
 Application Note

R11AN0073EU0112 Rev.1.12 Page 1 of 62
Dec 28, 2018

Renesas Synergy™ Platform

Customizable Flashloader Solution
for Synergy MCUs
Introduction
This application project describes how to integrate and use the Renesas Flashloader module to update the application
software running on a Renesas Synergy™ microcontroller. The ability to update the application software in the field is
critical to successfully pushing feature improvements and bug fixes to an embedded system.

The Flashloader solution contains three separate application pieces:

• The bootloader is a complete, self-contained image that runs on the Synergy microcontroller and performs the
application update.

• The downloader is a collection of functions linked to your application image that is separate from the bootloader
image. The downloader receives the new application by communicating with an external host, device, or network.
Once the application is validated, the bootloader performs the update.

• Depending on the communication interface, a software application running on a host such as a PC will facilitate the
firmware update process.

The example Flashloader solution demonstrated in this application project leverages the Synergy Software Package
(SSP) in addition to Express Logic’s ThreadX® real-time operating system (RTOS) and the X-Ware USBX™ stack. The
Flashloader application was developed within e2 studio and IAR Embedded Workbench® for Renesas Synergy™ using
the SSP Flashloader Framework that is included in the associated project files.

Target Device
The application project works with the Synergy MCU Family. Examples are shown for the S7G2 Synergy MCU Group
on a Synergy Development Kit, DK-S7G2 Version 3.1. Appendices provide information about other Synergy MCU
Groups.

Minimum PC Recommendation
• Microsoft® Windows® 7
• Intel® Core™ family processor running at 2.0 GHz or higher (or equivalent processor)
• 8 GB memory
• At least 2 GB of free space on hard disk or SSD
• USB 2.0
• Connection to the Internet

Installed Software
• Synergy Tool, e2 studio v5.4.0.023 or IAR EW for Synergy version 7.71.3
• SSP v1.3.x
• Flashloader_pack_1.3.0.exe
• Python 2.7 for Windows
• Python 2.7 modcrc
• pyserial 3.2.1 library (https://github.com/pyserial/pyserial/releases)
• r_fl_mot_convert.py and r_fl_serial_flashloader.py (included with this project)
• Microsoft Visual Studio (Free version) (only required if the Flashloader Utility GUI will be modified)
• Microsoft.Net Framework 4.x

Notes:

1. If you do not have one of these software applications you should install it before continuing.
2. This version of Flashloader is supported for SSP v1.3.x release only.

R11AN0073EU0112
Rev.1.12

Dec 28, 2018

https://github.com/pyserial/pyserial/releases

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 2 of 62
Dec 28, 2018

Recommended Reading

SSP User’s Manual introductory chapters
SSP Datasheet v1.3.0 or later
Importing a Renesas Synergy Project (r11an0023eu0117-synergy-ssp-import-guide.pdf)

Note: If you are not familiar with the above documents you should review them before continuing.

Provided Software Projects:

• Bootloader
• Downloader
• Flashloader PC Utility

Purpose

This application note takes you through integrating an example Flashloader solution into your project. In addition, you
learn how major components and software can be customized and configured for your project. You can use the example
solution to understand Flashloader fundamentals and as a starting point for a production Flashloader solution. Every
product will have slightly different requirements pertaining to the communication interface and how the application
image is validated. The provided example is flexible and can be modified to fit nearly any application requirement.

Intended Audience
The intended audience are users that understand the Renesas Synergy™ Platform’s fundamentals and are interested in
developing an application that can be updated in the field through a Flashloader solution.

Prerequisites
As the user of this application note, you are assumed to have some experience with the Renesas e2 studio integrated
solution development environment (ISDE) and the SSP. For example, before performing the procedure in this
application note, you should follow the procedure in the board’s Quick Start Guide to build and run the Blinky project.

By doing so, you will become familiar with e2 studio and the SSP, and ensure that the debug connection to your board is
functioning properly.

In addition, you can use the SSP User Manual (available as part of the SSP download) to get complete information on
the SSP architecture, modules, and starting development with SSP.

Contents
1. Overview ... 4
2. Running the Custom Flashloader Solution Example ... 5
2.1 Preparation .. 5
2.2 Build, download and debug ... 5
2.3 Running Flashloader ... 8
3. Bootloader Memory Layout ... 11
4. Downloader Memory Layout ... 13
5. Non-Blocking Bootloader Application Stack Configuration ... 14
6. Bootloader Linker Script .. 19
7. Non-Blocking Bootloader Application Design and Implementation Overview 21
8. Blocking Bootloader Application Software Stack Configuration .. 25
9. Blocking Bootloader Application Design and Implementation Overview 28
10. Non-Blocking Downloader Application Software Stack Overview ... 31
11. Blocking Downloader Application Software Stack Overview ... 34
12. Non-Blocking Downloader Application Design and Implementation Overview 37
13. Downloader Linker Script .. 39
14. Converting User Applications to BCH Files using the Python Converter Script 40
14.1 Convert User Application to BCH files manually ... 40
14.2 Convert User Application to BCH files manually ... 42

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 3 of 62
Dec 28, 2018

14.3 Verify BCH image .. 42
15. Flashloader Utility Python Script ... 44
16. Flashloader Utility GUI .. 46
17. Going Further .. 49
18. Troubleshooting .. 50
Appendix A Configuring the DK-S7G2 Development Kit for USB CDC .. 51
Appendix B Configuring the DK-S7G2 Development Kit for UART .. 52
Appendix C Configuring the SK-S7G2 Development Kit for USB CDC .. 54
Appendix D Configuring the SK-S7G2 Development Kit for UART .. 55
Appendix E Configuring the PK-S5D9 Development Kit for USB CDC .. 56
Appendix F Configuring the PK-S5D9 Development Kit for UART ... 57
Appendix G Installing USB CDC drivers in Windows 7/8 and Windows 10 57
Revision History .. 62

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 4 of 62
Dec 28, 2018

1. Overview
Flashloaders are one of the most common application components in embedded systems and probably the most
neglected. The flashloader discussed in this application project is software that a developer would develop and
customize to run on their system. This flashloader should not be confused with the factory flashloader application built
into a microcontroller’s ROM and designed to update the internal flash system. In some circumstances, the factory
flashloader is all that is required to update firmware in the field. However, in many cases you will want to customize the
firmware update process. This is where the flashloader discussed here comes into play. There are many solutions for
how a flashloader can be architected, but the most flexible and scalable solution is to break the flashloader up into two
primary components; the bootloader and the downloader.

The downloader is software within the developer’s application code that can detect that a new application is ready to be
downloaded to the device through a communication interface. The downloader stores and validates the new application
but it typically does not update the current application image. Instead, the downloader notifies the bootloader that there
is an image available for updating.

The downloader can be architected so that it behaves in a blocking or a non-blocking manner. A blocking downloader
will prevent the primary application code from executing while the new firmware is downloaded and updated. The
non-blocking downloader will allow the application to execute normally while the new image is downloaded, usually to
an external memory device. Once the downloader has stored the new image to either internal flash memory or external
memory such as an SD card, the system can be restarted so that the bootloader can update the firmware.

The bootloader software exists in a separate memory space from the user application code and downloader. It facilitates
the firmware update process. The bootloader verifies the available image and contains all the necessary algorithms and
intelligence to process the image, erase internal flash, program the new application and then verify it. When the
application has been successfully written, the bootloader then jumps to the applications reset vector and begin executing
the updated firmware. The following figure is a flowchart showing an example of the flashloader solution’s behavior.

Figure 1 Flashloader solution’s behavior

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 5 of 62
Dec 28, 2018

2. Running the Custom Flashloader Solution Example
The easiest way to get up to speed on the Flashloader solution is to import and walk through the example project to
understand the various stacks, code and settings required to get the Flashloader solution working. Once a developer
understands the Flashloader Framework, it becomes easier to recreate the stacks in your own project, or export the
stacks and import them into a project.

2.1 Preparation
• Start setup by making sure that all the required applications listed at the beginning of the application project are

installed and you have downloaded the Flashloader application project.
• Run the installer Flashloader_pack_1.3.0.exe so that you have the required SSP flashloader pack installed in

e2 studio or SSC.
• If you are interested in the USB CDC flashloader, be sure to examine the flashloader application package. Within the

flashloader directory, there is a Windows USB driver that allows the downloader application to show up as a standard
serial communication port.

• Make sure that you download the Python 2.7 pyserial-3.3 library and install it. The library can be downloaded from
https://pypi.python.org/pypi/pyserial/3.3. Alternatively, you can download pyserial using pip by running the
following command from the python27 folder:
python -m pip install pyserial

• The python modcrc library also needs to be downloaded from https://pypi.python.org/pypi/crcmod/1.7. These
libraries allow the flashloader utility to communicate over a communication link and generate CRC’s for the
communication packets.

• To proceed with running the example, the development kit needs to be configured based on the communication
protocol and the development kit selected. Review the appendices for the development kit and communication
protocol setup details. Walk through the appendix setup now.

