
 

To our customers, 
 

Old Company Name in Catalogs and Other Documents 
 

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology 
Corporation, and Renesas Electronics Corporation took over all the business of both 
companies. Therefore, although the old company name remains in this document, it is a valid 
Renesas Electronics document. We appreciate your understanding. 
 

Renesas Electronics website: http://www.renesas.com 
 
 
 
 

April 1st, 2010 
Renesas Electronics Corporation 

 
 
 
 
 
Issued by: Renesas Electronics Corporation (http://www.renesas.com) 

Send any inquiries to http://www.renesas.com/inquiry. 

 



Notice 
1. All information included in this document is current as of the date this document is issued. Such information, however, is 

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please 
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to 
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights 
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.  
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights 
of Renesas Electronics or others. 

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of 

semiconductor products and application examples.  You are fully responsible for the incorporation of these circuits, software, 
and information in the design of your equipment.  Renesas Electronics assumes no responsibility for any losses incurred by 
you or third parties arising from the use of these circuits, software, or information. 

5. When exporting the products or technology described in this document, you should comply with the applicable export control 
laws and regulations and follow the procedures required by such laws and regulations.  You should not use Renesas 
Electronics products or the technology described in this document for any purpose relating to military applications or use by 
the military, including but not limited to the development of weapons of mass destruction.  Renesas Electronics products and 
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited 
under any applicable domestic or foreign laws or regulations. 

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics 
does not warrant that such information is error free.  Renesas Electronics assumes no liability whatsoever for any damages 
incurred by you resulting from errors in or omissions from the information included herein. 

7. Renesas Electronics products are classified according to the following three quality grades:  “Standard”, “High Quality”, and 
“Specific”.  The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as 
indicated below.  You must check the quality grade of each Renesas Electronics product before using it in a particular 
application.  You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior 
written consent of Renesas Electronics.  Further, you may not use any Renesas Electronics product for any application for 
which it is not intended without the prior written consent of Renesas Electronics.  Renesas Electronics shall not be in any way 
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an 
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written 
consent of Renesas Electronics.  The quality grade of each Renesas Electronics product is “Standard” unless otherwise 
expressly specified in a Renesas Electronics data sheets or data books, etc. 

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual 
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. 

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support. 

“Specific”:  Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or 
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare 
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. 

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, 
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation 
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or 
damages arising out of the use of Renesas Electronics products beyond such specified ranges. 

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have 
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, 
Renesas Electronics products are not subject to radiation resistance design.  Please be sure to implement safety measures to 
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a 
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire 
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.  Because 
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system 
manufactured by you. 

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental 
compatibility of each Renesas Electronics product.  Please use Renesas Electronics products in compliance with all applicable 
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS 
Directive.  Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with 
applicable laws and regulations. 

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas 
Electronics. 

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this 
document or Renesas Electronics products, or if you have any other inquiries. 

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries. 

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics. 



 APPLICATION NOTE 

RES06B0013-0100/Rev.1.00 September 2004 Page 1 of 39 

H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

Introduction 
This application note demonstrates how to use the H8/38024 SLP series to control a brush-DC servomotor. Advantages 
of using the H8/38024 SLP MCU are the many built-in peripherals such as the PWM, Serial Communication Interface 
(SCI), Timers, etc. This servomotor system can be used as the position controller in a printer, plotter or scanner. 

 

Target Device 
H8/38024 

 

Contents 

1. Introduction ....................................................................................................................................... 2 

2. System Overview .............................................................................................................................. 3 

3. Hardware Implementation ................................................................................................................. 4 

4. Software Implementation .................................................................................................................. 7 

5. Hardware Schematics ..................................................................................................................... 31 

6. References...................................................................................................................................... 37 

 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 2 of 39 

1. Introduction 
There are three types of single supply brushed DC motors 

Series wound (unidirectional) 

• Shunt wound (bi-directional by changing connections) 
• Permanent magnet (bi-directional by reversing current) 
 
In this application note, the permanent magnet DC motor is used. The stator of the motor is composed of two or more 
permanent magnet pole pieces while the rotor is composed of windings that are connected to a mechanical commutator. 
The opposite end polarities of the energized windings and the stator magnet attract and the rotor will rotate until it is 
aligned with the stator. Just at the instant where the rotor reaches alignment, the brushes move the commutator contacts 
and energize the next winding. 

 

 

Block Diagram of Permanent Magnet DC Motor 

 
The advantages and disadvantages of DC motors are summarized in table 1. 

Advantages and Disadvantages of DC Motors 

Advantages Disadvantages 
Easy to control Requires maintenance 
Efficient Cannot be used in certain hazardous environments 
Smaller than induction motors of the same power Noisier than induction motors 
Fewer components required for speed control Lower horsepower (HP) 
 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 3 of 39 

2. System Overview 
The block diagram of the servomotor system described in this application note is shown in Figure 2. The system is 
comprised of the following components: 
• H8/38024 SLP MCU 
• RS-232C Interface 
• Full-bridge PWM Motor Driver 
• Faulhaber Brush-DC Motor with Optical Encoder 
 

 

 

 

 

 

 

 

 

 

 

 

 

System Block Diagram 

 
In this application note, the roles of the MCU are as follows: 

• measure the motor position 
• generate the speed profile 
• calculate the compensation algorithm 
• produce the drive signal to the PWM motor driver 
• transmit the desired and actual speeds back to the PC through the RS-232 interface 
 
One of the two available pulse-width modulation (PWM) modules with 10-bit resolution is used to generate the motor 
drive signal. The PWM frequency is 20 kHz at device operating frequency of 10 MHz. The torque applied to the motor 
is determined by duty cycle of the PWM signal. The PWM signal is connected to an H-bridge driver IC capable of 
delivering 1.3 A. 

A Faulhaber brush-DC motor with optical encoder with the following characteristics shown in table 2 is used here: 

 
Motor Characteristics 

Parameters Value Units 
Nominal voltage 6 V 
No-load speed 9300 Rpm 
Torque constant 6.10 MNm/A 
 

Address 

Lines 

Data 

Lines 

Address 
Decoder 

Encoder 
Interface 

Display 

MOT 
Driver IC 

RS-232 
Interface 

Optical 
Encoder 

Ch A & B 

P6[7..0]

P7[6..0]

P9[5,4,3,2,0] 

TXD32

RXD32

H8/38024 MCU 

PC Serial Port 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 4 of 39 

3. Hardware Implementation 
Table 3 summarizes the usage of peripherals. 

Peripheral Usage 

Peripheral Function 
Port 6[7..0] “Data” bus 
Port 7[6..0] “Address” bus 
P77 WRITE/READ_N 
SCI (TXD32 and RXD32) Communication with host PC 
P90/PWM1 *PHASE 
P92 *REF 
P93 *ENABLE_N 
P94 *MODE 
P95 *BRAKE_N 
Timer F Servo update time-base 
Note: Connected to the PWM motor driver (A3953SB). Refer to section 3.6 for details. 
 

3.1 Power Supplies 
Three separate supplies are required in this application example: 

• 6 V for DC motor 
• 5 V for 74HCT138, level shifter, alphanumeric display, quadrature encoder interface 
• 3.3 V for MCU, RS-232 transceiver, level shifter, PWM motor driver 
 

 

 

 

 

 

 

Power Supplies 

 

3.2 Address and Data Buses 
To allow the H8/38024 SLP MCU to access memory-mapped external devices/memory/peripherals, separate address 
and data buses with control signal WRITE/READ_N are constructed using general I/O ports as shown in figure 4. The 
MCU is operating at 3.3 V while some devices operate at 5 V. The function of the level shifters is to interface the MCU 
to the 5-V devices.  

