatt_notif_ind_event_data_t , sf_ble_write_cmd_event_data_t ,
sf_cellular_callback_args_t , sf_crypto_data_handle_t , sf_el_fx_media_partition_info_t ,

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,177 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

sf_wifi_callback_args_t , sf_audio_playback_instance_ctrl_t
p_data_buffer : sf_adc_periodic_callback_args_t , sf_adc_periodic_cfg_t ,
sf_adc_periodic_instance_ctrl_t
p_delay_callback : sf_memory_qspi_nor_cfg_t , sf_memory_qspi_nor_instance_ctrl_t
p_delay_callback_context : sf_memory_qspi_nor_cfg_t , sf_memory_qspi_nor_instance_ctrl_t
p_dest : transfer_info_t
p_disconnect_callback : sf_comms_telnet_cfg_t , sf_comms_telnet_instance_ctrl_t
p_display : sf_el_gx_instance_ctrl_t
p_display_instance : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
p_display_runtime_cfg : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
p_drift_buf : sf_touch_ctsu_button_info_t
p_drift_count : sf_touch_ctsu_button_info_t
p_driver_handle : sf_ble_ctrl_t , sf_cellular_ctrl_t , sf_wifi_ctrl_t , sf_wifi_qca4010_ctrl_t
p_elem_index : sf_touch_ctsu_slider_cfg_t , sf_touch_ctsu_wheel_cfg_t
p_elements : ctsu_cfg_t
p_erase_sizes_bytes : qspi_info_t
p_eventflag : sf_wifi_qca4010_extended_cfg_t
p_extend : adc_cfg_t , cac_cfg_t , can_cfg_t , comparator_cfg_t , crc_cfg_t , ctsu_cfg_t ,
display_cfg_t , external_irq_cfg_t , flash_cfg_t , i2c_cfg_t , i2s_cfg_t , input_capture_cfg_t ,
jpeg_decode_instance_ctrl_t , jpeg_encode_instance_ctrl_t , key_installation_cfg_t ,
keymatrix_cfg_t , lpmv2_cfg_t , lvd_cfg_t , opamp_cfg_t , pdc_cfg_t , ptp_cfg_t ,
ptp_instance_ctrl_t , qspi_cfg_t , rtc_cfg_t , sdmmc_cfg_t , sf_adc_periodic_cfg_t ,
sf_audio_playback_common_cfg_t , sf_audio_playback_hw_cfg_t , sf_audio_record_cfg_t ,
sf_ble_cfg_t , sf_ble_onboard_profile_cfg_t , sf_block_media_cfg_t , sf_cellular_cfg_t ,
sf_cellular_nsal_cfg_t , sf_cellular_socket_cfg_t , sf_comms_cfg_t , sf_crypto_cfg_t ,
sf_crypto_cipher_cfg_t , sf_crypto_hash_cfg_t , sf_crypto_key_cfg_t ,
sf_crypto_key_installation_cfg_t , sf_crypto_signature_cfg_t , sf_crypto_trng_cfg_t ,
sf_el_fx_config_t , sf_memory_cfg_t , sf_power_profiles_v2_cfg_t ,
sf_power_profiles_v2_low_power_cfg_t , sf_power_profiles_v2_run_cfg_t , sf_socket_cfg_t ,
sf_thread_monitor_instance_ctrl_t , sf_touch_ctsu_cfg_t , sf_touch_panel_v2_calibrate_t ,
sf_touch_panel_v2_cfg_t , sf_wifi_cfg_t , sf_wifi_onchip_stack_cfg_t , sf_wifi_qca4010_cfg_t ,
sf_wifi_qca4010_socket_cfg_t , spi_cfg_t , timer_cfg_t , transfer_cfg_t , uart_cfg_t , wdt_cfg_t
p_extpin_ctrl : sci_uart_instance_ctrl_t , uart_on_sci_cfg_t
p_framebuffer_a : sf_el_gx_cfg_t
p_framebuffer_b : sf_el_gx_cfg_t
p_framebuffer_read : sf_el_gx_instance_ctrl_t
p_framebuffer_write : sf_el_gx_instance_ctrl_t
p_fwk_common_api : sf_crypto_key_instance_ctrl_t
p_fwk_common_ctrl : sf_crypto_key_instance_ctrl_t
p_gamma_correction : display_output_cfg_t
p_hal_api : sf_crypto_cipher_instance_ctrl_t , sf_crypto_key_instance_ctrl_t ,
sf_crypto_signature_instance_ctrl_t
p_hal_ctrl : sf_crypto_cipher_instance_ctrl_t , sf_crypto_key_instance_ctrl_t ,
sf_crypto_signature_instance_ctrl_t
p_hidden_sector : sf_el_fx_callback_args_t
p_huffman_croma_ac_table : jpeg_encode_cfg_t
p_huffman_croma_dc_table : jpeg_encode_cfg_t
p_huffman_luma_ac_table : jpeg_encode_cfg_t
p_huffman_luma_dc_table : jpeg_encode_cfg_t
p_hysteresis : sf_touch_ctsu_button_info_t
p_info : transfer_cfg_t
p_initial_menu : sf_console_cfg_t
p_interface : sf_wifi_nsal_callback_args_t
p_ioport_pin_tbl : sf_power_profiles_v2_run_cfg_t
p_ioport_pin_tbl_enter : sf_power_profiles_v2_low_power_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,178 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

p_ioport_pin_tbl_exit : sf_power_profiles_v2_low_power_cfg_t
p_ip : sf_cellular_nsal_cfg_t , sf_wifi_nsal_callback_args_t
p_iv : sf_crypto_cipher_aes_init_params_t
p_jpegbuffer : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
p_key : arc4_cfg_t
p_key_data : sf_crypto_signature_context_t
p_leds : bsp_leds_t
p_link_down_cb : sf_cellular_nsal_cfg_t
p_link_up_cb : sf_cellular_nsal_cfg_t
p_lock_mutex : sf_i2c_bus_t , sf_spi_bus_t
p_low_lvl_ble : sf_ble_onboard_profile_cfg_t , sf_ble_onboard_profile_ctrl_t
p_low_lvl_sf_comms : sf_ble_on_rl78g1d_cfg_t
p_low_lvl_timer : sf_ble_on_rl78g1d_cfg_t
p_lower_lvl : sf_el_lx_nor_instance_cfg_t , sf_el_lx_nor_instance_ctrl_t
p_lower_lvl_adc : sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t
p_lower_lvl_adc_periodic : sf_audio_record_adc_instance_ctrl_t
p_lower_lvl_api : sf_i2c_bus_t , sf_spi_bus_t
p_lower_lvl_block_media : sf_el_fx_config_t , sf_el_fx_instance_ctrl_t
p_lower_lvl_cellular : sf_cellular_socket_cfg_t , sf_cellular_socket_ctrl_t
p_lower_lvl_cfg : sf_i2c_cfg_t , sf_spi_cfg_t
p_lower_lvl_common : sf_crypto_key_installation_cfg_t , sf_crypto_trng_cfg_t
p_lower_lvl_common_api : sf_crypto_key_installation_instance_ctrl_t ,
sf_crypto_signature_instance_ctrl_t
p_lower_lvl_common_ctrl : sf_crypto_key_installation_instance_ctrl_t ,
sf_crypto_signature_instance_ctrl_t
p_lower_lvl_crypto : sf_crypto_cfg_t , sf_crypto_instance_ctrl_t
p_lower_lvl_crypto_api : key_installation_cfg_t
p_lower_lvl_crypto_common : sf_crypto_cipher_cfg_t , sf_crypto_hash_cfg_t ,
sf_crypto_hash_instance_ctrl_t , sf_crypto_key_cfg_t , sf_crypto_signature_cfg_t
p_lower_lvl_crypto_trng : sf_crypto_cipher_cfg_t
p_lower_lvl_ctrl : sf_i2c_instance_ctrl_t , sf_spi_instance_ctrl_t
p_lower_lvl_dac : sf_audio_playback_hw_dac_cfg_t ,
sf_audio_playback_hw_dac_instance_ctrl_t
p_lower_lvl_framewrk : sf_touch_panel_chip_ft5x06_instance_ctrl_t ,
sf_touch_panel_chip_on_ft5x06_cfg_t , sf_touch_panel_chip_on_sx8654_cfg_t ,
sf_touch_panel_chip_sx8654_instance_ctrl_t
p_lower_lvl_fwk_common_api : sf_crypto_cipher_instance_ctrl_t
p_lower_lvl_fwk_common_ctrl : sf_crypto_cipher_instance_ctrl_t
p_lower_lvl_hw : sf_audio_playback_common_cfg_t ,
sf_audio_playback_common_instance_ctrl_t
p_lower_lvl_i2c : sf_i2c_instance_ctrl_t
p_lower_lvl_i2s : sf_audio_playback_hw_i2s_cfg_t , sf_audio_playback_hw_i2s_instance_ctrl_t
, sf_audio_record_i2s_instance_ctrl_t
p_lower_lvl_icu : sf_wifi_on_gt202_cfg_t
p_lower_lvl_instance : sf_crypto_hash_cfg_t , sf_crypto_hash_instance_ctrl_t ,
sf_crypto_key_installation_cfg_t , sf_crypto_key_installation_instance_ctrl_t ,
sf_crypto_trng_cfg_t
p_lower_lvl_irq : sf_external_irq_cfg_t , sf_external_irq_instance_ctrl_t ,
sf_touch_panel_chip_ft5x06_instance_ctrl_t , sf_touch_panel_chip_on_ft5x06_cfg_t ,
sf_touch_panel_chip_on_sx8654_cfg_t , sf_touch_panel_chip_sx8654_instance_ctrl_t
p_lower_lvl_jpeg_decode : sf_jpeg_decode_cfg_t , sf_jpeg_decode_instance_ctrl_t
p_lower_lvl_lpm : sf_power_profiles_v2_low_power_cfg_t
p_lower_lvl_onchip_wifi : sf_socket_cfg_t , sf_socket_ctrl_t
p_lower_lvl_onchip_wifi_qca4010 : sf_wifi_qca4010_socket_cfg_t ,
sf_wifi_qca4010_socket_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,179 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

p_lower_lvl_qspi : sf_block_media_qspi_instance_ctrl_t
p_lower_lvl_sdmmc : sf_block_media_sdmmc_instance_ctrl_t
p_lower_lvl_sf_crypto_hash : sf_crypto_signature_cfg_t , sf_crypto_signature_instance_ctrl_t
p_lower_lvl_sf_crypto_trng_ctrl : sf_crypto_cipher_instance_ctrl_t
p_lower_lvl_spi : sf_wifi_on_gt202_cfg_t
p_lower_lvl_timer : sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t ,
sf_audio_playback_hw_dac_cfg_t , sf_audio_playback_hw_dac_instance_ctrl_t
p_lower_lvl_transfer : pdc_cfg_t , pdc_instance_ctrl_t , sdmmc_cfg_t , sdmmc_instance_ctrl_t
, sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t , sf_audio_playback_hw_dac_cfg_t ,
sf_audio_playback_hw_dac_instance_ctrl_t
p_lower_lvl_uart : sf_uart_comms_cfg_t , sf_uart_comms_instance_ctrl_t
p_lower_lvl_wdt : sf_thread_monitor_cfg_t , sf_thread_monitor_instance_ctrl_t
p_lower_lvl_wifi : sf_wifi_onchip_stack_cfg_t , sf_wifi_onchip_stack_ctrl_t
p_lower_lvl_wifi_qca4010 : sf_wifi_qca4010_onchip_stack_cfg_t ,
sf_wifi_qca4010_onchip_stack_ctrl_t
p_lx_nor_flash : sf_el_lx_nor_instance_cfg_t , sf_el_lx_nor_instance_ctrl_t
p_mailbox : can_cfg_t , can_instance_ctrl_t
p_mailbox_mask : can_extended_cfg_t
p_memory_pool : sf_crypto_cfg_t
p_memory_settings : sf_el_lx_nor_instance_cfg_t , sf_el_lx_nor_instance_ctrl_t
p_message : sf_audio_playback_common_cfg_t , sf_audio_playback_common_instance_ctrl_t
p_message_buffer : sf_crypto_hash_context_t
p_message_buffer_org : sf_crypto_hash_context_t
p_message_digest : sf_crypto_hash_context_t
p_message_digest_org : sf_crypto_hash_context_t
p_modifiable_cmd_set : sf_cellular_cfg_t
p_module_extended_cfg : sf_cellular_extended_cfg_t , sf_wifi_qca4010_extended_cfg_t
p_mul_read_req : sf_ble_char_read_req_t
p_mutual_pri_data : ctsu_instance_ctrl_t
p_mutual_raw : ctsu_instance_ctrl_t
p_mutual_snd_data : ctsu_instance_ctrl_t
p_next_buffer : sf_audio_playback_common_instance_ctrl_t
p_nor_flash : sf_block_media_lx_nor_instance_ctrl_t , sf_block_media_on_lx_nor_cfg_t
p_nor_flash_name : sf_block_media_lx_nor_instance_ctrl_t , sf_block_media_on_lx_nor_cfg_t
p_off_count : sf_touch_ctsu_button_info_t
p_on_count : sf_touch_ctsu_button_info_t
p_owner : sf_audio_playback_instance_ctrl_t
p_pap_generate_login : sf_cellular_nsal_cfg_t
p_pap_verify_login : sf_cellular_nsal_cfg_t
p_pin_cfg_data : ioport_cfg_t
p_position : sf_touch_ctsu_slider_info_t , sf_touch_ctsu_wheel_info_t
p_ppp : sf_cellular_nsal_cfg_t
p_ppp_invalid_packet_cb : sf_cellular_nsal_cfg_t
p_ppp_packet_pool : sf_cellular_nsal_cfg_t
p_ppp_send_byte : sf_cellular_nsal_cfg_t
p_ppp_stack : sf_cellular_nsal_cfg_t
p_prov_callback : sf_cellular_cfg_t
p_ptpedmac_buffer : ptpedmac_instance_ctrl_t
p_puk_pin : sf_cellular_cfg_t
p_qspi : sf_memory_qspi_nor_cfg_t , sf_memory_qspi_nor_instance_ctrl_t
p_quant_croma_table : jpeg_encode_cfg_t
p_quant_luma_table : jpeg_encode_cfg_t
p_queue : sf_audio_playback_common_cfg_t , sf_audio_playback_common_instance_ctrl_t ,
sf_message_post_err_t , sf_message_subscriber_t
p_queue_buffer : sf_wifi_qca4010_queue_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,180 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

p_queue_cfg : sf_wifi_qca4010_extended_cfg_t
p_r_uart_instance : sf_wifi_qca4010_uart_extend_cfg_t
p_ram_buffer : sf_block_media_ram_instance_ctrl_t
p_read_sim_pin_info_callback : sf_cellular_cfg_t
p_recv_callback : sf_cellular_cfg_t
p_reference : sf_touch_ctsu_button_info_t
p_reg : adc_instance_ctrl_t , agt_input_capture_instance_ctrl_t , agt_instance_ctrl_t ,
cac_instance_ctrl_t , can_instance_ctrl_t , crc_instance_ctrl_t , ctsu_instance_ctrl_t ,
dac8_instance_ctrl_t , dac_instance_ctrl_t , dmac_instance_ctrl_t , doc_instance_ctrl_t ,
flash_hp_instance_ctrl_t , flash_lp_instance_ctrl_t , glcd_instance_ctrl_t ,
gpt_input_capture_instance_ctrl_t , gpt_instance_ctrl_t , icu_instance_ctrl_t ,
iwdt_instance_ctrl_t , jpeg_decode_instance_ctrl_t , jpeg_encode_instance_ctrl_t ,
kint_instance_ctrl_t , lvd_instance_ctrl_t , opamp_instance_ctrl_t , pdc_instance_ctrl_t ,
ptp_instance_ctrl_t , ptpedmac_instance_ctrl_t , qspi_instance_ctrl_t , riic_instance_ctrl_t ,
riic_slave_instance_ctrl_t , rspi_instance_ctrl_t , rtc_instance_ctrl_t , sci_i2c_instance_ctrl_t ,
sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t , sdadc_instance_ctrl_t ,
sdmmc_instance_ctrl_t , slcdc_instance_ctrl_t , ssi_instance_ctrl_t , wdt_instance_ctrl_t
p_reg_cfg : ptp_instance_ctrl_t
p_reg_gen : ptp_instance_ctrl_t
p_region_info : sf_el_lx_nor_instance_ctrl_t
p_regions_info : sf_memory_info_t
p_remaining_string : sf_console_callback_args_t
p_resp_buff : sf_wifi_qca4010_instance_cfg_t
p_rx_dest : ssi_instance_ctrl_t
p_rx_dst : sci_uart_instance_ctrl_t
p_sce_api_interfaces : crypto_cfg_t
p_sce_long_plg_end_callback : crypto_cfg_t
p_self_data : ctsu_instance_ctrl_t
p_self_raw : ctsu_instance_ctrl_t
p_service : sf_ble_char_attribute_t
p_sf_comms_cfg : sf_cellular_extended_cfg_t
p_sf_comms_instance : sf_cellular_comms_extend_cfg_t
p_sf_comms_rx_thread : sf_cellular_comms_extend_cfg_t
p_sf_comms_rx_thread_stack : sf_cellular_comms_extend_cfg_t
p_sf_crypto_trng_api : sf_crypto_cipher_instance_ctrl_t
p_sf_jpeg_decode_instance : sf_el_gx_cfg_t , sf_el_gx_instance_ctrl_t
p_sim_pin : sf_cellular_cfg_t , sf_cellular_sim_pin_info_t
p_sim_puk : sf_cellular_sim_pin_info_t
p_sliders : sf_touch_ctsu_cfg_t
p_socket_status_buffer : sf_cellular_instance_cfg_t
p_src : transfer_info_t
p_src_transfer : sf_adc_periodic_instance_ctrl_t
p_stream : sf_audio_playback_common_instance_ctrl_t
p_success_resp : sf_cellular_at_cmd_set_t , sf_wifi_qca4010_at_cmd_set_t
p_sync_eventflag : sf_i2c_bus_t , sf_spi_bus_t
p_thread : sf_thread_monitor_thread_counter_t
p_threshold : sf_touch_ctsu_button_info_t , sf_touch_ctsu_slider_info_t ,
sf_touch_ctsu_wheel_info_t
p_timer : i2s_cfg_t , ssi_instance_ctrl_t
p_touch_cfg : sf_touch_ctsu_instance_ctrl_t
p_transfer_data : sdmmc_instance_ctrl_t
p_transfer_rx : ctsu_cfg_t , i2c_cfg_t , i2s_cfg_t , rspi_instance_ctrl_t , sci_i2c_instance_ctrl_t
, sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t , spi_cfg_t , ssi_instance_ctrl_t , uart_cfg_t
p_transfer_tx : ctsu_cfg_t , i2c_cfg_t , i2s_cfg_t , rspi_instance_ctrl_t , sci_i2c_instance_ctrl_t
, sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t , spi_cfg_t , ssi_instance_ctrl_t , uart_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,181 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

