To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

RENESANS APPLICATION NOTE

H8/300L SLP Series
SLP User Mode Programming (UserMP)

Introduction

This application note provides the complete solution for user mode flash memory programming on SLP microcomputer.
The document comes with the source codes for:

1. User mode programming kernel
2. User mode demo program
3. Flash programming GUI (TCL/TK based software)

Target Device

H8/38024F

Contents
R OV = VT PP O P PSP UPPOTPPPON 2
122 €1 USROS 4
T U | I (0 ESY =T gl 1 (= = Lo =) 1R SO 10
T =T 1= PO PP PR PP PPPPPON 11
LT N o] o] [To= 1 1o PR E TP 12
6. COMMUNICALION PIOOCOLueiiieieiiiie ittt n e s nre e e 13
7. MCU Coding IMPIEMENTALIONoiieeiieii ettt e e e e e s e st e e e e e e e e e s e sannbeaeeaaeeaane 14
8. Overall Operation and ODSEIVALIONS..........ciiiiiiiiiiiii e e e e e e e e e e e e aanbeeeeeeens 23
LS TR @ To [38 1=] o SRR 25
10. Serial Communication Debugging TECANIQUEccoiiiiiiiiiiiaaee e 60
N S (=] £ oo PP PP PP PO PPPPPPPPPPUPPPPN 61

RES06B0008-0100/Rev.1.00 September 2004 Page 1 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

1. Overview

The MCU with on-chip flash memory has two modes of operations: the boot mode and the user mode.

In the boot mode, the M CU expects to communicate with the external world through its serial port. Thisisto
‘program’ the MCU on-chip flash memory as there is no program in the MCU at thisinitial startup state. This boot
mode flash programming has been detailed in the application note “In-circuit boot mode programming”. (In this mode,
the user is not required to write any code, as a boot mode kernel isresiding in the MCU)

Once the MCU has been programmed, it can power up in the user mode for the program execution. In the user mode,
the flash memory can be (re)programmed. However, user will have to prepare the user kernel, host interfacing program
and also the host control software (which can be a PC or another embedded system)

1.1 Boot Mode Programming

The boot mode provides an automated mechanism to program a blank device in-circuit, or to reprogram a device with
an automatic chip-erase prior to programming. When the boot mode is entered from chip reset, the boot program in the
LSl (originally incorporated in the chip) is started to provide the following services:

1. Serid port auto baud rate detection with external host

2. Download of a user supplied boot kernel into RAM viathe serial port

3. Erase program in the boot program is executed to erase all the contents of the flash memory
4. Execution of the downloaded boot kernel

The example below shows the signals required for entering and exiting the boot mode for single rail programming
devices (check the Hardware Manual for device specifics):

, Entryinto Boot mode
! '
Normal Mode Reset State BOOT Mode
1
|
h
1

]
RES \. [
: 5
Enter Boot Mode H ! Exit Boot Mode
]
P34 E / i
¥
: '

T\,

Figure 1 Boot Mode Entry Timing Diagram

At the point of execution of the boot kernel, the entire chip is erased, and ready for programming. The boot kernel
itself can perform any function (as thisis a user supplied application), however it should include a programming
function, asthe chip is now blank! The boot kernel may continue to use the serial port for data download, or can use
any other peripheral features of the chip to acquire the required data (e.g. parallel interface, CAN busetc.). Upon
completion of the programming operations, the required mode pins should be reset to normal execution values and the
chip reset.

RES06B0008-0100/Rev.1.00 September 2004 Page 2 of 63

LENESANS

H8/300L SLP Series
SLP User Mode Programming (UserMP)

1.2 User Mode Programming

User mode flash programming allows flexibility in version upgrade, data update etc., which will only change part of the
total flash memory without resetting the MCU. Sinceit is user determined, the data media can come from the serial

port or any other communication channel.

To perform programming in the user mode, the following components are essential:

e Host controller (GUI) is another system that is communicating with the MCU. It provides the stream of datato be
‘burn’ into the flash memory of the MCU. In this application note, a PC is used as a host controller. The software
used for this GUI is written based on the TCL/TK scripts.

e User mode host—-interfacing routine (Ul) work as the interfacing software to host, which determines the
communication channel and data transfer protocol.

e User mode flash kernel (KERNEL) isthe main controller of the flash reprogramming. It contains the process
(0.35-um flash memory programming algorithm) detail of erasing and programming.

o Application software (APPLICATION) isrefer to the user target application program that executing the specific

embedded system task.
(
Host APPLICATION
Controller
GUI
<:> Ul KERNEL
PC MCU
.

Figure 2 The General View

RES06B0008-0100/Rev.1.00

September 2004

Page 3 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

2. GUI
In both modes, the GUI will:

1. Decode S-record output file into binary format
2. Establish communication with the Ul routine located in the MCU
3. Download machine code into MCU via seria port

Two type of flashing are provided in this GUI:

e Boot mode flashing
e User mode flashing

RES06B0008-0100/Rev.1.00 September 2004 Page 4 of 63

REN ESAS H8/300L SLP Series

SLP User Mode Programming (UserMP)

2.1 GUI Overview

I x|

File Edit Help

TitleBar %> NICE LT S o |

Menu Bar _4;| Flash

File to FLASH program:

Input File) I Browse « B Input File
name Browse
Button
Boot Mode FLASH program into HE/38024F via hoot maode
Button | >
User Mode Llpdate program into H3G38024F via user mode
Button] » LI

Figure 3 Flash GUI dialog box

Menu Bar: Flash
The user can click on “Quit” in the Flash menu bar to exit Flash GUI.

Input File Name
Flash GUI allow user to select S-Record file to be downloaded into the flash memory.

Input File Browse Button
This command will launch a standard windows open file dialog. The user can only select one S-Record file at each time.

Boot Mode Button

This command is used to download the current input S-Record file. A Flash programming operation writes the data
from the selected S-Record file to target Flash memory. This operationis carried out in the boot mode, so the user has
to take note that the target device must reset in order to enter the boot mode.