 

 

5V 

Regulator 

 

3.3V  

Regulator 

 

Supply 

Voltage 
6V 3V3 5V 

LM1117DTX-5.0 LM1117DTX-3.3 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 5 of 39 

 

 

 

 

 

 

 

 

 

 

 

 

 

Address and Data Buses 

 

3.3 Address Decoder 
A 74HCT138 3 to 8 line decoder is used here to select the memory-mapped devices namely, the Alphanumeric 
Intelligent Display (DLR1414) and the quadrature decoder. Table 4 lists the addresses. 

Address Mapping 

Address (Hexadecimal) Device 
44 Encoder (high byte) 
45 Encoder (low byte) 
C0 Display (first digit) 
C1 Display (second digit) 
C2 Display (third digit) 
C3 Display (fourth digit) 
C8 Reset encoder 
 

3.4 RS-232C Transceiver 
The Serial Communication Interface (SCI) pins TXD32 and RXD32 are connected to the Sipex SP3232 RS-232C 
transceiver. This allows the MCU to communicate with the Host PC. 

 

3.5 DC-Micromotor with Optical Encoder 
The Faulhaber optical encoder (09BP series with 180 lines per revolution) is used in combination with the DC-
Micromotor (2230 U 006 S series) for indication and control of both shaft velocity and direction of rotation, as well as 
positioning. Two LED sources transmit light through a metal disc with a number of light transmitting slits to give two 
channels (A and B) with a 90° phase shift as shown in Figure 5. For clockwise rotation, channel A leads channel B. 
Similarly, channel B leads channel A for counter-clockwise rotation. 

 

 

HD151015 

Level Shifter 

 

HD151015 

Level Shifter 

H8/38024 MCU 

PORT 7[6..0]

PORT 6[7..0]

3V 5V 

Address Bus 

Data Bus 

P77
WRITE/READ_N 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 6 of 39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Operation of Optical Encoder  

 
The supply voltage for the motor and encoder as well as the two channel output signals are interfaced with a 150mm 
ribbon cable and a 10-pin connector as shown in figure 6. 

 

 

 

 

 

 

 

 

DC-Micromotor with Optical Encoder 

 
The outputs from the encoder (channels A and B) are connected to the Agilent HCTL-2016 quadrature decoder, which 
consists of a 4x quadrature decoder, binary up/down 16-bit counter and bus interface function. The use of Schmitt-
triggered CMOS inputs and input noise filters allows reliable operation in noisy environments. 

Clockwise Rotation Counter-clockwise Rotation 

Channel A 

Channel B 

09BP Optical 

DC-Micromotor 

Ribbon Cable 

10-pin Connector 

LEDs Photodiodes 

Shaft 

Codewheel 

Channel A 
Channel B 

Codewheel Pattern 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 7 of 39 

 

 

 

 

 

Encoder Resolution 

3.6 PWM Motor Driver 
The Allegro A3953SB is a full-bridge PWM motor driver designed for bi-directional pulse-width modulated current 
control of inductive loads. It can deliver continuous output currents of ±1.3A and operate at voltages up to 50V. The 
peak load current limit is set by the user’s selection of an input voltage reference voltage and external sensing resistor. 
The fixed off-time pulse duration is set by a user-selected external RC timing network. The internal circuit protection 
includes thermal shutdown with hysteresis, transient-suppression diodes, and crossover current protection. 

With the ENABLE_N input held low, the PHASE input controls load current polarity by selecting the appropriate 
source and sink driver pair. When a logic low is applied to the BRAKE input, the braking function is enabled. This 
overrides ENABLE and PHASE to turn off both source drivers and turn on both sink drivers. This brake function can 
be used to dynamically brake brushed DC motors. 

A 50% PWM duty cycle will produce zero motor torque. A 0% and 100% duty cycle will produce maximum torque in 
the reverse and forward direction, respectively. 

 

4. Software Implementation 
The source code is written in the C language for easy implementation and compiled using the free H8 Tiny/SLP 
toolchain (version 5.0.0) for HEW Version 2.2 (Release 15). 

The functions of the source codes are as follows: 

• Measurement of motor position 
• Calculation for the compensator algorithm 
• Generation of profile 
• RS-232C communication 
 
Figure 8 shows the flowchart of the main function where the I/O ports, SCI (38400bps, 1 stop bit, parity disabled), 
timers and PWM are initialized. Timer F Output Compare interrupt service routine is programmed to occur  
every 1.5 ms. The encoder value is read. The new trajectory value and PID values are computed and the PWM output is 
set. The desired and actual speeds are also transmitted back to the PC. 

 

Faulhaber 
09BP Optical 

Agilent HCTL-2016 
Quadrature Decoder 

Faulhaber 
DC-

180 
pulses/revolution 

720 
pulses/revolution 

H8/38024 SLP MCU 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 8 of 39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Flowcharts 

4.1 Encoder Feedback 
Both speed and direction feedback can be derived from the optical encoder mounted on the motor shaft. The encoder 
output signals are processed by the HCTL-2016 4x quadrature encoder and then fed to a binary 16-bit up/down counter. 
The contents of the 16-bit counter are read through an 8-bit bus interface in 2 sequential bytes. The high byte (bits 15  
to 8, SEL = 0) is read first followed by the lower byte (bits 7 to 0, SEL = 1). A positive number indicates clockwise 
rotation whereas a negative number indicates counter-clockwise rotation. Therefore, 1 revolution will  
produce 4 × 180 = 720 pulses. 

Main Function 

Initialize the following: 
a. I/O 
b. SCI 
c. Timers 
d. PWM 

Timer F Output 
Compare Match ISR 

Read Encoder 

Return 

Perform Position 
Control? 

Position Control 

a. Compute trajectory 
b. Update current

No 

Start Position 
Control? 

Speed Control 

No 

Yes 

No 

Yes 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 9 of 39 

The servo sample interval is selected to be 1.5ms, which means that the 16-bit counter is read every 1.5ms. 
Computation is then performed and the value is then output to the PWM driver. The speed and direction of rotation can 
be determined by differencing the current and previous 16-bit counter values. For example, 

Encoder Count 
Current Previous 

Speed (counts/sampling interval) Direction of rotation 

1000 900 100 Clockwise 
-1095 -1000 -95 Counter-clockwise 
 

4.2 PID Controller 
One problem faced by the system designer is that load on the motor is subjected to change. Other factors such as age, 
calibration and environment also affect the operation of the motor. Consequently, feedback mechanisms are typically 
employed to control the motor speed. The Proportional-Integral-Derivative (PID) controller is commonly used. In this 
example, the reference signal r(n) indicates the desired motor speed. The actual motor speed (subject to change based 
on load), is measured by the optical encoder mounted on the motor. 

 

 

 

 

 

 

 

 

PID Controller 

The Proportional-Integral-Derivative controller is described by: 

u(t) = Kp ⋅ e(t) + Ki ⋅ eiT + Kd ⋅ (de/dt) 
where 

• Kp is the proportional gain 
• Ki is the integral gain 
• Kd is the derivative gain 
• T is the sampling interval 
• e(t) is the error signal and equal to the difference between the desired and measured speeds 
 
The proportional term considers only the difference between the present reference value and the actual speed being 
measured. This term is weighed by a gain factor, Kp, derived using knowledge of the specific motor under control. The 
integral term considers the summation of all the errors that have been measured previously. This term serves to smooth 
out oscillations by damping the system. For example, when the measured speed is slightly less than the desired speed, 
the proportional term would resolve to increase the applied power, speeding up the motor. If the last few measurements 
indicate the motor to be too fast, the integral term would reduce or even prevent the introduction of more power. In 
addition, the integral term eliminates accumulated error. Since the amount of energy introduced by the proportional 
term is proportional to the amount of error (deviation of actual motor speed from the desired motor speed), its influence 
is very small when the motor is close to the desired speed. When a very small error has existed for many iterations of 
the PID loop, the integral term will accumulate and produce a control change to correct that error. 

