
 Application Note

R01AN7207EJ0100 Rev.1.00 Page 1 of 27
Feb.29.24

RL78 Family
Flash programmer with Raspberry Pi (RL78 Protocol C)
Introduction
This application note describes a sample program for a flash programmer that writes to the flash memory of
a microcontroller that supports Protocol C.

Operation Confirmation Device
RL78/G23

When applying the sample program covered in this application note to another microcomputer, modify the
program according to the specifications for the target microcomputer and conduct an extensive evaluation of
the modified program.

Related Document
Documents related to this application note are listed below, refer to the following documents as well.
・ RL78 Microcontroller (RL78 Protocol C) Serial Programming Guide (R01AN5756)

Raspberry Pi○R is a trademark of the Raspberry Pi Foundation.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 2 of 27
Feb.29.24

Contents

1. Overview ... 3

2. Development Environments ... 4

3. Raspberry Pi Settings .. 5
3.1 Raspberry Pi environment (config.txt) Setting ... 5
3.2 Build Environment ... 5
3.3 Way to Build .. 5

4. Specification .. 6
4.1 Option Specifications ... 6
4.2 Error Code Specifications .. 8
4.3 Flowchart ... 9
4.3.1 Main Routine (main function) .. 9
4.3.2 Memory Write Processing ... 10

5. Hardware Descriptions .. 11
5.1 Target Interface Specifications .. 11
5.1.1 Dedicated UART.. 12
5.2 List of Pins Used .. 13

6. Software Descriptions .. 14
6.1 List of files .. 14
6.2 List of Functions .. 15
6.3 Specification of Functions ... 17

7. Reference Documents ... 26

Revision History .. 27

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 3 of 27
Feb.29.24

1. Overview
This sample program is a Raspberry Pi sample program for writing to the RL78 microcontroller's on-chip
flash memory and has the following features.

・ The writing target RL78 microcontroller (target MCU) supports the RL78 Protocol C.
・ Serial programming of the RL78 Protocol C is used for writing.
・ Raspberry Pi 4 Model B+ is used as the programmer hardware.
・ Program files (written data) must conform to Motorola S format.

Figure 1-1 Image diagram

Target I/F
(Single-line UART or
Dedicated UART)

Raspberry Pi 4 Model B+
Target MCU

 (RL78)

This sample program
(Firmware for Raspberry Pi)

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 4 of 27
Feb.29.24

2. Development Environments
The operation of the sample program provided with this application note has been tested under the following
conditions. There are several ways to connect the flash programmer (Raspberry Pi4 Model B+), including
remote connection using a PC and standalone connection by directly connecting peripherals such as a
monitor.

Table 2-1 Operation Confirmation Conditions

Development tools Description

Flash programmer Raspberry Pi4 Model B+
(On-chip RAM 4GB)

OS Raspberry Pi OS 64-bit (version 5.10.17)

Language C99

Software build environment gcc：8.3.0 (Raspbian 8.3.0-6+rpi1)

Compiler make：GNU Make 4.2.1

Shared library ldd：2.28 (Debian GLIBC 2.28-10+rpi1)

Caution: It may not work with versions other than those listed above.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 5 of 27
Feb.29.24

3. Raspberry Pi Settings
3.1 Raspberry Pi environment (config.txt) Setting
To be able to use UART2 to 5, add the following items under [all] in /boot/config.txt and reboot.

enable_uart=1
dtoverlay=uart1
dtoverlay=uart2
dtoverlay=uart3
dtoverlay=uart4
dtoverlay=uart5

3.2 Build Environment

If you want to update the build environment, execute the following command.

$sudo apt-get update
$sudo apt-get upgrade

You can check the versions of gcc and make with the following command.

$gcc -v

3.3 Way to Build
To build, execute the following command in the directory where the makefile is located.

Build:

$sudo male ALL

If you want to delete executable binary:

$sudo male clean

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 6 of 27
Feb.29.24

4. Specification
This sample program executes the executable file "fp_c" on the flash programmer (Raspberry Pi4 Model B+)
and writes the Motorola S format file (write data) in the flash programmer to the target MCU.

