To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS APPLICATION NOTE

H8/300H Tiny Series

Access to the Serial EEPROM in Clock Synchronous Mode of the Serial
Communication Interface

Introduction

The H8/3687 group are single-chip microcomputers based on the high-speed H8/300H CPU, and integrate all the
peripheral functions necessary for system configuration. The H8/300H CPU employs an instruction set which is
compatible with the H8/300 CPU.

The H8/3687 group incorporates, as peripheral functions necessary for system configuration, four types of timers, I’C
bus interface, serial communication interface, and 10-bit A/D converter. These devices can be utilized as embedded
microcomputers in sophisticated control systems.

These H8/300 H Series -H8/3687- Application Notes consist of a "Basic Edition" which describes operation examples
when using the on-chip peripheral functions of the H8/3687 group in isolation; they should prove useful for software
and hardware design by the customer.

The operation of the programs and circuits described in these Application Notes has been verified, but in actual
applications, the customer should always confirm correct operation prior to actual use.

Target Device

H8/3687

Contents
S © Y= V= PRSPPI 2
2 o a1 i{e (U = 1T} o PRSP 2
R T = 10 0] o] =Y d (oY | = 0 0 13 PRSPPI 3
4. ReferenCe DOCUMENTEScouiiiii ittt e e e e e e b e e e e e e e aanes 39

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 1 of 41

LENESANS

H8/300H Tiny Series

Access to the Serial EEPROM in Clock Synchronous

1. Overview

The SPI EEPROM is read or written to via the H8/3687 serial communication interface in clock synchronous mode.

2. Configuration

Figure 2.1 shows a diagram of connections between the H8/3687 and SPI EEPROM.

Vee 5V

8
3
4

Vee (5 V) H8/3687
[12 Ves
X25045

23 1=
P10/TMOW (/0) cs Vee
pro/sck3 2 [48 81sck WP

p72/TXD_2 |22 Sl
P71/RXD_2 |42 21so Vss

Specifications:

Figure 2.1 Connection to SPI EEPROM

e HR8/3687 operating frequency: 16 MHz
e Table 2.1 shows the SPI EEPROM X25045 pin specifications
e SPI EEPROM specifications: 4 kbits (512 x 8 bits)

Table 2.1 SPI EEPROM Pin Specifications

Symbol Description

CS Chip select input
SO Serial output

Sl Serial input

SCK Serial clock input
WP Write protect input
Vss Ground

Vce Supply voltage
RESET/RESET Reset output

REJ06B0134-0100Z/Rev.1.00

September 2003

Page 2 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

3. Sample Programs

3.1 Functions

1. One byte of data is written to the SPI EEPROM (Byte Write).

One byte of data is read from the SPI EEPROM (Random Read).
Data is written to the SPI EEPROM continuously (Page Write).
Data is read from the SPI EEPROM continuously (Sequential Read).

bl el

3.2 Embedding the Sample Programs
1

. Sample program 3-A
Incorporate #define directives.
2. Sample program 3-B
Incorporate prototype declarations.
3. Sample program 3-C
Incorporate source program.
Add setting initialization.

Add the SPI EEPROM access processing.

3.3 Modifications to Sample Programs

Without modifications to the sample program, the system may not run. Modifications must be made according to the
customer's program and system environment.

1. A file with definitions of 1O register structures can be obtained free of charge from the following Renesas
Technology web site:http://www.renesas.com/eng/products/mpumcu/tool/crosstool/iodef/index.html
The sample program can be used without further changes. When creating definitions independently, the customer
should modify the IO register structures used in the sample program as appropriate.

2. In the sample program, timer Z is designed to start every 10 ms and timeout after 5 seconds, in order to monitor the
state of the serial communication interface. The timer processing can be modified according to the needs of the
customer, and of course can be used without modification. When using the timer processing in the sample program
without modification, the following changes should be made.

A. Sample program 3-D

e The timer Z reset vector should be added.

e com_timer should be added as a common variable.

e The timer Z initial setting processing should be added.
(The GRA setting should be changed according to the operating frequency of the microcomputer being used,
so that the timer Z interrupt occurs in 10 ms. For setting values, refer to the H8/3687 Hardware Manual; for
the location of the setting to be changed, refer to the program notes in the sample program.)

e The timer Z interrupt processing should be added.

3. The serial communication interface transfer rate should be set with the BRR register according to the target device
specifications and the microcomputer operating frequency. Refer to the H8/3687 Hardware Manual for setting
values, and to the program notes in the sample program for the location to be changed. In this sample program, the
transfer rate is set to 100 kbps.

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 3 of 41

http://www.renesas.com/eng/products/mpumcu/tool/crosstool/iodef/index.html

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

34 Method of Use

1.

One byte of data is written to the SPI EEPROM.

unsigned int com spi eeprom write

(unsigned int rom addr, unsigned char rom data)

Argument Description
rom_addr Specifies the ROM address where data is written to.
rom_data Specifies data to be written.
Return value Description
0 Normal termination
1 Abnormal termination (transfer-preparation completion timeout)
2 Abnormal termination (transfer-completion wait timeout)
3 Abnormal termination (reception-completion wait timeout)
4 Abnormal termination (write wait timeout)

Example of use:

int ret ;

unsigned char rom data;

unsigned int rom_gddr;

ret = com spi eeprom write (rom addr , rom data)
2. One byte of data is read from the SPI EEPROM.

unsigned int com spi eeprom read

(unsigned int rom addr, unsigned char *rom data)

Argument Description

rom_addr Specifies the ROM address where data is read from.
*rom_data Specifies the address where read data is stored.
Return value Description

0 Normal termination

Abnormal termination (transfer-preparation completion timeout)

Abnormal termination (transfer-completion wait timeout)

Abnormal termination (reception-completion wait timeout)

BlWIN|[-

Abnormal termination (write wait timeout)

Example of use:

int ret;

unsigned char *rom data;

unsigned int rom addr;

ret = com spi eeprom read (rom addr, rom length, *rom data)

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 4 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

3. Data is continuously written to the SPI EEPROM.

unsigned int com spi eeprom page write

(unsigned int rom addr, unsigned int rom length,
unsigned char *rom data)

Argument Description

rom_addr Specifies the ROM address where data is written to.

rom_length Specifies the write data length. On this device, up to 4 bytes of data can be written.
*rom_data Specifies the start address of the area where write data is stored.

Return value Description

0 Normal termination

1 Abnormal termination (transfer-preparation completion timeout)

2 Abnormal termination (transfer-completion wait timeout)

3 Abnormal termination (reception-completion wait timeout)

4 Abnormal termination (write wait timeout)

Example of use:

int ret ;

unsigned char *rom data;

unsigned int rom length , rom addr;

ret = com spi eeprom page write (rom addr, rom length, *rom data)

4. Data is continuously read from the SPI EEPROM.
unsigned int com spi eeprom seq read
(unsigned int rom addr, unsigned int rom length,
unsigned char *rom data)

Argument Description

rom_addr Specifies the ROM address where data is read from.

rom_length Specifies the read data length.

*rom_data Specifies the start address of the area where read data is stored.
Return value Description

0 Normal termination

1 Abnormal termination (transfer-preparation completion timeout)
2 Abnormal termination (transfer-completion wait timeout)

3 Abnormal termination (reception-completion wait timeout)

Example of use:

int ret;

unsigned char *rom data;

unsigned int rom length, rom addr;

ret = com spi eeprom seq read (rom addr, rom length, *rom data)

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 5 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

3.5 Explanation of Operation

The following figure explains the operation of the H8 microcomputer and the EEPROM with respect to the interface
signal state.

1. One byte of data is written to the SPI EEPROM (Byte Write).
Procedure (a) Cancel the SPI EEPROM write disabled state.

Subroutine name set_spi_init set_write_data set_spi_trans_end
Microcomputer Initialize Set to write Termination
processin enabled state processing

Wait

. Wait . (min. 500 ns)*2
CS e Low_ ! [, (min. 500 ns)*! | . TS« High
R R
scK : E
—_ ,
X
S0 High impedance
SPI EEPROM Recognize the device Set to write enabled state Cancel device selection

itself is selected

Notes: 1. Await is inserted here for the purpose of taking at least a 500 ns interval from turning on CS
to starting the data transfer. Since the waiting time is different on each device, refer to the data
sheet to set the appropriate waiting time.

2. Await is inserted here for the purpose of taking at least a 500 ns interval from terminating
the data transfer to turning off CS. Since the waiting time is different on each device, refer to
the data sheet to set the appropriate waiting time.

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 6 of 41

’ z H8/300H Tiny Series
o E N ESAS Access to the Serial EEPROM in Clock Synchronous

Procedure (b) Write data

Subroutine name set_write_data set_write_data set_write_data set_spi_trans_end
Microcomputer Transmit the write instruction + Transmit the latter 8 bits of Transmit write data Termination
processin Wait the start bit of the address the address processing
(min. 500 ns)*3 ' Wait
Wait (min. 500 ns)*2
o i J_ (min. 500 ns)*! I CS « High
CS r
CS « Low
SCK
Sl
Address of
[ninth bit
S0 High impedance / / /
SPI EEPROM Recognize the device Recognize the write Recognize the address Recognize write data Cancel the device
itself is selected instruction and start writing selection

Notes: 1. Await is inserted here for the purpose of taking at least a 500 ns interval from turning on CS to starting the data transfer.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.
2. Await is inserted here for the purpose of taking at least a 500 ns interval from terminating the data transfer to turning off CS.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.
3. Await is inserted here for the purpose of taking at least a 500 ns interval from turning off CS to turning it on again.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.

Procedure (c) Re-set the SPI EEPROM to write disabled state.