 

+ 

Optical 
Encoder 

PID 
Controller 

PWM 
Driver 

DC 
Servomot

or 

Encoder 
Interface 

Reference 
r(n) e(n) 

y(n) 

u(n) u(t) y(t) 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 10 of 39 

The derivative term considers the rate of change at which the error is changing and helps to improve settling time. 
When the actual motor speed is far below its target speed, we would like to accelerate faster. If the acceleration of the 
motor is constant, then the rate of error changes will be constant too (i.e., the differential term). We would like to see 
the differential term increase to some constant value. When we approach the target speed, we would like to reduce the 
rate at which the motor is increasing its speed to prevent overshooting i.e., differential term decrease to zero. 

 
The integral term is described in discrete form as the summation of error terms measured at each sampling interval. 

( )∑
=

−=⋅
i

j
jji YRTe

0

 

 
Similarly, the differential term can be discretely approximated as: 

( )
T
ee

dt
de nn 1−−

=  

where en and en-1 are error signals calculated from the current and previous measurements. 

 
This allows the PID to be approximated in discrete form as: 

( ) ( ) ( ) ( )[ ]
T

neneKTeKneKnu diip
1−−

⋅+⋅⋅+⋅= ∑  

 

4.3 Profile Generation 
A trajectory generation is essential for motion control. A linear piecewise velocity generation is implemented in this 
application. The velocity is incremented by a constant value until a specified maximum velocity is maintained. This 
maximum velocity is maintained until 70% of the total rotation has been covered. The velocity is then decremented by 
the same deceleration value until the minimum velocity is reached. Once the motor has reached the required rotation, 
position control is then utilized to hold the motor in position (braking function).  

 

 

 

 

 

 

 

 

 

 

PID Controller 

 
 

Acceleration Cruise Deceleration 

Time 

Velocity 

Maximum Speed 

Minimum Speed 

Speed Control Position Control 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 11 of 39 

4.4 RS-232C Communications 
The function of the RS-232C communications is to transmit the desired and actual speeds in (counts/sampling interval) 
to the PC. Using any terminal emulation software such as Tera Term Pro, these values are then sent to EXCEL and the 
response is plotted below as shown in figure 11. By altering the various gains and plotting the results, the system can be 
fine-tuned. 

 

Servo Response

-2

0

2

4

6

8

10

12

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241

Sampling Interval

Ve
lo

ci
ty Desired

Actual

 

Servo Response 

 

4.5 PID Tuning 
When designing a PID controller for a given system, follow the steps below to obtain the desired response. 

• Set the PID controller to proportional mode only i.e., Ki and Kd are set to 0. 
• Set the proportional gain (Kp) to a small value to limit the output so that the servomotor system will not spin out of 

control initially. Safety concerns should be considered especially if the motor is to be used for driving some 
machinery, etc. 

• Set a small reference value and observe the response of the controlled variable, for example the speed or position of 
the motor. 

• Set Kp to the point that will bring the system to the reference quickly without overshoot. 
• Incorporate the integral gain (Ki) to eliminate the steady state error 
• Include the derivative gain (Kd) to improve the transient response. 
• Adjust the gains (Kp, Ki Kd) until the desired response is obtained. 
 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 12 of 39 

4.6 Source Codes 
The source codes are mainly in the following files 

• Dcmotor.c 
 Contains the main function 
 Performs initialization of the I/O ports, SCI, timers and PWM channel. 
 Generation of trajectory, display of encoder count, computation of PID values, speed and position control 

• int_prg.c 
 Contains the Timer F Output Compare Interrupt Service Routine 
 Update the position count 

 
For example, to program the motor to rotate 1 complete revolution in the counter-clockwise direction, the following 
constants defined in “Dcmotor.c” have to be set: 

Parameter Value Remarks 
distance_reference -720 1° → 2 counts 

1 revolution → 360° →  (360 * 2) = 720 counts 
Negative for counter-clockwise direction 

maximum_speed_reference -7 Maximum reference speed during acceleration/cruise 
Negative for counter-clockwise direction 

minimum_speed_reference -1 Minimum reference speed during deceleration 
Negative for counter-clockwise direction 

speed_adjustment -1 Step adjustment for reference speed 
Negative for counter-clockwise direction 

proportional_gain 6 Proportional gain for PID controller 
integral_gain 2 Integral gain for PID controller 
derivative_gain 4 Derivative gain for PID controller 
 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 13 of 39 

/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :Dcmotor.c                                             */ 
/*  DATE        :Mon, Jan 12, 2004                                     */ 
/*  DESCRIPTION :Main Program                                          */ 
/*  CPU TYPE    :H8/38024                                              */ 
/*                                                                     */ 
/*  This file is generated by Renesas Project Generator (Ver.2.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
 
#ifdef __cplusplus 
extern "C" { 
#endif 
void abort(void); 
#ifdef __cplusplus 
} 
#endif 
 
#include "iodefine.h" 
#include <machine.h> 
 
//---------------------------------------------------------------------- 
//Constant Declarations 
//---------------------------------------------------------------------- 
 
//Constants for Address Decoder 
#define first_digit    0xC0 
#define second_digit   0xC1 
#define third_digit    0xC2 
#define fourth_digit   0xC3 
 
#define enc_count_high  0x44 
#define enc_count_low   0x45 
 
#define reset_2016    0xC8 
 
#define de_select    0x3F 
 
//Constants for Motor Control 
#define distance_reference  -720  //1 degree = 2 encoder counts 
#define maximum_speed_reference -7  //negative for counter-clockwise 
#define minimum_speed_reference -1  //negative for counter-clockwise 
#define speed_adjustment  -1  //negative for counter-clockwise 
#define proportional_gain  6 
#define integral_gain   2 
#define derivative_gain  4 
 
#define max_pos_con_val  256 
 
//Others 
#define address_bus    P_IO.PDR7.BYTE //Address Bus 
#define data_bus     P_IO.PDR6.BYTE //Data Bus 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 14 of 39 

//---------------------------------------------------------------------- 
//Function Prototypes 
//---------------------------------------------------------------------- 
 
void init_sci(void); 
void char_put(char); 
void PutStr(char *); 
 
void init_port(void); 
 
void display_char(unsigned char, unsigned char); 
 
void init_timers(void); 
 
void display_word(unsigned int); 
 
void reset_encoder(void); 
int  read_encoder(void); 
 
void init_pwm(void); 
 
void serial_transmit(unsigned int); 
 
void speed_control(void); 
 
void speed_profile(void); 
 
void position_control(void); 
 
//---------------------------------------------------------------------- 
 
//16-bit number: +ve for clockwise, -ve for counter-clockwise 
int encoder_count, current_encoder_count, previous_encoder_count; 
 
//16-bit number: reference speed: +ve for clockwise, -ve for counter-clockwise 
int speed_reference; 
 
int current_speed; 
int current_speed_error, previous_speed_error, sum_speed_error, 
  diff_speed_error; 
int speed_control_output; 
 
int position_reference, position_reference_a; 
int current_position_error, previous_position_error, sum_position_error,  
  diff_position_error; 
int position_control_output; 
 
int speed_increment;  //+ve for clockwise, -ve for counter-clockwise 
int max_speed_reference; //+ve for clockwise, -ve for counter-clockwise 
int min_speed_reference; //+ve for clockwise, -ve for counter-clockwise 
 
int temp_encoder_count, temp_position_reference; 
 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 15 of 39 

unsigned int   position_control_count; 
 
static unsigned char reference_step = 0; 
 
int      kp_gain, ki_gain, kd_gain; 
 
unsigned char    start_position_control; 
 
//---------------------------------------------------------------------- 
 
void main(void) 
{ 
 //------------------------------------------------------------------- 
 
 init_port(); 
 
 init_sci(); 
 
 init_timers(); 
 
 init_pwm(); 
 
 reset_encoder(); 
 