4.1 Option Specifications
Perform initial settings and communicate with the target according to the specifications below.
・ If execution is successful with the specified option settings, the flash programmer sends "OK" to the

terminal.
・ If execution fails with the specified option settings, the flash programmer sends "ERROR:XX" to the

terminal. XX is displayed as a 2-digit hexadecimal number. See Table 4-2 for more information.
Table 4-1 shows details of the options, and Figure 4-1and Figure 4-2 show examples of how to use the
options.

Table 4-1 Option Specifications

Long option Short
option Setting Description

--file= -f “file name”.mot Specify the S-Record file.

--if= -u

uart1

uart1:
Performs communication with the target MCU
using a single-line UART (TOOL0).

uart2:
Performs communication with the target MCU
using a dedicated UART (TOOL0, TOOLTxD,
TOOLRxD).

When omitted: It is the same result as when the
uart1 is specified.

uart2

--speed= -b

115200 Specifies the transmission rate (bps) set by the
Baud Rate Set command of the RL78 Protocol
C.

When omitted: It is the same result as when the
115200 is specified.

250000

500000

1000000

--vdd= -d
x.x
(1-digit decimal integer,
first decimal place)

Specifies the VDD voltage (V) set by the Baud
Rate Set command of the RL78 Protocol C.
Set the VDD voltage supplied to the programmer
board and the target MCU.

When omitted: It is the same result as when the
3.3 is specified.

--id -i Security ID code
(Hexadecimal, 10 bytes)

Specifies the security ID code (10-byte
hexadecimal) in a character string.

When omitted: It is the same result as when the
00000000000000000000 is specified.

--verify -v - If this option is specified, verification is
performed additionally.

--checksum -s - If this option is specified, a checksum value is
acquired additionally.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 7 of 27
Feb.29.24

Figure 4-1 Example of using long options (executable file name: fp_c)

> sudo ./fp_c --file=test.mot --if=uart1 --vdd=3.3 --id=00112233445566778899 --verify --checksum
OK:connect
OK:erase
OK:program,verify
OK:checksum
 code flash:xxxx
 data flash:xxxx

Figure 4-2 Example of using short options (executable file name: fp_c)

> sudo ./fp_c -ftest.mot -uuart1 -i00112233445566778899 -d3.3 -v -s
OK:connect
OK:erase
OK:program,verify
OK:checksum
 code flash:xxxx
 data flash:xxxx

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 8 of 27
Feb.29.24

4.2 Error Code Specifications
When the execution of the executable file fails, an error message in the format "Error:XX" is displayed on the
terminal. If XX is a 2-digit hexadecimal number, see error code.
Table 4-2 show the error codes.

Table 4-2 List of Error Codes

Error Code
(Hexadecimal) Description

04
Command number error
This error occurs when a command number error of the RL78 Protocol C status code is
received from the target MCU.

05
Parameter error
This error occurs when a parameter error of the RL78 Protocol C status code is
received from the target MCU.

07
Checksum error
This error occurs when a checksum error of the RL78 Protocol C status code is
received from the target MCU.

0F
Verification error
This error occurs when a verification error of the RL78 Protocol C status code is
received from the target MCU.

10
Protection error
This error occurs when a protection error of the RL78 Protocol C status code is
received from the target MCU.

15
NACK
This error occurs when a NACK of the RL78 Protocol C status code is received from
the target MCU.

1A
Erasure error
This error occurs when an erasure error of the RL78 Protocol C status code is received
from the target MCU.

1B
Blank error
This error occurs when a blank error of the RL78 Protocol C status code is received
from the target MCU.

1C
Write error
This error occurs when a write error of the RL78 Protocol C status code is received
from the target MCU.

23
Frequency error
This error occurs when a frequency error of the RL78 Protocol C status code is
received from the target MCU.

24
ID authentication error
This error occurs when an ID authentication error of the RL78 Protocol C status code is
received from the target MCU.