Subroutine name set_write_data set_spi_trans_end
Microcomputer Cancel the write-enabled state ~ Termination
processin processing
Wait
Wait

Wait (min. 500 ns)*2

r (min. 500 ns)*1

(min. 500 ns)*3

' _CS « High

SCK

|

High impedance

SO

SPI EEPROM Recognize the device Enter write-disabled state Cancel the device selection
itself is selected

Notes: 1. Await is inserted here for the purpose of taking at least a 500 ns interval from turning on CS to starting the data transfer.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.
2. Await is inserted here for the purpose of taking at least a 500 ns interval from terminating the data transfer to turning off CS.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.
3. Await is inserted here for the purpose of taking at least a 500 ns interval from turning off CS to turning it on again.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 7 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

Procedure (d) Check write processing termination.

Subroutine name set_spi_init set_write_data set_spi_trans_end get_spi_read_data
Microcomputer Initialize Read status register Termination Read data Repeatthis Pmﬁezs until 0
processin 1 processing is reache
. " Wait
3 : - 1 (min. 500 ns)*2
CS«Low 1 |, (min.500 ns)
N
cs '
SCK
SI
SO High impedance
SPI EEPROM Recognize the device Recognize the read status register Transmit data Cancel device

itself is selected selection

Notes: 1. Await is inserted here for the purpose of taking at least a 500 ns interval from turning on CS to starting the data transfer.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.
2. Await is inserted here for the purpose of taking at least a 500 ns interval from terminating the data transfer to turning off CS.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.

2. One byte of data is read from the SPI EEPROM (Random Read).

Subroutine set_spi_init set_write_data set_write_data set_spi_trans_endget_spi_read_data
name
Microcomputer Initialize ~ Transmit the read instruction + Transmit the latter 8 bits Termination Read data
processin the start bit of the address of the address processing
1 Wait

(min. 500 ns)*2

F CS « High

. (min. 500 ns)*1

CS « Low E Wait

CsS \ |
SCK , |
SI
Address of E Data byte E
so |\ Hehmpedence T 00000000
SPI EEPROM : ’
Recognize the device Recognize the read Recognize Transmit data Cancel the device
itself is selected instruction the address selection

Notes: 1. Await is inserted here for the purpose of taking at least a 500 ns interval from turning on CS to starting the data transfer.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.
2. Await is inserted here for the purpose of taking at least a 500 ns interval from terminating the data transfer to turning off CS.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 8 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

3. Data is written to the SPI EEPROM continuously (Page Write).
In this operation example, a write of 4 bytes is used.
Procedure (a) Cancel the SPI EEPROM write disabled state.
Same as procedure (a) described in section 3.5 (1).

Procedure (b) Write data

Subroutine name set_write_data set_write_data set_write_data
Microcomputer Transmit the write instruction + Transmit the latter 8 bits Transmit write data
processin the start bit of the address of the address (the first byte)
Wait
(min. 500 ns)*2
Wait

, (min. 500 ns)*1

CS
CS « Lolv
SCK
Sl
Address of
S0 High impedance ninth bit
SPI EEPROM Recognize the device Recognize the write Recognize the address
itself is selected instruction

Notes: 1. Await is inserted here for the purpose of taking at least a 500 ns interval from turning on CS to starting the data transfer.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.
2. Await is inserted here for the purpose of taking at least a 500 ns interval from turning off CS to turning it on again.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.

Subroutine name set_write_data set_write_data set_write_data set_spi_trans_end
Microcomputer Transmit write data Transmit write data Transmit write data Termination
processin (the second byte) (the third byte) (the fourth byte) processing
Wait
(min. 500 ns)*
__ , _CS « High
CS

SCK

Data Byte 4

90000000,

Data Byte 2

s 20000000,

Data Byte 3

=]
N
N
o
IS
o
o>
~
L - - __.__.O__.__.__.___
N
N
o
N
o
o>
[~

' 0 1 2 3 4 5 6 7.,

SO High impedance

Recognize the write Cancel the device

SPI EEPROM data and start writing selection

Notes: * Await is inserted here for the purpose of taking at least a 500 ns interval from terminating the data transfer to turning off CS.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.

Procedure (c) Re-set the SPI EEPROM to write disabled state.Same as procedure (c) described in section 3.5 (1).

Procedure (d) Check write processing termination.Same as procedure (d) described in section 3.5 (1).

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 9 of 41

’ z H8/300H Tiny Series
o E N ESAS Access to the Serial EEPROM in Clock Synchronous

4. Data is continuously read from the SPI EEPROM (Sequential Read).

Subroutine set_spi_init set_write_data set_write_data set_spi_trans_endget_spi_read_data
name

Microcomputer Initialize Transmit the read instruction + Transmit the latter 8 bits Termination Read data
processin the start bit of the address of the address procelssing

CS « Low 1 — Wait
¢ |, (min. 500 ns)*

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22
SCK

CXXXXXXXXXXXXX

t ;
Address of , Data out
so |\ shmosdence T (OXEEXEEXD
. MSB
SPI EEPROM '
Recognize the device Recognize the read Recognize the address Transmit data
itself is selected instruction

Notes: * Await is inserted here for the purpose of taking at least a 500 ns interval from turning on CS to starting the data transfer.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.

Subroutine name get_spi_read_data get_spi_read_data
Microcomputer Read data Read data
processin (the second byte) (the n-th byte)

Wait
(min. 500 ns)*

r. CS « High

SCK

S|

SO

SPI EEPROM Transmit data Transmit data Cancel the device
selection

Notes: * Awaitis inserted here for the purpose of taking at least a 500 ns interval from terminating the data transfer to turning off CS.
Since the waiting time is different on each device, refer to the data sheet to set the appropriate waiting time.

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 10 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

3.6 List of Registers Used

The internal registers of the H8 microcomputer used in the sample program are listed below. For detailed information,
refer to the H8/3687 Group Hardware Manual.

1. SCI3_2-related registers

Name Summary

Receive data register (RDR) 8-bit register to store receive data.

Transmit data register (TDR) 8-bit register to store data to be transmitted.

Serial mode register (SMR) Selects the clock source for the on-chip baud rate generator and sets the
serial data communication format.

Serial control register 3 (SCR3) Controls transmission/reception operation, interrupts, and selects
transmission/reception clock source.

Serial status register (SSR) SCI3 status flags and transmission/reception multiprocessor bits.

Bit rate register (BRR) 8-bit register to set the bit rate.

2. Timer Z-related registers
Timer Z has various functions, but in the sample program it uses the GRA register compare-match function to
generate an interrupt every 10 ms.

Name Summary

Timer start register (TSTR) Starts or stops TCNT operation.

Timer mode register (TMDR) Sets buffer operation and selects synchronous operation.

Timer PWM mode register (TPMR) Sets pins for PWM mode. Not used in this sample program.

Timer function control register (TFCR) Selects the operating mode and output level. Not used in this sample
program.

Timer output master enable register Enables/disables channel 0 and channel 1 output.

(TOER)

Timer output control register (TOCR) Selects initial output settings before the first compare match occurs.

Timer counter (TCNT) 16-bit read/write register which counts up with the input clock.

General registers A, B, C, D (GRA, GRB, GRis a 16-bit read/write register. Each channel has four GR registers,

GRC, GRD) therefore, a total of eight registers are provided. These registers can be used

as either output-compare registers or as input-capture registers, according to
the TIORA and TIORC settings.

Timer control register (TCR) Selects the TCNT counter clock, edge for an external clock, and counter
clear conditions.

Timer 1/O control register (TIORA) Selects the functions of the GRA and GRB to be used as output-compare
registers or as input-capture registers.

Timer status register (TSR) Indicates the TCNT overflow/underflow generation and GRA/GRB/GRC/GRD
compare match or input capture generation.

Timer interrupt enable register (TIER) Enables/disables overflow interrupt requests or GR compare-match/input-

capture interrupt. requests.

PWM mode output level control register Controls the active level in PWM mode. Not used in this sample program.
(POCR)

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 11 of 41

LENESANS

H8/300H Tiny Series

Access to the Serial EEPROM in Clock Synchronous

3.7 Flowcharts

Set write-enable

Data write

Reset write-enable

com_spi_eeprom_write
(Start)

| | SCI3_2 initial settings. | |

| Make CS low (enables access to the SPI EEPROM). |

| Wait for 500 ns min. [
[| setthe SPIEEPROM to wiite-enable. []
[] Execute termination processing. []
| Wait for 500 ns min. |

|
[Make CS high (disables access to the SPI EEPROM. |

Wait for 500 ns min.
|
Make CS low (enables access to the SPI EEPROM).
|
Wait for 500 ns min.
|
| Transmit the instruction bit + the start bit of the address.
|
| Transmit the latter 8 bits of the address.

| Transmit write data.
|
| Execute termination processing.
|
Wait for 500 ns min.
|
Make CS high (disables access to the SPI EEPROM)

Wait for 500 ns min.
|
Make CS low (enables access to the SPI EEPROM).
|
Wait for 500 ns min.
|
| Reset the SPI EEPROM write-enable setting. |
|
| Execute termination processing. |
|
Wait for 500 ns min.
|
Make CS high (disables access to the SPI EEPROM)
|

| Check write processing completion. |

(Stop)

Corresponding subroutine name

set_spi_init

set_write_data

set_spi_trans_end

set_write_data

set_write_data

set_write_data

set_spi_trans_end

set_write_data

set_spi_trans_end

wait_spi_write_end

REJ06B0134-0100Z/Rev.1.00

September 2003

Page 12 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

com_spi_eeprom_page_write

(Start) Corresponding subroutine name

[] SCI3_2 initial settings. [] set_spi_init

| Make CS low (enables access to the SPI EEPROM). |

| Wait for 500 ns min. |

Set writ bl | | Set the SPI EEPROM to write-enable. | | set_write_data
et write-enable

| | Execute termination processing. | | set_spi_trans_end

| Wait for 500 ns min. |
[
| Make CS high (disables access to the SPI EEPROM). |

| Wait for 500 ns min.
|
| Make CS low (enables access to the SPI EEPROM).
|
| Wait for 500 ns min.
|
| | Transmit the instruction bit + the start bit of the address.
|
Data write | | Transmit the latter 8 bits of the address.
I
I
I
I

set_write_data

| Transmit write data.
|
| Execute termination processing.
|
Wait for 500 ns min.
|
Make CS high (disables access to the SPI EEPROM).

