To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics
Corporation took over all the business of both companies. Therefore, although the old company name remains
in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

http://www.renesas.com/�
http://www.renesas.com/�
http://japan.renesas.com/inquiry�

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein,
please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and
careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed

through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other

intellectual property rights of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for

any losses incurred by you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export
control laws and regulations and follow the procedures required by such laws and regulations. You should not use
Renesas Electronics products or the technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction.
Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose

manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever

for any damages incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”,
and “Specific’. The recommended applications for each Renesas Electronics product depends on the product’'s quality
grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a
particular application. You may not use any Renesas Electronics product for any application categorized as “Specific”
without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product
for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas
Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use
of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended
where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas
Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data

books, etc.

10.

1.

12.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and
visual equipment; home electronic appliances; machine tools; personal electronic equipment; and

industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life

support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical
equipment or systems for life support (e.g. artificial life support devices or systems), surgical
implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes

that pose a direct threat to human life.

You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified

ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please

evaluate the safety of the final products or system manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your

noncompliance with applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of

Renesas Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this

document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its

majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)’” means any product developed or manufactured by or for Renesas Electronics.

LENESAS
Application Note

/8KOR/KC3-L, 78KOR/KE3-L
(On-Chip USB Controller)

16 bit Single-Chip Microcontroller

USB HID (Human Interface Device) Class Driver

UPD78F 1022
UPD78F1023
UPD78F 1024
UPD78F1025
UPD78F1026

© Renesas Electronics Corporation 2010

Documen t No. ROTANO004EJ0100(U20313EJ1VOANO0O)
Date Published 2010/04/26

[MEMO]

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

MINICUBE is a registered trademark of NEC Electronics Corporation.

Windows, Windows XP are registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.
PC/AT is a trademark of International Business Machines Corporation.

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may
cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc.,
the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed,
and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).

(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is
unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS
devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using
pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility
that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to
related specifications governing the device.

(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate
oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as
possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When itis dry, a
humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive
material. All test and measurement tools including work benches and floors should be grounded. The operator should be
grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to
be taken for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately
after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not
guarantee output pin levels, 1/O settings or contents of registers. A device is not initialized until the reset signal is received.
A reset operation must be executed immediately after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and
external interface, as a rule, switch on the external power supply after switching on the internal power supply. When
switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of
the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device,
causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power
on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is
not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause
malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.
Input of signals during the power off state must be judged separately for each device and according to related specifications
governing the device.

3 Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

PREFACE

Readers This application note is intended for users who understand the
features of the 78KOR/KC3-L, KE3-L, and who try to design and
develop the application system and application program using this
product.

Target products are given below.
Generic Standard product USB controller built-in product
Name
78KOR/KC3-L | yPD78F1000, 78F1001, 78F1002, uPD78F1022, 78F1023, 78F1024
78F1003
78KOR/KE3-L | yPD78F1007, 78F1008, 78F1009 uPD78F1025, 78F1026
Purpose This manual is intended to give users an understanding of the

Organization

How to Read This Manual

Conventions

functions mentioned in following organization.
This application note is broadly divided into the following sections.

An overview of 78KOR/KC3-L, KE3-L USB function controller
An overview of the USB standard

The specifications for the sample driver

The specifications for the sample application

Development environment

How to use the sample driver

O O0OO0OO0O0O0

It is assumed that the readers of this application note have general
knowledge in the fields of electrical engineering, logic circuits, and
microcontrollers.

To learn about the hardware features and electrical specifications of
the 78KOR/KC3-L, KE3-L.

- See the separately provided 78 KOR/KC3-L,
KE3-L Hardware User’'s Manual.

To learn about the instructions of the 78KOR/KC3-L, KE3-L

— See the separately provided 78KOR Architecture User’s
Manual.

Data significance: Higher digits on the left and lower digits
on the right

Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information

Numeric representation: Binary or decimal ... XXXX
Hexadecimal ... OxXXXXX
Prefix indicating power of 2 (address space, memory capacity) :
K (kilo): 2'° = 1,024

M (mega): 2%° = 1,024°
G (giga): 2%° = 1,024°
T (tera): 2*° = 1,024*
P (peta): 2° = 1,024°
E (exa): 260 = 1,024°

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 4

CONTENTS

CHAPTER 1 OVERVIEW......ooi e 7

1.1 L@ YT 1 RSP 7
1.1.1 Features of the USB fuNCtioN CONIOIIET...........cc.oiiiiii ettt e 7
1.1.2 Features Of the SAMPIE AriVET ettt et e e e s bt e e et bt e e ssb e e e ateeeanbeeeeanbeeeanneeeeanbeaesnneaanns 8
1.1.3 Filesincluded in the SAMPIE AFIVETooiiiiie ettt ettt e e bt e e e ket e e e tee e e bt e e e aeeeeanneeeaanbeeesnneaeans 8

1.2 Overview of 78KOR/KXB-Lo ettt e et e e e e e e e e eeaaeeeeanns 9
7 B Y o o[o7 o] (=3 o] oo [8 o2 ¢RI 9
To 2.2 FBAIUIES....ec ettt ettt h et e bt e e b e h et bt h et e b e e h b e b e e b e e e he e nae et e in e b e e as 10

CHAPTER 2 OVERVIEW OF USB ...t 11

2.1 Transfer FOMMAt.ottt ettt e e e 11
A = 1 To [o]] | TSR PPPPRRR 12
P B B oY (ot @ =1 RSP 12
N (=Y |81 £ S PUUEE 13
D Sy T Y/ oY= SRR UUPPPPURPPIN 13
2402 FOMMAL oottt h ettt h e b oo b e et h ettt e bt e b e e b e e e a bt re e e b e e e bt ehe e e bt e eha e e bt e eb e e e beesaeeete e 15
2 T I =T 4) (o USSP 16
DS Tt B Y/ o 1= S P UPPSO P PP UPPPPPPPPNY 16
2.5.2 FOMMAL ot h e E e e a e s e e b e sh e e b e e s e e b e e sba e e b e e ae e 17
2.5.3 HID class desCriptor fOMALcooiiiiiiiiiiee e e e e et e e e e e st e e e e e e e e enasbaeaeeeeassnteeeaeeesnsnsaneeaeeeannnnnes 19

T B O 1T o P PSPPSR TP OTSPRUPRUPPN 22
1 T I B =t (U] T TSSOSO P PO UPRUPOPPRPRIN 22
3. 1.2 SUPPOIEA FEQUESES ...ttt ettt ettt a e e b e ehe e et s ae e et e e eb e e bt e ebe e ea e nae e et e e sbe e e bt e ebeeenneenaneeaneenes 22
1 T B T B 1Yoty o] (o] ST u g To PSP RTU PO PP RUPOPPRPRIN 24

3.2 Operation of EACh SECHONcouiiiiiii e 28
IR B O = W [1= -2 (o] o H SRS 30
3.2.2 USB function controller initialization ProCESSINGcciiiii ittt e e e s e e e saeeeessaeeeeseeeeaanes 31
3.2.3 INTUSB INTEITUDPE PrOCESSceeuttieiiiiieetiea ettt e ettt e iteee e e ate e e e ateeeaaaeeeeasaeaeasteeeaaseeeaaaseeeaabseaeenbeaanbeaeaasbeeesmneeeaanseaesnseeasanes 34

3.3 Function SPecifiCations e e e e 36
3. 30T FUNCHONS ettt ettt e h e e b e e e bt e et e s he e et e eeb e e e be e b e e e e bt she e et e e e ba e e b e e s be e e beesaneete e 36
3.3.2 Correlation of the FUNCHONS..........oooii ettt sttt et et e e saeesee e 37
3.3.3 FUNCHON fEALUMES ...ttt sttt h et bt s bt e bt s he e et e e s be e e b e e s beeebeesaneenee e 40

5 Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS 64

4.1 L@ YT 1 RS 64
O @ o1 -1 i o] [OOSR UPPP PRI 64
4.3 USING FUNCHONS ...t e e e e e e e e e e e e e et re e e e e e e e e saaraeeaaeeas 66
CHAPTER 5 DEVELOPMENT ENVIRONMENTccoevvnenni. 68
5.1 Development NVIFONMENTouiiiiiiiiiiiiie e aa e nanannnnnnnnnnnnnan 68
L 20 O B o (o Te = 10 e (V=Y (o] o o 1 1= o | PSR UPPT PSRN 68
LT R B =Y o 18 T [1o To [P URRTUUPPPUURPRIN 68
5.2 Setting up the ENVIFONMENT ... e e e e e e e e 69
5.2.1 Preparing the hoSt @NVIFONMENT.... ...ttt et e e sa e e sbb e e sane e e e nbn e e e sbeeeenee 69
5.2.2 Setting up the target @NVIFONMENT...........coiiiiii e ettt ettt nreenees 77
LT B ©] o B @1 1o 31 1Y 018 T T |19 Vo RSP RRR 77
5.3.1 Generating @ 1080 MOGUIEooiiiiiiiii et a e h e ea e et e e e bt ekt e e ab e eh et et e e nbe e ebeeabeeanbeenneeenneenne 77
5.3.2 Loading and executing the 10ad MOAUIEc.eiiiiiiii et e e s e e e nne e e e sreeeenee 78
5.4 Checking the OPEration.............uiiiiiiiiiiiiiiii et e e e e e et ee e e e e e s ssarrreeeeaeeeeanes 81
CHAPTER 6 USING THE SAMPLE DRIVER.........ccccoiiiviiienn, 82
6.1 L@ YT 1 RS 82
6.2 Customizing the SAMPIE DIIVETo.uiiiiiiiii e 83
[T B Y o o] o= 1o o JE=T=Tox T IR PPPSPPIO 83
6.2.2 Setting UP the MEGISIEISottt ettt et e bt e e et et e e s bt e bt e s bt e eheeambeesseeeabeeabeeenbeesneeanseanns 84
[CIZ T B 1= Yo o] {o T a1 0] =1 (o] o TP PSPPIO 84
6.3 USING FUNCLIONSttt e e e e e e e et e e e e e e e e aaansbeeeeeeeaannns 84
CHAPTER 7 STARTER KIT ..o 85
7.1 L0 YT 11 RS 85
0 T B o= (V] (=T T PO T T OO T OO TP PO TSP UUPTUUPRURROPPRPRON 85
A] o= o7 o= 111 1 SO OPUEE 86

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 6

CHAPTER 1 OVERVIEW

This application note describes the USB (communication device class) sample driver created for the
USB function controller incorporated in the 78KOR/KC3-L, 78 KOR/KE3-L(78KO0R/Kx3-L) microcontrollers.
This application note provides the following information.

e The specifications for the sample driver
¢ Information about the environment used to develop an application program by using the sample driver

o The reference information provided for using the sample driver

This chapter provides an overview of the sample driver and describes the microcontrollers for which the
sample driver can be used.

1.1 Overview

1.1.1 Features of the USB function controller
The USB function controller that is incorporated in the 78KOR/Kx3-L and is to be controlled by the
sample driver has the following features.