2.2 Build, download and debug
The following steps can then be used to build, download and debug the Flashloader:

1. Follow Synergy SSP Import Guide to import and build the desired flashloader solution. Example solutions include:

 USB CDC Non-blocking
 USB CDC Blocking
 UART Non-blocking
 UART Blocking

2. Each of these 4 examples includes two projects that must be imported into the workspace and built:

 The bootloader project
 The downloader project

Note: Don’t forget to generate the code before building the projects.

https://pypi.python.org/pypi/pyserial/3.3
https://pypi.python.org/pypi/crcmod/1.7

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 6 of 62
Dec 28, 2018

3. The workspace should appear like the following figure.

Figure 2 Imported project workspace

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 7 of 62
Dec 28, 2018

4. Open the downloader projects Debug Configuration options.

Navigate to the Renesas GDB Hardware Debugging setting and select the Downloader_Debug entry as shown in
the following figure. Navigate to the Startup tab. There is a section for Load Image and Symbols. Verify that the
path to load the bootloader image is included and correct. If the Startup tab has a warning next to it, verify that the
path to the elf files for the bootloader and downloader are correct by clicking on each and pressing edit.

Figure 3 Updating the Downloaders Debug Configuration
Note: The bootloader application code will be programmed into the microcontroller with the downloader code. DO

NOT DOWNLOAD AND DEBUG THE BOOTLOADER APPLICATION BY ITSELF. All the bootloader
symbols are included to enable developers to step through the entire process and debug any issues.

Verify that the commands shown in the following figure are still configured at the bottom of the Startup tab.

Figure 4 Adding run commands to bypass the User Application Image
Note: The run commands are setting the stack pointer, program counter and the VTOR register. During the first

execution, the bootloader will be skipped over and the downloader code will be executed directly.

Note: For users who create their own images, should set Run Commands based on the Slot they are flashing the initial

Downloader to. Starting address for Slot 0 is 0x100000 and Slot 1 is 0x280000. Replace 0x10 with 0x28 in the
run commands showed in picture above to flash and run Downloader from slot 1.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 8 of 62
Dec 28, 2018

At this point, a developer can click apply and then Debug to program the chip and start debugging the application. Once
the application is programmed the execution will break at the Reset_Handler.

Note: Do not press the restart button at this time as doing so will skip those commands in the debug configuration and

cause the bootloader to run and not the downloader application.

Figure 5 Resume button
Press the Resume button to run the application. The LED(s) should start blinking at a frequency of 1 Hz.

2.3 Running Flashloader
The flashloader solution is now executing. Now it is just a matter of communicating with the flashloader so that it can
download a new application. Whether you are planning to use the Python script updater or the Flashloader Utility GUI,
you will need to examine which communication port the downloader application will appear on. A developer needs to
use a communication port whether they are using USB CDC or using UART through a USB to UART converter.

1. Open the Windows Device Manager and expand the Ports tab as shown in the following figure.

Identify the communication port that will be used to communicate with the development board. If this is the first
time running the project and if the USB CDC protocol was selected, the board USB drivers may not be found and
the device will show up as Unknown device. See Appendix G Installing USB CDC drivers in Windows 7/8 and
Windows 10 for details on how to install a Windows driver.

Figure 6 Identify the USB Communication Port Number

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 9 of 62
Dec 28, 2018

2. Start the Renesas Synergy Flashloader Utility

3. In the File menu, select Options. As shown in the following figure, use Browse… to set the path to the Python 2.7
executable.

Figure 7 Setting the Flashloader Utility Python path
1. In the S-Rec to BCH Conversion Options shown in the following figure, select the Output Filename using the

Browse… button.

The pre-built images are located in the downloader images folders. For example, the images for the USB CDC
Blocking Flashloader is located in:
Flashloader\Flashloader_Examples\USB CDC\blocking\downloader\images

For non-blocking flashloaders, the options are:

• eLED_Blink_Fast.bch
• aLED_Blink_Slow.bch

For the blocking flashloader, the options are:

• LED_Blink_Fast_Slot0_v5.bch
• LED_Blink_Slow_Slot1_v6.bch
• LED_Blink_Fast_Slot0_v7.bch
• LED_Blink_Slow_Slot1_v8.bch

Use LED_Blink_Fast.bch if you are using the non-blocking flashloader. Select
LED_Blink_Fast_Slot0_v5.bch for the blocking flashloader. This file is the image that will be transmitted
to the development board.

Figure 8 Selecting the BCH file to load

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 10 of 62
Dec 28, 2018

4. In the Flashloader Options, select the COM Port from the dropdown (COM8 in this example) and then select
Connect.

The Execution Log shows whether the connection was successful. If the connection is successful, you should see
something like the following figure in the execution log. Connecting to the device reveals information about the
application that is currently stored in the device, such as the version number.

Figure 9 Connect to the communication port
5. Once the device has responded, select the Erase button.

The device now erases the application images that are currently stored on the device at the specified location. The
output should appear like the following figure. If a device supports multiple image locations, the erased block text
box could be used to specify the location that should be erased. For example, if you are working with the non-
blocking flashloader, erase the block that is not currently executing the application. The default application is
running in application slot 1.

Figure 10 Erase the stored program images

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 11 of 62
Dec 28, 2018

6. Select press the Update button.
The execution log will begin to fill with information related to transferring application records to the downloader.
The output will look something like the following figure. This is the selected BCH file being transmitted to the
downloader application that is running on the development kit.

Figure 11 Updating the Downloader Application
7. When the records have been transferred, the device will now restart and load the new application.

It may take a few minutes depending on the application size before the system wakes back up and the new
application is running. The LED(s) will start blinking at 5 Hz when the new application has been successfully
loaded.

You have completed the entire flashloader update process. You can now go back through steps 4-7 and load the next
application (LED_Blink_Slow_Slot1_v6.bch) into the development board. Just make sure that if you are using the
blocking flashloader, erase the opposite slot (slot 1) that was just programmed and select an image (BCH file) for that
slot that has an equal or higher version number. The rest of this application project will now dig into the details on how
to configure and integrate the flashloader along with information on how to use the various scripts and utilities
associated with the flashloader solution.

3. Bootloader Memory Layout
Developing a flashloader solution requires having two separate applications being stored in flash memory
simultaneously on the microcontroller. To do this, the flash memory space needs to be broken up into two separate
regions; one where the bootloader will reside and one where the application/downloader resides. There are two separate
projects, each need to configure their linker script so that the two applications can communicate but not go into each
other’s memory regions. Since there are two applications, there will be two separate vector tables that will need to be
tracked and managed.

The bootloader application is located at the memory start address location 0x00000000, which is the microcontroller’s
reset vector. This means that when the microcontroller boots, the bootloader is the first application to execute on
start-up. There are several reasons for having the bootloader run first that include:

• Initializing the microcontroller to a known state
• Verifying the application image is valid and programmed (there could have been a failed update)
• Checking whether a new application is present and should be written to memory
• Providing a safe system state for when something goes wrong with the application

The following figure shows how the flash space is split into a bootloader section and a user application area. The
bootloader memory contains two software framework (sf) components; one for accesses to the internal flash on the
microcontroller where the new image will be written and a second optional component for reading the downloaded
application image from external memory. The external memory instance is only required when the bootloader is
configured for the non-blocking application mode where the new image will be stored in the memory, external to the
microcontroller. It shows how the flash space is split into a bootloader section and the user application area. The
bootloader memory contains two software framework (sf) components; one for accesses to the internal flash on the

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 12 of 62
Dec 28, 2018

microcontroller where the new image will be written and a second optional component for reading the downloaded
application image from the external memory.

Beyond these two main components, there are also two data regions that are used to communicate information between
the bootloader application and the user/downloader application. The first data region stores a record for where the
internal flash application images are stored. There can be up to two different areas in memory where the application
code is stored. This allows for a developer to store the new updated firmware along with the previous version if
something goes wrong and the firmware must be rolled back. The internal application record is required for the
flashloader solution to function.

The second region contains information for where the new image that needs to be written to flash currently resides. The
second region is optional because it is used to store a custom binary file format that is stored on the external memory
devices. Solutions that write the new application image directly to internal flash do not require this extra storage record.

Note: The flashloader solution example currently does not support rolling back the firmware to an earlier version but a
developer that has gone through this application project and understands the flashloader solution should be able
to add a feature without too much effort.

Figure 12 Flashloader Memory Map
Note: The sf_comms_api_instance_t supports multiple communication types. COMM is used in the diagram to show

a generic interface. COMM would be replaced by the real interface such as r_sci for UART or USBX for a
USB CDC solution.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 13 of 62
Dec 28, 2018

4. Downloader Memory Layout
The downloader application contains not just the code necessary to download a new application image to the device but
also contains the product’s user application code. For this reason, the downloader will take up most of the remaining
flash space on the device. The downloader start location in memory is configurable by the developer and mostly
dependent on the device memory layout and the bootloader size. The downloader memory space must not overlap the
bootloaders. On most microcontrollers, there are minimum flash erase sizes that need to be considered when locating
the downloader code.

There are two things that a developer should immediately notice. First, the application image is received through the
selected communication interface. The downloader software stack is set up so that it doesn’t care about the
communication interface. A developer could just as easily set up a UART, Ethernet, or even I2C interface. Second, the
downloader for the non-blocking solution stores the application image to an SD card. An important consideration is that
when an application image is stored in external memory, the binary application image is stored in its entirety with CRCs
and everything. The image is stored in a custom file format known as a BCH file that we will talk about later in the
application project. The blocking downloader solution doesn’t store the BCH file because it writes directly into a flash
location on the microcontroller.