set_write_data

set_spi_trans_end

|
|
|
|
| set_write_data
|
|
|
|

Wait for 500 ns min.
|
Make CS low (enables access to the SPI EEPROM).
|
Wait for 500 ns min.
|
| Reset the SPI EEPROM write-enable setting. |
|
| Execute termination processing. |
|
Wait for 500 ns min.
|
Make CS high (disables access to the SPI EEPROM).
|

| Check write processing completion. |

(Stop)

Reset write-enable set_write_data

set_spi_trans_end

wait_spi_write_end

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 13 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

com_spi_eeprom_read

(Start) Corresponding subroutine name

[] SCI3_2 initial settings. [] set_spi_init
|
| Make CS low (enables access to the SPI EEPROM). |
I
| Wait for 500 ns min. |
| | Transmit the instruction bit + the start bit of the address | | set write data
| | Transmit the latter 8 bits of the address. | | set write data
| | Execute termination processing. | | set_spi_trans_end
| | Read data. | | get_spi_read_data
I

| Wait for 500 ns min. |
|
| Make CS high (disables access to the SPI EEPROM). |

()

com_spi_eeprom_seq_read

(Start

N/

Corresponding subroutine name

|
| Make CS low (enables access to the SPI EEPROM).
|
| Wait for 500 ns min. |

[] SCI3_2 initial settings. [] set_spi_init
|

| | Transmit the instruction bit + the start bit of the address. | | set_write_data
| | Transmit the latter 8 bits of the address. | | set_write_data
| | Execute termination processing. | | set_spi_trans_end
| | Read data continuously. | | get_spi_read_data

| Wait for 500 ns min. |
|
| Make CS high (disables access to the SPI EEPROM). |

()

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 14 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

set_spi_init
: Initial settings prior to accessing the SPI.

(Start)

Set the SCI3_2 control register (SCR_2)

TIE=0 Transmission-completion interrupts disabled.

RIE=0 Reception interrupts (disabled at this time — set before sleep)

TE=0 Transmission-enable (set when it is actually used. 0 is set in this case.)
RE=0 Reception-enable (set when it is actually used. 0 is set in this case.)
MPIE =0 (unused)

TEIR=0 (unused)

CKE1:0 =00 The SCK3_2 functions as an output pin.

Set SMR2 (SCI3_2 mode)

COM =1 Operation in clock synchronous mode.

CHR =0 Data length: 8 bits.

PE=0 No parity bit.

PM=0 (unused)

STOP =0 1 stop bit.

MP =0 (unused)

CKS1:0 =00 Clock source for the on-chip baud rate generator: ¢ cloc.

| Set BRR to 100 kbps. |

| Reset SSR (OER, FER and PER). |

|
(End)

set_write_data (unsigned char write_data)
: Transmits data.
write_data: Write data

(Start) Corresponding subroutine name

| | Convert write data from MSB to LSB. | | MSB_to_LSB

| Set SCR3 (TE) fo 1. |
|

| Confirm that SSR (TDRE) = 1. —
|

| Write data to TDR. |

Timeout after
5 seconds

()

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 15 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

set_spi_trans_end
: Executes data transmission termination processing.

(Start

|
| Confirm that SSR (TDRE) = 1. —

| Confirm that SSR (TEND) = 1.

| Reset SCR3 (TE) to 0. |

Timeout after
5 seconds
|

(End)

get_spi_read_data (unsigned char *read_data)
: Receives data.
*read_data: Address to store read data.
(Start) Corresponding subroutine name
| Set SCR3 (RE). |
| Confirm that SSR (RDRF) = 1. F—
| Receive data from RDR. |
| Timeout after
5 seconds

| Reset SCR3 (RE). |
[| convert read data from msB to LsB. | | MSB_to_LSB

()

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 16 of 41

LENESANS

H8/300H Tiny Series

Access to the Serial EEPROM in Clock Synchronous

wait_spi_write_end
: Checks SPI write processing termination.
com_spi_eeprom_read

(Start) Corresponding subroutine name

Timeout after
5 seconds

|
| | SCI3_2 initial settings. | |
I
| Make CS low (enables access to the SPI EEPROM). |
|

|
| Wait for 500 ns min.

| | Transmit the instruction bit + the start bit of the address. | |

| | Execute termination processing. | |

| | Read data. | |

| Wait for 500 ns min. |
|
[Make CS high (disables access to the SPI EEPROM). |

Read data

Yes

()

set_spi_init

set_write_data

set_spi_trans_end

get_spi_read_data

com_delay (int_delaytime)
: Set desired delay time
delaytime: 1 for approx. 0.5 us

MSB_to_LSB (unsigned char in_data)
: Reverse the bit order
in_data: MSB data

REJ06B0134-0100Z/Rev.1.00 September 2003

Page 17 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

3.8 Program Listing

/* ,, */
2 */
/* 1. Sample Program 3-A #define directives ---—--------——---- */
/* ,, */
2 */

[K K KKK KKK KKK KKK KK KKK KK K KKK K KKK K KK KR K KKK K KKK KK KK KKK K K KKK K KKK K KKK K KKK K XK K K KK K KK K KKK K KR K K KKK K XK K X KRR K Xk K

/* For SPIEEPROM access */

] Kk kK Kk kK kKK ok K Kk ok ok Kk ok ok ok ok Kk kK Kk ok ok Kk ok ok Kk ok Kk ok ok kK ko ok ko ok ko ok ok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok ok ko ko

#define SET_WRITE_MODE 0x02
#define SET_READ MODE 0x03
#define RESET_WRITE_ENABLE 0x04
#define READ_STATUS 0x05

#define SET_WRITE_ENABLE 0x06

KRR K KKK KKK KKK KKK KK KKK KK KKK KK K KKK K KKK K KK KKK KKK K KKK K KKK K KKK K K KKK K KK K K KKK K XK K KK K KK K KKK K KR K K kR K K XK K XK Rk K Xk K

/* SPIEEPROM access error code (other than 0) */

] Kk kK Kk KK kR KK ok Kk ok ok Kk ok ok ok ok Kk kK Kk ok Kk ok ok Kk ok Kk ok ok ko ok ko ok ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok Kk ok ok ok Kk ko

#define SPI_TDRE_TOUT 1
#define SPI_TEND_TOUT 2
#define SPI_RDRF_TOUT 3
#define WRITE_TOUT 4
2 */
/* ,, */
/* 2. Sample program 3-B Prototype declaration -------------- */
2 */
/* ,, */

/**/
B B B B A S Ay
/* SPI BUS access processing */
/**/

] Kk kK Kk kK Kk Kk ok K Kk ok ok Kk ok ok ko ok Kk ok Kk ok Kk ok ok Kk ok Kk ok kK ko ok ko ok ok ok ok ok ko ok kK ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok K ko ok Kk k ko

void com delay(int delaytime) ;

void set _spi_init () ;

unsigned char MSB_to_LSB (unsigned char in_data) ;

unsigned int set write data (unsigned char write data);

unsigned int set_spi_trans_end ();

unsigned int wait_spi_write end () ;

unsigned int get spi_ read data (unsigned char *read data);

unsigned int com_spi_eeprom read (unsigned int rom_addr , unsigned char *rom data);

unsigned int com_spi_eeprom write (unsigned int rom_addr , unsigned char rom data);

unsigned int com_spi_ eeprom_seq read (unsigned int rom_addr , unsigned int rom_length , unsigned char *rom data) ;

unsigned int com_spi_ eeprom page write (unsigned int rom_addr , unsigned int rom_length , unsigned char *rom data) ;

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 18 of 41

H8/300H Tiny Series

Access to the Serial EEPROM in Clock Synchronous

/* ,, */
/2 */
/* 3. Sample program 3-C SOUFCE COQES === === === e */
/* ,, */
/2 */
/* ,, */
/* 3.1. Setting initialization ——==———mmmmmmm o */
/2 */
/* Add the following to the initial settings in the H8 start-up processing */

6k kK kK Kk kK Kk ok KK ok KKk ok Kk ok ok Kk ok Kk ok ek Kk ok Kk ok kK ok ok ko ok ko ok Kk ok ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ok ko ok ok Kk ok ok Kk ok ok K Kk ok

/*
/*
/*
/*
/*
/*
/*
/*

PCR1

PCR17
PCR16
PCR15
PCR14
PCR12
PCRI11
PCR10

1
1
1
1
1
1

1

Defines input or

Unused
Unused
Unused
Unused
Unused
Unused

Used as

output for the

(defined as
(defined as
(defined as
(defined as
(defined as
(defined as

the CS pin

I0 port 1.
output pin)
output pin)
output pin)
output pin)
output pin)
output pin)
SPIEEPROM

*/
*/
*/
*/
*/
*/
*/
*/

] Kk kK Kk kK Kk kKK ok Kk ok Kk ok ok Kok kK Kk ok ok Kk ok ok Kk ok kK ko ok ko ok ko ok ko ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok ko ok ok K Kk ok ok Kk ok ok Kk ok

IO.PCR1

OxFF ;

6 Kk kK Kk kK Kk ok Kk ok Kk kK Kk ok ok Kk kK Kk ok ok Kk ok ok Kk ok ok ok kK ko ok ko ok Kk ok ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ok Kk ok ok Kk ok ok K Kk ok

/* PDR1 Specifies the output data of the IO port 1. */
/* PDR17 0 Unused (defined as an output pin) */
/* PDR16 0 Unused (defined as an output pin) */
/* PDR15 0 Unused (defined as an output pin) */
/* PDR14 0 Unused (defined as an output pin) */
/* PDR12 0 Unused (defined as an output pin) */
/* PDR11 0 Unused (defined as an output pin) */
/* PDR10 1 Sets CS = high (SPIEEPRON not active). */
R B R R S A SRR S T ST]
I0.PDR1.BYTE = 0x01 ;
/* ## (program note) ######FHFHHHHHHHHEH R R R R R R R R R R R R R /
/* ## Since the CS pin of SPIEEPROMk is an active low signal, the CS pin should be initialized to high (not active). ## */
/* ## The CS level is not guaranteed before this setting, ## */
/* ## but the SPIEEPROM cannot be written to illegally because it is write protected. ## */
VadR ssdssssssdsssssdsssspatatsssssspsdsssssspsssssssssssssstsstssssssspsssssssspsdasstsssspsssdassssasasadstsasasasass i