p_tsn_calib_regs : adc_instance_ctrl_t
p_tsn_ctrl_regs : adc_instance_ctrl_t
p_tuning_count : ctsu_instance_ctrl_t
p_tuning_diff : ctsu_instance_ctrl_t
p_tx_packet_buffer : sf_wifi_nsal_cfg_t
p_tx_src : sci_uart_instance_ctrl_t , ssi_instance_ctrl_t
p_uart_instance : sf_touch_ctsu_cfg_t
p_uart_instance_objects : sf_wifi_qca4010_instance_cfg_t
p_uart_instances : sf_wifi_qca4010_cfg_t
p_value : sf_ble_gatt_attr_event_t
p_wheels : sf_touch_ctsu_cfg_t
p_wifi_mutex : sf_wifi_qca4010_instance_cfg_t
p_wifi_nsal_cfg : sf_wifi_nsal_callback_args_t
p_work_memory_start : sf_message_cfg_t
page_size : qspi_instance_ctrl_t
pageProgram : qspi_api_t
parent_svc_handle : sf_ble_svc_attribute_t
parity : spi_on_rspi_cfg_t , uart_cfg_t
parse : sf_console_api_t
partition : sf_el_fx_media_info_t
password : sf_cellular_provisioning_t
patch : ssp_pack_version_t
pause : sf_audio_playback_api_t
payload : sf_touch_panel_v2_instance_ctrl_t , sf_touchpanel_v2_callback_args_t
payload_buffer : UX_DCD_SYNERGY_PAYLOAD_TRANSFER ,
UX_HCD_SYNERGY_PAYLOAD_TRANSFER
payload_length : UX_DCD_SYNERGY_PAYLOAD_TRANSFER ,
UX_HCD_SYNERGY_PAYLOAD_TRANSFER
payloadGet : sf_touch_panel_chip_api_t
pckt_size : sf_cellular_socket_info_t
pclk_div : external_irq_cfg_t
pclka_div : cgc_system_clock_cfg_t
pclkb_div : cgc_system_clock_cfg_t
pclkc_div : cgc_system_clock_cfg_t
pclkd_div : cgc_system_clock_cfg_t
pcm_width : i2s_cfg_t
pdp_type : sf_cellular_provisioning_t
peer_addr : sf_ble_connect_info_t
peer_addr_type : sf_ble_connect_info_t
peer_ip : sf_cellular_nsal_cfg_t
pend : sf_message_api_t
pending_operation : sf_memory_qspi_nor_instance_ctrl_t
pending_operation_size : sf_memory_qspi_nor_instance_ctrl_t
period : agt_instance_ctrl_t , timer_cfg_t
period_counts : timer_info_t
periodic_ipl : rtc_cfg_t
periodic_irq : rtc_instance_ctrl_t
periodicIrqRateSet : rtc_api_t
periodSet : timer_api_t
peripheral : elc_link_t
perm : RBLE_GATT_SET_PERM
pga0 : adc_cfg_t , adc_instance_ctrl_t
pga1 : adc_cfg_t , adc_instance_ctrl_t
pga2 : adc_cfg_t , adc_instance_ctrl_t
pga_available : adc_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,182 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

phy_mode : sf_wifi_qca4010_status_t
pin : ioport_pin_cfg_t , sf_touch_panel_chip_ft5x06_instance_ctrl_t ,
sf_touch_panel_chip_on_ft5x06_cfg_t , sf_touch_panel_chip_on_sx8654_cfg_t ,
sf_touch_panel_chip_sx8654_instance_ctrl_t
pin_cfg : ioport_pin_cfg_t
pin_output : comparator_cfg_t
pin_reset : sf_cellular_extended_cfg_t , sf_wifi_on_gt202_cfg_t ,
sf_wifi_qca4010_extended_cfg_t
pin_select : agt_input_capture_extend_t
pin_slave_select : sf_wifi_on_gt202_cfg_t
pinCfg : ioport_api_t
pinDirectionSet : ioport_api_t
pinEthernetModeCfg : ioport_api_t
pinEventInputRead : ioport_api_t
pinEventOutputWrite : ioport_api_t
ping : sf_cellular_socket_api_t , sf_wifi_qca4010_onchip_stack_api_t
pinRead : ioport_api_t
pinsCfg : ioport_api_t
pint_irq : ptpedmac_instance_ctrl_t
pinWrite : ioport_api_t
pixel_format : jpeg_decode_cfg_t , jpeg_decode_instance_ctrl_t
pixelFormatGet : jpeg_decode_api_t , sf_jpeg_decode_api_t
play : sf_audio_playback_hw_api_t
playing : sf_audio_playback_common_instance_ctrl_t
pll_cfg : cgc_clocks_cfg_t
pll_div_max : bsp_feature_cgc_t
pll_mul_max : bsp_feature_cgc_t
pll_mul_min : bsp_feature_cgc_t
pll_src_configurable : bsp_feature_cgc_t
pll_state : cgc_clocks_cfg_t
pllccr_type : bsp_feature_cgc_t
pointer_hdl : RBLE_GATT_CHAR_128_LIST , RBLE_GATT_CHAR_LIST
polarity : sdadc_channel_cfg_t
polynomial : crc_cfg_t , crc_instance_ctrl_t
portDirectionSet : ioport_api_t
portEventInputRead : ioport_api_t
portEventOutputWrite : ioport_api_t
portRead : ioport_api_t
portWrite : ioport_api_t
post : sf_message_api_t
power_lvl : sf_ble_set_tx_pwr_info_t
power_supply_state : lpmv2_mcu_cfg_t
pp_curr_bus_ctrl : sf_i2c_bus_t
pp_curr_ctrl : sf_i2c_bus_t , sf_spi_bus_t
pp_subscriber_group : sf_message_subscriber_list_t
pp_subscriber_lists : sf_message_cfg_t , sf_message_instance_ctrl_t
ppp_stack_size : sf_cellular_nsal_cfg_t
preamble : sf_wifi_cfg_t
preamble_length : phy_record_t
pref_ops : sf_cellular_cfg_t
press_val1 : sf_ble_blp_meas_info_t
press_val2 : sf_ble_blp_meas_info_t
press_val3 : sf_ble_blp_meas_info_t
prevbuf : trng_ctrl_t
pri_ref : ctsu_mutual_buf_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,183 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

pri_sen : ctsu_mutual_buf_t
priority : sf_audio_playback_common_cfg_t , sf_cellular_nsal_cfg_t , sf_message_post_cfg_t ,
sf_thread_monitor_cfg_t , sf_touch_panel_v2_cfg_t
priority_group_a : adc_channel_cfg_t
productFeatureGet : fmi_api_t
productId : sf_ble_prf_dis_pnpid_t
productInfoGet : fmi_api_t
productVersion : sf_ble_prf_dis_pnpid_t
profiling_mode_check : sf_thread_monitor_instance_ctrl_t
profiling_mode_enabled : sf_thread_monitor_cfg_t , sf_thread_monitor_instance_ctrl_t
prompt : sf_console_api_t
prop : RBLE_GATT_CHAR_128_LIST , RBLE_GATT_CHAR_LIST
property : sf_ble_char_discovery_rsp_t
protocol_mode_val : sf_ble_prf_value_t
prov_info : sf_cellular_instance_cfg_t , sf_wifi_qca4010_instance_cfg_t
provisionGet : sf_ble_api_t
provisioningGet : sf_cellular_api_t , sf_wifi_api_t
provisioningSet : sf_cellular_api_t , sf_wifi_api_t , sf_wifi_qca4010_api_t
provisionSet : sf_ble_api_t
pulse_count_value : agt_input_capture_extend_t
pulse_period_first_edge : agt_input_capture_instance_ctrl_t

- q -

qspi_info : sf_memory_qspi_nor_instance_ctrl_t
quality_factor : jpeg_encode_cfg_t
queue : sf_comms_telnet_instance_ctrl_t , sf_uart_comms_instance_ctrl_t
queue_mem : sf_uart_comms_instance_ctrl_t
queue_size : sf_cellular_circular_queue_cfg_t , sf_wifi_qca4010_queue_cfg_t

- r -

r : display_brightness_t , display_color_t , display_contrast_t , display_gamma_correction_t
ram_buffer_size : sf_block_media_ram_instance_ctrl_t
rand_num : sf_ble_sec_info_t , sf_ble_sm_enc_info_t , sf_ble_sm_key_ind_t
randomNumberGenerate : sf_crypto_trng_api_t
rate : i2c_cfg_t , sf_ble_blp_meas_info_t
rd_index : ctsu_instance_ctrl_t
read : adc_api_t , cac_api_t , can_api_t , flash_api_t , i2c_api_master_t , i2s_api_t ,
ptpedmac_api_t , qspi_api_t , riic_instance_ctrl_t , riic_slave_instance_ctrl_t ,
sci_i2c_instance_ctrl_t , sdmmc_api_t , sf_block_media_api_t , sf_comms_api_t ,
sf_console_api_t , sf_i2c_api_t , sf_memory_api_t , sf_spi_api_t , spi_api_t , trng_api_t ,
uart_api_t
read32 : adc_api_t
read_bytes_max : uart_info_t
read_irq : ctsu_cfg_t , ctsu_instance_ctrl_t
readIo : sdmmc_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,184 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

readIoExt : sdmmc_api_t
ready : sdmmc_info_t
reason : sf_ble_disconnect_t
ref : ctsu_self_buf_t
ref_time : sf_ble_prf_tip_write_data_t
reference_clock : cac_instance_ctrl_t
reference_voltage : bsp_feature_adc_t
refresh : wdt_api_t
reg_id : adc_sample_state_t
reg_status : sf_cellular_network_status_t
region_info : sf_memory_qspi_nor_instance_ctrl_t
remain : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , sci_i2c_instance_ctrl_t
remote_ip : sf_cellular_socket_info_t
remote_port : sf_cellular_socket_info_t
rendering_enable : sf_el_gx_instance_ctrl_t
repeat_area : transfer_info_t
repetition : agt_input_capture_instance_ctrl_t , gpt_input_capture_instance_ctrl_t ,
input_capture_cfg_t
report : sf_ble_prf_hid_report_ind_t
report_type : sf_ble_prf_hid_report_desc_t
req_high_throughput : sf_wifi_cfg_t
req_type : RBLE_GATT_DISC_CHAR_REQ , RBLE_GATT_DISC_SVC_REQ ,
RBLE_GATT_READ_CHAR_REQ , RBLE_GATT_WRITE_CHAR_REQ
reserved : sf_ble_blp_meas_info_t , sf_ble_connect_info_t , sf_ble_long_attr_info_t ,
sf_ble_prf_cts_curr_time_t , sf_ble_prf_cts_date_time_t , sf_ble_prf_hid_report_ind_t ,
sf_ble_prf_htp_temp_info_t , sf_ble_prf_ndcs_time_dst_t ,
sf_message_buffer_ctrl_t::st_buffer_ctrl_flag
reserved2 : sf_ble_connect_info_t
reserved3 : sf_ble_connect_info_t
reset : cac_api_t , flash_api_t , i2c_api_master_t , sf_cellular_api_t , sf_i2c_api_t ,
sf_touch_panel_chip_api_t , sf_touch_panel_v2_api_t , timer_api_t , transfer_api_t
reset_control : wdt_cfg_t
reset_level : sf_cellular_extended_cfg_t , sf_wifi_qca4010_extended_cfg_t
resolution : adc_cfg_t , sdadc_instance_ctrl_t
resource_lock : glcd_ctrl_t
resource_lock_tx_rx : riic_instance_ctrl_t , sci_spi_instance_ctrl_t
resp : RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Cmd_Ind_t
resp_buffer_length : sf_wifi_qca4010_instance_cfg_t
resp_wait_time : sf_cellular_at_cmd_set_t , sf_wifi_qca4010_at_cmd_set_t
response : sf_ble_gatt_attr_event_t
response_required : sf_ble_write_cmd_event_data_t
restart : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t
restarted : riic_instance_ctrl_t , sci_i2c_instance_ctrl_t , sf_i2c_instance_ctrl_t
resume : sf_audio_playback_api_t
retry : sf_cellular_at_cmd_set_t
retry_count : sf_cellular_command_parameters_info_t
retry_delay : sf_cellular_at_cmd_set_t , sf_cellular_command_parameters_info_t ,
sf_wifi_qca4010_at_cmd_set_t
riic_fastplus_rise_time : bsp_feature_riic_t
riic_std_fast_rise_time : bsp_feature_riic_t
ringer_cp : sf_ble_prf_ringer_cp_change_t
ringer_setting : sf_ble_prf_ringer_setting_ntf_t
rkey_dist : sf_ble_bonding_req_ind_t , sf_ble_bonding_start_t
rkeys : sf_ble_bonding_response_t
rotation_angle : sf_touch_panel_v2_cfg_t , sf_touch_panel_v2_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,185 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

rr_interval : sf_ble_hrp_api_hrmeas_t
rr_interval_num : sf_ble_hrp_api_hrmeas_t
rs485_de_pin : sci_uart_instance_ctrl_t , uart_on_sci_cfg_t
rspi_clksyn : spi_on_rspi_cfg_t
rspi_comm : spi_on_rspi_cfg_t
rssi : sf_ble_info_t , sf_ble_scan_t , sf_cellular_info_t , sf_cellular_network_status_t ,
sf_wifi_info_t , sf_wifi_scan_t
rts : sf_wifi_cfg_t
runApply : sf_power_profiles_v2_api_t
rx_bd_space : NX_REC
rx_bytes : sf_cellular_stats_t
rx_bytes_count : sci_uart_instance_ctrl_t
rx_dest_bytes : ssi_instance_ctrl_t
rx_dst_bytes : sci_uart_instance_ctrl_t
rx_edge_start : uart_on_sci_cfg_t
rx_err : sf_cellular_stats_t
rx_fifo_trigger : uart_on_sci_cfg_t
rx_in_use : ssi_instance_ctrl_t
rx_pkts : sf_wifi_stats_t
rx_thread_priority : sf_cellular_comms_extend_cfg_t
rx_transfer_in_progress : sci_uart_instance_ctrl_t
rx_zero_copy : sf_wifi_nsal_cfg_t
rxi_ipl : i2c_cfg_t , i2s_cfg_t , spi_cfg_t , uart_cfg_t
rxi_irq : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , rspi_instance_ctrl_t ,
sci_i2c_instance_ctrl_t , sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t , ssi_instance_ctrl_t

