RENESANS

>
=
=2
=
Q)
.
O
>
=
O
—t
(D

EEPROM Emulation Library

EEL —TO3

16 Bit Single-chip Microcomputer
78K0OR/Fx3 Series

Document No.: R0O1ANOO06ED0102
Date Published: 18-Aug-2010
Rev. 1.02

10.

Notice

All information included in this document is cemt as of the date this document is issued. Shfolmation, however,
is subject to change without any prior notice. Befpurchasing or using any Renesas Electronics pretsied
herein, please confirm the latest product infororativith a Renesas Electronics sales office. Alseag# pay regular
and careful attention to additional and differerfbrmation to be disclosed by Renesas Electronicls as that
disclosed through our website.

Renesas Electronics does not assume any lialoilitpfringement of patents, copyrights, or otheellectual property
rights of third parties by or arising from the ugdRenesas Electronics products or technical inftiomalescribed in
this document. No license, express, implied oewtfise, is granted hereby under any patents, agipgrior other
intellectual property rights of Renesas Electropicsthers.

You should not alter, modify, copy, or otherwissappropriate any Renesas Electronics produchven in whole or
in part.

Descriptions of circuits, software and otheatedl information in this document are provided dalyllustrate the
operation of semiconductor products and applicagiamples. You are fully responsible for the ipooation of
these circuits, software, and information in theige of your equipment. Renesas Electronics assnmes
responsibility for any losses incurred by you ardtparties arising from the use of these circigtstware, or
information.

When exporting the products or technology dbscrin this document, you should comply with thplaable export
control laws and regulations and follow the progeduequired by such laws and regulations. Youwlshoot use
Renesas Electronics products or the technology itbescin this document for any purpose relating tiitany
applications or use by the military, including Imatt limited to the development of weapons of masstrdction.
Renesas Electronics products and technology malgenosed for or incorporated into any products etesys whose
manufacture, use, or sale is prohibited under apjiGable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable caepiaring the information included in this documdntt Renesas
Electronics does not warrant that such informaisoerror free. Renesas Electronics assumes nditijabhatsoever
for any damages incurred by you resulting fromrsrio or omissions from the information includeddie.

Renesas Electronics products are classified dicpto the following three quality grades: “Standl’, “High
Quality”, and “Specific’. The recommended applioas for each Renesas Electronics product depentteeon
product’'s quality grade, as indicated below. Yaustrtheck the quality grade of each Renesas Elécsrproduct
before using it in a particular application. Yoaymot use any Renesas Electronics product for ppljcation
categorized as “Specific” without the prior writteansent of Renesas Electronics. Further, you mayse any
Renesas Electronics product for any applicatiomfaich it is not intended without the prior writtennsent of
Renesas Electronics. Renesas Electronics shalenatdny way liable for any damages or losses necuipy you or
third parties arising from the use of any RenesastEinics product for an application categorizetiSgecific” or for
which the product is not intended where you hailedao obtain the prior written consent of Rendskestronics.
The quality grade of each Renesas Electronics ptasliti§tandard” unless otherwise expressly speatifiea Renesas
Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communimagi equipment; test and measurement equipment audi
and visual equipment; home electronic appliancesshime tools; personal electronic equipment; and
industrial robots.

“High Quality”: Transportation equipment (automas] trains, ships, etc.); traffic control systeengtj-disaster
systems; anti-crime systems; safety equipmentnaedical equipment not specifically designed for
life support.

“Specific”: Aircraft; aerospace equipment; subnigesrepeaters; nuclear reactor control systemsticaé
equipment or systems for life support (e.g. artifiife support devices or systems), surgical
implantations, or healthcare intervention (e.gi®®a, etc.), and any other applications or purpose
that pose a direct threat to human life.

You should use the Renesas Electronics prodestsiied in this document within the range spetifig Renesas
Electronics, especially with respect to the maxinmating, operating supply voltage range, movememtgs voltage
range, heat radiation characteristics, installatiod other product characteristics. Renesas Eléctrghall have no
liability for malfunctions or damages arising otitloe use of Renesas Electronics products beyortd specified
ranges.

Although Renesas Electronics endeavors to impitevguality and reliability of its products, seomcluctor products
have specific characteristics such as the occugrehfailure at a certain rate and malfunctionsasrmbrtain use
conditions. Further, Renesas Electronics produetsiar subject to radiation resistance design. selea sure to
implement safety measures to guard them againgtassbility of physical injury, and injury or dagecaused by fire
in the event of the failure of a Renesas Electropiosiuct, such as safety design for hardware afte@e including
but not limited to redundancy, fire control and fuattion prevention, appropriate treatment for ggiegradation or
any other appropriate measures. Because the deal@dtmicrocomputer software alone is very difficplease
evaluate the safety of the final products or systesmufactured by you.

Please contact a Renesas Electronics sales fiffidetails as to environmental matters suchasnvironmental
compatibility of each Renesas Electronics prodiRtease use Renesas Electronics products in comgleittt all
applicable laws and regulations that regulateisiision or use of controlled substances, inclugiitgout limitation,

Application Note RO1ANOOO6ED0102 2

the EU RoHS Directive. Renesas Electronics assuméability for damages or losses occurring assalteof your
noncompliance with applicable laws and regulations.

This document may not be reproduced or duglébah any form, in whole or in part, without prieritten consent of
Renesas Electronics.

11.

12. Please contact a Renesas Electronics sales iffficu have any questions regarding the inforamationtained in this
document or Renesas Electronics products, or ifngue any other inquiries.

(Note 1) “Renesas Electronics” as used in this demurmeans Renesas Electronics Corporation and alsml@s its
majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” meanspragiuct developed or manufactured by or for RenEsetronics.

Application Note RO1ANOOO6ED0102

Table of Contents

Chapter 1 INIFOAUCTION ...ttt e e e e e e ettt et e e e e e e s nnbebbeeeeaaee s e nbeneeeaaaaaeann 6
0 R N\ F= o o T g To T o] 0 1YY o 1T o RPN 7
1.2 Related JOCUMENLS ...ttt ettt e ettt e e ekt e e e bt e e s e br e e e e anbr e e e e nreas 8
1.3 MF2 DAta FIASN......oceiiiiiiie et 8

1.3.1 32 Dit IMPIEMENTALION....ccii et e et e e e e e e e nne e eeaae e s 8
1.3.2 (DU =1 Ie] o =] =11 o] o FO PP UPTPUPRPRP 8
1.4 Functional elements within the EEPROM Emulation SyStemcccccceevviiivieeeeee e iiiiieeeee e 9
R o To] IS 1 (0T (1] (= OSSP PU R PUPRPURRRPR 10
1.6 AJAress VIrtUalISALIONccveiiiiieiieeiee ettt 11

Chapter 2 EEL @rChitECIUIEoiii ittt e e e s e st e e e e e e s st e e e e e e e e s snsnaaneeaeeeeanns 12
2 R I o T Yo 1 01 (U =TSRSS 12
2.2 EEL DIOCK STIUCTUIEcooiiiiiieiieie ettt e e 14

221 EEL DIOCK NBAET ...t 15
2.2.2 REFEIENCE GIEaeiiiiiiiee et et 16
2.2.3 DALA AIEE ...ttt e e e e 16
2.3 EEL INSANCE SIIUCTUIE.......oiiiiiiiiiiiiiiiii ittt e e e e e e e e s s eee s 17
231 Data Reference POINter, DRP.........ccoiiiiiiiiiii et 17
2.3.2 INSEANCE TALAeeeieieiiieite ettt 17
2.3.3 Data CheCksUM, DCS........oiiiiiiieiiie ettt 18
P2 =1 ToTod [4 =T g = Vo 1= 1 0 1= 0 | A SRS 18
241 EEL DIOCK CIFCUIALION ...eiiiiieiiiieiie ettt 18
2.4.2 EEL DIOCK STAIUSeciitiiitiieiitee ettt sttt n e 19
2.4.3 Security aspects, blOCK @XCIUSIONoccuiiiiiiic e 19
2.5 INStANCE MANAGEIMENT ...cceiiiiiie e 20
251 WILE INSTANCE SEOUEBNCE ..coieiiieiiiiiee e ettt e e e ettt e e e e e e et e e e e e e e s st e seeeeeaeeeeanneneneeas 21
2.5.2 Security aspects, ChECKSUMScoiiiiiiiiiiiiii et a e e e e e e e e eneeeeeeas 21
2.8 PIOCESSES ...ttt e e et e e e et a e e e 22
2.7 SPACE TrEALMENT.....ceii i 23
2.8 Request—Response Orented dialOg.......cuuuu i 24
2.9 Handler oriented cOmMmMand EXECULIONooiriiiriieieieree e 25
2.10 Execution Modes Of the EELcocciiiiiiiiie et 26
2.10.1 Enforced eXeCUtion MOUEcceviiiiiiiii et 27
2.10.2 TIiMeEOULt @XECULION MOEeeiiiiieriiie ittt 30
22 0 T = | T To J=3 (=T oT 0 o] o T 4 Yo [TSR 33
2.11 Supported COMMAaNd SPECLIUMooiiiiiiiei ettt e e e et e e e e e e s e sabbeeaeeeaeesaannnes 35
2.12 EEL @XECULION PIANES ettt ettt e e e e e ettt e e e e e e e e e e sanbbeeeaaaeeeannnnes 36
2.12.1 FOreground PIANE ...ttt e e e e e e e e anbaeae s 36
2.12.2 Background PIANE...........ooiiii i a e e e eas 37
Chapter 3 Application Programming INtEIfaCE.coooiiiiiiiiiiia e 38

Application Note RO1ANOOO6ED0102 4

I J0 R B T 1= W 1Y 011 ST P PP PP PPPUPPPPPPPPPPPPIRt 38

3.1.1 Library specific simple type definitions ... 38
3.1.2 Enumeration type “eel_command 1"ccccooiiiiiiiiiie e 38
3.1.3 Enumeration type “eel_operation_Status t".........ccccceeeei i 39
3.14 Enumeration type “eel_acCess_StatUS 17ccccviiiieeeiiiiiiiieeee e e e e e e 39
3.15 Enumeration type “€el_StatUsS 17.......c.uviiiieee i 40
3.1.6 Structured type “Eel_reQUESE 1 ... e e 41
3.1.7 Structured type “eel_driver_StatusS 17ccciiiiiieeee i e e 41
I U 0 To1 1T] oI T PP PP PP PPPPP T 42
3.21 [I T PR U P PRPRT 42
3.2.2 |y I O] o] o EO PP PPPPPPPPPPPPPPRPPIN 43
3.23 [I (01 PR P PRPRT 43
3.24 Ly I (T ol | (PSSPt 45
3.25] I o = o | 1= PR 47
3.2.6 EEL_TIMEOUL_COUNIDOWIciiiiiiiiiiiiieii e e e ettt e e e e st e e e e e et e e e e e e s e snnrenanneaeeeeas 49
3.2.7 EEL_GeIDIVEISIALUSevviieiiee e e ettt e e e s ettt e e e e s st e e e e e e s s st e e e e e e s e s snnnnaneeaaeenan 50
3.2.8 I 7T 10 o > Vo =SSP PPPRPPN 53
3.2.9 EEL_GetVErSiONSIIING........vviiiieeee it e e e e e sttt e e e e e st e e e e e e s e st e e e e e e s e s snnnnaneeaaeenas 55
(O aT= 0 (=] g @ T o 1T - 1 [IS PESRR 57
o | 1S3 7= 1 F= 1 (T o PP PP PP PP P PPPPPP 57
4.2 BaSIC WOTKFIOW ...t e e 59
o T o 101 o U= 11T o TP PRPTT 60
431 POOI CONFIGUIALION ..t e e e e e e e e s aeeeaa e as 60
4.3.2 Variable coNfiguIationeeeiiiiiii e a e 61
4.3.3 Pool configuration hintS and tiPPS.....eeeeeiiieeei e a e 62
N | 011 (= 15572 1 o] TP PP PP SRR 66
4.5 EEL activation and deactivVation..............cceiiieeiieriiieeniee e 66
4.6 Foreground and backgroUnd PrOCESSuuuiiiieeiiiiiiiiieeeeeesissitee e e e e s e ssstrrr e e e e e e s s ssennnreeeaeeees 67
4.6.1 Controlling background ProCESSccuuiiiiieeiiiiiiiir e e e e e e rre e e e e e 67
B A ©7o 111 1 1 =T Lo L PP PP RO 70
4.7.1 Pool oriented COMMANGAScocviiirieiiie it e e nnne e 70
4.7.2 Variable oriented COMMANTSc.uiiiiiiiiiiee ittt s e e e aeneeee e 76
(04 0= o] (=] S S T O T= T = T =] £ o= TS T TR PUPUPPPRPP 76
5.1 TimMING ChArACLEIISTICS ..eiieiiiiiiiiiiieie ettt e e e e e s e b et e e e e e e e e e sanbbeeeaaaeeeaannnes 76
5.2 GENEIAI CAULIONS ...ttt ettt e e s e e e s e abe e e e nb et e e e nbe e e e e nneas 76
5.3 RESOUICE CONSUMPLION .oeiiiiitiiiieee e ettt e e e e e sttt e e e e e st b be e e e e e e e s anabeeeeaaeeeeeeannbbneeaaaeasaanne 76

Application Note RO1ANOOO6ED0102 5

EEPROM Emulation Library

Chapter 1

Figure 1-1

Introduction

This user’'s manual describes the internal structure, the functionality and the
software interface (API) of Renesas 78KOR EEPROM Emulation Library (EEL)
Type 03, designed for 78KOR flash devices with so called Data Flash based on
the MF2 flash technology.

The EEL is the highest layer of Renesas EEPROM Emulation System which
aspires to mime at least the functionality of an non-volatile memory (internal
EEPROM) under usage of the on-chip embedded flash memory. Beyond that
divers service and administrative functionality is provided by the EEL to
simplify the handling at application side.

Elements of the EEPROM Emulation System

physical flash FAL-POOL (data flash macro)

flash access layer FDL

FDL-API

EEPROM layer
EEL

EEL-API

S

application layer User application

Note:
this user’s manual describes the functional block marked in yellow

Application Note RO1ANOOO6ED0102 6

EEPROM Emulation Library

11

Table 1

Naming convention

Certain terms, required for the description of the Flash and EEPROM
emulation are long and too complicated for good readability of the document.
Therefore, special names and abbreviations will be used in the course of this
document to improve the readability.

Used abbreviations and acronyms

Abbreviations /

Description
Acronyms
Block Smallest erasable unit of a flash macro
Embedded Flash where the application code is stored.
Code Elash F(_)r devic_es without Data Flash EEP_ROM emulation
might be implemented on that flash in the so called data
area.
Embedded Flash where mainly the data of the EEPROM
Data Flash emulation are stored. Beside that also code operation

might be possible.

Dual Operation

Dual operation is the capability to fetch code during
reprogramming of the flash memory. Current limitation is
that dual operation is only available between different
flash macros. Within the same flash macro it is not
possible!

EEL EEPROM Emulation Library
In distinction to a real EEPROM the EEPROM emulation
EEPROM uses some portion of the flash memory to emulate the
emulation EEPROM behavior. To gain a similar behavior some
side parameters have to be taken in account.
FAL Flash Access Library (Flash access layer)
FCL Code Flash Library (Code Flash access layer)
FDL Data Flash Library (Data Flash access layer)
“Flash EPROM" - Electrically erasable and
Flash progra_lmmable _nonvolatile memory. The difference to
ROM is, that this type of memory can be re-programmed
several times.
A flash block is the smallest erasable unit of the flash
Flash Block
memory.
A flash comprises of the cell array, the sense amplifier
Flash Macro and the charge pump (CP). For address decoding and
access some additional logic is needed.
Non volatile memory. All memories that hold the value,
NVM even when the power is cut off. E.g. Flash memory,
EEPROM, MRAM...
RAM “Random access memory” - volatile memory with
random access
ROM “Read only memory” - nonvolatile memory. The content

of that memory can not be changed.

Serial programming

The onboard programming mode is used to program the
device with an external programmer tool.

Single Voltage

For the reprogramming of single voltage flashes the
voltage needed for erasing and programming are
generated onboard of the microcontroller. No external
voltage needed like for dual- voltage flash types.

Application Note RO1ANOOO6ED0102 7

EEPROM Emulation Library

1.2

Table 2

Related documents

List of related documents
Document Number Description

Users Manual of Data Flash access library for
U20290EE1VOUMO0 78KOR/Fx3 series

1.3

131

132

MF2 Data Flash

Each device of the 78KOR/Fx3 microcontroller family is equipped with a
separate flash area called data flash.

32 bit implementation

The Data Flash of devices in MF2 Flash technology is based on a standard
32-bit architecture. This means, that the data can be written in 32-bit units
only. The data flash address room starts at the CPU address OxE9800 while
the EEL and the corresponding FDL use virtual flash-word index.