REJ06B0134-0100Z/Rev.1.00

September 2003

Page 19 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

/* ,,, */
/* 3.2 SPIEEPROM aCCeS8S PrOCEeSSINgG === === — oo e e e */
2 */

] Kk kK Kk Kk kKK kK Kk ok ok Kk ok ok ok ok kK ok ko ok Kk ok ok Kk ok ok Kk ok kK ko ok ko ok ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok Kk ok ok ok ko ko
] Kk kK Kk kK Kk kKK ok Kk ok ok Kk ok ok ko ok Kok ok Kk ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ok ok ok ok ko ok Kk ok ok Kk ok ok kK ok ok ok Kk ok ok Kk ok ok K ko ok ok ok k ko

[R KKKKK K KKK K KK KKK KK KKK KKK KK KKK KK K KKK K KKK K KK KKK KKK KKK K KKK K K KKK K KK KK K KKK K XK K KK K KK K KK K K kR K K kK K KKk K XK Rk K Xk K

/* */
/* SPI EEPROM control */
/* */

] Kk kK K kK Kk kKK ok K Kk ok ok Kk ko ko ok kK ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok kK ko ok ko ok ok ok ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok ok ko ok ok ko ko
] Kk kK Kk kK Kk kK KK ok Kk ok ok Kk ok ok ok ok Kk ok Kk ok Kk ok ok Kk ok ok Kk ok ko ok ko ok ok ok ok ok Kok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok Kk ok ok ko ko
[R KKK KK KK KKK KK KKK KKK KK K KKK KKK KK K KKK KK KKK KKK K KK KKK KKK KK K KKK K KKK K KKK K KK K K KK K K KK K KK K KK K K kR K K kK K K KR K XKk K Xk K

] Kk kK Kk Kk kK KK ok K Kk ok ok Kk ok ok ok ok Kk ok Kok ok Kk ok ok Kk ok Kk ok ok ok ok ko ok ko ok ko ok kK ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ko

/* 1. Module name: com_delay */
/* 2. Function overview: Set delay time as desired */
/* 3. History of revisions: REV Date created/revised Created/revised by Revision contents */
/* 000 2002.12.14 Ueda New */

/**/
void com delay(int delaytime

{

register int i,a;

for (i=0;i<delaytime;i++)

at+;

/**/
/* 1. Module name: set spi_init */
/* 2. Function overview: Sets initial settings prior to SPI access */
/**/
void set_spi_init()

{

R L T

/* SCR3_2 Sets the SCI3_2 control register */
/* TIE = 0 Transmit end interrupts disabled */
/* RIE = 0 Receive interrupts (disabled at this time; set before sleep) */
/* TE = 0 Transmission enabled (set when it is actually used. 0 is set in this case) */
/* RE = 0 Reception enabled (set when it is actually used. 0 is set in this case) */
/* MPIE = 0 (Unused) */
/* TEIR = 0 (Unused) */
/* CKE1:0 = 00 Uses SCK3_2 as an output pin */

R L T T

SCI3_2.SCR3.BYTE = 0x00 ;

R L e

/* SMR_2 Sets SCI3_2 mode */
/* coM = 1 Operates in clock synchronous mode */
/* CHR = 0 Data length: 8 bits */
/* PE = 0 No parity bit */
/* PM = 0 (Unused) */
/* STOP =0 1 stop bit */
/* MP = 0 (Unused) */
/* CKS1:0 = 00 On-chip baud rate generator clock source: ¢ clock */

R L e e

SCI3_2.SMR.BYTE = 0x80 ;

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 20 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

R L T e

/* BRR Set to 100 kbps- */
L
SCI3 2.BRR = 0x27;
/* ## (program note) ######FH#HHHHHHHHEHE R R R R R R R R
/* ## The value set for BRR should be modified depending on the necessary transfer rate. ## */
/* ## For details, refer to the H8/3687 Hardware Manual. ## */
VadR ssdsssdssdsssssssssasdatatsssssspsdsssssspsssssssssssssssstssssssspsssssssspstasstsssspspsdadsssasasastsasasasass i

R L e

/* Resets SSR (OER, FER, and PER) */

6k kK kK Kk kK Kk ok KK ok KKk ok Kk ok ok Kk ok Kk ok ek Kk ok Kk ok kK ok ok ko ok ko ok Kk ok ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ok ko ok ok Kk ok ok Kk ok ok K Kk ok

SCI3_2.SSR.BIT.OER = 0 ; /* Overrun error reset */
SCI3_2.SSR.BIT.FER = 0 ; /* Framing error reset */
SCI3_2.SSR.BIT.PER = 0 ; /* Parity error reset */

[R KKK KK KKK KK KKK KK KKK KK KKK KK K KKK K KKK K KKK K KK KKK KKK K KKK K KKK K K KKK K KKK K KKK K XK K KK K KK K KK K K KR K K kK K XK K XKk K Xk K

/* 1. Module name: MSB_to LSB */
/* 2. Function overview: Reverses the bit order */
/**‘k**************/
unsigned char MSB_to_LSB (unsigned char in_data)
{

int 1 ;

unsigned char out_data ;

out_data = 0 ;

for (i=0; i<8; i++){ /* Clears the receive buffer */

switch (i) {
case 0

out_data = out_data

((in_data & 0x01) << 7) ;
break ;
case 1

out_data = out_data

((in_data & 0x02) << 5) ;
break ;
case 2

out_data = out_data

((in_data & 0x04) << 3) ;
break ;

case 3

out_data = out_data ((in_data & 0x08) << 1) ;
break ;
case 4

out_data = out_data

((in_data & 0x10) >> 1) ;
break ;
case 5

out_data = out_data

((in_data & 0x20) >> 3) ;
break ;
case 6

out_data = out_data

((in_data & 0x40) >> 5) ;
break ;

case 7

out_data = out_data ((in_data & 0x80) >> 7) ;

break ;

return (out_data) ;

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 21 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

[R KKK KK KKK KK KKK KK KK KKK KKK KK KKK KK K KKK K KKK K KKK K KKK K KKK K K KKK K KKK K KK K K KKK K XK K K KK K KK K KK K K KR K K kKR K K XK K XK Rk K Xk Kk

/* 1. Module name: set_write data */
/* 2. Function overview: Transmits data */
/***‘k*********/
unsigned int set_write data (unsigned char write_data)
{

int ret , Timer wk , 1 ;

unsigned char buf ;

ret = NORMAL_END ;

L
/* Converts write data from MSB to LSB */
L
buf = MSB_to_LSB(write_data) ;

/* ## (program note) ######HEHEFHFFEEHEHHF RS HEHHEREEHEHHER A B R EREHH R AR AR R R ~/

/* ## The SCI interface on the H8 microcomputer treats data with LSB first (inputs/outputs data from bit 0), ## */
/* ## while EEPROM in this sample program treats data with MSB first (inputs/outputs data from bit 7). ## */
/* ## Therefore, the bit order of transmit data is changed here. #H o*/

JF R ¢/

R L T
/* Sets SCR3 (TE) */

6 Kk kK Kk kK Kk ok Kk ok Kk kK Kk ok ok Kk kK Kk ok ok Kk ok ok Kk ok ok ok kK ko ok ko ok Kk ok ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ok Kk ok ok Kk ok ok K Kk ok

SCI3_2.SCR3.BIT.TE = 1 ; /* Enables transmission */

L
/* Confirms that SSR (TDRE) = 1 */
L
com_timer.wait_ 100ms_spi = 50 ;
while (SCI3_2.SSR.BIT.TDRE == 0) { /* Waits until data transfer is possible */
Timer _wk = com_timer.wait_ 100ms_spi ;
if (Timer wk == 0){ /* Timeout after 5 seconds */
ret = SPI_TDRE_TOUT ; /* Performs no operation even if an error occurs. */
goto exit ;
}
#ifdef UT
SCI3_2.SSR.BIT.TDRE = 1 ;
#endif
}

] Kk kK Kk kK Kk kKK ok Kk ok ok ok ok Kk kK Kk ok K Kk ok ok Kk ok Kk ok ok ko ok ko ok Kk ok ok Kk ok ok kK ok ok Kk ok ok Kk ok ok Kk ok ok ok Kk ok ok Kk ok ok K Kk ok

/* Writes data */

6 kK Kk kK Kk kK Kk kK ok Kk ok Kk ok ok Kk kK Kk ok Kk ok Kk ok kK ok ok ko ok ko ok ok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok ok Kk ok ok Kk ok ok K Kk ok

SCI3_2.TDR = buf ; /* Transmits data; this resets SSR (TDRE) . */

exit

return (ret) ;

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 22 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

[R KKK KK KKK KK KKK KK KK KKK KKK KK KKK KK K KKK K KKK K KKK K KKK K KKK K K KKK K KKK K KK K K KKK K XK K K KK K KK K KK K K KR K K kKR K K XK K XK Rk K Xk Kk

/
/

*

*

1. Module name: set_spi_trans_end

2. Function overview: Executes data transmit exit processing.

*/
*/

[K KKK KKK KKK KKK KK KKK KK K KKK K KKK K KKK K KK KKK KKK K KKK K KKK K KKK K K KKK K KKK K KKK K XK K K KK K KK K KK K K KR K K KRR K XK K X KRR K Xk K

unsigned int set_spi_trans_end ()