 //------------------------------------------------------------------- 
 
 speed_reference = 0; 
 
 speed_increment = speed_adjustment; 
 max_speed_reference = maximum_speed_reference; 
 min_speed_reference = minimum_speed_reference; 
 
 previous_speed_error = 0; 
 sum_speed_error = 0; 
 diff_speed_error = 0; 
 
 kp_gain = proportional_gain; 
 ki_gain = integral_gain; 
 kd_gain = derivative_gain; 
 
 position_reference = distance_reference; 
  
 position_reference_a = ((position_reference * 7)/ 10); 
 if (position_reference < 0) 
 { 
  position_reference_a = 0 - position_reference_a; 
 } 
 
 current_position_error = 0; 
 previous_position_error = 0; 
 sum_position_error = 0; 
 
 start_position_control = 0; 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 16 of 39 

 position_control_count = 0; 
 
 //------------------------------------------------------------------- 
 
 P_SYSCR.IENR2.BIT.IENTFH = 1;  //Enable Timer FH interrupt requests 
 
 //if Timer FH interrupt request flag (IRRTFH) is set, clear to 0 
 if (P_SYSCR.IRR2.BIT.IRRTFH == 1) 
  P_SYSCR.IRR2.BIT.IRRTFH = 0; 
 
 set_imask_ccr(0);     //Clear IMASK 
 
 //------------------------------------------------------------------- 
 
 while (1) 
 { 
 } 
} 
 
//---------------------------------------------------------------------- 
 
void abort(void) 
{ 
  
} 
 
//---------------------------------------------------------------------- 
 
/* 
 init_pwm() 
*/ 
 
void init_pwm(void) 
{ 
 P_PWM1.PWCR1.BYTE = 0xFD;   //Conversion period is 1024/phi 
 
 P_PWM1.PWDRL1.BYTE = 0x00;  //Write to lower 8 bits 
 
 P_PWM1.PWDRU1.BYTE = 0xFE;  //Write to upper 2 bits 
 
 P_IO.PDR9.BYTE &= 0xF7;   //Port 9[3] : Clear ENABLE_N 
} 
 
//---------------------------------------------------------------------- 
 
/* 
 reset_encoder(): Reset enocder counts 
*/ 
 
void reset_encoder(void) 
{ 
 P_IO.PCR6.BYTE  = 0xFF;   //Set Port 6[7..0] as output 
 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 17 of 39 

 address_bus &= de_select; 
 
 address_bus = reset_2016; 
 
 address_bus &= de_select; 
} 
 
//---------------------------------------------------------------------- 
 
/* 
 read_encoder(): Read encoder counts 
*/ 
 
int read_encoder(void) 
{ 
 int    counts; 
 unsigned char low_byte, high_byte; 
 
 P_IO.PCR6.BYTE  = 0x00;   //Set Port 6[7..0] as input 
 
 address_bus &= de_select; 
 
 address_bus = enc_count_high;  //Address 
 
 high_byte = data_bus;   //Data 
 
 address_bus &= de_select; 
 
 address_bus = enc_count_low;  //Address 
 
 low_byte = data_bus;   //Data 
 
 address_bus &= de_select; 
 
 counts = (int)((high_byte << 8) | low_byte); 
 
 return(counts); 
} 
 
//---------------------------------------------------------------------- 
 
/* 
 init_timers() : Set up Timer F 
*/ 
 
void init_timers(void) 
{ 
 //Timer Control Register F 
 //TOLL = '1': Initial output for TMOFH is high 
 //CKSH2 = '0', CKSH1 = '0', CKSH0 = '0': 16-bit mode, counting on TCFL 
overflow signal 
 //Clock input to TCFL at phi/4 i.e., (10MHz/2/4 = 1.25MHz) 
 P_TMRF.TCRF.BYTE = 0x86; 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 18 of 39 

 
 //Timer Control/Status Register F 
 //CCLRH = '1': in 16-bit mode, TCF clearing by compare match is enabled 
 P_TMRF.TCSRF.BYTE = 0x10; 
 
 //1.5ms -> 0x753 
 P_TMRF.OCRF.BYTE.H = 0x07;   //Output Compare Register FH 
 P_TMRF.OCRF.BYTE.L = 0x53;   //Output Compare Register FL 
} 
 
//---------------------------------------------------------------------- 
 
/* 
 init_port() : Set up the I/O ports 
 
 a. Port 6[7..0] -> Data[7..0] 
 b. Port 7[7..0] -> Address[7..0] 
  Note that Port 7_7 also functions as the WRITE/READ_N signal 
*/ 
 
void init_port(void) 
{ 
 P_IO.PMR3.BYTE = 0x04;    //P32 functions as TMOFH 
 
 P_LCD.LPCR.BYTE = 0x00;    //SEG[32..1] as I/O Port 
 
 P_IO.PCR6.BYTE  = 0xFF; 
 
 P_IO.PCR7.BYTE  = 0xFF; 
 
 P_IO.PDR6.BYTE  = 0xFF; 
 
 P_IO.PDR7.BYTE  = 0xFF; 
 
 P_IO.PMR9.BYTE = 0xF1;    //PWM1 
} 
 
//---------------------------------------------------------------------- 
 
/* 
 display_char() 
 
 a. Port 6[7..0] -> Data[7..0] 
 b. Port 7[7..0] -> Address[7..0] 
  Note that Port 7_7 also functions as the WRITE/READ_N signal 
*/ 
 
void display_char(unsigned char digit_position, unsigned char digit_info) 
{ 
 P_IO.PCR6.BYTE  = 0xFF;   //Set Port 6[7..0] as output 
 
 address_bus &= de_select; 
 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 19 of 39 

 data_bus = digit_info;   //Data 
 
 address_bus = digit_position;  //Address 
 
 address_bus &= de_select; 
} 
 
//---------------------------------------------------------------------- 
 
/* 
 display_word() 
*/ 
 
void display_word(unsigned int display_data) 
{ 
 unsigned char position, digit_info, digit_position; 
 
 P_IO.PCR6.BYTE  = 0xFF;    //Set Port 6[7..0] as output 
 
 for (position = 4 ; position != 0 ; position--) 
 { 
  switch (position) 
  { 
   case 1: 
    digit_position = first_digit; 
    digit_info = (unsigned char)(display_data & 0x000F); 
    break; 
 
   case 2: 
    digit_position = second_digit; 
    digit_info = (unsigned char)((display_data & 0x00F0) >> 4); 
    break; 
 
   case 3: 
    digit_position = third_digit; 
    digit_info = (unsigned char)((display_data & 0x0F00) >> 8); 
    break; 
 
   default: 
    digit_position = fourth_digit; 
    digit_info = (unsigned char)((display_data & 0xF000) >> 12); 
    break; 
  } 
 
  if ((digit_info >= 0) && (digit_info <= 9)) 
   digit_info += 0x30; 
  else 
  { 
   if ((digit_info >= 0xA) && (digit_info <= 0xF)) 
   { 
    digit_info -= 0xA; 
    digit_info += 0x41; 
   } 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 20 of 39 