Dual operation

Common for all Flash implementations is, that during Flash modification
operations (Erase/Write) a certain amount of Flash memory is not accessible
for any read operation (e.g. program execution or data read).

This does not only concern the modified Flash range, but a certain part of the
complete Flash system. The amount of not accessible Flash depends on the
device architecture.

A standard architectural approach is the separation of the Flash into Code
Flash and Data Flash. By that, it is possible to fetch instruction code from the
Code Flash (to execute program) while data are read or written into Data
Flash. This allows implementation of EEPROM emulation concepts running
quasi parallel to the application software without significant on its execution
timing.

If not mentioned otherwise in the device users manuals, KOR/Fx3 devices with
Data Flash are designed according to this standard approach.

Note:
It is not possible to modify Code Flash and Data FI ash in parallel.

Application Note RO1ANOOO6ED0102 8

EEPROM Emulation Library

1.4

Figure 1-2

data
flash

code
flash

<

Functional elements within the EEPROM Emulation system

Even though this user’s manual describes the functional block “EEPROM
Emulation Library” a short description of all concerned functional blocks and
their relationship could be beneficial for the general understanding of the
system. The following figure illustrates the basic idea behind and its involved
functional blocks but the shown dependencies are not complete.

Relationship between functional blocks inside the E EPROM emulation
systems

—
| |
| |
Data Flash Hardware
| |
| |
| |
| |
FAL
| | address
| | space
EEL
| |
| |
| |
Application
INT Vector)

Application:

The functional block “Application” contains the instruction code of user's
software using the EEL.

Application Note RO1ANOOO6ED0102

EEPROM Emulation Library

1.5

EEPROM Emulation Library (EEL):

The functional block “EEPROM Emulation library” is the subject of this user’s
manual. It offers all functions and commands the “Application” can use in order
to handle its EEPROM data.

Data Flash Access Library (FAL):

The “Data Flash Access Library” offers an interface to access any user-defined
flash area, so called “FDL-pool” (described in next chapter). Beside the
initialization function the FDL allows the execution of access-commands like
write as well as a suspend-able erase command.

Note:

General requirement is to be able to deliver pre-compiled EEL libraries, which
can be linked to either Data Flash Access Libraries (FDL) or Code Flash
Access Libraries (FCL). To support this, a unique API towards the EEL must
be provided by these libraries. Following that, the standard API prefix FDL ...
which would usually be provided by the FDL library, will be replaced by a
standard Flash Access Layer prefix FAL_... All functions, type definitions,
enumerations etc. will be prefixed by FAL_ or fal_. Independent from the API,
the module names will be prefixed with FLD__ in order to distinguish the
source/object modules for Code and Data Flash.

Pool structure

The EEL-pool is a part of the FDL-pool defined by the user in the file
FAL_descriptor.h. in that file the user can divide the FDL-pool into two
independent parts: the EEL-pool (used exclusively by the EEL only) and the
USER-pool which can be freely used by the application to store any data.

To protect the content of the EEL-pool against unwanted user accesses the
EEL-driver is using only hidden subroutines reserved exclusively for the EEL.

Pool details:

. FDL-pool allocates the physical data flash memory that can be handled
by the FDL. It is a kind of container reserving room for the EEL-pool and
USER-pool. All characteristics (valid address information, partitioning
information, ...) of the FDL-pool are defined in the FDL-pool descriptor.
Based on that information the FDL protect all flash content against illegal
access.

. EEL-pool is a virtual pool inside the FDL-pool used exclusively by the
EEL for storing data and control information.

. User Pool is completely in the hands of the user application. It can be
used to build up an own user EEPROM emulation or to simply store
constants.

Note:
Please refer to the FDL user’s manual for further details.

Application Note RO1ANOOO6ED0102 10

EEPROM Emulation Library

Figure 1-3 Pool access scheme, general scheme

FDL pool

N-1

USER pool
USER pool access
N

N flash words

Q
5

0x0000

EEL pool

M-1

FDL

M flash words 0‘@

N1

EEL pool access

0x0000

1.6

Address virtualisation

To simplify the flash content handling as well the parameter passing between
the FAL and the EEL the physical addresses used by the flash hardware were
transformed into a linear 16-bit index addressing flash-words (32-bit units)
inside the corresponding pool. By this measure each owner of the pool can
use it as a simple array of words. To address the array elements (read/write
access) word-index starting at 0x0000 can be used. The max. range of the
word-index depends on the FAL-pool configuration and the number of flash
blocks reserved for the particularly pool. This kind of address virtualization
allows to access max 2 * 256kBytes Data Flash and offers an effective access
rights management.

Note:
The user of the EEL is not touched by the above address virtualization.

Application Note RO1ANOOO6ED0102 11

EEPROM Emulation Library

Chapter 2 EEL architecture

2.1

This chapter describes the internal architecture of the EEPROM Emulation
Library.

EEL pool structure

The EEL pool is the virtual storage medium used by the EEL driver for storing
data and block management information during its operation. From logical
point of view the EEL-pool is organized as a single-linked ring of blocks.

“Single-linked ring” means here:

a) the next block to block N is block (N+1)
b) the next block to the last one is the first one.

Figure 2-1 Structure of an empty EEL pool (no data inside)

4 lock header data used for block management

First block
0

Bl
Last block
1 2 3 4 5 6 7
[P] [P] [P] [P] [P] [P] [P]
| A 1 | A | ? 1 | A 1 | A 1 | A 1 | A 1
EC

s DDees (e s es bDees 2 b
EC EC EC EC EC EC EC
O [CRwhprev RWPprev ~ [Rweprev ~ [“Rweprev ~ [Rweprev ~ [Rweprev ~ [Rweprev ~ [Rweprev

N NN

Red marked - writing area for data and references

Each block of the EEL-pool contains a block-header for storing block
management information. Because the block indexing within the EEL-pool is
based on the homogenous and fixed virtual block numbers 0x0000....
(EEL_POOL_SIZE - 1) itis not necessary to store the neighbors inside the
block header.

All flash-blocks of the EEL pool are grouped in three consecutive “regions”
indicated by the “block status” in the block header.

“active region” - consists of blocks containing active data
“invalid region” - consists of blocks without active data
“prepared region” - consists only of blocks ready to receive new data

Application Note RO1ANOOO6ED0102 12

EEPROM Emulation Library

When contemplate EEL-pool blocks clockwise the regions are always in the
same fixed chronological order:

“prepared region” is before “active region”
“active region” is before “invalid region”
“invalid region” is before “prepared region”

Figure 2-2 EEL pool regions during normal operation

erased

invalid invalid

.

B

active prepared prepared
P P 2
A A
X |

X X X

EC EC

EC
RWPprev

References RWP=DWP

RWP=DWP 1K
1k

Data

Data

invalid region active region prepared region

Block organization scheme based illustrated above offers following
advantages:

a) two symmetrical sections (where always 50% of data flash does not contain
valid data) are not needed anymore

b) the “active region” can grow and be adapted to the momentary need
c) the reference area is separated from the data inside the same EEL block

d) copy-processes are mostly much faster because reduced to the only last
active block has to be released from valid instances.

e) exclude functionality does not reduce performance of the driver

Application Note RO1ANOOO6ED0102 13

EEPROM Emulation Library

2.2

EEL block structure

Each EEL block belonging to the EEL-pool is basically divided into three
areas: the block header, reference area and the data area. The block-header
contains information about the actual status of the block which is needed for
the block-management within the pool. The reference area contains reference
entities off all instances written into this block during its live-cycle. It is
necessary for actual data localization after power-on. The data area contains
the pure data belonging to the corresponding references in reference area.

Figure 2-3 EEL block, general structure

0

£ - RV R R R R R

239

28
42
243
244
245
46
247
248
244
250
251

262
widz

byte O byte 1 hyte 2 byte 3
CS [EC) EC
RUFprev [OOH Css
CS(XEC) | XEC
FIP flagy
widx | csB ID 1
CS3Z (data)
widx | CS8 ID 2
€532 (data)
widx C58 ID 3
€532 (data)
widx | cS8 ID 4

CS32 (data

€532 (data)

widx Cc38 In 7

C532 (data)
widx CS8 ID &

CS532 (data)
widx | cs58 Ib 9

C532 (data)
widx cs8 IDh 10

532 (data)
Oxff Oxfx Oxff OxIf
Oxff Oxff Oxtf Oxff
Oxff Oxff Oxff Oxff
Oxff Oxff Oxff Oxff
data data Oxff Oxff
data data data data
data data data data
data Oxff Oxff Oxff
data data data data
data data data data
data data data data
daca daca data data
data dara data Oxff
data data data data
dats data Oxff Oxff
data data _data data
Oxff Oxff Oxff
data daca daca data
data daca data OxEEf
data data Oxff Oxff
data Oxff Oxff Oxff

Application Note RO1ANOOO6ED0102

BB FRETES A8 REFNB2BRRS LR RREARe - F

14

EEPROM Emulation Library

221

Figure 2-4

2211

EEL block header

The block header is a small area on the top of each flash block belonging to
the EEL pool. It contains all information necessary for block management
during EEL operation. The structure of the block header is the same in all
blocks of the EEL-pool.

EEL block header structure
0o 1 : 2 , 3 Byte
P_flag
Block
A_flag status
I_flag flags
CS(EC) EC(H,M,L)
RWP(prev) | 00H | CS(RWP) this®
header
CS(XEC) | XEC(H.M,L) data
FIP flag
T

EEL block status flags

Each flag within the block header consists of one flash word (4 bytes).

There are two types of block status flags:
- “constructive status flag” used in processes like “activation” and “preparation
- “destructive status flags” used in processes like “invalidation” and “exclusion”

When reading the exact pattern 0x55555555 a “constructive” flag is TRUE
When reading a pattern other than OxFFFFFFFF a “destructive” flag is TRUE

When setting “constructive” flag: 0x55555555 is written into the flag-word.
When setting “destructive” flag: 0x00000000 is written into the flag-word.

P_flag: = 0x55555555 marks a “prepared” block that waits for data.

A flag: =0x55555555 marks an “active” block that may contain data
I_flag: # OXFFFFFFFF marks an “invalid” block (without valid data)

X flag: # OxFFFFFFFF marks a block “excluded” from block management.

Application Note RO1ANOOO6ED0102 15

EEPROM Emulation Library

2212

2.2.1.3

2214

2215

2.2.2

223

EEL block erase counter

The block header word four contains the block erase counter. Its consistency
is protected by an 8 bit checksum which is used by the EEL internally only.

EEL previous reference write pointer

Its points the last RWP position of the previous block within the EEL pool.
It is used by the EEL internally only.

EEL exclusion erase counter

Stores the EC value at exclusion time.
It is used by the EEL internally only.

EEL Format In Progress (FIP) indicator

FIP<>0xFFFFFFFF indicates an FORMAT command discontinued by RESET.
It marks the completely EEL pool as inconsistent and enforces the user to re-
start the FORMAT command.

Reference area

The “reference area” is located in each EEL block directly behind the block
header. It consists of so called reference entries that are used for instance
identification, localization and for safeguarding during the read/write process.
When writing new data into the EEL a corresponding reference entry is
stacked in the reference area.

The reference area is growing upstairs from lower widx to higher.

Data area

The “data area” consists of data-records and is located on the bottom of each
EEL pool block. Each data record within the data-area consists of pure data
information without any data- frame. The data-frame information exists
completely in the corresponding reference-entry in the reference-area.

When writing new data into the EEL the data area is growing downstairs from
higher widx to lower.

Application Note RO1ANOOO6ED0102 16

EEPROM Emulation Library

2.3

2.3.1

Figure 2-5

2.3.2

Figure 2-6

EEL Instance structure

EEL instance is a complete data-set consisting of three components:

- 32-hit data reference pointer DRP in the reference area

- the data in the data are

- 32-bit checksum in reference area (directly behind the corresponding DRP)

Whenever the application writes a new value into the EEL pool a new EEL
instance is generated.

Data Reference Pointer, DRP

The main purpose of the DRP is referencing the data belonging to the given
instance inside the data-area. The consistency of the DRP is safeguarded by
an own 8-bit checksum. A DRP is always written to an even flash word index
inside the reference area.

The structure of each DRP consists of:

ID: 8-bit EEL-variable identifier registered in the EEL descriptor.
widx: 16-bit virtual index inside EEL pool pointing to the data
RCS: Reference Check Sum, 8-bit checksum across the DRP.

Structure of the DRP
| 0 | 1 | 2 | 3 | Byte no
DRP [widx(L) | widx(H) | RCS ID Referen-
DCS DCS(data) ce entry
T T T

Instance data

The pure instance data without any frame-information stored directly in the
data area at the bottom of the corresponding block.

Example of 6-byte data entry

| 0 | 1 | 2 | 3 | Byte no
Data 4 Data 5 OxFF OxFF 6 bute of data
Data 3 Data 2 Data 1 Data 0 Y

Note:

Not used bytes remain OxFF.

Application Note RO1ANOOO6ED0102

17

EEPROM Emulation Library

2.3.3

Figure 2-7

2.4

241

Data Checksum, DCS

The DCS is written behind the DRP in the reference area behind the
corresponding DRP after the instance data were written correctly. It ensures
the plausibility of the data and the corresponding DRP.

Data Checksum of an instance
I I I I I

]
DRP widx(data) RCS ID } Referen-

DCS DCS(data) ce entry
T

Block management

This chapter describes how the block management organizes the blocks inside
the EEL pool during its operation.

EEL block circulation

The block management is leaned on the concept of single linked ring. It is
build based on the unique virtual block numbers inside the EEL pool. It is an
easy scheme for “creation” and “consumption” of writeable space inside the
EEL-pool. As already mentioned the whole EEL pool is divided into three
regions organized in a fixed order.

Active region: always in front of the invalid region
Prepared region: always in front of the active region
Invalid region : always in front of the prepared region

From the operation point of view the block management works like a
caterpillar. The following figure should illustrate the idea behind the block
management:

Application Note RO1ANOOO6ED0102 18

EEPROM Emulation Library

Figure 2-8 Circulatory block management inside the EEL pool

Physical Flash

invalid region
1'st o R
i nder
(W physical erasing
Under block
m eraSing el
- . . invalid
invalid LOg|CaI rlng prepared
active
RWP
active
BMBHEWB R| act. |D ,r‘} {,,,“
R| act. [D
k active region DWP) L prepared region J prepared
~
prepared
last
physical prepared

2.4.2

243

block —

EEL block status

During the operation of the EEPROM driver the participating flash blocks
change their internal status cyclically. To mark and to recognize the status
of each block 32-bit block-status flags are used. The block status-flags are
read and analyzed after power-on RESET to reconstruct the current EEL
pool configuration. The block management based on that information is
fundamental for correct operation of the EEL driver.

Security aspects, block exclusion

When erasing a flash block in the “preparation” process an erase-error
could happen theoretically. The probability is very low but if happens, it is
not allowed to write data into such a block. To fulfill this condition the
“exclusion” mechanism was added to the block management

Basically during block preparation write-error can be generated when
writing block header information. In that case the effected block will be
excluded from block management too.

An asynchronous device RESET during operation of the EEL may cause
various problems like inconsistent pool or inconsistent data. The
STARTUP command detects such problems and performs fitting
countermeasure to recover pool and data consistency

Application Note RO1ANOOO6ED0102

EEL pool

19

EEPROM Emulation Library

As already mentioned, there are two different types of block status flags:

1) Constructive block status flags are the P-Flag and the A-Flag.
Coding: writing pattern 0x55555555 into the flag flash-word.
Decoding: TRUE when read pattern is 0x55555555 otherwise FALSE.

2) Destructive block status flags are the I-Flag and the X-Flag.
Coding: writing pattern 0x00000000 into the flag flash-word.
Decoding: FALSE when pattern inside is OxFFFFFFFF otherwise TRUE.

Analyzing the block header flags the EEL is in the position to recognize the
status of each block of the EEL pool. Following scenarios are possible:

Figure 2-9 Block status code

still erased = prepared active invalid excluded
invalid invalid ongoing ready ongoing ready ongoing ready ongoing ready
P-flag SRy FFEFEFEER [ERgR@diael| 55555555 | 55555555 | 55555555 | 55555555 | 55555555 XXEXAKKK | KHEKXKKK
A-flag 77727277 | FFFFFFEF | FFFFFEFF | FFFFFEFF | 927777727 [55555555] 55555555 | 55555555 XXEAKXXK [XEXKXKXK
I-flag ?7772?27? | FFFFFFFF | FEEFFFEF | FFFFFFFF | FFFFFFFF | FEFFFFFEF | 2722272272 | 00000000 KEKXEKLX | REXKXKKXK
X-flag 72277237 | FEFFFFFF | FEFEFFEFEFE | FEFEFEEFFFE | FFEFFEEF | FEFFFEFFE | EFFEFEFE | FEFEFEEFE 7299272727 | 00000000
04
Block status ﬁ@mpare& invalid active >< invalid > m
Note:

Invalid block status can be produced by RESET during block activation (red
marked here) is repaired in the STARTUP command sequence.