{

exit

int ret , Timer_ wk;

ret = NORMAL END ;
R L e

/* Confirms that SSR (TDRE) = 1 */

6k kK kK Kk kK Kk ok KK ok KKk ok Kk ok ok Kk ok Kk ok ek Kk ok Kk ok kK ok ok ko ok ko ok Kk ok ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ok ko ok ok Kk ok ok Kk ok ok K Kk ok

com_timer.wait 100ms_spi = 50 ;
while (SCI3_2.SSR.BIT.TDRE == 0) { /* Waits until data transfer is possible */
Timer wk = com timer.wait_ 100ms_spi ;
if (Timer_wk 0){ /* Timeout after 5 seconds */
ret = SPI_TDRE_TOUT ; /* Performs no operation even if an error occurs. */

goto exit ;
}
#ifdef UT
SCI3_2.SSR.BIT.TDRE = 1 ;
#endif
}

R L e

/* Confirms that SSR (TDRE) = 1 */

]k Kk ok Kk kK Kk ok KKk Kk ok Kk ok ok Kk ok K Kk ok ok Kk ok Kk ok kK ko ok ko ok ok ko ok ko ok ok Kk ok ok kK ok ok Kk ok ok K ko ok ok ok ok ok Kok ok ok Kk ok ok K Kk ok

com_timer.wait 100ms_spi = 50 ;
while (SCI3_2.SSR.BIT.TEND == 0) { /* Waits until data transfer has */
Timer _wk = com_ timer.wait_ 100ms_spi ;
if (Timer_wk == 0){ /* Timeout after 5 seconds */
ret = SPI_TEND_TOUT ; /* Performs no operation even if an error occurs. */

goto exit ;
}
#ifdef UT
SCI3_2.SSR.BIT.TEND = 1 ;
#endif
}

com_delay (10) ;

/**‘k*******/
/* Resets SCR3 (TE) */

] kK Kk kK Kk kK Kk kK ok Kk ok Kk ok ok Kk kK Kk ok ok Kk ok Kk ok Kk ok ok ko ok ko ok ko ok Kk ok Kk ok ok Kk ok ok Kk ok ok ok ok ok kK Kk ok ok Kk ok ok K Kk ok

SCI3_2.SCR3.BIT.TE = 0 ; /* Disables transmission */

return (ret) ;

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 23 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

[R KKK KK KKK KK KKK KK KK KKK KKK KK KKK KK K KKK K KKK K KKK K KKK K KKK K K KKK K KKK K KK K K KKK K XK K K KK K KK K KK K K KR K K kKR K K XK K XK Rk K Xk Kk

/* 1. Module name: get spi_read data */

/* 2. Function overview: Receives data. */

/**/
unsigned int get_spi read data (unsigned char *read_data)
{

int ret , Timer wk ;

unsigned char buf ;

ret = NORMAL_END ;

6k kK kK Kk kK Kk ok KK ok KKk ok Kk ok ok Kk ok Kk ok ek Kk ok Kk ok kK ok ok ko ok ko ok Kk ok ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ok ko ok ok Kk ok ok Kk ok ok K Kk ok

/* Resets SCR3 (RE) */

] Kk kK kK Kk kKK ok Kk ok ok Kk ok ok Kk ok K Kk ok ok Kk ok Kk ok kK ok ok Kk ok ok ko ok K ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ok Kk ok ok Kk ok ok Kk ok

SCI3_2.SCR3.BIT.RE = 1 ; /* Enables reception */

]k kK kK Kk kK KKk KK ok Kk ok ok Kk ok ok Kk ok K Kk ok ok Kk ok ok Kk ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok Kok ok ok Kk ok ok K Kk ok

/* Confirms that SSR (RDRF) = 1 */

6 Kk kK Kk kK Kk kKK ok Kk ok ok Kk ok ok Kk ok ok Kk ok ek Kk ok ok Kk ok kK ko ok ko ok ko ok ok ko ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ko ok ok Kk ok ok Kk ok ok K Kk ok

com_timer.wait 100ms_spi = 50 ;

while (SCI3_2.SSR.BIT.RDRF == 0) { /* Waits for received data (max. 5 seconds) */

Timer _wk = com_ timer.wait_ 100ms_spi ;

if (Timer_ wk /* Timeout after 5 seconds */
ret =SPI_RDRF_TOUT ; /* Performs no operation even if an error occurs. */
goto exit ;
}
#ifdef UT
SCI3_2.SSR.BIT.RDRF = 1 ;
#endif
}
exit
buf = SCI3_2.RDR ; /* Receives data; this resets SSR (RDRF). */

R B B B R R RS S W]
/* Resets SCR3 (RE) */

R L T T

SCI3_2.SCR3.BIT.RE = 0 ; /* Disables receive operation */

/***/
/* Converts write data from MSB first to LSB first */
R Rk kKK kR kKKK kR kKKK kR kK KKk R kKKK kR kKKK kR KKKk Rk kK ok Rk kK kR R kKR Rk kKR Rk kKK Rk kK Rk kKR Rk kK kK kK kR kA Kk
*read_data = MSB_to LSB(buf) ;

/* ## (program note) ######FHFHHHHHHHHEH R R R R R R R R R

/* ## The SCI interface on the H8 microcomputer treats data with LSB first (inputs/outputs data from bit 0), ## */
/* ## while EEPROM in this sample program treats data with MSB first (inputs/outputs data from bit 7). #H o/
/* ## Therefore, the bit order of transmit data is changed here. ## */

JF R ¢/

return (ret) ;

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 24 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

[R KKK KK KKK KK KKK KK KK KKK KKK KK KKK KK K KKK K KKK K KKK K KKK K KKK K K KKK K KKK K KK K K KKK K XK K K KK K KK K KK K K KR K K kKR K K XK K XK Rk K Xk Kk

/* 1. Module name: wait_spi_write_end */
/* 2. Function overview: Checks write completion of SPI */

/**/
unsigned int wait spi write end ()

{

int ret , 1i;

unsigned char status;
union {
unsigned int d_int ;
unsigned char d_bytel2];
} buf;

ret = NORMAL_END ;

com_timer.wait 100ms = 50 ;

do{
R R R R R S
/* Initializes SCI3 2 */
/**/

set_spi_init() ;

/**/
/* Brings CS to low (enables SPIEEPROM access) . */
Rk R kKK kR kKKK Kk ok Rk KKKk kR KKKk kR kKKK kR KRRk R kKKK Rk kKR Rk kK kR kKK Rk kAR kKA ok R kK kR kA kR kK kKK kR Kk kK
IO.PDR1.BYTE = 0x00 ;

com_delay (10) ;

/* ## (program note) ######FH#HHHHHHHHFHE R R R R R R R R R R R R

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from #H */
/* ## turning on CS to starting the data transfer. #H o/
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. #H o*/

JF R ¢/

/**/
R R R S S S I S S S S S T Iy
/* Reads data. */
/**/

/36 Kk ok KKk KKk KKKk KKk ok Kk kK Kk ok K Kk ok ok Kk ok ok Kk ok ko ok ko ok Kk ok Kk ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok Kk ok ok Kk ok ok K Kk ok

R e

/* Transmits instruction data (read status). */

3 Kk kK Kk kR KKk KKKk Kk kK ok kK Kk ok K Kk ok Kk ok ok Kk ok ok ok ok ko ok Kk ok Kk ok Kk ok ok Kk ok ok Kk ok ok ok ko ok K ko ok ok Kk ok ok K Kk ok

ret = set_write data (READ_STATUS) ;
if (ret !=0) { goto exit ;}

R e

/* Executes exit processing. */

J R s
ret = set_spi_trans_end () ;

if (ret !=0) { goto exit ;}

R

/* Reads data. */
J)
ret = get_spi_read data (&status) ;

if (ret !=0) { goto exit ;}

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 25 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

R

/* Brings CS to high (disables SPIEEPROM access) . */
Rk kKRR kR Kk KKKk kR KKKk kR KKKk kR kKKK kR kKRR kR KRRk Rk kKR Rk kK Rk kKRR kKA Rk kA k R kA Kk ok Rk kK kK kK kK kKK
com_delay(10) ;

/* ## (program note) ######FH#HHHHHHHHEHE R R R R R R R R

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## */
/* ## terminating the data transfer to turning off CS. ## */
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

/% EREEHEE R R R R R R R R R R R R R Y/
IO.PDR1.BYTE = 0x01 ;

#ifdef UT
status = 0x01 ;

#endif
if (com_timer.wait_100ms == 0) { /* Timeout after 5 seconds */
ret = WRITE_TOUT; /* Abnormal termination (timeout) */

goto exit ;

} while ((status & 0x01) == 1) ; /* Write is in progress. */

exit : /* Error processing */

R L e

/* Brings CS to high (disables SPIEEPROM access) . */

R R B B R R B B AR R S S]
com_delay(10) ;
/* ## (program note) #########HHHHHEHHERHHERHERHEIRHERHER R IR R R IR AR R AR R AR R R R R R R R R R R R R ¢/

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## */
/* ## terminating the data transfer to turning off CS. ## */
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

/% EREEEE R R R R R R R R R R R R R R R R ¢/
IO.PDR1.BYTE = 0x01 ;

return (ret) ;

R R]
/* 1. Module name: com_spi_eeprom read */
/* 2. Function overview: Reads l-byte data from SPIEEPROM. */
R R e
unsigned int com_spi_eeprom read (unsigned int rom_addr , unsigned char *rom data

{

int ret ;

union {
unsigned int d_int ;
unsigned char d_byte[2];
} buf;

ret = NORMAL END ;

] Kk kK Kk kK Kk kKK ok Kk ok Kk ok ok Kok kK Kk ok ok Kk ok ok Kk ok kK ko ok ko ok ko ok ko ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok ko ok ok K Kk ok ok Kk ok ok Kk ok

/* Initializes SCI3_2. */

R L T

set_spi_init() ;

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 26 of 41

’ z H8/300H Tiny Series
o E N ESAS Access to the Serial EEPROM in Clock Synchronous

R L T e

/* Brings CS to low (enables SPIEEPROM access) . */
R Rk kKRR kKKK kR kKKK kR kKKK kR kKKK kR KKKk Rk kKR Rk KKk kKKK Rk kKR Rk kKR Rk kKoK Rk kK kR kKK ok Rk kK kR Kk Kk kK kA Kk
IO.PDR1.BYTE = 0x00 ;
com_delay (10) ;