A non-blocking downloader uses the second memory record location to determine where it will store the new
application image. That record also tells the bootloader application where it needs to look for the new application that
will then be processed and written to internal flash. Looking back at Figure 12 and comparing it to Figure 13, you will
notice that both memory layouts are aware that the record locations exist in the memory. You need to make sure that the
linker scripts for both the bootloader and downloader applications are looking at the same location in the memory to
compare them.

Figure 13 Non-blocking Flashloader Application Memory Layout

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 14 of 62
Dec 28, 2018

5. Non-Blocking Bootloader Application Stack Configuration
After running the flashloader project for the first time, many developers will want to dig into the flashloader framework
and understand the different settings and capabilities that are available. This section will highlight the settings that you
will want to understand within the bootloader application code.

1. Start by opening the bootloader project, the Synergy configuration.xml file and navigating to the Threads tab.
It should look like the bootloader stack shown in the following figure. For the non-blocking bootloader, both the
internal and external firmware image frameworks will be populated. The reason is that the internal framework is
required to save the new image to flash and the external memory will be used to store the image so that the
application code can continue to run while the image is downloaded.

Note: Microcontroller flash controllers have limitations when it comes to running an application from the flash space
and trying to write to flash simultaneously.

Figure 14 Bootloader Framework Stack

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 15 of 62
Dec 28, 2018

1. The first framework to examine should be the g_sf_firmware_image_internal0 framework shown in Figure 16.
Click on the framework and examine the properties.

Figure 15 Bootloader Firmware Image Internal Framework
2. The following figure shows important properties that developers will want to configure for their own applications.

Figure 16 g_sf_firmware_image_internal0 Configuration
In the property, Enter the starting address of the first flash area, enter the memory address where the User
Application Area and the downloader begins in internal flash. The address location 0x0 is not an appropriate
location because the bootloader resides in this memory location. You can select any location for the application to
start based on your requirements and how you decide to split up the flash memory map. In this example, the S7G2
Group MCU on the SK-S7G2 board has 4 MB of flash available. The application is stored at the 1 MB location
(0x100000 hex). Keep in mind that flash size varies based on the specific MCU selected from the S7G2 Group.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 16 of 62
Dec 28, 2018

In the property, Enter the size of the first flash area; specify how large the memory location is that the User
Application Area has available to it. This example allocates the remaining 3 MB memory space for the application.
In the property, Number of slots supported determines whether the memory space specified will be used to store
one single application image or whether it will be broken up into two application areas. The value 2 will split the
flash area size in half and allow you to store multiple images on the internal flash. This can be used to keep a backup
image in the event something goes wrong with a firmware update.

3. The remaining modules in the Bootloader Firmware Image Internal Framework do not contain developer
configurable properties.
You will want to review the Flash Driver. There are two different flash types that are used with Synergy
microcontrollers; high performance (hp) and low power (lp). The S1 and S3 microcontrollers use low-power flash
since they are targeted towards low-power applications. The S5 and S7 use the high-performance flash since they
target applications that are more computationally intensive. Make sure that your application is using the correct
flash type as shown in the following figure.

Figure 17 Add the flash driver instance
4. Click on the g_flash0 component and examine the properties.

As shown in the following figure, find the Code Flash Enable Programming property. This property is used to
enabled or disable internal flash writing. For the bootloader, this property should be enabled.

Figure 18 Enable the Code Flash Programming Property

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 17 of 62
Dec 28, 2018

5. Click the Bootloader Firmware Image External Framework stack as shown in the following figure.
Notice that the internal and external memory frameworks look very similar in that they both contain a CRC stack
and a framework for accessing memory. The external memory framework is designed to interface to an SD card
while the internal is for internal flash space.

Figure 19 External Image Stack
6. The Bootloader Firmware Image External Framework properties will be displayed like the following figure.

Figure 20 Configuring External Image Framework
There are three parameters that you need to consider when configuring the external SDMMC memory.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 18 of 62
Dec 28, 2018

First, the parameter Enter the starting address of the memory storage area specifies the memory address within
the SD card where the application image is stored. The application data is stored directly onto the SD card and does
NOT use a file system. You can store images anywhere on a SD card but the logical place to begin storing images
are at address location 0x0.
The parameter Enter the size of the memory storage area is the size on the SD card that will be used to store the
BCH image. You should size this to be the maximum application size plus the BCH file overhead from CRCs. In
this example, the microcontroller has 4 MB of flash available but only 3 MB is used for your application. Sizing the
memory storage location to the 4 MB provides sufficient overhead to store a 3 MB image plus the BCH file
overhead.
Finally, since the updated images are being stored to an SD card first, multiple images can be stored to the card. For
this example, the number of image slots is set to just one even though the bootloader framework supports storing up
to four images on the external memory device.

7. The g_sf_memory_sdmmc0 framework does not have any properties that can be modified. The g_sdmmc0
SD/MMC Driver on r_sdmmc, however, does have parameters related to the SD card that need to be configured.
Start by clicking on the g_sdmmc0 stack and reviewing the properties. The generally recommended settings can be
found in the following figure.

Figure 21 Configuring g_sdmmc0 Driver
Note: On the DK-S7G2 board, the SD card is located on Channel 0. The SD card is connected using four data lines

that correspond to a property setting of 4 Bits. In this example, the Media Type property is Card that
corresponds to using a SD card rather than the embedded memory. Interrupt priorities should be carefully
considered based on the application behavior and needs. For this example, that contains only the bootloader, we
set a high priority for the SD card communication by setting the interrupt priorities to Priority 2.

8. Another property that you may want to note is the Transfer Driver.

You have two different choices, the r_dmac and the r_dtc. The r_dmac, direct memory access controller, contains
registers and a limited number of channels that can be used to move data around the microcontroller without the
CPU’s intervention. Since the channels are limited in number, the r_dtc can be used and still perform a transfer
without the CPU’s intervention, but the details will be stored in SRAM instead of within hardware registers. This
means you can create nearly an unlimited number of r_dtc transfers within our application. There may be a nearly
non-existent performance hit to use the r_dtc when compared to the r_dmac due to the need to access SRAM
versus over a hardware register. The following figure shows how you would select the transfer driver.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 19 of 62
Dec 28, 2018

Figure 22 Adding Transfer Driver
Those are the major configuration properties that you need to pay close attention to in the bootloader framework.
You still may need to adjust their linker file and add in application code that utilizes the bootloader framework.

6. Bootloader Linker Script
The linker script for the bootloader is the same for both the non-blocking and the blocking varieties. The linker
partitions the memory map up into different regions and even defines the information type that will be stored in those
regions. Eventually there will be two different applications, the bootloader and the downloader (your application) that
need to share the same physical memory. Both applications by default will want to store their application code starting
at memory location zero. Obviously, this is not acceptable and the linker scripts will need to be modified to ensure that
both applications can exist within memory without trying to creep into the others memory region. In addition to
providing separate memory locations for both applications, these applications need to communicate with each other
somehow so that the application images can be found in memory.

1. In the project explorer, expand the Bootloader project. Under the scripts folder, open the *.ld file associated with
the project. For example, if the processor is a S7G2, the linker will be S7G2.ld. The script is rather large but there
are two areas that we are interested in. First, you should see something like the following figure. For the
bootloader, you can theoretically leave these memory values as is. To prevent the bootloader from becoming too
large and trying to store itself in the downloader (your application) flash space, you may want to limit the flash
space length allocated to the bootloader.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 20 of 62
Dec 28, 2018

Figure 23 Linker Script Memory Allocation
Note: Figure 23 shows the entire memory map being available to the bootloader but the value highlighted in red could

be changed to the maximum bootloader size. An example might be to allocate 32 KB of flash space which
would change the length from 0x400000 to 0x8000. Then, if the bootloader size grows behind the expected
memory region, it will no longer fit and you will receive a linker error. The linker error will serve as a reminder
to properly size both the bootloader and downloader memory regions.

2. Scroll down to where the memory sections begin at approximately line 58. After the ROM registers, create a
memory region where the bootloader can store information. See the following figure for the code. This region is
where the bootloader will store its records.

Figure 24 Creating the Bootloader Record Section
3. Whenever a change is made to the linker, select Project > Clean in the top menu.

Make sure that the project is selected and the Build automatically checkbox is checked. Press OK. The object files
are removed and recompiled and the new linker settings should take effect. Since the code that is compiled did not
change, simply doing a build causes the compiler to believe that nothing has changed and the linker would not be
invoked. Any linker script changes should always be accompanied with a project clean and build.
The linker script has now been reviewed. The bootloader is now set up. No further steps are necessary to make the
bootloader function. The next step in the bootloader solution is to create the downloader (your application) that will
download the new application image to the external memory.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 21 of 62
Dec 28, 2018

7. Non-Blocking Bootloader Application Design and Implementation Overview
The bootloader framework is designed to allow a developer to implement their bootloader with any requirements that
may be part of their product in a flexible and scalable manner. Before you implement the bootloader, Renesas strongly
recommends that you draw out your bootloader design before writing a single line of code. An example, baseline
bootloader can be found in the following figure. Review this diagram and walk through the bootloader code to see the
implemented behavior.

Figure 25 Non-blocking bootloader program design
1. The bootloader application start-up code first checks to see if any buttons are pressed before checking if a new

application exists.

If switch S2 is pressed at start-up, the application stored on the microcontroller’s internal flash will be erased. The
hal_entry module can be setup to check S2 and erase the application by adding the code in like in the following
figure to the hal_entry function. At first glance, the code might seem a bit complicated. A closer look will reveal
that it is nothing more than calling the internal flash open, imageErase, and close API functions.

