To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics
Corporation took over all the business of both companies. Therefore, although the old company name remains
in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

http://www.renesas.com/�
http://www.renesas.com/�
http://japan.renesas.com/inquiry�

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein,
please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and
careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed

through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other

intellectual property rights of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for

any losses incurred by you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export
control laws and regulations and follow the procedures required by such laws and regulations. You should not use
Renesas Electronics products or the technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction.
Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose

manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever

for any damages incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”,
and “Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality
grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a
particular application. You may not use any Renesas Electronics product for any application categorized as “Specific”
without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product
for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas
Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use
of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended
where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas
Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data

books, etc.

10.

11.

12.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and
visual equipment; home electronic appliances; machine tools; personal electronic equipment; and

industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life

support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical
equipment or systems for life support (e.g. artificial life support devices or systems), surgical
implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes

that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified

ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please

evaluate the safety of the final products or system manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your

noncompliance with applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of

Renesas Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this

document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its

majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)’ means any product developed or manufactured by or for Renesas Electronics.

LENESANS
Application Note

/8KOR/KC3-L, 78KOR/KE3-L
(On-Chip USB Controller)

16-bit Single-Chip Microcontroller

USB CDC (Communication Device Class) Driver

uPD78F1022
uPD78F1023
uPD78F1024
uPD78F1025
uPD78F1026

© Renesas Electronics Corporation 2010

Document No RO1ANOO03EJ0100(U20312EJ1VOANOO)
Date Published 2010/4/26

[Memo]

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

MINICUBE is a registered trademark of NEC Electronics Corporation

Windows, Windows XP are registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

PC/AT is a trademark of International Business Machines Corporation.

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may
cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc.,
the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,
and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).

(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is
unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using
pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility
that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to
related specifications governing the device.

(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate
oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as
possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When itis dry, a
humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive
material. All test and measurement tools including work benches and floors should be grounded. The operator should be
grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to
be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately
after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not
guarantee output pin levels, I/0 settings or contents of registers. A device is not initialized until the reset signal is received.
A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and
external interface, as a rule, switch on the external power supply after switching on the internal power supply. When
switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of
the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device,
causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power
on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is
not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause
malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.
Input of signals during the power off state must be judged separately for each device and according to related specifications
governing the device.

3 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

PREFACE

Readers This application note is intended for users, who understand the
features of the 78KOR/KC3-L, KE3-L, and who try to design and
develop the application system and application program using this
product.

Target products are given below.
Generic Standard product USB controller built-in product
Name
78KOR/KC3-L | yPD78F1000, 78F1001, 78F1002, uPD78F1022, 78F1023, 78F1024
78F1003
78KOR/KE3-L | yPD78F1007, 78F1008, 78F1009 uPD78F1025, 78F1026
Purpose This manual is intended to give users an understanding of the

Organization

How to Read This Manual

Conventions

functions mentioned in following organization.
This application note is broadly divided into the following sections.

An overview of 78KOR/KC3-L, KE3-L USB function controller
An overview of the USB standard

The specifications for the sample driver

The specifications for the sample application

Development environment

How to use the sample driver

O O0OO0OO0OO0OO0

It is assumed that the readers of this application note have general
knowledge in the fields of electrical engineering, logic circuits, and
microcontrollers.

To learn about the hardware features and electrical specifications of

the 78 KOR/KC3-L, KE3-L.

- See the separately provided 78KOR/KC3-L, KE3-L
Hardware User’s Manual.

To learn about the instructions of the 78 KOR/KC3-L, KE3-L

- See the separately provided 78K0OR Architecture User’s
Manual.

Data significance: Higher digits on the left and lower digits on
the right

Note: Footnote for item marked with Note in the

text

Caution: Information requiring particular attention
Remark: Supplementary information

Numeric representation: Binary or decimal ... XXXX
Hexadecimal ... OxXXXXX
Prefix indicating power of 2 (address space, memory capacity)
K (kilo): 2'° = 1,024

M (mega): 2°° = 1,024°
G (giga): 2*° = 1,024°
T (tera): 2*° = 1,024*
P (peta): 2°° = 1,024°
E (exa): 2%° = 1,024°

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CONTENTS

CHAPTER 1 OVERVIEW......ooi e 7
1.1 OVEIVIBW ... s 7
1.1.1 Features of the USB function CoNtroller ... 7
1.1.2 Features Of the SAMPIE AFIVET........o ettt e e sttt e e ebe e e e et e e s nee e e anbe e e esbeeesaneeeanneens 8
1.1.3 Files included in the SAMPIE AFIVETottt et e et e e e e bt e e s ne e e e anbe e e snbeeesaneeeanneens 8
1.2 Overview Of 78KOR/KX3-L.......coiiiiiiiii s 9
1.2.1 PaY o] o] [Toz=1 o1 =3 o] o Yo (1 Tex SRR PREPRRSRY 9
1.2.2 FRALUIES ...t 10
CHAPTER 2 OVERVIEW OF USB....ccooiiiiie 11
2.1 Transfer FOrmMat..........ccooiiiiiiiic 11
2.2 [aTo] oTo] o1 £ TR RP 12
2.3 DEVICE CIASS ... s 12
2.4 =0 [=] £ 13
2.4.1 L1 T PO P PP UTPR 13
2.4.2 FOIMAL ... 14
2.5 DS I PEON .. ———————— 15
2.5.1 LIRS T PSSR OPPP 15
2.5.2 FOMMAL ..o 16
CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS............. 18
3.1 OVEIVIEBW ... e e e s 18
3.1.1 FRAMUIES ...ttt a e ettt 18
3.1.2 510 o] o o] (=T Il (=T [T-TS USRI 18
3.1.3 [T Ter g o] (o A== 1] o < TSROSO 20
3.2 Operation of EaCh SeCHON ... 23
3.2.1 CPU INItIANIZAHON ... e e 25
3.2.2 USB function controller initialization ProCeSSING.uii ittt et e e e sibe e e saee e e e beeeesnseeaanes 26
3.2.3 INTUSB INTEITUPE PrOCESS ...ceiiiiieiittiie et ie ettt ettt e ettt e e ate e e e st e e e e ae e e e aabeeesanbeeeaane e e e sae e e easseaesabeaanbeeeannbeeesnnneeeanneeesnneeas 29
3.3 Function SpecCifiCatioNseiiiiiii e a e 31
3.3.1 FUNGHIONS ... 31
3.3.2 Correlation of the FUNCHONSc.coiiii e 32
3.3.3 FUNCHON fEALUIES........ooi s 36
CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS 62

5 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

4.1 OVEIVIBW ...ttt ettt e e e e e ettt e e e e e e e se bt aeeeeeeeesaabaaaeeeaeeeeeanreneaaaeeas 62
4.2 (@] 07=T = 110} o PR RSP 62
4.3 USING FUNCHONS.... ..t e e e e e e e e e e e s e e e e e e e e e s e annraneeeeeaannes 63

CHAPTER 5 DEVELOPMENT ENVIRONMENTccccooviininnnne. 65

51 Development enVIFONMENTo e e e e e e e e e e e e nneeeeeaae e s 65
5.1.1 Program deVEIOPMENTottt ettt e e he et oo bt e e e ea b et e e ae e e e aabe e e ehbe e e aabb e e e aabe e e e bn e e e enreeeeaee 65
5.1.2 [BI=ToT0 oo | T PSP T PP PPPPPUPPN 65

5.2 Setting up the ENVIFONMENT.........oooiiiiiie e e 66
5.2.1 Preparing the NOSt @NVIFONIMENTooiiii et e e st e st e e e sae e e e e be e e e sreeeenee 66
5.2.2 Setting up the target ENVIFONMENToi ettt st et eb et s 74

5.3 (@)@ o 1o 3 B 1= o 18T o |1 o FU PR SOS 81
5.3.1 Generating @ 1080 MOGUIEooiiiiii ettt bt s bt a bt e s he e st e s bt e bt e sae e enbeesaeeeateenbee s 81
5.3.2 Loading and executing the 10ad MOGUIE.............oocuiii i e e e e 82

5.4 Checking the OPErationcc.uiiiiiiie e e e e e e e e e e e e e neeeeae s 85

CHAPTER 6 USING THE SAMPLE DRIVER..........ccoeiiiii 86

6.1 OVEIVIBW ..ttt ettt ettt ettt o e bttt oo s bt e e a bttt e e e s et e e e ab e e e e e nbeeeeannes 86

6.2 Customizing the SAmMPIE DIiVET..........oiiiiiiiee et e e aae e e e eneeas 87
6.2.1 Y o] o] L{ez= o] IE=T=To1 [o [RSP 87
6.2.2 SettiNg UP the TEGISIEIS ..ottt b et a et ae e bt e sae e bt e naeeebeentee s 88
6.2.3 [=T Yol o) (o i a1 {o T 0 =1 (T o ISR 88
6.2.4 Setting up the virtual COM POIt NOSE AMIVETcocuiiiiiiiii ittt s 89

6.3 USING FUNCHONS.t e e e e et e e e e e e e e st e e e e e e e s e snanraeeeeeeeannes 92

CHAPTER 7 STARTER KIT ..o 94

7.1 (@ 1YY A/ =Y 94
7.1.1 FRAMUIES ..., 94
7.2 ST 1= Te= 4 o] 3SR 95

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 6

CHAPTER 1 OVERVIEW

This application note describes the USB (communication device class) sample driver created for the USB
function controller incorporated in the 78KOR/KC3-L, 78KOR/KE3-L (78KOR/Kx3-L) microcontrollers. This
application note provides the following information:

« The specifications for the sample driver
« Information about the environment used to develop an application program by using the sample driver
« The reference information provided for using the sample driver

This chapter provides an overview of the sample driver and describes the microcontrollers for which the
sample driver can be used.

1.1 Overview

1.1.1 Features of the USB function controller
The USB function controller that is incorporated in the 78KOR/Kx3-L and is to be controlled by the sample
driver has the following features:
« Conforms to the Universal Serial Bus Rev. 2.0 Specification
¢ Operates as a full-speed (12 Mbps) device.
« Includes the following endpoints:

Table 1-1 Configuration of the Endpoints of the 78KOR/Kx3-L

Endpoint Name FIFO Size (Bytes) Transfer Type Remark

Endpoint0 Read 64 Control transfer (IN) Single buffer
configuration
Endpoint0 Write 64 Single buffer
Control transfer (OUT) configuration

Endpoint1 64x2 Dual-buffer
Bulk transfer 1 (IN) configuration

Endpoint2 64x2 Dual-buffer
Bulk transfer 1 (OUT) configuration

Endpoint3 64x2 Bulk transfer 2 (IN) Dual-buffer
configuration

Endpoint4 64x2 Dual-buffer
Bulk transfer 2 (OUT) configuration
Endpoint7 64 Interrupt transfer 1 (IN) Single buffer
configuration
Endpoint8 64 Interrupt transfer 2 (IN) Single buffer
configuration

e Automatically responds to standard USB requests (except some requests).
e Can operate as a bus-powered device or self-powered device"'*®*
e The internal or external clock can be selected"**®?
Internal clock: 20 MHz External clock divided by 5 internal clock multiplied by 12 internal clock / 16 MHz external clock divided
by 4 internal clock multiplied by 12 internal clock.
12 MHz external clock divided by 2 internal multiplied by 8 internal (48 MHz)

Notes 1. The sample driver selects bus power.

2. The sample driver selects the internal clock.

7 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 1 OVERVIEW

1.1.2 Features of the sample driver
The USB communication device class sample driver for the 78KOR/Kx3-L has the features below. For
details about the features and operations, see CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS.

« Conforms to the USB communication device class Ver.1.1 Abstract Control Model
« Operates as a virtual COM device
« Exclusively uses the following amounts of memory (excluding the vector table):

. ROM:About 3.0 KB
. RAM:About 0.4 KB
1.1.3 Files included in the sample driver

The sample driver includes the following files:

Table 1-2 Files Included in the Sample Driver

Folder File Overview

src main.c Main routine, initialization, sample application
usbf78k0r.c USB initialization, endpoint control, bulk transfer, control transfer
usbf78k0r_communication.c Communication device class specific processing

include main.h main.c function prototype declarations
usbf78k0r.h usbf78k0r. function prototype declarations
usbf78k0r_communication.h usbf78k0r_communication.c function prototype declarations
usbf78k0r_desc.h Descriptor definitions
usbf78k0r_errno.h Error code definitions
usbf78kO0r_types.h User declarations

Inf file KOR_CDC_XP.inf INF file for Windows XP

Remarks In addition, the project-related files generated when creating a development environment by using the PM+
(an integrated development tool made by NEC Electronics) are also included. For details see 5.2.1 Preparing
the host environment.

