

3.3V CMOS 20-BIT BUFFER WITH 5 VOLT TOLERANT I/O

FEATURES:

- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µ W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- Supports hot insertion
- Available in TSSOP package

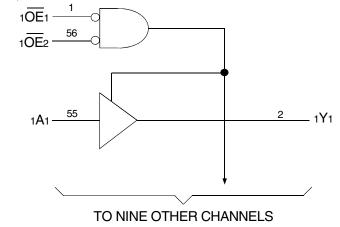
DRIVE FEATURES:

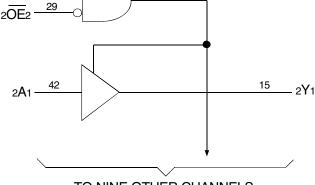
- High Output Drivers: ±24mA
- · Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

FUNCTIONAL BLOCK DIAGRAM


DESCRIPTION:


This 20-bit buffer is built using advanced dual metal CMOS technology. The LVC16827A provides high-performance bus interface buffering for wide data/address paths or buses carrying parity. Two pairs of NAND-ed output enable controls offer maximum control flexibility and are organized to operate the device as two 10-bit buffers or one 20-bit buffer. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The LVC16827A buffer is ideally suited for driving high capacitance loads and low impedance backplanes.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of the device as a translator in a mixed 3.3V/5V supply system.

The LVC16827A has been designed with a \pm 24mA output driver. The driver is capable of driving a moderate to heavy load while maintaining speed performance.

TO NINE OTHER CHANNELS

IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.

20E1

PIN CONFIGURATION

10E1	1	56	10E2
1Y1	2	55	1 A 1
1 Y 2	3	54	1 A 2
GND	4	53	GND
1 Y 3	5	52	1 A 3
1 Y 4	6	51	1 A 4
Vcc	7	50	Vcc
1 Y 5	8	49	1 A 5
1 Y 6	9	48	1 A 6
1 Y 7	10	47	1 A 7
GND	11	46	GND
1 Y 8	12	45	1 A 8
1 Y 9	13	44	1 A 9
1 Y 10	14	43	1 A 10
2Y1	15	42	2 A 1
2Y2	16	41	2 A 2
2Y3	17	40	2 A 3
GND	18	39	GND
2 Y 4	19	38	2 A 4
2 Y 5	20	37	2 A 5
2Y6	21	36	2 A 6
Vcc	22	35	Vcc
2¥7	23	34	2 A 7
2¥8	24	33	2 A 8
GND	25	32	GND
2Y9	26	31	2 A 9
2Y10	27	30	2 A 10
20E1	28	29	20E2

TSSOP TOP VIEW

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	–0.5 to +6.5	V
Tstg	Storage Temperature	–65 to +150	°C
Ιουτ	DC Output Current	–50 to +50	mA
Ік Іок	Continuous Clamp Current, Vi < 0 or Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	рF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description	
xŌĒx	Output Enable Inputs (Active LOW)	
xAx	Data Inputs	
xYx	3-State Outputs	

FUNCTION TABLE(1)

	Inputs		Outputs
xOE1	xOE2	хАх	хҮх
L	L	L	L
L	L	Н	Н
Н	Х	Х	Z
Х	Н	Х	Z

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = -40 °C to +85 °C

Symbol	Parameter	Test Cond	ditions	Min.	Тур. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	—	_	V
		Vcc = 2.7V to 3.6V		2	—	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	—	0.8	
Ін	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	-	—	±5	μA
lı∟							
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	-	—	±10	μA
Iozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo \leq 5.5V		_	—	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		-	-0.7	-1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	-	—	10	μA
Іссн Іссz			$3.6 \le VIN \le 5.5V^{(2)}$			10	
∆lcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inp	One input at Vcc - 0.6V, other inputs at Vcc or GND		-	500	μA