/* ## (program note) ######FH#HHHHHHHHEH R R R R R R R R R R R/

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from #H */
/* ## turning on CS to starting the data transfer. #H o/
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. #H o*/

/R ¢/

/***/
R R S I S S S S S S S S I I T T Ty
/* Reads data */
/***/

] Kk ok Kk kK Kk ok kKK ok Kk ok Kk ok ok Kk ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ok Kok ok kK Kk ok ok Kk ok

/***/
/* Transmits the instruction data + address start bit */
L
buf.d int = rom addr ;

buf.d byte[0] = (buf.d byte[0] && 0x01) << 3 ;

buf.d byte[0] |= SET_READ MODE ;

ret = set_write data (buf.d byte([0]) ;

if (ret !=0) { goto exit ;}
/***/
/* Transmits the latter 8 bits of the address */
L
ret = set_write data (buf.d byte[l]) ;

if (ret !=0) { goto exit ;}

R L T

/* Executes exit processing. */
R Rk kA Kk R kKA Kk R kKKK kR kKKK kR kKKK kR kKK kR KKKk Rk KKk R kKKK Rk kKK kR kKK kR kKK Rk kKR Rk kK kR Kk kR kK kK kK Kk
ret = set_spi_trans_end () ;

if (ret !=0) { goto exit ;}

/***/
/* Reads data */
L
ret = get_spi read data (&buf.d byte[0]) ;

if (ret !=0) { goto exit ;}

*rom _data = buf.d byte[0] ;

exit
Rk Rk ARk R kKKK kR kKKK kR kKKK kR KKKk Rk kKK Rk kKK Rk kK kR kKK ok Rk kKR Rk kKR Rk kKK Rk kK kR kKK ok kK kK kR kK kK kKK
/* Brings CS to high (disables SPIEEPROM access) . */
/***/
com_delay (10) ;
/* ## (program note) ######FHFHHHHHHHHEHE R R R R R R R R R R /

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from #H */
/* ## terminating the data transfer to turning off CS. #H o/
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. #H o*/

JF R ¢/

IO.PDR1.BYTE = 0x01 ;

return (ret);

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 27 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

[R KKK KK KKK KK KKK KK KK KKK KKK KK KKK KK K KKK K KKK K KKK K KKK K KKK K K KKK K KKK K KK K K KKK K XK K K KK K KK K KK K K KR K K kKR K K XK K XK Rk K Xk Kk

/* 1. Module name: com_spi_eeprom seq_read */

/* 2. Function overview: Reads l-byte data from SPIEEPROM. */

/**/
unsigned int com_spi eeprom seq read (unsigned int rom addr , unsigned int rom length , unsigned char *rom data

{

int ret , 1i;

union {
unsigned int d_int ;
unsigned char d _byte[2];
} buf;

ret = NORMAL END ;

/***/
/* Initializes SCI3 2. */
R R R S S S S S S S S S T T Ty

set_spi_init() ;

/***/
/* Brings CS to low (enables SPIEEPROM access) . */
Rk Kk ARk Rk KRRk kK kKK kR kKKK kR kKKK kR KKKk Rk kK Rk KKk Rk kKR Rk kK kR kKK kR kK Kok Rk kK kR Rk Kk kK kK kR Kk Kk Rk kA Kk
IO.PDR1.BYTE = 0x00 ;
com_delay (10) ;

/* ## (program note) ######FH#HHHHHHHHEH R R R R R R R R R/

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from #H */
/* ## turning on CS to starting the data transfer. #H o/
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. #H o*/

JF R ¢/

/***/
R R R S S S S S S S S S I Ty
/* Reads data */
/***/

]k kK Kk kK Kk kK Kk kKK ok KKk ok Kk ok ok Kk ok Kk ok Kk ok Kk ok ok ok ok ko ok ko ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok kK ok ok ok Kk ok ok K Kk ok

R L T T

/* Transmits the instruction data + address start bit */
L
buf.d int = rom addr ;

buf.d byte[0] = (buf.d byte[0] && 0x01) << 3 ;

buf.d byte([0] SET_READ_MODE ;
ret = set_write data (buf.d byte([0]) ;

if (ret !=0) { goto exit ;}

] Kk kK Kk kK Kk ok KK ok Kk ok ok ok Kk ok Kk ok ok Kk ok ok Kk ok kK ok ok ko ok ko ok ok ok ok Kk ok ok kK ko ok Kk ok ok ok ok ok ok ok ok ok Kk ok ok Kk ok ok K Kk ok

/* Transmits the latter 8 bits of the address */
/***/
ret = setiwriteidata (buf.d byte[l]) ;

if (ret 0) { goto exit ;}

] Kk kK Kk kK Kk kKK ok Kk ok Kk ok ok Kok kK Kk ok ok Kk ok ok Kk ok kK ko ok ko ok ko ok ko ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok ko ok ok K Kk ok ok Kk ok ok Kk ok

/* Executes exit processing. */
/***/
ret = set spi trans end () ;

if (ret !=0) { goto exit ;}

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 28 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

R L T e

/* Reads data continuously. */
L
for (i=0; i< (rom_length) ; i++){

ret = get_spi_ read data (&buf.d byte[0]) ;

if (ret 0) { goto exit ;}

*rom_data = buf.d byte[0] ;

*rom data ++ ;

exit

] Kk kK kK Kk kKK ok Kk ok ok Kk ok ok Kk ok K Kk ok ok Kk ok Kk ok kK ok ok Kk ok ok ko ok K ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ok Kk ok ok Kk ok ok Kk ok

/* Brings CS to high (disables SPIEEPROM access) . */
/**‘k************/
com_delay (10) ;

/* ## (program note) ######FH#HHHHHHHHEH R R R R R R R R R E /

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from #H */
/* ## terminating the data transfer to turning off CS. ## */
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

JF R ¢/

IO.PDR1.BYTE = 0x01 ;

return (ret);

}

R R]
/* 1. Module name: com_spi_eeprom write */
/* 2. Function overview: Writes l-byte data to SPIEEPROM. */
R R]
unsigned int com_spi_ eeprom write (unsigned int rom_addr , unsigned char rom_data

{

int ret ;

union {
unsigned int d_int ;
unsigned char d_byte[2];
} buf;

ret = NORMAL_END ;

] kK Kk kK Kk kK Kk kK ok Kk ok Kk ok ok Kk kK Kk ok ok Kk ok Kk ok Kk ok ok ko ok ko ok ko ok Kk ok Kk ok ok Kk ok ok Kk ok ok ok ok ok kK Kk ok ok Kk ok ok K Kk ok

/* Initializes SCI3_2. */

] Kk kK Kk kK Kk kKK ok KKk ok Kk ok ok Kk ok K Kk ok ok Kk ok Kk ok ok Kk ok ok ko ok ko kK ko ok Kk ok ok kK ko ok Kk ok ok ko ok ok ok ok ok ok ok ok Kk ok ok K Kk ok

set_spi_init() ;

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 29 of 41

’ z H8/300H Tiny Series
o E N ESAS Access to the Serial EEPROM in Clock Synchronous

R L T e

/***/
/* Cancels SPI EEPROM write enable */
/***/
/***/
/***/
/* Brings CS to low (enables SPIEEPROM access) . */
/***/
IO.PDR1.BYTE = 0x00 ;
com_delay (10) ;

/* ## (program note) ######FH#HHHHHHHHEH R R R R R R R R R R

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## </
/* ## turning on CS to starting the data transfer. ## */
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

/% EHEEEEE R R R R R R R R R R R R R R Y/

/***/
/* Specifies the SPI EEPROM write enable. */
/***/
ret = set write data (SET WRITE ENABLE) ;

if (ret !=0) { goto exit ;}

/***/
/* Executes exit processing. */
/***/
ret = set spi trans end () ;

if (ret !=0) { goto exit ;}

R L T e e

/* Brings CS to high (disables SPIEEPROM access) . */

KKK KK Kk kK K kK K kK K ok K K ok K K ok K ok ok ok ok ok ok ok ok ok K ok ke ok ok ke ok ok kK ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ko ko ok k k Rk ok Rk ok Rk ok Rk ok ok k ok ok k ok ok k ok ok ok f
com_delay (10) ;
/* ## (program note) ##########HHHHFHHHHEFHHRREFHHRRHHHH I RHHH R RHHH SRR HF R AR AR AR R~/

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## */
/* ## terminating the data transfer to turning off CS. ## */
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

/% EREEHEEE R R R R R R R R R R R R R R R R

IO.PDR1.BYTE = 0x01 ;

/***/
/***/
/* Writes data. */
/***/
/***/
/***/
/* Brings CS to low (enables SPIEEPROM access) . */
/***/
com_delay(10) ;

/% ## (program note) #HHHHHEEEEEEEE R R </

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from #H */
/* ## turning off CS to turning it on again. #H o/
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. #H o*/

JF R ¢/

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 30 of 41

’ z H8/300H Tiny Series
o E N ESAS Access to the Serial EEPROM in Clock Synchronous

IO.PDR1.BYTE = 0x00 ;
/* ## (program note) #########HHHHHEHHERHHERHERHETRHERHER R IR R R IR AR R AR R R R R R R R R R R R R R 4/

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## */
/* ## turning on CS to starting the data transfer. ## */
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

JF REEHEE AR R R R R E ~/
com_delay (10) ;