« Conforms to the Universal Serial Bus Rev. 2.0 Specification

« Operates as a full-speed (12 Mbps) device.
« Includes the following endpoints:

Table 1-1 Configuration of the Endpoints of the 78KOR/Kx3-L

Endpoint Name FIFO Size (Bytes) Transfer Type Remark

Endpoint0 Read 64 Control transfer (IN) Single buffer
configuration
Endpoint0 Write 64 Single buffer
Control transfer (OUT) configuration

Endpoint1 64%2 Dual-buffer
Bulk transfer 1 (IN) configuration

Endpoint2 64%2 Dual-buffer
Bulk transfer 1 (OUT) configuration

Endpoint3 64%2 Dual-buffer
Bulk transfer 2 (IN) configuration

Endpoint4 64%2 Dual-buffer
Bulk transfer 2 (OUT) configuration
Endpoint7 64 Interrupt transfer 1 (IN) Single buffer
configuration
Endpoint8 64 Interrupt transfer 2 (IN) Single buffer
configuration

« Automatically responds to standard USB requests (except some requests).
« Can operate as a bus-powered device or self-powered deviceM'e?
« The internal or external clock can be selected"** 2
Internal clock: 20 MHz External clock divided by 5 internal clock multiplied by 12 internal clock / 16 MHz external clock divided
by 4 internal clock multiplied by 12 internal clock.
12 MHz external clock divided by 2 internal multiplied by 8 internal (48 MHz)

Notes 1. The sample driver selects bus power.

2. The sample driver selects the internal clock.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 1 OVERVIEW

1.1.2 Features of the sample driver
The USB human interface device class sample driver for the 78KOR/Kx3-L has the features below.
For details about the features and operations, see CHAPTER 3 SAMPLE DRIVER
SPECIFICATIONS.

« Conforms to the USB human interface device class

« Operates as keyboard device
« Exclusively uses the following amounts of memory (excluding the vector table)

« ROM:About 3.1 KB
« RAM:About 0.4 KB

1.1.3 Files included in the sample driver

The sample driver includes the following files:

Table 1-2 Files Included in the Sample Driver

Folder File Overview

src main.c Main routine, initialization, sample application
usbf78kO0r.c USB initialization, endpoint control, bulk transfer, control transfer
usbf78kO0r_hid.c Human interface device class specific processing

include main.h main.c function prototype declarations
usbf78k0r.h usbf78k0r. function prototype declarations
usbf78k0r hid.h usbf78kO0r_hid.c function prototype declarations
usbhid_desc.h Descriptor definitions
errno.h Error code definitions
types.h User declarations

Remarks In addition, the project-related files generated when creating a development environment by using the PM+
(an integrated development tool made by NEC Electronics) are also included. For details see 5.2.1
Preparing the host environment.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 8

CHAPTER 1 OVERVIEW

1.2

Overview of 78KOR/Kx3-L

This section describes the 78KOR/KC3-L, KE3-L which are controlled by using the sample driver.
78KOR/KC3-L, KE3-L are products in the low-power series of single chip microcontroller 78KOR
microcomputer, made by NEC Electronics. They use 78KOR CPU core and have peripheral functions
such as ROM/RAM, timers/counters, POC/LVI, a serial interface, A/D converter, DMA controller, USB
function controller. For details, see the 78KOR/KC3-L, KE3-L USB controller built-in products
Hardware User’s manual.

1.2.1 Applicable products
The sample driver can be used for the following products.

Table 1-3 78K0OR/Kx3-L Products

Generic Name Part Number Internal Memory Incorporated USB Function Interrupt
Flash RAM Internal | External
Memory
78KOR/KC3-L 4 PD78F1022 64 KB 6 KB Function controller 36 7
(48pin) 1 PD78F1023 96KB 8 KB Function controller 36 7
1 PD78F1024 128KB 8 KB Function controller 36 7
78KOR/KE3-L 1 PD78F1025 96KB 8 KB Function controller 41 11
(64pin) 1 PD78F1026 128KB 8 KB Function controller 41 11

Caution In this application note, all target microcontrollers are collectively indicated as the 78KOR/Kx3-L,

unless distinguishing between them is necessary.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 1 OVERVIEW

1. 2.2 Features
The main features of 78KOR/Kx3-L are as follows. For details, see 78KOR/Kx3-L user’'s manual.

Memory space:
« 1M byte linear address space (for programs and data)

Internal memory
« RAM:6K/ 8K byte
o Flash memory : 64K/ 96K/ 128K byte

Multiplication/division function
« 16 bit x16 bit = 32 bit(multiplication)
o 32 bit + 32 bit = 32 bit (division)

Key interrupt
e 4 channels
« 8 channels

DMA controller
e« 2 channels

Serial interface
« CSI:1 channel/ UART :1 channel
o CSI:1 channel/lUART:1 channel/simple 12C: 1channel
« CSI:1 channel note/UART:1 channel note/simple 12C: 1channel note
« UART(for LIN-bus):1 channel
« 12C:1 channel
USB controller
« USB function (full speed):1 channel

A/D converter
« 10 bit resolution A/D converter(AVREF = 1.8~3.6 V):8 channel

Power supply voltage
« VDD = 1.8~3.6 V(when USB is not used)
« VDD = 3.0~3.6 V(when USB is used)

Clock output/buzzer output
e 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz(peripheral hardware clock:at fyan =
20 MHz operation)
o 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz
(Subsystem clock: at fsyg = 32.768 kHz operation)

With built-in on chip debugging function

Note: only 78KOR/KE3-L

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 10

CHAPTER 2 OVERVIEW OF USB

This chapter provides an overview of the USB standard, which the sample driver conforms to.
USB (Universal Serial Bus) is an interface standard for connecting various peripherals to a host computer
by using the same type of connector. The USB interface is more flexible and easier to use than older
interfaces in that it can connect up to 127 devices by adding a branching point known as a hub, and
supports the hot-plug feature, which enables devices to be recognized by Plug & Play. The USB interface
is provided in most current computers and has become the standard for connecting peripherals to a
computer.

The USB standard is formulated and managed by the USB Implementers Forum (USB-IF). For details
about the USB standard, see the official USB-IF website (www.usb.org).

2.1 Transfer Format

Four types of transfer formats (control, bulk, interrupt, and isochronous) are defined in the USB
standard.Table 2-1 shows the features of each transfer format.

Table 2-1 USB Transfer Format

Transfer Format Control Transfer Bulk Transfer Interrupt Transfer
ltem Isochronous
Transfer
Feature Transfer format used | Transfer format used | Periodic data Transfer format used
to exchange to aperiodically transfer format that for a real-time
information required | handle large has a low band transfer
for controlling amounts of data width
peripheral devices
Specifiable .
pgcket size High speed 64 bytes 512 bytes 1to 1,024 bytes 1to 1,024 bytes
480 Mbps
Full speed 8, 16, 32, or 64 8, 16, 32, or 64 1 to 64 bytes 1 to 1,023 bytes
12 Mbps bytes bytes
Low speed 8 bytes - 1 to 8 bytes -
1.5 Mbps
Transfer priority 3 3 2 1

11

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

http://www.usb.org/�

CHAPTER 2 OVERVIEW OF USB

2.2 Endpoints

An endpoint is an information unit that is used by the host device to specify a communicating device
and is specified using a number from 0 to 15 and a direction (IN or OUT). An endpoint must be provided
for every data communication path that is used for a peripheral device and cannot be shared by
multiple communication paths"®. For example, a device that can write to and read from an SD card
and print out documents must have a separate endpoint for each purpose. Endpoint 0 is used to control
transfers for any type of device

During data communication, the host uses a USB device address, which specifies the device, and an
endpoint (a number and direction) to specify the communication destination in the device.

Peripheral devices have buffer memory that is a physical circuit to be used for the endpoint and
functions as a FIFO that absorbs the difference in speed of the USB and communication destination
(such as memory).

Note An endpoint can be exclusively switched by using the alternative setting.

2.3 Device Class

Various device classes, such as the mass storage class (MSC), communication device class (CDC),
and human interface device class (HID), are defined according to the functions of the peripheral
devices connected via USB (the function devices). A common host driver can be used if the connected
devices conform to the standard specifications of the relevant device class, which is defined by a
protocol.

The human interface device (HID) class is intended for input device connected to hosts, such as
keyboard and mouse. Interface descriptor binterfaceClass field is 0x03 in HID class device. For the
details, see HID specifications (Device Class Definition for Human Interface Devices (HID)
Specification Version 1.11).

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 12

CHAPTER 2 OVERVIEW OF USB

2.4 Requests

For the USB standard, communication starts with the host issuing a command, known as a request,
to a function device. A request includes data such as the direction and type of processing and address
of the function device.

2.4.1 Types

There are three types of requests: standard requests, class requests and vendor requests.
The sample driver supports the following requests.

Standard requests

Standard requests are used for all USB-compatible devices.

Table 2-2 Standard Requests

Request Name

Target Descriptor

Overview

GET_STATUS Device Reads the settings of the power supply (self or bus) and
remote wakeup.
Endpoint Reads the halt status.
CLEAR_FEATURE Device Clears remote wakeup.
Endpoint Cancels the halt status (DATA PID = 0).
SET_FEATURE Device Specifies remote wakeup or test mode.
Endpoint
Specifies the halt status.
GET_DESCRIPTOR Device Reads the target descriptor
Configuration
string
SET_DESCRIPTOR Device Changes the target descriptor (optional).
Configuration
string
GET_CONFIGURATION | Device Reads the currently specified configuration values
SET_CONFIGURATION | Device Specifies the configuration values.
GET_INTERFACE Interface Reads the alternatively specified value among the currently
specified values of the target interface.
SET_INTERFACE Interface Specifies the alternatively specified value of the target
interface.
SET_ADDRESS Device Specifies the USB address
SYNCH_FRAME Endpoint Reads frame-synchronous data.

13

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 2 OVERVIEW OF USB

Class requests
Class requests are unique to device classes. It is a class request when bmRequestType field bit
6 value is 0 and bit 5 value is 1. For details, see HID specifications “Device Class Definition for
Human Interface Devices (HID) Specification Version 1.11”.
Following requests are defined in HID class.

« Get Report
This request is used to acquire data from function device using control transfer by the
host. All drivers in compliance with HID class should support this request.

o Getldle
This request is used to acquire actual idle rate of function device by the host. Keyboard
should support this request.

« Get Protocol
This request is used to acquire existing protocol code of function device by the host. Boot
device should support this request.

« Set Report
This request is used to transmit data to function device by the host.

« SetlIdle
This request is used to set idle rate of function device by the host. Keyboard should support
this request.

« Set Protocol
This request is used to set protocol code of function device by the host. Boot device should
support this request.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 14

CHAPTER 2 OVERVIEW OF USB

Vendor request

Vendor requests are the request defined unique to vendor. Host driver responding to this request
should be provided to vendor while using vendor request.

bmRequestTypefield bit 6 value is 1 and bit 5 value is 0.

2.4.2 Format

USB requests have an 8-byte length and consist of the following fields.

Table 2-3 USB Request Format

Offset Field Description
0 bmRequestType Request attribute
Bit 7 Data transfer direction
Bits 6 and 5 Request type
Bits 4 to 0 Target descriptor
1 bRequest Request code
2 wValue Lower Any value used by the request
3 Higher
4 windex Lower Index or offset used by the request
5 Higher
6 wLength Lower Number of bytes transferred at the data
stage
7 Higher (the data length)

15

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

It is vendor request when

CHAPTER 2 OVERVIEW OF USB

2.5 Descriptor

For the USB standard, a descriptor is information that is specific to a function device and is encoded in
a specified format. A function device transmits a descriptor in response to a request transmitted from the
host.

2.5.1 Types
The following five types of descriptors are defined..

« Device descriptor
This descriptor exists in every device and includes basic information such as the supported USB
specification version, device class, protocol, maximum packet length that can be used when
transferring data to endpoint 0, vendor ID, and product ID.
This descriptor is transmitted in response to a GET_DESCRIPTOR_Device request.