FB

Invalid Motorola S-format data
This error occurs if Motorola S-format data sent to the target MCU is invalid.
This error occurs even when Motorola S-format data is not in ascending order of
address.

FC
Target MCU communication timeout
This error occurs if a timeout occurs during communication between the programmer
board and the target MCU.

FE Command communication data error
This error occurs if an invalid packet format is received from the target MCU.

FF System error
This error occurs if the program does not work correctly.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 9 of 27
Feb.29.24

4.3 Flowchart
4.3.1 Main Routine (main function)
Figure 4-3 shows the operation of the main routine.

Figure 4-3 Main routine

Parse command line
options

Display usage Execute the processing for
writing of flash memory

End communication

System termination
processing

Options are correct?

Initial comunication

YesNo

: main()

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 10 of 27
Feb.29.24

4.3.2 Memory Write Processing
Figure 4-4 shows the operation of the memory write processing.

Figure 4-4 Memory write processing

　Initial communication
　According to options (communication mode, communication
 speed, VDD voltage, ID code), do the followings.
　・Transition to programming mode
　・Baud rate setting
　・ID authentication (only when ID authentication is enabled)

　Acquire Signature Information
　(Acquire the size of code flash and data flash)

　Erase
　(Erase entire code flash and data flash area)

No

Yes

　Write
　(Write entire code flash and data flash area)

Verify option is enabled?

　Verify
　(Verify entire code flash and data flash area)

　Checksum
　(Calculate checksum of entire code flash and data flash area)

Checksum option is enabled?

Output low level from RESET

No

Yes

: terminal_command_offline()

: fp_term_communication()

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 11 of 27
Feb.29.24

5. Hardware Descriptions
5.1 Target Interface Specifications
The following figures show how to connect the flash programmer to the target MCU.

Figure 5-1 Single Line UART (VDD=EVDD) Note 1

3V3
GND

GPIO5/RxD3

VDD/EVDD

Vss/EVss

VDD

VDD

GPIO0/TxD2

VDD TOOL0

GPIO23

VDD

RESET
Three-state buffer

Flash programmer
(Raspberry Pi 4 Model B+) Target MCU

VDD

Note 2

Note 1. This is a connection example when VDD is 3.3V.
Note 2. If VDD and EVDD are different, EVDD must be powered externally.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 12 of 27
Feb.29.24

5.1.1 Dedicated UART

Figure 5-2 Dedicated UART (VDD=EVDD) Note 1

GND

GPIO5/RxD3

Vss/EVss
VDD

TOOL0

GPIO23

VDD

RESET

Target MCU

GPIO0/TxD2

TOOLTxD

TOOLRxD

3V3 VDD/EVDD

VDDVDD

Flash programmer
(Raspberry Pi 4 Model B+)

Note 2

Note 1. This is a connection example when VDD is 3.3V.
Note 2. If VDD and EVDD are different, EVDD must be powered externally.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 13 of 27
Feb.29.24

5.2 List of Pins Used
Table 5-1 shows the flash programmer pins and functions used in the sample program.

Table 5-1 List of Error Codes
Pin Name I/O Function

TxD2 Output Target interface communication transmit pin (UART2) Note 1

RxD3 Input Target interface communication receive pin (UART3) Note 1

GPIO23 Output Target MCU RESET control pin

Caution In this application note, only the used pins are handled. When creating your circuit, apply

appropriate handling to the pins and design the circuit to meet the electrical characteristics.

Note 1. In the RL78 protocol C communication specification, the stop bits for transmission and reception are

different, but in the UART communication settings of the Raspberry Pi OS, the stop bits for
transmission and reception are the same, so the UARTs used for transmission and reception are
separated.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 14 of 27
Feb.29.24

6. Software Descriptions
6.1 List of files
The followings are list of files used in the sample program.
Table 6-1 shows the files provided by the Raspberry Pi OS, and Table 6-2 shows the files provided by the
sample program.