User Mode Button

This command is used to update the target device with current input S-Record file without reset in the boot mode.
Please note that, the user must not overwrite or erase interfacing software (located in Flash ROM) during the software
update operation. If the user needs to overwrite the whole Flash memory, it's recommended to place the interfacing
software in the RAM rather than ROM.

RES06B0008-0100/Rev.1.00 September 2004 Page 5 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

2.2 GUI Scripting Languages

221 Tcl/Tk Overview
Tcl — Tool Command Language (“tickle”) is a simple interpretative programming language.

Some key features of Tcl are summarized as follows:

1. Tcl isahigh-level scripting language.
Users with experience in high-level programming languages should find Tcl similar to the other languages.
2. Tclisaninterpreter
Code can be executed directly, without compiling and linking.
3. Tclisextensible
Users can add their own commands to extend the Tcl language.
4. Tcl isembeddable in applications
The Tcl interpreter was designed from the start to be embedded in a variety of applications. It iseasy to incorporate
Tcl into an application, and the Tcl interpreter melds naturally with the application, amost asif the Tcl language
was designed exclusively for that particular application.
5. Tcl runs on many platforms
Supported on Windows, UNIX, and Macintosh platforms, but minor changes have to be made.
6. Tclisfree
The source for Tcl can be found in internet and can be freely used even for commercial applications.

Tk - Tool kit isagraphical user interface tool for window programming, which works together with Tcl scripting
language. It is designed for the X window system, although ports to other window systems are expected to appear
eventually. Tk shares many concepts with other windowing toolkits, but the user does not need to know much about
the graphical user interfacesto get started with Tk.

Tk provides a set of Tcl commands that create and manipulate widgets. A widget isawindow in a graphical user
interface that has a particular appearance and behavior. The term widget and window are often used interchangeably.
Widget types include buttons, scrollbars, menus, and text windows.

=10l |

File Edit Help

3 —(olx] -

[~

Figure 4 Tcl/Tk scripting interpretive program

RES06B0008-0100/Rev.1.00 September 2004 Page 6 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

222 TCL/TK LICENSE TERMS

This software is copyrighted by the Regents of the University of California, Sun Microsystems, Inc., Scriptics
Corporation, and other parties. The following terms apply to all files associated with the software unless explicitly
disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its documentation
for any purpose, provided that existing copyright notices are retained in all copies and that this notice is included
verbatim in any distributions. No written agreement, license, or royalty fee isrequired for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and need not follow the licensing terms described
here, provided that the new terms are clearly indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS
SOFTWARE, ITSDOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "ASIS' BASIS, AND THE
AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government, the Government shall have
only "Restricted Rights" in the software and related documentation as defined in the Federal Acquisition Regulations
(FARs) in Clause 52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the
software shall be classified as " Commercial Computer Software" and the Government shall have only "Restricted
Rights" as defined in Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing, the authors grant the U.S.
Government and others acting in its behalf permission to use and distribute the software in accordance with the terms
specified in thislicense.

223 Tcl/Tk Scripting Interpretive Program Installation

- TelTk vE.4.4 (basic) _Mame | Size | Type ¢ | Madified |
El‘a Exe [AmMethad 1 File Folder 03/10/2003 15:23
{ {:| Method 1 [JMethad 2 File Folder 05/10/2005 15:23
: e[Method 2 : Z0KE ActiveTcl Script 021042003 10:04
-] Lib 1 KB ActveTcl Script 28/08/2003 16:21
%wishﬂﬂ%s.exe 1,532 KB Application 18)058/2003 13:23
Bookkernel. mak 2KE HdiDocument 25/07)2002 15:56

Figure 5 Inside TclTk v8.4.4 (Basic) Folder

RES06B0008-0100/Rev.1.00 September 2004 Page 7 of 63

‘ z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

224 Tcl/Tk Scripting Interpretive Program Execution
Double-click “wish84s.exe” to run Tcl/Tk scripting interpretive program.

-loix|

File Edit Help

: = -

Figure 6 Tcl/Tk Console

Click [File > Sources... > select “Flash_GUI.tcl” - click Open]

Erm— il
File Edit Help
Look ir: I@ Exe x| = EcrE-

!? combobox.kcl

!? sekting. kel

File name: IFIash_G Ultel j Open

" Files of tpe: | Tel Seripts [~ =] Cancel /|
o

Figure 7 Open Flash_GUIl.tcl File

RES06B0008-0100/Rev.1.00 September 2004 Page 8 of 63

H8/300L SLP Series

| (EN ESAS SLP User Mode Programming (UserMP)

2.3 GUI Component

GUI

Boot Mode Read S-type record
Flash (.mot file)

)

User Mode
Flash

Figure 8 GUI Overview
There are three basic software modules:

1. Read Stype record
A. Convert S-type record format (.mot) to absolute binary format (.bin)
B. Break down the binary format datainto a block of 128 bytes

C. Check for empty block information (empty block contains 128 bytes of OxFF data)

2. Boot modeflash
— A. Read boot mode flash kernel file
— Establish boot mode connection with MCU via PC serial port
— Read the user target program file
— Download user target program into MCU flash memory
3. User modeflash
A. Send awrite command (character ‘U’) to MCU
B. Read user target program file
C. Download the user target program into MCU on-chip flash memory

RES06B0008-0100/Rev.1.00 September 2004

Page 9 of 63

REN ESAS H8/300L SLP Series

SLP User Mode Programming (UserMP)

3. Ul (User Interface)

The Ul refer to the interfacing routine which determines the MCU communication channel and data transfer protocol.

ul

|
l l 1

Init SCI Copy Flash Kernel SCI ISR

Figure 9 Ul Overview
Ul Component:
There are three main modules:

1. Init SCI
— Initialize the on-chip serial communication interface module with receive interrupt enable
— Set the SCI baud rate to 38400 bps

2. Copy the flash kernel
— Copy the flash kernel from ROM to RAM
Note: Flash programming and erasing kernel must be executed in the RAM area

3. SCIISR

Interrupt service routine for the SCI receive interrupt request
Receive a write command (character ‘U") from PC

Perform copy flash kernel from ROM to RAM

Get the start address and 128 bytes block data from PC

Call the flash erase routine if an erase block start address detected

Repeat step (d) until end of flash address detected (0x8000)

IoTmMUOw>»

Check for data valid flag validation then jump to program reset entry point [PowerON_Reset()]

Call the flash programming routine (return character ‘a’ if operation passed and ‘n’ if operation failed).