« Configuration descriptor
At least one configuration descriptor exists in every device and includes information such as the device
attribute (power supply method) and power consumption. This descriptor is transmitted in response to
a GET_DESCRIPTOR_Configuration request.

« Interface descriptor
This descriptor is required for each interface and includes information such as the interface
identification number, interface class, and supported number of endpoints. This descriptor is
transmitted in response to a GET_DESCRIPTOR_Configuration request.

« Endpoint descriptor
This descriptor is required for each endpoint specified for an interface descriptor and defines the
transfer type (direction), maximum packet length that can be used for a transfer, and transfer interval.
However, endpoint 0 does not have this descriptor.
This descriptor is transmitted in response to a GET_DESCRIPTOR_Configuration request.

« String descriptor
This descriptor includes any character string.
This descriptor is transmitted in response to a GET_DESCRIPTOR _String request.

The following three types of descriptor are defined in HID class standard.

« HID(Human Interface Device) descriptor
This descriptor defines type and size of descriptor pertaining to HID. This descriptor is transmitted in
response to GET_DESCRIPTOR_HID request.

« Report descriptor
Report descriptor is used to define format of the data transmitted/received in between the host and
function device. Unlike other descriptors length and arrangement of the data are changed according to
the necessary data field contents. It is composed of information group called as item. There are short
and long items. This descriptor is transmitted in response to three items
(main,global,local)GET_DESCRIPTOR_Report request.

« Physical descriptor
Physical descriptor is used to define body parts of person used for controlling function device. It is
optional. Sample driver does not use physical descriptor.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 16

CHAPTER 2 OVERVIEW OF USB

2.5.2 Format
The size and fields of each descriptor type vary as described below.

Remark The data sequence of each field is in little endian format.

Table 2-4 Device Descriptor Format

Field Size Description
(Bytes)

bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bcdUSB 2 USB specification release number
bDeviceClass 1 Class code
bDeviceSubClass 1 Subclass code
bDeviceProtocol 1 Protocol code
bMaxPacketSize0 1 Maximum packet size of endpoint 0
idVendor 2 Vendor ID
idProduct 2 Product ID
bcdDevice 2 Device release number
iManufacturer 1 Index to the string descriptor representing the manufacturer
iProduct 1 Index to the string descriptor representing the product
iSerialNumber 1 Index to the string descriptor representing the device production number
bNumConfigurations 1 Number of configurations

Remarks Vendor ID: The identification number each company that develops a USB device acquires from USB-IF
Product ID: The identification number each company assigns to a product after acquiring the vendor ID

Table2-5 Configuration Descriptor Format

Field Size Description
(Bytes)

bLength 1 Descriptor size

bDescriptorType 1 Descriptor type

wTotalLength 2 Total number of bytes of the configuration, interface, and endpoint
descriptors

bNuminterfaces 1 Number of interfaces in this configuration

bConfigurationValue 1 Identification number of this configuration

iConfiguration 1 Index to the string descriptor specifying the source code for this
configuration

bmaAttributes 1 Features of this configuration

bMaxPower 1 Maximum current consumed in this configuration (in 2 A units)

Table 2-6 Interface Descriptor Format

Field Size Description
(Bytes)
bLength 1 Descriptor size
bDescriptorType Descriptor type
binterfaceNumber Identification number of this interface
bAlternateSetting Whether the alternative settings are specified for this interface
bNumEndpoints Number of endpoints of this interface

binterfaceClass Class code
binterfaceSubClass
binterfaceProtocol

ilnterface

Subclass code

Protocol code
Index to the string descriptor specifying the source code for this interface

Al Al Al Al Al Al A -~

17

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 2 OVERVIEW OF USB

Table 2-7 Endpoint Descriptor Format

Field Size Description
(Bytes)
bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bEndpointAddress 1 Transfer direction of this endpoint
Address of this endpoint
bmaAttributes Transfer type of this endpoint
wMaxPacketSize 2 Maximum packet size of this transfer
binterval Polling interval of this endpoint
Table 2-8 String Descriptor Format
Field Size Description
(Bytes)
bLength 1 Descriptor size
bDescriptorType 1 Descriptor type
bString Any Any data string

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

18

CHAPTER 2 OVERVIEW OF USB

2.5.3 HID class descriptor format
The format of HID class descriptor report descriptor is as follows.

Table 2-9 HID Descriptor Format

Field Size (Bytes) Description
bLength 1 Descriptor size (0x09 fixed)
bDescriptorType 1 Descriptor type (0x21 fixed)
bcdHID 2 HID version (BCD expression)
bCountryCode 1 Country code number
bNumDescriptors 1 Number of class descriptor
bDescriptorType 1 Class descriptor type (first)
wDescriptorLength 2 Class descriptor size (first)
[bDescriptorTypel... 1 Class descriptor size (from second no. onwards) (optional)
[wDescriptorLength]... 2 Class descriptor size (from second no. onwards) (optional)
Table 2-10 Report Descriptor Format

Short
item

Bit 39/23/15 ... 8 7 6 5 4 3 2 1 0

Iltem [data] (0~3byte) bTag bType | bSize
Long
item

Bit 2041 ... 24 23 16 15 87 6543210

ltem [data] (0~255 byte) bLongltemTag bDataSize 1711111 1|10

Field Description

bTag 4 bit field to specify item contents. Used in combination with bType. 111 fixed at long item.
bType 2 bit field to specify item type. There are three types 00: main, 01: global, 10: local. 11 fixed at long item.
bSize 2 bit field to specify data (data field) size by byte. 10(2 byte) fixed at long item.
bLongltemTag | 8 bit field to specify item contents while using long item.
bDataSize 8 bit field to specify data (data field) size by byte while using long item.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 2 OVERVIEW OF USB

Table 2-11 Main Item (bType = 0x00) Format

bTag Tag name Data

Bit Description

1000 Input Specifies input data format.

b31-b9 | Reserved(0 fixed)

b8 0:bit unit field, 1:Byte unit buffer

b7 Reserved(0 fixed)

b6 0:Null data disable, 1:Null data enable

b5 0O:priority, 1:Nonpriority

b4 O:Linear, 1:Non-linear
b3 0:No roll over, 1:Roll over
b2 0: Absolute value, 1:Relative value

b1 0: Array, 1: Variable

b0 0:Data, 1: Constant

1001 Output Specifies output data format.

b31-b8 | Same as Input(bTag = 1000)

b7 0: Value without changes, 1:Changed value

b6-b0 | Same as Input(bTag = 1000)

1011 Feature Specifies device composition information.

b31-b0 | Same as Output(bTag = 1001)

1010 Collection Specifies data (Input, Output, and Feature) set.
0x00:Physical(coordinates)
0x01:Application(Such as mouse and keyboard)
0x02:Logical(Interrupt data)

0x03:Report

0x04:Named Array

0x05:Usage Switch

0x06:Usage Modifier

0x07-0x7F:Reserved
0x80-0xFF:Vendor-defined

1100 End Collection Specifies Collection termination. Does not contain data (bSize = 0).

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 2 OVERVIEW OF USB

Table 2-12 Global Item (bType = 0x01) Format

bTag Tag name Data

0000 Usage Page Item ID number

0001 Logical Minimum Minimum value of variable and array

0010 Logical Maximum Maximum value of variable and array

0011 Physical Minimum Minimum physical limit of changeable item

0100 Physical Maximum Maximum physical limit of changeable item

0101 Unit Exponent Exponent at cardinal number 10 (2’'s complement)

0110 Unit Unit

0111 Report Size Each report size (bit unit)

1000 Report ID Report ID number

1001 Report Count Number of reports

1010 Push Storing of global item status list in stack.

1011 Pop Retrieval of global item status list stored at the starting of stack.

Table 2-13 Local Iltem (bType = 0x02) Format

bTag Tag name Data

0000 Usage Item ID number

0001 Usage Minimum Starting position of array and bitmap

0010 Usage Maximum Ending position of array and bitmap

0011 Designator Index Physical descriptor ID

0100 Designator Minimum | Starting position of identification information related to array and bitmap

0101 Designator Maximum | Ending position of identification information related to array and bitmap

0111 String Index String descriptor ID

1000 String Minimum First (starting) ID at the time of multiple string descriptors of array and
bitmap

1001 String Maximum Last (ending) ID at the time of multiple string descriptors of array and
bitmap

1010 Delimiter 1:Start of local item, 0: End of local item

21

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

This chapter provides details about the features and processing of the USB human interface device class
sample driver for the 78KOR/Kx3-L and the specifications of the functions provided in the 78 KOR/Kx3-L.

3.1 Overview

3.1.1 Features
The sample driver can perform the following processing.

(1) Initialization
The USB function controller is set up for use by manipulating various registers. This setup
includes specifying settings for the CPU registers of the 78 KOR/Kx3-L and specifying settings for
the registers of the USB function controller. For details, see 3. 2. 1 CPU Initialization, 3. 2. 2 USB
function controller initialization processing.

(2) Monitoring endpoints
The status of transfer endpoints in USB function controller is notified from INTUSB interrupt.
There are CPUDEC interrupt expressing the request of decode by FW for the control transfer
endpoint (Endpoint0). During the processing of Endpoint0, requests are responded too .For details,
see 3. 2. 3 INTUSB interrupt process. Key data is transmitted in endpoint (Endpoint7) for interrupt
transfer.

(3) Sample application
It is operated as HID keyboard device. Key interrupt is generated by pressing SW and key data is
transmitted.

3.1.2 Supported requests
This section describes the USB requests supported by the sample driver.

(1) Standard requests
The sample driver returns the following responses for requests to which the 78 KOR/Kx3-L does
not automatically respond.

() GET_DESCRIPTOR
The host issues this request to acquire the string and class descriptor of the function device.
If this request is received, the sample driver transmits the requested string descriptor to the
host through a control read transfer.

(b) Other requests
The sample driver returns a STALL

(2) Class requests
The sample driver responds to each class requests of the HID by using the following class
requests.

(a) Get Report
This request is used to acquire data from HID device using control transfer by the host. If this
request is received, sample driver transmits stored key code.

(b) Getldle
This request is used to acquire current idle rate of function device by the host. If this request
is received, sample driver transmits the current idle rate (=0).

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 22

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

(c) Setldle
This request is used to acquire current idle rate of function device by the host. Sample driver
supports only “0” idle rate. Sample driver returns NULL response when idle rate specified by
this request is “0”. It returns a STALL in case of other than “0” idle rate.

(d) Get Protocol, Set Report, Set Protocol
Sample driver does not support this request. If this request is received, sample driver
transmits a STALL.

23

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3. 1. 3 Descriptor settings
The settings of each descriptor specified by the sample driver are shown below. These settings are
included in header file "usbhid_desc.h".

(1) Device descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR _device request.
The settings are stored in the UFODDn registers (where n = 0 to 17) when the USBF is initialized,
because the hardware automatically responds to a GET_DESCRIPTOR_device request.