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 8

CHAPTER 1 OVERVIEW

1.2 Overview of 78KOR/Kx3-L

This section describes the 78KOR/KC3-L, KE3-L which are controlled by using the sample driver.

The 78KOR/KC3-L, KE3-L are products in the low-power series of single chip 78KOR microcontroller,
made by NEC Electronics. They use 78KOR CPU core and have peripheral functions such as ROM/RAM,
timers/counters, POC/LVI, a serial interface, A/D converter, DMA controller, USB function controller. For
details, see the 78KOR/KC3-L, KE3-L USB controller built-in products Hardware User’s manual.

1.2.1 Applicable products

The sample driver can be used for the following products.

Table 1-2 78KOR/Kx3-L Products

Generic Name Part Number Internal Memory Incorporated USB Function Interrupt
Flash RAM Internal | External
Memory
78KOR/KC3-L 4 PD78F1022 64 KB 6 KB Function controller 36 7
(48pin) 4 PD78F1023 96KB 8 KB Function controller 36 7
1 PD78F1024 128KB 8 KB Function controller 36 7
78KOR/KE3-L 4 PD78F1025 96KB 8 KB Function controller 41 11
(64pin) 1 PD78F1026 128KB 8 KB Function controller 41 11

Caution: In this application note, all target microcontrollers are collectively indicated as the 78KOR/Kx3-L,

unless distinguishing between them is necessary.

9 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 1 OVERVIEW

1. 2. 2 Features

The main features of 78KOR/Kx3-L are as follows. For details, see 78 KOR/Kx3-L user’s manual.

Memory space:
« 1M byte linear address space (for programs and data)

Internal memory
« RAM:6K/ 8K byte
« Flash memory : 64K/ 96K/ 128K byte

Multiplication/division function
« 16 bit x16 bit = 32 bit(multiplication)
» 32 bit + 32 bit = 32 bit (division)

Key interrupt
« 4 channels
« 8 channels

DMA controller
« 2 channels

Serial interface

¢ CSI:1 channel/ UART :1 channel

« CSI:1 channel/lUART:1 channel/simple 12C: 1channel

« CSI:1 channel note/lUART:1 channel note/simple 12C: 1channel note
« UART(for LIN-bus):1 channel

¢ 12C:1 channel

USB controller
« USB function (full speed):1 channel

A/D converter
« 10 bit resolution A/D converter(AVREF = 1.8~3.6 V):8 channel

Power supply voltage

« VDD = 1.8~3.6 V(when USB is not used)
« VDD = 3.0~3.6 V(when USB is used)

Clock output/buzzer output

e 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz(peripheral hardware clock:at fyan =

20 MHz operation)

e 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz

(Subsystem clock: at fsyg = 32.768 kHz operation)
With built-in on chip debugging function

Note: only 78KOR/KE3-L

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

10

CHAPTER 2 OVERVIEW OF USB

This chapter provides an overview of the USB standard, which the sample driver conforms to.

USB (Universal Serial Bus) is an interface standard for connecting various peripherals to a host computer by
using the same type of connector. The USB interface is more flexible and easier to use than older interfaces
in that it can connect up to 127 devices by adding a branching point known as a hub and supports the
hot-plug feature, which enables devices to be recognized by Plug & Play. The USB interface is provided in
most current computers and has become the standard for connecting peripherals to a computer.

The USB standard is formulated and managed by the USB Implementers Forum (USB-IF).

about the USB standard, see the official USB-IF website (www.usb.org).

2.1

Transfer Format

For details

Four types of transfer formats (control, bulk, interrupt and isochronous) are defined in the USB
standard. Table 2-1 shows the features of each transfer format.

Table 2-1 USB Transfer Format

Transfer Format

Control Transfer

Bulk Transfer

Interrupt Transfer

ltem Isochronous
Transfer
Feature Transfer format used | Transfer format used | Periodic data Transfer format used
to exchange to aperiodically transfer format that for a real-time
information required | handle large has a low band transfer
for controlling amounts of data width
peripheral devices
Specifiable :
packet size High speed 64 bytes 512 bytes 110 1,024 bytes 110 1,024 bytes
480 Mbps
Full speed 8, 16, 32, or 64 8, 16, 32, or 64 1 to 64 bytes 1 to 1,023 bytes
12 Mbps bytes bytes
Low speed 8 bytes - 1 to 8 bytes -
1.5 Mbps
Transfer priority 3 3 2 1

11

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

http://www.usb.org/�

CHAPTER 2 OVERVIEW OF USB

2.2 Endpoints

An endpoint is an information unit that is used by the host device to specify a communicating device and
is specified using a number from 0 to 15 and a direction (IN or OUT). An endpoint must be provided for
every data communication path that is used for a peripheral device and cannot be shared by multiple
communication pathsNOte. For example, a device that can write to and read from an SD card and print
out documents must have a separate endpoint for each purpose. Endpoint 0 is used to control transfers
for any type of device.

During data communication, the host uses a USB device address, which specifies the device, and an
endpoint (a number and direction) to specify the communication destination in the device.

Peripheral devices have buffer memory that is a physical circuit to be used for the endpoint and functions
as a FIFO that absorbs the difference in speed of the USB and communication destination (such as
memory).

Note An endpoint can be exclusively switched by using the alternative setting.
2.3 Device Class

Various device classes, such as the mass storage class (MSC), communication device class (CDC),
and human interface device class (HID) are defined according to the functions of the peripheral devices
connected via USB (the function devices). A common host driver can be used if the connected devices
conform to the standard specifications of the relevant device class, which is defined by a protocol.

The Communication Device Class (CDC) is intended for communication devices connected to hosts,
such as modems, FAX machines and network cards. The class is increasingly used for devices that are
used for USB-to-serial conversion performing UART communication with a computer, because recent
computers do not have an RS-232C interface. Note that a different CDC model is defined depending
on the device to connect. The sample driver uses the Abstract Control Model.

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 12

CHAPTER 2 OVERVIEW OF USB

2.4 Requests

For the USB standard, communication starts with the host issuing a command, known as a request, to
a function device. A request includes data such as the direction and type of processing and address of

the function device.

2.4.1 Types

There are three types of requests: standard requests, class requests and vendor requests.

The sample driver supports the following requests.

Standard requests

Standard requests are used for all USB-compatible devices.

Table 2-2 Standard Requests

Request Name

Target Descriptor

Overview

GET_STATUS Device Reads the settings of the power supply (self or bus) and
remote wakeup.
Endpoint Reads the halt status.
CLEAR_FEATURE Device Clears remote wakeup.
Endpoint Cancels the halt status (DATA PID = 0).
SET_FEATURE Device Specifies remote wakeup or test mode.
Endpoint
Specifies the halt status.
GET_DESCRIPTOR Device Reads the target descriptor.
Configuration
string
SET_DESCRIPTOR Device Changes the target descriptor (optional).
Configuration
string
GET_CONFIGURATION | Device Reads the currently specified configuration values
SET_CONFIGURATION | Device Specifies the configuration values.
GET_INTERFACE Interface Reads the alternatively specified value among the currently
specified values of the target interface.
SET_INTERFACE Interface Specifies the alternatively specified value of the target
interface.
SET_ADDRESS Device Specifies the USB address
SYNCH_FRAME Endpoint Reads frame-synchronous data.

13

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 2 OVERVIEW OF USB

Class requests
Class requests are unique to device classes. For the sample driver, processing to respond to
class requests that support the CDC Abstract Control Model is implemented. The following
requests can be responded to

e SendEncapsulatedCommand
This request is used to issue commands in the format of the protocol for controlling the
communication class interface.

o GetEncapsulatedResponse
This request is used to request a response in the format of the protocol for controlling the
communication class interface.

e SetLineCoding
This request is used to specify the serial communication format.

¢ GetLineCoding
This request is used to acquire the communication format settings on the device side.

e SetControlLineState
This request is used for RS-232/V.24 format control signals.

2.4.2 Format
USB requests have an 8-byte length and consist of the following fields.

Table 2-3 USB Request Format

Offset Field Description
0 bmRequestType Request attribute
Bit 7 Data transfer direction
Bits 6 and 5 Request type
Bits 4 to 0 Target descriptor
1 bRequest Request code
2 wValue Lower Any value used by the request
3 Higher
4 windex Lower Index or offset used by the request
5 Higher
6 wLength Lower Number of bytes transferred at the data
stage
7 Higher (the data length)

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 14

CHAPTER 2 OVERVIEW OF USB

2.5

Descriptor

For the USB standard, a descriptor is information that is specific to a function device and is encoded in a

specified format. A function device transmits a descriptor in response to a request transmitted from the

host.

2.5.1 Types

The following five types of descriptors are defined.

Device descriptor

This descriptor exists in every device and includes basic information such as the supported USB
specification version, device class, protocol, maximum packet length that can be used when
transferring data to endpoint 0, vendor ID, and product ID.

This descriptor is transmitted in response to a GET_DESCRIPTOR_Device request.

Configuration descriptor

At least one configuration descriptor exists in every device and includes information such as the
device attribute (power supply method) and power consumption. This descriptor is transmitted in
response to a GET_DESCRIPTOR_Configuration request.

Interface descriptor

This descriptor is required for each interface and includes information such as the interface
identification number, interface class, and supported number of endpoints. This descriptor is
transmitted in response to a GET_DESCRIPTOR_Configuration request.

Endpoint descriptor

This descriptor is required for each endpoint specified for an interface descriptor and defines the
transfer type (direction), maximum packet length that can be used for a transfer, and transfer
interval. However, endpoint 0 does not have this descriptor.

This descriptor is transmitted in response to a GET_DESCRIPTOR _Configuration request.

String descriptor
This descriptor includes any character string.
This descriptor is transmitted in response to a GET_DESCRIPTOR_String request.

15

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 2 OVERVIEW OF USB

2.5.2 Format
The size and fields of each descriptor type vary as described below.

Remark The data sequence of each field is in little endian format.

Table 2-4 Device Descriptor Format

Field Size Description
(Bytes)
bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bcdUSB 2 USB specification release number
bDeviceClass 1 Class code
bDeviceSubClass 1 Subclass code
bDeviceProtocol 1 Protocol code
bMaxPacketSize0 1 Maximum packet size of endpoint 0
idVendor 2 Vendor ID
idProduct 2 Product ID
bcdDevice 2 Device release number
iManufacturer 1 Index to the string descriptor representing the manufacturer
iProduct 1 Index to the string descriptor representing the product
iSerialNumber 1 Index to the string descriptor representing the device production number
bNumConfigurations 1 Number of configurations
Remark Vendor ID: The identification number each company that develops a USB device acquires from
USB-IF
Product ID: The identification number each company assigns to a product after acquiring the
vendor ID
Table 2-5 Configuration Descriptor Format
Field Size Description
(Bytes)
bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
wTotalLength 2 Total number of bytes of the configuration, interface, and endpoint
descriptors
bNuminterfaces 1 Number of interfaces in this configuration
bConfigurationValue 1 Identification number of this configuration
iConfiguration 1 Index to the string descriptor specifying the source code for this
configuration
bmAttributes 1 Features of this configuration
bMaxPower 1 Maximum current consumed in this configuration (in 2 zA units)
Table 2-6 Interface Descriptor Format
Field Size Description
(Bytes)
bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
binterfaceNumber 1 Identification number of this interface
bAlternateSetting 1 Whether the alternative settings are specified for this interface
bNumEndpoints 1 Number of endpoints of this interface
binterfaceClass 1 Class code
binterfaceSubClass 1 Subclass code
binterfaceProtocol 1 Protocol code
ilnterface 1 Index to the string descriptor specifying the source code for this interface

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

16

CHAPTER 2 OVERVIEW OF USB

Table 2-7 Endpoint Descriptor Format

Field Size Description
(Bytes)
bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bEndpointAddress 1 Transfer direction of this endpoint
Address of this endpoint
bmaAttributes 1 Transfer type of this endpoint
wMaxPacketSize 2 Maximum packet size of this transfer
binterval Polling interval of this endpoint
Table 2-8 String Descriptor Format
Field Size Description
(Bytes)
bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bString Any Any data string

17

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

This chapter provides details about the features and processing of the USB Communication Device
Class sample driver for the 78KOR/Kx3-L and the specifications of the functions provided in the
78KOR/Kx3-L.