RES06B0008-0100/Rev.1.00 September 2004

Page 10 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

4. Kernel

The kernel isthe flash memory programming routines for H8/38024F microcontroller.

KERNEL

| l
! }

Flash Erasing Flash Programming

Figure 10 Kernel Overview
Kernel Component’

1. Flash Erasing
A. Fash erasing is performed in block units (e.g. Erase Blocks 0, 1, 2, 3 and 4)
B. The flash memory is erased in the following process:
e Theflash block iserased
e Thememory is placed into erase-verify mode
e Flash contentsisread back
e Compared with the erase value of al ‘1’
— If any of the bitsin the block are not read back as ‘1’ then another attempt is made to erase the block. This
processis repeated until either flash memory block is successfully erased or the maximum number of erase
attemptsis reached.

2. Flash Programming

A. Hash erasing must be performed before flash programming

B. The flash memory programming must in units of 128 bytes and starting on a 128-byte boundary (e.g. 0x0000,
0x0080, 0x0100,... , 0x7F00, 0x7F80)

C. The 128-byte flash line can be programmed by calling the function ‘prog_flash_line 128’ in kernel.c file

D. Thefirst parameter passed to this function is the start address of the flash memory to be programmed, which
must be on the 128-byte boundary.

E. The second parameter is a pointer to the data to be programmed.

RES06B0008-0100/Rev.1.00 September 2004 Page 11 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

5. Application

The applicaiton module refers to the user targeted application. This application note consist of afew simple application
programs that control two LEDs which are connected to port 9 of H8/38024F MCU (in the SLP 38024F CPU board).

APPLICATION

Blinking LED via
Blinking LED Timer A interrupt Running LED

Figure 11 Kernel Overview

Application Component:
Port 9 of the H8/38024F is used asiit isalarge current port that can drive LED directly without any LED driver.

1. Blinking LED
A. Two LEDs are connected to Port 9 pin 2 and 3
B. Application program will toggle port 9 pin 2 and 3 with fixed delay while MCU is running
2. Blinking LED viaTimer A interrupt
A. Two LEDs are connected to Port 9 pin 2 and 3
B. Timer A overflow interrupt will toggle port 9 pins2 and 3
3. Running LED
A. Two LEDs are connected to port 9 pins 2 and 3
B. Application program will toggle port 9 pins 2 and 3 alternately with fixed delay while MCU is running

RES06B0008-0100/Rev.1.00 September 2004 Page 12 of 63

H8/300L SLP Series
SLP User Mode Programming (UserMP)

LENESANS

6. Communication Protocol

The figure shows the communication protocol between GUI (PC) and Ul (MCU) in user mode programming. The boot
mode programming is detailed in hardware manual.

PC MCU

Send write flash command ‘v » Receive write command

Sepd start address 0x00 »| Receive start address

(High byte) (High byte)

Receive echo back value < 0x00 Echo back

and verify

Send start address 0x00 »| Receive start address (Low

(Low byte) byte)

Receive echo back value < 0x00 Echo back

and verify

Send 128 bytes program 128 bytes data ———| Receive 128 bytes program

data data and perform flash
programming

Receive echo back value — ‘For'nm Acknowledge if complete

and verify Flashing

Send next start address 0x00 » Receive start address

(High byte) (High byte)

Receive echo back value < 0x00 Echo back

and verify

Send start address 0x80 » Receive start address (Low

(Low byte) byte)

Receive echo back value < 0x80 Echo back

and verify

Send 128 bytes program 128 bytes data ———»| Receive 128 bytes program

data data and perform flash
programming

Receive echo back value
and verify

Send write end command

e———— ‘a or‘n

Acknowledge if complete
Flashing

Receive write end
command and jump to
power on reset function

Figure 12 Communication Protocol Transition Diagram

RES06B0008-0100/Rev.1.00

September 2004

Page 13 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

7. MCU Coding Implementation

A program must reside in the MCU during the user mode execution & programming. This program will contain three
main parts:

1. Flash kernel (KERNEL)

2. Host interface program (Ul)
3. User application program (APPLICATION)

In order to maintain programmability, the flashing kernel & host interface program must remain in the MCU after any
flashing procedure. The main objectives of any flashing procedure are to

1. Update new data, or
2. Upgradeto anew version of user application program

There are two possibilities of works:

1. All blocks
- Thewhole MCU flash is erased and a whole new application code (with kernel & host interface program) will
be programmed. However thisis not a usual programming practice as thisis equivalent to Boot Mode programming.
2. Partia block
- Part of the MCU flash is erased and new code or datais updated.
- Thegeneration of new datais simple, but user hasto pay specia attention when generating the new code

The following will elaborate the partial block user programming:

1. Dataupdate

2. Code update
> Method 1
-> Method 2

RES06B0008-0100/Rev.1.00 September 2004 Page 14 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

7.1 Data Update

Initial Workspace New Data
Memory Map Workspace
0x0000—> Memory Map
0x0030—>
Flash Kernel
0x0800—>
0x7000—> <— 0x7000
DATA NEW DATA

Download

0X7900—> |-
OXTFFF—> |-

<— 0x7B00

ROM
To

OXF780—> RAM
RAM and Mapping
110

OXFFFF—>

Figure 13 Memory Map for Data Update

Procedures:

1. Create a empty workspace for C or assembly language

2. Declare data (Static constant... or DATA ...)

3. Declare the section and define the address.

4. Compile and generate the Srecord file

5. Alternatively generate the Srecord file via‘ Save as' in the emulator/simulator HEW.

RES06B0008-0100/Rev.1.00 September 2004 Page 15 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