Note: For debugging purposes, the S1 and S2 capabilities can be very useful. Features like this can get a production
system into trouble by you accidentally pressing the wrong button. For production, you will want to make sure
that these features are removed from the build.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 22 of 62
Dec 28, 2018

Figure 26 S2 Switch Check to Erase Flash Application
2. The bootloader must make a critical decision; jump to the application image or search for a new application image

to copy into the flash. To handle this decision, a function in the hal_entry module called my_entry is used to
decide what function to perform. The my_entry function takes pointers to the bootloader control and configuration
structures in addition to a Boolean value to tell the function whether it should check for a new image or just jump to
the application image. Before jumping to the application image, the bootloader verifies the application image CRC
to ensure that the application is valid.

3. Holding S1 during the power-on sequence will tell the bootloader to skip the check for a new application image and
cause it instead to jump to the current application image.

Figure 27 S1 Switch Check for Jump to Application
4. If a button has not been pressed, the my_entry function still needs to be called to perform the bootloader functionality.

The code for this check can be seen in the following figure.

Figure 28 Main Bootloader Loop
5. The function my_entry makes the decision to check for a new application or jump to the application code. For the

application jump to occur, the sf_firmware_mcu_flash interface still needs to be initialized and used. This is done
by making a call to its open API. When the interface is opened, the appStart API can be called to initiate the jump
to the application. Since the appStart API causes a jump to the application code, the bootloader has essentially
ended the execution until the next time the system restarts. To follow good programming practices and to account
for something going wrong such as a bad jump, there should still be a call to the close API. The following figure
shows the implementation details for the code segment that handles jumping to the application.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 23 of 62
Dec 28, 2018

Figure 29 Jump to Application
Note: There are empty error handlers following each call to the SSP API’s that check whether the call was successful

(equal to SSP_SUCCESS). If there is an error, ssp_err will hold a different value and in a production system the
developer will need to decide how to handle these errors. For now, they are left as error handling stubs to
remind us we need to think through the possible error conditions and how they should be handled.

6. If you want to check for new application images, you need to add code to determine whether a new image exists on

the external memory card.

To do this, you must first call the open API call for the g_sf_bootloader_mcu0 stack. After the framework has been
opened, the newImageCheck API can be called with the update_info variable passed in as a pointer. The return
value from calling newImageCheck will determine if a new image is present and ready to be written to flash. The
following figure shows the code that should be added to my_entry.

Figure 30 Initialize and Check for a New Application Image
7. If the image exists, then the application update can continue.

The first thing that the bootloader needs to do is erase the current application image. The image can be erased by
setting the application slot image that is going to be erased and then calling the imageErase API as shown in the
following figure.

8. Once the image has been erased successfully, the flashUpdate API can be called. The flashUpdate expects a
pointer to the bootloader control structure and a pointer to the new image that will be copied into flash.

The flashUpdate function performs all the bootloader copy functions on its own without any additional information
from you.

9. When the application update is complete, check the return data to determine whether the update was successful.

If the update was not successful, you can do many things, such as trying again, entering a safe system state,
notifying the user, or resetting the microcontroller. In this example, we just leave a placeholder with the
commented example for resetting the system.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 24 of 62
Dec 28, 2018

10. In most cases, the firmware update will be successful. When the update is successful, the bootloader should jump
into the application code by calling the appStart API function.

Figure 31 Find New Image and Update
11. If a new image does not exist, you should call the appStart API to start the current application and once again

close the interface. The code to do this is like that used before and can be found in the following figure.

Figure 32 No New Application Image, Load Current Application
Note: A robust bootloader will not just assume that the jump to the application will be successful. Something could go

wrong and if the jump fails, you should have a back-up plan for how the system will recover itself. Figure 31
shows an example that is conditionally compiled on how the bootloader may check if the jump was successful.
If we can perform this check the jump failed and the ssp_err will not hold, SSP_SUCCESS. The application
can then call the reset API to force the system to reset and try again or take any measure that the you deem
necessary to recover from the error.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 25 of 62
Dec 28, 2018

8. Blocking Bootloader Application Software Stack Configuration
After running the flashloader project for the first time, you may want to dig into the flashloader framework and
understand the different settings and capabilities that are available. This section will highlight the settings that you will
want to understand within the bootloader application code.

1. Start by opening the bootloader project Synergy configuration.xml file and navigating to the Threads tab. The
bootloader stack will look like the following figure. For the blocking bootloader, only the internal firmware image
framework will be populated. The reason is that the internal framework is required to save the new image to flash
and the image is already stored on internal flash rather than external memory such as a SD card.

Figure 33 Adding the g_sf_bootloader_mcu stack
2. Click on the g_sf_firmware_image_internal0 and select the Properties tab shown in the following figure. These

are the same options that are available in the non-blocking bootloader internal memory framework. For the
non-blocking bootloader, the options are set slightly differently like in the following figure. Notice that in this case
there are two slots selected. One slot will be for the current application code and the second will be for the new
application image.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 26 of 62
Dec 28, 2018

Figure 34 Blocking Bootloader Framework Stack

Figure 35 g_sf_firmware_image_internal0 Configuration
In the property Enter the starting address of the first flash area, enter the memory address where the User
Application Area begins. The address location 0x0 is not an appropriate location because the bootloader resides in
this memory location. You can select any location for the application to start at based on your requirements and
how you decide to split up the flash memory map. In this example, the S7G2 Group MCU on the DK-S7G2 board
has 4 MB of flash available and the application will be stored at the 1 MB location which in hex is 0x100000.
Keep in mind that flash size will vary based on the selected specific MCU selected.

In the property Enter the size of the first flash area, specify how large the memory location is that the User
Application Area has available to it. In this example, allocate the remaining 3 MB memory space for the
application.

For a blocking bootloader where the application will be store internally in flash, there should be two flash
locations: one for the current program and one for the new application that will be stored.

3. The remaining modules in the Bootloader Firmware Image Internal Framework do not contain developer
configurable properties. However, you will want to review the Flash Driver. There are two different flash types that
are used with Synergy microcontrollers; high performance (hp) and low power (lp). The S1 and S3
microcontrollers use the low-power flash since they are targeted towards low-power applications. The S5 and S7

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 27 of 62
Dec 28, 2018

use the high-performance flash since they target applications that are more computationally intensive. Make sure
that your application is using the correct flash type as shown like in the following figure.

Figure 36 Add the flash driver instance
4. Click on the g_flash0 component and examine the properties like the following figure and find the Code Flash

Enable Programming property. This property is used to enabled or disable internal flash writing. For the
bootloader, this property should be enabled.

Figure 37 Enable the Code Flash Programming Property
These are the major properties to manage the setup of the blocking bootloader.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 28 of 62
Dec 28, 2018

9. Blocking Bootloader Application Design and Implementation Overview
The bootloader framework is designed to allow you to implement their bootloader with any requirements that may be
part of their product in a flexible and scalable manner. Before you implement the bootloader, Renesas strongly
recommends that you draw out your bootloader design before writing a single line of code. An example, baseline
bootloader can be found in the following figure. Review this diagram to understand the bootloader behavior and then
move on to the next step to write the bootloader software.

Figure 38 Blocking Bootloader Program Design
Note: When there are multiple internal flash memory slots, it probably isn’t a good idea to allow a button press to

erase the internal memory. While the activity diagram does show the ability to erase the internal flash in the
code that is developed, we will conditionally compile it out but provide it as a debugging tool for developers.

Note: Blinking LEDs in the bootloader to show that the system is processing and still doing something can be

extremely useful. We will add code to control LED’s that are being absorbed by the check for image and
process blocks.

1. In the project explorer, expand the project. Under the src folder, open the hal_entry.c module.

2. The bootloader application start-up code first checks to see if any buttons are pressed before checking to see if a
new application exists.

If switch S2 is pressed at start-up, the application stored on the microcontroller’s internal flash will be erased. At
first glance, the code might seem a bit complicated. A closer look will reveal that it is nothing more than calling the
internal flash open, imageErase, and close API functions.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 29 of 62
Dec 28, 2018

 Figure 39 S2 Switch Check to Erase Flash Application
3. The bootloader must make a critical decision; jump to the application image or search for a new application image

to copy into flash.

The my_entry function takes pointers to the bootloader control and configuration structures in addition to a
Boolean value to tell the function whether it should check for a new image or just jump to the application image.
Before jumping to the application image, the bootloader verifies the application image CRC to ensure that the
application is valid.

4. In the following figure, the main loop for the bootloader simply makes a call to the my_entry function and passes
it the bootloader control and configuration parameters.

Figure 40 Main Bootloader Loop
5. You typically want the bootloader to perform all its checks in the minimal amount of time to keep the system boot

up time to a minimum.

Since in most cases the application is not updating firmware on start-up, the first feature that should be implemented
inside my_entry is the check for jumping directly to the application. In this case, the code checks the parameter
check_for_new_images and if it is false, the application should go directly to the application. When the interface is
open, the appStart API can be called to initiate the jump to the application. Since the appStart API causes a jump
to the application code, the bootloader has essentially ended execution until the next time the system restarts. To
follow good programming practices and to account for something going wrong like a bad jump, there should still be
a call to the close API. The following figure shows the implementation details for the code segment that handles
jumping to the application.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 30 of 62
Dec 28, 2018

Figure 41 Jump to Application
Note: There are empty error handlers following each call to the SSP APIs that check whether the call was successful

(equal to SSP_SUCCESS). If there is an error, ssp_err will hold a different value. In a production system,
you will need to decide how to handle these errors. For now, they are left as error handling stubs to remind us
we need to think through the possible error conditions and how they should be handled.