Table 6-1 List of files provided by Raspberry Pi OS

Directory File name Description
/dev/ mem Memory mapped I/O file

/dev/ ttyAMA1 or ttyAMA2 Note 1 Serial communication port file
For UART2

/dev/ ttyAMA2 or ttyAMA3 Note 1 Serial communication port file
For UART3

/boot/ config.txt
firmware/config.txt config file for RPi4

Note 1. It depends on the OS version.

Table 6-2 List of files provided by sample program

Directory File name Description

./ fp_c

Executable file of the program created with make
(This file was created in the environment described
in 2.Development Environments.)

If you copy and use it from another location, you
may need to grant execute permission using the
following command:
$ chmod a+x <file name>"

./ makefile
Sample makefile
(Text file describing the procedure to be executed
with the make command)

./ main.c main function processing

common/ protocol_c.c
protocol_c.h Protocol C command processing

common/ terminal_com.c
terminal_com.h Terminal command processing

common/ utility.h Utility functions processing

driver/ config_driver.c
config_driver.h System initialization function processing

driver/ config_gpio.c
config_gpio.h Device driver for GPIO

driver/ config_systemtimer.c
config_systemtimer.h Device driver for System Timer

driver/ config_uart.c
config_usrt.h Device driver for UART

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 15 of 27
Feb.29.24

6.2 List of Functions
Table 6-3 and Table 6-4 show major functions used in the sample program.

Table 6-3 List of functions (1/2)
Function name Description Source file

mian main function main.c

read_arguments Parsing arguments of option main.c

system_init System initialization processing config_driver.c

system_term System termination processing config_driver.c

config_gpio_create Acquiring memory mapped I/O of GPIO register config_gpio.c

config_gpio_destroy Discarding memory mapped I/O of GPIO register config_gpio.c

config_gpio_p23_output_start Setting GPIO23 to output config_gpio.c

config_gpio_p23_output_stop Returning GPIO23 to initial setting config_gpio.c

config_gpio_p0_txd2_start Setting GPIO0 to TXD2 config_gpio.c

config_gpio_p0_txd2_stop Setting GPIO0 to output config_gpio.c

config_gpio_control_reset HI/LO control of GPIO23(RESET) config_gpio.c

config_gpio_control_tool0 HI/LO control of GPIO0(TOOL0) config_gpio.c

config_systemtimer_create Acquiring memory mapped I/O of SystemTimer
register

config_systemtimer.c

config_systemtimer_destroy Discarding memory mapped I/O of SystemTimer
register

config_systemtimer.c

config_systemtimer_get_count Acquiring count value of SystemTimer config_systemtimer.c

config_systemtimer_wait_ms Waiting in ms unit config_systemtimer.c

config_systemtimer_wait_us Waiting in us unit config_systemtimer.c

config_uart_create Acquiring memory mapped I/O of UART register config_uart.c

config_uart_destroy Discarding memory mapped I/O of UART register config_uart.c

config_uart2_start Initial setting for UART2 config_uart.c

config_uart2_stop Discarding UART2 setting config_uart.c

config_uart3_start Initial setting for UART3 config_uart.c

config_uart3_stop Discarding UART3 setting config_uart.c

config_uart2_send Sending data from TXD2 config_uart.c

config_uart2_send_with_wait Sending data from TXD2 (with waiting time between
data transmission)

config_uart.c

config_uart3_receive Receiving data from RXD3 config_uart.c

config_uart23_set_baudrate Baud rate setting of UART2, UART3 config_uart.c

fp_cmd_reset_c Reset command sending processing protocol_c.c

fp_cmd_verify_c Verify command sending processing protocol_c.c

fp_cmd_erase_c Block Erase command sending processing protocol_c.c

fp_cmd_program_c Programming command sending processing protocol_c.c

fp_cmd_baudrate_c Baud Rate Set command sending processing protocol_c.c

fp_cmd_sec_id_auth_c Security ID Authentication command sending
processing

protocol_c.c

fp_cmd_checksum_c Checksum command sending processing protocol_c.c

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 16 of 27
Feb.29.24

Table 6-4 List of functions (2/2)
Function name Description Source file

fp_cmd_signature_c Silicon Signature command sending processing protocol_c.c

fp_initial_communication Initial processing for starting communication (Entry
to Flash Memory Programming Modes)

protocol_c.c

fp_get_signature Executing Silicon Signature command and acquiring
each parameter

protocol_c.c

terminal_command_init Initialization of each parameter terminal_com.c

terminal_command_init_dev Initialization of device-dependent parameters terminal_com.c
terminal_command_offline Executing Flash rewriting processing terminal_com.c