@ TR H8 Tiny/SLP Toolchain
B Gl —
[ER=] DATA_UPDATE et
2y Z [t]
=4 C source file ==
@ DATA.c (3 DATA_UPDATE
A cladves S— Add...
%) e
Modify.
e g * tion DATA =
& Projects | <n Epeih == s
T const unsigned short DATA[] = { o,
0x655D, 0x657D, 0x6D7E, 0x6D9D, 0x751 [
0x651C, 0x653D, 0x5D3D, 0x655D, 065! 1 &
0x655D, 0x657D, 0x6D7E, 0x6D9D. 0x751 2|+
0=EEDE . 0=CF1E, 0xDFSE, 0xDF7E, 0xE7’ Impot Erpot_| T o
0=EF9E. 0xEF9E. 0xEF7E . 0xEF9E, 0xEF* =
nagnd S g i e
0xE77E. DxDFSE, 0xDF 3D, 0xCF1D, 0xC61 o SCONFIBDIRNPROUECTNAME) s o =
. : X . =]
0xA61E, 0x9DFE, 0x95DE, 0x8D9E . 08D
0x=AESC, 0xB65C, DxAESC, 0x95DE, 0x7D: Cancel
0x4C19, 0x4C19, 0x4C39, 0x4C39, 0x4C—orroo—oxrorr—oxroro
0xADFY . 0xASFA, DxASFA, 0xADFA, 0xAE1A, OxA61h. OxA61A OxAE1A,
0xA61B, OxA614, DxASFA, 0x9DDA, 0x95BA, 0x8D9A, 0x8554, 0x8554,
0x8534, 0x8534, Dx7D14, 0x7514, Ox74FA, 0x6CDA, 0x6494, 0x6474,
0x5C74, 0x5C9E. 0x5CEE, 0x54EB, 0x54BC, 0x54DE, 0x54DC . 0=5CDC,
0x54DC . 0x54DC . 0=5CDC . 0x5CFC, 0x5CFE, 0x64FC. 0x64FC, nxssm,_lj
<] o[4

Figure 14 New Data Workspace Generation

RES06B0008-0100/Rev.1.00 September 2004 Page 16 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

7.2 Code Upgrade

In order to co-exist with the “initial workspace”, the generated code in the “ new workspace” has to consider several
factors.

1. Initialized variables

Stack

Constant

Entry point to the new workspace
Entry point to the initial workspace

akrwbd

7.21 Method 1 [M1]

[Initial Workspace] [New Workspace]
O0X0000—> Memory Map Memory Map
0x0030—>
Flash Kernel
0x0800—>
Download
OX7TFFF—>
ROM
To
OxF780—> RAM
RAM and Mapping
110
OXFFF—>

Figure 15 Memory Map for Code Upgrade Method 1
[Initial workspace]’s and [new wor kspace]’ sworking Procedure:

1. Power-up sequence

2. Enter main function

3. Initialize SCI

4. Jump to “application program”

Note: This method of implementation should only be used when minor changes are made to modify the existing
workspace (e.g. new function added to push button or new algorithm computation, and others value added
implementation etc). There must be no changes made to the constant, variables and interrupt vector table of the
initial workspace. If such changes are required, user must implement method 2 instead.

RES06B0008-0100/Rev.1.00 September 2004 Page 17 of 63

LENESANS

H8/300L SLP Series
SLP User Mode Programming (UserMP)

Flashing Procedure:
‘Download’ command activated at the PC GUI.

1
2.
3.

SClI interrupt activated

MCU interface routine (UIl) will jump to SCI interrupt service routine and perform:
A. Copy flashing kernel from ROM to RAM space
B. Obtain the data stream for flash kernel

Flash kernel will program the flash memory

Upon completion,

A. Ul will force jump to the ‘Power ON Reset’ function which will initialize the whole workspace, or

B. The user may assert hardware reset signal in order to run new application, or

C. Theuser may make use of watchdog timer to generate an internal reset to initialize all 1/0 portsto high

impedance state

Stepsto generate M1 [Initial wor kspace]:

1
2
3.
4. Compileto obtain the S-Record file

Create a new workspace (application) based on SLP Toolchain

. Write the code (and create

the section name for this code)

Declare the section addressin HEW [Option/ Toolchain/ Linker/ Section]

= o
EII@ M1 _init_ws

B4 L source file

i E Application.c
] dbscte
gﬂimp@c
g]kanmc

EQ AT _irit_wz.c
:g]msamgc
2] RObtaRAM.
Dependencies

: indefing. h
o [E] stackscth

@ Projectz | &1 pawvigation

S75CI13 initialize informations
fdefine XTAL

#define Baudrate

fdefine H

woid init=erial{wvoid):

wvoid =ci_put(char byte):

char =ci_get(wvoid);
vold 1nit=eriall)
{
P SCI3 SCRI.BYTE = 0=00;
P _SCI3 . SHR.BYTE = 0=00: |
P_SCI3 ERR = H:
nopf)
P _SCI3 SPCE.BYTE = 0xE0;
P SCI3 SCR3I.EVTE |= 0=x70;
H

vold main{woid)

init=eriali): Soinitilize

Application():

— LD

SoDi=
Sozat
Aozet

Sogait
SsBPC32=1

Address

Section

O=00000030

FRezetPRG

PlrtFRG

Flermel

Ckemel_const

Fl

C

Addrezz

Section

C

C3DSEC

C3$BSEC

D

O=00000300

Fapplication

O=0000F 730

FlemelRah

E

A

O=0000FE S0

5

baud rate

setup time

make P42 function as

<<Enable RIE, TE and ERE

SCI

srExecute application program

Figure 16 Method 1 [Initial workspace] Generation

RES06B0008-0100/Rev.1.00

September 2004

Page 18 of 63

LENESANS

H8/300L SLP Series
SLP User Mode Programming (UserMP)

Stepsto generate M1 [New Workspace]:
1. Create anew workspace (empty application) based on th

e SLP

2. Write the code (and create the section name for this code)
3. Declare the section addressin HEW [Option/ Toolchain/ Linker/ Section]
4. Copy theiodefine.h file from the initial workspace folder to new workspace folder