- s -

s_addr : in_addr
sample_clock_divisor : lvd_extend_t
sample_count : sf_adc_periodic_cfg_t , sf_adc_periodic_instance_ctrl_t ,
sf_audio_record_adc_instance_ctrl_t , sf_audio_record_cfg_t
sample_hold_mask : adc_channel_cfg_t
sample_hold_states : adc_channel_cfg_t
samples : sf_audio_playback_common_instance_ctrl_t
samples_remaining : sf_audio_playback_instance_ctrl_t
samples_total : sf_audio_playback_instance_ctrl_t
sampleStateCountSet : adc_api_t
sampling_freq_hz : i2s_cfg_t , i2s_info_t , ssi_instance_ctrl_t
sampling_rate_hz : sf_audio_record_cfg_t
SAR : dtc_reg_t
scalarMultiplication : ecc_api_t
scale_bits_max : sf_audio_playback_data_type_t
scan : sf_ble_api_t , sf_wifi_api_t , sf_wifi_qca4010_api_t
scan_cfg_mask : sdadc_instance_ctrl_t
scan_end_b_ipl : adc_cfg_t
scan_end_b_irq : adc_instance_ctrl_t
scan_end_ipl : adc_cfg_t
scan_end_irq : adc_instance_ctrl_t , sdadc_instance_ctrl_t
scan_interval : sf_ble_cfg_t
scan_interval_window_val : sf_ble_scps_scan_intv_change_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,186 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

scan_mask : adc_channel_cfg_t , adc_instance_ctrl_t , sdadc_instance_ctrl_t
scan_mask_group_b : adc_channel_cfg_t
scan_mode : sf_ble_scan_info_t
scan_response_data : sf_ble_adv_info_t , sf_ble_scan_response_data_t
scan_response_data_length : sf_ble_scan_response_data_t
scan_trigger : sf_adc_periodic_cfg_t
scan_window : sf_ble_cfg_t
scanbuf : ctsu_correction_info_t
scanCfg : adc_api_t
scanStart : adc_api_t , ctsu_api_t , sf_touch_ctsu_api_t
scanStatusGet : adc_api_t
scanStop : adc_api_t
sda_delay : i2c_cfg_t
sdadcClockCfg : cgc_api_t
sdadcClockDisable : cgc_api_t
sdadcClockEnable : cgc_api_t
sdhi_event : sdmmc_instance_ctrl_t
sdhi_rca : sdmmc_info_t
sdio : sdmmc_info_t
sdio_ipl : sdmmc_cfg_t
sdpa : ctsu_element_cfg_t
sdramClockOutDisable : cgc_api_t
sdramClockOutEnable : cgc_api_t
sec : sf_ble_prf_cts_date_time_t
sec_info : sf_ble_provisioning_t
sec_match : rtc_alarm_time_t
sec_mode : sf_ble_sec_info_t
second_coefficient : ctsu_correction_info_t
second_val : ctsu_correction_info_t
sector_count : sdmmc_info_t
sector_size : sdmmc_info_t
sectorErase : qspi_api_t
security : sf_wifi_provisioning_t , sf_wifi_qca4010_provisioning_t , sf_wifi_qca4010_scan_t ,
sf_wifi_scan_t
semaphore : sf_crypto_instance_ctrl_t , sf_el_gx_instance_ctrl_t ,
sf_external_irq_instance_ctrl_t , sf_message_buffer_ctrl_t::st_buffer_ctrl_flag ,
sf_touch_panel_v2_instance_ctrl_t
sen : ctsu_self_buf_t
sensor_min_sampling_time : bsp_feature_adc_t
sensors_exclusive : bsp_feature_adc_t
service_domain : sf_cellular_network_status_t
service_handle : sf_ble_service_discovery_rsp_t
set_bck_with_pckb : bsp_feature_cgc_t
setdisplayArea : slcdc_api_t
setExtPromiscuous : ptp_api_t
setGcmTag : aes_api_t
setGradientLimit : ptp_api_t
setLocalClock : ptp_api_t
setMasterPortID : ptp_api_t
setMessageReceptionConfig : ptp_api_t
setMINTevent : ptp_api_t
setTimer : ptp_api_t
setTxPower : sf_ble_api_t
setup : sf_el_gx_api_t
setWorst10Values : ptp_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,187 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

sf_comms_rx_thread_stack_size : sf_cellular_comms_extend_cfg_t
shortest_pwm_signal : gpt_instance_ctrl_t , timer_on_gpt_cfg_t
sign : dsa_api_t , ecc_api_t , rsa_api_t
signal : gpt_input_capture_extend_t
signal_filter : agt_input_capture_extend_t , gpt_input_capture_extend_t
signCrt : rsa_api_t
signFinal : sf_crypto_signature_api_t
signUpdate : sf_crypto_signature_api_t
sim_status : sf_cellular_sim_pin_info_t
simIDGet : sf_cellular_api_t
simLock : sf_cellular_api_t
simPinSet : sf_cellular_api_t
simUnlock : sf_cellular_api_t
sin_addr : sockaddr , sockaddr_in
sin_family : sockaddr , sockaddr_in
sin_port : sf_cellular_socket_info_t , sockaddr , sockaddr_in
sin_zero : sockaddr , sockaddr_in
sinfo : sf_touch_ctsu_instance_ctrl_t
size : display_clut_cfg_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Ind_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Notif_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Cmd_Ind_t ,
RBLE_GATT_RELIABLE_WRITE , sf_el_fx_media_partition_data_info_t ,
sf_el_lx_nor_memory_settings_t , transfer_info_t
size_bytes : sf_audio_playback_data_t
size_multiplier : sf_adc_periodic_instance_ctrl_t
skip_internal_calibration : adc_on_sdadc_cfg_t
slave : i2c_cfg_t
slave_busy : riic_slave_instance_ctrl_t
slave_latency : sf_ble_cfg_t
slaveAddressSet : i2c_api_master_t
slcdc_clock : slcdc_cfg_t
slcdc_clock_setting : slcdc_cfg_t
slope_microvolts : adc_info_t , adc_instance_ctrl_t
SM : dtc_reg_t
snd_ref : ctsu_mutual_buf_t
snd_sen : ctsu_mutual_buf_t
snoop_channel : crc_snoop_cfg_t
snoop_direction : crc_snoop_cfg_t
snoopCfg : crc_api_t
snoopDisable : crc_api_t
snoopEnable : crc_api_t
snooze_cancel_sources : lpmv2_mcu_cfg_t
snooze_end_sources : lpmv2_mcu_cfg_t
snooze_request_source : lpmv2_mcu_cfg_t
snum : ctsu_element_cfg_t
so : ctsu_element_cfg_t
sock_type : sf_cellular_socket_info_t
socket_create_flag : ulpgn_socket_t
socket_queue : sf_wifi_qca4010_instance_cfg_t
socket_recv_buff : ulpgn_socket_t
socket_status_buffer_length : sf_cellular_instance_cfg_t
socketConnect : sf_wifi_qca4010_socket_api_t
socketCreate : sf_wifi_qca4010_socket_api_t
socketDisconnect : sf_wifi_qca4010_socket_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,188 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

socketRecv : sf_wifi_qca4010_socket_api_t
sockets : sf_wifi_qca4010_socket_ctrl_t
socketSend : sf_wifi_qca4010_socket_api_t
socketStatusGet : sf_wifi_qca4010_socket_api_t
sodrv_mask : bsp_feature_cgc_t
sodrv_shift : bsp_feature_cgc_t
softwareEventGenerate : elc_api_t
source_clock : cgc_clock_cfg_t
spi_mode : qspi_instance_ctrl_t
src_addr_mode : transfer_info_t
ssdiv : ctsu_element_cfg_t
ssid : sf_wifi_provisioning_t , sf_wifi_qca4010_provisioning_t , sf_wifi_qca4010_scan_t ,
sf_wifi_qca4010_status_t , sf_wifi_scan_t
ssid_broadcast : sf_wifi_cfg_t
ssl_level_keep : spi_on_rspi_cfg_t
ssl_neg_delay : spi_on_rspi_cfg_t
ssl_polarity : spi_on_rspi_cfg_t
ssl_select : spi_on_rspi_cfg_t
stage_1_gain : sdadc_channel_cfg_t
stage_2_gain : sdadc_channel_cfg_t
stage_num : rsa_ctrl_t
stamp : sf_ble_blp_meas_info_t , sf_ble_prf_cts_curr_time_t , sf_ble_prf_htp_temp_info_t ,
sf_ble_prf_ndcs_time_dst_t
standby_wake_sources : lpmv2_mcu_cfg_t
start : dac_api_t , display_api_t , display_clut_cfg_t , opamp_api_t , ptp_api_t ,
sf_adc_periodic_api_t , sf_audio_playback_api_t , sf_audio_playback_hw_api_t ,
sf_audio_record_api_t , sf_message_instance_range_t , sf_touch_panel_v2_api_t , slcdc_api_t
, timer_api_t , transfer_api_t
start_bitmask : gpt_input_capture_instance_ctrl_t
start_handle : sf_ble_char_discovery_req_t , sf_ble_service_discovery_req_t ,
sf_ble_service_discovery_rsp_t
start_hdl : RBLE_GATT_DISC_CHAR_DESC_REQ , RBLE_GATT_DISC_CHAR_REQ ,
RBLE_GATT_DISC_SVC_REQ , RBLE_GATT_INCL_128_LIST , RBLE_GATT_INCL_LIST ,
RBLE_GATT_READ_CHAR_REQ , RBLE_GATT_SET_PERM , RBLE_GATT_SVC_128_LIST ,
RBLE_GATT_SVC_LIST , RBLE_GATT_SVC_RANGE_LIST
start_interrupt_enabled : riic_slave_instance_ctrl_t
start_mode : wdt_cfg_t
startEncryption : sf_ble_api_t
startMeasurement : cac_api_t
startupAreaSelect : flash_api_t
state : arc4_ctrl_t , comparator_status_t , crypto_ctrl_t , ctsu_instance_ctrl_t ,
display_status_t , glcd_instance_ctrl_t , ptp_cfg_t , ptp_instance_ctrl_t ,
sf_ble_set_tx_pwr_info_t , sf_cellular_socket_info_t , sf_el_gx_instance_ctrl_t ,
sf_jpeg_decode_instance_ctrl_t , sf_message_instance_ctrl_t , sf_uart_comms_instance_ctrl_t
, slcdc_instance_ctrl_t
stateGet : pdc_api_t
station_inactivity_timeout : sf_wifi_cfg_t
statisticsGet : sf_cellular_api_t , sf_wifi_api_t
status : ctsu_correction_info_t , input_capture_info_t , jpeg_decode_callback_args_t ,
jpeg_decode_instance_ctrl_t , jpeg_encode_callback_args_t , jpeg_encode_instance_ctrl_t ,
lvd_callback_args_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Cfm_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Notify_Comp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Set_Data_Complete_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Set_Perm_Complete_t , rtc_info_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,189 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

, sdmmc_instance_ctrl_t , sf_ble_connect_info_t , sf_ble_disconnect_t ,
sf_ble_sec_enc_start_ind_t , sf_crypto_cipher_instance_ctrl_t , sf_crypto_hash_instance_ctrl_t
, sf_crypto_instance_ctrl_t , sf_crypto_key_installation_instance_ctrl_t ,
sf_crypto_key_instance_ctrl_t , sf_crypto_signature_instance_ctrl_t ,
sf_el_fx_media_ebr_info_t , sf_el_fx_media_global_open_info_t , sf_el_fx_media_mbr_info_t ,
sf_touch_ctsu_button_info_t , sf_audio_playback_instance_ctrl_t
statusClear : doc_api_t , lvd_api_t , wdt_api_t
statusGet : comparator_api_t , crypto_api_t , display_api_t , doc_api_t , flash_api_t ,
jpeg_decode_api_t , jpeg_encode_api_t , lvd_api_t , opamp_api_t , qspi_api_t ,
sf_crypto_api_t , sf_jpeg_decode_api_t , wdt_api_t
stca_mode : ptp_instance_ctrl_t
stca_sync_mode : ptp_cfg_t
stop : dac_api_t , display_api_t , i2s_api_t , opamp_api_t , ptp_api_t , sf_adc_periodic_api_t ,
sf_audio_playback_api_t , sf_audio_playback_hw_api_t , sf_audio_record_api_t ,
sf_touch_panel_v2_api_t , slcdc_api_t , timer_api_t , transfer_api_t
Stop_ActivationRequest : transfer_api_t
stop_bitmask : gpt_input_capture_instance_ctrl_t
stop_bits : uart_cfg_t
stop_control : wdt_cfg_t
stop_level : gpt_output_pin_t
stopMeasurement : cac_api_t
stream_end : sf_audio_playback_data_t
subosc_state : cgc_clocks_cfg_t
sup_timeout : sf_ble_cfg_t
sup_to : sf_ble_connect_info_t
supports_8_bit_mmc : bsp_feature_sdhi_t
suppress_carry_event_callback : rtc_instance_ctrl_t
svc_code : sb_ble_prf_ias_set_alert_t
switches : opamp_instance_ctrl_t
sync_edge : display_output_cfg_t
sync_polarity : display_timing_t
sync_width : display_timing_t
synchronization_jump_width : can_bit_timing_cfg_t
sys_cfg : cgc_clocks_cfg_t
system_clock : cgc_clocks_cfg_t
systemClockFreqGet : cgc_api_t
systemClockGet : cgc_api_t
systemClockSet : cgc_api_t
systickUpdate : cgc_api_t
SZ : dtc_reg_t

- t -

tcon_de : glcd_cfg_t
tcon_hsync : glcd_cfg_t
tcon_vsync : glcd_cfg_t
tei_ipl : i2c_cfg_t , spi_cfg_t , uart_cfg_t
tei_irq : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , rspi_instance_ctrl_t ,
sci_i2c_instance_ctrl_t , sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t
temp_info : sf_ble_prf_htp_temp_info_ind_t
temp_val : sf_ble_prf_htp_temp_info_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,190 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

text : sf_ble_anp_api_new_alert_t
text_size : sf_ble_anp_api_new_alert_t
thread : sf_audio_playback_common_instance_ctrl_t , sf_thread_monitor_instance_ctrl_t ,
sf_touch_panel_v2_instance_ctrl_t
thread_counters : sf_thread_monitor_instance_ctrl_t
threadRegister : sf_thread_monitor_api_t
threadUnregister : sf_thread_monitor_api_t
threshold : gamma_correction_t , sf_touch_ctsu_button_cfg_t , sf_touch_ctsu_slider_cfg_t ,
sf_touch_ctsu_wheel_cfg_t
time : rtc_alarm_time_t
time_segment_1 : can_bit_timing_cfg_t
time_segment_2 : can_bit_timing_cfg_t
time_slice : slcdc_cfg_t
time_source : sf_ble_cts_ref_time_t
time_zone : sf_ble_cts_local_time_t
timeout : sf_cellular_socket_info_t , wdt_cfg_t
timeout_clocks : wdt_timeout_values_t
timeout_mode : riic_extended_cfg , riic_instance_ctrl_t
timeout_period_msec : sf_thread_monitor_instance_ctrl_t
timeout_period_watchdog_clocks : sf_thread_monitor_instance_ctrl_t
timeout_seconds : sf_wifi_wps_t
timeout_ticks : sf_memory_qspi_nor_cfg_t , sf_memory_qspi_nor_instance_ctrl_t
timeoutGet : wdt_api_t
timer_channel : ptp_callback_args_t
tk_info : sf_ble_sm_tk_ind_t
tk_key : sf_ble_sm_tk_ind_t
tk_req_status : sf_ble_sm_tk_ind_t
total : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , sci_i2c_instance_ctrl_t
total_count : sf_el_fx_media_partition_info_t
total_cyc : display_timing_t
total_lines_decoded : jpeg_decode_instance_ctrl_t
total_partitions : sf_el_fx_config_t
total_scan_duration : sf_ble_scan_info_t
total_size_bytes : qspi_info_t , qspi_instance_ctrl_t
touchDataGet : sf_touch_panel_v2_api_t
transaction_completed : sci_i2c_instance_ctrl_t
transaction_count : riic_slave_instance_ctrl_t
transfer_block_current : sdmmc_instance_ctrl_t
transfer_block_size : sdmmc_instance_ctrl_t
transfer_blocks : UX_DCD_SYNERGY_PAYLOAD_TRANSFER
transfer_blocks_total : sdmmc_instance_ctrl_t
transfer_dir : sdmmc_instance_ctrl_t
transfer_flag : ptpedmac_instance_ctrl_t
transfer_in_progress : pdc_instance_ctrl_t , sdmmc_info_t , sdmmc_instance_ctrl_t
transfer_irq : sdmmc_instance_ctrl_t
transfer_length_max : transfer_properties_t
transfer_length_remaining : transfer_properties_t
transfer_size : adc_info_t
transfer_times : UX_DCD_SYNERGY_PAYLOAD_TRANSFER
transfer_width : UX_DCD_SYNERGY_PAYLOAD_TRANSFER ,
UX_HCD_SYNERGY_PAYLOAD_TRANSFER
transmit : sf_cellular_api_t , sf_wifi_api_t
transpktsize : sf_cellular_qctlcatm1_socket_cfg_t
trigger : adc_cfg_t , adc_instance_ctrl_t , comparator_cfg_t , dmac_instance_ctrl_t ,
dtc_instance_ctrl_t , external_irq_cfg_t , keymatrix_cfg_t , sdadc_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,191 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

trigger_channel_0 : opamp_on_opamp_cfg_t
trigger_channel_1 : opamp_on_opamp_cfg_t
trigger_channel_2 : opamp_on_opamp_cfg_t
trigger_channel_3 : opamp_on_opamp_cfg_t
trigger_enabled : sdadc_instance_ctrl_t
trigger_group_b : adc_cfg_t
triggerSet : external_irq_api_t , keymatrix_api_t
trim : opamp_api_t
trim_capable : opamp_instance_ctrl_t
trim_channel : opamp_instance_ctrl_t
trim_input : opamp_instance_ctrl_t
trim_state : opamp_instance_ctrl_t
tsn_calib_available : adc_instance_ctrl_t
tsn_calibration_available : bsp_feature_adc_t
tsn_control_available : bsp_feature_adc_t
tsn_ctrl_available : adc_instance_ctrl_t
tsn_slope : bsp_feature_adc_t
tuning : ctsu_instance_ctrl_t
tuning_mutual_target_value : ctsu_cfg_t , ctsu_instance_ctrl_t
tuning_self_target_value : ctsu_cfg_t , ctsu_instance_ctrl_t
tunning_enable : ctsu_cfg_t
tx_bytes : sf_cellular_stats_t
tx_err : sf_cellular_stats_t , sf_wifi_stats_t
tx_in_use : ssi_instance_ctrl_t
tx_pkts : sf_wifi_stats_t
tx_power : sf_wifi_cfg_t
tx_src_bytes : sci_uart_instance_ctrl_t , ssi_instance_ctrl_t
tx_timeout : sf_cellular_socket_info_t
tx_zero_copy : sf_wifi_nsal_cfg_t
txi_ipl : i2c_cfg_t , i2s_cfg_t , spi_cfg_t , uart_cfg_t
txi_irq : riic_instance_ctrl_t , riic_slave_instance_ctrl_t , rspi_instance_ctrl_t ,
sci_i2c_instance_ctrl_t , sci_spi_instance_ctrl_t , sci_uart_instance_ctrl_t , ssi_instance_ctrl_t
type : can_frame_t , RBLE_GATT_EVENT , sf_audio_playback_data_t ,
sf_ble_prf_htp_temp_info_t
tz_upd_mode : sf_cellular_cfg_t