/***/
/* Transmits the instruction data + address start bit */
L
buf.d int = rom addr ;

buf.d byte[0] = (buf.d byte[0] && 0x01) << 3 ;
buf.d byte[0] |= SET_WRITE MODE ;

ret = set_write data (buf.d byte([0]) ;

if (ret !=0) { goto exit ;}

R Rk kAR kR kKA Kk R kKKK kR kKKK kR KKKk Rk kKK Rk kKK Rk kKR Rk kK kR kKK kR kKK ok Rk kKK Rk kK kR kKK kR Kk Kk Rk kK kK kA Kk
/* Transmits the latter 8 bits of the address */
/***/
ret = set write data (buf.d byte[l]) ;

if (ret !=0) { goto exit ;}

L
/* Transmits write data */
/***/
ret = set write data (rom data) ;

if (ret !=0) { goto exit ;}

R Rk kKRR kKA Kk R kKKK kR kKKK kR KKKk Rk kKR Rk kK Rk kKR Rk kK kR kKK kR kKK kR kK Kok Rk kKK Rk kK kR kR Rk kK kK kA Kk
/* Executes exit processing. */
/***/
ret = set spi trans end () ;

if (ret !=0) { goto exit ;}

R Rk kAR kR kKKK kR kKKK kR kKKK kR kKKK kR kKKK kR KKKk Rk kKR Rk kK kR kKK kR kKR Rk kKK Rk kK kR kKK kR Rk Kk Rk kK kR kKK Kk
/* Brings CS to high (disables SPIEEPROM access) . */
/***/
com_delay (10) ;

IO.PDR1.BYTE = 0x01 ;

Rk Rk kAR kR kKA Kk R kKKK kR kKKK kR KKKk R kKRR kKKK Rk kKR Rk kK kR Rk Kk Rk kKR Rk kKR Rk kK kR kR Kk kK kK kR Kk kK kA Kk
R Rk kKK kR kKKK kR kKKK kR kK KKk R kKKK kR kKKK kR KKKk Rk kK ok Rk kK kR R kKR Rk kKR Rk kKK Rk kK Rk kKR Rk kK kK kK kR kA Kk
/* Cancels SPI EEPROM write enable */
Rk Rk kAR kR kKKK kR kKKK kR kKKK kR kKKK kR kKKK kR KKKk Rk kKR Rk kK kR kR Kk Rk kKR Rk KKk Rk kK kR Rk Kk Rk kK kR kKK kK kKK
R Rk kAR kR kKK kR kKKK kR kKKK kR KKKk Rk kKR Rk kK Rk kK kR kKK kR Rk Kk Rk kKR Rk KKk Rk kKR Rk kK kR Kk Kk Rk kK kR kK kK
/***/
/* Brings CS to low (enables SPIEEPROM access) . */
Rk Rk kAR kR kKKK kR kKKK kR kKKK kR kKKK kR kKKK kR KKKk Rk kKR Rk kK kR kR Kk Rk kKR Rk KKk Rk kK kR Rk Kk Rk kK kR kKK kK kKK
com_delay(10) ;

/* ## (program note) ######FH#HHHHHHHHEHE R R R R R R R R R R R R R E E /

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## */
/* ## turning off CS to turning it on again. ## */
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

/% EREEEEE R R R R R R R R R R R R R R Y/

IO.PDR1.BYTE = 0x00 ;

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 31 of 41

’ z H8/300H Tiny Series
o E N ESAS Access to the Serial EEPROM in Clock Synchronous

com_delay (10) ;
/* ## (program note) ##########HHHHFHRHEFHHFRAFHHRAHHAERHHHHERRHH SRR HF R AR AR R R~/

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## </
/* ## turning on CS to starting the data transfer. ## */
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

/% EHEEEEE R R R R R R R R R R R R R Y/

]k Kk ok K Kk kK Kk ok KK ok Kk ok ok Kk ok ok Kok ok Kk ok ok Kk ok Kk ok ok ok ok ko ok ko ok ok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok Kk ok ok Kk ok ok K Kk ok

/* Cancels SPI EEPROM write enable */

]k Kk kK Kk kK Kk kKK ok Kk ok Kk ok ok Kk ok Kk ok ek Kk ok Kk ok ok ok ko ok ko ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok Kk ok ok K Kk ok

ret = set_write data (RESET_WRITE_ENABLE) ;

if (ret !=0) { goto exit ;}

6 Kk kK Kk kK Kk ok kK ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok Kk ok kK ok ok ko ok ko ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok Kok ok ok Kk ok ok Kk ok

/* Executes exit processing. */
/***/
ret = set_spi_trans_end () ;

if (ret !=0) { goto exit ;}

/***/
/* Brings CS to high (disables SPIEEPROM access) . */
/***/
com_delay(10) ;

/* ## (program note) ######HEHEFHEFEEHEHHFH SRR HE RSB R HE R A B R EHEH B R E AR R R ~/

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## */
/* ## terminating the data transfer to turning off CS. ## */
/* ## Since the waiting time differs depending on the device to be controlled, #H */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

JF R ¢/

IO.PDR1.BYTE = 0x01 ;

/***/
/* Checks write completion. */
/***/
ret = wait_spi write_end () ;
if (ret !=0) { goto exit ;}
/* ## (program note) ######FH#HHHHHHHHEH R R R R R R R R R R R
/* ## SPIEEPROM starts write operation by CS = high. The write completion is checked by checking the SPIEEPROM ## */
/* ## internal status register since the write operation takes some time ## */
VadR ssdssssssdsssssdsssspatatsssssspsdsssssspsssssssssssssstsstssssssspsssssssspsdasstsssspsssdassssasasadstsasasasass i

return (ret);

exit : /* Error processing */

] Kk kK Kk kK Kk kKK ok KKk ok Kk ok ok Kk ok K Kk ok ok Kk ok Kk ok ok Kk ok ok ko ok ko kK ko ok Kk ok ok kK ko ok Kk ok ok ko ok ok ok ok ok ok ok ok Kk ok ok K Kk ok

/* Brings CS to high (disables SPIEEPROM access) . */

/***/
com_delay(10) ;
/* ## (program note) #########HHHHHEHHERHHERHERRETRHERHER R IR R R IR AR R AR AR R R R R R R R R R R R R ¢/

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from #H */
/* ## terminating the data transfer to turning off CS. ## */
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. #H o*/

JF R ¢/

IO.PDR1.BYTE = 0x01 ;

return (ret);

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 32 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

[R KKK KK KKK KK KKK KK KK KKK KKK KK KKK KK K KKK K KKK K KKK K KKK K KKK K K KKK K KKK K KK K K KKK K XK K K KK K KK K KK K K KR K K kKR K K XK K XK Rk K Xk Kk

/* 1. Module name: com_spi_eeprom page write */
/* 2. Function overview: Writes 4-byte data to SPIEEPROM. */
/**/
unsigned int com_spi_ eeprom page write (unsigned int rom_addr , unsigned int rom length , unsigned char *rom data

{

int ret , 1 ;

union {
unsigned int d_int ;
unsigned char d _byte[2];
} buf;
union {
unsigned long d_long ;
unsigned char d_bytel4];

} write_ data;

ret = NORMAL_END ;

R R S S S S S S S S I I S T TT Ty
/* Initializes SCI3 2. */
/***/

set_spi_init() ;

/***/
R B R R RS 2 S]
/* Cancels SPI EEPROM write enable */
/***/
R B R B R A V]
R B B R R B B R RS S]
/* Brings CS to low (enables SPIEEPROM access) . */
R R R YA
IO.PDR1.BYTE = 0x00 ;
com_delay(10) ;

/* ## (program note) ######FHFHHHHHHHHEH R R R R R R R R R R R R R /

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## */
/* ## turning on CS to starting the data transfer. ## */
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

/% EREEHEEE R R R R R R R R R R R R R R R R

R L T T

/* Cancels SPI EEPROM write enable */

] kK Kk kK Kk kK Kk kK ok Kk ok Kk ok ok Kk kK Kk ok ok Kk ok Kk ok Kk ok ok ko ok ko ok ko ok Kk ok Kk ok ok Kk ok ok Kk ok ok ok ok ok kK Kk ok ok Kk ok ok K Kk ok

ret = set_write data (SET_WRITE_ENABLE) ;
if (ret !=0) { goto exit ;}

R L e

/* Executes exit processing. */
Rk Rk kAR kR kKKK kR kKKK kR kKKK kR kKKK kR kKKK kR KKKk Rk kKR Rk kK kR kR Kk Rk kKR Rk KKk Rk kK kR Rk Kk Rk kK kR kKK kK kKK
ret = set_spi_trans_end () ;

if (ret !=0) { goto exit ;}

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 33 of 41

’ z H8/300H Tiny Series
o E N ESAS Access to the Serial EEPROM in Clock Synchronous

R L T e

/* Brings CS to high (disables SPIEEPROM access) . */
R Rk kKRR kKKK kR kKKK kR kKKK kR kKKK kR KKKk Rk kKR Rk KKk kKKK Rk kKR Rk kKR Rk kKoK Rk kK kR kKK ok Rk kK kR Kk Kk kK kA Kk
com_delay(10) ;

/* ## (program note) ######FH#HHHHHHHHEHE R R R R R R R R

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## */
/* ## terminating the data transfer to turning off CS. ## */
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

/% EREEHEE R R R R R R R R R R R R R Y/

IO.PDR1.BYTE = 0x01 ;

/***/
L
/* Writes data. */
/***/
L
L
/* Brings CS to low (enables SPIEEPROM access) . */
L
com_delay (10) ;

/* ## (program note) ######HEHEFHEFEEHEHHFH SRR HE RSB R HE R A B R EHEH B R E AR R R ~/

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## */
/* ## turning off CS to turning it on again. #hox/
/* ## Since the waiting time differs depending on the device to be controlled, #H */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

VadR sdsdssssssdsssssdssasspatatsssssstsdassssspsssssssssssspssstssssspspssstsssspstatstssspspsdassssasasastsasasasass i
IO.PDR1.BYTE = 0x00 ;
com_delay (10) ;

/* ## (program note) ######FH#HHHHHHHHFH R R R R R R R R R R R

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from #H */
/* ## turning on CS to starting the data transfer. #H o/
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. #H o*/

JF R ¢/

L
/* Transmits the instruction data + address start bit */
/***/
buf.d_int = rom addr ;

buf.d byte[0] = (buf.d byte[0] && 0x01) << 3 ;

buf.d_byte[0] |= SET_WRITE_MODE ;

ret = set_write data (buf.d byte([0]) ;

if (ret !=0) { goto exit ;}

L
/* Transmits the latter 8 bits of the address */
L
ret = set write data (buf.d byte[l]) ;

if (ret !=0) { goto exit ;}

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 34 of 41

’ z H8/300H Tiny Series
o E N ESAS Access to the Serial EEPROM in Clock Synchronous