- Copy [\Method 1\M1 init ws\M1 init_ws\iodefine.h]
5. Compileto obtain the S-Record file

to [\Method 1\M1_new_ws\M1 new_ws]

E
CommmE
EI@ M1_new ws
E-23 T source file
M1_new_ws.c
Ea Dependencies

A

S

<% FILE :Bliinle LER =
~% DATE ‘Mon, Aug 18
#% DESCRIPTION :Application
<%* ERITTYPE (HE-38024F

e 3

— % This file is generate us
2] Projects I | p I

#include "iodefine h'

ol id

sshpplication Program code s
void Applicationi{wvoid)

un=signed int 1i;

b [B1 indefine.h 000000800 Papplication
- blink_led.c hodif.. |

<::::: #pragmna section application

C,-'C++| Assembly Link/Library I Standard Libraryl CRU LI_’I

Categam : ISECNDH 'I
Show entries for : ISection 'I

Add... |

[Eps [Dwerlay |
Hemowve |

|

Import E wpoit | Up Down

Options Link./Libram :

noprelink homessage nooptimize start Papplication0800 «
nologo output "$[CONFIGDIRASPROJECTMAME) sbs™

end input "${COMFIGDIR]\$[FROJECTHARME). abs'" form ;l

P _IO.PDRY .EIT.F92
P _IO.PDEY.EIT.P92

(]
e

while(1)

P_IO.PDR9.BIT.P92 "=
P_IO.PDR9.BIT.P93 "=
for (i=0:i¢0=FFFF;i++
+
#pragmna section
1]

1%
1%
i

Figure 17 Method 1 [New workspace] generation

Highlight:
The new application has much restriction:

1. No control of interrupt entry
2. Theuser hasto take care of copying initial data

RES06B0008-0100/Rev.1.00 September 2004

Page 19 of 63

LENESANS

H8/300L SLP Series
SLP User Mode Programming (UserMP)

7.2.2

Method 2 [M2]

[Initial Workspace] Erasabl [New Workspace]
0X0000—> guidiSTOn e o
D [
0x0400—> -
Init SCI ()
0x0440—>
SCI ISR RESERVE
(Flash Kernel & AREA
Interfacing s'w [Init SCI ()]
Flash Kemd 5 S
Constant [Flash Kernel]
[Interfacing s'w]
0x0C00—>
Reset Program Reset Program
Main Program Main Program
Download
Other interupt | [N
Service Routine Other Interrupt
.. %’VI - ROUtine
OX7TFFF—>
OXF780—>
RAM and RAM and
1/0 1/0
OXFFF—>

<— 0x0000
<— 0x0400
<— 0x0C00
PResetPRG
P

C

C$DSEC
C$BSEC
PINtPRG
<— OXTFFF
<— OxF780
<— OXFFFF

Flashing Procedure:

‘Download’ command activated at the PC GUI.
The SCI interrupt activated
The MCU interface routine (Ul) will jump to SCI interrupt service routine and perform:
A. Copy flashing kernel from ROM to RAM space
B. Obtain the data stream for flash kernel
The flash kernel will program the flash memory

1
2.
3.

Upon completion,

Figure 18 Memory Map for Code Upgrade Method 2

A. Ul will force jump to the ‘Power ON Reset’ function which will initialize the whole workspace, or
B. The user may assert hardware reset signal in order to run new application, or
C. Theuser may make use of watchdog timer to generate internal reset to initialize all 1/0 port to high impedance

state

RES06B0008-0100/Rev.1.00

September 2004

Page 20 of 63

LENESANS

H8/300L SLP Series

SLP User Mode Programming (UserMP)

Stepsto generate M 2 [Initial wor kspace]:

akrwbdpE

Create a new workspace (application) based on SLP

Write the code (& create the section name for this code)

Declare the section addressin HEW [Option/ Toolchain/ Linker/ Section]
Compile to obtain the S-Record file
Compiler setting:
A. Optimization = Speed oriented optimization (reason isto remove “register save” library option in SCI ISR)
B. Thekernel constant section added to avoid overwriting by the [new workspace]

Workspace]| Address Section |
— — C=00000400{ PlritSCl
B Me_init_ws 0x00000440| PSCIISA
EII@ M2_init_ws B 1
=-£9 C zource file Clernel -:u:ung!i>
..... E dbzct c 0x00000C00| PResetPRG
----- E intpro.c IE
""" B 5k Address Section N
""" E ME_II"II':_WS.C C$BSEC
----- E resefprg.c ¥
..... E ROtoRak. o POtherlntFRG
..... E Pl M2 _init_ws.c D00007FFC| CWalid
=53 Depen ;: CFU TVFE HB-38024F («0000F730(B
----- % iod ;: Thi=s file i= genserated by Hitachi Prd EKETHEH.&M
""" S| sbr) - CkemelR&M
""" S| #3| pinclude "iocdefine k" 0«0000FE 50| 5 -

7 > projects | # Il

b

K1l

vold main(woid)

un=zigned int delay;
initserial();

while(1)

FP_IO.PDR9.BIT.P93 ™
for {(delay=0,delay<

¥

AoCode YWalid Flag
#pragma section Walid
ottt nh=ioned 1owner NATA =

#include <machine h:
vold initserial{wvoid):
void =ci_put{char byte) cha

v Optimization

C/C++ |.t’-‘n.ssemh|y Li

: dard i_ihraryi EF'U 1 I bI

peed or zize :ISpeed oriented optimization

[w| R egizter
[w] S hift to multiple

[w|E sprezsion

¥ Inline function

b awimum :

[w] Struct assignment

[w] 5 witch judgement

| | Functicn call: J
LI @aa vl |
Data access
node(z] | |@aa -

105=

Optionz CAC++

[Generate file for inter-module optimization

-cpu=zlp -debug -nolist
-speed=reqgizter switch, shift struct expression loop=2.inline=
1058 -chaincpath -nologo

s

-

Figure 19 Method 2 [Initial workspace] Generation

RES06B0008-0100/Rev.1.00

September 2004

Page 21 of 63

LENESANS

H8/300L SLP Series
SLP User Mode Programming (UserMP)