2.5 Instance management

Whenever a new instance of an EEL variable is written into the EEL-pool, the
following sequence is executed by the EEL-driver internally:

Step 1)

Data-Reference-Pointer (DRP) is calculated and written into the flash word
referenced by RWP. After that the space for instance data is allocated in the
data area of the active region.

Step 2)
Write the complete instance data word by word into the reserved in step 1)

Step 3)
Calculate and write the checksum DCS into the word next to DRP from step 1)

Application Note RO1ANOOO6ED0102 20

EEPROM Emulation Library

251

Write instance sequence

Whenever a new instance of an EEL variable is written into the EEPROM the
following sequence is executed by the EEL-driver:

Writing a new instance of an EEPROM variable consists of three successive
phases.

Figure 2-10 Write instance sequence
1 step 2 step 3 step
— Write DRP — Wirite data »— Write DCS —
The structure and the handling of the instance references should manage
possible destructive effects caused by asynchronous power-on RESET as well
as by potential flash problems.
2.5.2 Security aspects, checksums

When writing a new value of EEPROM variable into EEL the reference and the
data are written flash-word wise into the EEL-pool. During this process an
asynchronous RESET may happen at any time and produce rubbish data. To
ensure a reliable detection of any data inconsistency within a written instance
two stage checksum protection has been implemented. The first checksum (8
bit) ensures the consistency of the DRP written in phase 1). This checksum is
a part of the 32-bit DRP. The second checksum is calculated and written in
phase 3. It is a 32-bit checksum calculated across all data written in phase 1)
and 2) (over DRP and all data words).

The consistency of the instance is checked in the STARTUP and in the READ
command.

- when STARTUP command detects checksum error during instance
searching (RAM reference fill process) the corresponding instance will be
ignored.

- when READ command detects a checksum error the instance search will be
restarted (same criteria as for STARTUP), the RAM reference table refilled
and the newest instance with correct checksum will be read finally.

Application Note RO1ANOOO6ED0102 21

EEPROM Emulation Library

2.6

Processes

All things happening in the EEL (data access, CPU processing, administrative
activities....) take time. Sequences of actions, measures and countermeasures
to achieve any targeted effect/result are called processes here.

There are two groups of EEL processes:

Foreground process
Initiated by the user, when requesting commands at the EEL.

Background process:
Initiated by the EEL themselves, when it recognizes the necessity internally.

In exceptional cases foreground processes can initiate background processes.

From block management point of view each block is sorted into one of the
three regions within the EEL pool (active, prepared, invalid) or it can be
excluded. A block can change from one region to another one when being
treated by dedicated “processes”.

Also the instance management influences the position of the instances within
the EEL pool using background and/or foreground processes.

Figure 2-11 Overview of the main processes inside the EEL drive r

prepére

‘ T refreshicopy process S

invalidation process
activation process

activate

Q:.

| invalidate
exclude i 4 |
prepared invalid invalid . ," active tail active active active head prepared
F P ; P i P i P /

A A i A

T “ (] “ T T

X xX_r X X

EC EC EC EC

RWpPprev RWPprev
References RWP=DWP
1k

. RWP-DWP i

L
1k

Application Note RO1ANOOO6ED0102 22

EEPROM Emulation Library

2.7

Space treatment
Space within the EEL pool is the sum of all flash words prepared for the
accommodation of data and references (exclusive block header area).

Internally the EEL driver differentiates between pool-space and active-space.

Pool-space is the space available in all prepared blocks plus the remaining
space available in the active heading block.

Active-space is the space available in active heading block only.
Both can be effected by background and foreground processes as follows:
Pool-space is produced in the background PREPARATION process only.

Pool-space is consumed by foreground WRITE command or background
REFRESH process.

Active-space is consumed by foreground WRITE command or background
REFRESH process.

Active-space is enlarged by foreground or background ACTIVATION process.

The user does not need to take care for the space management during EEL
operation. Depending on the configuration and used operation mode the EEL
takes care internally for adequate space conditions.

Application Note RO1ANOOO6ED0102 23

EEPROM Emulation Library

2.8 Request—-Response oriented dialog

Like the FAL, the EEL is also using the Request-Response architecture to
place and process the commands. This means the “requester” (normally users
Application) has to fill-up a kind of “request form sheet” (the request variable)
and pass it to the EEL using the reference (pointer) of the request variable for
further processing. The EEL is interpreting the request variable, check its
plausibility and process it for the time slice defined in the request variable.
After time-out period or after finishing the execution with positive/negative
command execution the EEL is updating the status code in the request
variable.

The biggest advantage of the request-response architecture is the constant
and narrow parameter interface. It allows constant parameter passing
independent used compiler and its memory models.

Another advantage is the possibility to isolate the dialog in multi-tasking
systems.

Figure 2-12 Schematic usage of the request variable

Requester

RAM address

identifier

timeout

command

status

Application Note RO1ANOOO6ED0102 24

EEPROM Emulation Library

2.9

Handler oriented command execution

To satisfy operation in concurrent or distributed systems the command
execution is divided generally into two phases:

1) Initiation of command execution using EEL_Execute(&my_eel request)

2) processing of the command that is performed piece-wise (state-wise or
time-slice-wise depending on the used execution mode)

The main advantage of such architecture is that maintenance and command
processing can be done centrally on one place in the target system (normally
the idle-loop or the scheduler loop).

The other advantage is that commands can be requested in several places in
the system. Using separate request variables the EEL feedback can be
directed correctly in spite of the fact, that the processing is done centrally.

The EEL is using the function EEL_Execute(&my_eel_request) for command
initiation and EEL_Handler(my_eel_timeslice) for command processing.

Application Note RO1ANOOO6ED0102 25

EEPROM Emulation Library

2.10 Execution modes of the EEL

One claim of this EEPROM driver is to satisfy all the various systems and SW
architectures exit in the market. Some target systems does not care about
execution time and use EEL-commands like function call. Some other systems
use complex operating systems to manage task execution quasi
simultaneously (time sharing). Another use even driven asynchronous
mechanisms only.

To fulfill the above requirements, the EEL offers several operation modes that
can deal with the parameter “time” in different way.

There are two places where the “time” parameter can be treated :

a) in the request-variable passed by the EEL_Execute(&my_eel request)
This timeout value determines the operation mode of the EEL command.

my_eel_request.timeout_u08 = 0x00 -> execution in polling mode
0x00 < my_eel_request.timeout_u08 < OxFF -> execution in timeout mode
my_eel_request.timeout_u08 = OxFF -> execution in enforced mode

b) by the timeout parameter of the EEL_Handler(my_eel_timeslice_u08)

my_eel_timeslice_u08 = 0x00 -> execute the actual EEL state only
my_eel_timeslice_u08 > 0x00 -> execute the time-slice EEL

Table 3 Overview of time parameter meaning

Timeout Execution mode EEL behaviour

EEL_Execute(t): starts the command and leaves EEL immediately

0x00 polling | [EEL_Handler(t): executes next internal state of the EEL

EEL_Execute(t): executes states until timeout or command is finished

0x00<N<OxFF timeout EEL_Handler(t): executes states until timeout or command is finished

EEL_Execute(t): executes command until it's finished

OxFF enforcing | [EEL_Handler(t): executes states until command or timeout is finished

Depending on the target system architecture one of the operation modes can
be used for command execution and background maintenance purpose.

Note:

The timeout used in the request variable is completely independent on the
timeout used in the EEL_Handler(t) mixing of the operation modes in one
target system is possible.

Application Note RO1ANOOO6ED0102 26

EEPROM Emulation Library

Figure 2-13 Overview over the EEL operation modes
ENFORCED mode TIMEOUT mode POLLING mode
User EEL FDL User EEL FDL ;';'::x:: User EEL FDL

request.timeout=0xFF request.timeout=N
EEL_Execute(request) -EEL_Execute(request) —EEL_Execute(request)

request.timeout=0

FDL_Execute
{«—{ FDL_Execute
1SR |«—»{ FDL_Execute busy
-
ISR FDL_Handler Comang —EEL_Handler(0)
execution |« FDL_Handler
{«——{ FDL_Handler
FDL_Handler busy
busy
- = —EEL_Handler(0}
P -EEL_Handler(timeout
FDL_Execute | {)l DL THandier
command
2 busy
execution —_— i
l«—»{ FOL_Execute
{«——{ FDL_Handler ——EEL_Handler(0)
command
S execution FDL_Handler
ISR |«—»{ FDL_Handler busy
- ™
——EEL_Handler(0
oK
—
{«——{ FDL_Handler ~EEL_Handler(timeout
busy
=
ISR maintenance |«——| FDL_Handler -
.
status I '
idle ——EEL_Handler(0)
»;-—-_one state SEQ
oK

This mode can be used in simple systems in that EEPROM access have to be
processed like a simple function CALL. The requested command is directly
and completely executed with positive or negative result. The handling is very
easy, the background process that takes care for maintenance is not visible to
the user.

Command execution in enforced mode is determined by timeout =0xFF in the
request variable. When using enforced mode for command execution, the
target system can use the EEL_Handler(t) for background maintenance (space
generation) but it is not mandatory.

Figure 2-14 Schematic illustration of the enforced operation mode

User application EEL

|

rq.address
rq.timeout
rqg.identifier
rq.command

my addr; &
OxXFF;
nat;

write;

FAL command

'

EEL_Execute (&rq)

|

command ~

completed Status

Application Note RO1ANOOO6ED0102 27

EEPROM Emulation Library

2.10.1.1Enforced operation mode without usage of EEL_Handler(t)

Figure 2-15

application

The available space (inside the active and prepared regions) for
accommodation of variable instances is limited. When executing commands in
enforced mode without EEL_Handler(t) the available space decreases
continuously during writing as long as the space becomes consumed. In that
case new space must be generated internally inside the EEL before starting
the command execution. This means that the execution time of “space
consuming” commands (the WRITE command) cannot be constant. On the
other hand the user does not need to take care for background maintenance.

When pure enforced mode is used in the target system the
EEL_TimeOut_CountDown() function as well the EEL_Handler(t) are
mandatory.

Timing example of enforced command execution withou t EEL_Handler(t)

EEL_Execute(&rq)
EEL_Execute(&rq) —— EEL_Execute(&rq)
/
Y, EEL_Execute(&rq) /
/ /
/ /
user user user user t

EEL foreground

\

enforcing enforcing enforcing enforcing
write write write write

EEL background background space expansion

no space for the
instance detected

Example conditions:

rq.address_pu08 - no meaning for the timing

rq.identifier_u08 - always same identifier used
rq.timeout_u08 - always OxFF used

rq.command_enu - always EEL_CMD_WRITE command used

2.10.1.2 Enforced mode with background maintenance

To enjoy the simplicity of the enforced execution mode without the
disadvantage of not pre-determinable execution time the application can use
EEL_Handler(t) to prepare space in advance in convenient phases.

Calling EEL_Handler(t) cyclically at idle time (no EEL command under
execution) the application activates the EEL background supervision and
maintenance process. The background supervision checks if the momentary
EEL-pool status does still correspond with the EEL-pool configuration. If not
enough space detected by the background supervision, the background
maintenance starts space production process autonomous. This is the
instrument the application can use to produce enough space in advance and
to guaranty fast and constant write execution time at any time.

Note:

The foreground writing and background maintenance are dynamical processes
that influence each other. To ensure constant execution time of the WRITE
command the application must provide enough CPU time to the background
process. The relationship between “production of space” in the background
and “consumption of space” by foreground writing must match.

Application Note RO1ANOOO6ED0102 28

EEPROM Emulation Library

Figure 2-16

application

The degree of “space production” is only determined by the CPU time offered
to the background process via EEL_Handler(t).

The degree of “space consumption” is determined by the frequency and size of
variables written into the EEL-pool, as well by the space needed for refreshing
variables in background maintenance.

Timing example of enforced command execution withou t EEL_Handler(t)

EEL_Execute(&rq) —— EEL_Execute(&rq)

user H user H user

user
t

EEL foreground

EEL background

enforcing | | enforcing | | enforcing
write I I write I I write

»
L
enforcing
write

BG BG

EEL_Handler(t)
/7 EEL_Handler(t) / / ~—— EEL_Execute(&rq)
EEL_Handler(t)

{

T
| |
| |

BG

Example conditions:
rq.address_pu08- no meaning for the timing

rq.identifier_u08 - always same identifier used

rq.timeout_u08 - always OxFF used

rq.command_enu - always EEL_CMD_WRITE command used
time - used by EEL_Handler(t) for time-slice definition

Application Note RO1ANOOO6ED0102 29

EEPROM Emulation Library

2.10.2 Timeout execution mode

In the timeout execution mode the requester can determine the CPU time for
the command execution in advance. The resolution of the time period is
defined freely by the user when choosing the counting interrupt source. The
timeout period is defined in counting ticks. If the timeout period is longer than
the real command execution time, the command is executed in the same wise
as in enforced mode. If the timeout period is shorter than the command
execution time the EEL_Execute(&my_eel_request) function will return with
request-status “busy”. The remaining command will be continued time-slice-
wise by the EEL_Handler(t). The timeout mode is intended to be used in
synchronous time-slice based systems where each task allocates a fix interval
of CPU time for its activity.

Figure 2-17 Schematic illustration of the timeout operation mod e

User application

fe——

EEL

rq.command

rq.address = my addr;
rq.timeout = 0x20;
rqg.identifier = ,a"“;

= write;

@te 0 FAL command

EEL_Execute (&rq)

tatus.

check

State 2 /
3
status’

TO=0
AND
busy

command not S

completed

check

status

EEL Handler (0x20)

TO decrement

command //

completed

User_Timer ISR:
EEL TimeOut CountDown ()

EEL Handler (0x20)

&
N

Q

Idle state

background
supervision and
maintenance

Application Note RO1ANOOO6ED0102 30

EEPROM Emulation Library

2.10.2.1Command execution finished before timeout

When the timeout period specified in the request variable is longer than the
real time needed by the EEL for command execution, the
EEL_Execute(&my_eel _request) is left immediately after command
completion. The EEL does not consume the remaining time during comman
execution. The reason is, that application normally writes variables
asynchronously and wants to write as fast as possible.

Example conditions:

rq.address_pu08 - no meaning for the timing

rq.identifier_u08 - small EEL variable (i.e. 5 bytes)

rq.timeout_u08 - long timeout (16 timer ticks)

rq.command_enu - always EEL_CMD_WRITE command used
timeslice - 0x02 used here by EEL_Handler(t) for time-slice

Figure 2-18 Command execution completed before timeout

— EEL_Execute(&rq)

d

command EEL_Handler(2)
— 2‘;‘;’::" EEL_Handler(2) // /’,ﬁ EEL_Handler(2)
/ timeout /
appllcatlon user u user user user ‘ t
>
EEL foreground GrEiy ! ! ! ! ! !
EEL background BG BG BG

timer tck TTTT\TTTTTTTTUTTTMQTTTTUTTTTTTTTTTT

\ 2 ticks time-slice 2 ticks time-slice \ 2 ticks time-slice
16 ticks time-slice but for background for background for background
—— only 4 were used for
command execution

\

Note:

Black arrows symbolizes non-counting timer ticks (timeout counter is counted

down to 0x00).

Application Note RO1ANOOO6ED0102

31

EEPROM Emulation Library

2.10.2.2Timeout before command execution finished

When the timeout period specified in the request variable is shorter than the
real time needed by the EEL for command execution, the
EEL_Execute(&my_eel_request) is suspended with status=BUSY. The
uncompleted command must be continued by using the EEL_Handler(t)
function. When the remaining command is completed before time-slice is
passed, the EEL_Handler(t) will be terminated immediately. The status inside
the request variable changes from busy to finished. EEL does not consume
the remaining time of the time-slice when command is finished. The reason is,
that application normally writes asynchronously and want to write as fast as
possible.

Example conditions:

rq.address_pu08 - no meaning for the timing

rq.identifier_u08 - larger EEL variable (i.e. 125 bytes)
rq.timeout_u08 - execution timeout (5 timer ticks)
rq.command_enu - always EEL_CMD_WRITE command used
timeslice - 6 ticks, used here by EEL_Handler(t) for time-slice

Figure 2-19 Command execution completed in EEL_Handler(t)

—— EEL_Execute(&rq)

command S EEL_Handler(6)

—— suspended by EEL_Handler(6) / EEL_Handler(6)
/ timeout /
application user u user user user
EEL foreground e continue ! ! ! ! g
EEL background BG BG
timer ik TTTTTTTTTTTTTTHTTT@MMTTTT rrereem
\\ \ 6 ticks time-slice 6 ticks time-slice

\ 5 ticks time-slice \ for background for background
\— used for partially \\

command execution only 4 ticks of the 6 tick time-slice

used for command completion

Note:

The 1'st EEL_Handler(t) call continues the command execution. If the
command is finished in that time-slice, the EEL_Handler(t) will return
immediately before timeout is elapsed.