R L T e

ransmits write data
/* T t te dat */
L
or (i=0; i< rom_len i1
£ 0 < 1 th ++

buf.d byte[0] = *rom data ;

ret = set_write data (buf.d byte([0]) ;

if (ret !=0) { goto exit ;}

*rom data ++ ;

]k Kk kK Kk kK Kk kKK ok Kk ok Kk ok ok Kk ok Kk ok ek Kk ok Kk ok ok ok ko ok ko ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok Kk ok ok K Kk ok

/* Executes exit processing. */

/***/
ret = set spi trans end () ;

if (ret !=0) { goto exit ;}

] Kk ok Kk kK Kk ok kKK ok Kk ok Kk ok ok Kk ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ok Kok ok kK Kk ok ok Kk ok

/* Brings CS to high (disables SPIEEPROM access) . */

/***/
com_delay (10) ;
/* ## (program note) ######FH#HHHHHHHHEHE R R R R R R R R R R R R R E E /

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from #H */
/* ## terminating the data transfer to turning off CS. #H o/
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. #H */

JF R ¢/

IO.PDR1.BYTE = 0x01 ;

/***/
L
/* Specifies SPI EEPROM write enable. */
/***/
L
L
/* Brings CS to low (enables SPIEEPROM access) . */
L
com_delay (10) ;

/* ## (program note) ######HEHE#HEFEEHEHHH RSB R HE RSB R HEREA BRI EHEH B R E AR R R~/

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## */
/* ## turning off CS to turning it on again. #hox/
/* ## Since the waiting time differs depending on the device to be controlled, #H */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

VadR ssdssssssdsssssdsssspatatsssssspsdsssssspsssssssssssssstsstssssssspsssssssspsdasstsssspsssdassssasasadstsasasasass i
IO.PDR1.BYTE = 0x00 ;
com_delay (10) ;

/* ## (program note) ######FH#HHHHHHHHFHE R R R R R R R R R R R

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from #H */
/* ## turning on CS to starting the data transfer. #H o/
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. #H o*/

JF R ¢/

R Rk kKK kR KKKk R kKKK kR kKRR R kKKK kR kKK kR KKKk Rk kKR Rk kK kR Rk Kk Rk kKR Rk KKk Rk kKK Rk kK kR K kK Rk kK kK kA Kk
/* Cancels SPI EEPROM write enable */
/***/
ret = set write data (RESET WRITE ENABLE) ;

if (ret !=0) { goto exit ;}

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 35 of 41

’ z H8/300H Tiny Series
o E N ESAS Access to the Serial EEPROM in Clock Synchronous

R L T e

/* Executes exit processing. */
R Rk kKRR kKKK kR kKKK kR kKKK kR kKKK kR KKKk Rk kKR Rk KKk kKKK Rk kKR Rk kKR Rk kKoK Rk kK kR kKK ok Rk kK kR Kk Kk kK kA Kk
ret = set_spi_trans_end () ;

if (ret !=0) { goto exit ;}

R L R T

/* Brings CS to high (disables SPIEEPROM access) . */

R R B R B R S S S]
com_delay(10) ;
/* ## (program note) #########HHHHHHHHERHHERHERRETRHERHER R IR R R IR AR R AR AR R R R R R R R R R R R R ¢/

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## */
/* ## terminating the data transfer to turning off CS. ## */
/* ## Since the waiting time differs depending on the device to be controlled, ## */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

/% EHEEEEE R R R R R R R R R R R R R R Y/

IO.PDR1.BYTE = 0x01 ;

L
/* Checks write completion. */
/***‘k*******/
ret = wait_spi_write end () ;
if (ret !=0) { goto exit ;}
/* ## (program note) ######HEHEFHEFEEHEHHFH SRR HE RSB R HE R A B R EHEH B R E AR R R ~/
/* ## SPIEEPROM starts write operation by CS = high. The write completion is checked by checking the SPIEEPROM ## */
/* ## internal status register since the write operation takes some time ## */

/% EREEEEEE R R R R R R R R R R R R R R Y/

return (ret);

exit : /* Error processing */

6 Kk kK Kk kK Kk ok Kk ok Kk ok ok Kk ok ok Kk ok R Kk ok ok Kk ok ok Kk ok ok ok ko ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok ok ok kK Kk ok ok K Kk ok

/* Brings CS to high (disables SPIEEPROM access) . */

R B R R S S AR R R S]
com_delay (10) ;
/* ## (program note) ######HEHEFHEHEEHEHHFHEEHEHHE RSB R HEH A B HHEHEH B R E AR R R R R R E ~/

/* ## Inserts a wait here for the purpose of making at least a 500 ns interval from ## */
/* ## terminating the data transfer to turning off CS. w4 x/
/* ## Since the waiting time differs depending on the device to be controlled, #H */
/* ## refer to the data sheet to set the appropriate waiting time. ## */

JF R ¢/

IO.PDR1.BYTE = 0x01 ;

return (ret);

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 36 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

/* ,,, */
2 */
/* 4. Sample Program 3-D TimerZ ProCesSing =—=————==———m oo */
/* ,,, */
2 */
/* ,,, */
/* 4.1 Addition of reset VeCtOrs === == mm oo */
2 */
/* Set the jump destination to h8_timerz. */
/* = */
/* 4.2 Common variable definitions for TimerZ -------------- */
2 */
struct {

int counter; /* 100 ms counter */

int wait_10ms; /* Sets a wait time of 10 ms */

int wait_100ms; /* Sets the wait time in 100 ms units (common) */

int wait 100ms_scan; /* Sets the wait time in 100 ms units (for I2C) */

}com_timer;

/* ,,, */
/* 4.3 TimerZ initial settings ———=————mm——mmm oo */
2 */

% EHEEEEE R R R R R R R R R R R R R R R R~/
JF R x/

/* */
/* Sets TimerZ */
/* */

J* REEEREE R R AR R R R R R R AR R/
/5 dHE R R R R /
R R R S S S S S S S S S S I Ty
/* Sets TimerZ initial settings */
/***/
TZ.TSTR.BYTE = 0x00 ;
TZ.TMDR.BYTE = 0x00 ;
TZ.TPMR.BYTE = 0x00 ;
TZ.TFCR.BYTE = 0x00 ;
TZ.TOER.BYTE = OXFF ;
TZ.TOCR.BYTE = 0x00 ;

TZ0.TCR.BYTE = 0x23

/* Clears the counter when a GRA compare matchoccurs. */

/* CKEG[1:0] = 00 Counts at the rising edge */
/* TPSC[2:0] = 011 Counts using internal clock ¢/8 */

TZ0.TIORA.BYTE = 0x00 ;
/* IOA[2:0] = 000 RA is used as the output compare register */

TZ0.TIER.BYTE = 0x01 ;
/* Enables MFA */
TZ0.GRA = 20000 ; /* Issues an interrupt every 10 ms */
/* ## (program note) ######HEHEFHEFEEHEHHF RSB R HEHEEHEHHE R A B HHEREE B R AR AR R R R ~/
/* ## The set values differ depending on the operating frequency of the microcomputer. ## */
/* ## Refer to the H8/3687 Hardware Manual. #H o/

/% EHEEEHEE R R R R R R R R R R R R R R R Y/

TZ0.TCNT =0 ; /* Clears the timer counter */

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 37 of 41

H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

R L T e

/* Starts timerz */

6 Kk kK Kk kK KKk Kk ok Kk ok ok Kk ok ok Kk ok Kk ok ok Kk ok Kk ok kK ko kK ko ok ko ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok Kok ok ok Kk ok ok K Kk ok

TZ.TSTR.BYTE = 0x01 ; /* timer start */

/* STRO = 1 TCNT_Ollstart */

/2 */
/* 4.4 TimerZ interrupt ProCeSSIiNg ———=— === = m oo */
/* ,, */
R R e
/* 1. Module name: h8_TimerZz */
/* Function overview: Interval timer processing every 10 msec */
/* 3. History of revisions: REV Date created/revised Created/revised by Revision contents */
/* 000 2002.02.11 Ueda New */

/**/
#pragma interrupt(h8 timerz)
void h8 timerz(void

{

] Kk kK Kk kK Kk kKK ok Kk ok Kk ok ok Kok kK Kk ok ok Kk ok ok Kk ok kK ko ok ko ok ko ok ko ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok ko ok ok K Kk ok ok Kk ok ok Kk ok

/* Clears the source */

R L

com_global.dummy = TZ0.TSR.BYTE; /* dummy read */

TZ0.TSR.BIT.IMFA = 0; /* IMFA clear */

/***/
/* -1 in units of 10 ms

*/
/***/
if(com_timer.wait_10ms>0)

com_timer.wait 10ms --

L
/* Increments the counter */
/***/
com_timer.counter++;
if(com timer.counter >= 10) {
/**/
/* -1 in units of 100 ms */
J s
if(com timer.wait_100ms>0)
com timer.wait 100ms --;
if(com timer.wait 100ms scan>0)

com_timer.wait 100ms_scan --;

com_timer.counter = 0;

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 38 of 41

’ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

4. Reference Documents

e HB8/3687 Group Hardware Manual (published by Renesas Technology Corp.)
e X25043/45 Application Notes (published by Xicor, Inc.)

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 39 of 41

’ z H8/300H Tiny Series
o E N ESAS Access to the Serial EEPROM in Clock Synchronous

Revision Record

Description
Rev. Date Page Summary

1.00 Sep.29.03 — First edition issued

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 40 of 41

‘ z H8/300H Tiny Series
. E N ESAS Access to the Serial EEPROM in Clock Synchronous

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

REJ06B0134-0100Z/Rev.1.00 September 2003 Page 41 of 41

	Cover
	1. Overview
	2. Configuration
	3. Sample Programs
	4. Reference Documents