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	TestCor	ditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Іон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Iон = - 6mA	2	_	
		Vcc = 2.3V	Іон = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V	1	2.4	_	
		Vcc = 3V	Iон = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	—	0.2	V
		Vcc = 2.3V	IoL = 6mA	—	0.4	
			IOL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3V	IoL = 24mA	_	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, TA = 25°C

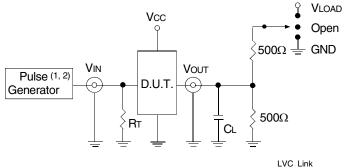
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Buffer/Driver Outputs enabled	C∟ = 0pF, f = 10Mhz		pF
Cpd	Power Dissipation Capacitance per Buffer/Driver Outputs disabled			

SWITCHING CHARACTERISTICS⁽¹⁾

		Vcc =	= 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tPLH	Propagation Delay	1.5	4.7	1.5	4.1	ns
t PHL	xAx to xYx					
tPZH	Output Enable Time	1.5	6.5	1.5	5.8	ns
tPZL	xOEx to xYx					
tPHZ	Output Disable Time	1.5	6.4	1.5	5.7	ns
tPLZ	xOEx to xYx					
tsk(o)	Output Skew ⁽²⁾	—	—	_	500	ps

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. TA = - 40°C to + 85°C.


2. Skew between any two outputs of the same package and switching in the same direction.

IDT74LVC16827A 3.3V CMOS 20-BIT BUFFER WITH 5V TOLERANT I/O

INDUSTRIAL TEMPERATURE RANGE

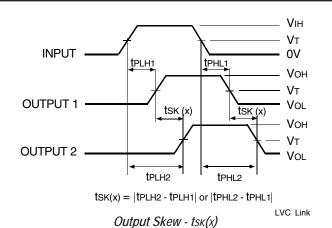
TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

-				
Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ =2.7V	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	V
Vih	2.7	2.7	Vcc	V
Vτ	1.5	1.5	Vcc/2	V
Vlz	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

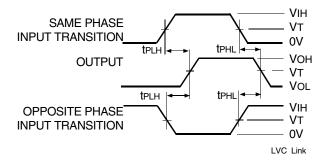
CL = Load capacitance: includes jig and probe capacitance.

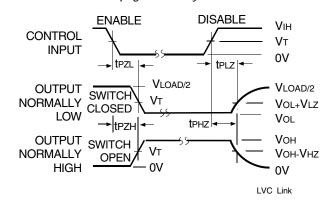

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate \leq 10MHz: tF \leq 2.5ns: tR \leq 2.5ns. 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

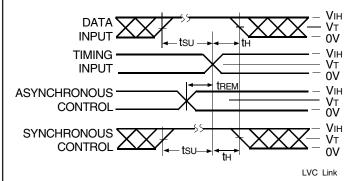
SWITCH POSITION

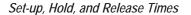

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

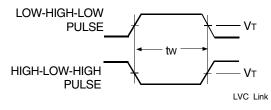

NOTES:

For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs. 1.

For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank. 2

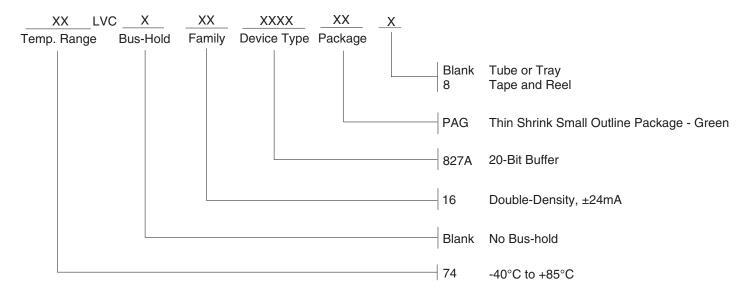

Propagation Delay




Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Pulse Width

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

08/20/2015 Pg. 6 Updated the ordering information by removing non RoHS parts and adding Tape and Reel information.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.