  } 
   
  address_bus &= de_select; 
 
  data_bus = digit_info;   //Data 
 
  address_bus = digit_position; //Address 
 
  address_bus &= de_select; 
 } 
} 
 
//---------------------------------------------------------------------- 
 
/* 
 serial_transmit() 
*/ 
 
void serial_transmit(unsigned int display_data) 
{ 
 unsigned char position, digit_info; 
 
 for (position = 4 ; position != 0 ; position--) 
 { 
  switch (position) 
  { 
   case 1: 
    digit_info = (unsigned char)(display_data & 0x000F); 
    break; 
 
   case 2: 
    digit_info = (unsigned char)((display_data & 0x00F0) >> 4); 
    break; 
 
   case 3: 
    digit_info = (unsigned char)((display_data & 0x0F00) >> 8); 
    break; 
 
   default: 
    digit_info = (unsigned char)((display_data & 0xF000) >> 12); 
    break; 
  } 
 
  if ((digit_info >= 0) && (digit_info <= 9)) 
   digit_info += 0x30; 
  else 
  { 
   if ((digit_info >= 0xA) && (digit_info <= 0xF)) 
   { 
    digit_info -= 0xA; 
    digit_info += 0x41; 
   } 
  } 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 21 of 39 

   
  char_put(digit_info); 
 } 
} 
 
 
//---------------------------------------------------------------------- 
 
/* 
 init_sci() : Sets up the Serial Communication Interface for debugging 
purposes. 
*/ 
 
void init_sci(void) 
{ 
 //SCR3 : |TIE|RIE|TE|RE|MPIE|TEIE|CKE1|CKE0| 
 //TIE : Transmit interrupt enable 
 //RIE : Receive interrupt enable 
 //TE  : Transmit enable 
 //RE  : Receive enable 
 //MPIE : Multiprocessor interrupt enable 
 //TEIE : Transmit end interrupt enable 
 //CKE1 : Clock enable 1 
 //CKE0 : Clock enable 0 
 
 //CKE1 = CKE0 = 0 
 //asynchronous mode, internal clock source, SCK32 functions as I/O port 
 P_SCI3.SCR3.BYTE &= 0x00; //clear TE & RE 
 
 //SMR : |COM|CHR|PE|PM|STOP|MP|CKS1|CKS0| : |0|0|0|0|0|0|0|0| 
 //COM : Communication Mode  : 0 : asynchronous mode 
 //CHR : Character Length    : 0 : character length = 8 bits 
 //PE  : Parity Enable       : 0 : parity bit addition and checking disabled 
 //PM  : Parity Mode         : 0 : even parity (no effect since parity is 
already disabled) 
 //STOP: Stop Bit Length     : 0 : 1 stop bit 
 //MP  : Multiprocessor Mode : 0 : multiprocessor communication function 
disabled 
 //|CKS1|CKS0| : Clock Select: |0|0| : clock source for baud rate generator 
= clk 
 P_SCI3.SMR.BYTE = 0x00; 
 
 //For clk = 10MHz, bit rate = 38400 bps, n = 0, N = 3 
 P_SCI3.BRR = 3; 
 
 //minimum of 1-bit delay = 417ns 
 nop(); 
 nop(); 
 nop(); 
     
 //SPCR : |---|---|SPC32|---|SCINV3|SCINV2|---|---| : |1|1|1|0|0|0|0|0| 
 //SPC32 = 1 : P42 functions as TXD32 output pin 
 //need to set TE bit in SCR3 after setting this bit to 1 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 22 of 39 

 //SCINV3 = 0 : TXD32 output data is not inverted 
 //SCINV2= 0 : RXD32 input data is not inverted 
 //Bits 7 and 6 are reserved and always read as 1 
 //Bits 4, 1 and 0 are reserved and only 0 can be written to these bits 
 P_SCI3.SPCR.BYTE = 0xE0; 
 
 P_SCI3.SCR3.BYTE |= 0x30; //Set TE & RE 
} 
 
//---------------------------------------------------------------------- 
 
/* 
 char_put() : Transmits a character to the PC for debugging purposes. 
*/ 
 
void char_put(char OutputChar)              //Serial Port 
{ 
    //SSR  : |TDRE|RDRF|OER|FER|PER|TEND|MPBR|MPBT| 
 //TDRE : transmit data register empty 
 //RDRF : receive data register full 
 //OER  : overrun error 
 //FER  : framing error 
 //PER  : parity error 
 //TEND : transmit end 
 //MPBR : Multiprocessor bit receive 
 //MPBT : Multiprocessor bit transfer 
 
 while ((P_SCI3.SSR.BIT.TDRE) == 0);  //Wait for TDRE = 1 
 
 P_SCI3.TDR = OutputChar; 
 
 while ((P_SCI3.SSR.BIT.TEND) == 0);  //Wait for TEND = 1 
 
 P_SCI3.SSR.BIT.TEND = 0; 
} 
 
//---------------------------------------------------------------------- 
 
/* 
 PutStr() : Transmits a string of characters to the PC for debugging 
purposes. 
 
*/ 
void PutStr(char *str) 
{ 
    while (*str != 0) 
 { 
  char_put(*str++); 
 } 
} 
 
//---------------------------------------------------------------------- 
 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 23 of 39 

/* 
 speed_control() 
 
 1. current_speed = current_encoder_count - previous_encoder_count 
 
 2. current_speed_error = speed_reference - current_speed 
 
 3. output = kp_gain * speed_error + ki_gain * sum(speed_error) + kd_gain * 
(current_speed_error - previous_speed_error); 
 
 range-limited from -512 to 511 
*/ 
 
void speed_control(void) 
{ 
 //------------------------------------------------------------- 
 
 previous_encoder_count = current_encoder_count; 
 current_encoder_count = encoder_count; 
 
 current_speed = current_encoder_count - previous_encoder_count; 
 
 //------------------------------------------------------------- 
 
 serial_transmit(speed_reference); 
 
 //------------------------------------------------------------- 
 
 previous_speed_error = current_speed_error; 
 
 //------------------------------------------------------------- 
 
 current_speed_error = speed_reference - current_speed; 
 
 PutStr("/"); 
 serial_transmit(current_speed); 
 PutStr("\r\n"); 
 
 //------------------------------------------------------------- 
 
 sum_speed_error += (current_speed_error); 
 
 diff_speed_error = (current_speed_error - previous_speed_error); 
 
 //------------------------------------------------------------- 
 
 speed_control_output = (int)((kp_gain * current_speed_error) + 
(sum_speed_error / ki_gain) + (diff_speed_error * kd_gain)); 
 
 //------------------------------------------------------------- 
 //limit speed_control_output from -511 to +511 
 
 if (speed_control_output > 511) 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 24 of 39 

  speed_control_output = 511; 
 else 
 { 
  if (speed_control_output < -511) 
   speed_control_output = -511; 
 } 
  
 //introduce offset of 512 
 speed_control_output += 512; 
 
 P_PWM1.PWDRL1.BYTE = (unsigned char)(speed_control_output & 0x00FF); 
 //Write to lower 8 bits 
 
 P_PWM1.PWDRU1.BYTE = (unsigned char)((speed_control_output & 0xFF00)>> 8);
 //Write to upper 2 bits 
 
 //------------------------------------------------------------- 
} 
 
//---------------------------------------------------------------------- 
 
/* 
 speed_profile() - generates the speed profile 
*/ 
 
void speed_profile(void) 
{ 
 int temp_encoder_count; 
 
 reference_step++; 
 
 temp_encoder_count = encoder_count; 
 
 if (position_reference < 0) 
  temp_encoder_count = 0 - encoder_count; 
  
 if (temp_encoder_count > position_reference_a) 
 { 
  //decelerate 
  if (reference_step > 7) 
  { 
   reference_step = 0; 
 
   //For clockwise rotation, speed_increment is +ve 
   //For counter-clockwise rotation, speed_increment is -ve 
 
   //For example 
   //a. clockwise, speed_increment = 1, speed_reference = 5 -> 
speed_reference = 5 - 1 = 4 
   //b. counter-clockwise, speed_increment = -1, speed_reference = -5 -> 
speed_reference = -5 - (-1) = -4 
 
   if (speed_reference < 0) //Counter-clockwise 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 25 of 39 

   { 
    speed_reference -= speed_increment; 
 
    if (speed_reference > min_speed_reference) 
     speed_reference = min_speed_reference; 
   } 
   else      //Clockwise 
   { 
    speed_reference -= speed_increment; 
 
    if (speed_reference < min_speed_reference) 
     speed_reference = min_speed_reference; 
   } 
  } 
 } 
 else 
 { 
  //accelerate and cruise 
  if (reference_step > 7) 
  { 
   reference_step = 0; 
 