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 17 of 27
Feb.29.24

6.3 Specification of Functions
This section shows the specifications of major functions used in the sample program.

read_arguments
Outline Parsing arguments of option

Declaration static uint8_t read_arguments(st_command_data_t * cmd, int argc, char * argv[])

Argument
st_command_data_t * cmd: Option setting information
int argc: Number of optional arguments
char * argv[]: Optional arguments

Return Value 0: Normal end
1: Abnormal end (Option is not correct.)

Description Read and parse the argument “com_data”.

system_init
Outline System initialization processing

Declaration void system_init (void)

Argument -

Return Value -

Description Initialize system settings.

system_term
Outline System termination processing

Declaration void system_term (void)

Argument -

Return Value -

Description Terminate the system.

config_gpio_create
Outline Acquiring memory mapped I/O of GPIO register

Declaration void config_gpio_create (int32_t mem_fd)

Argument int32_t mem_fd: MMIO file descriptor

Return Value -

Description Acquire the memory mapped I/O of the GPIO register and set the GPIO ports.

config_gpio_destroy
Outline Discarding memory mapped I/O of GPIO register

Declaration void config_gpio_destroy (void)

Argument -

Return Value -

Description Discard the memory mapped I/O of the GPIO register to return the GPIO port to its
state before program execution.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 18 of 27
Feb.29.24

config_gpio_p23_output_start
Outline Setting GPIO23 to output pin

Declaration void config_gpio_p23_output_start (void)

Argument -

Return Value -

Description Set the GPIO23 of Raspberry Pi to output.

config_gpio_p23_output_stop
Outline Returning GPIO23 to initial setting

Declaration void config_gpio_p23_output_stop (void)

Argument -

Return Value -

Description Return the GPIO23 of Raspberry Pi to its initial state.

config_gpio_p0_txd2_start
Outline Setting GPIO0 to TXD2

Declaration void config_gpio_p0_txd2_start(void)

Argument -

Return Value -

Description Set the GPIO0 of Raspberry Pi to the TxD2.

config_gpio_p0_txd2_stop
Outline Setting GPIO0 to output

Declaration void config_gpio_p0_txd2_stop(void)

Argument -

Return Value -

Description Set the GPIO0 of Raspberry Pi to output.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 19 of 27
Feb.29.24

config_gpio_control_reset
Outline HI/LO control of GPIO23(RESET)
Declaration void config_gpio_control_reset(uint8_t enabled)

Argument uint8_t enabled: Reset information (0: Release of a reset 1: Reset)

Return Value -

Description

Control HI/LO of the GPIO23(RESET) of Raspberry Pi.
The reset is released by executing “config_gpio_control_reset(0)” and RESET
signal is changed to HI.
The target MCU is in the reset state by execution “config_gpio_control_reset(1)”
and RESET signal is changed to LO.

config_gpio_control_tool0
Outline HI/LO control of GPIO0(TOOL0)

Declaration void config_gpio_control_tool0(uint8_t enabled)

Argument uint8_t enabled: HI/LO information of GPIO0 (0: LO 1: HI)

Return Value -

Description Control HI/LO of GPIO0(TOOL0) of Raspberry Pi.

config_systemtimer_create
Outline Acquiring memory mapped I/O of SystemTimer register

Declaration void config_systemtimer_create(int32_t mem_fd)

Argument int32_t mem_fd: MMIO file descriptor

Return Value -

Description Acquire the memory mapped I/O of the SystemTimer register.

config_systemtimer_destroy
Outline Discarding memory mapped I/O of SystemTimer register