Table 3-1Device Descriptor Settings

Field Size Specified Description
(Bytes) Value
bLength 1 0x12 | Descriptor size: 18 bytes
bDescriptorType 1 0x01 | Descriptor type: device
bcdUSB 2 0x0200 | USB specification release number: USB 2.0
bDeviceClass 1 0x02 | Class code: HID
bDeviceSubClass 1 0x00 | Subclass code: none
bDeviceProtocol 1 0x00 | Protocol code: No unique protocol is used
bMaxPacketSize0 1 0x40 | Maximum packet size of endpoint 0: 64
idVendor 2 0x0409 | Vendor ID: NEC
idProduct 2 0x01D9 | Product ID: 78KOR /Kx3-L
bcdDevice 2 0x0001 | Device release number: 1st version
iManufacturer 1 0x01 | Index to the string descriptor representing the manufacturer: 1
iProduct 1 0x02 | Index to the string descriptor representing the product: 2
iSerialNumber 1 0x03 | Index to the string descriptor representing the device production number:
3

bNumConfigurations 1 0x01 | Number of configurations: 1

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 24

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

(2) Configuration descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.
The settings are stored in the UFOCIEn registers (where n = 0 to 255) when the USB Function
Controller is initialized, because the hardware automatically responds to a
GET_DESCRIPTOR _configuration request.

Table 3-2 Configuration Descriptor Settings

Field Size Specified Description
(Bytes) Value

bLength 1 0x09 | Descriptor size: 9 bytes

bDescriptorType 1 0x02 | Descriptor type: configuration

wTotalLength 2 0x0022 | Total number of bytes of the configuration, interface, and endpoint
descriptors: 34 bytes

bNuminterfaces 1 0x01 | Number of interfaces in this configuration: 1

bConfigurationValue 1 0x01 | Identification number of this configuration: 1

iConfiguration 1 0x00 | Index to the string descriptor specifying the source code for this
configuration: 0

bmAttributes 1 0xAOQ | Features of this configuration: bus-powered, with remote wakeup

bMaxPower 1 0x1B [Maximum current consumed in this configuration: 54 mA

(3) Interface descriptor
This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.
The settings are stored in the UFOCIEn registers (where n = 0 to 255) when the USB Function
Controller is initialized, because the hardware automatically responds to a
GET_DESCRIPTOR_configuration request.
Two types of descriptors are set up because the sample driver uses two interfaces.

Table 3-Interface Descriptor Settings for Interface 0

Field Size Specified Description
(Bytes) Value
bLength 1 0x09 | Descriptor size: 9 bytes
bDescriptorType 1 0x04 | Descriptor type: interface
binterfaceNumber 1 0x00 | Identification number of this interface: 0
bAlternateSetting 1 0x00 | Whether the alternative settings are specified for this interface: no
bNumEndpoints 1 0x01 | Number of endpoints of this interface: 1
binterfaceClass 1 0x03 | Class code: communications interface class
binterfaceSubClass 1 0x00 | Subclass code: Abstract Control Model
binterfaceProtocol 1 0x01 | Protocol code: No unique protocol is used.
ilnterface 1 0x00 | Index to the string descriptor specifying the source code for this interface:
0
25 Application note ROTAN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

(4) Endpoint descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR_configuration request.
The settings are stored in the UFOCIEn registers (where n = 0 to 255) when the USB Function
Controller is initialized, because the hardware automatically responds to a
GET_DESCRIPTOR_configuration request. Three descriptor types are specified because the
sample driver uses three endpoints.

Table 3-Endpoint Descriptor Settings for Endpoint 7

Field Size Specified Description
(Bytes) Value
bLength 1 0x07 | Descriptor size: 7 bytes
bDescriptorType 1 0x05 | Descriptor type: endpoint
bEndpointAddress 1 0x87 Transfer direction of this endpoint: IN
Address of this endpoint: 7
bmAttributes 1 0x03 | Transfer type of this endpoint: interrupt
wMaxPacketSize 2 0x0040 | Maximum packet size of this transfer: 64 bytes
binterval 1 0x00 | Polling interval of this endpoint: 0 ms

(5) String descriptor

This descriptor is transmitted in response to a GET_DESCRIPTOR _string request.

If a GET_DESCRIPTOR_string request is received, the sample driver stores the settings of this
descriptor into the UFOEOW register of the USB Function Controller.

Table 3-5 String Descriptor Settings

(a)String 0
Field Size Specified Description
(Bytes) Value
bLength 1 0x04 | Descriptor size: 4 bytes
bDescriptorType 1 0x03 | Descriptor type: string
bString 2 0x09, 0x04 | Language code: English (U.S.)
(b)String 1
Field Size Specified Description
(Bytes) Value
bLength "°*** 1 0x2A | Descriptor size: 42 bytes
bDescriptorType 1 0x03 | Descriptor type: string
bString N°'¢2 40 - Vendor: NEC Electronics Corporation

Notes 1. The specified value depends on the size of the bString field.
2. The vendor can freely set up the size and specified value of this field.
(c)String 2
Field Size Specified Description
(Bytes) Value
bLength T 1 OxOE | Descriptor size: 14 bytes
bDescriptorType 1 0x03 | Descriptor type: string
bString "2 12 - Product type:HIDDrv(HID driver)

Notes 1. The specified value depends on the size of the bString field.
2. The vendor can freely set up the size and specified value of this field.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

26

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

(d)String 3
Field Size Specified Description
(Bytes) Value
bLength " 1 0x18 | Descriptor size: 24 bytes
bDescriptorType 1 0x03 | Descriptor type: string
bString " ? 20 - Serial number: 01D903000110

Notes 1. The specified value depends on the size of the bString field
2. The vendor can freely set up the size and specified value of this field.

(6)

HID descriptor
HID (Human Interface Device) descriptor is used to define number and format of report descriptor

and physical descriptor.

Sample driver transmits HID descriptr from control endpoint if GET_DESCRIPTOR_HID request

is received.
Table3-6 Settings for HID descriptor
Field Size (Bytes) | Specified Description
Value
bLength 1 0x09 Descriptor size: 9 bytes
bDescriptorType 1 0x21 Descriptor type: HID
bcdHID 2 0x0110 HID version (BCD expression)
bCountryCode 1 0x00 No country code number
bNumDescriptors 1 0x01 Number of class descriptor :1
bDescriptorType 1 0x22 Class subordinate descriptor type : HID report
wDescriptorLength 2 0x002E Class subordinate descriptor length :46Byte
(7) Report descriptor

Report descriptor is used to define format (report protocol) of the data (HID data)

transmitted/received in between the host and function device.
Sample driver transmits this descriptor from control endpoint in response to
GET_DESCRIPTOR _report request.

For details of each item, see Universal Serial Bus HID Usage Tables Version 1.12.

27

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Table3-7 Settings for report descriptor

Value Item Settings
0x05, 0x01 Usage Page Generic Desktop
0x09, 0x06 Usage Keyboard
0xA1, 0x01 Collection Application
0x05, 0x07 Usage Page Keyboard
0x19, OXEO Usage Minimum LEFT CTRL
0x29, OXE7 Usage Maximum RIGHT GUI
0x15, 0x00 Logical Minimum 0
0x25, 0x01 Logical Maximum 1
0x95, 0x08 Report Size 8 bit
0x75, 0x01 Report Count 1
0x81, 0x02 Input Variable
0x95, 0x01 Report Count 1
0x75, 0x08 Report Size 8 bit
0x81, 0x01 Input Constant
0x95, 0x06 Report Count 6
0x75, 0x08 Report Size 8 bit
0x15, 0x00 Logical Minimum 0
0x26, 0xFF, 0x00 Logical Maximum 255
0x05, 0x07 Usage Page Keyboard
0x19, 0x00 Usage Minimum 0
0x29, 0x91 Usage Maximum 145
0x81, 0x00 Input -
0xCO0 End Collection -

3.2 Operation of Each Section

The processing sequence below is performed when the sample driver is executed. This section
describes each processing. For details about the sample application, see CHAPTER 4 SAMPLE
APPLICATION SPECIFICATIONS.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Figure 3-1 Sample Driver Processing Flowchart

Initializing the CPU

A

Initializing the USB function controller

&
l

y

Executing the sample application

29

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3.2.1 CPU Initialization
The settings necessary to use the USB Function controller are specified.

Figure 3-2 CPU Initialization Flowchart

(Start of CPU)
A 4

Setting clock generation

A 4

Port settings

Y
< End of CPU >

(1) Clock generation settings
Operation of internal clock of CPU is set.
Here, Five registers are set.

(a) “0x41” is written to CMC register to specify X1 oscillation mode, 10MHz < fyx <= 20MHz.

(b) “0” is written to the MSTOP bit of CSC register to start the operation of X1 oscillation circuit.

(c) Oscillation stability time is verified according to OSTC register.

(d) 0x01” is written in PLLC register to stop the PLL operation.

(e) “Ox38” is written to the CKC register to specify CPU/peripheral hardware clock to main system
clock ((fuan), main system clock to high speed system clock (fyx) and ratio of dividing frequency to
fvx.

(f) “1”is written to the HIPSTOP bit of CSC register to stop high speed built-in oscillation circuit.

(g) “1”is written to PLLM bit of PLLC register to multiply the frequency of the clock provided to PLL by
12.

(h) “0”is written to PLLSTOP bit of PLLC register to stat the operation of PLL.

(2) Port Settings

(a) Pull-up option of port connecting to switch is set. “1” is written to P17, P43, P42, P70, P71, P72,
P73, and P74.

(b) Processing should be done after reset release in the unused pin to avoid flow of penetration
current if regular Schmidt input type pin is open. In sample driver (64pin edition settings) “0” is
written to P05,P06,P30,P44,P46,P47,P54,P55,P65,P66,P67.

Note: In case of 48pin, addition to the above mentioned pins, processing should be done in
P42,P43,P53,P74,P75,P77,P110,P142,P143 also.

(c) LED settings. “0” is written to the PM2, PM5, PM110, and PM110. “Oxff” is written to P2, P5 to
turn off the LED. “1” is written to P110 after writing “0” to it to turn OFF LED (7SegA). Next, “”0xff”
is written to P2, P5 again and “1” is written to P111 after writing “0” to it to turn OFF LED (7SegB).

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 30

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3. 2.2 USB function controller initialization processing
The settings necessary to use the USB function controller are specified.

Figure 3-3 USB function controller Initialization Processing Flowchart

< Start of USBF >

A 4

USB clock supply

v

D+ signal unconnection settings

A 4

Setting USB buffer as invalid/ floating

v

NAK settings of control endpoints

!

Initialization of request data register area

A 4

Settings up interface and endpoints

v

Cancellation of control endpoints NAK settings

A 4

Setting up interrupt mask register

A 4

Initialization of driver internal flag

Setting USB buffer as valid/floating measures

A 4

Setting D+ signal pulling up

A 4

: End of USB)

(1) USB clock supply
0x80” is set in UCKC register so that USB clock is supplied to USB function controller.

(2) D+ Signal unconnection settings
0x02” is set to UFOGPR register in order to avoide being detected by the host.

31 Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

(3) Invalidate USB buffer and validate the floating measures
0x00” is set to UFOBC register to disable the operations of USB function controller set as valid USB
buffer and invalid floating measures.

(4) NAK settings of control endpoints
In order to avoide the unintended response before registering the data which are used for automatic
respose by the hardware. 1 is written to the EPONKA bit of the UFOEONA register so that the hardware
responds to all requests, including requests that are automatically responded to, with a NAK.

(5) Initializing the request data register area
The descriptor data transmitted in auto response to a GET_DESCRIPTOR request is added to the
following registers.

(a) 0x02 is written to the UFODSTL register to disable remote wakeup and operate the USB function
controller as a bus-powered device.

(b) 0x00 is written to the UFOENSL registers (where n = 0, 7) to indicate that endpoint n operates

normally.

(c) The total data length (number of bytes) of the required descriptor is written to the UFODSCL
register to determine the range of the UFOCIEn registers (where n = 0 to 255).

(d) The device descriptor data is written to the UFODDn registers (where n =0 to 7).