   //For clockwise rotation, speed_increment is +ve 
   //For counter-clockwise rotation, speed_increment is -ve 
 
   //For example 
   //a. clockwise, speed_increment = 1, speed_reference = 5 -> 
speed_reference = 5 + 1 = 6 
   //b. counter-clockwise, speed_increment = -1, speed_reference = -5 -> 
speed_reference = -5 + (-1) = -6 
 
   speed_reference += speed_increment; 
 
   if (speed_reference < 0) //Counter-clockwise 
   { 
    if (speed_reference < max_speed_reference) 
     speed_reference = max_speed_reference; 
   } 
   else      //Clockwise 
   { 
    if (speed_reference > max_speed_reference) 
     speed_reference = max_speed_reference; 
   } 
  } 
 } 
} 
 
//---------------------------------------------------------------------- 
 
/* 
 position_control() 
 
 1. position_error = reference_encoder_count - current_encoder_count 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 26 of 39 

  
 2. output = kp_gain * current_position_error 
     + sum(position_error) / ki_gain  
     + kd_gain * (position_error - previous_position_error); 
 
 range-limited from -512 to 511 
*/ 
 
void position_control(void) 
{ 
 kp_gain = 10; 
 ki_gain = 2; 
 kd_gain = 3; 
 
 position_control_count++; 
 
 //------------------------------------------------------------- 
 
 previous_position_error = current_position_error; 
 
 //------------------------------------------------------------- 
 
 current_position_error = position_reference - encoder_count; 
  
 //------------------------------------------------------------- 
 
 sum_position_error += (current_position_error); 
 
 diff_position_error = (current_position_error - previous_position_error); 
 
 //------------------------------------------------------------- 
 
 position_control_output = (int)((kp_gain * current_position_error) + 
(kd_gain * diff_position_error)); 
 
 //------------------------------------------------------------- 
 //limit position_control_output from -128 to +128 
 
 if (position_control_output > max_pos_con_val) 
  position_control_output = max_pos_con_val; 
 else 
 { 
  if (position_control_output < -max_pos_con_val) 
   position_control_output = -max_pos_con_val; 
 } 
  
 //introduce offset of 512 
 position_control_output += 512; 
 
 P_PWM1.PWDRL1.BYTE = (unsigned char)(position_control_output & 0x00FF); 
 //Write to lower 8 bits 
 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 27 of 39 

 P_PWM1.PWDRU1.BYTE = (unsigned char)((position_control_output & 0xFF00)>> 
8); //Write to upper 2 bits 
 
 //------------------------------------------------------------- 
} 
 
//---------------------------------------------------------------------- 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 28 of 39 

/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :intprg.c                                              */ 
/*  DATE        :Mon, Jan 12, 2004                                     */ 
/*  DESCRIPTION :Interrupt Program                                     */ 
/*  CPU TYPE    :H8/38024                                              */ 
/*                                                                     */ 
/*  This file is generated by Renesas Project Generator (Ver.2.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
 
#include    <machine.h> 
#include    "iodefine.h" 
 
//---------------------------------------------------------------------- 
extern void display_word(unsigned int); 
extern int  read_encoder(void); 
extern void serial_transmit(unsigned int); 
extern void speed_control(void); 
 
extern void speed_profile(void); 
 
extern void position_control(void); 
 
extern int    encoder_count, position_reference; 
extern int    temp_encoder_count, temp_position_reference; 
extern unsigned int position_control_count; 
extern unsigned char start_position_control; 
 
//---------------------------------------------------------------------- 
 
#pragma section IntPRG 
 
//  vector 1 Reserved 
 
//  vector 2 Reserved 
 
//  vector 3 Reserved 
 
//  vector 4 IRQ0 
__interrupt(vect=4) void INT_IRQ0(void) {/* sleep(); */} 
 
//  vector 5 IRQ1  
__interrupt(vect=5) void INT_IRQ1(void) {/* sleep(); */} 
 
//  vector 6 IRQAEC 
__interrupt(vect=6) void INT_IRQAEC(void) {/* sleep(); */} 
 
//  vector 7 Reserved 
 
//  vector 8 Reserved 
 
 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 29 of 39 

//  vector 9 WKP0_7 
__interrupt(vect=9) void INT_WKP0_7(void) {/* sleep(); */} 
 
//  vector 10 Reserved 
 
//  vector 11 Timer A Overflow 
__interrupt(vect=11) void INT_TimerA(void) {/* sleep(); */} 
 
//  vector 12 Counter Overflow 
__interrupt(vect=12) void INT_Counter(void) {/* sleep(); */} 
 
//  vector 13 Reserved 
 
//  vector 14 Timer FL Overflow 
__interrupt(vect=14) void INT_TimerFL(void) {/* sleep(); */} 
 
//  vector 15 Timer FH Overflow 
 
__interrupt(vect=15) void INT_TimerFH(void) 
{ 
 //if Timer FH interrupt request flag (IRRTFH) is set, clear to 0 
 if (P_SYSCR.IRR2.BIT.IRRTFH == 1) 
  P_SYSCR.IRR2.BIT.IRRTFH = 0; 
 
 if (P_TMRF.TCSRF.BIT.CMFH == 1) 
 { 
  P_TMRF.TCSRF.BIT.CMFH = 0; 
 
  encoder_count = read_encoder(); 
   
  if (start_position_control) 
  { 
   if (position_control_count < 300) 
    position_control(); 
   else 
    P_IO.PDR9.BYTE &= 0xDF; //Apply BRAKE_N -> P95 
  } 
  else 
  { 
   if (position_reference < 0) 
   { 
    temp_encoder_count = 0 - encoder_count; 
    temp_position_reference = 0 - position_reference; 
   } 
   else 
   { 
    temp_encoder_count = encoder_count; 
    temp_position_reference = position_reference; 
   } 
 
   if (temp_encoder_count > temp_position_reference) 
   { 
    start_position_control = 1; 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 30 of 39 

    position_control(); 
   } 
   else 
   { 
    P_IO.PDR9.BYTE ^= 0x02; //Toggle P91 
 
    speed_profile(); 
    speed_control(); 
    P_IO.PDR9.BYTE ^= 0x02; //Toggle P91 
   } 
  } 
 
  display_word(encoder_count); 
 } 
 
 /* sleep(); */ 
} 
 
//  vector 16 Reserved 
 
//  vector 17 Reserved 
 
//  vector 18 SCI3 
__interrupt(vect=18) void INT_SCI3(void) {/* sleep(); */} 
 
//  vector 19 ADI 
__interrupt(vect=19) void INT_ADI(void) {/* sleep(); */} 
 
//  vector 20 Direct Transition 
__interrupt(vect=20) void INT_Direct_Transition(void) {/* sleep(); */} 
 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 31 of 39 