6. The bootloader is verifying that the application was written successfully to the flash and has not been damaged.

Erasing and updating for the blocking bootloader is performed by the downloader. If there was a failure and the
system is now stuck in the bootloader, you will be notified by blinking LEDs.

The blocking bootloader application overview is now complete. If you have not yet reviewed the bootloader script
section, now would be a good time before moving on to the downloader section.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 31 of 62
Dec 28, 2018

10. Non-Blocking Downloader Application Software Stack Overview
The downloader application is responsible for fetching the new application image and storing it to some external storage
device, such as the SDMMC card. That image could be coming over any number of possible interfaces. This section
will provide an overview for the configuration parameters for a common downloader stack. Specific interface setups
such as USB and UART can be found in the Appendices of this document.

1. Start by opening the downloader’s Synergy configuration.xml file and navigating to the Threads tab.

Within this tab, there will be a downloader thread. Click on that thread to view the downloader framework stack. An
example that uses USB CDC can be seen in the following figure.

Figure 42 Downloader Example Stack using USB CDC
1. Section 1 and 3 in the above figure will have common configuration properties that will be similar from one

application to the next.

Section 1 manages the external memory where the new image will be stored. Section 2 is communication interface
specific. Section 2 options and setup are described in the appendices for the specific interface. It is just the
communication channel that the downloader uses to retrieve the new application image. Section 3 manages the
internal memory records that are set up to communicate between the bootloader application and the downloader
application.

2. The g_sf_downloader0 does not have many properties that need to be configured.

The one property that is critical to a functioning downloader is the callback function. A developer needs to
configure a callback function that is called when a downloader event occurs within the application. The callback
can be seen in in the following figure.

Figure 43 Downloader Framework Callback Configuration

1
2

3

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 32 of 62
Dec 28, 2018

3. You have different choices within the downloader framework for the image type and image location.

For example, if you wanted to store the image in the internal flash, you could use the Firmware Image Internal
Framework on sf_firmware_image_internal. The difference between Firmware Image and Bootloader Firmware
is that the Bootloader Image creates bootloader records that load into the microcontroller ROM while the Firmware
Image will not create those records. External images will store the entire BCH image with the CRCs, so the
bootloader can verify the application has not become corrupted. Internal images strip out the extra headers and
CRCs that are in the BCH and write the application to internal memory.

4. Click on the Firmware Image External Framework module shown in Figure 44.

The settings in Figure 45 need to match the same settings that are stored in the bootloader application. Notice that
there is a slight difference from the bootloader. The Address to Firmware Records property is now populated.
Note that it matches the memory location that was configured in the bootloader linker file for where the firmware
image records would be stored.

Figure 44 External Memory Properties

Figure 45 sf_firmware_image_external Configuration
Note: Remember that the starting address is the location on the SD card where the image information will be stored.

The SD card could be much larger than 0x400000 but since this is the maximum flash size on the
microcontroller, there is no point in allocating more space than this. Recall that the location in flash that we

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 33 of 62
Dec 28, 2018

modified the bootloader linker for image records was located at address 0x500. The downloader needs this
information so the Address/Pointer to Firmware Image Records property is now allocated with 0x500.

5. The downloader is going to have to write an application record to the internal flash storage.

The Firmware Image Internal Framework is used to write the record into internal memory. The application header
information is added to src/synergy_gen/common_data.c. To see an example for the application header, open the
common_data.c file and locate the variable g_sf_firmware_image_internal0_image_file_header.

6. Click on the Firmware Image Internal Framework module and examine its properties in the following figure.

Figure 46 Configuration Settings for the Internal Firmware Image Stack
The bootloader has the application space from 0x000000 through 0x0FFFFF. The location that the current user
application exists in starts at 0x100000 and has a length of 0x300000. This bootloader is only using a single image
slot as an example. Once again, set up the location for the Firmware Image records. The Image Identifier is related
to a product class. For example, a garage door opener would have an Image Identifier of 1 while a sprinkler system
might have a value of 2. It is used to verify the application goes to this product. The version number is used for
incremental firmware changes. The value should be updated with each version. The bootloader can roll back to a
previous version or update to a new version but will NOT update the application if the Version Number matches
the current application version.

7. Just as before with the bootloader, the Flash Driver on r_flash_hp may need to be adjusted to match whether the
microcontroller uses high performance or low power flash.

Those are the major modules and configuration values that you will need to know to integrate the downloader into their
own application code.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 34 of 62
Dec 28, 2018

11. Blocking Downloader Application Software Stack Overview
The blocking downloader is like the non-blocking bootloader. The difference is that there is no longer a need to use an
external and internal memory framework. Using only the internal memory framework is all that is required. An example
blocking downloader stack can be seen in the following figure. Section 1 is the internal memory framework that will be
common to every blocking downloader application. Section 2, is the communication stack that is used to fetch a new
application image. This stack will change depending on whether the developer is using USB CDC, UART, I2C,
Ethernet, and so on. In this section, we will examine the configuration properties associated with the blocking
bootloaders internal memory framework. Configuration parameters for the communication channel can be found in the
appendices and by reviewing the module guides associated with the communication stack of interest.

Figure 47 Blocking Downloader USB CDC Example Stack Overview
1. Start by opening the downloader’s configuration.xml file and navigate to the Threads tab and click on the

downloader framework module.

2. The g_sf_downloader0 does not have many properties that need to be configured.

The one property that is critical to a functioning downloader is the callback function. You need to configure a
callback function that is called when a downloader event occurs within the application. The callback can be seen in
the following figure.

Figure 48 Downloader Framework Callback Configuration

1

2

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 35 of 62
Dec 28, 2018

3. Developers have different choices within the downloader framework for the image type and image location.

For example, if a developer wanted to store the image in the internal flash, they could use Firmware Image
Internal Framework on sf_firmware_image_internal. The difference between Firmware Image and Bootloader
Firmware is that the Bootloader Image will create bootloader records that load into the microcontroller ROM while
the Firmware Image will not create those records. External images will store the entire BCH image with the CRCs
so that the bootloader can verify the application hasn’t become corrupted. Internal images strip out the extra
headers and CRCs that are in the BCH and write the application to internal memory.

4. Click on the Firmware Image Internal Framework module shown in Figure 49.

The settings in Figure 50 need to match the same settings that are stored in the bootloader application. Notice that
there is a slight difference from the bootloader. The Address to Firmware Records property is now populated.
Note that it matches the memory location that was configured in the bootloader linker file where firmware image
records would be stored.

Figure 49 Internal Memory Framework Module

Figure 50 sf_firmware_image_internal Configuration

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 36 of 62
Dec 28, 2018

Note: Remember that the starting address is the location in internal memory where the application section will begin.
In this case, it is 0x100000 with 0x300000 bytes available to write applications. The number of slots needs to
match the bootloader that was set to two. Recall that the location in flash that we modified the bootloader linker
for image records was located at address 0x500. The downloader needs this information so the Address/Pointer
to Firmware Image Records property is now allocated with 0x500. The image identifier is used to specify a
firmware product. The version number is the software version number. This value should be updated as the
software changes.

8. Just as before with the bootloader, the Flash Driver on r_flash_hp may need to be adjusted to match whether the
microcontroller uses high-performance or low-power flash.

9. The blocking downloader has one additional difference that developers might overlook.

The blocking downloader must write the new application into an internal memory location. To do this, you must
make sure that the downloader has the Code Flash Programming Enable property set to enabled in the flash
driver module as shown in the following figure. Not enabling flash writing results in the new application not being
written to flash and might throw run-time errors indicating that the flash is not writable.

Figure 51 Enabling Code Flash Programming
These are the properties that a developer needs to be aware of and has control over in the downloader stack. To learn
more about the communication stacks, see the appendices and the module guide for the communication stack that is of
interest.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 37 of 62
Dec 28, 2018

12. Non-Blocking Downloader Application Design and Implementation Overview
The downloader framework is designed to allow you to implement your flashloader solution with any requirements that
may be part of their product in a flexible and scalable manner. The downloader framework handles many details in the
background and requires only a few lines of code to be fully functional. This section will walk you through how to open
the downloader API and setup the callback event that processes communication events.

1. From the Project Explorer, navigate to the src directory and open the downloader_thread_entry.c source file.

2. In the function downloader_thread_entry, the downloader framework is initialized by first making a call to the
open() API and passing in the control and configuration structures as shown in the following figure.

Figure 52 Opening the Downloader Framework
Note: Whenever a call is made to an SSP Framework component, a recommended best practice is to check the return

value to make sure that the call was successful.

3. With the Downloader Framework open, the downloader thread should periodically process the control structure to
perform any framework functionality that may be pending. This is done by making a call to the downloaders process
API as shown in the following figure.

Figure 53 Downloader Processing
Note: If the downloader framework returns an error, the application forces a breakpoint for the developer to debug the

issue. A production solution may decide to handle this in an alternative manner that won’t stop the embedded
system from operating. Error handling strategies will vary from one development team to the next.