The next EEL_Handler(t) calls are managing the BG processes according to
the internal status of the EEL-pool:

- when no maintenance *) is necessary, supervision is running for full 6 ticks

- when any background process (REFRESH/PREPARATION) was interrupted
by a write command, it will be continued in EEL_Handler(t) after write
completion

*) maintenance means refresh or space expansion

Application Note RO1ANOOO6ED0102 32

EEPROM Emulation Library

2.10.3

Figure 2-20

Polling execution mode

In the polling execution mode the function EEL_Execute(&my_eel request) is
just initiating the command execution and returns with the request-status
“busy” after execution of the first internal state. The further command
execution is performed in the EEL_Handler(t) that can operate with its own
timeout period. If calling of EEL_Handler(0), the command execution or
background maintenance will be executed state by state. In this operation
mode the interaction frequency between the application and the EEL is the
highest (fastest reaction). It is intended to be used in asynchronous systems
where blocking of the CPU by any process must be minimized.

Note:

When pure polling mode is used in the system EEL_TimeOut_CountDown()
function becomes mandatory.

Schematic illustration of the polling operation mod e

User application

rq.address
rq.timeout
rq.identif
rq.command

my_addr;
0x00;
ier = ,a%;

= write; E EL

EEL Execute (&rq)

g

FDL command

status:

EEL Handler (0x00)

4

check

EEL Handler (0x00)

status

EEL_Handler (0x00) Idle state

4

l

Application Note RO1ANOOO6ED0102 33

EEPROM Emulation Library

2.10.3.1Full polling execution mode

The timeout parameter in the request variable as well the handler time-slice
value are 0x00. The EEL commands, the supervision and maintenance
process are executed very smooth, state by state.

Example conditions:

rq.address_pu08 - no meaning for the timing
rq.identifier_u08 - EEL variable
rq.timeout_u08 - 0x00, polling mode

rq.command_enu - always EEL_CMD_WRITE command used
time-slice - 0x00, no time-slice for the handler

Figure 2-21 Timing example of pure polling operation

application

EEL_Handler(0)

EEL_Handler(0)
—— EEL_Execute(&rq)

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂt

EEL foreground

EEL background

Figure 2-22 Timing in mixed operation mode (timeout and polling

application

‘UUUUUUUU RN

Y
\) \ B
- \; command is executed “J‘ ﬁ\(— ﬁﬁ -
supervision state by state [\

/ \ \
runnung [

\ maintenance supervision
/ \ starts preparation
| \ maintenance
starts refresh

threshold condition
detected by supervision

2.10.3.2Mixed execution mode (timeout execution and polling maintenance)

The timeout parameter in the request variable as well the handler time-slice
value are 0x00. The EEL commands, the supervision and maintenance
process are executed very smooth, state by state.

Example conditions:

rq.address_pu08 - no meaning for the timing

rq.identifier_u08 - EEL variable

rq.timeout_u08 - 0x04, timeout execution

rq.command_enu - always EEL_CMD_WRITE command used
time-slice - 0x00, no time-slice for the handler (maintenance)

)

EEL_Handler(0)

EEL_Handler(0)
—— EEL_Execute(&rq)

EEL foreground

EEL background

| Tﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
=000

00 - npopooo:

timer tck TTTTTTTJT\TTTTTTMTTTTTTTTTTTTTTTTTTTTTTT

—— \ \ e .
A \ \ \
\ \ command \
\ \ . \ supervision
\ completion \ f
\ \ ; N \ . running again
\ in polling mode \ maintenance
\ \ 5 ticks time-slice starts refresh
\\ —— used for partially and prepare
\\ command execution
\\ supervision

runnung

Application Note RO1ANOOO6ED0102 34

EEPROM Emulation Library

2.11 Supported command spectrum

There are two groups of commands supported by the EEL:

a) pool related commands influencing the whole pool status and structure.

b) variable related commands that control the access to the EEL data

Table 4 Command groups of the EEL

Command group

normal operation

exceptional operation

Pool related commands

EEL_CMD_STARTUP

EEL_CMD_CLEANUP

EEL_CMD_SHUTDOWN

EEL_CMD_FORMAT

Variable related commands

EEL_CMD_READ

EEL_CMD_WRITE

Note:

Refer to chapter “Operation” for command execution details

Application Note RO1ANOOO6ED0102

35

EEPROM Emulation Library

2.12

EEL execution planes

The EEL operates in so called two planes: background plane and foreground
plane that dedicated to different purposes. The background plane is intended
to perform maintenance and supervision work. The foreground plane is used
exclusively to perform asynchronous commands requested by the user. Some
of the commands require processes already implemented in the background
plane. In such cases the foreground is able to activate background processes
by swapping the activity focus into the background to perform necessary
maintenance measures.

2.12.1 Foreground plane

The foreground plane is receiving and executing user commands only. Any
foreground command can always suspend the maintenance process running
in the background. On the other hand a foreground command has to be
finished before next command can be executed.

Variable oriented commands (read and write) are executed directly and
completely in the foreground and are normally isolated from the maintenance
running in background. Only when space-alert or checksum-error happens in
the foreground the process focus is swapped temporary to the background.

Pool oriented commands (startup, shutdown, cleanup and format) are just
passing the command-request to the background and waits for its completion.
This allows re-usage of common FSM’s used for background maintenance and
foreground command execution.

In exceptional cases it can happen that due to very heavy write traffic the
maintenance process running in background gets no chance to prepare
enough space in time. In such a case the foreground write process can
request “space expansion” at the background process before being able to
continue writing. For that purpose the activity focus is swapped.

Figure 2-23 Swap mechanism scheme

Inspection
(cyclic)

maintain

Background Foreground

< Swap() no space !!!

expansion execute

SwapBack() > continue

User
commands
(asynchronous)

Application Note RO1ANOOO6ED0102 36

EEPROM Emulation Library

This approach allows collision-free operation even the user do not use the
EEL_Handler(t) and all commands are executed in “enforced” mode. It
simplifies the handling at user side without loosing any flexibility in the
operability. Swapping of execution focus plane does not change the command
handling at user side. It is not visible at user side, just the command execution
time increases for the time needed for the background processing.

As mentioned above, pool-oriented commands use the background processes
for its execution. That means that all error-codes generated in the background
must be transferred to the foreground (request variable). There could be errors
like FAL_ERR_PROTECTION that never happens during normal operation. To
simplify the error handling at user side unexpected error codes are
transformed to one common error code EEL_ERR_INTERNAL. The original
error code remains stored in the background and can be read by the function
EEL_GetDriverStatus(&my_eel_driver_status).

2.12.2 Background plane

The background plane is dealing with background processes, normally
executed when calling the function EEL_Handler(t) periodically. After EEL
initialization the background process is passive (EEL-Handler does not have
any effect and consumes, just few CPU cycles). After successful STARTUP
the handler becomes active and starts the execution of the background
process. There are several task the background process does manage, like:

a) background execution of pool related commands initiated by the foreground
plane

b) background execution of exceptional handling initiated by the foreground:

- when less than 2 prepared blocks detected
- when checksum error during READ command

¢) supervision of the refresh threshold and size of the invalid region

d) maintenance to eliminate problems detected by c)

Application Note RO1ANOOO6ED0102 37

EEPROM Emulation Library

Chapter 3 Application Programming Interface

3.1

3.1.1

3.1.2

The following chapters describe formally the user interface of the EEPROM

Emulation Library.

Data types

This chapter describes all data definitions used and offered by the EEL.

Library specific simple type definitions

Simple numerical type used by the library:

typedef unsigned char eel_u08
typedef unsigned int eel_ul6
typedef unsigned long int eel_u32

Note: types are defined in EEL_types.h

Enumeration type “eel_command_t”

This type defines all codes of available commands:

/* EEL command set */
typedef enum {

EEL_CMD_UNDEFINED = (0x00),
EEL_CMD_STARTUP = (0x00 |
EEL_CMD_WRITE = (0x00 |
EEL_CMD_READ = (0x00 |
EEL_CMD_CLEANUP = (0x00 |
EEL_CMD_FORMAT = (000 |
EEL_CMD_SHUTDOWN = (000 |

} eel_command_t;

0x01),
0x02),
0x03),
0x04),
0x05),
0x06)

Note: type is defined in EEL_types.h

Code value description:

EEL_CMD_UNDEFINED - undefined command (initial value)
EEL_CMD_STARTUP - plausibility check of the EEL data and driver
EEL CMD_WRITE - creates new instance of specified EEL variable
- reads last instance of the specified EEL variable
EEL_CMD_CLEANUP - refresh of all variables (minimize active region)

EEL_CMD_READ

EEL_CMD_FORMAT - format the EEL pool, all instances (data) are lost

EEL CMD_SHUTDOWN - deactivates the EEL

Application Note RO1ANOOO6ED0102

38

EEPROM Emulation Library

3.1.3 Enumeration type “eel_operation_status_t”

This type defines all codes of available driver operation status:

[* type of the EEL driver operation status */
typedef enum {
EEL_OPERATION_PASSIVE = (0x00),
EEL_OPERATION_IDLE = (0x30 | 0x01),
EEL_OPERATION_BUSY = (0x30 | 0x02)
} eel_operation_status_t;

Note: type is defined in EEL_types.h
Code value description:
EEL_OPERATION_PASSIVE - when library is not yet started

EEL_OPERATION_IDLE - only background supervision process is active
EEL_OPERATION_BUSY - fore- or background process is active

3.1.4 Enumeration type “eel_access_status_t”

This type defines all codes of available driver access status:

[* type of the access status */
typedef enum {
EEL_ACCESS_LOCKED = (0x00),
EEL_ACCESS_UNLOCKED = (0x40 | 0x01)
} eel_access_status _t;

Note: type is defined in EEL_types.h
Code value description:

EEL _ACCESS LOCKED - neither read nor write access possible
EEL_ACCESS_UNLOCKED - full access to the EEL is possible

Application Note RO1ANOOO6ED0102 39

EEPROM Emulation Library

3.1.5 Enumeration type “eel_status_t"

This type defines all codes of available request status and errors:

[* EEL status set */

typedef enum {
EEL_OK = (0x00),
EEL_BUSY = (0x00 | 0x01),
EEL_ERR_CONFIGURATION = (0x80 | 0x02),
EEL_ERR_INITIALIZATION = (0x80 | 0x03),
EEL_ERR_ACCESS LOCKED = (0x80 | 0x04),
EEL_ERR_COMMAND = (0x80 | 0x05),
EEL_ERR_PARAMETER = (0x80 | 0x06),
EEL_ERR_REJECTED = (0x80 | 0x07),
EEL_ERR_NO_INSTANCE = (0x80 | 0x08),
EEL_ERR_POOL_FULL = (0x80 | 0x09),
EEL_ERR_POOL_INCONSISTENT = (0x80 | 0x0A),
EEL_ERR_POOL_EXHAUSTED = (0x80 | 0x0B),
EEL_ERR_INTERNAL = (0x80 | 0x0C)

} eel_status_t;

Note: type is defined in EEL_types.h

Code value description:

EEL_OK - no error occurred

EEL_BUSY - request is under processing
EEL_ERR_CONFIGURATION - bad FAL or EEL configuration
EEL_ERR_INITIALIZATION - EEL_Init(), EEL_Open missed
EEL_ERR_ACCESS LOCKED - STARTUP missing or fatal operation error
EEL ERR_COMMAND - wrong command code
EEL_ERR_PARAMETER - wrong parameter

EEL_ERR_REJECTED - another request under processing

EEL ERR_NO_INSTANCE - no instance found (variable never written)
EEL_ERR_POOL_FULL - no space for writing data

EEL_ERR_POOL_INCONSISTENT - no active block found within EEL-pool
EEL_ERR_POOL_EXHAUSTED - EEL pool to small for correct operation
EEL_ERR_INTERNAL - internal error

Application Note RO1ANOOO6ED0102 40

EEPROM Emulation Library

3.1.6

3.1.7

Structured type “eel_request_t”

This type defines structure of the EEL request variables:

[* EEL request type */
typedef __near struct {

__near eel_u08* address_pu0 8;
__near eel_u08 identifier_ u0s;

__near eel_u08 timeout_u08 ;
__near eel_command_t command_enu ;
__near eel_status_t status_enu;

} eel_request_t;

Note: type is defined in EEL_types.h

Structure member description:

address_pu08 - source/destination RAM-address
identifier_u08 - variable identifier

timeout_u08; - number of timeout ticks for execution
command_enu; - command has to be processed
status_enu; - error code after command execution

Structured type “eel_driver_status_t"

This type defines structure of the EEL request variables:

[* type of the internal EEL driver status */

typedef struct {
eel_operation_status_t operationSt atus_enu;
eel_access_status_t accessStatu s_enu;
eel_status_t backgroundS tatus_enu;

} eel_driver_status_t;

Note: type defined in EEL_types.h

Structure member description:

operationStatus_enu - operation status of the foreground process
accessStatus_enu - access rights indicator
backgroundStatus_enu - error status of the background process

Application Note RO1ANOOO6ED0102 41

EEPROM Emulation Library

3.2

3.2.1

Functions

Due to the request (data) oriented interface of the EEL the functional interface

is very narrow. Beside the initialization function and some administrative
function the whole EEPROM access is concentrated to two functions only:
EEL_Execute(&my_eel_request) and EEL_Handler(t).

The interface functions create the functional software interface of the library.
They are prototyped in the header file eel.h

EEL_Init

Initialization of all internal data and variables.

C Language Interface (Renesas version)

eel_status_t __ far EEL_Init(void);

C Language Interface (IAR version)

__far_func eel_status_t EEL_Init(void);

Pre-condition

The FDL must be initialized already

Post-condition

None

Argument

Argument Type Description

none

Return types/values

Argument Type Description

when EEL pool and
EEL_OK eel_status_t descriptor OK

when EEL pool or EEL

EEL_ERR_CONFIGURATION eel_status_t .
— - — - descriptor wrong

Code example:

eel_status_t my_eel_status;

my_eel_status = EEL_Init();
if(my_eel_status !'= EEL_OK) MyErrorHandler();

Application Note RO1ANOOO6ED0102

42

EEPROM Emulation Library

3.2.2

3.2.3

EEL_Open

This function can be used by the application to open the access to the EEL
pool.

C Language Interface (Renesas version)

void __ far EEL_Open(void);

C Language Interface (IAR version)

__far_func void EEL_Open(void);

Pre-condition

The FDL must be initialized already

Post-condition

none

Argument

Argument Type Description

none

Return types/values

Argument Type Description

none

Code example:

EEL_Open();

EEL_ Close

This function can be used by the application to close the access to the EEL
pool.

C Language Interface (Renesas version)

void __ far EEL_Close(void);

Application Note RO1ANOOO6ED0102 43

EEPROM Emulation Library

C Language Interface (IAR version)

__far_func void EEL_Close(void);

Pre-condition

None

Post-condition

In case that the USER part of the FDL-pool also “opened” too at that time, the
data flash hardware remains active. To switch the data flash passive, both
parts of the FAL-pool (EEL-part and USER-part) has to be closed.

Argument

Argument Type Description
none

Return types/values

Argument Type Description
none

Code example:

EEL_Close();

Application Note RO1ANOOO6ED0102

44

EEPROM Emulation Library

3.2.4

EEL_Execute

This is one of the main function of the EEL the application can use to initiate
execution of any command. Depending on the defined operation mode (time
out value) this function returns:

a) immediately after execution of the first command state (timeout = 0)

b) after execution of the defined time-slice (O<timeout<255)
c) after execution of the complete command (timeout = 255)

C Language Interface (Renesas version)

void _ far EEL_Execute(eel_request_t* request_pst r;

C Language Interface (IAR version)

__far_func void EEL_Execute(__near eel_request_t __near*
request_pstr);

Pre-condition

EEL_Init() executed successfully
EEL_Open() must be executed before.

Post-condition

none

Argument

Argument Type Description

This argument defines user’s
request should be processed
by the EEL. It is passing the
request variable to the driver
request_pstr eel_request_t* that is used for bi-directional
information exchange before
and during command
execution between EEL and
the application.