3.1 Overview

3.1.1 Features
The sample driver can perform the following processing.

(1) Initialization
The USB function controller is set up for use by manipulating various registers. This setup
includes specifying settings for the CPU registers of the 78KOR/Kx3-L and specifying settings
for the registers of the USB function controller. For details, see 3. 2. 1 CPU Initialization, 3. 2. 2 3.
2. 2 USB function controller initialization processing

(2) Monitoring endpoints
The status of transfer endpoints in USB function controller is notified from INTUSB interrupt.
There are CPUDEC interrupt expressing the request of decode by FW for the control transfer
endpoint (Endpoint0) and BKO1DT interrupt showing the normal reception of data for bulk-out
transfer (reception) endpoint (Endpoint2). During the processing of Endpoint0, requests are
responded too. For details, see 3.2.3 INTUSB interrupt processing.

(3) Sample application
The data at the endpoint for bulk-out transfer (reception) is read, and then the data is written to
the endpoint for bulk-in transfer (transmission). For details, see CHAPTER 4 SAMPLE
APPLICATION SPECIFICATIONS.

3.1.2 Supported requests
This section describes the USB requests supported by the sample driver.

(1) Standard requests
The sample driver returns the following responses for requests to which the 78KOR/Kx3-L
does not automatically respond.

(@) GET_DESCRIPTOR_string
The host issues this request to acquire the string descriptor of the function device. If this
request is received, the sample driver transmits the requested string descriptor to the host
through a control read transfer.

(b) Other requests
The sample driver returns a STALL.

(2) Class requests
The sample driver responds to class requests of the CDC by using the following class
requests.

(a) SendEncapsulatedCommand
This request is used to issue a command in the format of the CDC interface control protocol.
If this request is received, the sample driver retrieves the data related to the request and
then transmits them through bulk-in transfer.

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 18

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

(b) GetEncapsulatedResponse
This request is used to request a response in the format of the CDC interface control protocol.
Currently, the sample driver does not support this request.

(c) SetLineCoding
This request is used to specify the serial communication format. If this request is received,
the sample driver retrieves the data related to the request to specify settings such as the
communication rate and then transmits a NULL packet through control read transfer.

(d) GetLineCoding
This request is used to acquire the current communication format settings on the device side.
If this request is received, the sample driver reads settings such as the communication rate
and then transmits them through control read transfer.

(e) SetControlLineState
This request is used for RS-232/V.24 format control signals. If this request is received the
sample driver transmits a NULL packet through control read transfer.

19

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3. 1. 3 Descriptor settings
The settings of each descriptor specified by the sample driver are shown below. These settings are
included in header file "usbf78k0r_desc.h".

(1) Device descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_device request.
The settings are stored in the UFODDn registers (where n = 0 to 17) when the USBF is initialized,
because the hardware automatically responds to a GET_DESCRIPTOR_device request.

Table 3-1 Device Descriptor Settings

Field Size Specified Description
(Bytes) Value

bLength 1 0x12 | Descriptor size: 18 bytes
bDescriptorType 1 0x01 | Descriptor type: device
bcdUSB 2 0x0200 | USB specification release number: USB 2.0
bDeviceClass 1 0x02 | Class code: CDC
bDeviceSubClass 1 0x00 | Subclass code: none
bDeviceProtocol 1 0x00 | Protocol code: No unique protocol is used
bMaxPacketSize0 1 0x40 | Maximum packet size of endpoint 0: 64
idVendor 2 0x0409 | Vendor ID:NEC
idProduct 2 0x01CD | Product ID:78KOR /Kx3-L
bcdDevice 2 0x0001 | Device release number:1st version
iManufacturer 1 0x01 | Index to the string descriptor representing the manufacturer: 1
iProduct 1 0x02 | Index to the string descriptor representing the product: 2
iSerialNumber 1 0x03 | Index to the string descriptor representing the device production number:3
bNumConfigurations 1 0x01 | Number of configurations:1

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 20

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

(2) Configuration descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.
The settings are stored in the UFOCIEn registers (where n = 0 to 255) when the USB function
controller is initialized, because the hardware automatically responds to a
GET_DESCRIPTOR_configuration request.

Table 3-2 Configuration Descriptor Settings

Field Size Specified Description
(Bytes) Value

bLength 1 0x09 | Descriptor size: 9 bytes

bDescriptorType 1 0x02 | Descriptor type: configuration

wTotalLength 2 0x0030 | Total number of bytes of the configuration, interface, and endpoint
descriptors: 48 bytes

bNuminterfaces 1 0x02 | Number of interfaces in this configuration: 2

bConfigurationValue 1 0x01 | Identification number of this configuration:1

iConfiguration 1 0x00 | Index to the string descriptor specifying the source code for this
configuration:0

bmAttributes 1 0x80 | Features of this configuration: bus-powered, no remote wakeup

bMaxPower 1 0x1B | Maximum current consumed in this configuration: 54 mA

(3) Interface descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR _configuration request.
The settings are stored in the UFOCIEn registers (where n = 0 to 255) when the USB function
controller is initialized, because the hardware automatically responds to a
GET_DESCRIPTOR_configuration request.
Two types of descriptors are set up because the sample driver uses two interfaces.

Table 3-3 Interface Descriptor Settings for Interface 0

Field Size Specified Description
(Bytes) Value
bLength 1 0x09 | Descriptor size: 9 bytes
bDescriptorType 1 0x04 | Descriptor type: interface
binterfaceNumber 1 0x00 | Identification number of this interface: 0
bAlternateSetting 1 0x00 | Whether the alternative settings are specified for this interface: no
bNumEndpoints 1 0x01 | Number of endpoints of this interface: 1
binterfaceClass 1 0x02 | Class code: communications interface class
binterfaceSubClass 1 0x02 | Subclass code: Abstract Control Model
binterfaceProtocol 1 0x00 | Protocol code: No unique protocol is used.
ilnterface 1 0x00 | Index to the string descriptor specifying the source code for this interface:
0
21 Application note R01AN0003EJ0100(U20312EJ1V0OANO0)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Table 3-4 Interface Descriptor Settings for Interface 1

Field Size Specified Description
(Bytes) Value
bLength 1 0x09 | Descriptor size: 9 bytes
bDescriptorType 1 0x04 | Descriptor type: interface
binterfaceNumber 1 0x01 | Identification number of this interface: 1
bAlternateSetting 1 0x00 | Whether the alternative settings are specified for this interface: no
bNumEndpoints 1 0x02 | Number of endpoints of this interface: 2
binterfaceClass 1 0x0A | Class code: communications interface class
binterfaceSubClass 1 0x00 | Subclass code: Abstract Control Model
binterfaceProtocol 1 0x00 | Protocol code: No unique protocol is used.
ilnterface 1 0x00 | Index to the string descriptor specifying the source code for this interface:
0

(4) Endpoint descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR _configuration request.
The settings are stored in the UFOCIEn registers (where n = 0 to 255) when the USB function
controller is initialized, because the hardware automatically responds to a
GET_DESCRIPTOR_configuration request. Three descriptor types are specified because the

sample driver uses three endpoints.

Table 3-5 Endpoint Descriptor Settings for Endpoint 7

Field Size Specified Description
(Bytes) Value
bLength 1 0x07 | Descriptor size: 7 bytes
bDescriptorType 1 0x05 | Descriptor type: endpoint
bEndpointAddress 1 0x87 Transfer direction of this endpoint: IN
Address of this endpoint: 7
bmAttributes 1 0x03 | Transfer type of this endpoint: interrupt
wMaxPacketSize 2 0x0008 | Maximum packet size of this transfer: 8 bytes
binterval 1 0x0A | Polling interval of this endpoint: 10 ms
Table 3-6 Endpoint Descriptor Settings for Endpoint 1
Field Size Specified Description
(Bytes) Value
bLength 1 0x07 | Descriptor size: 7 bytes
bDescriptorType 1 0x05 | Descriptor type: endpoint
bEndpointAddress 1 0x81 Transfer direction of this endpoint: OUT
Address of this endpoint: 2
bmAttributes 1 0x02 | Transfer type of this endpoint: bulk
wMaxPacketSize 2 0x0040 | Maximum packet size of this transfer: 64 bytes
binterval 1 0x00 | Polling interval of this endpoint: 0 ms
Table 3-7 Endpoint Descriptor Settings for Endpoint 2
Field Size Specified Description
(Bytes) Value
bLength 1 0x07 | Descriptor size: 7 bytes
bDescriptorType 1 0x05 | Descriptor type: endpoint
bEndpointAddress 1 0x02 Transfer direction of this endpoint: IN
Address of this endpoint: 2
bmAttributes 1 0x02 | Transfer type of this endpoint: bulk
wMaxPacketSize 2 0x0040 | Maximum packet size of this transfer: 64 bytes
binterval 1 0x00 | Polling interval of this endpoint: 0 ms

Application note

R0O1ANOO03EJ0100(U20312EJ1VOANOO)

22

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

(5) String descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR _string request.
If a GET_DESCRIPTOR_string request is received, the sample driver stores the settings of this
descriptor into the UFOEOW register of the USB function controller.

Table 3-8 String Descriptor Settings

(a)String 0
Field Size Specified Description
(Bytes) Value
bLength 1 0x04 | Descriptor size: 4 bytes
bDescriptorType 1 0x03 | Descriptor type: string
bString 2 0x09, 0x04 | Language code: English (U.S.)
(b)String 1
Field Size Specified Description
(Bytes) Value
bLength T 1 0x2A | Descriptor size: 42 bytes
bDescriptorType 1 0x03 | Descriptor type: string
bString €2 40 - Vendor: NEC Electronics Corporation
Notes 1. The specified value depends on the size of the bString field.

2.The vendor can freely set up the size and specified value of this field.

(c)String 2
Field Size Specified Description
(Bytes) Value
bLength T 1 OXOE | Descriptor size: 14 bytes
bDescriptorType 1 0x03 | Descriptor type: string
bString "2 12 - Product type: CDCDrv (CDC driver)

Notes 1. The specified value depends on the size of the bString field.
2. The vendor can freely set up the size and specified value of this field.

(d)String 3
Field Size Specified Description
(Bytes) Value
bLength T 1 0x16 | Descriptor size: 22 bytes
bDescriptorType 1 0x03 | Descriptor type: string
bString "°** 20 - Serial number: 0_98765432

Notes1. The specified value depends on the size of the bString field
2. The vendor can freely set up the size and specified value of this field.

3.2 Operation of Each Section

The processing sequence below is performed when the sample driver is executed. This section
describes each processing. For details about the sample application, see CHAPTER 4 SAMPLE
APPLICATION SPECIFICATIONS.

23 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Figure 3-1 Sample Driver Processing Flowchart

Initializing the CPU

A

Initializing the USB function controller

&
l

y

Executing the sample application

24

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3.2.1 CPU Initialization
The settings necessary to use the USB function controller are specified.

Figure 3-2 CPU Initialization Flowchart

(Start of CPU)
A 4

Setting clock generation

A 4
< End of CPU >

(1) Clock generation settings

Operation of internal clock of CPU is set.
Here, five registers are set.

(a) “0x41” is written to CMC register to specify X1 oscillation mode, 10MHz < fy;x <= 20MHz.

(b) “0”is written to the MSTOP bit of CSC register to start the operation of X1 oscillation circuit.

(c) Oscillation stability time is verified according to OSTC register.

(d) “Ox01” is written in PLLC register to stop the PLL operation.

(e) “Ox38” is written to the CKC register to specify CPU/peripheral hardware clock to main system
clock (fuyan), main system clock to high speed system clock (fux) and ratio of dividing frequency to
fo .

(f) “1”is written to the HIPSTOP bit of CSC register to stop high speed built-in oscillation circuit.

(g) “1”is written to PLLM bit of PLLC register to multiply the frequency of the clock provided to PLL by
12.

(h) “0”is written to PLLSTOP bit of PLLC register to stat the operation of PLL.

25

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3. 2.2 USB function controller initialization processing
The settings necessary to use the USB function controller are specified.

Figure 3-3USB function controller Initialization Processing Flowchart

< Start of USBF >

A 4

USB clock supply

v

D+ signal noconnection settings

A 4

Setting USB buffer as invalid/ floating

v

NAK settings of control endpoints

!

Initialization of request data register area

A 4

Settings up interface and endpoints

v

Cancellation of control endpoints NAK settings

A 4

Setting up interrupt mask register

A 4

Initialization of driver internal flag

A 4

Setting USB buffer as valid/floating measures

A 4

Setting D+ signal pulling up

End of USB

(1) USB clock supply
“0x80” is set in UCKC register so that USB clock is supplied to USB function controller.