- u -

uart_comm_mode : sci_uart_instance_ctrl_t , uart_on_sci_cfg_t
uart_rs485_mode : sci_uart_instance_ctrl_t , uart_on_sci_cfg_t
underflow_1_ipl : display_cfg_t
underflow_2_ipl : display_cfg_t
uniqueIdGet : fmi_api_t
unit : adc_callback_args_t , adc_cfg_t , adc_instance_ctrl_t , sdadc_instance_ctrl_t ,
timer_cfg_t
unlock : sf_comms_api_t , sf_crypto_api_t , sf_i2c_api_t , sf_spi_api_t
unread_count : sf_ble_anp_api_unread_alert_t
unused : analog_connect_cfg_t
update_bd_addr : sf_ble_cfg_t
update_hz : sf_touch_panel_v2_cfg_t , sf_touch_panel_v2_instance_ctrl_t
update_result : sf_ble_prf_rtus_time_updt_state_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,192 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

update_state : sf_ble_prf_tip_write_data_t
updateAnnounceFlags : ptp_api_t
updateAnnounceMsgs : ptp_api_t
updateClockID : ptp_api_t
updateDelayMsgInterval : ptp_api_t
updateDomainNumber : ptp_api_t
updateFlashClockFreq : flash_api_t
updateHash : hash_api_t
updateSyncAnnounceMsgInterval : ptp_api_t
usbClockCfg : cgc_api_t
username : sf_cellular_provisioning_t
uuid : RBLE_GATT_CHAR_128_LIST , RBLE_GATT_CHAR_DESC_128_LIST ,
RBLE_GATT_CHAR_LIST , RBLE_GATT_INCL_128_LIST , RBLE_GATT_INCL_LIST ,
RBLE_GATT_READ_CHAR_REQ , sf_ble_char_desc_discovery_rsp_t ,
sf_ble_char_discovery_req_t , sf_ble_char_discovery_rsp_t , sf_ble_char_read_req_t ,
sf_ble_service_discovery_req_t , sf_ble_service_discovery_rsp_t
uuid128 : sf_ble_uuid_t
uuid16 : sf_ble_uuid_t
uuid32 : sf_ble_uuid_t
uuid_length : sf_ble_uuid_t
ux_dcd_synergy_D0_fifo_state : UX_DCD_SYNERGY
ux_dcd_synergy_D1_fifo_state : UX_DCD_SYNERGY
ux_dcd_synergy_ep_slave_transfer_request_semaphore : UX_DCD_SYNERGY_ED
ux_dcd_synergy_pipe : UX_DCD_SYNERGY
ux_synergy_next_available_bufnum : UX_HCD_SYNERGY

- v -

val_hdl : RBLE_GATT_SET_DATA
val_len :
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Desc_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Mult_Resp_t ,
RBLE_GATT_SET_DATA , RBLE_GATT_WRITE_CHAR_REQ , sf_ble_long_attr_info_t
valid_opamps : opamp_instance_ctrl_t
value : RBLE_GATT_DESIRED_TYPE ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Ind_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Handle_Value_Notif_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Desc_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Read_Char_Long_Resp_t ,
RBLE_GATT_EVENT::Event_Gatt_Parameter_u::RBLE_GATT_Write_Cmd_Ind_t ,
RBLE_GATT_QUERY_RESULT , RBLE_GATT_RELIABLE_WRITE , RBLE_GATT_SET_DATA ,
RBLE_GATT_UUID_TYPE , RBLE_GATT_WRITE_CHAR_REQ , RBLE_GATT_WRITE_RELIABLE_REQ
, sf_ble_long_attr_info_t , sf_ble_prf_hid_report_desc_t
value_handle : sf_ble_char_discovery_rsp_t
value_size : RBLE_GATT_DESIRED_TYPE , RBLE_GATT_UUID_TYPE ,
sf_ble_prf_hid_report_desc_t
variant : gpt_input_capture_instance_ctrl_t , gpt_instance_ctrl_t , input_capture_info_t
vendorId : sf_ble_prf_dis_pnpid_t
vendorIdSource : sf_ble_prf_dis_pnpid_t
verify : dsa_api_t , ecc_api_t , rsa_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,193 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

verifyFinal : sf_crypto_signature_api_t
verifyUpdate : sf_crypto_signature_api_t
version : sf_ble_chipset_info_t , sf_i2c_api_t , sf_spi_api_t , sf_wifi_ip_addr_t ,
sf_wifi_qca4010_ip_addr_t
version_id : ssp_pack_version_t , ssp_version_t
versionGet : adc_api_t , aes_api_t , analog_connect_api_t , arc4_api_t , cac_api_t , can_api_t
, cgc_api_t , comparator_api_t , crc_api_t , crypto_api_t , ctsu_api_t , dac_api_t ,
display_api_t , doc_api_t , dsa_api_t , ecc_api_t , elc_api_t , external_irq_api_t , flash_api_t ,
fmi_api_t , hash_api_t , i2c_api_master_t , i2c_api_slave_t , i2s_api_t , input_capture_api_t ,
ioport_api_t , jpeg_decode_api_t , jpeg_encode_api_t , key_installation_api_t ,
keymatrix_api_t , lpmv2_api_t , lvd_api_t , opamp_api_t , pdc_api_t , ptp_api_t ,
ptpedmac_api_t , qspi_api_t , rsa_api_t , rtc_api_t , sdmmc_api_t , sf_adc_periodic_api_t ,
sf_audio_playback_api_t , sf_audio_playback_hw_api_t , sf_audio_record_api_t , sf_ble_api_t ,
sf_ble_onboard_profile_api_t , sf_block_media_api_t , sf_cellular_api_t ,
sf_cellular_socket_api_t , sf_comms_api_t , sf_console_api_t , sf_crypto_api_t ,
sf_crypto_cipher_api_t , sf_crypto_hash_api_t , sf_crypto_key_api_t ,
sf_crypto_key_installation_api_t , sf_crypto_signature_api_t , sf_crypto_trng_api_t ,
sf_el_gx_api_t , sf_external_irq_api_t , sf_jpeg_decode_api_t , sf_memory_api_t ,
sf_message_api_t , sf_power_profiles_v2_api_t , sf_socket_api_t , sf_thread_monitor_api_t ,
sf_touch_ctsu_api_t , sf_touch_panel_chip_api_t , sf_touch_panel_v2_api_t , sf_wifi_api_t ,
sf_wifi_onchip_stack_api_t , sf_wifi_qca4010_api_t , sf_wifi_qca4010_onchip_stack_api_t ,
sf_wifi_qca4010_socket_api_t , slcdc_api_t , spi_api_t , tdes_api_t , timer_api_t ,
transfer_api_t , trng_api_t , uart_api_t , wdt_api_t
vertical_resolution : jpeg_encode_cfg_t , jpeg_encode_instance_ctrl_t ,
jpeg_encode_raw_image_parameters
voltage_ref : adc_cfg_t , adc_instance_ctrl_t
voltage_slope : lvd_cfg_t
voltage_threshold : lvd_cfg_t
volume : sf_audio_playback_common_instance_ctrl_t
volumeSet : sf_audio_playback_api_t
vref_src : adc_on_sdadc_cfg_t
vref_voltage : adc_on_sdadc_cfg_t
vsize : display_input_cfg_t , glcd_ctrl_t
vsize_pixels : sf_touch_panel_chip_on_sx8654_cfg_t ,
sf_touch_panel_chip_sx8654_instance_ctrl_t , sf_touch_panel_v2_cfg_t ,
sf_touch_panel_v2_instance_ctrl_t
vsync : pdc_state_t
vsync_polarity : pdc_cfg_t , pdc_instance_ctrl_t
vtiming : display_output_cfg_t

- w -

wait : sf_external_irq_api_t , sf_jpeg_decode_api_t
wait_option : sf_crypto_cfg_t , sf_crypto_instance_ctrl_t
wave_form : slcdc_cfg_t
wds : sf_wifi_cfg_t
wdt_open : wdt_instance_ctrl_t
whitelistAdd : sf_ble_api_t
whitelistDel : sf_ble_api_t
wifiStatusGet : sf_wifi_qca4010_api_t
window_end : wdt_cfg_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,194 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

window_start : wdt_cfg_t
winfo : sf_touch_ctsu_instance_ctrl_t
wmm : sf_wifi_cfg_t
word_length : i2s_cfg_t
work_buffer : aes_ctrl_t
work_memory_size_bytes : sf_message_cfg_t
wps_key : sf_wifi_wps_t
wps_mode : sf_wifi_wps_t
wpsStart : sf_wifi_api_t
wr_index : ctsu_instance_ctrl_t
wr_offset : RBLE_GATT_WRITE_CHAR_REQ
write : can_api_t , dac_api_t , doc_api_t , flash_api_t , i2c_api_master_t , i2s_api_t ,
sdmmc_api_t , sf_block_media_api_t , sf_comms_api_t , sf_console_api_t , sf_i2c_api_t ,
sf_memory_api_t , sf_spi_api_t , slcdc_api_t , spi_api_t , uart_api_t
write_bytes_max : uart_info_t
write_irq : ctsu_cfg_t , ctsu_instance_ctrl_t
write_protect : sdmmc_extended_cfg_t , sdmmc_instance_ctrl_t
write_protected : sdmmc_info_t
writeIo : sdmmc_api_t
writeIoExt : sdmmc_api_t
writeRead : i2s_api_t , sf_spi_api_t , spi_api_t
ws_continue : i2s_cfg_t

- x -

x : display_coordinate_t , sf_touch_panel_v2_calibrate_t , sf_touch_panel_v2_payload_t
x_capture_pixels : pdc_cfg_t , pdc_instance_ctrl_t
x_capture_start_pixel : pdc_cfg_t , pdc_instance_ctrl_t
x_resolution_pixels : pdc_instance_ctrl_t
xip_mode : qspi_instance_ctrl_t

- y -

y : display_coordinate_t , sf_touch_panel_v2_calibrate_t , sf_touch_panel_v2_payload_t
y_capture_pixels : pdc_cfg_t , pdc_instance_ctrl_t
y_capture_start_pixel : pdc_cfg_t , pdc_instance_ctrl_t
y_resolution_pixels : pdc_instance_ctrl_t
year : sf_ble_prf_cts_date_time_t
year_match : rtc_alarm_time_t

- z -

zeroPaddingDecrypt : aes_api_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,195 / 5,198

Synergy Software Package

User’s Manual
Structure Index > Data Fields > Variables >

zeroPaddingEncrypt : aes_api_t
zeros_written : ssi_instance_ctrl_t

R11UM0161EU0160 Revision 1.60
Mar.29.2024

Page 5,196 / 5,198

Renesas SynergyTM SSP
Copyright © (2024) Renesas Electronics Corporation. All Rights Reserved.

User’s Manual

Publication Date: Revision 1.60 Mar.29.2024

 Renesas SynergyTM SSP v2.6.0

User’s Manual

 Renesas Electronics Corporation

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

	INDEX
	Chapter 1 Renesas Synergy™ Software Package Introduction
	1.1 Introduction to the SSP User's Manual
	1.2 Subjects Covered in this Manual

	Chapter 2 SSP Overview
	2.1 SSP Overview
	2.1.1 Introduction
	2.1.1.1 Purpose
	2.1.1.2 Overview
	2.1.1.3 Ease of Use
	2.1.1.4 Scalability

	2.1.2 SSP Architecture
	2.1.2.1 Renesas Synergy Software Package (SSP) Architecture
	2.1.2.2 SSP Modules
	2.1.2.3 SSP Stacks
	2.1.2.4 SSP Interfaces
	2.1.2.5 Build Time Configuration
	2.1.2.6 Interface Extensions
	2.1.2.7 SSP Predefined Layers
	2.1.2.8 SSP File Structure
	2.1.2.9 SSP Connecting Layers
	2.1.2.10 SSP Architecture In Practice
	2.1.2.11 Using SSP Modules
	2.1.2.12 Coding Style

	2.1.3 BSP Architecture
	2.1.3.1 What Does the BSP Do?
	2.1.3.2 BSP Related Terminology
	2.1.3.3 BSP Directory Structure
	2.1.3.4 Configuring the BSP
	2.1.3.5 BSP Configuration Settings
	2.1.3.6 BSP Configuration Files
	2.1.3.7 BSP Pin Configuration
	2.1.3.8 BSP Clock Configuration
	2.1.3.9 System Interrupts
	2.1.3.10 Group Interrupts
	2.1.3.11 Custom BSP Board support
	2.1.3.12 BSP API functions

	2.1.4 Key Features
	2.1.4.1 Azure RTOS ThreadX® RTOS
	2.1.4.2 Azure RTOS GUIX™
	2.1.4.3 Azure RTOS USBX™
	2.1.4.4 Azure RTOS FileX®
	2.1.4.5 Azure RTOS NetX™
	2.1.4.6 Application Frameworks
	2.1.4.7 Security Cryptographic (SCE) Library
	2.1.4.8 CMSIS DSP Library
	2.1.4.9 CMSIS Neural Network Library
	2.1.4.10 AzureRTOS NetX Duo™
	2.1.4.11 Azure RTOS NetX™ Applications (IPv4 Networking Services)
	2.1.4.12 Azure RTOS NetX Duo™ Applications (IPv4/v6 Networking Services)
	2.1.4.13 Azure RTOS NetX Secure
	2.1.4.14 Azure RTOS MQTT client for NetX Duo
	2.1.4.15 Memory Support
	2.1.4.16 Human Machine Interface (HMI)
	2.1.4.17 Hardware Abstract Layer (HAL) Driver Modules
	2.1.4.18 GPIO and Key Interrupts

	Chapter 3 Starting Development
	3.1 e2 studio ISDE User Guide
	3.1.1 Using the e2 studio ISDE
	3.1.2 What is the e2 studio ISDE?
	3.1.3 e2 studio ISDE Prerequisites
	3.1.3.1 Obtaining a Synergy Kit
	3.1.3.2 PC Requirements
	3.1.3.3 Installing e2 studio and the SSP
	3.1.3.4 Choosing a Toolchain
	3.1.3.5 Adding the IAR Embedded Workbench for Renesas Synergy Compiler into e2 studio

	3.1.4 What is a Project?
	3.1.5 Creating a Project
	3.1.5.1 Creating a New Project
	3.1.5.2 Selecting a Board and Toolchain
	3.1.5.3 Selecting a Project Template

	3.1.6 Configuring a Project
	3.1.6.1 Configuring the BSP with the ISDE
	3.1.6.2 Configuring Clocks
	3.1.6.3 Configuring Pins

	3.1.7 Adding Threads and Drivers
	3.1.7.1 Adding and Configuring HAL Drivers
	3.1.7.2 Adding Drivers to a Thread and Configuring the Drivers
	3.1.7.3 Configuring Threads
	3.1.7.4 Configuring Interrupts

	3.1.8 Configuring the SSP Messaging Framework
	3.1.8.1 Adding an Event Class
	3.1.8.2 Adding an Event
	3.1.8.3 Configuring the Messaging Subscriber List
	3.1.8.4 Generating Files for the Messaging Framework

	3.1.9 Reviewing and Adding Components
	3.1.10 Writing the Application
	3.1.10.1 RTOS-independent Applications
	3.1.10.2 ThreadX Applications

	3.1.11 Debugging the Project
	3.1.12 Using TraceX with a Synergy Project
	3.1.13 Modifying Toolchain Settings
	3.1.14 e2 studio ISDE Usage Notes
	3.1.14.1 Including ThreadX sources
	3.1.14.2 Using Synergy Developer Assistance

	3.2 Tutorial: Your First Synergy Project - Blinky
	3.2.1 Tutorial Blinky
	3.2.2 What Does Blinky Do?
	3.2.3 Prerequisites
	3.2.4 Create a New Project for Blinky
	3.2.4.1 Details about the Blinky Configuration
	3.2.4.2 Configuring the Blinky Clocks
	3.2.4.3 Configuring the Blinky Pins
	3.2.4.4 Configuring the Parameters for Blinky Components
	3.2.4.5 Where is main()?
	3.2.4.6 Blinky Example Code

	3.2.5 Build the Blinky Project
	3.2.6 Debug the Blinky Project
	3.2.6.1 Debug prerequisites
	3.2.6.2 Debug steps
	3.2.6.3 Details about the Debug Process

	3.2.7 Run the Blinky Project

	3.3 Tutorial: Using HAL Drivers - Programming the WDT
	3.3.1 Application WDT
	3.3.2 Creating a WDT Application Using the Synergy SSP and ISDE
	3.3.2.1 Using the SSP and the e2 studio ISDE
	3.3.2.2 The WDT Application
	3.3.2.3 WDT Application flow

	3.3.3 Creating the Project with the ISDE
	3.3.4 Configuring the Project with the ISDE
	3.3.4.1 BSP Tab
	3.3.4.2 Clocks Tab
	3.3.4.3 Pins Tab
	3.3.4.4 Threads Tab
	3.3.4.5 Components Tab

	3.3.5 WDT Generated Project Files
	3.3.5.1 WDT hal_data.h
	3.3.5.2 WDT hal_data.c
	3.3.5.3 WDT main.c
	3.3.5.4 WDT hal_entry.c

	3.3.6 Building and Testing the Project

	3.4 IAR Embedded Workbench for Renesas
	3.4.1 Using IAR Embedded Workbench for Synergy
	3.4.2 What is IAR EW for Synergy?
	3.4.3 IAR EW Key Features
	3.4.4 What is Synergy Standalone Configurator (SSC)?
	3.4.5 Installing the Tools
	3.4.6 Creating a Renesas Synergy Project using IAR EW for Synergy and SSC

	Chapter 4 Module Overviews
	4.1 Framework Layer
	4.1.1 ADC Periodic Framework
	4.1.1.1 ADC Periodic Framework Module Introduction
	4.1.1.2 ADC Periodic Framework Module APIs Overview
	4.1.1.3 ADC Periodic Framework Module Operational Overview
	4.1.1.4 Including the ADC Periodic Framework Module in an Application
	4.1.1.5 Configuring the ADC Periodic Framework Module
	4.1.1.6 Using the ADC Periodic Framework Module in an Application

	4.1.2 Audio Playback Framework
	4.1.2.1 Audio Playback Framework Introduction
	4.1.2.2 Audio Playback Framework Module APIs Overview
	4.1.2.3 Audio Playback Framework Module Operational Overview
	4.1.2.4 Including the Audio Playback Framework Module in an Application
	4.1.2.5 Configuring the Audio Playback Framework Module
	4.1.2.6 Using the Audio Playback Framework Module in an Application