(e) The data of the configuration, interface, and endpoint descriptors is written to the UFOCIEn
registers (where n = 0 to 255).

(f) Ox00 is written to the UFOMODC register to enable automatic responses to
GET_DESCRIPTOR_configuration requests.

(6) NAK settings of interface and endpoints
Information such as the number of supported interfaces, whether the alternative setting is used, and
the relationship between the interfaces and endpoints is specified for various registers. The following
registers are accessed.

(a) 0x00 is written to the UFOAIFN register to enable one interface.
(b) 0x00 is written to the UFOAAS register to disable the alternative setting.
(c) 0x20 is written to the UFOE7IM register to link endpoint 7 to interface 0.

(7) Disabling NAK settings of control endpoints
The NAK response operations for all requests are cancelled. 0 is written to the EPONKA bit of the
UFOEONA register to restart responses corresponding to each request, including requests that are
automatically responded to.

(8) Setting up the interrupt mask registers
Masking is specified for each USB function controller interrupt source. The following registers are
accessed.

(a) 0x00 is written to the UFOlcn registers (where n = 0 to 7) to clear all interrupt sources.

(b) 0x00 is written to the UFOFICn registers (where n = 0 and 1) to clear all transfer FIFOs.

(c) Ox3B is written to the UFOIMO register to mask all interrupt sources other than BUSRST,
RSUSPDM, SETRQ interrupts from the interrupt sources indicated by the UFOISO register.

(d) Ox7E is written to the UFOIM1 register to mask all interrupt sources other than CPUDEC interrupt
from the interrupt sources indicated by the UF0IS1 register.

(e) OxF3 is written to the UFOIM2 register to mask all interrupt sources indicated by the UF0IS2

register.

(f) OxFE is written to the UFOIMS3 register to mask all interrupt sources indicated by the UFOIS3
register.

(g9) OxFF is written to the UFOIM4 register to mask all interrupt sources indicated by the UFO0IS4
register.

(h) “0Ox03” is written to the KRM register of CPU to detect key interrupt signal.
(i) “0”is written to the USBIF bit of CPU to clear INTUSB interrupt.

(i) “0”is written to the RSUMIF bit of CPU to clear INTRSUM interrupt.

(k) “0” is written to the KRIF bit of CPU to clear INTKR interrupt.

(I) “0”is written to the USBMK bit of CPU to release mask of INTUSB interrupt.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 32

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

(m) “0” is written to the RSUMMK bit of CPU to release mask of INTRSUM interrupt.
(n) “0” is written to the KRMK bit of CPU to release mask of INTKR interrupt.

(9) Initialization of driver internal flag
A high level signal is output from the D+ pin to report to the host that a device has been connected. For
the sample driver, the connections shown in Figure 3-4 are assumed and the following registers are
accessed.

(10) USB buffer enabled/ floating measures disabled
“Ox03” is set to UFOBC register to enable USB buffer, to disable floating measures and to enable USB
function controller operations.

(11) Pulling up the D+ signal

“0x02” is set to UFOGPR register to report to the host that a device has been connected.

Figure 3-4 USB function controller Connection Example

KOR/KC3-H EVop
KOR/KE3-H -
USBPUC
O
UFOGPR
1.5 kQ+ 50
USBP QO DO O
27 Q+ 50
USBMQ . DO O

27 Q+ 50
i 50 kQO O
oooooooooono

33 Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3.2.3 INTUSB interrupt process

Interrupt request (INTUSB) from USB function controller reports only about the interrupts which are not

masked. Disable mask at the initialization for the necessary interrupts. Respective necessary processes
are executed for the reported interrupts.

Figure 3-5 Process flowchart of INTUSB interrupt

< Start of INTUSB interrupt >

A 4

RSUSPD interrupt process
v

BUSRST interrupt process
v

SETRAQ interrupt process
v

CPUDEC interrupt process

v

< End of INTUSB interrupt >

(1) RSUSPD interrupt process
It is reported when Suspend/Resume interrupt is generated.

Process is executed in the following order.

(b) This interrupt is generated by Suspend interrupt (verifying that UFOEPS1 is’0x00”) and if

usbf78k0r_usbstate flg flag value is “0x04” (Configured state), “0x06” (Suspend state) is written to
usbf78k0r_usbstate_flg flag.

(c) usbf78k0r_stop_mode () function is called.

(2) BUSRST interrupt process
It is reported when Bus Reset is generated.

Process is executed in the following order.
(a) “Ox7F” is written to the UFOICO to clear BUSRST interrupt.
(b) “Ox05(Bus Reset Occur)” is written to usbf78k0r_usbstate flg flag.

(3) SETRAQ interrupt process

SET_XXXX request for auto process is received and it is reported at auto processing.

Process is executed in the following order.

(a) “OxFB” is written to the UFO0ICO to clear SETRQ interrupt.
(b) Both SETCON bit of UFOSET register and CONF bit of UFOMODS register are set to “1” is verified.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 34

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

“1” is set to CONFIGURATION by the SET_CONFIGURATION request is indicated.

(c) “Ox04” is written to the usbf78k0r_usbstate flg flag to report that it is switched from reset state to
normal state.

(4) CPUDEC interrupt process
(a) “OxFD” is written to UFOIC1 register to clear PROT interrupt.
(b) UFOEOST register is read for 8 times then request data is acquired and decoded.

(c) If request is class request, usbf78k0r_classreq() function is called and class request process is
executed.

(d) If request is not class request, usbf78k0r_standardreq() function is called and standard request
process is executed.

35 Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3.3 Function Specifications

This section describes the functions implemented in the sample driver.

3.3.1 Functions
The functions of each source file included in the sample driver are described below.

Table 3-8 Functions in the Sample Driver

Source File Function Name Description
main.c cpu_init Initializes the CPU.
main Main routine
usbf78kO0r.c usbf78kO0r _init Initializes the USB function controller

usbf78kO0r_intusbf0

Processing INTUSB interrupt

usbf78kO0r _intkr

Processing INTKR interrupt

usbf78k0r_intrsum

Processing INTRSUM

usbf78k0r_stop_mode

Processing STOP mode

usbf78k0r_standardreq

Processes standard requests

usbf78k0r_getdesc

Processes GET_DESCRIPTOR(String,HID,Report)

usbf78k0r_send_EPO

Transmits Endpoint0

usbf78k0r_receive_ EPO

Receives Endpoint0

usbf78k0r_sendnullEPO

Transmits a NULL packet for endpoint O.

usbf78k0r_sendstallEPOQ

Transmits a STALL for endpoint 0.

usbhf78k0r_ep_status

Notifies FIFO status of bulk/interrupt Inn end point

usbf78k0r_send_null

Transmits a NULL packet of bulk/interrupt inn endpoint

usbf78k0r_data send

Transmits bulk/interrupt Inn end point

usbf78kO0r_hid.c

usbf78k0r_classreq

Processing HID class request

usbf78k0r_get_report

Processing Get Report request

usbf78k0r_get_idle

Processing Get Idle request

usbf78k0r_get_protocol

Processing Get Protocol request

usbf78k0r_set _report

Processing Set Report request

usbf78k0r_set_idle

Processing Set Idle request

usbf78k0r set protocol

Processing Set Protocol request

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

36

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3. 3.2 Correlation of the functions
Some functions call other functions during the processing. The following figures show the
correlation of the functions.

Figure 3-6 Calling Functions in the Main Routine

main

init

cpu_init

usbf78kO0r init

usbf78k0r data send

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Figure 3-7 Calling Functions During the Processing for the USB Function Controller

usbf78Kk0r intusb

usbf78k0r stop _mode

usbf78k0r sendstallEPO

usbf78k0r_classreq

usbf78k0r get report

usbf78k0r get idle

usbf78k0r aet protocol

usbf78k0r set report

usbf78k0r_set idle

usbf78k0r set protocol

usbf78k0r standardreq

usbf78k0r sendstallEPO

usbf78k0r getdesc

usbf78k0r sendstallEPO

usbf78k0r send EPO

usbf78k0r_sendstallEPO

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

38

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Figure 3-8 Calling Functions During the Processing for the USB HID class (1)

usbf78k0r classreq

usbf78k0r_get report

usbf78k0r sendstallEPO

usbf78k0r send EPO

usbf78k0r get idle

usbf78k0r send EPO

usbf78k0r _sendnullEPO

usbf78k0r sendnullEPO

usbf78k0r aet protocol

usbf78k0r sendstallEPQ

usbf78k0r set report

usbf78k0r sendstallEPO

usbf78k0r_set idle

usbf78k0r sendnullEPO

usbf78k0r sendstallEPQ

usbf78k0r set protocol

usbf78k0r sendstallEPO

39

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

3. 3. 3 Function features
This section describes the features of the functions implemented in the sample driver.

(1) Function description format
The functions are described in the following format.

Function name

[Overview]
An overview of the function is provided

[C description format]
The format in which the function is written in C is provided

[Parameters]
The parameters (arguments) of the function are described.
Parameter Description
Parameter type and Parameter summary
name

[Return values]
The values returned by the function are described.

Symbol Description

Return value type Return value summary
and name

[Description]
The feature of the function is described

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

40

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Functions for the main routine

main

[Overview]
Main processing

[C description format]
void main(void)

[Parameters]
None

[Return value]
None

[Description]
This function is called first when the sample driver is executed. This function calls the
initialization function of CPU, initialization function of USB function controller and then the
sample application processing function sequentially.

41 Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

cpu_init

[Overview]

Initializes the CPU.

[C description format]
void cpu_init(void)

[Parameters]
None

[Return value]
None

[Description]

This function is called in the main processing.

The settings that are necessary to use the USB function controller in the 78KOR/Kx3,such as

the clock frequency, and operation mode.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

42

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Functions for the USB function controller

usbf78kO0r_init

[Overview]
Initializes the USB function controller

[C description format]
void usbf78kO0r_init(void)

[Parameters]
None

[Return value]
None

[Description]
This function is called during initialization processing.
This function specifies the settings required for using the USB function controller such as

masking interrupt requests.

43 Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_intusbf0

[Overview]

INTUSB interrupt processing

[C description format]
__interrupt void usbf78k0r_intusbf0 (void)

[Parameters]
None

[Return value]
None

[Description]
This function is an interrupt service routine called from INTUSBFO interrupt.
Generated interrupt processing is done while verifying about the interrupt requests about

the interrupt which are not masked of USB function controller.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_intkr

[Overview]

INTKR interrupt processing

[C description format]
__interrupt void usbf78kO0r_intkr (void)

[Parameters]
None

[Return value]
None

[Description]
This function is an interrupt service routine called by INTKR interrupt.

Flag indicating “pressed key” is updated.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_intrsum

[Overview]

INTRSUM interrupt processing

[C description format]

__interrupt void usbf78kO0r_intrsum(void)

[Parameters]
None

[Return value]
None

[Description]

This is an interrupt service routine called by INTRSUM interrupt.

Flag indicating “resume signal generation” is updated.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

46

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_stop_mode

[Overview]
Processing to enter in Stop mode at the time of Suspend

[C description format]
void usbf78k0r_stop_mode (void)

[Parameters]
None

[Return value]
None

[Description]
This function is called from the CPUDEC interrupt cause process of INTUSB interrupt
process.
It enters in STOP mode by stopping USB clock. STOP mode is cancelled by INTRSUM
interrupt, INTKR interrupt.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_standardreq

[Overview]

Processes standard requests to which the USB function Controller does not automatically
respond

[C description format]
void usbf78k0r_standardreq (USB_SETUP *req_data)

[Parameters]

Parameter Description

USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called from the CPUDEC interrupt cause process of INTUSB interrupt
process.
If a GET_DESCRIPTOR request is decoded, this function calls the GET_DESCRIPTOR
request processing function (usbf78k0r_getdesc). For other requests, this function calls
the function for returning a STALL for endpoint 0 (usbf78k0r_sendstallEPO).