Application Note RO1ANOOO6ED0102 45

EEPROM Emulation Library

Return types/values

Argument Type Description

none

Code example:

eel_request_t my_eel request_str;
eel_status_ t my_eel_status;

my_eel_status = EEL_Init();
EEL_Open();

[* enfoced mode -----------m-msmmmmmeeeeeeee */
my_eel_request_str.timeout_u08 = OxFF;
my_eel_request_str.command_enu =EEL _CMD_START UP;

EEL_Execute(&my_eel_request_str);
if(my_eel_request_str.status_enu != EEL_OK) MyError Handler();

[*timeout Mode -------m--mmmmmmemmee e */
my_eel_request_str.timeout_u08 =5;
my_eel_request_str.command_enu = EEL _CMD_FORMA T;

do {
EEL_Execute(&my_eel_request_str);
EEL_Handler(0);

twhile(my_eel_request_str.status_enu == EEL_ERR_REJ ECTED);
do {

EEL_Handler(5);
while(my_eel_request_str.status_enu == EEL_ERR_BUSY);
if(my_eel_request_str.status_enu != EEL_OK) MyError Handler();
[* STARTUP after FORMAT mandatory (enfoced mode)--- - */
my_eel_request_str.timeout_u08 = OxFF;
my_eel_request_str.command_enu =EEL _CMD_START UP;
EEL_Execute(&my_eel_request_str);
if(my_eel_request_str.status_enu != EEL_OK) MyError Handler();
[* polling mode -------------msmmmm e e */
my_eel_request_str.address_pu08 = (eel_u08)&A[0 1;
my_eel_request_str.identifier_u08 ="A";
my_eel_request_str.timeout_ u08 =0;

my_eel_request_str.command_enu =EEL_CMD_WRITE ;

do {
EEL_Execute(&my_eel_request_str);
EEL_Handler(0);

twhile(my_eel_request_str.status_enu == EEL_ERR_REJ ECTED);
do {

EEL_Handler(0);
while(my_eel_request_str.status_enu == EEL_ERR_BUSY);

if(my_eel_status !'= EEL_OK) MyErrorHandler();

Application Note RO1ANOOO6ED0102

46

EEPROM Emulation Library

3.2.5

EEL_Handler

Depending on internal status of the EEL this function is managing different
processes as follows:

a)

When no user command is processed in the foreground, the EEL_Handler(t) is
executing the internal maintenance process. It is monitoring permanently the
size of the “active region” to trigger the “refresh process” when exceeded the
defined EEL_REFRESH_BLOCK_THRESHOLD. On the other side
“preparation process” is triggered in the background whenever an invalid block
is found in the EEL pool. Finally it checks if any requests from the foreground
are pending in the meantime.

b)

If a foreground command is not finished in “timeout” or “polling” mode the
EEL_Handler(t) takes care for continuation of the execution of not-finished
commands in the next time-slices.

C Language Interface (Renesas version)

void __ far EEL_Handler(eel_u08 timeout_u08);

C Language Interface (IAR version)

__far_func void EEL_Handler(eel_u08 timeout_u08);

Pre-condition

EEL initialized and opened

Post-condition

None

Application Note RO1ANOOO6ED0102 47

EEPROM Emulation Library

Argument
Argument Type Description
Timeout value expressed in
ticks.
If timeout_u08=0 only one
timeout_u08 eel 08 state of the internal FSM will

be executed.

If timeout_u08<>0 internal
states are executed as long
the timeout counter>0.

Return types/values

Argument Type Description

none

Code example:

[* The best place for EEL_Handler is the scheduler loop */
eel_u08 my_time_slice;

my_time_slice = 0x00;

do {
EEL_Handler(my_time_slice);
User_Task_A();
User_Task_B();
User_Task_C();
User_Task_D();

} while(true);

Application Note RO1ANOOO6ED0102 48

EEPROM Emulation Library

3.2.6

EEL_ TimeOut_CountDown

This function counts the internal 8-bit timeout counter down to zero. When
executing a command, the program counter remains inside the
EEL_Execute(&my_eel_request) or EEL_Handler(t) as long this counter>0.
The EEL_TimeOut_CountDown() function can be called at any place in the
application. The preferable place is any periodical interrupt service routine, for
example the timer ISR of the operating system. When the internal 8-bit timer
achieve the value 0x00 the EEL_TimeOut_CountDown() function stops the
counting. The counter starts counting again when a new “timeout” request was
placed via EEL_Execute(&my_eel_request) or when EEL_Handler(t) was
called with t>0.

C Language Interface (Renesas version)

void __ far EEL_TimeOut_CountDown(void);

C Language Interface (IAR version)

__far_func void EEL_TimeOut_CountDown(void);

Pre-condition

none

Post-condition

Timeout counter decremented in case it was running.

Argument

Argument Type Description

none

Return types/values

Argument Type Description

none

Code example:

#pragma interrupt INTTMOO isr_OS_timer
void isr_OS_timer(void)

EEL_TimeOut_CountDown();
}

Application Note RO1ANOOO6ED0102 49

EEPROM Emulation Library

3.2.7

EEL_GetDriverStatus

This function opens a way to check the internal status of the EEL driver in
advance, before placing a request.

C Language Interface (Renesas version)

void _ far EEL_GetDriverStatus(__near eel_driver_ status_t*
driverStatus_pstr);

C Language Interface (IAR version)

__far_func void EEL_GetDriverStatus(__near eel_dr iver_status_t
__near* driverStatus_pstr);

Pre-condition

EEL initialized and opened

Post-condition

none

Application Note RO1ANOOO6ED0102

50

EEPROM Emulation Library

Argument

Argument

Type

Description

driverStatus_pstr

eel_driver_status_t*

This argument is a
placeholder for capturing the
internal status of the driver. It
indicates the operation status,
the access status and the
status of the background
process of the EEL.

EEL_OPERATION
_PASSIVE

EEL_OPERATION
_IDLE

EEL_OPERATION
_BUSY

driverStatus_pstr->
operationStatus_enu

EEL not initialized or not
opened or not started-up
successfully. Operation and
access to the data is not
possible.

After successful STARTUP
when neither foreground
command nor background
maintenance is active.

EEL is processing an user
command or when main-
tenance process is active in
background. Other commands
are not possible at that time.

EEL_ACCESS_LO
CKED

EEL_ACCESS U

driverStatus_pstr->
accessStatus_enu

STARTUP not
executed/successful or access
to data-flash was locked by
the EEL due to any internal
problems.

STARTUP executed
successfully, read/write

NLOCKED access to the EEL-pool is
possible
Any value of the eel_status_t
related to background

any driverStatus_pstr-> processes are possible. It will

backgroundStatus_enu

be actualized/overwritten by
the background process only.
The usage of it is quite limited.

Return types/values

Argument

Type

Description

none

Application Note RO1ANOOO6ED0102

51

EEPROM Emulation Library

Code example:

eel_request_t my_eel_request_str;
eel_status_t my_eel_status_enu;
eel_driver_status_t my_eel_driver_status_str;

my_eel_status_enu = EEL_Init();
EEL_Open();

[* execute STARTUP if not already done */
EEL_GetDriverStatus(&my_eel_driver_status_str);
if(my_eel_driver_status_str.operationStatus_enu==EE
ASSIVE)

{

my_eel_request_str.timeout_u08 = OxFF;
my_eel_request_str.command_enu =EEL_CMD_STA

EEL_Execute(&my_eel_request_str);
if(my_eel_request_str.status_enu != EEL_OK) MyErr

}

[* write data when access already possible */
EEL_GetDriverStatus(&my_eel_driver_status_str);
if(my_eel_driver_status_str.accessStatus_enu==EEL_A
D)

{

my_eel_request_str.address_pu08 = (eel_u08)&A
my_eel_request_str.identifier_u08 ="A';
my_eel_request_str.timeout_ u08 =0;
my_eel_request_str.command_enu =EEL_CMD_WRI

do {

EEL_Execute(&my_eel_request_str);

EEL_Handler(0);
twhile(my_eel_request_str.status_enu==EEL_ERR_REJ

do {
EEL_Handler(0);
while(my_eel_request_str.status_enu==EEL_ERR_BUSY

if(my_eel_request_str.status_enu != EEL_OK) MyErr

L_OPERATION_P

RTUP;

orHandler();

CCESS_UNLOCKE

[0];

TE;

ECTED);

);

orHandler();

Application Note RO1ANOOO6ED0102

52

EEPROM Emulation Library

3.2.8

EEL_GetSpace

This function provides the number of flash words inside the active-head and
the prepared region that can still absorb new references and data.

C Language Interface (Renesas version)

eel_status_t _ far EEL_GetSpace(__near eel_ul6*s pace_pul6);

C Language Interface (IAR version)

_ far_func eel_status_t EEL_GetSpace(__near eel_u 16 _ near*
space_pul6);

Pre-condition

EEL must be initialized, opened and STARTUP must be executed before
space can be calculated

Post-condition

none

Argument

Argument Type Description

space_pul6 eel_ule6* Address_ of the space
information variable

Return types/values

Argument Type Description

EEL_OK eel_status_t When space value is
correct

EEL_ERR_INITIALIZATION cel status t | When EEL_Init() or

EEL_Open() is missing

when STARTUP

EEL_ERR_ACCESS_LOCKED eel_status_t gy
- - - - - command missing

when space not stable,

EEL_ERR_REJECTED eel_status_t . . e
— — — — just being modified.

Application Note RO1ANOOO6ED0102

53

EEPROM Emulation Library

Code example:

eel_request_t my_eel_request_str;
eel_status_t my_eel_status_enu;
eel_ul6 my_eel_space_ulé6;

my_eel_status = EEL_Init();
EEL_Open();

[* execute STARTUP if not already done */
EEL_GetDriverStatus(&my_eel_driver_status_str);

if(my_eel_driver_status_str.operationStatus_enu==EE L_OPERATION_P
ASSIVE)

{

my_eel_request_str.timeout_u08 = OxFF;

my_eel_request_str.command_enu =EEL_CMD_STA RTUP;

EEL_Execute(&my_eel_request_str);
if(my_eel_request_str.status_enu != EEL_OK) MyErr orHandler();

[* read current space value */
my_eel_status_enu = EEL_GetSpace(&my_eel_space_ul6) ;
if(my_eel_status_enu==EEL_OK)

if(my_eel_space_ul6<MY_SPACE_ALERT_THRESHOLD)

my_eel_request_str.timeout_u08 = OxFF;
my_eel_request_str.command_enu =EEL CMD_C LEANUP;
EEL_Execute(&my_eel_request_str);
if(my_eel_request_str.status_enu!=EEL_OK) MyErr orHandler();
}

}

else

MyErrorHandler();

}

Application Note RO1ANOOO6ED0102 54

EEPROM Emulation Library

3.2.9 EEL_GetVersionString
This function can be used by the application to check and control the library
version information at runtime. | provides the pointer to the zero-terminated
library version-string in ASCII format.
Table 5 Format information of the library version string
Field: Field meening Field type |Field length |Comment
1 Library mark fix 1|"S", "E", "A" ...
2 Device info variable 1-6|free content between field 1 and field 3
3 Library type info |fix 3] starting with "T" followed by 2 char
4 Compiler info variable 5-6|starting with "R"/"I" or "G" followed by 3 digits
5 Library version fix 4 |starting with "E" or "V" followed by 3 max. digits
6 compiler setting fix 3|starting with "C" followed by 2 digits
i Zero-Termination |[fix 1|always 0x00
Total size: 18-24

Examples:

Version string of Renesas version 1.0.4 of the EEL is: “EKORT03R200GV104”
Version string of the IAR version 1.0.4 of the EEL is: “EKORTO031400GV104”

C Language Interface (Renesas version)

__far eel_u08* _ far EEL_GetVersionString(void);

C Language Interface (IAR version)

__far_func eel_u08 _ far* EEL_GetVersionString(vo id);

Pre-condition

none

Post-condition

none

Application Note RO1ANOOO6ED0102 55

EEPROM Emulation Library

Argument

Argument Type Description

none

Return types/values

Argument Type Description
pointer to the first character of

__far eel_u08* the zero-terminated library

version string.

Code example:

__far eel_u08* my_version_string_pu08;

my_version_string_pu08 = EEL_GetVersionString();

PrintMyVersion(&my_version_string_pu08);

Application Note RO1ANOOO6ED0102

56

EEPROM Emulation Library

Chapter 4 Operation

This chapter describes the installation, integration, configuration and of the
EEPROM Emulation library.

4.1 Installation

All components of the EEPROM Library package are extracted by the self
extracting installer file RENESAS_EEL_KOR_TO03_version.exe

After acceptation of the license the library for the required device and compiler
environment can be selected.

Figure 4-1 EEL installer mask

£ 378KOR EEL TO3 Setup o] 3
Library Selection
Please select the library RE NESAS
Dievice Farily: FE3 hd
Device [uPD7aF1831 =]

Compilet: IRENES.C\S - I
Compiler Wersion: I't"2-><>< 'I
Library Version: I 'I

Clear selection

Device is not listed

Renesas Electromics Europe GmbH

< Back I Mext = I Cancel

After successful installation all EEL related files are copied to the chosen root-
directory

Figure 4-2 Subdirectory tree of the EEL after installation

- B (= root]
r;_.-.: el B J[78KO0R]
= oalie B[J[EEL104_uPD78F1812 RENESAS2xx]

[£] eel_types.h B [smp]
E] eel_types.inc |;_" [asm]
L3J1c)

N\

. =] eel_descriptor.c
[£] eel_descriptar.asm — i i

- 2] eel_descriptor.h

|| eel_descriptor inc = :

51 eeF- b ket Hor %Iled_sample_ﬂer_ﬁle.d
=] eel_sample_iinker_Tie. =] eel_user_types.h

Application Note RO1ANOOO6ED0102 57

EEPROM Emulation Library

The main file of the installed library package is the pre-compiled EEL. The

header and include files defining the API as well the descriptor files are
available in source form.

Figure 4-3 File structure of the EEL delivery packa ge

pre-compiled EEL.LIB

eel_types.h eel.h eel_descriptor.h
; ; . ; eel_user_types.h
eel_types.inc eel.inc eel_descriptor.inc - -

eel_sample_linker_file.dr Gl @Gl

Source files eel_descriptor.asm CHLEEmEn®

Note:

Assembler files (*.INC, *.ASM) are available for Renesas compiler
environment only.

Application Note RO1ANOOO6ED0102

EEPROM Emulation Library

4.2 Basic workflow
To be able to use the EEL (execute commands) in a proper way the user has
to follow a specific startup and shutdown procedure.

Figure 4-4 Basic workflow of the EEL

Power OFF
ON OFF

EEL_IQiﬁ)‘

STS:0OK
STS:error

EEL_Open() EEL_Close()

STS: error

shutting-down
busy

CMD:shutdown

executing CMD: STS:
busy Write OK,

Read error
CMD:format Cleanup
executing
busy

STS: OK

Notes:
1 - The FORMAT command can be executed without successful STARTUP

2 - After execution of the FORMAT command the EEL goes into state
“opened”, so STARTUP command must be executed again .

Application Note RO1ANOOO6ED0102 59

EEPROM Emulation Library

4.3

43.1

Configuration

The EEL configuration can be divided into two stages:
- configuration of the EEL pool in the FAL-descriptor
- configuration of the EEL library in EEL-descriptor

Pool configuration

The size of the EEL pool is configured in the FAL_descriptor files. The
minimum size of the EEL-pool is 4 blocks (1 active, 1 prepared, 1 being erased
and one potentially excluded). This is the virgin condition. At runtime the EEL
must be able to work with at least 1 excluded block.

File FDL_descriptor.h

EEL_POOL_SIZE 6 [* specify number of EEL blocks, mi n4*

Note:
EEL_POOL_SIZE should not exceed the FDL_POOL_SIZE

File EEL_descriptor.h

EEL_STORAGE_TYPE ‘D’ /* determines flash medium */
‘D’ - data flash and FDL in use
other values - invalid

EEL_REFRESH_BLOCK_THRESHOLD 3 /* determines refres h threshold */

Note:

It is not easy to develop a precise and certain formula for the refresh-threshold
because the order of written/refreshed instances in the active-region is a
random process decided at runtime. Good results can be achieved when
defining the threshold to (N + 1) where N is the number of blocks needed for
coverage of all initial instances of all variables declared in EEL descriptor.
Generally the bigger the prepared region the smoother is the run-time
operation of the EEL Therefore the threshold should be minimized in
relationship to the amount of data.

It is strongly recommend to check the runtime behav ior of the EEL at a
given configuration in the target system under wor st case conditions
(variable size, variable number, threshold, pool-si ze, block exclusion,
writing speed...) before establishing and releasing the configuration.

Application Note RO1ANOOO6ED0102 60

EEPROM Emulation Library

4.3.2

Variable configuration

The number and size of variable managed by the EEL are configured in the
EEL_descriptor files. The EEL driver/library can only read/write variable-ID’s
registered in the EEL-descriptor.