	4.1.3 Audio Playback Hardware Framework Shared on sf_audio_playback_hw_dac
	4.1.3.1 Audio Playback DAC Framework Introduction
	4.1.3.2 Audio Playback DAC Framework Module APIs Overview
	4.1.3.3 Audio Playback DAC Framework Module Operational Overview
	4.1.3.4 Including the Audio Playback DAC Framework Module in an Application
	4.1.3.5 Configuring the Audio Playback DAC Framework Module
	4.1.3.6 Using the Audio Playback DAC Framework Module in an Application

	4.1.4 Audio Playback Hardware Framework Shared on sf_audio_playback_hw_i2s
	4.1.4.1 Audio Playback I2S Framework Introduction
	4.1.4.2 Audio Playback I2S Framework Module APIs Overview
	4.1.4.3 Audio Playback I2S Framework Module Operational Overview
	4.1.4.4 Including the Audio Playback I2S Framework Module in an Application
	4.1.4.5 Configuring the Audio Playback I2S Framework Module
	4.1.4.6 Using the Audio Playback I2S Framework Module in an Application

	4.1.5 Audio Record ADC Framework
	4.1.5.1 Audio Record ADC Framework Module Introduction
	4.1.5.2 Audio Record ADC Framework Module APIs Overview
	4.1.5.3 Audio Record ADC Framework Module Operational Overview
	4.1.5.4 Including the Audio Record ADC Framework Module in an Application
	4.1.5.5 Configuring the Audio Record ADC Framework Module
	4.1.5.6 Using the Audio Record ADC Framework Module in an Application

	4.1.6 Audio Record I2S Framework
	4.1.6.1 Audio Record I2S Framework Introduction
	4.1.6.2 Audio Record I2S Framework Module APIs Overview
	4.1.6.3 Audio Record I2S Framework Module Operational Overview
	4.1.6.4 Including the Audio Record I2S Framework Module in an Application
	4.1.6.5 Configuring the Audio Record I2S Framework Module
	4.1.6.6 Using the Audio Record I2S Framework Module in an Application

	4.1.7 Block Media Framework on sf_block_media_lx_nor
	4.1.7.1 Block Media Framework Module Introduction
	4.1.7.2 Block Media Framework Module APIs Overview
	4.1.7.3 Block Media Framework Module Operational Overview
	4.1.7.4 Including the Block Media Framework Module in an Application
	4.1.7.5 Configuring the Block Media Framework Module
	4.1.7.6 Using the Block Media Framework Module in an Application

	4.1.8 Block Media Framework on sf_block_media_qspi
	4.1.8.1 Block Media QSPI Framework Module Introduction
	4.1.8.2 Block Media QSPI Framework Module APIs Overview
	4.1.8.3 Block Media QSPI Framework Module Operational Overview
	4.1.8.4 Including the Block Media QSPI Framework Module in an Application
	4.1.8.5 Configuring the Block Media QSPI Framework Module
	4.1.8.6 Using the Block Media QSPI Framework Module in an Application

	4.1.9 Block Media Framework on sf_block_media_ram
	4.1.9.1 Block Media RAM Framework Module Introduction
	4.1.9.2 Block Media RAM Framework Module APIs Overview
	4.1.9.3 Block Media RAM Framework Module Operational Overview
	4.1.9.4 Including the Block Media RAM Framework Module in an Application
	4.1.9.5 Configuring the Block Media RAM Framework Module
	4.1.9.6 Using the Block Media RAM Framework Module in an Application

	4.1.10 Block Media Framework on sf_block_media_sdmmc
	4.1.10.1 Block Media SDMMC Framework Module Introduction
	4.1.10.2 Block Media SDMMC Framework Module APIs Overview
	4.1.10.3 Block Media SDMMC Framework Module Operational Overview
	4.1.10.4 Including the Block Media SDMMC Framework Module in an Application
	4.1.10.5 Configuring the Block Media SDMMC Framework Module
	4.1.10.6 Using the Block Media SDMMC Framework Module in an Application

	4.1.11 BLE Framework
	4.1.11.1 BLE Framework Introduction
	4.1.11.2 BLE Framework Module APIs Overview
	4.1.11.3 BLE Framework Module Operational Overview
	4.1.11.4 Including the BLE Framework Module in an Application
	4.1.11.5 Configuring the BLE Framework Module
	4.1.11.6 Using the BLE Framework Module in an Application

	4.1.12 Cellular Framework
	4.1.12.1 Cellular Framework Introduction
	4.1.12.2 Cellular Framework Module APIs Overview
	4.1.12.3 Cellular Framework Module Operational Overview
	4.1.12.4 Including the Cellular Framework Module in an Application
	4.1.12.5 Configuring the Cellular Framework Module
	4.1.12.6 Using the Cellular Framework Module in an Application

	4.1.13 Telnet Communications Framework on sf_comms_telnet
	4.1.13.1 Telnet Communications Framework Introduction
	4.1.13.2 Telnet Communications Framework Module APIs Overview
	4.1.13.3 Telnet Communications Framework Module Operational Overview
	4.1.13.4 Including the Telnet Communications Framework Module in an Application
	4.1.13.5 Configuring the Telnet Communications Framework Module
	4.1.13.6 Using the Telnet Communications Framework Module in an Application

	4.1.14 Communications Framework on sf_el_ux_comms_v2
	4.1.14.1 Communications Framework on USBX v2 Module Introduction
	4.1.14.2 Communications Framework on USBX v2 Module APIs Overview
	4.1.14.3 Communications Framework on USBX v2 Module Operational Overview
	4.1.14.4 Including the Communications Framework on USBX v2 Module in an Application
	4.1.14.5 Configuring the Communications Framework v2 on USBX Module
	4.1.14.6 Using the Communications Framework on USBX v2 Module in an Application

	4.1.15 Console Framework
	4.1.15.1 Console Framework Introduction
	4.1.15.2 Console Framework Module APIs Overview
	4.1.15.3 Console Framework Module Operational Overview
	4.1.15.4 Including the Console Framework Module in an Application
	4.1.15.5 Configuring the Console Framework Module
	4.1.15.6 Using the Console Framework Module in an Application

	4.1.16 Crypto Framework
	4.1.16.1 Crypto Framework Introduction
	4.1.16.2 Crypto Framework Module APIs Overview
	4.1.16.3 Crypto Framework Module Operational Overview
	4.1.16.4 Including the Crypto Framework Module in an Application
	4.1.16.5 Configuring the Crypto Framework Module
	4.1.16.6 Using the Crypto Framework Module in an Application

	4.1.17 Capacitive Touch v2 Framework
	4.1.17.1 Capacitive Touch v2 Module Introduction
	4.1.17.2 Capacitive Touch v2 Module Features
	4.1.17.3 Capacitive Touch v2 Module Configuration
	4.1.17.4 Capacitive Touch v2 Module Usage Notes
	4.1.17.5 Capacitive Touch v2 Module Examples

	4.1.18 External IRQ Framework
	4.1.18.1 External IRQ Framework Module Introduction
	4.1.18.2 External IRQ Framework Module APIs Overview
	4.1.18.3 External IRQ Framework Module Operational Overview
	4.1.18.4 Including the External IRQ Framework Module in an Application
	4.1.18.5 Configuring the External IRQ Framework Module
	4.1.18.6 Using the External IRQ Framework Module in an Application

	4.1.19 I2C Framework
	4.1.19.1 I2C Framework Introduction
	4.1.19.2 I2C Framework Module APIs Overview
	4.1.19.3 I2C Framework Module Operational Overview
	4.1.19.4 Including the I2C Framework Module in an Application
	4.1.19.5 Configuring the I2C Framework Module
	4.1.19.6 Using the I2C Framework Module in an Application

	4.1.20 JPEG Decode Framework
	4.1.20.1 JPEG Decode Framework Module Introduction
	4.1.20.2 JPEG Decode Framework Module APIs Overview
	4.1.20.3 JPEG Decode Framework Module Operational Overview
	4.1.20.4 Including the JPEG Decode Framework Module in an Application
	4.1.20.5 Configuring the JPEG Decode Framework Module
	4.1.20.6 Using the JPEG Decode Framework Module in an Application

	4.1.21 Memory Framework on sf_memory_qspi_nor
	4.1.21.1 Memory Framework Module Introduction
	4.1.21.2 Memory Framework Module APIs Overview
	4.1.21.3 Memory Framework Module Operational Overview
	4.1.21.4 Including the Memory Framework Module in an Application
	4.1.21.5 Configuring the Memory Framework Module
	4.1.21.6 Using the Memory Framework Module in an Application

	4.1.22 Messaging Framework
	4.1.22.1 Messaging Framework Module Introduction
	4.1.22.2 Messaging Framework Module APIs Overview
	4.1.22.3 Messaging Framework Module Operational Overview
	4.1.22.4 Including the Messaging Framework Module in an Application
	4.1.22.5 Configuring the Messaging Framework Module
	4.1.22.6 Using the Messaging Framework Module in an Application

	4.1.23 Power Profiles V2 Framework
	4.1.23.1 Power Profiles V2 Framework Introduction
	4.1.23.2 Power Profiles V2 Framework Module APIs Overview
	4.1.23.3 Power Profiles V2 Framework Module Operational Overview
	4.1.23.4 Including the Power Profiles V2 Framework Module in an Application
	4.1.23.5 Configuring the Power Profiles V2 Framework Module
	4.1.23.6 Using the Power Profiles V2 Framework Module in an Application

	4.1.24 SPI Framework
	4.1.24.1 SPI Framework Introduction
	4.1.24.2 SPI Framework Module APIs Overview
	4.1.24.3 SPI Framework Module Operational Overview
	4.1.24.4 Including the SPI Framework Module in an Application
	4.1.24.5 Configuring the SPI Framework Module
	4.1.24.6 Using the SPI Framework Module in an Application

	4.1.25 Thread Monitor Framework
	4.1.25.1 Thread Monitor Framework Module Introduction
	4.1.25.2 Thread Monitor Framework Module APIs Overview
	4.1.25.3 Thread Monitor Framework Module Operational Overview
	4.1.25.4 Including the Thread Monitor Framework Module in an Application
	4.1.25.5 Configuring the Thread Monitor Framework Module
	4.1.25.6 Using the Thread Monitor Framework Module in an Application

	4.1.26 Touch Panel V2 Framework
	4.1.26.1 Touch Panel V2 Framework Introduction
	4.1.26.2 Touch Panel V2 Framework Module APIs Overview
	4.1.26.3 Touch Panel V2 Framework Module Operational Overview
	4.1.26.4 Including the Touch Panel V2 Framework Module in an Application
	4.1.26.5 Configuring the Touch Panel V2 Framework Module
	4.1.26.6 Using the Touch Panel V2 Framework Module in an Application

	4.1.27 UART Communications Framework
	4.1.27.1 UART Communications Framework Module Introduction
	4.1.27.2 UART Communications Framework Module APIs Overview
	4.1.27.3 UART Communications Framework Module Operational Overview
	4.1.27.4 Including the UART Communications Framework Module in an Application
	4.1.27.5 Configuring the UART Communications Framework Module
	4.1.27.6 Using the UART Communications Framework Module in an Application

	4.1.28 Wi-Fi Framework
	4.1.28.1 Wi-Fi Framework Introduction
	4.1.28.2 Wi-Fi Framework Module APIs Overview
	4.1.28.3 Wi-Fi Framework Module Operational Overview
	4.1.28.4 Including the Wi-Fi Framework Module in an Application
	4.1.28.5 Configuring the Wi-Fi Framework Module
	4.1.28.6 Using the Wi-Fi Framework Module in an Application

	4.1.29 Wi-Fi QCA4010 Framework
	4.1.29.1 Wi-Fi QCA4010 Framework Introduction
	4.1.29.2 SF WIFI QCA4010 Framework APIs Overview
	4.1.29.3 SF_WIFI_QCA4010 Framework Module Operational Overview
	4.1.29.4 Including the SF_WIFI_QCA4010 Framework in an Application
	4.1.29.5 Configuring the Wi-Fi QCA4010 Framework
	4.1.29.6 Using the Wi-Fi QCA4010 Framework Module in an Application

	4.2 HAL Layer
	4.2.1 Analog Connection Driver on r_analog_connect
	4.2.1.1 Analog Connection HAL Module Introduction
	4.2.1.2 Analog Connection HAL Module APIs Overview
	4.2.1.3 Analog Connection HAL Module Operational Overview
	4.2.1.4 Including the Analog Connection HAL Module in an Application
	4.2.1.5 Configuring the Analog Connection HAL Module
	4.2.1.6 Using the Analog Connection HAL Module in an Application

	4.2.2 Comparator Driver on r_acmphs
	4.2.2.1 ACMPHS HAL Module Introduction
	4.2.2.2 ACMPHS HAL Module APIs Overview
	4.2.2.3 ACMPHS HAL Module Operational Overview
	4.2.2.4 Including the ACMPHS HAL Module in an Application
	4.2.2.5 Configuring the ACMPHS HAL Module
	4.2.2.6 Using the ACMPHS HAL Module in an Application

	4.2.3 Comparator Driver on r_acmplp
	4.2.3.1 ACMPLP HAL Module Introduction
	4.2.3.2 ACMPLP HAL Module APIs Overview
	4.2.3.3 ACMPLP HAL Module Operational Overview
	4.2.3.4 Including the ACMPLP HAL Module in an Application
	4.2.3.5 Configuring the ACMPLP HAL Module
	4.2.3.6 Using the ACMPLP HAL Module in an Application

	4.2.4 ADC Driver
	4.2.4.1 ADC HAL Module Introduction
	4.2.4.2 ADC HAL Module APIs Overview
	4.2.4.3 ADC HAL Module Operational Overview
	4.2.4.4 Including the ADC HAL Module in an Application
	4.2.4.5 Configuring the ADC HAL Module
	4.2.4.6 Using the ADC HAL Module in an Application

	4.2.5 Timer Driver on r_agt
	4.2.5.1 AGT HAL Module Introduction
	4.2.5.2 AGT HAL Module APIs Overview
	4.2.5.3 AGT HAL Module Operational Overview
	4.2.5.4 Including the AGT HAL Module in an Application
	4.2.5.5 Configuring the AGT HAL Module
	4.2.5.6 Using the AGT HAL Module in an Application

	4.2.6 AGT Input Capture Driver on r_agt
	4.2.6.1 Input Capture HAL Module Introduction
	4.2.6.2 Input Capture HAL Module APIs Overview
	4.2.6.3 Input Capture HAL Module Operational Overview
	4.2.6.4 Including the Input Capture HAL Module in an Application
	4.2.6.5 Configuring the Input Capture HAL Module
	4.2.6.6 Using the Input Capture HAL Module in an Application

	4.2.7 Clock Accurate Circuit Driver
	4.2.7.1 CAC HAL Module Introduction
	4.2.7.2 CAC HAL Module APIs Overview
	4.2.7.3 CAC HAL Module Operational Overview
	4.2.7.4 Including the CAC HAL Module in an Application
	4.2.7.5 Configuring the CAC HAL Module
	4.2.7.6 Using the CAC HAL Module in an Application

	4.2.8 CAN Driver
	4.2.8.1 CAN HAL Module Introduction
	4.2.8.2 CAN HAL Module APIs Overview
	4.2.8.3 CAN HAL Module Operational Overview
	4.2.8.4 Including the CAN HAL Module in an Application
	4.2.8.5 Configuring the CAN HAL Module
	4.2.8.6 Using the CAN HAL Module in an Application

	4.2.9 CGC Driver
	4.2.9.1 CGC HAL Module Introduction
	4.2.9.2 CGC HAL Module APIs Overview
	4.2.9.3 CGC HAL Module Operational Overview
	4.2.9.4 Including the CGC HAL Module in an Application
	4.2.9.5 Configuring the CGC HAL Module
	4.2.9.6 Using the CGC Module in an Application

	4.2.10 CTSU v2 Driver
	4.2.10.1 CTSU v2 HAL Module Introduction
	4.2.10.2 CTSU v2 HAL Module Configuration
	4.2.10.3 CTSU v2 HAL Module Usage Notes
	4.2.10.4 CTSU v2 HAL Module Examples

	4.2.11 CRC Driver
	4.2.11.1 CRC HAL Module Introduction
	4.2.11.2 CRC HAL Module APIs Overview
	4.2.11.3 CRC HAL Module Operational Overview
	4.2.11.4 Including the CRC HAL Module in an Application
	4.2.11.5 Configuring the CRC HAL Module
	4.2.11.6 Using the CRC HAL Module in an Application

	4.2.12 DAC Driver
	4.2.12.1 DAC HAL Module Introduction
	4.2.12.2 DAC HAL Module APIs Overview
	4.2.12.3 DAC HAL Module Operational Overview
	4.2.12.4 Including the DAC HAL Module in an Application
	4.2.12.5 Configuring the DAC HAL Module
	4.2.12.6 Using the DAC HAL Module in an Application

	4.2.13 DAC8 Driver
	4.2.13.1 DAC8 HAL Module Introduction
	4.2.13.2 DAC8 HAL Module APIs Overview
	4.2.13.3 DAC8 HAL Module Operational Overview
	4.2.13.4 Including the DAC8 HAL Module in an Application
	4.2.13.5 Configuring the DAC8 HAL Module
	4.2.13.6 Using the DAC8 HAL Module in an Application

	4.2.14 Display Driver
	4.2.14.1 GLCDC HAL Module Introduction
	4.2.14.2 GLCDC HAL Module APIs Overview
	4.2.14.3 GLCDC HAL Module Operational Overview
	4.2.14.4 Including the GLCDC HAL Module in an Application
	4.2.14.5 Configuring the GLCDC HAL Module
	4.2.14.6 Using the GLCDC HAL Module in an Application