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

48

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_getdesc

[Overview]

Processes GET_DESCRIPTOR requests

[C description format]
void usbf78k0r_getdesc (USB_SETUP *req_data)

[Parameters]

Parameter Description

USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called during the processing of standard requests to which the USB
function controller does not automatically respond. If a decoded request requests a string
descriptor, this function calls the USB data transmission function (usbf78k0r_send_EPO)
for Endpoin0 and transmits a string descriptor from endpoint 0. If a decoded request
requests any other descriptor, this function calls the function for returning STALL
(usbf78kO0r_sendstallEPQ) for endpoint 0.

49

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_send_EPO

[Overview]

Transmits USB data for EndpointO

[C description format]
INT32 usbf78k0r_send_EPO(UINT8* data, INT32 len)

[Parameters]
Parameter Description
UINT8* data Transmission data buffer pointer
INT32 len Transmission data length
[Return value]
Symbol Description
DEV _OK Normal completion
DEV _ERROR Abnormal completion

[Description]
This function stores the data stored in the transmission data buffer into the FIFO for the

specified Endpoint0, byte by byte.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_receive_EPO

[Overview]

Receives USB data for Endpoint0

[C description format]

INT32 usbf78kO0r_receive_ EPO(UINT8* data, INT32 len)

[Parameters]
Parameter Description
UINT8* data Reception data buffer pointer
INT32 len Reception data length
[Return value]
Symbol Description
DEV OK Normal completion
DEV _ERROR Abnormal completion

[Description]

This function reads data from the FIFO for the specified endpoint byte by byte and stores

the data into the reception data buffer.

51

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_sendnullEPO

[Overview]
Transmits a NULL packet for endpoint 0

[C description format]
void usbf78k0r_sendnullEPO(void)

[Parameters]
None

[Return value]
None

[Description]
This function clears the FIFO for endpoint 0 and transmits a NULL packet from the USBF
by setting the bit that indicates the end of data to 1.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

52

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_sendstallEPO

[Overview]

Returns a STALL for endpoint 0

[C description format]

void usbf78k0r_sendstallEPO(void)

[Parameters]
None

[Return value]
None

[Description]

This function makes the USBF return a STALL by setting the bit that indicates the use of

STALL handshaking for Endpoint O to 1.

53

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_ep_status

[Overview]

Notifies FIFO status for bulk/interrupt inn endpoint

[C description format]

INT32 usbf78k0r_ep_status(INT8 ep)

[Parameters]
Parameter Description
INT8 ep Data transmission endpoint number
[Return value]
Symbol Description
DEV _OK Normal completion(FIFO empty)
DEV_ERROR Abnormal completion(FIFO full)
DEV RESET During Bus Reset processing

[Description]

This function notifies the FIFO status of specified endpoint(for transmission).

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

54

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_send_null

[Overview]

Transmits a NULL packet for bulk/interrupt inn endpoint

[C description format]

INT32 usbf78k0r_send_null(INT8 ep)

[Parameters]
Parameter Description
INT8 ep Data transmission end point number
[Return value]
Symbol Description
DEV_OK Normal completion
DEV _ERROR Abnormal completion

[Description]

This function transmits a NULL packet from USB function controller by clearing the FIFO of
specified Endpoint (for transmission) and setting the bit that indicates the end of data to 1.

55

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_data send

[Overview]

Transmits USB data for bulk/interrupt Inn end point

[C description format]

INT32 usbf78k0r_data_send(UINT8* data, INT32 len, INT8 ep)

[Parameters]
Parameter Description
UINT8* data Transmission data buffer pointer
INT32 len Transmission data length
INT8 ep Data transmission end point number
[Return value]
Symbol Description
len(>=0) Normal transmission data size
DEV ERROR Abnormal completion

[Description]

This function stores the data stored in the transmission data buffer into the FIFO for the

specified endpoint, byte by byte.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

56

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

Functions for USB Human Interface Class processing

usbf78k0r_classreq

[Overview]

Processes class request

[C description format]
void usbf78k0r_classreq(USB_SETUP *req_data)

[Parameters]

Parameter Description

USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called from the CPUDEC interrupt cause process of INTUSB interrupt
process.
If a decoded request is communication class request, this function calls the each request
processing function. For other requests, this function calls the function for returning
STALL for Endpoint0 (usbf78k0r_sendstallEPO).

57 Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_get_report

[Overview]

Processes Get Report request

[C description format]
void usbf78k0r_get report (USB_SETUP *req_data)

[Parameters]

Parameter Description

USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called if request decoded at class request process is Get Report request.
This function transmits current key code from Endpoint0 only when request with report ID
0 is received. Else responds STALL.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_get_idle

[Overview]
Processes Get Idle request

[C description format]
void usbf78k0r_get idle(USB_SETUP *req_data)

[Parameters]

Parameter Description

USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called if request decoded at class request process is Get Idle. This
function transmits idle rate from Endpoint0O. Idle rate of sample driver is fixed to 0
(transmitted only when it changes).

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_get_protocol

[Overview]
Processes Get Protocol request

[C description format]
void usbf78k0r_get protocol(USB_SETUP *req_data)

[Parameters]

Parameter Description

USB SETUP *req data Request data storage pointer address

[Return value]
None

[Description]
This function is called if request decoded at class request process is Get Protocol. It
responds STALL.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_set_report

[Overview]

Processes Set Report request

[C description format]

void usbf78k0r_set_report (USB_SETUP *req_data)

[Parameters]

Parameter

Description

USB SETUP *req data

Request data storage pointer address

[Return value]
None

[Description]

This function is called if request decoded at class request process is Set Report. It

responds STALL.

61

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_set_idle

[Overview]

Processes Set Idle request

[C description format]

void usbf78k0r_set_idle(USB_SETUP *req_data)

[Parameters]

Parameter

Description

USB SETUP *req data

Request data storage pointer address

[Return value]
None

[Description]

This function is called if request decoded at class request process is Set Report. It transmits

Null packet when idle rate transmitted by host is 0, else it responds STALL.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

62

CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS

usbf78k0r_set_protocol

[Overview]

Processes Set Protocol request

[C description format]
void usbf78k0r_set_protocol(USB_SETUP *req_data)

[Parameters]
Parameter Description
USB SETUP *req data Request data storage pointer address
[Return value]
None

[Description]
This function is called if request decoded at class request process is Set Protocol. It responds
STALL.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS

This chapter describes the sample application included with the sample driver.

4.1 Overview

The sample application is provided as a simple example of using the USB human interface device class
driver and is incorporated in the main routine of the sample driver.

This sample applications transmits alphabets “a” ~ “z” when switch SW2(PUSH) is pressed on the
TK-78KOR/KE3L+USB board and transmits “Enter” at pressing the SW2(UP). Various functions of the

sample driver are used during this processing.

4.2 Operation

The sample application performs the processing shown in the following flowchart.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 64

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS

Figure 4-1 Flowchart for the Sample Application Processing

Qtart of sample application processinD

le
<

Pressing of SW2?

Is UP of SW2 is pressed?

Transmission process of alphabet kev data

Undate orocess of albhabet kev data

P
<

Is PUSH of SW2 is NO

pressed?

Transmission process of Enter kev data

Undate orocess of albhabet kev data

v

Ubdate orocess of kev monitorina flaa

<&
<«

(1) Verifying whether SW2 is pressed

Whether switch SW2 UP or PUSH is pressed in the TK-78KOR/KE3L+USB board is verified from the
key pressing verification flag (usbf78k0r_keytouch_flg). If flag value is “1”, key data is transmitted but

if flag value is “0”, no transmission.

(2) Verifying whether SW2 UP is pressed
If P70 is “0”, it is determined that SW2 UP is pressed and wait till gets off.

65

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS

(3) Transmission process of alphabet key data
It is verified that FIFO of endpoint for transmission is Null by usbf78k0r_ep_status function and then

alphabet key data and release key data are transmitted by usbf78k0r_data_send function.

(4) Alphabet key data information update
It updates alphabet key data (Toggle). If key data is “z”, it is “a”.
(5) Verifying whether SW2 PUSH is pressed
If P71 is “0”, it is determined that SW2 PUSH is pressed and waits till gets off.

(6) Transmission process of Enter key data
It is verified that FIFO of endpoint for transmission is Null by usbf78k0r_ep_status function and then
Enter key data and release key data are transmitted by usbf78k0r_data_send function.

(7) Alphabet key data information update
It updates alphabet key data (return to “a”).

(8) Update flag for verification of pressing of key
It updates (set to “0x00”) (usbf78k0r_keytouch_flg) flag for verification of pressing of key.

4.3 Using Functions

The main.c source file that includes this sample application is coded as follows in order to call sample
driver functions. For details about the functions, see 3. 3 Specifications of Functions.

(1) Definitions and declarations
“usbf78k0r.h” header file is included in order to use the sample driver functions. Array (keycode)

for key data storage is set.

(2) Initialization process of CPU

Initialization process of CPU function (cpu_init) is called.

(3) Initialization process of USB function controller

USB function controller initialization function (usbf78kO0r_init) is called.

(4) Verification of FIFO status for user data

FIFO status is verified by FIFO status verification function (usbf78k0r_ep_status).

(5) Transmitting user data
Data is transmitted by data transmission function (usbf78k0r_data_send) after specifying data,

data size, and endpoint.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 66

CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS

List 4-1 Sample Application Code (Portion)

void main(void)

{
UINT8 keycode[REPORT_DATA_LENGTH];
UINTS keydata = A_KEY;

init();

memset(keycode, 0, sizeof(keycode)); /* Key Data Clear */
usbf78kO0r_keytouch_flg = F_SW_OFF; /* Key Flag Clear */
while(1)

if (usbf78k0r_keytouch_flg == F_SW_ON) {
if((P7 & 0x01) == 0x00) {/* SW2 UP */
while((P7 & 0x01) == 0x00)%
[* SW2 OFF WAIT */

}
keycode[KEY1_SCAN_CODE] = keydata; /* Press Key Data */

while (usbf78k0r_ep_status(C_INT1) != DEV_OK) {}
usbf78k0r_data_send(keycode, sizeof(keycode), C_INT1);

memset(keycode, 0, sizeof(keycode)); /* Release Key Data */

while (usbf78k0r_ep_status(C_INT1) != DEV_OK) {}
usbf78kO0r_data_send(keycode, sizeof(keycode), C_INT1);
keydata++; [*atoz*
if(keydata == EXCLAMATION_KEY) {

keydata = A_KEY;
}

}
if((P7 & 0x02) == 0x00) {/* SW2 PUSH */
while((P7 & 0x02) == 0x00)X
/* SW2 OFF WAIT */

}
keycode[KEY1_SCAN_CODE] = ENTER_KEY;/* Press Key Data(Enter) */

while (usbf78k0r_ep_status(C_INT1) != DEV_OK) {}
usbf78k0r_data_send(keycode, sizeof(keycode), C_INT1);

memset(keycode, 0, sizeof(keycode)); /* Release Key Data */

while (usbf78k0r_ep_status(C_INT1) = DEV_OK) {}
usbf78kO0r_data_send(keycode, sizeof(keycode), C_INT1);
keydata = 0x04;

}
usbf78k0r_keytouch_flg = F_SW_OFF,;

67

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

This chapter provides an example of creating an environment for developing an application program that
uses the USB human interface device class sample driver for the 78KOR/Kx3-L and the procedure for
debugging the application.