(2) D+ Signal no-connection settings
"0x02” is set to UFOGPR register in order to avoid being detected by the host.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

(3) Invalidate USB buffer as and validate the floating measures
“Ox00” is set to UFOBC register to disable the operations of USB function controller set as valid USB
buffer and invalid floating measures.

(4) NAK settings of control endpoints
In order to avoide the unintended response before registering the data which are used for automatic
respose by the hardware. 1 is written to the EPONKA bit of the UFOEONA register so that the hardware
responds to all requests, including requests that are automatically responded to, with a NAK.

(5) Initializing the request data register area
The descriptor data transmitted in auto response to a GET_DESCRIPTOR request is added to the
following registers.

(a) 0x00 is written to the UFODSTL register to disable remote wakeup and operate the USB function
controller as a bus-powered device.

(b) 0x00 is written to the UFOENSL registers (where n = 0 to 2) to indicate that endpoint n operates
normally.

(c) The total data length (number of bytes) of the required descriptor is written to the UFODSCL
register to determine the range of the UFOCIEn registers (where n = 0 to 255).

(d) The device descriptor data is written to the UFODDn registers (where n =0 to 7).

(e) The data of the configuration, interface, and endpoint descriptors is written to the UFOCIEn
registers (where n = 0 to 255).

(f) 0x00 is written to the UFOMODC register to enable automatic responses to
GET_DESCRIPTOR_configuration requests.

(6) NAK settings of interface and endpoints
Information such as the number of supported interfaces, whether the alternative setting is used, and
the relationship between the interfaces and endpoints are specified for various registers. The
following registers are accessed.

(a) 0x80 is written to the UFOAIFN register to enable two interfaces.

(b) 0x00 is written to the UFOAAS register to disable the alternative setting.
(c) 0x40 is written to the UFOE1IM register to link endpoint 1 to interface 1.
(d) 0x40 is written to the UFOE2IM register to link endpoint 2 to interface 1.
(e) 0x20 is written to the UFOE7IM register to link endpoint 7 to interface 0.

(7) Disabling NAK settings of control endpoints
The NAK response operations for all requests are cancelled. 0 is written to the EPONKA bit of the
UFOEONA register to restart responses corresponding to each request, including requests that are
automatically responded to.

(8) Setting up the interrupt mask registers
Masking is specified for each USB function controller interrupt source. The following registers are
accessed:
(a) 0x00 is written to the UFOlcn registers (where n = 0 to 7) to clear all interrupt sources.
(b) 0x00 is written to the UFOFICn registers (where n = 0 and 1) to clear all transfer FIFOs.
(c) Ox7B is written to the UFOIMO register to mask all interrupt sources other than BUSRST interrupt
and SETRQ interrupt from the interrupt sources indicated by the UFOISO register.
(d) Ox7E is written to the UFOIM1 register to mask all interrupt sources other than CPUDEC interrupt
from the interrupt sources indicated by the UF0IS1 register.
(e) OxF3 is written to the UFOIM2 register to mask all interrupt sources indicated by the UF0IS2
register.
(f) OxFE is written to the UFOIM3 register to mask interrupt sources indicated by the UF0IS3 register
other than those of the BKO1DT interrupt.
(g) OxFF is written to the UFOIM4 register to mask all interrupt sources indicated by the UF0IS4
register.
(h) “0” is written to the USBIF bit of CPU to clear INTUSB interrupt.
(i) “0”is written to the USBMK bit of CPU to disable mask of INTUSB interrupt.

27 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

(9) Initialization of driver internal flag
A high level signal is output from the D+ pin to report to the host that a device has been connected. For
the sample driver, the connections shown in Figure 3-4 are assumed and the following registers are
accessed.

(10)USB buffer enabled/ floating measures disabled
“Ox03” is set to UFOBC register to enable USB buffer, to disable floating measures and to enable USB

function controller operations.

(11)Pulling up the D+ signal

“0x02” is set to UFOGPR register to report to the host that a device has been connected.

Figure 3-4 USB function controller Connection Example

KOR/KC3-H EVoo
KOR/KE3-H -
USBPUC
O—F—— IC
- '
UFOGPR | 1 ¥
1.5 kQ+ 50
USBP QO » DO O
27 Q+ 50
USBMQO

* DO O
27 Q+ 5[
50 kQO O
ooooooooogoo

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 28

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3.2.3 INTUSB interrupt process
Interrupt request (INTUSB) from USB function controller reports only about the interrupts which are
masked. Disable mask at the initialization for the necessary interrupts. Respective necessary processes

are executed for the reported interrupts.

Figure 3-5 Process flow of EndpointO monitoring

< Start of INTUSB interrupt >

A 4

BUSRST interrupt process

y

SETRQ interrupt process

CPUDEC interrupt process

A 4

BKO1DT interrupt brocess

A 4

<End of NTUSB interrupt process>

(1) BUSRST interrupt process
It is reports when Bus Reset is generated.

Process is executed in the following order.

(a) “Ox7F” is written to the UFOQICO to clear BUSRST interrupt.
(b) “1”is written to usbf78k0r_busrst_flg flag.
(c) usbf78k0r_buff_init () function is called.

(2) SETRAQ interrupt process
SET_XXXX request for auto process is received and it is reported at auto processing.

Process is executed in the following order.

(a) “OxFB” is written to the UFOICO to clear SETRQ interrupt.

(b) Both SETCON bit of UFOSET register and CONF bit of UFOMODS register are set to “1” is verified.
“1” is set to CONFIGURATION by the SET_CONFIGURATION request is indicated.

(c) “0”is written to the usbf78k0r_busrst_flg flag to report that it is switched from reset state to normal
state.

(3) CPUDEC interrupt process
It is reported when FW process request is received.

Process is executed in the following order.

29 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

(a) “OxFD” is written to UFQIC1 register to clear PROT interrupt.
(b) UFOEOST register is read for 8 times then request data is acquired and decoded.

(c) If request is class request, usbf78k0r_classreq () function is called and class request process is
executed.

(d) If request is not class request, usbf78k0r_standardreq () function is called and standard request
process is executed.

(4) BKO1DT interrupt process

It is reported when data is received in UFOBO1 register normally.

Process is executed in the following order.

(a) “OxFE” is written to the UFOQIC3 register to clear BKO1DT interrupt.

(b) “1”is set to (usbf78k0r_rdata_flg) flag indicating existence of received data to indicate that there is
received data in bulk out endpoint in the drive. This flag is originally defined by the sample driver.

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 30

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3.3

Function Specifications

This section describes the functions implemented in the sample driver.

3.3.1 Functions
The functions of each source file included in the sample driver are described below.

Table 3-9 Functions in the Sample Driver

Source File Function Name Description
main.c cpu_init Initializes the CPU.
main Main routine
usbf78kO0r.c usbf78kO0r _init Initializes the USB function controller

usbf78kO0r_intusbfQ

Processing INTUSB interrupt

usbf78k0r_standardreq

Processes standard requests.

usbf78k0r_getdesc

Processes GET_DESCRIPTOR(String)

usbf78k0r_send EPO

Transmits Endpoint0

usbf78k0r _receive EPO

Receives Endpoint0

usbf78k0r_sendnullEPO

Transmits a NULL packet for endpoint 0.

usbf78k0r_sendstallEPO

Transmit a STALL for endpoint 0.

usbf78k0r_ep_status

Notifies FIFO status of bulk/interrupt Inn end point

usbf78k0r_send_null

Transmits a NULL packet of bulk/interrupt inn endpoint

usbf78k0r_data_send

Transmits bulk/interrupt Inn end point

usbf78k0r_rdata_length

Acquires the bulk out endpoint received data length

usbf78k0r_data_receive

Receives bulk out endpoint

usbf78kO0r_fifo_clear

Clears bulk/interrupt Inn end point and bulk out endpoint

FIFO

usbf78k0r_communication.c

usbf78k0r_classreq

Processes CDC class/request

usbf78k0r_send_encapsulated command

Processes SendEncapsulatedCommand requests

usbf78k0r_get_encapsulated_response

Processes Get Encapsulated Response requests

usbf78k0r_set_line_coding

Processes SetLineCoding requests.

usbf78k0r_get_line_coding

Processes GetLineCoding requests.

usbf78k0r_set control line state

Processes SetControlLineState requests.

usbf78k0r_buff_init

Clears FIFO of endpoint for CDC data transfer

usbf78k0r_get_bufinit_flg

Notifies execution state of FIFO initialization process

usbf78k0r_send_buf

Transmits CDC data

usbf78k0r_recv_buf

Receives CDC data

31

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3. 3.2 Correlation of the functions
Some functions call other functions during the processing. The following figures show the correlation

of the functions.

Figure 3-6 Calling Functions in the Main Routine

main

usbf78k0r recv buf

usbf78k0r data receive

usbf78k0r send buf usbf78k0r rdata length

usbf78k0r send null

usbf78k0r ep status

usbf78k0r data send

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

32

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Figure 3-7 Calling Functions during the Processing for the USB function controller

usbf78KkO0r _intusb

usbf78k0r buff init

usbf78k0r fifo clear

usbf78k0r sendstallEPQ

usbf78k0r_classreq

usbf78k0r send encapsulated command

usbf78k0r get encapsulated response

usbf78k0r set line coding

usbf78k0r set line coding

usbf78k0r get line coding

usbf78k0r set control line state

usbf78k0r_sendstallEPO

usbf78k0r standardrea

usbf78k0r_sendstallEPO

usbf78k0r getdesc

usbf78k0r sendstallEPO

usbf78k0r send EPO

usbf78k0r_sendstallEPO

33

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Figure 3-8 Calling Functions during the Processing for the USB Communication Class (1)

usbf78k0r classrea

usbf78k0r send encapsulated command

usbf78k0r sendstallEPQ

usbf78k0r receive EPO

usbf78k0r sendstallEPQ

usbf78k0r data send

usbf78k0r sendnullEPO

usbf78k0r get encapsulated response

usbf78k0r set line coding

usbf78k0r receive EPO

usbf78k0r_sendstallEPO

usbf78k0r buff init

usbf78kO0r fifo clear

usbf78k0r sendnullEPO

usbf78k0r get line coding

usbf78k0r send EPO

usbf78k0r sendnullEPO

usbf78k0r set control line state

usbf78k0r_sendnullEPO

usbf78k0r sendstallEPO

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Figure 3-9 Calling Functions during the Processing for the USB Communication Class (2)

usbf78k0r _send buf

usbf78k0r send null

usbf78k0r _ep status

usbf78k0r ep status

usbf78k0r data send

usbf78k0r recv buf

usbf78k0r data receive

usbf78k0r rdata length

35

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3. 3. 3 Function features
This section describes the features of the functions implemented in the sample driver.

(1) Function description format
The functions are described in the following format.

Function name

[Overview]
An overview of the function is provided

[C description format]
The format in which the function is written in C is provided.

[Parameters]
The parameters (arguments) of the function are described.

Parameter Description

Parameter type and | Parameter summary
name

[Return values]
The values returned by the function are described.

Symbol Description

Return value type Return value summary
and name

[Description]
The feature of the function is described

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

36

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Functions for the main routine

main

[Overview]
Main processing

[C description format]
void main(void)

[Parameters]
None

[Return value]
None

[Description]
This function is called first when the sample driver is executed. This function calls the
initialization function of CPU, initialization function of USB function controller and then the
sample application processing function sequentially.

37 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

cpu_init

[Overview]

Initializes the CPU.

[C description format]
void cpu_init(void)

[Parameters]
None

[Return value]
None

[Description]

This function is called in the main processing.

The settings those are necessary to use the USB function controller in the 78 KOR/Kx3, such

as the clock frequency, and operation mode.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

38

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Functions for the USB function controller

usbf78ko0r _init

[Overview]
Initializes the USB function controller

[C description format]
void usbf78kO0r_init(void)

[Parameters]
None

[Return value]
None

[Description]
This function is called during initialization processing.
This function specifies the settings required for using the USBF, such as allocating and

specifying the data area and masking interrupt requests.

39 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_intusbf0

[Overview]

INTUSB interrupt processing

[C description format]
__interrupt void usbf78k0r_intusbf0 (void)

[Parameters]
None

[Return value]
None

[Description]
This function is an interrupt service routine called from INTUSBFO interrupt.
Generated interrupt processing is done while verifying about the interrupt requests about

the interrupt which are not masked of USB function controller.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_standardreq

[Overview]
Processes standard requests to which the USB function controller does not automatically
respond

[C description format]
void usbf78k0r_standardreq (USB_SETUP *req_data)

[Parameters]

Parameter Description

USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called from the CPUDEC interrupt cause process of INTUSB interrupt
process.
If a GET_DESCRIPTOR request is decoded, this function calls the GET_DESCRIPTOR
request processing function (usbf78k0r_getdesc). For other requests, this function calls

the function for returning STALL responses for endpoint 0 (usbf78k0r_sendstallEPO).