4. The final piece that needs to be added to the downloader thread source code is the downloader_callback.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 38 of 62
Dec 28, 2018

The callback handles events that occur in the downloader framework. In this example, the only event that is
interesting is when the downloader receives an entire image, stores it to external memory, and is ready for a reset to
occur so that the bootloader can process the image and update the internal application. The following figure shows
this callback.

Figure 54 Adding the downloader_callback
5. The Downloader that is designed for blocking may also include code to erase the individual memory slots. The code

listed in the following figure indicates how SW1 and SW2 can be used to erase different memory locations.

Note: This code is disabled out-of-box. It can be enabled by enabling ifdef wrapper around it.

Figure 55 Adding Button Functionality for Erasing Application Spaces
This is everything that you need to know to use the downloader framework.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 39 of 62
Dec 28, 2018

13. Downloader Linker Script
Just like with the bootloader application, the downloader linker needs to be updated to exist within a separate flash
memory region and to be able to store image record information. These changes are going to be like the changes made
to the bootloader linker script but will be complimentary and not identical.

1. In the project explorer, expand the Downloader project.

Under the scripts folder, open *.ld, where in this example, the file will be S7G2.ld. The script is rather large but
there are two areas of interest. First, you should see something like in the following figure. For the downloader, the
starting flash ORIGIN should match the end memory location for the bootloader, in this case 0x100000. The
bootloader resides at memory location 0x000000 that would cause a conflict if we left the location set to 0x000000.

2. The LENGTH should be sized based on the available flash and whether the entire memory location will be used
for a single application or whether multiple applications will be stored.

For example, for a blocking downloader, the memory space available for the downloader is 0x300000 bytes, divided
in half is 0x180000. This will give two locations in the memory that you can use.

Figure 56 Linker Script Memory Allocation for Slot 1
3. If a blocking bootloader is being used, there will be two different linker files.

The first is for slot 1 and the second for slot 2. Each linker file is slightly different because the start location for the
application needs to be different. Examine the following figure. This is the linker for the second application whose
origin memory location is 0x00280000.

Figure 57 Linker Script Memory Allocation for Slot 2
4. Scroll down to where the memory sections begin at approximately line 90. After Lock_Lookup_Size, we want to

create a memory region where the downloader can store information. See the following figure for the code.

Figure 58 Creating the Bootloader Record Section
5. When updating the application, you will need to compile the application based on the application slot that the

program will be running in.

If the application will run in slot 1, build and link using the slot 1 linker file. If the application will run in slot 0,
build and link using the slot 0 linker file.

6. In the top menu, select Project > Clean.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 40 of 62
Dec 28, 2018

Make sure that the project is selected and the build automatically checkbox is checked. Press OK. The object files
are removed. Recompile and the new linker settings should now take effect. Since the code that is compiled did not
change, simply doing a build will cause the compiler to believe that nothing has changed and the linker would not
be invoked. Any linker script changes should always be accompanied with a project clean and build.
The application projects include the linker file(s) by default but you may want to customize the linker slightly for
your own applications.

14. Converting User Applications to BCH Files using the Python Converter Script
The compiler toolchains will generate an .elf and an .srec file when the program is successfully compiled and linked.
The flashloader framework uses a custom file format created by Renesas known as the BCH. The BCH file is designed
with headers and CRCs to ensure that the application image is successfully transferred to the embedded system without
errors and provides a more robust transfer mechanism. In this section, we will examine the Python converter script that
will convert a s-record into a BCH file.

There are two ways to convert the s-record. First you can use the r_fl_mot_converter.py script manually.
Second, you can use the flashloader utility that provides a GUI front end to interact with the Python script. The GUI is
described in a later section.

14.1 Convert User Application to BCH files manually
1. The s-record files cannot be directly downloaded to the flashloader solution. They must first be converted to BCH

records. The downloader and bootloader can process those files. The conversion is performed using the Renesas
r_fl_mot_converter.py Python script. To use the Python script:

A. Download Python 2.7 and install it on the development machine.

B. Download the crcmod library for Python 2.7 from the following website: https://pypi.python.org/pypi/crcmod

C. The crcmod.msi can be installed from any directory. When asked where to install the library:

a. Select the local hard drive option

b. Provide the Python installation directory such as C:\Python27\

2. Once the tools have been installed, navigate to the directory containing the r_fl_mot_converter.py script.
Start by typing python r_fl_mot_converter.py without any options. You will see the parameter list with
descriptions as seen in the below figure.

Note: Python should be in the path but if it isn’t, Python can be executed in the command line using the path to the
executable such as C:\Python27\python.exe r_fl_mot_convert.py.

Figure 59 S-Rec to BCH Converter Script Options

https://pypi.python.org/pypi/crcmod

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 41 of 62
Dec 28, 2018

3. The next step is to identify the options that are needed to run the converter script.

The following example lays out the recommended information that should be provided for a conversion. Start by
determining the parameters for the Downloader_blinky1.srec file. The bold text in the following statements can be
used to build and compile the command line.
A. –i specifies the input file and for this example is Downloader_blink1.srec. Keep in mind that unless the

s-record has been copied to the same directory as the converter script, the full path will need to be provided so
that the file can be found.

B. –o is the output filename for the converted file. You can technically name the file anything you want but for
the example we will name it Downloader_blink1.bch.

C. –m is the maximum block size that has a default value of 1024. This value should be an integer multiple of the
external memory page size that is going to be programmed.

D. –f tells the converter that if there is a gap between two records, the data should be filled with 0xFF. The default
value for this behavior is 256.

E. –e allows you to specify where in memory the application will be located. For example, we have been
providing the bootloader with 1 MB of flash space (more than is required) and the application has had the last
3 MB of memory. This option is used to tell the converter where the application section begins so that the
application can be appropriately addressed. An example value for this application is 0x100000.

F. –l tells the converter where the header information is going to be placed in memory. If you recall back to when
the Downloader linker script was updated, we added the header information to ROM_START + 0x800. Since
the application starts at 0x100000, we set this value to 0x100800.

G. –s tells the converter the desired flash range that should be used when calculating the checksum that is placed
on the application space. A standard practice is to checksum the entire application program space including the
space that is NOT the application code but is empty unprogrammed memory. In this case, the example value
that we have used through-out the application project is 0x300000.

4. You can now take the values that were in bold in the previous step and run the command line script with the
options that result in converting the Downloader_blink1.srec into Download_blink1.bch as shown in the
following figure.

Figure 60 Convert Downloader_blinky1.srec to Downloader_blink1.bch
Note: The output will notify the developer if the conversion was successful or not. In addition, it provides the entire

load image size and the checksum value for the image which can come in handy when debugging.

You have to copy the files with the extension .srec that you would like to convert to a .bch into the folder that
contains the file r_fl_mot_converter.py.

5. Converting the second test image uses the same steps as we walked through above. The difference is that the input
and output options change but the rest remain the same. An example can be seen in the figure below.

Figure 61 Convert Downloader_blinky2.srec to Downloader_blink2.bch
At this point, the .bch file is ready and can be sent to the downloader application.

If you are compiling code for a blocking bootloader you will need to modify the linker scripts. The blocking
bootloaders contain two separate linker scripts as can be seen in the following figure.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 42 of 62
Dec 28, 2018

Figure 62 Blocking Downloader Application Multiple Linker Scripts
To compile an application for slot0 or slot1, copy the linker contents from the desired slot location and paste it into the
primary linker script. Make sure that you perform a clean before recompiling. Without the clean, the toolchain will not
recognize that the linker changed and not change the location for the application.

14.2 Convert User Application to BCH files manually
You can also convert User Application files to BCH files using Flashloader_windows_utility.exe. For step-by-step
representation you can check Section 16.

14.3 Verify BCH image
Sometimes you may find that you want to verify the BCH image once it has been created. You can download Hexedit
from http://www.hexedit.com/ and use the instructions below to install the BCH file format and view the files. Install
HexEdit:

1. Copy and paste the BCH.xml file included with this project package to C:\Users\<your user
name>\AppData\Roaming\ECSoftware\HexEdit

2. Open a BCH file from within HexEdit.

3. Select Template > Design Mode. This will turn off design mode.

4. Select Template > Split Window

5. In the dropdown, or from Template > Open Other, select BCH

6. The different data locations and header information can now be easily browsed by the developer as shown in the
following figure.

http://www.hexedit.com/

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 43 of 62
Dec 28, 2018

Figure 63 BCH File Review using HexEdit

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 44 of 62
Dec 28, 2018

15. Flashloader Utility Python Script
The flashloader utility python script can be used manually to communicate with the downloader application.
Alternatively, you can use the flashloader utility GUI that will act as a front end for the Python script. This section
explores the process and capability for using the script.

1. In the Project Explorer, navigate to the Debug directory, expand it, and locate the
r_fl_serial_flash_loader.py script. Right click on the script and click on the command prompt. A new
command prompt window should now open.

2. Just like with the S-Record to BCH converter script, you will want to know what commands are possible using the
flashloader tool. Run the script with no options to see what options are available. The result is shown in in the
following figure.

Figure 64 Options available through the Flashloader Python script
3. The next step is to review these options and understand what exactly they mean.

A. –f is used when loading a new program to specify the BCH file name. It is only used with the load command.

B. –p specifies the communication port number that the device occupies. The value entered here is the
communication port number minus one. For example, if the device is on COM23 then 22 will be entered.

C. –c sends a command. The commands are info, erase and load. Before starting any update, the info command
should be sent first to verify communication and the current system state.