	4.2.15 Data Operation Circuit Driver
	4.2.15.1 DOC HAL Module Introduction
	4.2.15.2 DOC HAL Module APIs Overview
	4.2.15.3 DOC HAL Module Operational Overview
	4.2.15.4 Including the DOC HAL Module in an Application
	4.2.15.5 Configuring the DOC HAL Module
	4.2.15.6 Using the DOC HAL Module in an Application

	4.2.16 Transfer Driver on r_dmac
	4.2.16.1 DMAC HAL Module Introduction
	4.2.16.2 DMAC HAL Module APIs Overview
	4.2.16.3 DMAC HAL Module Operational Overview
	4.2.16.4 Including the DMAC HAL Module in an Application
	4.2.16.5 Configuring the DMAC HAL Module
	4.2.16.6 Using the DMAC HAL Module in an Application

	4.2.17 Transfer Driver on r_dtc
	4.2.17.1 DTC HAL Module Introduction
	4.2.17.2 DTC HAL Module APIs Overview
	4.2.17.3 DTC HAL Module Operational Overview
	4.2.17.4 Including the DTC HAL Module in an Application
	4.2.17.5 Configuring the DTC HAL Module
	4.2.17.6 Using the DTC HAL Module in an Application

	4.2.18 ELC Driver
	4.2.18.1 ELC HAL Module Introduction
	4.2.18.2 ELC HAL Module APIs Overview
	4.2.18.3 ELC HAL Module Operational Overview
	4.2.18.4 Including the ELC HAL Module in an Application
	4.2.18.5 Configuring the ELC HAL Module
	4.2.18.6 Using the ELC HAL Module in an Application

	4.2.19 External IRQ Driver
	4.2.19.1 External IRQ HAL Module Introduction
	4.2.19.2 External IRQ HAL Module APIs Overview
	4.2.19.3 External IRQ HAL Module Operational Overview
	4.2.19.4 Including the External IRQ HAL Module in an Application
	4.2.19.5 Configuring the External IRQ HAL Module
	4.2.19.6 Using the External IRQ HAL Module in an Application

	4.2.20 Flash Driver
	4.2.20.1 Flash HAL Module Introduction
	4.2.20.2 Flash HAL Module APIs Overview
	4.2.20.3 Flash HAL Module Operational Overview
	4.2.20.4 Including the Flash HAL Module in an Application
	4.2.20.5 Configuring the Flash HAL Module
	4.2.20.6 Using the Flash HAL Module in an Application

	4.2.21 FMI Driver
	4.2.21.1 FMI HAL Module Introduction
	4.2.21.2 FMI HAL Module APIs Overview
	4.2.21.3 FMI HAL Module Operational Overview
	4.2.21.4 Including the FMI HAL Module in an Application
	4.2.21.5 Configuring the FMI HAL Module
	4.2.21.6 Using the FMI HAL Module in an Application

	4.2.22 Timer Driver on r_gpt
	4.2.22.1 GPT HAL Module Introduction
	4.2.22.2 GPT HAL Module APIs Overview
	4.2.22.3 GPT HAL Module Operational Overview
	4.2.22.4 Including the GPT HAL Module in an Application
	4.2.22.5 Configuring the GPT HAL Module
	4.2.22.6 Using the GPT HAL Module in an Application

	4.2.23 I2C SCI Driver
	4.2.23.1 I2C SCI HAL Module Introduction
	4.2.23.2 I2C SCI HAL Module APIs Overview
	4.2.23.3 I2C SCI HAL Module Operational Overview
	4.2.23.4 Including the I2C SCI HAL Module in an Application
	4.2.23.5 Configuring the I2C SCI HAL Module
	4.2.23.6 Using the I2C SCI HAL Module in an Application

	4.2.24 I2C Master Driver
	4.2.24.1 I2C Master HAL Module Introduction
	4.2.24.2 I2C Master HAL Module APIs Overview
	4.2.24.3 I2C Master HAL Module Operational Overview
	4.2.24.4 Including the I2C Master HAL Module in an Application
	4.2.24.5 Configuring the I2C Master HAL Module
	4.2.24.6 Using the I2C Master HAL Module in an Application

	4.2.25 I2C Slave Driver
	4.2.25.1 I2C Slave HAL Module Introduction
	4.2.25.2 I2C Slave HAL Module APIs Overview
	4.2.25.3 I2C Slave HAL Module Operational Overview
	4.2.25.4 Including the I2C Slave HAL Module in an Application
	4.2.25.5 Configuring the I2C Slave HAL Module
	4.2.25.6 Using the I2C Slave HAL Module in an Application

	4.2.26 I2S Driver
	4.2.26.1 I2S HAL Module Introduction
	4.2.26.2 I2S HAL Module APIs Overview
	4.2.26.3 I2S HAL Module Operational Overview
	4.2.26.4 Including the I2S HAL Module in an Application
	4.2.26.5 Configuring the I2S HAL Module
	4.2.26.6 Using the I2S HAL Module in an Application

	4.2.27 GPT Input Capture on r_gpt Driver
	4.2.27.1 GPT Input Capture HAL Module Introduction
	4.2.27.2 GPT Input Capture HAL Module APIs Overview
	4.2.27.3 GPT Input Capture HAL Module Operational Overview
	4.2.27.4 Including the GPT Input Capture HAL Module in an Application
	4.2.27.5 Configuring the GPT Input Capture HAL Module
	4.2.27.6 Using the GPT Input Capture HAL Module in an Application

	4.2.28 I/O Port Driver
	4.2.28.1 I/O PORT HAL Module Introduction
	4.2.28.2 I/O PORT HAL Module APIs Overview
	4.2.28.3 I/O PORT HAL Module Operational Overview
	4.2.28.4 Including the I/O PORT HAL Module in an Application
	4.2.28.5 Configuring the I/O PORT HAL Module
	4.2.28.6 Using the I/O PORT HAL Module in an Application

	4.2.29 Watchdog Driver on r_iwdt
	4.2.29.1 Independent Watchdog Timer HAL Module Introduction
	4.2.29.2 Independent Watchdog Timer HAL Module APIs Overview
	4.2.29.3 Independent Watchdog Timer HAL Module Operational Overview
	4.2.29.4 Including the Independent Watchdog Timer HAL Module in an Application
	4.2.29.5 Configuring the Independent Watchdog Timer HAL Module
	4.2.29.6 Using the Independent Watchdog Timer HAL Module in an Application

	4.2.30 JPEG Decode Driver
	4.2.30.1 JPEG Decode HAL Module Introduction
	4.2.30.2 JPEG Decode HAL Module APIs Overview
	4.2.30.3 JPEG Decode HAL Module Operational Overview
	4.2.30.4 Including the JPEG Decode HAL Module in an Application
	4.2.30.5 Configuring the JPEG Decode HAL Module
	4.2.30.6 Using the JPEG Decode HAL Module in an Application

	4.2.31 JPEG Encode Driver
	4.2.31.1 JPEG Encode HAL Module Introduction
	4.2.31.2 JPEG Encode HAL Module APIs Overview
	4.2.31.3 JPEG Encode HAL Module Operational Overview
	4.2.31.4 Including the JPEG Encode HAL Module in an Application
	4.2.31.5 Configuring the JPEG Encode HAL Module
	4.2.31.6 Using the JPEG Encode HAL Module in an Application

	4.2.32 Key Matrix Driver
	4.2.32.1 Key Matrix HAL Module Introduction
	4.2.32.2 Key Matrix HAL Module APIs Overview
	4.2.32.3 Key Matrix HAL Module Operational Overview
	4.2.32.4 Including the Key Matrix HAL Module in an Application
	4.2.32.5 Configuring the Key Matrix HAL Module
	4.2.32.6 Using the Key Matrix HAL Module in an Application

	4.2.33 Low Power Modes Driver on r_lpmv2
	4.2.33.1 LPM V2 HAL Module Introduction
	4.2.33.2 LPM V2 HAL Module APIs Overview
	4.2.33.3 LPM V2 HAL Module Operational Overview
	4.2.33.4 Including the LPM V2 HAL Module in an Application
	4.2.33.5 Configuring the LPM V2 HAL Module
	4.2.33.6 Using the LPM V2 HAL Module in an Application

	4.2.34 Low Voltage Detection Driver
	4.2.34.1 LVD HAL Module Introduction
	4.2.34.2 LVD HAL Module APIs Overview
	4.2.34.3 LVD HAL Module Operational Overview
	4.2.34.4 Including the LVD HAL Module in an Application
	4.2.34.5 Configuring the LVD HAL Module
	4.2.34.6 Using the LVD HAL Module in an Application

	4.2.35 OPAMP Driver
	4.2.35.1 OPAMP HAL Module Introduction
	4.2.35.2 OPAMP HAL Module APIs Overview
	4.2.35.3 OPAMP HAL Module Operational Overview
	4.2.35.4 Including the OPAMP HAL Module in an Application
	4.2.35.5 Configuring the OPAMP HAL Module
	4.2.35.6 Using the OPAMP HAL Module in an Application

	4.2.36 PDC Driver
	4.2.36.1 PDC HAL Module Introduction
	4.2.36.2 PDC HAL Module APIs Overview
	4.2.36.3 PDC HAL Module Operational Overview
	4.2.36.4 Including the PDC HAL Module in an Application
	4.2.36.5 Configuring the PDC HAL Module
	4.2.36.6 Using the PDC HAL Module in an Application

	4.2.37 PTP Driver on r_ptp
	4.2.37.1 Precision Time Protocol HAL Module Introduction
	4.2.37.2 Precision Time Protocol HAL Module APIs Overview
	4.2.37.3 Precision Time Protocol HAL Module Operational Overview
	4.2.37.4 Including the Precision Time Protocol HAL Module in an Application
	4.2.37.5 Configuring the Precision Time Protocol HAL Module
	4.2.37.6 Using the Precision Time Protocol HAL Module in an Application

	4.2.38 PTPEDMAC Driver on r_ptpedmac
	4.2.38.1 PTPEDMAC HAL Module Introduction
	4.2.38.2 PTPEDMAC HAL Module APIs Overview
	4.2.38.3 PTPEDMAC HAL Module Operational Overview
	4.2.38.4 Including the PTPEDMAC HAL Module in an Application
	4.2.38.5 Configuring the PTPEDMAC HAL Module
	4.2.38.6 Using the PTPEDMAC HAL Module in an Application

	4.2.39 QSPI Driver
	4.2.39.1 QSPI HAL Module Introduction
	4.2.39.2 QSPI HAL Module APIs Overview
	4.2.39.3 QSPI HAL Module Operational Overview
	4.2.39.4 Including the QSPI HAL Module in an Application
	4.2.39.5 Configuring the QSPI HAL Module
	4.2.39.6 Using the QSPI HAL Module in an Application

	4.2.40 RTC Driver
	4.2.40.1 RTC HAL Module Introduction
	4.2.40.2 RTC HAL Module APIs Overview
	4.2.40.3 RTC HAL Module Operational Overview
	4.2.40.4 Including the RTC HAL Module in an Application
	4.2.40.5 Configuring the RTC HAL Module
	4.2.40.6 Using the RTC HAL Module in an Application

	4.2.41 SCE Crypto Driver
	4.2.41.1 SCE HAL Module Introduction
	4.2.41.2 SCE HAL Module APIs Overview
	4.2.41.3 SCE HAL Module Operational Overview
	4.2.41.4 Including the SCE HAL Module in an Application
	4.2.41.5 Configuring the SCE HAL Module
	4.2.41.6 Using the SCE HAL Module in an Application

	4.2.42 SDADC Driver
	4.2.42.1 SDADC HAL Module Introduction
	4.2.42.2 SDADC HAL Module APIs Overview
	4.2.42.3 SDADC HAL Module Operational Overview
	4.2.42.4 Including the SDADC HAL Module in an Application
	4.2.42.5 Configuring the SDADC HAL Module
	4.2.42.6 Using the SDADC HAL Module in an Application

	4.2.43 SD/MMC Driver and SDIO Driver
	4.2.43.1 SDMMC HAL Module Introduction
	4.2.43.2 SDMMC HAL Module APIs Overview
	4.2.43.3 SDMMC HAL Module Operational Overview
	4.2.43.4 Including the SDMMC HAL Module in an Application
	4.2.43.5 Configuring the SDMMC HAL Module
	4.2.43.6 Using the SDMMC HALModule in an Application

	4.2.44 Segment LCD Driver
	4.2.44.1 SLCDC HAL Module Introduction
	4.2.44.2 SLCDC HAL Module APIs Overview
	4.2.44.3 SLCDC HAL Module Operational Overview
	4.2.44.4 Including the SLCDC HAL Module in an Application
	4.2.44.5 Configuring the SLCDC HAL Module
	4.2.44.6 Using the SLCDC HAL Module in an Application

	4.2.45 SCI SPI Driver
	4.2.45.1 SCI SPI HAL Module Introduction
	4.2.45.2 SCI SPI HAL Module APIs Overview
	4.2.45.3 SCI SPI HAL Module Operational Overview
	4.2.45.4 Including the SCI SPI HAL Module in an Application
	4.2.45.5 Configuring the SCI SPI HAL Module
	4.2.45.6 Using the SCI SPI HAL Module in an Application

	4.2.46 SPI Driver
	4.2.46.1 RSPI HAL Module Introduction
	4.2.46.2 RSPI HAL Module APIs Overview
	4.2.46.3 RSPI HAL Module Operational Overview
	4.2.46.4 Including the RSPI HAL Module in an Application
	4.2.46.5 Configuring the RSPI HAL Module
	4.2.46.6 Using the SPI HAL Module in an Application

	4.2.47 UART Driver
	4.2.47.1 UART HAL Module Introduction
	4.2.47.2 UART HAL Module APIs Overview
	4.2.47.3 UART HAL Module Operational Overview
	4.2.47.4 Including the UART HAL Module in an Application
	4.2.47.5 Configuring the UART HAL Module
	4.2.47.6 Using the UART HAL Module in an Application

	4.2.48 Watchdog Driver
	4.2.48.1 Watchdog Timer HAL Module Introduction
	4.2.48.2 Watchdog Timer HAL Module APIs Overview
	4.2.48.3 Watchdog Timer HAL Module Operational Overview
	4.2.48.4 Including the Watchdog Timer HAL Module in an Application
	4.2.48.5 Configuring the Watchdog Timer HAL Module
	4.2.48.6 Using the Watchdog Timer HAL Module in an Application

	4.3 Azure RTOS Modules
	4.3.1 ThreadX Overview
	4.3.1.1 Azure RTOS ThreadX Module Introduction
	4.3.1.2 Azure RTOS ThreadX Module Operational Overview
	4.3.1.3 Using the Azure RTOS ThreadX Module in an Application

	4.3.2 FileX on Block Media
	4.3.2.1 FileX On Block Media Framework Module Introduction
	4.3.2.2 FileX On Block Media Framework Module APIs Overview
	4.3.2.3 FileX On Block Media Framework Module Operational Overview
	4.3.2.4 Including the FileX On Block Media Framework Module in an Application
	4.3.2.5 Configuring the FileX On Block Media Framework Module
	4.3.2.6 Using the FileX on Block Media Framework Module in an Application

	4.3.3 FileX Source
	4.3.3.1 FileX Source Component Module Introduction
	4.3.3.2 When to Include the FileX Source Component
	4.3.3.3 Adding the FileX Source Component
	4.3.3.4 Changing the FileX Source Component Properties
	4.3.3.5 FileX Source
	4.3.3.6 FileX Fault Tolerant Module
	4.3.3.7 About exFAT Support

	4.3.4 GUIX Port
	4.3.4.1 GUIX Synergy Port Framework Introduction
	4.3.4.2 GUIX Synergy Port Framework Module APIs Overview
	4.3.4.3 GUIX Synergy Port Framework Module Operational Overview
	4.3.4.4 Including the GUIX Synergy Port Framework Module in an Application
	4.3.4.5 Configuring the GUIX Synergy Port Framework Module
	4.3.4.6 Using the GUIX Synergy Port Framework Module in an Application

	4.3.5 GUIX Source
	4.3.5.1 GUIX GX_SRC Framework Introduction
	4.3.5.2 GUIX GX_SRC Framework Components Overview
	4.3.5.3 GUIX GX_SRC Framework Module Operational Overview
	4.3.5.4 Including the GUIX GX_SRC Framework Module in an Application
	4.3.5.5 Configuring the GUIX GX_SRC Framework Module
	4.3.5.6 Using the GUIX GX_SRC Framework Module in an Application

	4.3.6 LevelX Port Framework on sf_el_lx_nor
	4.3.6.1 Port LevelX Framework Module Introduction
	4.3.6.2 Port LevelX Framework Module APIs Overview
	4.3.6.3 Port LevelX Framework Module Operational Overview
	4.3.6.4 Including the Port LevelX Framework Module in an Application
	4.3.6.5 Configuring the Port LevelX Framework Module
	4.3.6.6 Using the Port LevelX Framework Module in an Application

	4.3.7 NetX Port Ether
	4.3.7.1 NetX Port Ether Module Introduction
	4.3.7.2 NetX Port Ether Module APIs Overview
	4.3.7.3 NetX Port Ether Module Operational Overview
	4.3.7.4 Including the NetX Port Ether Module in an Application
	4.3.7.5 Configuring the NetX Port Ether Module
	4.3.7.6 Using the NetX Port Ether Module in an Application

	4.3.8 NetX Port Using PPP
	4.3.8.1 NetX Port Using PPP Module Introduction
	4.3.8.2 NetX Port Using PPP Module APIs Overview
	4.3.8.3 NetX Port Using PPP Module Operational Overview
	4.3.8.4 Including the NetX Port Using PPP Module in an Application
	4.3.8.5 Configuring the NetX Port Using PPP Module
	4.3.8.6 Using the NetX Port Using PPP Module in an Application

	4.3.9 NetX/NetX Duo Source
	4.3.9.1 NetX and NetX Duo Source Module Introduction
	4.3.9.2 NetX and NetX Duo Source Module APIs Overview
	4.3.9.3 NetX and NetX Duo Source Module Operational Overview
	4.3.9.4 Including the NetX and NetX Duo Source Module in an Application
	4.3.9.5 Configuring the NetX and NetX Duo Source Module