41

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_getdesc

[Overview]

Processes GET_DESCRIPTOR requests

[C description format]
void usbf78k0r_getdesc (USB_SETUP *req_data)

[Parameters]

Parameter Description

USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called during the processing of standard requests to which the USB
function controller does not automatically respond. If a decoded request requests a string
descriptor, this function calls the USB data transmission function (usbf78k0r_send_EPO)
for endpoint 0 and transmits a string descriptor from endpoint 0. If a decoded request
requests any other descriptor, this function calls the function for processing STALL

responses (usbf78k0r_sendstallEPO) for endpoint 0.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

42

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_send_EPO

[Overview]

Transmits USB data for EndpointO

[C description format]
INT32 usbf78k0r_send_EPO(UINT8* data, INT32 len)

[Parameters]
Parameter Description
UINT8* data Transmission data buffer pointer
INT32 len Transmission data length
[Return value]
Symbol Description
DEV_OK Normal completion
DEV _ERROR Abnormal termination

[Description]
This function stores the data stored in the transmission data buffer into the FIFO for the

specified Endpoint0, byte by byte.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_receive_EPO

[Overview]

Receives USB data for Endpoint0

[C description format]

INT32 usbf78kO0r_receive_ EPO(UINT8* data, INT32 len)

[Parameters]
Parameter Description
UINT8* data Reception data buffer pointer
INT32 len Reception data length
[Return value]
Symbol Description
DEV OK Normal completion
DEV _ERROR Abnormal termination

[Description]

This function reads data from the FIFO for the specified endpoint byte by byte and stores

the data into the reception data buffer.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

44

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_sendnullEPO

[Overview]
Transmits a NULL packet for endpoint 0

[C description format]
void usbf78k0r_sendnullEPO(void)

[Parameters]
None

[Return value]
None

[Description]
This function clears the FIFO for endpoint 0 and transmits a NULL packet from the USBF
by setting the bit that indicates the end of data to 1.

45

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_sendstallEPO

[Overview]

Returns a STALL for endpoint 0

[C description format]
void usbf78k0r_sendstallEPO(void)

[Parameters]
None

[Return value]
None

[Description]
This function makes the USBF return a STALL by setting the bit that indicates the use of
STALL for Endpoint O to 1.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_ep_status

[Overview]

Notifies FIFO status for bulk/interrupt inn endpoint

[C description format]

INT32 usbf78k0r_ep_status(INT8 ep)

[Parameters]
Parameter Description
INT8 ep Data transmission endpoint number
[Return value]
Symbol Description
DEV _OK Normal completion (FIFO empty)
DEV _ERROR Abnormal termination (FIFO full)
DEV RESET During Bus Reset processing

[Description]

This function notifies the FIFO status of specified endpoint (for transmission).

47

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_send_null

[Overview]

Transmits a NULL packet for bulk/interrupt inn endpoint

[C description format]
INT32 usbf78k0r_send_null(INT8 ep)

[Parameters]
Parameter Description
INT8 ep Data transmission end point number
[Return value]
Symbol Description
DEV_OK Normal completion
DEV _ERROR Abnormal termination

[Description]
This function transmits a NULL packet from USB function controller by clearing the FIFO
of specified Endpoint (for transmission) and setting the bit that indicates the end of data

to 1.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_data send

[Overview]

Transmits USB data for bulk/interrupt Inn end point

[C description format]

INT32 usbf78k0r_data_send(UINT8* data, INT32 len, INT8 ep)

[Parameters]
Parameter Description
UINT8* data Transmission data buffer pointer
INT32 len Transmission data length
INT8 ep Data transmission end point number
[Return value]
Symbol Description
len (>=0) Normal transmission data size
DEV ERROR Abnormal termination

[Description]

This function stores the data stored in the transmission data buffer into the FIFO for the

specified endpoint, byte by byte.

49

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_rdata _length

[Overview]

Acquires the USB reception data length

[C description format]
void usbf78k0r_rdata_length(INT32 *len , INT8 ep)

[Parameters]
Parameter Description
INT32* len Pointer to the storage address of the received data
length
INT8 ep Data reception endpoint number

[Return value]

None

[Description]

This function reads the received data length of the specified endpoint. (For reception).

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

50

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_data receive

[Overview]

Receives USB data for bulk end point

[C description format]

INT32 usbf78k0r_data_receive(UINT8* data, INT32 len, INT8 ep)

[Parameters]
Parameter Description
UINT8* data Reception data buffer pointer
INT32 len Reception data length
INT8 ep Data reception endpoint number
[Return value]
Symbol Description
len(>=0) Normal transmission data size
DEV ERROR Abnormal termination

[Description]

This function reads data from the FIFO for the specified endpoint byte by byte and stores

the data into the reception data buffer.

51

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_fifo_clear

[Overview]

Clears the FIFO for bulk/interrupt Endpoint

[C description format]

void usbf78kO0r_fifo_clear(INT8 in_ep, INT8 out_ep)

[Parameters]
Parameter Description
INT8 in_ep Data transmission end point number
INT8 out ep Data reception end point number

[Return value]

None

[Description]

This function clears the FIFO of Endpoint specified in bulk/interrupt Endpoint and clears (0)

data reception flag (usbf78kO0r_rdata_flg).

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

52

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Functions for USB communication device class processing

usbf78k0r_classreq

[Overview]

Processes class request

[C description format]
void usbf78k0r_classreq(USB_SETUP *req_data)

[Parameters]

Parameter Description

USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called from the CPUDEC interrupt cause process of INTUSB interrupt

process.
If a decoded request is communication class request, this function calls the each request
processing function. For other requests, this function calls the function for returning a STALL
for EndpointO (usbf78k0r_sendstallEPO).

53 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_send_encapsulated_command

[Overview]

Processes SendEncapsulatedCommand requests

[C description format]
void usbf78k0r_send_encapsulated_command(USB_SETUP *req_data)

[Parameters]

Parameter Description

USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
If request decoded in the class request process is Send Encapsulated Command, this
function is called. This function calls the data reception function (usbf78k0r_receive EPO0) to
retrieve the data received at endpoint 0, and then calls the data transmission function
(usbf78k0r_data_send) to transmit data from endpoint 2 via bulk-in transfer (transmission)

and calls the NULL packet transmission function (usbf78k0r_sendnullEPO) for EndpointO.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

54

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_set_line_coding

[Overview]

Processes SetLineCoding requests

[C description format]
void usbf78k0r_set_line_coding(USB_SETUP *req_data)

[Parameters]

Parameter Description

USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called if request decoded at class request process is Set Line Coding. This
function calls the data reception function (usbf78kOr_receive EPO0) to retrieve the data
received at endpoint 0, and then writes the data to the UART_MODE_INFO structure. This
function calls the FIFO initialization function (usbf78kO0r_buff_init) for user data and then

calls the NULL packet transmission function for endpoint O (usbf78k0r_sendnullEPO).

55

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_get_control_line_coding

[Overview]

Processes GetLineCoding requests

[C description format]

void usbf78k0r_get_line_coding(USB_SETUP *req_data)

[Parameters]

Parameter

Description

USB SETUP *req data

Request data storage pointer address

[Return value]
None

[Description]

This function is called if request decoded at class request process is Get Line Coding.
This function transmits the UART_MODE_INFO structure value from Endpoint0 by calling

USB data transmission function (usbf78k0r_send_EPOQ) for EndpointO.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

56

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_set_control_line_state

[Overview]

Processes SetControlLineState requests.

[C description format]
void usbf78k0r_set_control_line_state(USB_SETUP *req_data)

[Parameters]

Parameter Description

USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called if request decoded in the class request process is “Set Control Line
State”. This function calls the NULL packet transmission function for endpoint 0
(usbf78k0r_sendnullEPO).

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78kor_buff_init

[Overview]

Initializes the FIFO for user data

[C description format]
void usbf78k0r_buff_init(void)

[Parameters]
None

[Return value]
None

[Description]
This function initializes the FIFO for communication class user data by calling FIFO clear
function (usbf78kO0r_fifo_clear) for bulk/interrupt Endpoint and sets the flag
(usbf78kO0r_bufinit_flg) that indicates transmission packet size of internal driver as clear (0)
and FIFO initialization to 1.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

58

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_get_bufinit_flg

[Overview]

Notifies FIFO status for user data
[C description format]

INT32 usbf78k0r_get_bufinit_flg(void)

[Parameters]
None

[Return value]

Symbol Description

DEV _OK Normal status

DEV _ERROR FIFO initialization status
[Description]

This function notifies the internal driver flag (usbf78kO0r_bufinit_flg) status that indicates
the initialization of FIFO. If flag is set as 1, it indicates that FIFO is initialized and then it

notifies the initialization status and clears flag to 0.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_send_buf

[Overview]

Transmits user data for communication class

[C description format]

INT32 usbf78k0r_send_buf(UINT8* data, INT32 len)

[Parameters]
Parameter Description
UINT8* data Transmission data buffer pointer
INT32 len Transmission data length
[Return value]
Symbol Description
len (>=0) Normal transmission data length
DEV _ERROR Abnormal termination

[Description]

This function transmits NULL packet that calls the NULL packet transmission function
(usbf78k0r_send_null) for
(Parameter:len) is 0 and size of the packet transmitted earlier (g_send_size) is Max
Packet Size. If transmission data size (Parameter:len) is greater than 0 and transmission
FIFO has null status (return value of usbf78k0r_ep_status is DEV_OK), this function calls
the USB data transmission function (usbf78kOr_data_send). If data transmission is

completed normally, it stores the size of the data transmitted to transmission completion

bulk/interrupt inn Endpoint, if transmission data size

packet size (g_send_size) defined in the driver.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

60

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_recv_buf

[Overview]

Receives user data for communication class

[C description format]
INT32 usbf78k0r_recv_buf(UINT8* data, INT32 len)

[Parameters]
Parameter Description
UINT8* data Reception data buffer pointer
INT32 len Reception data length
[Return value]
Symbol Description
len (>=0) Normal transmission data length
DEV _ERROR Abnormal termination

[Description]

This function calls USB data reception function (usbf78k0r_data_receive).

61

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS

This chapter describes the sample application included with the sample driver.

4.1 Overview

The sample application is provided as a simple example of using the USB communication device class
driver and is incorporated in the main routine of the sample driver.
The sample application reads the data received by the USB function controller and then transmits the

read data. Various functions of the sample driver are used during this processing.

4.2 Operation
The sample application performs the processing shown in the following flowchart.

Figure 4-1 Flowchart for the Sample Application Processing

Qtart of sample application processinD

YES
Initialization of FIFO? ¢

O

Clearing transmitted/received

NQ

Normal termination of

YES

Reception process of user data for communication class

NO.
™

A 4

Normal termination

YES

Transmission process of user data for communication

>
l

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 62

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS

(1) Verifying FIFO initialization for user data

FIFO status notification function (usbf78k0r_get_bufinit_flg) for user data is called and if it is in
normal state, verification process of transmission processing result is executed and if it is in the
initialization state, transmission/reception result clear process (clearing transmission/reception

process result of user data for communication class to 0) is executed.

(2) Verifying transmission process result of user data for communication class
If transmission process result of user data for communication class is Normal completion (and initial
state), control shifts over to reception process of user data for communication class and if it is

abnormal termination state, shifts to reception process result confirmation process.

(3) Reception process of user data for communication class
Buffer address, buffer size storing reception data is specified and reception function

(usbf78kO0r_recv_buf) of user data for communication class is called.

(4) Verifying reception process result of user data for communication class
If reception process result of user data for communication class is Normal completion (and initial
state), control shifts over to transmission process of user data for communication class and if it is

abnormal termination state, shifts to FIFO initialization confirmation process for user data.

(5) Transmission process of user data for communication class
Buffer size where data to be transmitted is stored and transmission data size are specified and

transmission function (usbf78k0r_send_buf) of user data for communication class is called.

4.3 Using Functions

The main.c source file that includes this sample application is coded as follows in order to call sample
driver functions. For details about the functions, see 3. 3 Specifications of Functions.

(1) Definitions and declarations
2 header files “usbf78k0r.h” and “usbf78k0r_communication.h” are included in order to use the
sample driver functions. User buffer (UserBuf) of size sufficient to process the 1 packet data for user

data is set. (Maximum packet size of bulk endpoint in Full Speed USB is set to 64Byte)

(2) Initialization processing of CPU

Initialization processing of CPU function (cpu_init) is called.