D. –b specifies the block memory location during an erase command. For a system with a single application slot,
the value 0 is used. If switching between different application slots, use 0 for slot 1 and 1 for slot 2.

4. If the device enumerated on COM23, the following command would be used to get the system information:

python r_fl_serial_flash_loader.py –p 22

The result would be something like the following figure.

Figure 65 Result from issuing the info command

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 45 of 62
Dec 28, 2018

Note: The first time flash memory is programmed through the debug interface the bootloader and application records
have not have been written to. The returned values may be all 0’s.

5. Next, to load a new application, you will want to erase the application that is currently stored. This can be done by
issuing the erase command using:

python r_fl_serial_flash_loader.py –p 22 –c erase –b 0

The expected output can be seen in the following figure.

Note: It may take a few minutes for the erase operation to complete. You might notice that your debugging session
suddenly halts. This is normal. The application that was being debugged has just been erased from flash. After
the erase process if the info command is issued again, the result will be all 0’s, showing that there is no
application image on the device.

Figure 66 Result from issuing the erase command
6. Finally, you can issue the command to update the application code. In this example, the application name is going

to be one of the BCH files that were created. For example:

python r_fl_serial_flash_loader.py –p 22 –c load –f Blink2.BCH

Once the command is issued, there is a data exchange between the host and the flashloader.

Figure 67 Result from issuing the load command
7. Wait patiently. Once the image has been downloaded, the system restarts and enters the bootloader. The bootloader

verifies the image and writes it to flash. It may take a few minutes to write to the internal flash. Earlier it was
mentioned that it can be helpful to have the bootloader code blink some LEDs and provide status information. As
you wait patiently this information helps to let you know that the update is progressing smoothly and has not halted
or crashed.

8. Eventually, you hear the USB device enumerate and see the LED blink pattern change. The new application has
been loaded successfully and the info command can be issued to check the firmware version.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 46 of 62
Dec 28, 2018

16. Flashloader Utility GUI
The easiest way to convert an s-record into a BCH file and then transfer it to the flashloader is through the Flashloader
Utility. The Flashloader Utility is a GUI written in C# that is designed to make configuring the Python scripts easier
through a user interface rather than a command line.

Figure 68 Flashloader Utility
The Flashloader Utility is broken up into four primary sections:

1. Section 1 is used to convert your application files to BCH files. It contains all the parameters necessary to load an
s-record, specify the BCH and configure the BCH file parameters such as block size and flash size. Once these
parameters have all been configured, the Convert button will generate the BCH file.

2. Section 2 contains the interface for loading the new BCH file onto the target device. If a conversion from s-record
to BCH was not necessary, you could use the Browse… button next to the Output Filename to select the desired
BCH file to load. Section 2 allows you to select the communication port, which memory slot you want to erase, and
also step through the update process.

The typical update process will require connecting to the target, erasing the previous application, and then updating
it with the new application code. To streamline this process, there is also a batch update that runs through the
process to connect, erase, and update with a single button press.

3. Section 3 will be rarely used. This section allows you to execute the Python scripts directly through the textbox.
Custom parameters can be executed along with additional fine-tuning. The Flashloader Utility does expose all
features within the Python scripts.

4. Section 4 provides you with a real-time log. When connecting to a device, you will see that the connection is taking
place and also what the device is reporting. The log can be copied and saved to a file for later analysis or cleared if
there are too many messages.

Before the Flashloader Utility can be run for the first time, you need to tell the utility where the Python 2.7 executable
resides. This can be done by selecting File > Options. The dialog box from the following figure is displayed. Simply
browse to find the correct location and then select Ok.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 47 of 62
Dec 28, 2018

Figure 69 Python Executable Settings
There are two important aspects to using the GUI Utility with a blocking flashloader that you need to be aware of. First,
Section 1 needs to be modified depending on whether the application was compiled to run in slot 0 or slot 1 application
locations. There are three different parameters that need to be adjusted:

• The executable address should match the starting location for slot 0 or slot 1 depending on your choice.
• The header location will be different for slot 1 and slot 2. You need to scale the location based on the executable

address.
• Valid flash size is half the fully available flash. The reason is that with two application slots, the memory needs to

be cut in half. This value stays the same though whether slot 0 or slot 1 is used.

This can sound a bit confusing so let’s look at an example that uses the S7G2 that is included on the SK-S7G2 or
DK-S7G2 boards. Let’s say that there are two application versions: one that runs in slot 0 and one that runs in slot 1.
The first application will runs from slot 0 where memory starts at 0x100000. The second application runs from slot 1
and starts at 0x280000. The first application s-record would be converted to a file using the settings shown in the
following figure.

Figure 70 Application Slot 0 S-Record to BCH Conversion Settings

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 48 of 62
Dec 28, 2018

The application that runs in the Slot 1 location needs to be offset from the Slot 0 location (with settings that match the
linker file for Slot 1). In this case, Slot 1 memory starts at 0x180000 so the executable address and header location are
offset to match that value as shown in shown in the following figure.

Figure 71 Application Slot 1 S-Record to BCH Conversion Settings
Second, you will want to make sure that you erase the block associated with the slot location you are planning to store a
new image in. Attempting to erase a slot that is currently executing code will give an error stating that the block could
not be erased. Loading new applications on a blocking implementation will require loading code into Slot 0 on the first
update, Slot 1 on the second update and then Slot 0 again for the third and so on.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 49 of 62
Dec 28, 2018

17. Going Further
Different applications are going to require different robustness and error handling methods. There are many ways that
the flashloader solution can be augmented and adapted for an application. Here are a few ideas about how you might
take this application project and build on it.

• Integrate the BCH conversion script into the build process so that the BCH file is automatically created at build
time.

• Automate the serial flashloader script to perform the update process in sequence on its own without human
interaction.

• Identify potential high-level errors for the bootloader and downloader and develop a procedure to recover the
bootloader if something goes wrong.

• Use the errors that were identified to create error codes that can be blinked or communicated in some form so that
the system doesn’t fail silently.

• Optimize the flash space used by the bootloader. In this application project, we selected the bootloader size to be
0x100000 bytes for convenience. The actual bootloader is much smaller than this. To maximize the space available
for your applications the bootloader space should be minimized.

• Port the bootloader from the development kit to target hardware. You can use the Custom BSP Creator tool to create
a custom board that sets the correct pin-outs, clocks and initialization code. The bootloader project can then be
modified to use the new BSP.

• Add code to the bootloader the blinks of a different LED pattern or flashes a LED at a different blink rate to indicate
to you that the bootloader is running and busy.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 50 of 62
Dec 28, 2018

18. Troubleshooting
Setting up a flashloader is not a trivial endeavor. Slight differences in the way a development kit is setup or even the
host machine can be the difference between successfully running the demonstration application or not. This section
contains advice for how to troubleshoot your setup if you encounter issues running the flashloader application.

My downloader project runs for approximately 10 seconds and then hits a breakpoint with a
SSP_INTERNAL_ERR.

There are many reasons that the application could time out. Check the following:

• Verify that an SD card is inserted in the development kit if using a non-blocking bootloader.
• Verify that the SD card dip switches are set on the development kit if using a non-blocking bootloader.
• If using USB CDC, make sure that the Synergy driver is being used. It is included in the application example

package.

My blocking bootloader application image does not appear to take. The flashloader goes through the process but
I don’t see a change.

There are two items to check if the application appears to not take:

• Verify that the new application image version number, located in the Synergy Configuration in the Firmware
Image Internal Framework on sf_firmware_internal module is larger than the current image version. The
framework will install new images and performs an image version check.

• The application image slot location may not be correct. Verify that the image was compiled for the correct slot
location in memory.

When converting my s-record, I receive a message stating that the header location is not correct.

The main reason for this error is that the linker file header location is not matching BCH converter utility location. The
following steps can be followed to resolve the issue:

• Review the linker file and verify the location for the header image. The header image is typically located 0x800
after the applications starting location. For example, if the starting memory location is 0x100000, then the image
header will be located at 0x100800. If the application starts at 0x280000, then the header will be located at
0x280800.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 51 of 62
Dec 28, 2018

Appendix A Configuring the DK-S7G2 Development Kit for USB CDC
Renesas has made it very easy to get up and running with the DK-S7G2 development kit. This section outlines the
board setup.

1. If you will be running the non-blocking flashloader example, make sure that an SD card has been inserted into the
SD Card slot. Failure to insert a card will result in an SSP_ERROR_INTERNAL message when running the
downloader application. The SD card can be seen properly inserted in Figure 72. Note that the blocking flashloader
example does not require external memory storage since the new image is stored internally on the MCU flash.

Figure 72 SD Card Insertion
Review the jumpers on S5. Make sure the following switches are in the on position:

• JTAG Enable (JTAG)
• PBs
• DRAM

See Figure 73 for other switch positions.

Figure 73 S5 Switch Positions
2. Review the jumpers on S101. Make sure that only the following switches are in the on position:

• SD
• RS

See Figure 74 for other switch positions.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 52 of 62
Dec 28, 2018

Figure 74 S101 Switch Positions

Appendix B Configuring the DK-S7G2 Development Kit for UART
Renesas has made it very easy to get up and running with the DK-S7G2 development kit. This section outlines the
board setup.

1. If you will be running the non-blocking flashloader example, make sure that an SD card has been inserted into the
SD Card slot.