Declaration void config_systemtimer_destroy(void)

Argument -

Return Value -

Description Discard the memory mapped I/O of the SystemTimer register.

config_systemtimer_get_count
Outline Acquiring count value of SystemTimer

Declaration uint64_t config_systemtimer_get_count(void)

Argument -

Return Value The count value of SystemTimer

Description Acquire the count value of the SystemTimer.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 20 of 27
Feb.29.24

config_systemtimer_wait_ms
Outline Waiting in ms unit

Declaration void config_systemtimer_wait_ms(const uint16_t wait_count)

Argument const uint16_t wait_count: Wait time [ms]

Return Value -

Description Wait for the specified time (ms unit).

config_systemtimer_wait_us
Outline Waiting in us unit

Declaration void config_systemtimer_wait_us(const uint16_t wait_count)

Argument const uint16_t wait_count: Wait time [us]

Return Value -

Description Wait for the specified time (us unit).

config_uart_create
Outline Acquiring memory mapped I/O of UART register

Declaration void config_uart_create(int32_t mem_fd)

Argument int32_t mem_fd: MMIO file descriptor

Return Value -

Description Acquire the memory mapped I/O of the UART register.

config_uart_destroy
Outline Discarding memory mapped I/O of UART register

Declaration void config_uart_destroy(void)

Argument -

Return Value -

Description Discard the memory mapped I/O of the UART register.

config_uart2_start
Outline Initial setting for UART2

Declaration void config_uart2_start(void)

Argument -

Return Value -

Description
Initialize the UART2. (In the Raspberry Pi4, the stop bit set by this function is
common to both transmission and reception, so UART2 is used for transmission in
this sample.)

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 21 of 27
Feb.29.24

config_uart2_send
Outline Sending data from TXD2

Declaration e_md_status_t config_uart2_send(uint8_t * const tx_buf, uint16_t tx_num)

Argument uint8_t * const tx_buf: Data for transmission
uint16_t tx_num; Size of data for transmission

Return Value
MD_OK: Normal end
MD_ARGERROR: Argument error
MD_TXERROR: Transmission error

Description

Send data from the TXD2. If the data is too long, write as much as possible and
then write the remaining data again. Repeat this until all data is sent.
If there is a transmission error, the write() function returns a negative value, so this
is used to detect errors.

config_uart2_stop
Outline Discarding UART2 setting

Declaration void config_uart2_stop(void)

Argument -

Return Value -

Description Discard the UART2 settings.

config_uart3_start
Outline Initial setting for UART3

Declaration void config_uart3_start(void)

Argument -

Return Value -

Description
Initialize the UART3. (In the Raspberry Pi4, the stop bit set by this function is
common to both transmission and reception, so UART3 is used for reception in
this sample.)

config_uart3_stop
Outline Discarding UART3 setting

Declaration void config_uart3_stop(void)

Argument -

Return Value -

Description Discard the UAR3 settings.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 22 of 27
Feb.29.24

config_uart2_send_with_wait
Outline Sending data from TXD2 (with waiting time between data transmission)

Declaration e_md_status_t config_uart2_send_with_wait(uint8_t * const tx_buf, uint16_t
tx_num)

Argument uint8_t * const tx_buf: Data for transmission
uint16_t tx_num; Size of data for transmission

Return Value
MD_OK: Normal end
MD_ARGERROR: Argument error
MD_TXERROR: Transmission error

Description Send data from the TXD2. Add a wait for each 1 byte transmission and repeat until
all data is sent.

config_uart3_receive
Outline Receiving data from RXD3

Declaration e_md_status_t config_uart3_receive(uint8_t * const rx_buf, uint16_t rx_num,
uint16_t timeout_ms, uint8_t is_echobacked, uint16_t * p_top_pos)

Argument

uint8_t * const rx_buf: Data for reception
uint16_t rx_num: Size of data for reception
uint16_t timeout_ms: Timeout time
uint8_t is_echobacked: Eliminating single-line UART echoback
uint16_t * p_top_pos: First data of received data