Important Note for M2 [New Workspace]:

1.

ok wbd

Reserve H’0400 to H'0COO (flash block 1 and 2)
To prevent overwriting to initial application flash kernel and interfacing software
Fix RESET routine at H' 0COO (flash block 3)
Fix MAIN and other ISR after RESET routine
Init SCI () can be access by function call to H’ 0400
SCI Interrupt Service Routine must fix at H' 0440
This can be achieve using the interrupt handler (intprg.c)
eg:
#pragma section SCI_ISR
static const unsigned short DATA = 0x0440;
#pragma section

Stepsto Generate M 2 [New Workspace]:

Create a new workspace (Application) based on SLP

. Write the new workspace code

Declare the section addressin HEW [Option/ Toolchain/ Linker/ Section]
- please refer to the figure below for details
Compile to obtain the S-Record file

Wworkspace E Address Section -
—M 00000024 CSCL_ISA
E‘@ Ox00000C00f PResetPRG
Ell@ M2 _new ws =]
Ea L source file Address Section -
N E dbzct.c C
-----] intprg.c CE0SEL
-----] M2_new_w CEESEC
-----] resetprg.c S ey]
L B shik o wvold maini{wvoid) FInERG
E‘a DEDEHdEﬂEiES un=igned long datawalid|Ox0000FFFC) Chalid
----- g| indefine.h (®init_SCI_Fn} () FREPREIE0 E
""" =| stik.h VALID = (unsigned long| 0x0000FESO] S v
----- g| stackscth if (*VALID |= datawvalid; e

while(l}: ~~wait for interrupt

s
P _IO.FDRE9.BIT.P93 0:
P _I0.FDES.BIT.P92 1

P _SYSCE.IEWR1 BIT.IENTA = 1;
P_THRA .THA BIT.THA = 10:

=et_imask_cocr(0);
while (1)
{

Soyrite user code here

b

— ¥
@ Projectz | & | Mawvigation .
<<Code Valid Flag

fpragmna section Valid
const unsigned long DATA = O0xG5LAAL1Z234;
fpragna section

Figure 20 Method 2 [New workspace] Generations

RES06B0008-0100/Rev.1.00

September 2004

Page 22 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

8. Overall Operation and Observations

This section shows the setup required for the application note and demonstrates the operation of the Flash GUI.

8.1 Environment Setup

Flash GUI

RSS 38024F CPU Board

Figure 21 Environment Setup for User Mode (Re)Programming

If the RSS 38024F CPU Board is not available, a ssimple connection diagram is shown in the figure below:

T E— gg_m N <
st | o
I
™
(Torc g
[0246 3 oot <
v e =
Boot Mode

Switching circuitry LED

|

Reset Crystal
Circuit 9.8304MHz

Figure 22 User Mode Programming demo board block diagram

RES06B0008-0100/Rev.1.00 September 2004 Page 23 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

8.2 Programming using GUI

8.2.1 Method 1 Demonstration
Boot M ode Programming:

1. Open Flash_GUI. tcl

2. Select download file“M1 init_ws.mot”

3. Switch the H8/38024F M CU to the boot mode* and press the reset button.

4. Click on the boot mode button, “Flash program into H8/38024F via boot mode”, on the Flash GUI to begin
downloading.

5. “Program downloaded!” message box will be displayed, indicating the completion of the boot mode programming.

Switch the H8/38024F M CU to User Mode* and press the reset button.

7. Both of the LEDs connected to Port 9 will blink continuoudly indicating that the “M1_init ws’ program is running.

o

User M ode Programming:

1. Select“ M1 new wsmot” astheinput S-Record file.

2. Click “Update program into H8/38024F via user mode” to download [New Wor kspace]

3. “Program downloaded!” message box will be displayed

4. A new application program is executed causing both LEDs, D3 and D4, to light up alternately

User Mode Re-Programming:

1. Select“ M1 Appl.mot” astheinput S-Record file

2. Click “Update program into H8/38024F via user mode” to download new application program
“Program downloaded!” message box will be displayed

3. A new application program is executed causing LEDs, D3 and D4, to blink together

The user is able to download and execute different application programs in User mode without resetting MCU.

Note: *Refer to 38024F CPU Board Quick Start Guide for jumper settings to switch to Boot Mode and User Mode

8.2.2 Method 2 Demonstration
The Method 2 demonstration can be access by repeat section 8.2.1 and change the downloading file name:

eg.

“M1 init ws.mot” => “M2_init ws.mot”
“M1 new ws.mot” => “M2_new ws.mot”
“M1 APPl.mot” =>» “M2_APP1.mot”

The result of the demonstration is same.

RES06B0008-0100/Rev.1.00 September 2004 Page 24 of 63

LENESANS

H8/300L SLP Series

SLP User Mode Programming (UserMP)

9. Code Listing

The attached code is generated using HEW project generator targeting at the H8/38024F SLP MCU. The toolchain used

isthe free SLP/Tiny toolchain.

9.1 Method 1 [Initial Workspace] Code Listing

9.1.1 M1 [Initial Workspace] Main Routine

The Figure below shows the flow chart for “m1_init_ws.c”, followed by its code listing.

M1 Initia

Workspace
Main

Initialize Seria port
with Receive
Interrupt Enable

l

Application

}

SCI3
|nterrupt

Figure 23 Flow Chart for M1 [Initial Workspace] Main Routine

RES06B0008-0100/Rev.1.00 September 2004 Page 25 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

/***l

/* >/
/* FILE M1_init_ws.c >/
/* DATE :Mon, Sep 29, 2003 */
/* DESCRIPTION :Main Program */
/* CPU TYPE :H8/38024F >/
/* >/
/* This file is generated by Renesas Project Generator (Ver.2.1). */
/* */

/***l

#include "iodefine.h"
#include <machine.h>

//Flash function prototype

extern void copyfunc(void);

extern unsigned char prog flash_line 128 (unsigned long t_address, union
char_rd_datum_union *p_data);

extern unsigned char erase block (unsigned char block num);

extern int *_PkernelBegin, * PkernelEnd, * Pkernel RAMBegin;

extern int *_CkernelBegin, * CkernelEnd, * Ckernel RAMBegin;