(3) Initialization process of USB function controller

USB function controller initialization function (usbf78kO0r_init) is called.

(4) Verification of FIFO status for user data
FIFO state notification function (usbf78k0r_get_bufinit_flg) for user data is called and FIFO status

is verified.

63 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS

(5) Reception process of user data

User data reception function (usbf78kO0r_recv_buf) for communication class is called and result is

stored.

(6) Transmitting user data
User data transmission function (usbf78k0r_send_buf) for communication class is called and result

is stored.

(7) Clearing process of transmission/reception process result
If FIFO for user data is initialized, transmission/reception process result stored in (5), (6) is cleared

to 0.

List 4-1 Sample Application Code (Portion)

void main(void)
{
INT32 rcv_ret = 0;
INT32 snd_ret = 0;

cpu_init();

DI();
usbf78kO0r_init(); /* initial setting of the USB Function */
EIQ;

while(1)

if (usbf78k0r_get_bufinit_flg() != DEV_ERROR) {
if (snd_ret >=0) {
rcv_ret = usbf78k0r_recv_buf(&UserBuf[0], USERBUF_SIZE);
}
if (rcv_ret >=0) {
snd_ret = usbf78k0r_send_buf(&UserBuf[0], rcv_ret);
}
}
else {
snd_ret = 0;
rev_ret = 0;

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 64

CHAPTER 5 DEVELOPMENT ENVIRONMENT

This chapter provides an example of creating an environment for developing an application program that
uses the USB communication device class sample driver for the 78KOR/Kx3-L and the procedure for
debugging the application.

5.1 Development environment

This section describes the used hardware and software tool products.

5.1.1 Program development
The following hardware and software are necessary to develop a system that uses the sample driver.

Table 5-1 Example of the Components Used in a Program Development Environment

Components Product Example Remark
Hardware Host machine - PC/AT compatible computer (OS : Windows
XP)
Software Integrated development tool | PM+ V6.31
Compiler CC78K0R W2.12
Assembler RA78KOR W1.33

5.1.2 Debugging

The following hardware and software are necessary to debug a system that uses the sample driver.

Table 5-2 Example of the Components Used in a Debugging Environment

Components Product Example Remark
Hardware Host machine - PC/AT compatible computer (OS :
Windows XP)

Target device TK-78KOR/KE3L+USB

Inn circuit emulator MINICUBE2

USB cables - miniB-to-A connector cable
Software Integrated development tool PM+ V6.31

Debugger ID78KOR-QB V3.60
Files Device file DF78102664.78K For the 78KOR/Kx3-L

Project files - Note1

Notes 1.For details about products and how to obtain them, contact NEC Electronics.
2. Afile that is used when creating a system using PM+ is included with the sample driver.

65 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

5.2 Setting up the Environment

This section describes the preparations required for developing and debugging a system by using the
products described in 5. 1 Development environment.

5.2.1 Preparing the host environment
Create a dedicated workspace on the host for debugging.

Installing an integrated development tool
Install PM+. For details, see the PM+ User’s Manual.

Downloading drivers

Store the set of files provided with the sample driver in any directory without changing the folder
structure.
Store the device driver in any directory.

Figure 5-1 Folder Structure of the Sample Driver

7 A W
Anv folder iinclude Folder cortaining include files

I W,
Inf file |Folder containing INF files

A WS
NEC_project Folder containing NEC compier projects

src Falder containing source files

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 66

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Setting up the workspace
The procedure for using project files included with the sample driver is described below.

<1> Start PM+, and then select “Open Workspace” in the “File” menu.

s PM=+ - No Workspace [ProjectWindow]
ZIEW Edit Find Lawer View Project Build Tool

Mew Chrl4+-M :
Cpen. .. Chrl+0
Close

Mew Workspace, ., !

Dpen Warkspace. ..

<2> In the Open Workspace dialog box, specify the workspace file in the NEC_project folder,
which is the sample driver installation directory.

Open Workspace @
Laak jr;] =59 MEC project j - 0ok B
- KORUSE GO pro

< | =

File name: [KORUSE_GDG prw

Files aof type: 1Wu:urkspa|:e File[”. prv] __1] Cancel
Help

67 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Installing a device file
The procedure for using a device file for the 78KOR/Kx3-L is described below.

<1> Select Project Settings in the PM+ Project menu.

i PM+ — KORUSB GDG.prw [OutPut]

File Edit Find Laver Wiew NE@a=se Buld Tool Window Help

~ | = lect Active Project... e |
& - = = [°® FCROWALLE ~|| 4
.‘__ 13 W& | Add Mew Project. .. - ! -'-'! |
‘ | KORUSE GG - KEIRLISEI_GI Insert Project.... .' -j| Sl (PRt

= ProjectWindow
File= | Memo I [
KORUSBE GDG : 1

S Diff
=t ﬁ KORUSB GDC | -
#-[_1 Source Files | Export Makefile

E—' 123 Include Files '
(1 Project Relate
| ‘[Other Files

Project Settings...
Add Source Files, ..
Add Project Related Files. ..

Add Other Files. .,

<2> In the Project Settings dialog box, click the Device Install button on the Project
Information tab to start the Device File Installer.

Project Settings

Praject Information | Source File | Tool Yersion 5 ettings

Project File Mame : FORUSE DG pri

Falder : DATE-KOR_USE S MEC project

workspace File Mame : 0o\ TK-KDR_USE % NEG project \KORUSE GO prw

Project Group : KORUSE GO

Project Title :

Microcontrollers Mame : Device Hame :

Device Install

TAKIOR ~| |uPD78F1026 64

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

68

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<3> In the Device File Installer dialog box, click the Install button to start the installation wizard.

U5 Device File Installer

' Help
Device File Package
About...
e o 1| Get New Scuftware'
Source Directory Select: | _Y_J Browsze. .
Device Mame “erzion | Seriez | File Mame
< L
[T05E]
Fiedistry Change registered directon...
Device Name Version | Series | Diectoy 4
uPD7P2F0T730 Y110 TaKD CAPROGRAM FILESYMEC |
uPC7EF1012.80 E1.00c TEKOR. C:APROGRAM FILESWMWEC | —
uPC7EF1026_64 E1.00c T8KOR. CAPROGRAM FILESSMEC|
uPL73F1022 45 E1.00c T8K0F CAPROGRAM FILESYMEC
uPC73F1023 45 E1.00c T8KOR. C:APROGRAM FILESSMWELC|
uPD7aF1024 45 E1.00c Tak0R CAPROGRAM FILESAMEC |
uPL73F1026_64 E1.00c TAKOR CAPROGRAM FILESAMEC|
uPNINFATAR Wi ne AR CAPROGRAM FILESSHEC |
E =it

<4> In the Install Information File dialog box, click the Browse button.

Install Wizard : Install Information File

Inztalling from Device File Product Disk.

Open a drive or directan which the Device File Product Disk exists,
and select the |nztall-lnformation-File
[_ _CSETUP.IMI or HECSETUR.IMI .

Browse. ..
& FD Browse...

| | Cancel |

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<5> In the Open dialog box, open the directory in which the device file was stored, select
"NECSETUP.INI", file and then click the Open button.

<6> In the message about usage permission, click the Next button.

<7> In the File type selection dialog box, click of Next button after selecting relevant device
files.

Install Wizard : Kind of File

Select the kind of installation file ;

v [7ERORACI-LIUSE]

v TakORAES-LIUSE]

< Back @ Cancel |

X Since screen is under development it can differ with the actuals

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<8> l'n the Install Directory dialog box, confirm that a path is displayed, and then click the Next
button.

Install Wizard : Install Directory [$_<|

Input the destination directory of the Common Device File

< Back @ Cancel |

<9> In the Installation Start dialog box, click the Next button.

X

Install Wizard : Installation Start

YWwhen you zelect [Mext], installabion will start az below conditions.

Inztallation files and destination directories ;

FAKORAKC3-LIUSE)
d:“program fileshnec electronics toolshdey

FRKORAEI-LIUSE]
d:Sprogram filezhnec electronics toolzhdey

Cancel

% Since screen is under development it can differ with the actuals.

71 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<10> The device file is installed to the project. This might take a while depending on the
environment.
<11> Inthe Installation Finished dialog box, click the Finish button.

Install Wizard : Installation Finished

|nztallation completed. ‘when zelect [Finizh], program finishes.

Cancel

Setting up the building tool
The procedure for using the CC78KOR. RA78KOR as the building tool and ID78KOR-QB as the

debugging tool is described below.

<1> Select Project Settings in the PM+ Project menu.

[IR E [} 1 i [
File Edit Find Laver Wiew Build Tool Window Help
5 | = [Select Active Project... p——
B-ODed & FCRO_VALUE =
‘ | Add Mew Project. .. - '—I |
‘||2|:_|2|: Insert Project.... _“ PER - T -

WS Update, ..

WS Commik. ..

= ProjectWindow

| Files . ME"”':'I | cvstea..

= g KORUSB_GDC : 1 j; r::'
=& KORUSBE CDC
ﬁ;! {2 Source Files Export Makefile
ﬁ;! [Include Files
ﬁ;! {2 Project Relate
[Other Files

Project Settings...
add Source Files, .
Add Project Related Files., .,

add Other Files, ..

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 72

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<2> In the Project Settings dialog box, click the Detail Setting button on the Tool Version
Settings tab.

Project Settings b_(|

Froject Infarmation] Source File Tool Yersion Settings]

Tool Set:
78k0R Software Package W1.10[English Wersion] j Save ‘ l
T ool Verzsions
Toal Wersion The tool which is not installed with
GCTEKOR CowEln the toal specified by the selected tool
RATEEOR WH 33 zet iz digplayed in the gray.
SKTSKOR: Unuzed
ID73K0R-GE Wa.a0

[T Select anly Installed Tools

Dretail Setting...

| k. | Cancel Help

<3> In the Tool Version Detail Setting dialog box, select the compiler version to use in the
“CC78KOR” “RA78KO0OR” columns and the debugger version to use in the “ID78KOR-QB”
column and press “OK” button.

Tool Version Detail Setting IZ|

[Ccrakom | mA7ekOR | SK7BKOR [ID78KOR-GB | I I I
[JUrnused |[|Unused |[w|Unused | JUnuzed

MW212 |EwWi33 [0 [wv3.60

[210 |t (w350

[

FEKOR Software Package 1.1 0[Englizh Wersion)
VBEOR Software Package %1 .00[Englizh Wersion]

@ Cancel ‘ Help ‘

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

5. 2.2 Setting up the target environment
Connect the target device to use for debugging.

(1) Connecting the target device
Connect the two USB ports on the TK-78KOR/KE3L+USB to the USB ports of the host by using
USB cables.

Figure 5-2 Connecting the TK-78KOR/KE3L+USB

__— T

W
USB2: Debugging port

USB1: 78KOR USB port

Remark For a drawing and details about the ports of the TK-78KOR/KE3L+USB, see APPENDIX A STARTER
KIT.

Installing the host driver
The procedure for using the virtual COM port host driver included with the sample driver is
described below.

Remark One of the two USB ports on the 78KOR/KE3-L is a debugging port that requires a
separate host driver. For details about the files to use and how to obtain them, contact
NEC Electronics.

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 74

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<1> When the connections of the TK-78KOR/KE3L+USB are recognized by the host, the “Found
New Hardware “message is displayed, and then the Found New Hardware Wizard starts.

<2> [On the first page of the Found New Hardware Wizard dialog box, select No, not this
time, and then click the Next button.

Found Mew Hardware Wizard

Welcome to the Found New
Hardware Wizard
Windows will search for cument and updated software by

looking on vour computer, on the hardware installation C0, or on
the Windows Update \web zite [wailk pour parmission),

Read our piivacy palicy

Can Windows connect to Windows Update to search for
software?

() ¥es, this time only

orirect & device

T o continue, chok Mest

e TR

<3> On the next page, select Install from a list or specific location (Advanced) and then click
the Next button.

Found Mew Hardware Wizard

Welcome to the Found New
Hardware Wizard

Thiz wizard helps you ingtall software for:

MEC Electronics KOR Wirtual UART

\\;l If your hardware came with an installation CD
=2 or Hoppy disk, inzert it now.

YWhat do you want the wizard to do?

) Install the software automatically [Fecommended)

{(®iinztall from a list or zpecific location [Advanced}

m Cancel]

<4> On the next page, select Don’t search. | will choose the driver to install and then click the
Next button.

Click, Mest to continue.

75

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Found New Hardware Wizard

Please choose your search and installation oplions.

i) Search for the best diver in these locations.