Return Value

MD_OK: Normal end
MD_ARGERROR: Argument error
MD_RXERROR: Reception error
MD_RXTIMEOUT: Receive timeout error

Description

Receive data from the RXD3. If the received data is insufficient (for example, not
all data has been received), read as much as possible and read it again. Repeat
this until all data is read.
If it cannot be received to the end, select() will fail at some stage and a timeout will
occur.

config_uart23_set_baudrate
Outline Baud rate setting of UART2, UART3

Declaration void config_uart23_set_baudrate(e_uart_baudrate_t baudrate)

Argument e_uart_baudrate_t baudrate: Baud rate

Return Value -

Description Set the baud rate for UART2 and UART3.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 23 of 27
Feb.29.24

fp_cmd_reset_c
Outline Reset command sending processing

Declaration uint8_t fp_cmd_reset_c(void)

Argument -

Return Value 0: Normal end
Other than 0: Abnormal end (refer to 4.2 Error Code Specifications)

Description Execute the Reset command of RL78 protocol C.

fp_cmd_verify_c
Outline Verify command sending processing

Declaration uint8_t fp_cmd_verify_c(const uint32_t start, const uint32_t end, const uint8_t *
data)

Argument
const uint32_t start: Start address for verify
const uint32_t end: End address for verify
const uint8_t * data: Comparison data for verify

Return Value 0: Normal end
Other than 0: Abnormal end (refer to 4.2 Error Code Specifications)

Description Execute the Verify command of RL78 protocol C.

fp_cmd_erase_c
Outline Block Erase command sending processing

Declaration uint8_t fp_cmd_erase_c(const uint32_t addr)

Argument const uint32_t addr: Start address of block for erase

Return Value 0: Normal end
Other than 0: Abnormal end (refer to 4.2 Error Code Specifications)

Description Execute the Block Erase command of RL78 protocol C.

fp_cmd_program_c
Outline Programming command sending processing

Declaration uint8_t fp_cmd_program_c(const uint32_t start, const uint32_t end, const uint8_t *
data)

Argument
const uint32_t start: Start address for rewriting
const uint32_t end: End address for rewriting
const uint8_t * data: Data for rewriting

Return Value 0: Normal end
Other than 0: Abnormal end (refer to 4.2 Error Code Specifications)

Description Execute the Programming command of RL78 protocol C.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 24 of 27
Feb.29.24

fp_cmd_baudrate_c
Outline Baud Rate Set command sending processing

Declaration uint8_t fp_cmd_baudrate_c(const e_uart_speed_t baudrate, const uint16_t vdd,
uint8_t * frq, uint8_t * fpm)

Argument

const UART_SPEED baudrate: Communication baud rate
UART_SPEED_DEFAULT: 115200 bps
UART_SPEED_250000: 250000 bps
UART_SPEED_500000: 500000 bps
UART_SPEED_1000000: 1000000 bps
const uint16_t vdd: VDD voltage to be applied

 (in 100-mV units, truncate the digits after the decimal point.)
uint8_t * frq: CPU operating frequency [MHz] (Acquire it from target MCU)
uint8_t * fpm: Flash memory rewriting mode (Acquire it from target MCU)

Return Value 0: Normal end
Other than 0: Abnormal end (refer to 4.2 Error Code Specifications)

Description Execute the Baud Rate Set command of RL78 protocol C.

fp_cmd_sec_id_auth_c
Outline Security ID Authentication command sending processing

Declaration uint8_t fp_cmd_sec_id_auth_c(const uint8_t * sec_id)

Argument const uint8_t * sec_id: Security ID code

Return Value 0: Normal end
Other than 0: Abnormal end (refer to 4.2 Error Code Specifications)

Description Execute the Security ID Authentication command of RL78 protocol C.

fp_cmd_checksum_c
Outline Checksum command sending processing

Declaration uint8_t fp_cmd_checksum_c(const uint32_t start, const uint32_t end, uint16_t *
checksum)

Argument
const uint32_t start: Start address for checksum
const uint32_t end: End address for checksum
const uint16_t * checksum: Acquired checksum data