//function prototype
void copyfunc(void);
extern void Application(void);

//5CI13 initialize information//

#define XTAL 9830400L
#define Baudrate 38400L
#define N ((XTAL) / (64L*1L*Baudrate)) - 1L

void initserial(void);
void sci_put(char byte);
char sci_get(void);

void initserial(Q)

{
P_SCI3.SCR3.BYTE = 0x00; //Disable TIE,TE,RE,MPIE,TEIE,RIE,
P_SCI3.SMR.BYTE = Ox00; //set Async, 8 data, none parity, 1 stop, clk n=0
P_SCI3.BRR = N; //set baud rate = N
nopQ; //wait baud rate setup time
P_SCI3.SPCR.BYTE = OxEO; //SPC32=1, make P42 function as TXD32
P_SCI3.SCR3.BYTE |= 0x70; //Enable RIE, TE and RE

}

void main(void)

{
initserial(); //initilize SCI
Application(Q); //Execute application program

}

RES06B0008-0100/Rev.1.00 September 2004 Page 26 of 63

REN ESAS H8/300L SLP Series

SLP User Mode Programming (UserMP)

void copyfunc(void)

{
register int *p, *q;
for (p=_PkernelBegin, g=_Pkernel RAMBegin;p<_ PkernelEnd;p++,q++)
{

}

for (p=_CkernelBegin, g=_Ckernel RAMBegin;p<_CkernelEnd;p++,q++)
{

}

}

void sci_put(char byte)

{
while(P_SCI3.SSR.BIT.TDRE==0);
P_SCI3.TDR=byte;
while(P_SCI3.SSR.BIT.TEND==0);

}

char sci_get(void)
{
while(P_SCI3.SSR.BIT.RDRF==0){} //Wait until RDRF = 1
if ((P_SCI3.SSR.BYTE & 0x38) ==0) //Check for SCI error
{
return P_SCI3.RDR;
¥
else return OxFF; //1T error occur return OxFF
if(P_SCI3.SSR.BIT.RDRF==1) P_SCI3.SSR.BIT.RDRF=0;

}

#pragma section

RES06B0008-0100/Rev.1.00 September 2004 Page 27 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

9.1.2 M1 [Initial Workspace] Application Routine
The figure below shows the flow chart for “ Application.c”, followed by its code listing.

M1 Initial

Workspace
APPLICATION

Initialize 1/0O Port

N SCI3
- Interrupt
v
Toggle Port 92
and Port 93
Delay Loop

Figure 24 Flow Chart for M1 [Initial Workspace] Application Routine

#include "iodefine.h"

//Section define for application program
#pragma section application

void Application(void);

//Application Program code start
//Blinking LED application

void Application(void)

{
unsigned iInt i;
P_10.PDR9.BIT.P92 = 1;
P_10.PDR9.BIT.P93 = 1;
while(1)
{
P_10.PDR9.BIT.P92 "= 1;
P_10.PDR9.BIT.P93 "= 1;
for (i=0;i<OXFFFF;i++);
}
}

#pragma section

RES06B0008-0100/Rev.1.00 September 2004 Page 28 of 63

LENESANS

H8/300L SLP Series

SLP User Mode Programming (UserMP)

9.1.3 M1 [Initial Workspace] Interrupt Routine
The figure below shows the flow chart for the SCI interrupt service routine, followed by its code listing.

SCI ISR

|

G/I 1 Initial Workspace

Yes
Clear SCI3 Return from
error flag Interrupt
No
Clear SCI3
error flag
RAM Transfer
Program
Get Start Address
"
Yes
End Address? Power On
Reset routine

Erase Flash Block

!

Get Program Data

!

Program Flash
Block

!

Acknowledge(“a’)
if Pass

Figure 25 Flow Chart for M1 [Initial Workspace] SCI Interrupt Service Routine

RES06B0008-0100/Rev.1.00 September 2004

Page 29 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

/***l

/* >/
/* FILE sintprg.c */
/* DATE :Mon, Sep 29, 2003 */
/* DESCRIPTION :Interrupt Program */
/* CPU TYPE :H8/38024F >/
/* >/
/* This file is generated by Renesas Project Generator (Ver.2.1). */
/* */

/***l

#include "iodefine.h"
#include <machine.h>

//5C1 function prototype
extern void sci_put(char byte);
extern char sci_get(void);
extern unsigned char temp_buff;

//Flash function prototype

extern unsigned char prog flash_line_ 128 (unsigned long t_address, union
char_rd_datum_union *p_data);

extern unsigned char erase block (unsigned char block num);

extern void PowerON_Reset(void);

#pragma section IntPRG
// vector 1 Reserved

__interrupt(vect=16) void INT_TimerG(void) {/* sleep(); */}
// vector 17 Reserved

// vector 18 SCI3
__interrupt(vect=18) void INT_SCI3(void)
{
unsigned short start_address;
unsigned char prog _data_addr[128],countl;
unsigned char temp_buff;
if ((P_SCI3.SSR.BYTE & 0x38) == 0) //Check for SCI error
{
if(P_SCI3.RDR=="U")
{
copyfunc();
while(l)
{
//GET START ADDRESS
temp_buff = sci_get();
start_address = (unsigned short) (temp_buff <<8); //high byte
sci_put(temp_buff);

temp_buff = sci_get();

start_address = start_address | (unsigned short) (temp buff);
//low byte

sci_put(temp_buff);

RES06B0008-0100/Rev.1.00 September 2004 Page 30 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

if (start_address == 0x0000) {erase_block (0);}
else if (start_address == 0x0400) {erase_block (1);}
else if (start_address == 0x0800) {erase_block (2);}
else if (start_address == 0x0c00) {erase_block (3);}
else if (start_address == 0x1000) {erase_block (4);}
else if (start_address == 0x8000) {PowerON_Reset();}
//end of flash programming

else nop(); //invalid start address

for(countl=0;countl<128;countl++)
{

}

prog_data addr[countl] = sci_get(Q);

if(prog_flash_line_ 128 (start_address, (union
char_rd_datum_union *) prog_data_addr)==0x01)
{