I1ze the check boxes below to limit or expand the default zearch, which includes local
paths and remaovable media. The best driver faund will be installed.

=iDon't zearch. | will choose the driver to install

F 8 r from a list. “Windows does not guarantes that
the driver you choosze will be the best match for your hardware.

ol

<5> On the next page, click the Have Disk button.

Found New Hardware Wizard

Select the device driver you want to install for this hardware.

S Select the manufacturer and model of wour hardware device and then click Mest. [f pou
have a dizk that containg the driver you want to install, click Have Disk.

Show compatible hardware

b odel
MEC Electronics K.OR Yirtual LART

& Thiz driver is not digitally signed!

Tell me why driver signing is important

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

76

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<6> In the Install From Disk dialog box, click the Browse button to display the inf file folder in
the directory in which the sample driver was stored.

Install From Disk

make zure that the corect drive iz selected below.

\5 Inzert the manufacturer's installation dizk, and then

Copy manufacturer's files from:

3

G=)

<7> Select the inf file in the XP folder according to the OS used on the host, and then click the
Open button

Locate File

Look in: |) WP

by Recent
Dacuments

&l

Desktop

\$

ky Documents

by Cormputer

by Metwork,

@

v| J? ® [

?X)

Filz name: FOR_CDC 4P inf

Filez of type:

77

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<8>In the Install From Disk dialog box, confirm that the path under Copy manufacturer’s
files from: is correct, and then click the OK button.

Install From Disk

Inzert the manufacturer's installation dizk, and then
L+ make zure that the corect drive iz selected below.

Cancel

Copy manufacturer's files from:

D:ATE-KOR_USEB[CDCMNF fileh<P v

i Browse...

<9> In the Found New Hardware Wizard dialog box, select NEC Electronics KOR Virtual
UART, and then click the Next button

Found New Hardware Wizard

Select the device driver pou want to install For this hardware.

Select the manufacturer and model of vour hardware device and then click Mest. If you
have a dizk that containz the diver you want to install, chck Have Disk.

Show compatible hardware

kodel
MEC Electronics KOR Yirtual LART

& Thiz diver 1= not digitally signed!

Tel me why diver signing is imporkant

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 78

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<10> The driver installation starts.

Found New Hardware Wizard

Pleasze wait while the wizard installs the zoftware...

(3’ MEC Electranics KOR Yitual UART

<11> In the Hardware Installation dialog box, click the Continue Anyway button.

Hardware Installation

L | "_\ The zoftware pou are installing for this hardware:
L
MEC Electronics K.OR Vitual UART

haz not pazzed Windows Logo testing to verfy its compatibility
with Windows XP. [Tell me why this testing is important.]

Continuing your installation of thiz software may impair
or destabilize the correct operation of your zystem
either immediately or in the future. Microzoft strongly
recommends that you ztop this installation now and
contact the hardware vendor for software that has
pazsed Windows Logo testing.

‘3 TOP Installation |

79

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<12> The driver is installed. This might take a while depending on the environment.

Found New Hardware Wizard

Pleasze wait while the wizard installs the zoftware...

(3’ MEC Electranics KOR Yitual UART

Lzhzer spz
To DY IMDODW S hapstem32hDRIWVERS

<13> On the next page, click the Finish button.

Found Mew Hardware Wizard

Completing the Found New
Hardware Wizard

The wizard haz finizhed installing the zoftware for;

(3 MEC Electronics KO Virtual JART

Click Finizh to cloze the wizard.

Finizh

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

80

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Checking the device assignment
Open the Windows Device Manager window. In the Ports category, make sure that NEC
Electronics KOR Virtual UART is displayed and check the assigned COM port number

C: Device Manager E”E'E'

File Action Wiew Help

M S £0E 8 =®Ba

-2 DHJPCO4

+ iy DYDCD-ROM drives

IDE ATASATAPT controllers
% Universal Serial Bus controllers

|

“e Kevboards
’ _é Computer

@, sound, video and game controllers
._é Syskem devices

g Disk, drives
& Monitors
B& Metwork adaphers

@8 Human Interface Devices
¥ Processors

=) IDE ATAJATAFI contrallers
$ Floppy disk drives
4 Porks (COM & LPT)
r;’i MEC Electronics KOR Wirtual U&RT (COME)
r;’i MEC Electronics Starter Kit Virtual UART (COM4)
- ECP Prinker Port (LPT1)
r;,f Communications Pork (COM1)

+ _._;. Mice and other pointing devices

o o N O Y O O v O O e B A

| &

Remark Device names and port numbers can be changed. For details, see 6.2 Customizing the
Sample Driver.

5.3 On-Chip Debugging

This section describes the procedure for debugging an application program that was developed
using the workspace described in 5.2 Setting Up the Environment.

For the 78KOR/Kx3-L, a program can be written to its internal flash memory and the program
operation can be checked by directly executing the program by using a debugger (on-chip debugging).

5.3.1 Generating a load module
To write a program to the target device, use a C compiler to generate a load module by converting a
file written in C or assembly language.

81 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

For PM+, generate a load module by selecting Rebuild in the Build menu.

k IR H] 0) E
File Edit Find Lawer Miew Project Tool ‘Window Help
u ild and Debu FS
% - = Eui Ju] - -
J D E | % & | CIFD Rebuild and Debug j|
J [KORUSB_GDG - KORUSBGDCG Compile Chrl+F7 Gy L
— Build F7
= ProjectWindow Stop Build
-
Files | Mema | Batch Build

=3 KDRUSB_CDG : 1Project(s Batch Rebuild
=& KORUSB_CDC
#-[2] Source Files

#-(2] Include Files

+-[2] Project Related Files Edit

------ [Z Other Files Debug
Download Some Load Module Files

Update dependencies
Clean

Select Build Mode. ..
Build Setkings. ..
Batch Build Settings. ..

5.3.2 Loading and executing the load module
Execute the generated load module by writing (loading) it to the target.

(2) Writing the load module
The procedure for writing the load module to the TK-78KOR/KE3L+USB by using PM+ is
described below.

<1> Start the ID78KOR-QB by selecting Debug in the Build menu

k 1J £ H [) 0 [l k
File Edit Find Lawver Wiew Project Tool ‘Windaw Help
~u ild and Debu FS
% . = Eui Ju] - -
J D E | % & | CI'% Rebwild and Debug j|
J [KORUSE GDG - KORUSB.GDG »| “oiile Cri+F7 gy X
— Build F7
= ProjectWindow Stop Build
- Rebuild
Files | Memo | Batch Build

= &5 KORUSB_GDG - 1 Project(:| Batch Rebuid
=& KORUSB_CDC
(] Source Files
- Include Files
(] Project Related Files Edit

RELLGE

Download Some Load Module Files

IUpdate dependencies
Clean

Select Build Mode. ..
Build Settings. ..
Batch Build Settings. ..

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 82

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<2> In the Configuration dialog box, click on “OK” button.

Configeuration
—Chip — Monitor Clock,

: I_."E F1026 64 vI
ey WD - f* System

—Ihternal Memaory = User

ROM: |1 2B¥ v| KBytes
. Praoject...
—FEail-zafe Break =
RAM mmz* | Butes Eail-zafe Bres —
Detail.. _—
DataFlazh: IEI* vl kBvtes LI Help |

Bestare

— Main Clock
" Glock Socket % External € Swstem INDnE w| MHz
—5ub Clock (Peripherald
¢ External Sustem INu:une | KHz

— Tareget Device Connection—————— [0 Code

f* TOOLO = TOOLO+TioL ’7 oAk
— Peripheral Break —— — Flash Programming Tareet

[T Category & (Timer) i+ Permit ¥ Connect

[T Category B (Serial etc) " Mot Permit " Mot Connect
— Mazk Wide YWaltage Flash Rewriting
[~ walh [TARGET RESET 'F

[HMI [INTERMAL RESET = Off

— Memaory Mapping
ficcess Size: f BBt " 16Bit

Aidd
Memaory Attribute: Mapping Address: =
ITarget LI I . Delete I

<3> If a project file included with the sample driver is used, the following dialog box is displayed.
Click the Yes button to start writing the load module file.

ID¥BKOR-QB
File Edit ‘jew Option Run Event Browse Jump Window Help

(o[[w < [wi]on = | 5080

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Executing the program

Click the > button in the ID78KO0R-QB window or select Run Without Debugging in the Run
menu.

&4 IDFSKOR-QB : KORUSB_GDG prj
File Edit Miew Option Run Event Browse Jump window Help

Search. | << | »» | Watch | Quick. | PRefresh | Close |

B9l [void mainf waoid)
> 1

1 INT32 rocw_ret
72 INT32 =nd_ret
i3
74 cpu_init{);
7h
76 DICY:

78 usbf78k0r_init(); J# initial setting of the USE Functi
73
an EI();
a1
a2 while(1)

83 {

a4 if {usbf?8k0r_zet bufinit_flg{) '= DEY_ERROR} {

a5 if {snd_ret »= 03 {

a6 recv_ret = usbf78k0r_recv_buf (&UserBu

a7 !

a8 if (rev_ret »= 00 —l
a4 gnd_ret = usbf78k0r_send_buf (&lUserBu
an !

a1
a2
93

Application note R01AN0003EJ0100(U20312EJ1V0OANO0) 84

CHAPTER 5 DEVELOPMENT ENVIRONMENT

5.4 Checking the Operation

If the target device that has loaded the sample driver is connected to the host via USB, the result of
executing the sample application in the driver can be checked.

Start terminal software (such as Tera Term) on the host, enter the following characters, and then check
how they are displayed.

Remark For details of sample application, see Chapter 4 Sample application specifications.

E Tera Term - YT |Z”E|rg|
File Edit Setup Control Window Help

abcdef zhi jke lmnopgrst wwwovzabo

|

|

85 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 6 USING THE SAMPLE DRIVER

This chapter describes information that you should know when using the USB Communication Device
Class sample driver for the 78 KOR/Kx3-L.

6.1 Overview

The sample software can be used in the following two ways.
(1) Customizing the sample driver

Rewrite the following sections of the sample driver as required.

. The sample application section in “main.c”

. The values specified for the various registers in “usbf78k0r.h” file

. The descriptor information in “usbf78k0r_desc.h” file

. Device names and provider information included in the virtual COM port host driver (inf file)

Remark: For the list of files included in the sample driver, see 1.1.3 Files included in the sample

driver.

(2) Using functions

Call functions from within the application program as required. For details about the provided

functions see 3.3 Function Specifications.

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

86

CHAPTER 6 USING THE SAMPLE DRIVER

6.2 Customizing the Sample Driver

This section describes the sections to rewrite as required when using the sample driver.

6.2.1 Application section

The code in main.c file below includes a simple example of processing using the sample driver. The

initialization before and after the processing and endpoint monitoring can be used by including the

processing to actually use for the application in this section.

List 6-1 Sample Application Code

1 /*

2 Main function

3 void main(void)

4

5 Arguments:

6 N/A

7 Return values:

8 N/A

9 Overview:

10 main routine.

11 */
12 void main(void)

13 |

14 INT32 rcv_ret = 0;

15 INT32 snd_ret = 0;

16

17 cpu_init();

18

19 DI();

20

21 usbf78kO0r_init(); /* initial setting of the USB Function */
22

23 EI();

24

25 while(1)

26 {

27 if (usbf78k0r_get_bufinit_flg() = DEV_ERROR) {
28 if (snd_ret >=0) {

29 rcv_ret = usbf78kO0r_recv_buf(&UserBuf[0], USERBUF_SIZE);
30 }

31 if (rcv_ret >= 0) {

32 snd_ret = usbf78k0r_send_buf(&UserBuf[0], rcv_ret);
33 }

34 }

35 else {

36 snd_ret =0;

37 rcv_ret = 0;

38 }

39 }

40 }

87 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 6 USING THE SAMPLE DRIVER

6. 2. 2 Setting up the registers
The registers the sample driver uses (writes to) and the values specified for them are defined in
“usbf78kO0r.h” file. By rewriting the values in this file according to the actual use for the application, the

operation of the target device can be specified by using the sample driver.

6. 2. 3 Descriptor information

The data the sample driver adds to the USBF during initialization processing (described in 3.1.3
Descriptor settings) is defined in "usbf78k0r_desc.h" file. Information such as the attributes of the target
device can be specified by using the sample driver by rewriting the values in this file according to the use
in an actual application.

If the vendor ID and product ID of the device descriptor are rewritten, the vendor ID and product ID
must also be rewritten in the host driver to install (the INF file) when connecting the target device. (For
details, see 6.2.4 (3) Changing the vendor and product IDs).