5.1

Development environment

This section describes the used hardware and software tool products.

5.1.1 Program development

The following hardware and software are necessary to develop a system that uses the sample driver.

Table 5-1 Example of the Components Used in a Program Development Environment

Components Product Example Remark
Hardware Host machine - PC/AT compatible computer (OS : Windows
XP)
Software Integrated development tool | PM+ V6.31
Compiler CC78K0R W2.12
Assembler RA78KOR W1.33

5.1.2 Debugging

The following hardware and software are necessary to debug a system that uses the sample driver.

Table 5-2 Example of the Components Used in a Debugging Environment

Components Product Example Remark
Hardware Host machine - PC/AT compatible computer (OS :
Windows XP)

Target device TK-78KOR/KE3L+USB

Inn circuit emulator MINICUBE2

USB cables - miniB-to-A connector cable
Software Integrated development tool PM+ V6.31

Debugger ID78KOR-QB V3.60
Files Device file DF78102664.78K 78KOR/Kx3-L

Project files - Note1

Notes 1.For details about products and how to obtain them, contact NEC Electronics.

2. Afile that is used when creating a system using PM+ is included with the sample driver.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

68

CHAPTER 5 DEVELOPMENT ENVIRONMENT

5.2 Setting up the Environment

This section describes the preparations required for developing and debugging a system by using the
products described in 5. 1 Development environment.

5.2.1 Preparing the host environment
Create a dedicated workspace on the host for debugging.

Installing an integrated development tool
Install PM+. For details, see the PM+ User’s Manual.

Downloading drivers
Store the set of files provided with the sample driver in any directory without changing the folder
structure. Store the device driver in any directory.

Figure 5-1 Folder Structure of the Sample Driver

T N
| An; folder include Folder contathing include

S N

NEC_project Folder containing NEC compiler projects

T N

src Folder ¢ontaining source files

69 Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Setting up the workspace

The procedure for using project files included with the sample driver is described below.

<1> Start PM+, and then select “Open Workspace” in the “File” menu.

#IEM Edit Find Lawer Wiew Project
e CEFlHR
Cpen. .. Chrl+0
Close
Mew Waorkspace, .,

Open Workspace. ..

s PM+ - Mo Workspace [ProjectWindow]
Build Tool

<2> In the Open Workspace dialog box, specify the workspace file in the NEC_project folder,
which is the sample driver installation directory.

Open Workspace

Lok ir:] (3 MEC project j o

2]

ek B

<

[KORUSE_AID prw

File name:

[KORUSE_HIDprws

Open

Files af twpe: iw::urkspace File[* prw]

_:i Cancel

Help

P,

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

70

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Installing a device file

The procedure for using a device file for the 78KOR/Kx3-L is described below.

<1> Select Project Settings in the PM+ Project menu.

t7. PM+ - KORUSB_HID.prw [OutPut]

File Edit Find Laver Wiew NE{dEse Buld Tool Window Help

~ | = lect Active Project. .. e |
B - =" = [ECROWaLUE ~|| *
.‘__ 1 W& | Add Mew Project. .. - ! -'-'! |
‘ (KORUSE_HID - KORUSE_HID Insert Preject.... | - L & &

= ProjectWindow
File= | Memo I |
KORUSE_HID : 1

S Diff
= ﬁ KORUSE_HID | -
#-[_1 Source Files | Export Makefile

E—' 123 Include Files '
#-[_1 Project Relate
| ‘[Other Files

Project Settings...
Add Source Files, .
Add Project Related Files. ..

add Other Files. .,

<2> In the Project Settings dialog box, click the Device Install button on the Project
Information tab to start the Device File Installer.

Project Settings
Froject Information ’ Source File ; Toaol Wersion 5 ettings i

Froject File Mame KORUSE_HID prj

Falder : DATE-KOR_USE A MEG project

Wworkzpace File Mame : 0\ TK-KOR_USE S MEG project & KORUSE_HID pr

Froject Group : KORUSE_HID

Froject Title :

FKORUSE HID

Microcontrollers Mame : Device Mame

Device Inztal [

TEKOR: > |uPD78F1026 64 |

] l Cancel I Help

71

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<3> In the Device File Installer dialog box, click the Install button to start the installation wizard.

LF:

- Device File Installer

' Help
Device File Package
About...
[FcceRiE 1 Get New Software

Source Directory Select: | _T_J Ernwse...]

Device Mame | Werzion | Serez | File Hame

p ?

T_. Lelete

R egisty Change registered directon...

Device Mame ersion Series | Directory A

uPL7aF0730 w110 TaK0 CAPROGRAM FILESYHEC |

uPD72F1012.80 E1.00c T2K0F CAPROGRAM FILESYMWEC | —

uPL7EF1026_64 E1.00c T8KOR. C:APROGRAM FILESSMELC|

uPL7aF1022_ 45 E1.00c T8KOR. C:APROGRAM FILESSMELC|

uPL73F1023 45 E1.00c T8K0F CAPROGRAM FILESYMEC|

uPC73F1024 43 E1.00c T8K0R CAPROGRAM FILESAMEC |

uPD73F1025_64 E1.00c TaK0R CAPROGRAM FILESAMEC|

HPMTNFATER W AR C:MPROGRAM FILESYWMEC |

E =it

<4> In the Install Information File dialog box, click the Browse button.

Install Wizard : Install Information File

[mstalling fromn Device File Product Disk.

Open a dive or directory which the Device File Product Disk esists,
and select the |nstall-lnformation-File
[_ _CSETUP.IMI o« MECSETLUP.INI).

<5> In the Open dialog box, open the directory in which the device file was stored, select
"NECSETUP.INI", file and then click the Open button.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 72

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<6> In the message about usage permission, click the Next button.

<7> In the File type selection dialog box, click of Next button after selecting relevant device

files.

Install Wizard : Kind of File

Select the kind of installation file ;

v [7ERORACI-LIUSE]

v TakORAES-LIUSE]

< Bac @ Cancel |

%Since screen is under development it can differ from the actual.

73

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<8>

In the Install Directory dialog box, confirm that a path is displayed, and then click the Next
button.

Install Wizard : Install Directory [$_<|

Input the destination directory of the Common Device File

< Bac @ Cancel |

<9> In the Installation Start dialog box, click the Next button.

X

Install Wizard : Installation Start

YWwhen you zelect [Mext], installabion will start az below conditions.

Inztallation files and destination directories ;

FAKOR K C3-LIUSE)
d:“program fileshnec electronics toolshdey

FRKORAEI-LIUSE]
d:Sprogram filezhnec electronics toolzhdey

Cancel

%Since screen is under development it can differ from the actual.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

74

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<10> The device file is installed to the project. This might take a while depending on the
environment.
<11> In the Installation Finished dialog box, click the Finish button.

Install Wizard : Installation Finished

|nztallation completed. ‘when zelect [Finizh], program finishes.

Setting up the building tool
The procedure for using the CC78KO0R, RA78KOR as the building tool and ID78K0OR-QB as the
debugging tool is described below.

<1> Select Project Settings in the PM+ Project menu.

t7. PM+ - KORUSB_HID.prw [OutPut]

File Edit Find Laver Wiew NE{dEse Buld Tool Window Help

~ | = lect Active Project. .. e |
B - =" = [ECROWaLUE ~|| *
.‘__ 1 W& | Add Mew Project. .. - ! -'-'! |
‘ (KORUSE_HID - KORUSE_HID Insert Preject.... | - L & &

= ProjectWindow
File= | Memo I |
KORUSE_HID : 1

S Diff
= ﬁ KORUSE_HID | -
#-[_1 Source Files | Export Makefile

E—' 123 Include Files ' —r
#-[_1 Project Relate Project 3¢ :
| (23 Other Files Add Source Files, .

Add Project Related Files. ..
add Other Files. ..

75 Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<2> In the Project Settings dialog box, click the Detail Setting button on the Tool Version
Settings tab.

Project Settings b_(|

Froject Infarmation] Source File Tool Yersion Settings]

Tool Set:
78k0R Software Package W1.10[English Wersion] j Save ‘ l
T ool Verzsions
Toal Wersion [The tool which is not installed with
GCTEKOR CowEln the toal specified by the selected tool
RATEEOR WH 33 zet iz digplayed in the gray.
SKTSKOR: Unuzed
ID73K0R-GE Wa.a0

[T Select anly Installed Tools

Dretail Setting...

| k. | Cancel Help

<3> In the Tool Version Detail Setting dialog box, select the compiler version to use in the
“CC78KO0OR” “RA78KOR” columns and the debugger version to use in the “ID78K0OR-QB”
column and press “OK” button.

Tool Yersion Detail Setting IE

[CC7akOR | RA7SKOR | SK7SKOR |ID7SKOR-GB | I _| |
JUnused | Unused [v|Unuzed | JUnuzed
Vw212 |wwi133 [v310 |wv3eo
C210 |t [Jvas0

£ 2

VBEOR Software Package V1.1 0[Englizh Werzsion)
FEKOR Software Package 1 .00(Englizh Wersion)

@ Cancel ‘ Help ‘

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 76

CHAPTER 5 DEVELOPMENT ENVIRONMENT

5. 2.2 Setting up the target environment
Connect the target device to use for debugging.

(1) Connecting the target device
Connect the two USB ports on the TK-78KOR/KE3L+USB to the USB ports of the host by using
USB cables.

Figure 5-2 Connecting the TK-78KOR/KE3L+USB

__— T

W
USB2: Debugging port

USB1: 78KOR USB port

Remark For a drawing and details about the ports of the TK-78KOR/KE3L+USB, see APPENDIX A STARTER
KIT.

5.3 On-Chip Debugging

This section describes the procedure for debugging an application program that was developed
using the workspace described in 5.2 Setting Up the Environment.

For the 78KOR/Kx3-L, a program can be written to its internal flash memory and the program
operation can be checked by directly executing the program by using a debugger (on-chip debugging).

5.3.1 Generating a load module
To write a program to the target device, use a C compiler to generate a load module by converting a
file written in C or assembly language.

77 Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

For PM+, generate a load module by selecting Rebuild in the Build menu.

; IR B [) P
File Edit Find Lawer Miew Project Tool ‘Window Help
i B . o E Y Build and Debug F5 +1| #
: N el | = & | . Rebuild and Debug j‘:ﬂ _____
| [KORUSB HID - KORUSEHID ~ ~ ~70F s

Build F7
Skop Build
| = | Moo | Batch Build

E. KORUSE_HID : 1Project[s Batch Rebuild
=@ KORUSB_HID
+-[_7] Source Files

IJpdate dependencies

ED Inciude Files Clean
ED Project Felated Files Edit
‘.27 Other Files Debug

Download Some Load Madule Files

Select Build Mode, ..
Build Settings. ..
Batch Build Settings. ..

5.3.2 Loading and executing the load module
Execute the generated load module by writing (loading) it to the target.

(2) Writing the load module
The procedure for writing the load module to the TK-78KOR/KE3L+USB by using PM+ is
described below.

1> Start the ID78KOR-QB by selecting Debug in the Build menu.

[(R 3 L. p DutP
File Edit Find Lawver Wiew Project Tool Window Help
~ ild and Debu F5
iR - = Bui q -
J O E | % & | ';% Febuild and Debug —I|
J [KORUSB_CDC -KORUSB_CDC w00l ks &
BEuild F7
= ProjectWindow | Stop buid
- = Rebuid
Files | Memo | Batch Build

El--. KORUSB_CDC : 1 Project|: Batch Rebuild
=& KORUSB_CDC
I:l Source Files

|:| Include Files

I:l Froject Related Filez Edit

2 Ot e

Dovenload Some Load Module Files

Update dependencies
Clean

Select Build Mode. ..
Build Settings. ..
Batch Build Settings. ..