	4.3.10 Azure RTOS NetX Overview
	4.3.10.1 Azure RTOS NetX Interface

	4.3.11 Azure RTOS NetX Duo Overview
	4.3.11.1 Azure RTOS NetX Duo Interface
	4.3.11.2 Azure RTOS NetX Duo Protocol Modules
	4.3.11.3 Azure RTOS NetX Duo Limitations
	4.3.11.4 Azure RTOS NetX Duo Supported Devices

	4.3.12 NetX/NetX Duo Auto IP
	4.3.12.1 NetX/NetX Duo Auto IP Introduction
	4.3.12.2 NetX/NetX Duo Auto IP Module APIs Overview
	4.3.12.3 NetX/NetX Duo Auto IP Module Operational Overview
	4.3.12.4 Including the NetX/NetX Duo Auto IP Module in an Application
	4.3.12.5 Configuring the NetX/NetX Duo Auto IP Module
	4.3.12.6 Using the NetX/NetX Duo Auto IP Module in an Application

	4.3.13 NetX/NetX Duo BSD Support
	4.3.13.1 NetX/NetX Duo BSD Support Introduction
	4.3.13.2 NetX/NetX Duo BSD Support Module APIs Overview
	4.3.13.3 NetX/NetX Duo BSD Support Module Operational Overview
	4.3.13.4 Including the NetX/NetX Duo BSD Support Module in an Application
	4.3.13.5 Configuring the NetX/NetX Duo BSD Support Module
	4.3.13.6 Using the NetX/NetX Duo BSD Support Module in an Application

	4.3.14 NetX/NetX Duo DHCP Client
	4.3.14.1 NetX/NetX Duo DHCP Client Introduction
	4.3.14.2 NetX/NetX Duo DHCP Client Module APIs Overview
	4.3.14.3 NetX/NetX Duo DHCP Client Module Operational Overview
	4.3.14.4 Including the NetX/NetX Duo DHCP Client Module in an Application
	4.3.14.5 Configuring the NetX/NetX Duo DHCP Client Module
	4.3.14.6 Using the NetX/NetX Duo DHCP Client Module in an Application

	4.3.15 NetX/NetX Duo DHCP Server
	4.3.15.1 NetX/NetX Duo DHCP Server Introduction
	4.3.15.2 NetX/NetX Duo DHCP Server Module APIs Overview
	4.3.15.3 NetX/NetX Duo DHCP Server Module Operational Overview
	4.3.15.4 Including the NetX/NetX Duo DHCP Server Module in an Application
	4.3.15.5 Configuring the NetX/NetX Duo DHCP Server Module
	4.3.15.6 Using the NetX/NetX Duo DHCP Server Module in an Application

	4.3.16 NetX Duo DHCPv6 Client
	4.3.16.1 NetX Duo DHCP IPv6 Client Introduction
	4.3.16.2 NetX Duo DHCP IPv6 Client Module APIs Overview
	4.3.16.3 NetX Duo DHCP IPv6 Client Module Operational Overview
	4.3.16.4 Including the NetX Duo DHCP IPv6 Client Module in an Application
	4.3.16.5 Configuring the NetX Duo DHCP IPv6 Client Module
	4.3.16.6 Using the NetX Duo DHCP IPv6 Client Module in an Application

	4.3.17 NetX Duo DHCPv6 Server
	4.3.17.1 NetX Duo DHCP IPv6 Server Introduction
	4.3.17.2 NetX Duo DHCP IPv6 Server Module APIs Overview
	4.3.17.3 NetX Duo DHCP IPv6 Server Module Operational Overview
	4.3.17.4 Including the NetX Duo DHCP IPv6 Server Module in an Application
	4.3.17.5 Configuring the NetX Duo DHCP IPv6 Server Module
	4.3.17.6 Using the NetX Duo DHCP IPv6 Server Module in an Application

	4.3.18 NetX/NetX Duo DNS Client
	4.3.18.1 NetX/NetX Duo DNS Client Introduction
	4.3.18.2 NetX/NetX Duo DNS Client Module APIs Overview
	4.3.18.3 NetX/NetX Duo DNS Client Module Operational Overview
	4.3.18.4 Including the NetX/NetX Duo DNS Client Module in an Application
	4.3.18.5 Configuring the NetX/NetX Duo DNS Client Module
	4.3.18.6 Using the NetX/NetX Duo DNS Client Module in an Application

	4.3.19 NetX/NetX Duo FTP Client
	4.3.19.1 NetX/NetX Duo FTP Client Introduction
	4.3.19.2 NetX/NetX Duo FTP Client Module APIs Overview
	4.3.19.3 NetX/NetX Duo FTP Client Module Operational Overview
	4.3.19.4 Including the NetX/NetX Duo FTP Client Module in an Application
	4.3.19.5 Configuring the NetX/NetX Duo FTP Client Module
	4.3.19.6 Using the NetX/NetX Duo FTP Client Module in an Application

	4.3.20 NetX/NetX Duo FTP Server
	4.3.20.1 NetX/NetX Duo FTP Server Introduction
	4.3.20.2 NetX/NetX Duo FTP Server Module APIs Overview
	4.3.20.3 NetX/NetX Duo FTP Server Module Operational Overview
	4.3.20.4 Including the NetX/NetX Duo FTP Server Module in an Application
	4.3.20.5 Configuring the NetX/NetX Duo FTP Server Module
	4.3.20.6 Using the NetX/NetX Duo FTP Server Module in an Application

	4.3.21 NetX/NetX Duo HTTP Client
	4.3.21.1 NetX/NetX Duo HTTP Client Introduction
	4.3.21.2 NetX/NetX Duo HTTP Client Module APIs Overview
	4.3.21.3 NetX/NetX Duo HTTP Client Module Operational Overview
	4.3.21.4 Including the NetX/NetX Duo HTTP Client Module in an Application
	4.3.21.5 Configuring the NetX/NetX Duo HTTP Client Module
	4.3.21.6 Using the NetX/NetX Duo HTTP Client Module in an Application

	4.3.22 NetX/NetX Duo HTTP Server
	4.3.22.1 NetX/NetX Duo HTTP Server Introduction
	4.3.22.2 NetX/NetX Duo HTTP Server Module APIs Overview
	4.3.22.3 NetX/NetX Duo HTTP Server Module Operational Overview
	4.3.22.4 Including the NetX/NetX Duo HTTP Server Module in an Application
	4.3.22.5 Configuring the NetX/NetX Duo HTTP Server Module
	4.3.22.6 Using the NetX/NetX Duo HTTP Server Module in an Application

	4.3.23 NetX Duo HTTP Client (HTTPS/HTTPS 1.1)
	4.3.23.1 NetX Duo Web HTTP/HTTPs Client Introduction
	4.3.23.2 NetX Duo Web HTTP/HTTPs Client Module APIs Overview
	4.3.23.3 NetX Duo Web HTTP/HTTPs Client Module Operational Overview
	4.3.23.4 Including the NetX Duo Web HTTP/HTTPs Client Module in an Application
	4.3.23.5 Configuring the NetX Duo Web HTTP/HTTPs Client Module
	4.3.23.6 Using the NetX Duo Web HTTP/HTTPs Client Module in an Application

	4.3.24 NetX/NetX Duo HTTP/HTTPS Web Server Framework
	4.3.24.1 NetX Duo Web HTTP/HTTPs Server Introduction
	4.3.24.2 NetX Duo Web HTTP/HTTPs Server Module APIs Overview
	4.3.24.3 NetX Duo Web HTTP/HTTPs Server Module Operational Overview
	4.3.24.4 Including the NetX Duo Web HTTP/HTTPs Server Module in an Application
	4.3.24.5 Configuring the NetX Duo Web HTTP/HTTPs Server Module
	4.3.24.6 Using the NetX Duo Web HTTP/HTTPs Server Module in an Application

	4.3.25 NetX/NetX Duo SMTP Client
	4.3.25.1 NetX/NetX Duo SMTP Client Introduction
	4.3.25.2 NetX/NetX Duo SMTP Client Module APIs Overview
	4.3.25.3 NetX/NetX Duo SMTP Client Module Operational Overview
	4.3.25.4 Including the NetX/NetX Duo SMTP Client Module in an Application
	4.3.25.5 Configuring the NetX/NetX Duo SMTP Client Module
	4.3.25.6 Using the NetX/NetX Duo SMTP Client Module in an Application

	4.3.26 NetX/NetX Duo SNMP Agent
	4.3.26.1 NetX/NetX Duo SNMP Agent Introduction
	4.3.26.2 NetX/NetX Duo SNMP Agent Module APIs Overview
	4.3.26.3 NetX/NetX Duo SNMP Agent Module Operational Overview
	4.3.26.4 Including the NetX/NetX Duo SNMP Agent Module in an Application
	4.3.26.5 Configuring the NetX/NetX Duo SNMP Agent Module
	4.3.26.6 Using the NetX/NetX Duo SNMP Agent Module in an Application

	4.3.27 NetX/NetX Duo SNTP Client
	4.3.27.1 NetX/NetX Duo SNTP Client Introduction
	4.3.27.2 NetX/NetX Duo SNTP Client Module APIs Overview
	4.3.27.3 NetX/NetX Duo SNTP Client Module Operational Overview
	4.3.27.4 Including the NetX/NetX Duo SNTP Client Module in an Application
	4.3.27.5 Configuring the NetX/NetX Duo SNTP Client Module
	4.3.27.6 Using the NetX/NetX Duo SNTP Client Module in an Application

	4.3.28 NetX/NetX Duo POP3 Client
	4.3.28.1 NetX/NetX Duo POP3 Client Introduction
	4.3.28.2 NetX/NetX Duo POP3 Client Module APIs Overview
	4.3.28.3 NetX/NetX Duo POP3 Client Module Operational Overview
	4.3.28.4 Including the NetX/NetX Duo POP3 Client Module in an Application
	4.3.28.5 Configuring the NetX/NetX Duo POP3 Client Module
	4.3.28.6 Using the NetX/NetX Duo POP3 Client Module in an Application

	4.3.29 NetX/NetX Duo Telnet Client
	4.3.29.1 NetX and NetX Duo Telnet Client Introduction
	4.3.29.2 NetX and NetX Duo Telnet Client Module APIs Overview
	4.3.29.3 NetX and NetX Duo Telnet Client Module Operational Overview
	4.3.29.4 Including the NetX and NetX Duo Telnet Client Module in an Application
	4.3.29.5 Configuring the NetX and NetX Duo Telnet Client Module
	4.3.29.6 Using the NetX and NetX Duo Telnet Client Module in an Application

	4.3.30 NetX/NetX Duo Telnet Server
	4.3.30.1 NetX and NetX Duo Telnet Server Introduction
	4.3.30.2 NetX and NetX Duo Telnet Server Module APIs Overview
	4.3.30.3 NetX and NetX Duo Telnet Server Module Operational Overview
	4.3.30.4 Including the NetX and NetX Duo Telnet Server Module in an Application
	4.3.30.5 Configuring the NetX and NetX Duo Telnet Server Module
	4.3.30.6 Using the NetX and NetX Duo Telnet Server Module in an Application

	4.3.31 NetX/NetX Duo TFTP Client
	4.3.31.1 NetX/NetX Duo TFTP Client Introduction
	4.3.31.2 NetX/NetX Duo TFTP Client Module APIs Overview
	4.3.31.3 NetX/NetX Duo TFTP Client Module Operational Overview
	4.3.31.4 Including the NetX/NetX Duo TFTP Client Module in an Application
	4.3.31.5 Configuring the NetX/NetX Duo TFTP Client Module
	4.3.31.6 Using the NetX/NetX Duo TFTP Client Module in an Application

	4.3.32 NetX/NetX Duo TFTP Server
	4.3.32.1 NetX and NetX Duo TFTP Server Introduction
	4.3.32.2 NetX and NetX Duo TFTP Server Module APIs Overview
	4.3.32.3 NetX and NetX Duo TFTP Server Module Operational Overview
	4.3.32.4 Including the NetX and NetX Duo TFTP Server Module in an Application
	4.3.32.5 Configuring the NetX and NetX Duo TFTP Server Module
	4.3.32.6 Using the NetX and NetX Duo TFTP Server Module in an Application

	4.3.33 NetX Duo MQTT Client
	4.3.33.1 NetX Duo MQTT Client Introduction
	4.3.33.2 NetX Duo MQTT Client Module APIs Overview
	4.3.33.3 NetX Duo MQTT Client Module Operational Overview
	4.3.33.4 Including the NetX Duo MQTT Client Module in an Application
	4.3.33.5 Configuring the NetX Duo MQTT Client Module
	4.3.33.6 Using the NetX Duo MQTT Client Module in an Application

	4.3.34 NetX Duo NAT
	4.3.34.1 NetX Duo NAT Introduction
	4.3.34.2 NetX Duo NAT Module APIs Overview
	4.3.34.3 NetX Duo NAT Module Operational Overview
	4.3.34.4 Including the NetX Duo NAT Module in an Application
	4.3.34.5 Configuring the NetX Duo NAT Module
	4.3.34.6 Using the NetX Duo NAT Module in an Application

	4.3.35 NetX Duo TLS Session
	4.3.35.1 NetX Duo TLS Session Introduction
	4.3.35.2 NetX Duo TLS Session Module APIs Overview
	4.3.35.3 NetX Duo TLS Session Module Operational Overview
	4.3.35.4 Including the NetX Duo TLS Session Module in an Application
	4.3.35.5 Configuring the NetX Duo TLS Session Module
	4.3.35.6 Using the NetX Duo TLS Session Module in an Application

	4.3.36 NetX Duo DTLS Session
	4.3.36.1 NetX Duo DTLS Session Introduction
	4.3.36.2 NetX Duo DTLS Session Module APIs Overview
	4.3.36.3 NetX Duo DTLS Session Module Operational Overview
	4.3.36.4 Including the NetX Duo DTLS Session Module in an Application
	4.3.36.5 Configuring the NetX Duo DTLS Session Module
	4.3.36.6 Using the NetX Duo DTLS Session Module in an Application

	4.3.37 NetX Duo mDNS/DNS-SD
	4.3.37.1 NetX Duo mDNS/DNS-SD Introduction
	4.3.37.2 NetX Duo mDNS/DNS-SD Module APIs Overview
	4.3.37.3 NetX Duo mDNS/DNS-SD Module Operational Overview
	4.3.37.4 Including the NetX Duo mDNS/DNS-SD Module in an Application
	4.3.37.5 Configuring the NetX Duo mDNS/DNS-SD Module
	4.3.37.6 Using the NetX Duo mDNS/DNS-SD Module in an Application

	4.3.38 Azure RTOS USBX Overview
	4.3.38.1 Azure RTOS USBX Interface Overview
	4.3.38.2 What Does the Azure RTOS USBX Module Do?
	4.3.38.3 Supported USB Classes in Azure RTOS USBX
	4.3.38.4 Azure RTOS USBX Auto-generated Code Procedures
	4.3.38.5 Azure RTOS USBX Application Code Examples
	4.3.38.6 Azure RTOS USBX Special Linker Sections
	4.3.38.7 Azure RTOS USBX Memory Requirements
	4.3.38.8 Azure RTOS USBX Limitations

	4.3.39 USBX Source
	4.3.39.1 USBX Source Component Module Introduction
	4.3.39.2 When to Include the USBX Source Component
	4.3.39.3 Adding the USBX Source Component
	4.3.39.4 Changing the USBX Source Component Properties
	4.3.39.5 USBX Source Component Overview

	4.3.40 USBX Port
	4.3.40.1 USBX Synergy Port Framework Introduction
	4.3.40.2 USBX Synergy Port Framework Module APIs Overview
	4.3.40.3 USBX Synergy Port Framework Module Operational Overview
	4.3.40.4 Including the USBX Synergy Port Framework Module in an Application
	4.3.40.5 Configuring the USBX Synergy Port Framework Module
	4.3.40.6 Using the USBX Synergy Port Framework Module in an Application

	4.3.41 USBX Device Class CDC-ACM
	4.3.41.1 USBX Device Class CDC-ACM Module Introduction
	4.3.41.2 USBX Device Class CDC-ACM Module APIs Overview
	4.3.41.3 USBX Device Class CDC-ACM Module Operational Overview
	4.3.41.4 Including the USBX Device Class CDC-ACM Module in an Application
	4.3.41.5 Configuring the USBX Device Class CDC-ACM Module
	4.3.41.6 Using the USBX Device Class CDC-ACM Module in an Application

	4.3.42 USBX Device Class HID
	4.3.42.1 USBX Device Class HID Module Introduction
	4.3.42.2 USBX Device Class HID Module APIs Overview
	4.3.42.3 USBX Device Class HID Module Operational Overview
	4.3.42.4 Including the USBX Device Class HID Module in an Application
	4.3.42.5 Configuring the USBX Device Class HID Module
	4.3.42.6 Using the USBX Device Class HID Module in an Application

	4.3.43 USBX Device Class Mass Storage
	4.3.43.1 USBX Device Class Mass Storage Introduction
	4.3.43.2 USBX Device Class Mass Storage Module APIs Overview
	4.3.43.3 USBX Device Class Mass Storage Module Operational Overview
	4.3.43.4 Including the USBX Device Class Mass Storage Module in an Application
	4.3.43.5 Configuring the USBX Device Class Mass Storage Module
	4.3.43.6 Using the USBX Device Class Mass Storage Module in an Application

	4.3.44 USBX Host Class CDC-ACM
	4.3.44.1 USBX Host Class CDC-ACM Module Introduction
	4.3.44.2 USBX Host Class CDC-ACM Module APIs Overview
	4.3.44.3 USBX Host Class CDC-ACM Module Operational Overview
	4.3.44.4 Including the USBX Host Class CDC-ACM Module in an Application
	4.3.44.5 Configuring the USBX Host Class CDC-ACM Module
	4.3.44.6 Using the USBX Host Class CDC-ACM Module in an Application