Return Value 0: Normal end
Other than 0: Abnormal end (refer to 4.2 Error Code Specifications)

Description Execute the Checksum command of RL78 protocol C.

fp_cmd_signature_c
Outline Silicon Signature command sending processing

Declaration uint8_t fp_cmd_signature_c(uint8_t * dvc, uint8_t * dev,uint32_t * cfe, uint32_t * dfe,
uint8_t * fwv)

Argument

uint8_t * dvc: Device function code (Acquire it from target MCU)
uint8_t * dev: Device name (Acquire it from target MCU)
uint32_t * cfe: Last address of code flash memory area (Acquire it from target MCU)
uint32_t * dfe: Last address of data flash memory area (Acquire it from target MCU)
uint8_t * fwv: Boot firmware version (Acquire it from target MCU)

Return Value 0: Normal end
Other than 0: Abnormal end (refer to 4.2 Error Code Specifications)

Description Execute the Silicon Signature command of RL78 protocol C.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 25 of 27
Feb.29.24

fp_initial_communication

Outline Initial processing for starting communication (Entry to Flash Memory Programming
Modes)

Declaration uint8_t fp_initial_communication(st_command_data_t * command)

Argument st_command_data_t * command: Setting information for command

Return Value 0: Normal end
Other than 0: Abnormal end (refer to 4.2 Error Code Specifications)

Description

Perform initial communication with the target MCU according to the RL78 protocol
C.
Release a reset, send the mode information, and execute the Baud Rate Set
command, the Reset command and the Security ID Authentication Note 1 command.
Note1. If the command number error occurs when executing the Reset command.

fp_get_signature
Outline Executing Silicon Signature command and acquiring each parameter

Declaration uint8_t fp_get_signature(st_command_data_t * command)

Argument st_command_data_t * command: Setting information for command

Return Value 0: Normal end
Other than 0: Abnormal end (refer to 4.2 Error Code Specifications)

Description Acquire the signature information of the target MCU and set it to the argument
“com_data”.

terminal_command_init
Outline Initialization of each parameter

Declaration void terminal_command_init(st_command_data_t * com_data)

Argument st_command_data_t * com_data: Setting information for command

Return Value -

Description Initialize the argument “com_data”.

terminal_command_init_dev
Outline Initialization of device-dependent parameters

Declaration void terminal_command_init_dev(st_command_data_t * com_data)

Argument st_command_data_t * com_data: Setting information for command

Return Value -

Description Initialize the signature information of the argument “com_data”.

terminal_command_offline
Outline Executing Flash rewriting processing

Declaration void terminal_command_init(st_command_data_t * com_data)

Argument st_command_data_t * com_data: Setting information for command

Return Value -

Description Read the S-Record data from the file and rewrite the flash memory.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 26 of 27
Feb.29.24

7. Reference Documents
RL78 Microcontroller (RL78 Protocol C) Serial Programming Guide (R01AN5756)

The latest versions can be downloaded from the Renesas Electronics website.

All trademarks and registered trademarks are the property of their respective owners.

RL78 Family Flash programmer with Raspberry Pi (RL78 Protocol C)

R01AN7207EJ0100 Rev.1.00 Page 27 of 27
Feb.29.24

Revision History

Rev. Date
Description
Page Summary

1.00 Feb 29, 2024 - First edition

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	2. Development Environments
	3. Raspberry Pi Settings
	3.1 Raspberry Pi environment (config.txt) Setting
	3.2 Build Environment
	3.3 Way to Build

	4. Specification
	4.1 Option Specifications
	4.2 Error Code Specifications
	4.3 Flowchart
	4.3.1 Main Routine (main function)
	4.3.2 Memory Write Processing

	5. Hardware Descriptions
	5.1 Target Interface Specifications
	5.1.1 Dedicated UART

	5.2 List of Pins Used

	6. Software Descriptions
	6.1 List of files
	6.2 List of Functions
	6.3 Specification of Functions

	7. Reference Documents