File EEL_descriptor.h

EEL_VAR_NO 8 /* number of variables handled by EEL, min 1*/

File EEL_descriptor.c

/* EEL variable size expressed in bytes */

#define
#define
#define
#define
#define
#define
#define
#define

bsize_A
bsize B
bsize_C
bsize_D
bsize_E
bsize F
bsize X
bsize_zZ

(sizeof(type_A))
(sizeof(type_B))
(sizeof(type_C))
(sizeof(type_D))
(sizeof(type_E))
(sizeof(type_F))
(sizeof(type_X))
(sizeof(type_2))

/* EEL variable size expressed in words */

#define
#define
#define
#define
#define
#define
#define
#define

__far const eel_u08 eel_descriptor[EEL_VAR_NO+1][4]

wsize_A
wsize_B
wsize_C
wsize_D
wsize_E
wsize_F
wsize_X
wsize_Z

(bsize_A+3)/4)
(bsize_B+3)/4)
(bsize_C+3)/4)
(bsize_D+3)/4)
(bsize_E+3)/4)
(bsize_F+3)/4)
(bsize_X+3)/4)
(bsize_z+3)/4)

[*identifier ~ word-size (1...64) byte-size (1.. 255) RAM-Ref. */
/* _________________ */
(eel_u08)'a', (eel_u08)(wsize_A), (eel_u08)(bsiz e_A), 0x01,\
(eel_u08)'b', (eel_u08)(wsize_B), (eel_u08)(bsiz e_B), 0x01,\
(eel_u08)'c', (eel_u08)(wsize_C), (eel_u08)(bsiz e C), 0x01,\
(eel_u08)'d’, (eel_u08)(wsize_D), (eel_u08)(bsiz e D), 0x01,\
(eel_u08)'e', (eel_u08)(wsize_E), (eel_u08)(bsiz e_E), 0x01,\
(eel_u08)'f, (eel_u08)(wsize_F), (eel_u08)(bsiz e_F), 0x01,\
(eel_u08)'x', (eel_u08)(wsize_X), (eel_u08)(bsiz e _X), 0x01,\
(eel_u08)'z', (eel_u08)(wsize_Z), (eel_u08)(bsiz e _Z), 0x01,\
0x00, 0x00, 0x00, 0x00, \
h
Note:

The layout of eel_descriptor.c shown above differs from the delivered. To be
able to display it in a readable form the bsize_? and wsize_? were predefined
temporary.

The EEL descriptor is a [N+1] vector containing descriptor information of each
EEL variable (N is the total number of EEL variables registered).

Each variable descriptor is an array of 4 bytes.

The EEL descriptor must be terminated by a descriptor terminator (4 bytes
0x00). This pattern is used internally by the EEL as descriptor-end-criteria in
the variable searching process.

Application Note RO1ANOOO6ED0102 61

EEPROM Emulation Library

4.3.3

Identifier:

The 1'st byte of the variable descriptor is the “identifier” field that must be
unigue within the whole EEL-descriptor. Variables can be identified, read and
written by using this identifier. Valid values for identifier field are Ox01...0xFE.

Word-size:
The 2'nd byte of the variable descriptor specifies the size of the variable
expressed in words. Valid values for word-size field are 0x01...0x40..

Byte-size:
The 3'rd byte of the variable descriptor specifies the size of the variable
expressed in bytes. Valid values for byte-size field are 0x01...0xFF.

RAM-ref:

The 4'th byte of the variable descriptor is the “RAM-reference” which should
indicate EEL variables referenced by RAM-reference. This field is only relevant
when EEL is using the FCL for flash access. When FDL is accessing the flash,
the “RAM-reference” files doesn’t have any meaning (in that case each
variable is referenced by RAM automatically).

Pool configuration hints and tipps

During operation the situation in the EEL-pool changes whenever data are
written into it. This is a high dynamic, unpredictable random process. On the
other hand each application has different timing requirements when writing
data. Some application need so called burst write (writing many data in
relatively short time e.g. crash data in airbag applications). Other applications
have to write data permanently in equidistant intervals like odometer in
automotive applications. Moreover the size of variables and its individual write
cycles and writing frequency may influence the real write-time.

When writing data into the EEL-pool three different cases are possible:

1) enough space for the instance and its reference exists in active head
2) not enough space in active head but more than 2 prepared blocks exist.
3) not enough space in active head but less than 3 prepared blocks exist.

In case 1) the execution time of the WRITE command consists of the pure
writing-time only:
T1(WRITE) = t(write).

In case 2) the execution time of the WRITE command consists of two
components: the activation-time and writing-time:
To(WRITE) = t(activation) + t(write).

In case 3) the execution time of the WRITE command consists of three
components: the expansion-time, activation-time and writing-tim3:
T3(WRITE) = t(expand) + t(activation) + t(write).

Where: TLWRITE) < T,(WRITE) <<< T3(WRITE)

The difference between T;(WRITE) and T,(WRITE) is very small and
cannot/mustn’t be avoided by the user (system architecture related behavior).

The T3(WRITE) is much longer than T,/T, (WRITE) because it incorporates
block erase time. Consequently to keep writing-time constant during EEL

Application Note RO1ANOOO6ED0102 62

EEPROM Emulation Library

operation the user should avoid situation described in case 3) by keeping the
background maintenance alive. When calling the EEL_Handler(t) permanently
in the application idle loop the EEL will automatically remove conditions
described in case 3) according to the EEL-pool configuration.

There are some general dependencies that should be taken into account when
configuring the EEL and its pool.

1) the bigger the prepared area S(P) the better the real time performance
2) the bigger the S(F) the better (more efficient) the usage of erase cycles
3) the refresh threshold should be max. 1 block bigger than S(D)

In below examples following abbreviations were used:

B(P) — number of prepared blocks in initially programmed EEL-pool

B(D) — number of blocks containing initial data

S(H) - size of block header expressed in flash words

S(R) - size of the initial reference area in the active heading block in words
S(F) —size of the free space in active heading block in words (active space)
S(D) - size of the initial data area in the active head expressed in word
S(B) - size of the block expressed in words

SEP - size of the min. separator between reference and data area in words
N — number of variables registered in the EEL_descriptor.

wsize - size of the given variable expressed in words (see EEL_descriptor).

TH - refresh threshold defined in eel_descriptor.h

Where:
S(B) = 512, S(H) = 8, SEP = 3, S(R) =2*N + SEP

N
S(D) =) wsize(data,)
i=1

After initial programming following situation in EEL pool is assumed:

1) the active region of the EEL-pool contains only one instance (the initial one)
of each variable registered in EEL descriptor.

2) the remaining EEL (none-exluded and data-less) blocks are prepared.

In such situation the remaining active space S(F) in the active heading block
and the number of prepared blocks S(P) could be one criteria for proper
configuration of the refresh threshold.

S(F) = S(B) - S(H) - S(R) — S(D)

CAUTION:
Before releasing the EEL configuration have to be e nsured by tests
under worst case conditions (write frequency, write duration, block

exclusion and so on) required by the application.

The following practical examples of EEL pool configuration should illustrate the
dependancies.

Application Note RO1ANOOO6ED0102 63

EEPROM Emulation Library

Figure 4-5 Configuration for small data amount whe re S(F) is sufficient

—
Block Block Block Block Block Block
S(H) Header Header Header Header Header Header
active prepared prepared prepared prepared prepared
1
2
SR) Refer:nces
sep
S(F) free free free free free free S(B)
S(D) |\
1
Data \
\
{ J\L J
\
B(D) =1 \
©) \ B(P)=5
\ active space S(F)
___ auitebigin
relationship to
TH=1 the data amount

In the above scenario the active space S(F) is quite big, so that many
instances of relatively small variables can be written into it before activation of
the next block becomes necessary. When setting TH=1 the B(P) will be
maximized automatically by the background process (EEL_Handler(t)). The
relatively big buffer of prepared blocks allows intensive, continuous writing
process for a long time before “space expansion” will be enforced by a pool-full
situation.

Figure 4-6 Configuration for larger data amount wh ere S(F) is sufficient

—
Block Block Block Block Block Block
S(H) Header Header Header Header Header Header
active active prepared prepared prepared prepared
1 T N1
2 N
S(R) s
N2
P
free
S(F) free
free free free free S(8)
Data \\
S(D) —— A
— Data
\
I \
. \ _J
\
\
L JA\L J
\
\
_ \ active space S(F) B(P)=4
B(D)=2 __ aitebigin
L) relationship to
the data amount
TH=2

This example is similar to the previous one, but the total amount of initial data
excides the space in one block. The active space is big enough, consequently
the refresh threshold TH can be set to 2 to keep B(P) at maximal possible
level.

Application Note RO1ANOOO6ED0102 64

EEPROM Emulation Library

Figure 4-7 Configuration for larger data amount wh ere S(F) is not sufficient

—
Block Block Block Block Block Block
S(H) Header Header Header Header Header Header
active active prepared prepared prepared prepared
1 T ™
2 N
S(R) N2
[N1
o N
N P
s T
S(F) free free
-= \ free free free free S(8)
\
\
 — \
\
\
Dat \\
ata \
S(D) \
\
L | \
| \
Datt \
ata \
\
\
| \
. _J
L) J
\
\
L B(D)=2 \) B(P)=4
\\ active space S(F)
\ quite small in
relationship to
TH=3

the data amount

In that example like in the previous one, the initial data occupies 2 blocks
(B(D)=2), but in that case the remaining space S(F) in the active head is very
small. To avoid that each write access would immediately cause a refresh and

afterwards an erase cycle, the refresh threshold TH must be set to TH = B(D)
+ 1 =3inthat case.

Application Note RO1ANOOO6ED0102 65

EEPROM Emulation Library

4.4

4.5

Initialisation

After power-on RESET the EEL has to be initialized by using the EEL_Init
function. After this the plausibility of the configuration is checked and all
internal variables are initialized. The driver remains passive and access to the
flash medium is disabled.

my_eel_status_u08 = EEL_Init();
if (my_eel_status_u08 == EEL_OK)
[* EEL is initialized */

}
else My_ErrorHandler();

EEL activation and deactivation

After power-ON reset the data flash hardware is passive. Before using the
EEL commands the access to the data flash has to be opened and the clock of
the data flash hardware has to be switched on.

The physical resource data-flash is divided in the FAL into two virtual parts: the
EEL-pool and the USER-pool. Both of them can be opened and closed
independently. To open access to the EEL-pool the EEL_Open() function has
to be called. To avoid unexpected side-effects the FAL is managing the data
flash clock status (ON/OFF) internally.

The sequencer clock:

. is OFF after FAL_Init(...)

. goes ON when any part of the FAL-pool is beeing opened.
. remains ON when any part of the FAL-pool is still open

. goes OFF when both parts of the FAL-pool were closed.

The EEL-pool can be opened and clocsed by using the interface function
EEL_Open()/EEL_Close().

Application Note RO1ANOOO6ED0102 66

EEPROM Emulation Library

<POWER-ON RESET> [* sequencer clock is OFF */
my_fal_status = FAL_Init(&my_fal_descriptor);
if (my_fal_status <> FAL_OK) My_ErrorHandler();

my_eel_status = EEL_Init();
if (my_eel_status <> EEL_OK) My_ErrorHandler();

E'IIEL_OpenO; [* data flash clock starts here contr olled */

EEL-commands can be executed here

FAL_Open(); [* data flash clock remains ON here */

FAL commands can be used for access to the USER-p ool

EEL_Close(); /* data flash clock remains ON be cause *
/* FAL is still accessing the USE R-pool */

EEL-commands cannot be executed anymore

FAL-commands can be used for access to the USER-p ool

FAL_Close(); /* data flash clock is switched O FF here */

4.6 Foreground and background process

The backgound process is not visible directly to the user. It should take care
for keeping conditions defined by the user in the configuration. Especially
minimation of the invalide region and maximation of the space (according to
the predefined refresh threshold).

4.6.1 Controlling background process

When automatical maintenance is required, the EEL_Handler(t) has to be
called periodically in any loop (for example in the idle-loop or in the scheduler-
loop).

When the application want to know if background maintenance is surelly
finished the operation status provided by EEL_GetDriverStatus(...) must be
stable EEL_OPERATION_IDLE for atleast4 EEL_Handler(0) calls.

In other words, min. 4 internal states of the EEL must be executed in
EEL_OPERATION_IDLE operation-status to be sure that the background
maintenance is definitively finished.

Application Note RO1ANOOO6ED0102 67

EEPROM Emulation Library

Figure 4-8 Example flow to ensure background passivity (enforc ed mode only)

S

'

| my_fal_status = FALInit(.) |

error
my_fal_status ?

FAL_OK Y
Error

my_eel_status = EEL_Init(...)

error

my_eell_status ?

Error
EEL_OK Y
error Y Error
\ EEL_Open() \
Y
\ EEL_Execute(STARTUP, OxFF) \
| EEL_Execute(FORMAT, OxFF) |
? my_eel_request.status ?
EEL_ERR_POOL_INCONSISTENT
(EEL_OK
y
EEL_Execute(WRITE, OxFF)
error
my_eel_request.status ?
EEL_OK Y
Error
EEL_Execute(READ, OxFF)
Background error
can become < my_eel_request.status ?
active here
EEL_OK Y
\] Error

counter =0 ——y

!

EEL_Handler(0)
> EEL_GetDriverStatus()
counter ++

EEL_OPERATION_IDLE

- <4¢

>=4

Application Note RO1ANOOO6ED0102

EEPROM Emulation Library

Figure 4-9 Example flow to ensure background passivity (cont.)

B

EEL_OK

\ EEL_Execute(READ, OxFF)

error

Background remains

passive here as long
no WRITE command

will be initiated EEL;OK
Error
| EEL_Execute(SHUTDOWN, OxFF)

error

my_eel_request.status ?

my_eel_request.status ?

EEL_OK

* Error
\ EEL_Close() \
< END >

EEL Error Handler

Application Note RO1ANOOO6ED0102 69

EEPROM Emulation Library

4.7 Commands

EEL commands has to be initiated by passing completed EEL-request using

the function EEL_Execute(&my_eel_request). To simplify the handling of the
EEL the command spectrum was reduced to the esential only. Depending on
the affected object there are two groups of commands supported by the EEL.
Some of them influences the operation and status of the wohle EEL-pool and
some other the instance data only.

All EEL commands are executed/handled in the same wise and can be
executed in individual execution mode.

Figure 4-10 General command execution flow

in timeout and
EEL_Execute(COMMAND) —— polling execution
/ mode only
__-status=busy //

~/

R

COMMAND
process

EEL_Handler(t)

status=other

S

4.7.1 Pool oriented commands

EEL pool oriented command influences the blocks or data in the wohl EEL
pool.

4.7.1.1 Command STARTUP

The startup command interpretes the actual status of the EEL-pool, especially
the region parameters, block status flags and instance references. Successful
STARTUP command opens the access to the EEL data for the variable
oriented commands.

Application Note RO1ANOOO6ED0102 70

EEPROM Emulation Library

Table 6 Status of EEL_CMD_STARTUP command

Status Class | Background and Handling
. EEL not initialized or
meaning
not opened
EEL_ERR_INITIALIZATION heavy | reason | Wrong handlingon
— - user side
remed Initialize and open
Y | EEL before using it
. invalid command
meaning
code
EEL_ERR_COMMAND light reason | Unknown code used
- - in request
use eel_command_t
remedy
type only
. pool structure not
meaning
usable
EEL_ERR_POOL_INCONSISTENT | heavy | reason | 'Meonsistent EEL
- = - pool detected *)
remedy FORMAT the EEL
pool
meanin EEL pool size smaller
9 | <3 blocks
EEL_ERR_POOL_EXHAUSTED fatal to much blocks
- - - reason
excluded
remedy no remedy, EEL dead
. EEL cannot accept
meaning
the request
EEL busy with any
reason other request
EEL_ERR_REJECTED normal - 9
- - wait until status
remed changes or call
y EEL_Handler() until
request accepted.
. request is being
meaning
processed
request checked and
reason accepted
EEL_BUSY normal -Epre
wait until status
remed changes call
Y| EEL_Handler() until
request accepted.
. request was finished
meaning
regular
EEL_OK normal no problems during
reason ;
command execution
remedy nothing

Supported execution modes:
enforcing, timeout, polling

Note 1):

EEL pool inconsistency can be caused by various reasons, for example:

- FIP flag is <> OXFFFFFFFF
- RWP or DWP not found

- o active region detected or active-head missing
- active region not homogenous (discontinued by invalid block)

- all blocks excluded

Application Note RO1ANOOO6ED0102

71

EEPROM Emulation Library

Code example (enforced mode):

[* declaration of the request variable */
eel_request_tmy_eel_request;

[* specification of a time limited STARTUP request
my_eel_request.command_enu = EEL_CMD_STARTUP;
my_eel_request.timeout_u08 = 255;
EEL_Execute(&my_eel_request);

if (my_eel_request.status_enu != EEL_OK) My_Error_

*/

Handler();

Code example (timeout mode):

[* declaration of the request variable */
eel_request_tmy_eel_request;

[* specification of a time limited STARTUP request
my_eel_request.command_enu = EEL_CMD_STARTUP;
my_eel_request.timeout_u08 = 20;
EEL_Execute(&my_eel_request);

[* execute a state as long not finished */
do{
EEL_Handler(20);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_

[* periodical counting timeout tick */
void isr_tm01(void)

EEL_TimeOut_CountDown();
}

*/

Handler();

Application Note RO1ANOOO6ED0102

72

EEPROM Emulation Library

Code example (polling mode):

[* declaration of the request variable */
eel_request_tmy_eel_request;

[* specification of a time limited STARTUP request */
my_eel_request.command_enu = EEL_CMD_STARTUP;
my_eel_request.timeout_u08 = 0;

EEL_Execute(&my_eel_request);

[* execute a state as long not finished */
do{
EEL_Handler(0);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

Application Note RO1ANOOO6ED0102

73

EEPROM Emulation Library

4.7.1.2 Command SHUTDOWN

There is no real functionality behind the SHUTDOWN command. It is just used
for synchronization between the background processes and the application.
Practically it is just waiting until all running background processes (REFRESH,
EXPANSION,...) are finished correctly. The access to the EEL pool is closed
and the access status provided by EEL_GetDriverStatus(&my_driver_status)
is EEL_ERR_ACCESS_LOCKED. Also the EEL_Handler(t) becomes passive
and does not consume CPU time anymore (just few clocks).