	4.3.45 USBX Host Class HID
	4.3.45.1 USBX Host Class HID Module Introduction
	4.3.45.2 USBX Host Class HID Module APIs Overview
	4.3.45.3 USBX Host Class HID Module Operational Overview
	4.3.45.4 Including the USBX Host Class HID Module in an Application
	4.3.45.5 Configuring the USBX Host Class HID Module
	4.3.45.6 Using the USBX Host Class HID Module in an Application

	4.3.46 USBX Host Class HUB
	4.3.46.1 USBX Host Class Hub Module Introduction
	4.3.46.2 USBX Host Class Hub Module APIs Overview
	4.3.46.3 USBX Host Class Hub Module Operational Overview
	4.3.46.4 Including the USBX Host Class Hub Module in an Application
	4.3.46.5 Configuring the USBX Host Class Hub Module
	4.3.46.6 Using the USBX Host Class Hub Module in an Application

	4.3.47 USBX Host Class Printer
	4.3.47.1 USBX Host Class Printer Module Introduction
	4.3.47.2 USBX Host Class Printer Module APIs Overview
	4.3.47.3 USBX Host Class Printer Module Operational Overview
	4.3.47.4 Including the USBX Host Class Printer Module in an Application
	4.3.47.5 Configuring the USBX Host Class Printer Module
	4.3.47.6 Using the USBX Host Class Printer Module in an Application

	4.3.48 USBX Host Class Mass Storage
	4.3.48.1 USBX Host Class Mass Storage Module Introduction
	4.3.48.2 USBX Host Class Mass Storage Module APIs Overview
	4.3.48.3 USBX Host Class Mass Storage Module Operational Overview
	4.3.48.4 Including the USBX Host Class Mass Storage Module in an Application
	4.3.48.5 Configuring the USBX Host Class Mass Storage Module
	4.3.48.6 Using the USBX Host Class Mass Storage Module in an Application

	4.3.49 USBX Host Class Video
	4.3.49.1 USBX Host Class Video Module Introduction
	4.3.49.2 USBX Host Class Video Module APIs Overview
	4.3.49.3 USBX Host Class Video Module Operational Overview
	4.3.49.4 Including the USBX Host Class Video Module in an Application
	4.3.49.5 Configuring the USBX Host Class Video Module
	4.3.49.6 Using the USBX Host Class Video Module in an Application

	Chapter 5 API Reference
	5.1 Renesas Synergy Software Package Reference
	5.1.1 Shared
	5.1.1.1 Common Error Codes

	5.1.2 Framework Interfaces
	5.1.2.1 ADC Periodic Framework Interface
	5.1.2.2 Audio Framework Interface
	5.1.2.3 Audio Playback Framework Interface
	5.1.2.4 Audio Recording Framework Interface
	5.1.2.5 SF BLE Framework Interface
	5.1.2.6 SF BLE On-Board Profile Framework Interface
	5.1.2.7 SF BLE Alert Notification Profile Framework Interface
	5.1.2.8 SF BLE Battery Service Profile Framework Interface
	5.1.2.9 SF BLE Blood Pressure Profile Framework Interface
	5.1.2.10 SF BLE Current Time Service Profile Framework Interface
	5.1.2.11 SF BLE Find Me Profile Framework Interface
	5.1.2.12 SF BLE HID Over GATT Profile Framework Interface
	5.1.2.13 SF BLE Heart Rate Profile Framework Interface
	5.1.2.14 SF BLE Health Thermometer Profile Framework Interface
	5.1.2.15 SF BLE Immediate Alert Profile Framework Interface
	5.1.2.16 SF BLE Next DST Change Service Profile Framework Interface
	5.1.2.17 SF BLE Phone Alert Status Profile Framework Interface
	5.1.2.18 SF BLE Proximity Profile Framework Interface
	5.1.2.19 SF BLE Reference Time Update Service Profile Framework Interface
	5.1.2.20 SF BLE Scan Parameters Service Profile Framework Interface
	5.1.2.21 SF BLE Time Information Profile Framework Interface
	5.1.2.22 Block Media Framework Interface
	5.1.2.23 SF CELLULAR Framework Interface
	5.1.2.24 SF CELLULAR NSAL Framework Interface
	5.1.2.25 SF Socket CELLULAR Framework Interface
	5.1.2.26 Communications Framework Interface
	5.1.2.27 Console Framework Interface
	5.1.2.28 SSP Crypto Framework Common Module Interface
	5.1.2.29 SSP Crypto Cipher Framework Interface
	5.1.2.30 SSP Crypto HASH Framework Interface
	5.1.2.31 SSP Crypto Key Framework Interface
	5.1.2.32 SSP Crypto Key Installation Framework Interface
	5.1.2.33 SSP Crypto Signature Framework Interface
	5.1.2.34 SSP Crypto TRNG Framework Interface
	5.1.2.35 GUIX Interface
	5.1.2.36 External IRQ Framework Interface
	5.1.2.37 I2C Framework
	5.1.2.38 JPEG Decode Framework Interface
	5.1.2.39 Memory interface
	5.1.2.40 Messaging Framework Interface
	5.1.2.41 Power Profiles V2 Framework Interface
	5.1.2.42 SF Socket WIFI Framework Interface
	5.1.2.43 SPI Framework Interface
	5.1.2.44 Thread Monitor Framework Interface
	5.1.2.45 CTSU v2 Framework Interface
	5.1.2.46 Touch chip Interface
	5.1.2.47 Touch Panel Framework Interface
	5.1.2.48 SF WIFI Framework Interface
	5.1.2.49 SF WIFI NSAL Interface
	5.1.2.50 SF WIFI On-Chip Stack Interface
	5.1.2.51 SF WIFI QCA4010 Framework Interface
	5.1.2.52 SF WIFI QCA4010 On-Chip Interface
	5.1.2.53 SF Socket WIFI Framework Interface
	5.1.2.54 SF WIFI NSAL on NetX
	5.1.2.55 BLE Framework Interface on RL78G1D
	5.1.2.56 Cellular Framework Example using Quectel CATM1 API
	5.1.2.57 BSD Socket over Quectel CATM1 on-chip stack API
	5.1.2.58 Cellular Framework Example using RYZ014CATM1 API
	5.1.2.59 SF CELLULAR Common Interface
	5.1.2.60 BSD Socket over RYZ014CATM1 on-chip stack API

	5.1.3 Framework Layer
	5.1.3.1 ADC periodic Framework
	5.1.3.2 Audio Framework
	5.1.3.3 DAC Audio Playback Framework
	5.1.3.4 I2S Audio Playback Framework
	5.1.3.5 ADC Audio recording Framework
	5.1.3.6 I2S Audio recording Framework
	5.1.3.7 BLOCK_MEDIA_LEVELX_NOR
	5.1.3.8 BLOCK_MEDIA_QSPI
	5.1.3.9 BLOCK_MEDIA_RAM
	5.1.3.10 BLOCK_MEDIA_SDMMC
	5.1.3.11 Cellular NSAL Implementation on NetX
	5.1.3.12 Telnet Communication Framework on sf_comms_telnet
	5.1.3.13 Console Framework
	5.1.3.14 SSP Crypto Common Framework
	5.1.3.15 SSP Crypto Cipher Framework
	5.1.3.16 SSP Crypto Hash Framework
	5.1.3.17 SSP Crypto Key Framework
	5.1.3.18 SSP Crypto Key Installation Framework
	5.1.3.19 SSP Crypto Signature Framework
	5.1.3.20 SSP Crypto TRNG Framework
	5.1.3.21 FX_IO Framework
	5.1.3.22 GUIX Synergy Port
	5.1.3.23 EL_LX_NOR
	5.1.3.24 USB Communication Framework V2
	5.1.3.25 External IRQ Framework
	5.1.3.26 I2C Framework
	5.1.3.27 JPEG Framework
	5.1.3.28 Memory framework
	5.1.3.29 Messaging Framework
	5.1.3.30 Power Profiles Framework V2
	5.1.3.31 SPI Framework
	5.1.3.32 Thread Monitor Framework
	5.1.3.33 CTSU V2 Framework
	5.1.3.34 Touch Panel V2 Framework
	5.1.3.35 UART Framework Instance
	5.1.3.36 NetX Synergy Port
	5.1.3.37 NetX Synergy Port PHY Driver
	5.1.3.38 BLE Framework on RL78G1D
	5.1.3.39 BLE On-Board Profile Framework on RL78G1D
	5.1.3.40 Cellular Framework Example using Quectel CATM1
	5.1.3.41 BSD Socket over Quectel CATM1 on-chip stack
	5.1.3.42 Cellular Framework Example using RYZ014 CATM1
	5.1.3.43 BSD Socket over RYZ014CATM1 on-chip stack
	5.1.3.44 Touch Panel Framework Example for FT5X06
	5.1.3.45 Touch Panel Framework Example for SX8654
	5.1.3.46 WiFi Framework on GT202
	5.1.3.47 WiFi On Chip Stack on GT202
	5.1.3.48 BSD Socket on GT202
	5.1.3.49 WiFi Framework on QCA4010
	5.1.3.50 WiFi On Chip Stack on QCA4010
	5.1.3.51 Socket on QCA4010
	5.1.3.52 USBX Framework
	5.1.3.53 2D Drawing Engine Support Framework

	5.1.4 HAL Interfaces
	5.1.4.1 ADC Interface
	5.1.4.2 Analog Connect Interface
	5.1.4.3 CAC Interface
	5.1.4.4 CAN Interface
	5.1.4.5 CGC Interface
	5.1.4.6 COMPARATOR Interface
	5.1.4.7 CRC Interface
	5.1.4.8 Crypto Interface
	5.1.4.9 CTSU v2 Interface
	5.1.4.10 DAC Interface
	5.1.4.11 Display Interface
	5.1.4.12 DOC Interface
	5.1.4.13 events and peripheral definitions
	5.1.4.14 External IRQ Interface
	5.1.4.15 Flash Interface
	5.1.4.16 FMI Interface
	5.1.4.17 I2C Interface
	5.1.4.18 I2S Interface
	5.1.4.19 Input Capture Interface
	5.1.4.20 I/O Port Interface
	5.1.4.21 JPEG Decode Interface
	5.1.4.22 JPEG Encode Interface
	5.1.4.23 Key Matrix Interface
	5.1.4.24 Low Power Modes V2 Interface
	5.1.4.25 Low Voltage Detection Interface
	5.1.4.26 OPAMP Interface
	5.1.4.27 PDC Interface
	5.1.4.28 PTP driver Interface
	5.1.4.29 PTPEDMAC driver Interface
	5.1.4.30 Quad SPI Flash Interface
	5.1.4.31 RTC Interface
	5.1.4.32 SD/MMC Interface
	5.1.4.33 SLCDC Interface
	5.1.4.34 SPI Interface
	5.1.4.35 Timer Interface
	5.1.4.36 Transfer Interface
	5.1.4.37 UART Interface
	5.1.4.38 WDT Interface

	5.1.5 HAL Layer
	5.1.5.1 High-Speed Analog Comparator
	5.1.5.2 Low Power Analog Comparator
	5.1.5.3 ADC
	5.1.5.4 AGT
	5.1.5.5 AGT Input Capture
	5.1.5.6 Analog Connections
	5.1.5.7 CAC
	5.1.5.8 CAN
	5.1.5.9 CGC
	5.1.5.10 CRC
	5.1.5.11 CTSU v2
	5.1.5.12 DAC
	5.1.5.13 DAC8
	5.1.5.14 DMAC
	5.1.5.15 DOC
	5.1.5.16 DTC
	5.1.5.17 ELC
	5.1.5.18 High-performance Flash
	5.1.5.19 Low Power Flash
	5.1.5.20 FMI
	5.1.5.21 GLCDC
	5.1.5.22 GPT
	5.1.5.23 GPT Input Capture
	5.1.5.24 ICU
	5.1.5.25 IOPORT
	5.1.5.26 IWDT
	5.1.5.27 JPEG CODEC
	5.1.5.28 JPEG ENCODE
	5.1.5.29 Key Interrupts
	5.1.5.30 LPMV2 S124
	5.1.5.31 LPMV2 S128
	5.1.5.32 LPMV2 S1JA
	5.1.5.33 LPMV2 S3A1
	5.1.5.34 LPMV2 S3A3
	5.1.5.35 LPMV2 S3A6
	5.1.5.36 LPMV2 S3A7
	5.1.5.37 LPMV2 S5D3
	5.1.5.38 LPMV2 S5D5
	5.1.5.39 LPMV2 S5D9
	5.1.5.40 LPMV2 S7G2
	5.1.5.41 LVD
	5.1.5.42 Operational Amplifier (OPAMP)
	5.1.5.43 PDC
	5.1.5.44 PTP
	5.1.5.45 PTPEDMAC
	5.1.5.46 QSPI
	5.1.5.47 IIC
	5.1.5.48 IIC Slave
	5.1.5.49 SPI
	5.1.5.50 RTC
	5.1.5.51 Simple I2C on SCI
	5.1.5.52 Simple SPI on SCI
	5.1.5.53 UART on SCI
	5.1.5.54 Sigma Delta ADC (SDADC)
	5.1.5.55 SDMMC
	5.1.5.56 SLCDC
	5.1.5.57 SSI
	5.1.5.58 WDT
	5.1.5.59 SCE Module

	5.2 Board Support Package
	5.2.1 Supported MCUs
	5.2.1.1 S124
	5.2.1.2 S128
	5.2.1.3 S1JA
	5.2.1.4 S3A1
	5.2.1.5 S3A3
	5.2.1.6 S3A6
	5.2.1.7 S3A7
	5.2.1.8 S5D3
	5.2.1.9 S5D5
	5.2.1.10 S5D9
	5.2.1.11 S7G2

	5.2.2 Common BSP Code
	5.2.2.1 Common BSP LED Code and Types
	5.2.2.2 Compiler Support
	5.2.2.3 Software Delay
	5.2.2.4 Error Checking
	5.2.2.5 Module specific feature overrides
	5.2.2.6 Grouped Interrupt Support
	5.2.2.7 Interrupt Initialization
	5.2.2.8 Atomic Locking
	5.2.2.9 Register Protection
	5.2.2.10 BSP_MCU_SBRK

	Chapter 6 Structure Index
	6.1 Data Structures
	6.1.1 d1_device_synergy Struct Reference
	6.1.2 NX_DES Struct Reference
	6.1.3 NX_IPV6_HEADER Struct Reference
	6.1.4 NX_MD5 Struct Reference
	6.1.5 NX_SECURE_TLS_PHASH_SCE Struct Reference
	6.1.6 NX_SECURE_TLS_PRF_1_SCE Struct Reference
	6.1.7 NX_SECURE_TLS_PRF_SHA_256_SCE Struct Reference
	6.1.8 NX_SHA1 Struct Reference
	6.1.9 RBLE_GATT_CHAR_128_LIST Struct Reference
	6.1.10 RBLE_GATT_CHAR_DESC_128_LIST Struct Reference
	6.1.11 RBLE_GATT_CHAR_DESC_LIST Struct Reference
	6.1.12 RBLE_GATT_CHAR_LIST Struct Reference
	6.1.13 RBLE_GATT_DESIRED_TYPE Struct Reference
	6.1.14 RBLE_GATT_DISC_CHAR_DESC_REQ Struct Reference
	6.1.15 RBLE_GATT_DISC_CHAR_REQ Struct Reference
	6.1.16 RBLE_GATT_DISC_SVC_REQ Struct Reference
	6.1.17 RBLE_GATT_EVENT Struct Reference
	6.1.18 RBLE_GATT_EXE_WR_CHAR_REQ Struct Reference
	6.1.19 RBLE_GATT_INCL_128_LIST Struct Reference
	6.1.20 RBLE_GATT_INCL_LIST Struct Reference
	6.1.21 RBLE_GATT_INDICATE_REQ Struct Reference
	6.1.22 RBLE_GATT_INFO_DATA Struct Reference
	6.1.23 RBLE_GATT_NOTIFY_REQ Struct Reference
	6.1.24 RBLE_GATT_QUERY_RESULT Struct Reference
	6.1.25 RBLE_GATT_READ_CHAR_REQ Struct Reference
	6.1.26 RBLE_GATT_RELIABLE_WRITE Struct Reference
	6.1.27 RBLE_GATT_SET_DATA Struct Reference
	6.1.28 RBLE_GATT_SET_PERM Struct Reference
	6.1.29 RBLE_GATT_SVC_128_LIST Struct Reference
	6.1.30 RBLE_GATT_SVC_LIST Struct Reference
	6.1.31 RBLE_GATT_SVC_RANGE_LIST Struct Reference
	6.1.32 RBLE_GATT_UUID_TYPE Struct Reference
	6.1.33 RBLE_GATT_WRITE_CHAR_REQ Struct Reference
	6.1.34 RBLE_GATT_WRITE_RELIABLE_REQ Struct Reference
	6.1.35 RBLE_GATT_WRITE_RESP Struct Reference
	6.1.36 sdmmc_priv_csd_reg_ext_t Struct Reference
	6.1.37 sdmmc_priv_csd_reg_t Struct Reference
	6.1.38 sf_cellular_circular_queue_cfg_t Struct Reference
	6.1.39 sf_cellular_comms_extend_cfg_t Struct Reference
	6.1.40 sf_cellular_extended_cfg_t Struct Reference
	6.1.41 sf_cellular_instance_cfg_t Struct Reference
	6.1.42 sf_cellular_qctlcatm1_socket_cfg_t Struct Reference
	6.1.43 sf_cellular_socket_info_t Struct Reference
	6.1.44 ssp_pack_version_t Union Reference
	6.1.45 ssp_version_t Union Reference

	6.2 Data Structure Index
	6.3 Data Fields
	6.3.1 All Data Fields
	6.3.2 Functions
	6.3.3 Variables