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

<2> In the Configuration dialog box, click on “OK” button.

Configeuration
—Chip — Monitor Clock,

: I_."E F1026 64 vI
ey WD - f* System

—Ihternal Memaory = User

ROM: |1 2B¥ v| KBytes
. Praoject...
—FEail-zafe Break =
RAM mmz* | Butes Eail-zafe Bres —
Detail.. _—
DataFlazh: IEI* vl kBvtes LI Help |

Bestare

— Main Clock
" Glock Socket % External € Swstem INDnE w| MHz
—5ub Clock (Peripherald
¢ External Sustem INu:une | KHz

— Tareget Device Connection—————— [0 Code

f* TOOLO = TOOLO+TioL ’7 oAk
— Peripheral Break —— — Flash Programming Tareet

[T Category & (Timer) i+ Permit ¥ Connect

[T Category B (Serial etc) " Mot Permit " Mot Connect
— Mazk Wide YWaltage Flash Rewriting
[~ walh [TARGET RESET 'F

[HMI [INTERMAL RESET = Off

— Memaory Mapping
ficcess Size: f BBt " 16Bit

Aidd
Memaory Attribute: Mapping Address: =
ITarget LI I . Delete I

<3> If a project file included with the sample driver is used, the following dialog box is displayed.
Click the Yes button to start writing the load module file.

2% ID7BKOR-QB
File Edit Wew Option Run Event Browse Jump Window Help

(e o[[vi]on] 2| S0 | [95{R8] Qa|dn|@| =4

ID7BKOR-QB

\ ?) WF700: Do you wank to download Load Module File?

L P

79

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 5 DEVELOPMENT ENVIRONMENT

Executing the program

Click the - button in the ID78KOR-QB window or select Run without Debugging in the Run

menu.

Browse Jump Window Help

B Qlalsz = =

File Edit Yew Option Run Event

=3 N|I|h—||bhl|£| @|@|

3 | Watch | Gumk“.| Refrezh | Cloze
void main< void 2>

UINTE8 keycode [REFORT_DATA_LENGTH]I1:
UINT8 keydata = A_KEY:

init{>;

memzet{kevycode, B, sizeof{keycodell;
ushf78kBr_kevtouch_f1lg = F_SW_OFF;

vhile {13
£

if ¢ ushf78kBr_kevtouch_flg == F_SUW_ON > {
ifCCP?7 & BxB1) == BxB8)> {/= SL2 UP =~

while((P? & BxB1)> == BxBA>{
s%* SU2 OFF UAIT =~
>
keycode [KE¥Y1_SCAN_CODE] = kevwdata:;
while Cushf?8kBr_ep_status{C_INT1> *
ushf 78kBy_data_sendt{keycode, sizeof(
memset(keycode, B, sizeof{keycodel);
vhile Cusbhf78kbr_ep_status{(C_INT1>

H
ce=LrrIOT.Go [[. _——_— AT .. -

ERE]

EEEERE

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

80

CHAPTER 5 DEVELOPMENT ENVIRONMENT

5.4 Checking the Operation

If the target device that has loaded the sample driver is connected to the host via USB, the result of
executing the sample application in the driver can be checked.
Start editor software (such as Notepad) on the host and check the operation. It transmits (“a” after “z”)

at sequential toggling of “Enter” key in SW2 PUSH and alphabets “a” ~”z” in SW2 UP on the
TK-78KOR/KE3L+USB.

Remark For details of sample application, see Chapter 4 Sample application specifications.

[Untitled - Notepad |Z||E|[z|
File Edit Faormat Yiew Help

abcdefghi
abc

81

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 6 USING THE SAMPLE DRIVER

This chapter describes information that you should know when using the USB human interface class
sample driver for the 78 KOR/Kx3-L.

6.1 Overview
The sample software can be used in the following two ways.
(1) Customizing the sample driver

Rewrite the following sections of the sample driver as required.

« The sample application section in “main.c”
« The values specified for the various registers in “usbf78k0r.h” file
« The descriptor information in “usbhid_desc.h” file

Remark For the list of files included in the sample driver, see 1.1.3 Files included in the sample

driver.

(2) Using functions

Call functions from within the application program as required. For details about the provided

functions, see 3.3 Function Specifications.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

82

CHAPTER 6 USING THE SAMPLE DRIVER

6.2 Customizing the Sample Driver

This section describes the sections to rewrite as required when using the sample driver.

6.2.1 Application section

“The code in main.c file below includes a simple example of processing using the sample driver. Rewrite

this part to realize the application.

List 6-1 Sample Application Code

void main(void)

{
UINTS keycode[REPORT _DATA_LENGTH];
UINTS keydata = A_KEY:

init();

memset(keycode, 0, sizeof(keycode)); /* Key Data Clear */
usbf78kO0r_keytouch_flg = F_SW_OFF; I* Key Flag Clear */
while(1)

if (usbf78k0r_keytouch_flg == F_SW_ON) {
if((P7 & 0x01) == 0x00) {/* SW2 UP */
while((P7 & 0x01) == 0x00){
I* SW2 OFF WAIT */

}
keycode[KEY1_SCAN_CODE] = keydata; /* Press Key Data */
while (usbf78k0r_ep_status(C_INT1) = DEV_OK) {}
usbf78k0r_data_send(keycode, sizeof(keycode), C_INT1);
memset(keycode, 0, sizeof(keycode)); /* Release Key Data */
while (usbf78k0r_ep_status(C_INT1) = DEV_OK) {}
usbf78kO0r_data_send(keycode, sizeof(keycode), C_INT1);
keydata++; [*atoz*
if(keydata == EXCLAMATION_KEY) {

keydata = A_KEY;
}

}
if((P7 & 0x02) == 0x00) {/* SW2 PUSH */
while((P7 & 0x02) == 0x00){
/* SW2 OFF WAIT */

}

keycode[KEY1_SCAN_CODE] = ENTER_KEY;/* Press Key Data(Enter) */
while (usbf78k0r_ep_status(C_INT1) = DEV_OK) {}
usbf78k0r_data_send(keycode, sizeof(keycode), C_INT1);
memset(keycode, 0, sizeof(keycode)); /* Release Key Data */

while (usbf78k0r_ep_status(C_INT1) = DEV_OK) {}
usbf78kO0r_data_send(keycode, sizeof(keycode), C_INT1);

keydata = 0x04;

}
usbf78k0r_keytouch_flg = F_SW_OFF,;

83

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 6 USING THE SAMPLE DRIVER

6. 2. 2 Setting up the registers
The registers the sample driver uses (writes to) and the values specified for them are defined in
“usbf78k0r.h” file. By rewriting the values in this file according to the actual use for the application, the

operation of the target device can be specified by using the sample driver.

6. 2. 3 Descriptor information

The data the sample driver adds to the USBF during initialization processing (described in 3.1.3
Descriptor settings) is defined in "usbhid_desc.h" file. Information such as the attributes of the target
device can be specified by using the sample driver by rewriting the values in this file according to the use
in an actual application.

Any information can be specified for the string descriptor. The sample driver defines manufacturer

and product information, so rewrite the information as required.

6.3 Using Functions

The code for applications can be simplified and the code size can be reduced because frequently used
and versatile types of processing are provided as defined functions. For details about each function, see

3.3 Function Specifications.

Application note RO1AN0004EJ0100(U20313EJ1VOANOO) 84

CHAPTER 7 STARTER KIT

This chapter describes the TK-78KOR/KE3L+USB starter kit for the 78 KOR/Kx3-L, made by Tessera
Technology, Inc.

7.1 Overview

TK-78KOR/KE3L+USB is a kit to develop applications that use the 78KOR/KE3-L. The entire
development sequence from creating a program to building, debugging, and checking operation can be
performed simply by installing development tools and USB drivers and then connecting either board to
the host. This kit uses a monitoring program that enables debugging without connecting an emulator
(on-chip debugging).

Figure 7-1 Connections of TK-78KOR/KE3L+USB

/ \
. —
== SB2:Debugging port

USB1:78KORUSB port

7.1.1 Features
TK-78KOR/KE3L+USB has the following features.

¢« A USB miniB connector for the internal USBF
e Assmall as a business card
« Efficient development by using the board with the integrated development environment (PM+)

85 Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

CHAPTER 7 STARTER KIT

7.2 Specifications

The main specifications of the TK-78KOR/KE3L+USB are as follows.

OCPU 1 PD78F1026 (78KOR/KE3-L)
OOperating frequency 20 MHz (USB: 48 MHz)
Olnterface USB connector (miniB) x 2

MINICUBE2 connector
Peripheral board connector x 2 (only the pad)
OSupported platform Host: DOS/V computer that has a USB interface
OS: Windows XP
OOperating voltage 5.0V (internal operation at 3.3 V)
OPackage dimensions W89 x D52 (mm)

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

[Memo]

87

Application note RO1AN0004EJ0100(U20313EJ1VOANOO)

Published by: NEC Electronics Corporation (http://www. necel.com/)

Contact: http://www. necel. com/support/

	CHAPTER 1 OVERVIEW
	1. 1 Overview
	1. 1. 1 Features of the USB function controller
	1. 1. 2 Features of the sample driver
	1. 1. 3 Files included in the sample driver

	1. 2 Overview of 78K0R/Kx3-L
	1. 2. 1 Applicable products
	1. 2. 2 Features

	CHAPTER 2 OVERVIEW OF USB
	2. 1 Transfer Format
	2. 2 Endpoints
	2. 3 Device Class
	2. 4 Requests
	2. 4. 1 Types
	2. 4. 2 Format

	2. 5 Descriptor
	2. 5. 1 Types
	2. 5. 2 Format
	2. 5. 3 HID class descriptor format

	CHAPTER 3 SAMPLE DRIVER SPECIFICATIONS
	3. 1 Overview
	3. 1. 1 Features
	3. 1. 2 Supported requests
	3. 1. 3 Descriptor settings

	3. 2 Operation of Each Section
	3. 2. 1 CPU Initialization
	3. 2. 2 USB function controller initialization processing
	3. 2. 3 INTUSB interrupt process

	3. 3 Function Specifications
	3. 3. 1 Functions
	3. 3. 2 Correlation of the functions
	3. 3. 3 Function features

	CHAPTER 4 SAMPLE APPLICATION SPECIFICATIONS
	4. 1 Overview
	4. 2 Operation
	4. 3 Using Functions

	CHAPTER 5 DEVELOPMENT ENVIRONMENT
	5. 1 Development environment
	5. 1. 1 Program development
	5. 1. 2 Debugging

	5. 2 Setting up the Environment
	5. 2. 1 Preparing the host environment
	5. 2. 2 Setting up the target environment

	5. 3 On-Chip Debugging
	5. 3. 1 Generating a load module
	5. 3. 2 Loading and executing the load module

	5. 4 Checking the Operation

	CHAPTER 6 USING THE SAMPLE DRIVER
	6. 1 Overview
	6. 2 Customizing the Sample Driver
	6. 2. 1 Application section
	6. 2. 2 Setting up the registers
	6. 2. 3 Descriptor information

	6. 3 Using Functions

	CHAPTER 7 STARTER KIT
	7. 1 Overview
	7. 1. 1 Features

	7. 2 Specifications