Any information can be specified for the string descriptor. The sample driver defines manufacturer and

product information, so rewrite the information as required.

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 88

CHAPTER 6 USING THE SAMPLE DRIVER

6. 2. 4 Setting up the virtual COM port host driver
The driver that was installed in 5.2.2 Preparing the environment can be customized as follows.

Changing the COM port number
When the connection of a USB device is recognized by the host, the host automatically assigns
the COM port number of the device, but the number can be changed to any number. To change the
COM port number by using the host, perform the following procedure.

<1> Open the Device Manager Windows and display the “Port” tree in the device list display.

o)

+ Device Manager,

File Action MWiew Help

M S £E A =®Ba

== DHJPGO4
it DWDYCD-ROM drives
% IDE ATASATAPT controllers

|

+

Universal Serial Bus controllers
e Kevboards
L _e Compuker

®, Sound, video and game controllers
._e Syskem devices

e Disk, drives
E Manitars
E& Metwork adapters

(8 Human Interface Devices
#¥% Processors

=) IDE ATAJATAP controllers

ML Floppy disk drives

~j. | Ports [COM & LPT)

(;yf MNEG Electronics KOR Wirtual UART (COME:
réy" MEC Electronics Starter Kit Virtual UART (COM4)

4 ECP Printer Port (LPT1)
(y Communications Pork (COML)

+ '_'_} Mice and other pointing devices

e o O O O o o O O P R

| &

89 Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 6 USING THE SAMPLE DRIVER

<2> Select “NEC Electronics Jx3H Virtual UART (COMnN)” (where n is a number assigned by
the host) to display its properties.
<3> Click the “Advanced” button on the “Port Settings” tab.

NEC Electronics KOR Virtual UART (COME) Properties

General | Port Settings |Driver Dietailz

Bitz per gecond: |

Data bits: |E v|

Parity: |N|:une V|

Stop bits: |1 v|

Flow contral: |Nu:une V|
[Advanced...] [?;stu:ure Defaults]

[Ok l [Cancel

<4> In the “Advanced Settings for COMn” dialog box (where n is a number assigned by the
host), select any port number from the “COM Port Number” drop-down list.

Advanced Settings for COM6

[+]ilze FIFO buffers [requires 16550 compatible LARTE

Select lower zettings to cormect connection problems. _
-Eancel
Select higher settings for faster performance.
Beceive Buffer. Low (1] J High[14] [14]
Tranzmit Buffer: Low [1] J High [16] [16]

COM Part Humber: | COME w

Remarks 1.Make sure not to select a port number that is used for a different device.
2. Immediately after applying this change, the new port number becomes valid but might
not be reflected immediately in the Device Manager.

Changing properties
Some information, such as the attributes of the device used by the Windows Device Manager,

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 90

CHAPTER 6 USING THE SAMPLE DRIVER

can be changed. The information that can be changed is shown below.

(a) The device name (in the list of devices)

L. Device Manager

File

Action Wiew Help

WM EHEE 2 A =ma

-2 DHJPGO94

O O O O O R

+

1L DVDJCD-ROM drives

% IDE ATA/ATAPT controllers
Universal Serial Bus controllers

‘s Kevboards

Q Computer

ﬂ, Sound, video and game controllers

Q Systemn devices

g Disk drives

@ Monitars

B8 Mebwork adapters

{8 Human Inkerface Devices

¥ Processors

=) IDE ATAJATAPT contrallers

3 Floppy disk drives
Fo «LF

L4 EC Electrani
ronice Starter Kit Wirtua

- ECP Printer Port {LPT1
ny‘ Zommunications Pork (COM1)

";_j. Mice and other pointing devices

[OR. Wirtual LIART 4

[

(£

(b) The device name, manufacturer name, and version (in the device properties)

2]

NEC Electronics KOR Virtual UART (COMG) Propérties

Driver Date;

Driver

Diigital Sigrer:

| Driver Details... |

Update Driver...

Boll Back Driver

Mrirgtal

Dinver Provides MEC Electronics Corporatio

[
I

Mat digitally zsigned
To view details about the driver files.

To update the driver for thiz device.

|f the device fails after updating the driver, rall
back tothe previously installed driver.

To uninztall the driver [Advanced).

[0K] [Cancel

91

Application note

R0O1ANOO03EJ0100(U20312EJ1VOANOO)

CHAPTER 6 USING THE SAMPLE DRIVER

Because this information is displayed based on the information included in the host driver (the
INF file), it can be changed by rewriting the INF file. The sections in the INF file, which correspond
to the numbers in the example on the previous page, are shown below.

List 6-2INF file "KOR_CDC_XP.inf" code

; .inf file (Win2000,XP):

[Version]

Signature="$Windows NT$"

Class=Ports
ClassGuid={4D36E978-E325-11CE-BFC1-08002BE 10318}

Provider=%NEC%
LayoutFile=layout.inf
DriverVer=10/15/1999,5.0.2153.1 <3>

O©CONOUTAWNPRP

11 [Manufacturer]
12 %NEC%=NEC

13
14 [NEC]

15 %NEC78KORKx3L%=Reader, USB¥VID_0409&PID_01D0
16

17 [Reader_Install.NTx86]
18 ;Windows2000

20 [DestinationDirs]
21 DefaultDestDir=12
22 Reader.NT.Copy=12

24 [Reader.NT]
25 CopyFiles=Reader.NT.Copy
26 AddReg=Reader.NT.AddReg

28 [Reader.NT.Copy]
29 usbser.sys

31 [Reader.NT.AddReg]

32 HKR,,DevLoader,,*ntkern

33 HKR, NTMPDriver,,usbser.sys

34 HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"

36 [Reader.NT.Services]
37 AddService = usbser, 0x00000002, Service_Inst

39 [Service_lnst]

40 DisplayName = %Serial.SvcDesc%

41 ServiceType = 1 ; SERVICE_KERNEL_DRIVER
42 StartType = 3 ; SERVICE_DEMAND_START
43 ErrorControl = 1 ; SERVICE_ERROR_NORMAL
44 ServiceBinary = %12%¥usbser.sys

45 LoadOrderGroup = Base

46

47 [Strings]

48 NEC = "NEC Electronics Corporation" <2>
49 NEC78KORKx3L = "NEC Electronics KOR Virtual UART" <1>

50 Serial.SvcDesc = "USB Serial emulation driver"

Changing the vendor and product IDs
If the vendor and product IDs in the device descriptor are changed, the same changes must be
specified in the host driver (the INF file).
Include the vendor and product IDs in the INF file as shown on line 15 in List 6-2.

Vendor ID: Represented by four digits in hexadecimal format following “VID_”
Product ID: Represented by four digits in hexadecimal format following “PID_”

6.3 Using Functions

The code for applications can be simplified and the code size can be reduced because frequently used

and versatile types of processing are provided as defined functions. For details about each function, see

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 92

CHAPTER 6 USING THE SAMPLE DRIVER

3.3 Function Specifications. The following sections of the sample application shown in List can be

reused as application examples for various types of defined processing.

(1) Verifying FIFO state for user data

FIFO state notification function (usbf78k0r_get bufinit_flg) for user data is called and FIFO
initialization flag “usbf78k0r_bufinit_flg” for user data is monitored on line 27. This flag is uniquely
defined by the sample driver and if FIFO is initialized in the Bus Reset process reported by sample
driver INTUSB interrupt and Set Line Coding request process of class request, “1” is set.

“0” is set to clear the error state of transmission/reception process of user data at the FIFO

initialization in the sample application.

(2) User data reception processing

For the sample driver, separate functions that define retrieval processing for the received data, one for
acquiring the data length and another for copying the data, are provided.

Received data size can be verified before the reception process by calling the acquisition function
(usbf78k0r_rdata_length) of reception data length at the reception process based on length of the
actually received data. Reception process can also be called on the basis of buffer size when buffer
size for user data is determined. However, take care that maximum data length for one time reception
should be less than the data size that is received in 1 packet.

In the sample application, data received from used endpoint at the received data in the user data
reception function (usbf78k0r_recv_buf) on the line 29 is read as a usage example when buffer size is

determined.

(3) User data transmission processing

Used endpoint FIFO state is verified at the transmitted data in the user data transmission function
(usbf78k0r_send_buf) on line 32 and if it is FIFO Empty, data is written. In case of FIFO Full, it is error
end. When size of the data of the packet transmitted at the earlier and not the transmitted data is Max
Packet Size, NULL packet is transmitted. Since this is characteristic of communication device class,
NULL packet is transmitted to report that it is last data to host when last packet of data is Max Packet
Size.

In the sample application, when process is terminated with the generation of error, reception process
is stopped and transmission process is repeated until the normal termination of writing of transmission
wait data to FIFO. Initialization of FIFO for user data is the only exception. Transmitted/received data
and transmission wait data in FIFO are discarded when FIFO is initialized by the request from user or

host.

93

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

CHAPTER 7 STARTER KIT

This chapter describes the TK-78KOR/KE3L+USB starter kit for the 78 KOR/Kx3-L, made by Tessera
Technology, Inc.

7.1 Overview

TK-78KOR/KE3L+USB is a kit to develop applications that use the 78KOR/KE3-L. The entire
development sequence from creating a program to building, debugging, and checking operation can be
performed simply by installing development tools and USB drivers and then connecting either board to

the host. This kit uses a monitoring program that enables debugging without connecting an emulator
(on-chip debugging).

Figure 7-1Connections of TK-78KOR/KE3L+USB

USB1:78KORUSB port

7.1.1 Features
TK-78KOR/KE3L + USB has the following features.

. A USB miniB connector for the internal USBF

. As small as a business card

. Efficient development by using the board with the integrated development environment
(PM+)

Application note R01AN0003EJ0100(U20312EJ1VOANOO) 94

CHAPTER 7 STARTER KIT

7.2 Specifications

The main specifications of the TK-78KOR/KE3L+USB are as follows.

OCPU uPD78F 1026(78KOR/KE3-L)
OOperating frequency 20 MHz (USB:48 MHz)
Olnterface USB connector (miniB) x 2

MINICUBE2 connector
Peripheral board connector x 2 (only the pad)
OSupported platform Host: DOS/V computer that has a USB interface
OS:Windows XP
OOperating voltage 5.0 V(internal operation at 3.3 V)
OPackage dimensions W89 x D52(mm)

95

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

[Memo]

Application note R01AN0003EJ0100(U20312EJ1VOANOO)

96

Published by: NEC Electronics Corporation (http://www. necel. com/)

Contact: http://www. necel. com/support/

	CHAPTER 1 OVERVIEW
	1. 1 Overview
	1. 1. 1 Features of the USB function controller
	1. 1. 2 Features of the sample driver
	1. 1. 3 Files included in the sample driver

	1. 2 Overview of 78K0R/Kx3-L
	1. 2. 1 Applicable products
	1. 2. 2 Features

	CHAPTER 2 OVERVIEW OF USB
	2. 1 Transfer Format
	2. 2 Endpoints
	2. 3 Device Class
	2. 4 Requests
	2. 4. 1 Types
	2. 4. 2 Format

	2. 5 Descriptor
	2. 5. 1 Types
	2. 5. 2 Format

	CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS
	3. 1 Overview
	3. 1. 1 Features
	3. 1. 2 Supported requests
	3. 1. 3 Descriptor settings

	3. 2 Operation of Each Section
	3. 2. 1 CPU Initialization
	3. 2. 2 USB function controller initialization processing
	3. 2. 3 INTUSB interrupt process

	3. 3 Function Specifications
	3. 3. 1 Functions
	3. 3. 2 Correlation of the functions
	3. 3. 3 Function features

	CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS
	4. 1 Overview
	4. 2 Operation
	4. 3 Using Functions

	CHAPTER 5 DEVELOPMENT ENVIRONMENT
	5. 1 Development environment
	5. 1. 1 Program development
	5. 1. 2 Debugging

	5. 2 Setting up the Environment
	5. 2. 1 Preparing the host environment
	5. 2. 2 Setting up the target environment

	5. 3 On-Chip Debugging
	5. 3. 1 Generating a load module
	5. 3. 2 Loading and executing the load module

	5. 4 Checking the Operation

	CHAPTER 6 USING THE SAMPLE DRIVER
	6. 1 Overview
	6. 2 Customizing the Sample Driver
	6. 2. 1 Application section
	6. 2. 2 Setting up the registers
	6. 2. 3 Descriptor information
	6. 2. 4 Setting up the virtual COM port host driver

	6. 3 Using Functions

	CHAPTER 7 STARTER KIT
	7. 1 Overview
	7. 1. 1 Features

	7. 2 Specifications