5. Hardware Schematics 

P
1
6

P
9
6

P
2
6

P
9
3

P
9

5

P
2
2

P
9
4

V
2

W
h
e
n
 
t
h
e
 
A
L
E
3
0
0
L
 
E
m
u
l
a
t
o
r
 
i
s
 
u
s
e
d
,

c
o
n
n
e
c
t
o
r
s
 
J
1
 
&
 
J
2
 
a
r
e
 
c
o
n
n
e
c
t
e
d

P
2
1

P
7

3
P
3
7

O
P
T
I
O
N
1

P
9

0

P
5
7

O
P
T
I
O
N
5

P
7

2

P
C
3

P
C
2

P
1
7

P
5
0

U
V

C
C

P
8
7

A
V

S
S

P
8
4

V
0

P
5
1

V
T
R
E
G

3
.3

V

P
9
2

P
B
3

A
L

E
3

0
0

L
 U

s
e

r 
C

o
n

n
e

c
to

rs

P
1
3

P
5
2

P
1
1

P
6

0

P
6

5

T
O
N
E
D

P
4

2

P
B
5

P
9

1

P
6
3

G
N

D

P
7

0

P
A
1

G
N

D

P
7

4

P
6
6

P
4
0

P
9

5

P
7
7

P
1
4

P
9

4

P
2
7

P
3
0

V
3

P
9
3

P
9
0

P
5
5

J
1 C

O
N

6
0

ID
C

6
0

1
2

3
4

5
6

7
8

9
1

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

P
2
5

P
A
2

P
8
6

R
E

S
_

N

J
2 C

O
N

6
0

ID
C

6
0

1
2

3
4

5
6

7
8

9
1

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

P
8
3

P
5
4

O
P
T
I
O
N
4

P
6
[7

..
0
]

G
N

D

P
2
0

G
N

D

R
E

S
_

N

P
5
6

P
B
4

P
A
5

P
7
[7

..
0
]

A
V

C
C

P
6
7

G
N

D

P
B
2

V
C
R
E
F

P
3
3

P
2
4

P
6
1

P
A
4

P
7

5

P
6

7

N
C

O
S
C
1

P
8
2

3
.3

V

P
3
5

P
9
5

P
A
3

P
8
5

P
3
6

P
2
3

I
R
Q
A
E
C

P
3
4

R
X

D

O
P
T
I
O
N
2

P
3
2

V
1

P
6

4
P

6
3

P
5
3

U
V

C
C

P
9

1

O
S

C
1

P
9

0

T
X

D

P
9
1

P
1
0

P
6

1

P
9

4

P
6

2

X
1

P
B
6

P
C
1

P
9

2

P
8
1

P
4

1

P
9
3

P
A
0

G
N

D

P
6
5

P
B
7

O
P
T
I
O
N
3

P
8
0

G
N

D

G
N

D

P
A
6

G
N

D

P
9

2
P
C
0

P
A
7

P
7

6

P
3
1

P
B
1

P
7

1

P
1
5

P
1
2

P
B
0

 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 32 of 39 

P
9

3

P
7

4

P
6

0

P
7

2
P

4
1

P
6

4

M
C
U
 
C
o
n
n
e
c
t
i
o
n
s

P
7

5

O
S

C
1

C
2

5
0

.1
u

F

C
2

4
0

.1
u

F

P
7

1

W
h
e
n
 
t
h
e
 
a
c
t
u
a
l
 
M
C
U
 
i
s
 
u
s
e
d
,
 
c
o
n
n
e
c
t
o
r
s
 

J
1
 
&
 
J
2
 
(
s
h
e
e
t
 
1
)
 
a
r
e
 
N
O
T
 
c
o
n
n
e
c
t
e
d
.

P
7

3

P
4
2

P
7

7

P
7

0

P
6

3

3
V

3

3
V

3

P
9

2

P
6

6

P
6

1

P
9

5

P
6
[7

..
0
]

P
7

6

P
9

1

P
6

2

P
7
[7

..
0
]

P
6

7

C
2

6
0

.1
u

F
P

9
4

P
6

5

C
2

3
0
.1

u
F

U
1

1
H

8
/3

8
0

2
4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

6
1

6
2

6
3

6
4

6
5

6
7

6
8

6
9

7
0

7
1

6
6

7
2

7
3

7
4

7
5

7
6

7
7

7
8

7
9

8
0

AVCC

P13/TMIG

P14/IRQ4/ADTRG

P16

P17/IRQ3/TMIF

X1

X2

AVSS

OSC2

OSC1

TEST

RES

P50/WKP0/SEG1

P51/WKP1/SEG2

P52/WKP2/SEG3

P53/WKP3/SEG4

P54/WKP4/SEG5

P55/WKP5/SEG6

P56/WKP6/SEG7

P57/WKP7/SEG8

P
6
0
/S

E
G

9
P

6
1
/S

E
G

1
0

P
6
2
/S

E
G

1
1

P
6
3
/S

E
G

1
2

P
6
4
/S

E
G

1
3

P
6
5
/S

E
G

1
4

P
6
6
/S

E
G

1
5

P
6
7
/S

E
G

1
6

P
7
0
/S

E
G

1
7

P
7
1
/S

E
G

1
8

P
7
2
/S

E
G

1
9

P
7
3
/S

E
G

2
0

P
7
4
/S

E
G

2
1

P
7
5
/S

E
G

2
2

P
7
6
/S

E
G

2
3

P
7
7
/S

E
G

2
4

P
8
0
/S

E
G

2
5

P
8
1
/S

E
G

2
6

P
8
2
/S

E
G

2
7

P
8
3
/S

E
G

2
8

P84/SEG29

P85/SEG30

P86/SEG31

P87/SEG32

PA3/COM4

PA2/COM3

PA1/COM2

PA0/COM1

V3

V2

V1

VCC

VSS

P90/PWM1

P91/PWM2

P92

P93

P94

P95

IRQAEC

P
3

0
/U

D
P

3
1
/T

M
O

F
L

P
3
2
/T

M
O

F
H

P
3

3
P

3
4

P
3
6
/A

E
V

H
P

3
7
/A

E
V

L
P

4
0
/S

C
K

3
2

P
4

1
/R

X
D

3
2

P
4
2
/T

X
D

3
2

P
3

5

P
4
3
/I
R

Q
0

P
B

0
/A

N
0

P
B

1
/A

N
1

P
B

2
/A

N
2

P
B

3
/A

N
3
/I
R

Q
1
/T

M
IC

P
B

4
/A

N
4

P
B

5
/A

N
5

P
B

6
/A

N
6

P
B

7
/A

N
7

R
E

S
_

N

P
9

0

 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 33 of 39 

A
4

P
7

7

D
0

5
V

P
6

5

C
1

0
.1

u
F

5
V

C
5

0
.1

u
F

P
7

6

P
7

5

P
7

1

A
3

C
2

0
.1

u
F

R
S

T
_

2
0

1
6

D
5

P
6

[7
..

0
]

D
1

P
6

0

3
V
3

D
a
t
a
 
B
u
s

A
0

A
5

U
3

7
4

H
C

T
1

3
8

1 2 3 4 5 6

1
5

1
4

1
3

1
2

1
1

1
0

9 7 1
6

8

A B C G
2

A

G
2

B

G
1

Y
0

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

V
C

C
G

N
D

P
6

4

P
7

0

C
3

0
.1

u
F

U
2

H
D

1
5

1
0

1
5

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

V
C

C
A

D
IR

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

G
N

D
G

N
D

V
C

C
B G

B
0

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

A
2

5
V

A
d
d
r
e
s
s
 
B
u
s

P
6

1

P
6

3

P
6

2

D
3

U
1

H
D

1
5

1
0

1
5

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

V
C

C
A

D
IR

A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
7

A
8

G
N

D
G

N
D

V
C

C
B G B
0

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

3
V

3

A
[6

..
0

]

A
2

S
E

L
_

D
IS

P

P
7

[7
..