Table 7 Status of EEL_CMD_SHUTDOWN command

Status Class | Background and Handling
meaning | EEL not initialized
reason | Wrong handling on user
EEL_ERR_INITIALIZATION heavy side
Initialize EEL before
remedy Co
using it
meaning | invalid command code
reason unknown code used in
EEL_ERR_COMMAND light reguest
use eel_command_t
remedy
type only
unexpected/unknown
meaning | error code generated in
background
reason SW bug, EMI,
EEL_ERR_INTERNAL heavy unexpected problems
no standard remedy
remed possible. Next
Y| STARTUP should
manage the problem
: EEL cannot accept the
meaning
request
EEL_ERR_REJECTED | normal | reason | ECL Pusy with other
reguest
Call EEL_Handler() and
remedy
retry later
. request is being
meaning
processed
EEL_BUSY normal | reason | "éduest checked and
accepted
remed Call EEL_Handler() until
Y| status have changed.
. request was finished
meaning
regular
EEL_OK normal no problems did happen
reason | during command
execution
remedy | nothing

Supported execution modes:
enforcing, timeout, polling

Application Note RO1ANOOO6ED0102 74

EEPROM Emulation Library

Code example (enforced mode):

[* declaration of the request variable */
eel_request_tmy_eel_request;

[* specification of a time limited SHUTDOWN request */
my_eel_request.command_enu = EEL_CMD_SHUTDOWN;
my_eel_request.timeout_u08 = 255;

EEL_Execute(&my_eel_request);

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

Code example (timeout mode):

[* declaration of the request variable */
eel_request_tmy_eel_request;

[* specification of a time limited SHUTDOWN request */
my_eel_request.command_enu = EEL_CMD_SHUTDOWN;
my_eel_request.timeout_u08 = 20;

EEL_Execute(&my_eel_request);

[* execute a state as long not finished */
do{
EEL_Handler(20);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

[* periodical timeout count tick */
void isr_tm01(void)

EEL_TimeOut_CountDown();
}

Code example (polling mode):

[* declaration of the request variable */
eel_request_t my_eel_request;

[* specification of a time limited SHUTDOWN request */
my_eel_request.command_enu = EEL_CMD_SHUTDOWN;
my_eel_request.timeout_u08 = 0;

EEL_Execute(&my_eel_request);

[* execute a state as long not finished */
do{
EEL_Handler(0);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

Application Note RO1ANOOO6ED0102

EEPROM Emulation Library

4.7.1.3 Command FORMAT

The format command destroys all data and creates an “empty” EEL pool
consists of one active block. All remaining “not excluded” blocks are
“prepared” by this command. After format the STARTUP command must be
executed after FORMAT to identify the new EEL-pool status.

Table 8 Status of EEL_CMD_FORMAT command

Status Class | Background and Handling
meaning | EEL not initialized
reason | Wrong handling on
EEL_ERR_INITIALIZATION heavy user side
Initialize EEL before
remedy Co
using it
meaning | invalid command code
reason unknown code used in
EEL_ERR_COMMAND light request
use eel_command_t
remedy
type only
meanin EEL pool size smaller
9 | < 3 blocks
EEL_ERR_POOL_EXHAUSTED | fatal to much blocks
reason
excluded
remedy | noremedy, EEL dead
unexpected/unknown
meaning | error code generated
in background
reason SW bug, EMI,
EEL_ERR_INTERNAL heavy unexpected problems
No standard remedy
remed possible, analyze
y background status for
details.
meanin EEL cannot accept
9| the request
EEL_ERR_REJECTED normal | reason | EEL busy with other
request
Call EEL_Handler or
remedy
retry later
. request is being
meaning
processed
EEL_BUSY normal request checked and
reason
accepted
remedy | Call EEL Handler
. request was finished
meaning
regular
EEL OK normal no problems during
- reason | command execution
happens
remedy | nothing

Supported execution modes:
enforcing, timeout, polling

Application Note RO1ANOOO6ED0102

76

EEPROM Emulation Library

CAUTION:

Once started, the FORMAT command must be completed successfully.
When RESET discontinues a running FORMAT, the follo wing STARTUP
command will fail with status EEL_ ERR_POOL_INCONSIS TENT. This
should enforce the user to re-start the broken FOR ~ MAT just to create a
consistent and empty EEL-pool in any case.

Code example (enforced mode):

[* declaration of the request variable */
eel_request_tmy_eel_request;

[* specification of a time limited FORMAT request * /
my_eel_request.command_enu = EEL_CMD_FORMAT,;
my_eel_request.timeout_u08 = OxFF;
EEL_Execute(&my_eel_request);

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

Code example (timeout mode):

[* declaration of the request variable */
eel_request_t my_eel_request;

[* specification of a time limited FORMAT request * /
my_eel_request.command_enu = EEL_CMD_FORMAT,;
my_eel_request.timeout_u08 = 20;

EEL_Execute(&my_eel_request);

[* execute a state as long not finished */
do{
EEL_Handler(20);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

[* periodical timeout count tick */
void isr_tm01(void)

EEL_TimeOut_CountDown();
}

Application Note RO1ANOOO6ED0102 77

EEPROM Emulation Library

Code example (polling mode):

[* declaration of the request variable */
eel_request_tmy_eel_request;

[* specification of a time limited FORMAT request * /
my_eel_request.command_enu = EEL_CMD_FORMAT,;
my_eel_request.timeout_u08 = 0;

EEL_Execute(&my_eel_request);

[* execute a state as long command not finished */
do{
EEL_Handler(0);
CheckCommunicationinterface();
DoSomethingElse();
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

Figure 4-11 EEL pool after FORMAT (pool complete)

» »
L

active prepared prepared prepared
P=55555555 P=55555555 P=55555555 P=55555555
< < <
A=55555555 A=FFFFFFFF A=FFFFFFFF A=FFFFFFFF
|=FFFFFFFF |=FFFFFFFF |=FFFFFFFF |=FFFFFFFF
X=FFFFFFFF X=FFFFFFFF X=FFFFFFFF X=FFFFFFFF
EC=abcdefgh EC=abcdefgh EC=abcdefgh EC=abcdefgh
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

Application Note RO1ANOOO6ED0102

EEPROM Emulation Library

Figure 4-12 4-13 EEL pool after FORMAT (1 block ex cluded)

»
|

active prepared excluded prepared
P=55555555 P=55555555 P=2772277? P=55555555
- - -

A=55555555 A=FFFFFFFF A=72222222 A=FFFFFFFF
I=FFFFFFFF I=FFFFFFFF 1=22222222 I=FFFFFFFF
X=FFFFFFFF X=FFFFFFFF X=00000000 X=FFFFFFFF
EC=abcdefgh EC=abcdefgh 27??2727? EC=abcdefgh
FFFFFFFF FFFFFFFF 22222222 FFFFFFFF
FFFFFFFF FFFFFFFF XEC=abcdefgh FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF 22222227 FFFFFFFF

Note:

If the third block was already excluded before starting formatting its status
remains untouched by the FORMAT command.

Application Note RO1ANOOO6ED0102

EEPROM Emulation Library

4.7.1.4 Command CLEANUP

The cleanup command compresses the acive region occupied by data to
minimum. The “prepared” region is maximized. Data are not lost in that case.
STARTUP is not necessary after CLEANUP for further operation.

Table 9 Status of EEL_CMD_CLEANUP command

Status Class | Background and Handling
meaning | EEL not initialized
reason | Wrong handling on
EEL_ERR_INITIALIZATION heavy user side
Initialize EEL before
remedy SO
using it
meaning | invalid command code
reason unknown code used in
EEL_ERR_COMMAND light request
use eel_command_t
remedy — -
type only
meaning | no access to EEL pool
EEL_ERR_ACCESS_LOCKED light reason | STARTUP missing
remedy | Execute STARTUP
meanin EEL pool size smaller
9 | < 3 blocks
EEL_ERR_POOL_EXHAUSTED | fatal to much blocks
reason
excluded
remedy | noremedy, EEL dead
unexpected/unknown
meaning | error code generated
in background
reason SW bug, EMI,
EEL_ERR_INTERNAL heavy unexpected problems
Execute STARTUP.
remed Background status
Y| canbe analyzed for
details.
meanin EEL cannot accept
9| the request
EEL_ERR_REJECTED normal | reason | EEL busy with other
request
Call EEL_Handler or
remedy —
retry later
. request is being
meaning
processed
EEL_BUSY normal request checked and
reason
accepted
remedy | Call EEL_Handler
. request was finished
meaning
regular
EEL_OK normal no problems dunng
reason | command execution
happens
remedy | nothing

Supported execution modes:
enforcing, timeout, polling

Application Note RO1ANOOO6ED0102

80

EEPROM Emulation Library

Code example (enforced mode):

[* declaration of the request variable */
eel_request_tmy_eel_request;

[* specification of a time limited CLEANUP request */
my_eel_request.command_enu = EEL_CMD_ CLEANUP;
my_eel_request.timeout_u08 = 255;
EEL_Execute(&my_eel_request);

if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

Code example (timeout mode):

[* declaration of the request variable */
eel_request_t my_eel_request;

[* specification of a time limited CLEANUP request */
my_eel_request.command_enu = EEL_CMD_ CLEANUP;
my_eel_request.timeout_u08 = 20;

EEL_Execute(&my_eel_request);

[* execute a state as long not finished */
do{
EEL_Handler(20);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu! = EEL_OK) My_Error_ Handler();

[* periodical timeout count tick */
void isr_tm0Z1(void)

EEL_TimeOut_CountDown();
}

Application Note RO1ANOOO6ED0102

81

EEPROM Emulation Library

Code example (polling mode):

[* declaration of the request variable */

eel_request_tmy_eel_request;

[* specification of a time limited CLEANUP request

my_eel_request.command_enu = EEL_CMD_CLEANUP;
my_eel_request.timeout_u08 = 0;
EEL_Execute(&my_eel_request);

[* execute a state as long not finished */

do{

EEL_Handler(0);

} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_

*/

Handler();

Figure 4-14 EEL pool before CLEANUP command (exampl e)

invalid active active prepared
FFFFFFFF 55555555 55555555 55555555
FFFFFFFF) 55555555) 55555555) FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF XXXXXXXX XXXXXXXX XXXXXXXX
Ref_A(2) Ref_B(3)
Ref_C(1) Ref_A(4)
Ref_B(2) Ref_B(4)
Ref_A(3)
Ref_D(3)
FFFFFFFF
FFFFFFFF
FFFFFFFF Data_D(3) FFFFFFFF
Data_A(3)
Data_B(4)
Data_B(2)
Data_A(4)
Data_C(1)
Data_B(3)
Data_A(2)
Block 0 Block 1 Block 2 Block 3

Application Note RO1ANOOO6ED0102

82

EEPROM Emulation Library

Figure 4-15 EEL pool after CLEANUP command (example)

»
-

prepared prepared prepared active(new)
55555555 55555555 55555555 55555555
FFFFFFFF FFFFFFFF FFFFFFFF 55555555
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
XHXXXXXXX XXXXXXXX XHXXXKXXX XXXXXXXX
Ref_C(2)
Ref_D(3)
Ref_A(5)
Ref_B(5)
FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF Data_B(5)
Data_A(5)
Data_D(3)
Data_C(2)

Note:
Header word marked as XXXXXXXX contain EC, RWPprev, XEC...

4.7.2 Variable oriented commands

EEL variable oriented command can be used by the application to read/write
new instnces (values) of the variables registered in the EEL-descriptor.

4.7.2.1 Command WRITE

The write command writes new value of the EEL-variable specified by the
identifier.

Application Note RO1ANOOO6ED0102 83

EEPROM Emulation Library

Table 10 Status of EEL_CMD_WRITE command

Status Class | Background and Handling
meaning | EEL not initialized
reason | Wrong handling on
EEL_ERR_INITIALIZATION heavy user side
Initialize EEL before
remedy oo
using it
meaning | no access to EEL pool
EEL_ERR_ACCESS_LOCKED light reason | STARTUP missing
remedy | Execute STARTUP
meanin Unknown variable
9 | identifier
reason Not registered
EEL ERR_PARAMETER heavy variable ID used
Correct or register the
remedy | variable in the EEL
descriptor
meanin EEL pool size smaller
9 | < 3 blocks
EEL_ERR_POOL_EXHAUSTED | fatal to much blocks
reason
excluded
remedy | noremedy, EEL dead
meaning | no space in pool
Due to block
EEL_ERR_POOL_FULL heavy | reason | XClusion not enough
space is to cover all
variables
remedy | Execute CLEANUP
. EEL cannot accept
meaning
the request
EEL_ERR_REJECTED normal | reason | EEL busy with other
request
Call EEL_Handler or
remedy
retry later
. request is being
meaning
processed
EEL_BUSY normal request checked and
reason
accepted
remedy | Call EEL_Handler
. request was finished
meaning
regular
EEL_OK normal no problems durlng
reason | command execution
happens
remedy | none

Supported execution modes:
enforcing, timeout, polling

Application Note RO1ANOOO6ED0102 84

EEPROM Emulation Library

Code example (enforced mode):

[* declaration of the request variable */
eel_request_t my_eel_request;

[* specification of a time limited WRITE request */

my_eel_request.address_pu08 = (eel_u08*)&my_A_mir ror;
my_eel_request.identifier_u08 = ‘A’;
my_eel_request.command_enu =EEL_CMD_WRITE;
my_eel_request.timeout_u08 = 255;
EEL_Execute(&my_eel_request);
if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();
Code example (timeout mode):
[* declaration of the request variable */
eel_request_t my_eel_request;
[* specification of a time limited WRITE request */
my_eel_request.address_pu08 = (eel_u08*)&my_A_mir ror;
my_eel_request.identifier_u08 = ‘A’;
my_eel_request.command_enu =EEL_CMD_WRITE;
my_eel_request.timeout_u08 = 20;
EEL_Execute(&my_eel_request);
[* execute a state as long not finished */
do{

EEL_Handler(20);
} while (my_eel_request.status_enu == EEL_BUSY)
if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

[* periodical timeout count tick */
void isr_tm01(void)

EEL_TimeOut_CountDown();
}

Application Note RO1ANOOO6ED0102

85

EEPROM Emulation Library

Code example (polling mode):

[* declaration of the request variable */
eel_request_tmy_eel_request;

[* specification of a time limited WRITE request */
my_eel_request.address_pu08 = (eel_u08*)&my_A_mir ror;
my_eel_request.identifier_u08 = ‘A’;

my_eel_request.command_enu =EEL_CMD_WRITE;
my_eel_request.timeout_u08 =0;

EEL_Execute(&my_eel_request);

[* execute a state as long not finished */
do {
EEL_Handler(0);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_H andler();

Note:

Whenever the application writes data into the EEL-pool the space available in
active head may not be sufficient to cover the reference and data of the new
instance. To guaranty proper operation in any situation the EEL takes care for
sufficient space conditions before writing the instance. This may cause
different execution time for writing same portion of data. The user can avoid
that situation by offering enough CPU time for the background process that
can prepare space in advance.

Depending on space precondition in different behavior is possible when writing
new instance into the EEL pool. Please have a look to the below examples.

Application Note RO1ANOOO6ED0102 86

EEPROM Emulation Library

Example 1:
Best case conditions.