Note: Failure to insert a card results in an SSP_ERROR_INTERNAL message when you run the downloader
application. The SD card can be seen properly inserted in Figure 75. Note that the blocking flashloader example
does not require external memory storage since the new image is stored internally on the MCU flash.

Figure 75 SD Card Insertion
2. Review the jumpers included in S5. Make sure the following switches are in the on position:

• JTAG Enable (JTAG)
• DRAM
• PBs

See Figure 76 for other S5 switch position settings.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 53 of 62
Dec 28, 2018

Figure 76 S5 Switch Positions
3. Review the jumpers included on S101. Make sure the following switches are in the on position:

• SD
• RS

See Figure 77 for other S101 switch position settings.

Figure 77 S101 Switch Positions
4. Review the jumpers to include on S102. Make sure the following switches are in the on position:

• 232

See Figure 78 for other S102 switch position settings.

Figure 78 S102 Positions
5. Connect a Serial-to-USB converter to connector J112.

The J112 following pin-outs are used:

A. A is the microcontrollers receive pin
B. Y is the microcontrollers transmit pin

C. Make sure a ground is also included

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 54 of 62
Dec 28, 2018

Connection can also be established using the J10 connector.

A. 11 is the microcontrollers receive pin

B. 12 is the microcontrollers transmit pin.

C. Connect to any Ground pin on the board

The full setup can be found in Figure 79.

Figure 79 Serial to USB Converter Setup
The development kit and the project pins should now be configured properly to run the flashloader solution. If you
haven’t already done so, make sure that you perform a save and a build all.

Appendix C Configuring the SK-S7G2 Development Kit for USB CDC
Renesas has made it very easy to get up and running with the SK-S7G2 development kit. This section outlines the board
setup. Note that the SK-S7G2 does not include a SD card slot. For this reason, only the blocking flashloader example
setup is shown.

1. Connect a USB mini cable to the DEBUG_USB connector J19. This connector powers the development kit — no
external power is required.

2. Connect a USB mini cable to connector J5. This connector is the microcontroller USB device port. The final setup
can be seen in Figure 80.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 55 of 62
Dec 28, 2018

Figure 80 USB Connection Setup
The development kit and the project pins should now be configured properly to run the flashloader solution. If you have
not already done so, make sure that you perform a save and a build all.

Appendix D Configuring the SK-S7G2 Development Kit for UART
Renesas has made it very easy to get up and running with the SK-S7G2 development kit. This section outlines the board
setup. Note that the SK-S7G2 does not have a SD card holder and only the blocking flashloader application can be used
on the board.

1. Connect a Serial to USB adapter to SCI-2 on J22.

A. P512 (MCU TXD) connects to the converter RX

B. P511 (MCU RXD) connects to the converter TX

C. Make sure to connect a ground for the converter (pin 3 on J22 is a good example).

Figure 81 shows the complete setup.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 56 of 62
Dec 28, 2018

Figure 81 Serial to USB Converter Setup
The development kit and the project pins should now be configured properly to run the flashloader solution. If you have
not already done so, make sure that you perform a save and a build all.

Appendix E Configuring the PK-S5D9 Development Kit for USB CDC
Renesas has made it very easy to get up and running with the PK-S5D9 development kit. This section outlines the board
setup. Note that the PK-S5D9 does not include a SD card slot. For this reason, only the blocking flashloader example
setup is shown.

1. Connect a USB mini cable to the DEBUG_USB connector J19. This connector powers the development kit — no
external power is required.

2. Connect a USB mini cable to connector J5. This connector is the microcontroller USB device port. The final setup
can be seen in Figure 82.

Figure 82 USB Connection Setup
The development kit and the project pins should now be configured properly to run the flashloader solution. If you
haven’t already done so, make sure that you perform a save and a build all.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 57 of 62
Dec 28, 2018

Appendix F Configuring the PK-S5D9 Development Kit for UART
Renesas has made it very easy to get up and running with the PK-S5D9 development kit. This section outlines the board
setup. Note that the PK-S5D9 does not have a SD card holder and only the blocking flashloader application can be used
on the board.

1. Connect a Serial to USB adapter to SCI-2 on J21.

A. P31 (MCU RXD) connects to the converter TX

B. P32 (MCU TXD) connects to the converter RX

C. Make sure to connect a ground for the converter (Pin 3 on J21 is a good example).

Figure 83 shows the complete setup.

Figure 83 Serial to USB Converter Setup
The development kit and the project pins should now be configured properly to run the flashloader solution. If you have
not already done so, make sure you perform a save and a build all.

Appendix G Installing USB CDC drivers in Windows 7/8 and Windows 10
The Flashloader examples that use the USB interface use the USB CDC device class to communicate with the host.

With Windows 10 there is no need for a special driver as this version of Windows automatically installs its own internal
USB CDC driver.

When your host is Windows 7 or Windows 8 you need to install a driver so that the board can communicate with the
Python scripts running in Windows.

The flashloader download package includes these drivers in the folder
Flashloader_Windows_Utility\Windows USB serial driver

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 58 of 62
Dec 28, 2018

1. Connect the board running one of the USB examples to a Windows system using a USB cable

2. The USB device shows up in the Windows device manager as an ‘Unknown device’.

3. To install the drivers in Windows, right click on this device and select Update Driver Software…

4. Select Browse my computer for driver software.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 59 of 62
Dec 28, 2018

5. Select Let me pick from a list of device drivers on my computer.

6. Select Ports (COM & LPT).

7. Click on Have Disk….

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 60 of 62
Dec 28, 2018

8. Browse to the folder the folder holding the Windows driver and click OK.

9. You should see the following dialog box. Click Next

10. If you see the following message, click Yes.

11. Check the option box and click Install.

The driver is now installed.

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 61 of 62
Dec 28, 2018

Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components and
related documentation, and get support.

Synergy Software www.renesas.com/synergy/software
 Synergy Software Package www.renesas.com/synergy/ssp
 Software add-ons www.renesas.com/synergy/addons
 Software glossary www.renesas.com/synergy/softwareglossary

Development tools www.renesas.com/synergy/tools

Synergy Hardware www.renesas.com/synergy/hardware
 Microcontrollers www.renesas.com/synergy/mcus
 MCU glossary www.renesas.com/synergy/mcuglossary
 Parametric search www.renesas.com/synergy/parametric

Kits www.renesas.com/synergy/kits

Synergy Solutions Gallery www.renesas.com/synergy/solutionsgallery
 Partner projects www.renesas.com/synergy/partnerprojects

Application projects www.renesas.com/synergy/applicationprojects

Self-service support resources:

Documentation www.renesas.com/synergy/docs
Knowledgebase www.renesas.com/synergy/knowledgebase
Forums www.renesas.com/synergy/forum
Training www.renesas.com/synergy/training
Videos www.renesas.com/synergy/videos
Chat and web ticket www.renesas.com/synergy/resourcelibrary

https://www.renesas.com/synergy/software
https://www.renesas.com/synergy/ssp
https://www.renesas.com/synergy/addons
https://www.renesas.com/synergy/softwareglossary
https://www.renesas.com/synergy/tools
https://www.renesas.com/synergy/hardware
https://www.renesas.com/synergy/mcus
https://www.renesas.com/synergy/mcuglossary
https://www.renesas.com/synergy/parametric
https://www.renesas.com/synergy/kits
https://www.renesas.com/synergy/solutionsgallery
https://www.renesas.com/synergy/partnerprojects
https://www.renesas.com/synergy/applicationprojects
https://www.renesas.com/synergy/docs
https://www.renesas.com/synergy/knowledgebase
https://www.renesas.com/synergy/forum
https://www.renesas.com/synergy/training
https://www.renesas.com/synergy/videos
https://www.renesas.com/synergy/resourcelibrary

Renesas Synergy™ Platform Customizable Flashloader Solution for Synergy MCUs

R11AN0073EU0112 Rev.1.12 Page 62 of 62
Dec 28, 2018

Revision History

Rev. Date
Description
Page Summary

1.00 May 9, 2017 — Initial version
1.10 Nov 17, 2017 — Fixed the package installer, added support for SSP v1.3.0,

updated the Windows utility, and made minor changes
throughout.

1.11 Apr 19, 2018 1, 5 Corrected Flashloader_pack_1.3.0.exe filename.
1.12 Dec 28, 2018 1 Installed Software updated.

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.comSALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.2

(Rev.4.0-1 November 2017)

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

	1. Overview
	2. Running the Custom Flashloader Solution Example
	2.1 Preparation
	2.2 Build, download and debug
	2.3 Running Flashloader

	3. Bootloader Memory Layout
	4. Downloader Memory Layout
	5. Non-Blocking Bootloader Application Stack Configuration
	6. Bootloader Linker Script
	7. Non-Blocking Bootloader Application Design and Implementation Overview
	8. Blocking Bootloader Application Software Stack Configuration
	9. Blocking Bootloader Application Design and Implementation Overview
	10. Non-Blocking Downloader Application Software Stack Overview
	11. Blocking Downloader Application Software Stack Overview
	12. Non-Blocking Downloader Application Design and Implementation Overview
	13. Downloader Linker Script
	14. Converting User Applications to BCH Files using the Python Converter Script
	14.1 Convert User Application to BCH files manually
	14.2 Convert User Application to BCH files manually
	14.3 Verify BCH image

	15. Flashloader Utility Python Script
	16. Flashloader Utility GUI
	17. Going Further
	18. Troubleshooting
	Revision History