0
]

D
4

C
4

0
.1

u
F

A
3

3
V
3

D
6

D
7

P
6

7
P

7
7

P
7

2

3
V

3

D
[7

..
0

]

A
6

P
7

4

D
2

A
d
d
r
e
s
s
 
D
e
c
o
d
e
r

5
V

S
E

L
_

2
0

1
6

A
4

P
6
6

A
5

P
7

3

A
[6

..
0

]

A
6

A
1

5
V

 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 34 of 39 

R
5

1
0
K

U
5

H
C

T
L

2
0

1
6

1 2 3 4 5 6 7 8

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

D
0

C
L

K

S
E

L

O
E

R
S

T

C
H

B

C
H

A

V
S

S

V
D

D

D
1

D
2

D
3

D
4

D
5

D
6

D
7

C
H

B

R
1

1
0
K

U
4

A
3

9
5

3
S

B

1 2 3 4 5 6 7 8
91
0

1
1

1
2

1
3

1
4

1
5

1
6

B
R

A
K

E

R
E

F

R
C

G
R

O
U

N
D

G
R

O
U

N
D

L
O

G
IC

 S
U

P
P

L
Y

P
H

A
S

E

E
N

A
B

L
E

L
O

A
D

 S
U

P
P

L
Y

O
U

T
A

S
E

N
S

E

G
R

O
U

N
D

G
R

O
U

N
D

M
O

D
E

O
U

T
B

L
O

A
D

 S
U

P
P

L
Y

O
S

C
1

D
5

C
1

0
0

.1
u

F

H
-
B
r
i
d
g
e
 
D
r
i
v
e
r

J
3

C
O

N
1

0
A

P
1

2
3

4
5

6
7

8
9

1
0

C
H

A

V
IN

3
V

3

5
V

C
6

1
u

F

C
H

B

E
n
c
o
d
e
r
 
I
n
t
e
r
f
a
c
e

R
S

T
_

2
0

1
6

S
E

L
_

2
0

1
6

C
8

0
.1

u
F

P
9

4

D
6

C
7

1
n

F 3
V

3

R
4

2
7

K

D
4

R
3

4
K

7
R

2
1
0
K

P
9

2

C
9

1
0

0
u

F

P
9

5

R
7

1
0
K

A
0

P
9

3

D
7

D
1

P
9

0
V

IN

P
9

2

P
9

3

P
9

5

R
6

1
0
K

C
H

A

5
V

D
0

3
V

3

P
9

1

P
9

4

D
3

P
9

0

D
[7

..
0
]

D
2

 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 35 of 39 

U
7

1
0
M

H
z

1 7
81

4
E

N

G
N

D
O

U
T

V
C

C

U
6

L
M

1
1

1
7

D
T

X
-5

.0

V
IN

V
O

U
T

GND

C
1

4
2
2
u
F

C
A

P

C
ry

s
ta

l 
O

s
c
il
la

to
r

R
8

6
8

0
0

8
0

5

5
V

P
o

w
e

r 
In

d
ic

a
to

r

3
V

3

5
V

5
V

C
1

5
2
2
u
F

C
A

P

3
.3

V

S
W

1
S

W
IT

C
H

P
U

S
H

B
U

T
T

O
N

J
4

C
O

N
2

1 2

3
.3

V

C
1

3
0
.1

u
F

P
o

w
e

r 
S

u
p

p
ly

C
1
1

2
2
u
F

C
A

P

D
1

R
E

D
L
E

D
S

M
A

L
L

O
S

C
1

C
1

6
0

.1
u

0
6

0
3

6
V

C
1

2
2
2
u
F

C
A

P

U
8

L
M

1
1

1
7

D
T

X
-3

.3

V
IN

V
O

U
T

GND

R
E

S
_

N

R
e

s
e

t

2

R
9

1
K

0
8

0
5

5
V

1

 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 36 of 39 

U
9

S
P

3
2
3
2
E

C
P

1
2

3 4 5

6 7 8
9

1
0

1
1

1
2

1
3

1
4

1516

C
1

+
V

+

C
1

-

C
2

+

C
2

-

V
-

T
2
O

U
T

R
2

IN
R

2
O

U
T

T
2
IN

T
1
IN

R
1

O
U

T
R

1
IN

T
1
O

U
T

GNDVCC

C
1

8
0
.1

u
F

S
E

L
_
D

IS
P

A
0

C
1

9
0

.1
u

F

A
[6

..
0
]

D
3

P
4

2

T
o

 P
C

 R
S

-2
3

2
 P

o
rt

D
i
s
p
l
a
yC

1
7

0
.1

u
F

5
V

C
2

1
0

.1
u

F

3
.3

V

C
2
2

0
.1

u
F

D
1

J
5

C
O

N
4

S
IP

4
1 2 3 4

D
4

D
6

S
e
r
i
a
l
 
C
o
m
m
u
n
i
c
a
t
i
o
n
 
I
n
t
e
r
f
a
c
e

C
2

0
0
.1

u
F

D
5

D
2

D
[7

..
0

]

A
1

U
1

0
D

L
R

1
4

1
4

12

345

6
7

8 9 1
0

1
1

1
2

D
5

D
4

W
R

A
1

A
0

V
C

C
G

N
D

D
0

D
1

D
2

D
3

D
6

P
C

 R
S

-2
3

2
 P

o
rt

 C
o

n
fi
g

u
ra

ti
o

n
:

B
a

u
d

 R
a

te
 :
 3

8
4

0
0

D
a

ta
 :
 8

 b
it
s

P
a

ri
ty

 :
 N

o
n

e
S

to
p

 :
 1

 b
it

F
lo

w
 c

o
n

tr
o

l 
: 
N

o
n

e

D
0

P
4

1

 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 37 of 39 

6. References 
1. LM1117/LM1117I 800mA Low-Dropout Linear Regulator, 2002, National Semiconductor Corporation. 
2. Quadrature Decoder/Counter Interface ICs, 2002, Agilent Technologies. 
3. 3953 Full-bridge PWM Motor Driver, 2002, Allegro MicroSystems, Inc. 
4. HD151015 9-bit Level Shifter/Transceiver with 3 State Outputs, 3rd Edition, June 1993, Renesas Technology Corp. 

(Ref. no.: REJ03D0300-0400, http://renesas.com) 
5. DLR1414  4-character 5 × 7 Dot Matrix Alphanumeric Intelligent Display with Memory/Decode/Driver, Infineon 

Technologies. 
6. DC-Micromotor 2230 U-006S with 09BP Optical Encoder, Faulhaber Group (http://www.faulhaber.com/). 
 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 38 of 39 

Revision Record 
Description  

Rev. 
 
Date Page Summary 

1.00 Sep.10.04 — First edition issued 
    
    
    
    
 



H8/300L SLP Series 
Precise Control of DC Motor (DCmotor) 

RES06B0013-0100/Rev.1.00 September 2004 Page 39 of 39 

1. These materials are intended as a reference to assist our customers in the selection of the Renesas 
Technology Corp. product best suited to the customer's application; they do not convey any license 
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or 
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or 
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and 
algorithms represents information on products at the time of publication of these materials, and are 
subject to change by Renesas Technology Corp. without notice due to product improvements or 
other reasons.  It is therefore recommended that customers contact Renesas Technology Corp. or 
an authorized Renesas Technology Corp. product distributor for the latest product information 
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising 
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, 
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, 
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total 
system before making a final decision on the applicability of the information and products.  Renesas 
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the 
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or 
system that is used under circumstances in which human life is potentially at stake.  Please contact 
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when 
considering the use of a product contained herein for any specific purposes, such as apparatus or 
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in 
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must 
be exported under a license from the Japanese government and cannot be imported into a country 
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the 
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products 
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and 
more reliable, but there is always the possibility that trouble may occur with them. Trouble with 
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate 
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or 
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs! 

Notes regarding these materials

 


	Top Page
	1. Introduction
	2. System Overview
	3. Hardware Implementation
	3.1 Power Supplies
	3.2 Address and Data Buses
	3.3 Address Decoder
	3.4 RS-232C Transceiver
	3.5 DC-Micromotor with Optical Encoder
	3.6 PWM Motor Driver

	4. Software Implementation
	4.1 Encoder Feedback
	4.2 PID Controller
	4.3 Profile Generation
	4.4 RS-232C Communications
	4.5 PID Tuning
	4.6 Source Codes

	5. Hardware Schematics
	6. References
	Revision Record
	Keep safety first in your circuit designs!
	Notes regarding these materials