Conditions:

a) Enough space available in heading active block to cover the complete
instance (reference and data)

b) EEL_REFRESH_BLOCK_THRESHOLD > 1

Sequence:
1) DRP_A(6) is written into flash word addressed by RWP
(allocates space for the new instance in reference- and data-area)
2) Data_A(6) are written word by word into the allocated space in data area.
3) DCS_A(6) is written into the flash word addressed by (RWP+1)
4) RWP, DWP, RAM-reference, and region parameter are updated

Figure 4-16 EEL pool after WRITE command (normal example).

active prepared prepared prepared
55555555 55555555 55555555 55555555
55555555 FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
Ref_C(2)
Ref_D(3)
Ref_A(5)
Ref_B(5)
DRP_A(6)
Ref_A(6
el A(){ DCS._A(6)
FFFFFFFF
&
Data_A(6)
Data_A(6) Data_B(5) FFFFFFFF FFFFFFFF FFFFFFFF
Data_A(5)
Data_D(3)
Data_C(2)

Note:
Data_A(6) means 6'ts instance of the variable “A”

Application Note RO1ANOOO6ED0102

EEPROM Emulation Library

Example 2:
Best case conditions.

Conditions:

a) Not enough space available in heading active block to cover the complete
instance (reference and data).

b) more than two blocks are prepared and ready for activation
c) EEL_REFRESH_BLOCK_THRESHOLD > 2

Sequence:
1) After negative space check next block will be activated before write
2) DRP_D(4) is written into flash word addressed by RWP
(allocates space for the new instance in reference- and data-area)
3) Data_D(4) are written word by word into the allocated space in data area.
4) DCS_D(4) is written into the flash word addressed by (RWP+1)
5) RWP, DWP, RAM-reference, and region parameter are updated

Figure 4-17 EEL pool after WRITE command (activatio n example)

A 4

active active prepared prepared
55555555 55555555 55555555 55555555
55555555 b 55555555 b FFFFFFFF b FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX

| DRP_D(@) |
Ref C(2) Ref_D(4) { B5CS D)

Ref_D(3)

Ref_A(5)

Ref_B(5)

Ref_A(6)

@ @,Ub FFFFFFFF
SN
)
S Data_A(6) FFFFFFFF
O
@
Data_B(5) FFFFFFFF FFFFFFFF
Data_D(4) Data_A(5)

Data_D(3)

Data_D(4)

Data_C(2)

Application Note RO1ANOOO6ED0102 88

EEPROM Emulation Library

Example 3:
Best case conditions.

Conditions:

a) Not enough space available in heading active block to cover the complete
instance (reference and data).

b) Not enough prepared for activation
c) EEL_REFRESH_BLOCK_THRESHOLD > 2

Sequence:
1) After negative space check next block should be activated before write
2) Activation not possible (prepared region to small)
3) Execution focus swapped to background for space expansion
4) The background refreshes the last active block C(2) -> C(3)
5) After refresh completion of block 0 will be invalidated and prepared
6) Completed space expansion swaps the execution focus back to foreground
7) DRP_D(5) is written into flash word addressed by RWP
(allocates space for the new instance in reference- and data-area)
8) Data_D(5) are written word by word into the allocated space in data-area.
9) DCS_D(5) is written into the flash word addressed by (RWP+1)
10) RWP, DWP, RAM-reference, and region parameter are updated

Figure 4-18 EEL pool before WRITE command (expansio n example)

active active prepared prepared
55555555 55555555 55555555 55555555
55555555 55555555 FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
XXXKXXXX XXXXXXXX XXXXXXXX XXXXXXXX
Ref_C(2) Ref_D(4)
Ref_D(3) Ref_B(6)
Ref_A(5) Ref_B(7)
Ref_B(5)
A
"oy
(o) =
WRITE data " e / AR
/ Data_A(6)
Data_D(5) Data_B(5' Not enougty Data_B(7) FFFFFFFF FFFFFFFF
— locks for FG Dre_pare(j
Cf’VatiOn—
Data_A(5)
W\
Data_D(3)
Data_D(4)
Data_C(2)

Application Note RO1ANOOO6ED0102 89

EEPROM Emulation Library

Figure 4-19 EEL pool after WRITE command (expansion example)
prepared active active prepared
55555555 55555555 55555555 55555555
FFFFFFFF 55555555 55555555 FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
YYYYYYYY XXXXXXXX XXXXXXXX XXXXXXXX
Ref_D(4) Ref_C(3)
/| DRP_D(5)
Ref_D J e
Ref_B(6) ef_D(5) < BCs b(3)
Ref_B(7)
Ref_A(7)
FFFFFFFF
FFFFFFFF
Data_A(7)
FFFFFFFF Data_B(7) FFFFFFFF
Data_B(6)
Data_D(5)
Data_D(4)
Data_C(3)

The final scenario after completion WRITE(D) is:
- block 0 is prepared after refreshing instance C(2) -> C(3)

- the newest (5'th) instance of D is written into block 2

Application Note RO1ANOOO6ED0102

90

EEPROM Emulation Library

4.7.2.2 Command READ

The read command copies the actual value of the EEL-variable specified by
the identifier into its RAM mirror variable.

When checksum error (DCS) is detected internally during READ execution, the
EEL will enforce re-filling the reference table and before reading the next older
instance of the specified variable automatically. When no older instance exists,
the READ command signalizes EEL_ERR_NO_INSTANCE.

Table 11 Status of EEL_CMD_READ command

Status Class | Background and Handling
meaning | EEL not initialized
reason | Wrong handling on
EEL_ERR_INITIALIZATION heavy user side
Initialize EEL before
remedy SO
using it
meaning | no access to EEL pool
EEL_ ERR_ACCESS_LOCKED light reason | STARTUP missing
remedy | Execute STARTUP
meanin Unknown variable
9 | identifier
reason Not registered
EEL_ERR_PARAMETER heavy variable ID used
Correct or register the
remedy | variable in the EEL
descriptor
meanina | ™ instance of the
9 | identifier found
EEL_ERR_NO_INSTANCE light reason | no initial value written
remed write initial value of
Y | the variable
. EEL cannot accept
meaning
the request
EEL_ERR_REJECTED normal | reason | EEL busy with other
request
Call EEL_Handler or
remedy
retry later
. request is being
meaning
processed
EEL BUSY normal request checked and
reason
accepted
remedy | Call EEL_Handler
. request was finished
meaning
regular
EEL_OK normal no problems durlng
reason | command execution
happens
remedy | none

Supported execution modes:
enforcing, timeout, polling

Application Note RO1ANOOO6ED0102

91

EEPROM Emulation Library

Code example (enforced mode):

[* declaration of the request variable */
eel_request_tmy_eel_request;

[* specification of a time limited READ request */

my_eel_request.address_pu08 = (eel_u08*)&my_A_mir ror;
my_eel_request.identifier_u08 = ‘A’;
my_eel_request.command_enu =EEL_CMD_READ;
my_eel_request.timeout_u08 = 255;
EEL_Execute(&my_eel_request);
if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();
Code example (timeout mode):
[* declaration of the request variable */
eel_request_tmy_eel_request;
[* specification of a time limited READ request */
my_eel_request.address_pu08 = (eel_u08*)&my_A_mir ror;
my_eel_request.identifier_u08 = ‘A’;
my_eel_request.command_enu =EEL_CMD_READ;
my_eel_request.timeout_u08 = 20;
EEL_Execute(&my_eel_request);
[* execute a state as long not finished */
do{

EEL_Handler(20);
} while (my_eel_request.status_enu == EEL_BUSY)
if (my_eel_request.status_enu != EEL_OK) My_Error_ Handler();

[* periodical timeout count tick */
void isr_tm01(void)

EEL_TimeOut_CountDown();
}

Application Note RO1ANOOO6ED0102

92

EEPROM Emulation Library

Code example (polling mode):

[* declaration of the request variable */
eel_request_tmy_eel_request;

[* initiation of a READ request */
my_eel_request.address_pu08 = (eel_u08*)&my_A_mir
my_eel_request.identifier_u08 = ‘A’;
my_eel_request.command_enu =EEL_CMD_READ;
my_eel_request.timeout_u08 =0;
EEL_Execute(&my_eel_request);

[* execute a state as long not finished */
do{
EEL_Handler(0);
} while (my_eel_request.status_enu == EEL_BUSY)

if (my_eel_request.status_enu != EEL_OK) My_Error_

ror;

Handler();

Application Note RO1ANOOO6ED0102

93

EEPROM Emulation Library

Chapter 5 Characteristics

5.1

Table 12

Timing characteristics

Typical function execution time

Function typ. execution time @fx=20MHz [us]

EEL_Init 314
EEL Open 99
EEL_Close 30
EEL_Execute Note 1) 57
EEL_Handler Note 2) 24
EEL_TimeOut CountDown 2

EEL_GetDriverStatus 18
EEL GetSpace 18
EEL_GetVersionString 2

Notes:

1) in polling execution mode only

2) background and foreground status is IDLE

Table 13 Maximal state execution time in polling ex

ecution mode

Command max execution time in [us] @20MHz
STARTUP 330
SHUTDOWN 32
FORMAT 1524
CLEANUP 240
WRITE 153
READ 71
MAINTANANCE process 240

Conditions for the following typical values shown i

- EEL pool size = 8 blocks,
- no excluded blocks exist
- refresh threshold = 1

n Table 14 and 15:

- all variables [a..z] were written successfully into EEL pool
- enough active space in active head to write any variable without activation

- system clock fx=20 [MHz]
- timer count-down tick dt=256us

where:

t =timeout (time parameter in EEL_Execute request-structure)
T = time-slice (time parameter in EEL_Handler(t))

Application Note RO1ANOOO6ED0102

EEPROM Emulation Library

Table 14 Typical command execution time (examples)

Command typ. execution time [us] @fx=20MHz
condition polling timeout | enforcing
a = 2 bytes 215 149 147
b =9 bytes 303 219 218
c = 13 bytes 350 255 255
d = 27 bytes 488 363 363
READ(n) e = 33 bytes 576 432 432
f = 47 bytes 713 542 542
X = 77 bytes 1070 821 822
z = 255 bytes 3042 2367 2373
a =2 bytes 1379 1128 1134
b = 9 bytes 2240 1856 1869
c = 13 bytes 2673 2223 2240
5) d = 27 bytes 3974 3314 3333
WRITE(n) e = 33 bytes 4835 4043 4062
f = 47 bytes 6132 5138 5165
X = 77 bytes 9581 8045 8090
z = 255 bytes 28565 24056 24180
a = 2 bytes 2213 1910 1832
6) b =9 bytes 3002 2606 2588
WRITE(n) C = 13 bytes 3401 2082 2955
with d = 27 bytes 4592 3963 3956
e = 33 bytes 5277 4646 4668
ACTIVATION f = 47 bytes 6585 5675 5670
X = 77 bytes 9642 8460 8502
z = 255 bytes 26480 23727 26817
8 blocks, empty pool 16710 13176 13220
STARTUP 8 blocks, a...z in pool 37500 22500 22700
FORMAT 8 blocks 157299 155847 155841
CLEANUP a...z 82692 72654 73052
SHUTDOWN | background idle already 108 53 53
Notes:

1) The command execution time depends from the situation inside the EEL-
pool. The number of variables, it size, the position of the instance inside the
EEL-pool, as well the momentary size of the regions inside the EEL-pool can
influence the execution time of the command. The user can neutralize such
effects for the WRITE command in a wide range by proper configuration of the
EEL pool and by offering enough CPU time to the background process (calling
EEL_Handler(t) in the idle-loop of the application). STARTUP timing may
differ depending on the momentary position of the instances within EEL-pool.

2) When writing continuously big amount of data the “space consumption” in
the foreground process (WRITE) can become faster than the “space
production” in the background process (MAINTENANCE). This could cause
deviation of WRITE-command execution time. To avoid such effects the user
should reserve adequate CPU time for the background process, in
relationship to the required data throughput. This can be done by calling
EEL_Handler(0) multiple or by increasing the time-slice “t” in EEL_Handler(t).

Application Note RO1ANOOO6ED0102 95

EEPROM Emulation Library

3) after block exclusion the timing characteristics of the commands may

change. This effect becomes more relevant when the data amount is quite big
in relationship to the EEL pool size.

4) Table 14 is not a specification, it contains typical values measured under
below conditions.

5) enough space in active head for data and reference

6) not enough space in active head for data and reference, foreground

ACTIVATION was necessary before being able to write the instance.

7) in timeout mode T =t = 4, and dt = 256us

Table 15 Typical number of necessary EEL_Handler(t) iterations
2 polling timeout enforce

SO condition T=t=0 | T=t=1 | T=t=2 | T=t=4 | T=255
a = 2 bytes 7 0 0 0 0
b = 9 bytes 9 0 0 0 0
c = 13 bytes 10 0 0 0 0
d = 27 bytes 13 1 0 0 0
READ(n) e = 33 bytes 15 1 0 0 0
f = 47 bytes 18 1 0 0 0
X = 77 bytes 26 2 1 0 0
z = 255 bytes 70 7 3 1 0
a = 2 bytes 32 2 1 0 0
b = 9 bytes 50 5 2 1 0
c = 13 bytes 59 6 2 1 0
2) d = 27 bytes 86 9 4 2 0
WRITE(n) e = 33 bytes 104 11 5 2 0
f = 47 bytes 131 13 6 3 0
X = 77 bytes 203 20 10 5 0
z = 255 bytes 599 60 30 14 0
a = 2 bytes 53 5 2 1 0
5) b = 9 bytes 71 6 3 1 0
WRITE(n) c = 13 bytes 80 7 3 1 0
. d = 27 bytes 107 10 5 2 0
with e = 33 bytes 125 12 6 3 0
f = 47 bytes 152 15 7 3 0
ACTIVATION [y = 77 bytes 224 22 11 5 0
z = 255 bytes 620 62 31 15 0
8 blocks, empty 167 30 15 7 0
STARTUP ™ ghiocks, a..z | 368 42 19 9 0
FORMAT 8 blocks 3656 408 204 102 0
CLEANUP a....z in pool 1734 190 95 46 0
SHUTDOWN | background idle 6 0 0 0 0

Application Note RO1ANOOO6ED0102

96

EEPROM Emulation Library

Notes:

1) EEL_Handler(t) is not necessary to complete a command in enforced
execution mode. In spite of that it is very advantageous for keeping constant
writing condition inside the pool (according to the EEL-pool configuration data).
Calling EEL_Handler(t) periodically in applications idle-loop the maintenance
process becomes active in the background and can obtain widely constant
writing time.

2) The number of EEL_Handler(t) calls necessary for command completion
depends from the situation inside the EEL-pool. The number of variables, it
size, the position of the instance inside the EEL-pool, as well the momentary
size of the regions inside the EEL-pool can influence the real value. The user
can neutralize such effects in a wide range by proper configuration of the EEL
pool and by offering enough CPU time to the background process (calling
EEL_Handler(t) in the idle-loop of the application).

3) Table 15 is not a specification, it contains typical values measured under
below conditions.

4) enough space in active head for data and reference

5) not enough space in active head for data and reference, foreground
ACTIVATION was necessary before being able to write the instance.

Application Note RO1ANOOO6ED0102 97

EEPROM Emulation Library

5.2

General cautions

Following cautions should be taken into considerati on when using EEL:

Library code and its constants must be located completely in the same
64k flash page.

Initialization by FAL_Init must be performed before calling EEL_Init.

Initialization by EEL_Init must be performed before execution
EEL_Handler/EEL_Execute functions.

Each request variable must be located at an even address

The EEL is not designed as a re-entrant software. For this reason each
EEL function has to be finished before a next one can be called.
Consequently EEL functions should not be called in interrupt service
routines. If this cannot be achieved due to interrupt processing, task
switching or other mechanism, the application has to take care for the
synchronization and protection against re-entrancy.

After execution of FAL_Init, EEL_Init or EEL_Close function all
requested/running EEL commands will be aborted and cannot be
resumed. Please take care that all running EEL commands are finished
before calling this functions. This can be achieved by SHUTDOWN
command as illustrated in Figure 4-4

It is not possible to modify the Data Flash parallel to modification of the
Code Flash. This means Self-programming (FSL) and EEPRM emulation
cannot work at the same time.

Application Note RO1ANOOO6ED0102 98

EEPROM Emulation Library

5.3

Resource consumption

RAM consumption at user side:

High speed RAM: 1 byte
Short address RAM: 9 bytes

ROM consumption:

EEL code size: 6,6 kByte
EEL constant size: 4+(N+1)*4, N = number of EEL variables

Final stack consumption:
FDL and EEL stack: <100 bytes

Application Note RO1ANOOO6ED0102

99

EEPROM Emulation Library

EEPROM Emulation Library

LENESANS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

Application Note RO1ANOOO6ED0102 100