}

else sci_put("n”);

sci_put(a®);

}

else return; // if not Update flash command then do nothing

}

else

{
//SCl1 error occur
if (P_SCI3.SSR.BIT.OER == 1)
temp_buff = P_SCI3.RDR;
temp_buff = P_SCI3.RDR;
P_SCI3.SSR.BYTE=0x84;
sci_put(“e”);

}

}
// vector 19 ADI

__interrupt(vect=19) void INT_ADI(void) {/* sleep(); */}
// vector 20 Direct Transition
__interrupt(vect=20) void INT_Direct Transition(void) {/* sleep(); */}

RES06B0008-0100/Rev.1.00 September 2004 Page 31 of 63

H8/300L SLP Series

| (EN ESAS SLP User Mode Programming (UserMP)

9.2 Method 1 [New Workspace] Code Listing
M1 [New Workspace] Application Routine;

The figure below shows the flow chart for “m1_new_ws.c”, followed by its code listing.

M1 New

Workspace
APPLICATION

Initialize 1/0 Port

A

v

Toggle Port 92
and Port 93

|

Delay Loop

SCI3
| nterrupt

Figure 26 Flow Chart for M1 [New Workspace] Application Routine

#include "i1odefine.h"
void Application(void);

#pragma section application

//Application Program code start
void Application(void)

{
unsigned iInt i;
P_10.PDR9.BIT.P92 = 1;
P_10.PDR9.BIT.P93 = 0;
while(l)
{
P_10.PDR9.BIT.P92 "= 1;
P_10.PDR9.BIT.P93 "= 1;
for (i=0;i<OXFFFF;i++);
}
}

#pragma section

RES06B0008-0100/Rev.1.00 September 2004

Page 32 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

9.3 Method 2 [Initial Workspace] Code Listing

9.3.1 M2 [Initial Workspace] Main Routine
The figure below shows the flow chart for “m2_init_ws.c”, followed by its code listing.

M2 Initial

Workspace
Main

\4
Initialize Seria port
with Receive
Interrupt Enable

SCI3
> l nterrupt
No Data
valid
»|Yes SCI3
v | nterrupt
Toggle Port 92
and Port 93
Delay Loop
|

Figure 27 Flow Chart for M2 [Initial Workspace] Main Routine

RES06B0008-0100/Rev.1.00 September 2004 Page 33 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

/***l

/* >/
/* FILE :M2_init_ws.c */
/* DATE :Mon, Sep 29, 2003 */
/* DESCRIPTION :Main Program */
/* CPU TYPE :H8/38024F >/
/* >/
/* This file is generated by Renesas Project Generator (Ver.2.1). */
/* */

/***l

#include "iodefine.h"

#include <machine.h>

void initserial(void);

void sci_put(char byte);char sci_get(void);unsigned char temp_buff;

void main(void)

{
unsigned int delay;
unsigned long datavalid = 0x55AA1234, *VALID;
initserial();
VALID = (unsigned long *)OX7FFC;
if (*VALID !'= datavalid)
while(1); //wait for interrupt
}
P_10.PDR9.BIT.P93 = 1;
P_10.PDR9.BIT.P92 = 1;
while(l)
{
P_10.PDR9.BIT.P93 "= 1;
P_10.PDR9.BIT.P92 "= 1;
for (delay=0;delay<OxFFFF;delay++);
}
}

//Code Valid Flag fixed at last address (Ox7FFC-Ox7FFF)
#pragma section Valid

const unsigned long DATA = 0x55AA1234;

#pragma section

RES06B0008-0100/Rev.1.00 September 2004 Page 34 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

//1nit SCI routine fixed at address 0x0400
#pragma section InitSClI
//SCI13 initialize information

#define XTAL 9830400L
#define Baudrate 38400L
#define N ((XTAL) / (64L*1L*Baudrate)) - 1L

//unsigned char *addr, temp;
void initserial(Q)

{
P_SCI3.SCR3.BYTE = 0x00; //Disable TIE,TE,RE,MPIE,TEIE,RIE,
P_SCI3.SMR.BYTE = 0x00; //set Async, 8 data, none parity, 1 stop,
clk n=0
P_SCI3.BRR = N; //set baud rate = 9600
nopQ; //wait baud rate setup time
P_SCI3.SPCR.BYTE = OxEO; //SPC32=1, make P42 function as TXD32
P_SCI3.SCR3.BYTE |= 0x70; //Enable RIE, TE and RE
set_imask_ccr(0);
by

//5CI13 initialize information end//
#pragma section

RES06B0008-0100/Rev.1.00 September 2004 Page 35 of 63

LENESANS

H8/300L SLP Series

SLP User Mode Programming (UserMP)

9.3.2 M2 [Initial Workspace] Interrupt Routine
The figure below shows the flow chart for “m2_init_ws.c”, followed by its code listing.

Yes| Clear SCI3
error flag

No

2 Initial Workspace

M
SCI ISR

|

Update
Command?

Clear SCI3

Return from
Interrupt

A

error flag

RAM Transfer
Program

}

Erase Valid Flag

l

Get Start Address

Yes
End Address? Power On
Reset routine

Erase Flash Block

!

Get Program Data

!

Program Flash
Block

l

Acknowledge(“a’)
if Pass

Figure 28 Flow Chart for M2 [Initial Workspace] SCI Interrupt Service Routine

RES06B0008-0100/Rev.1.00

September 2004

Page 36 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

/***l

/* >/
/* FILE sintprg.c */
/* DATE :Mon, Sep 29, 2003 */
/* DESCRIPTION :Interrupt Program */
/* CPU TYPE :H8/38024F >/
/* >/
/* This file is generated by Renesas Project Generator (Ver.2.1). */
/* */

/***l

#include "iodefine.h"
#include <machine.h>

//5C1 function prototype
void sci_put(char byte);char sci_get(void);
extern unsigned char temp_buff;

//Flash function prototype

void copyfunc(void);

extern unsigned char prog flash_line_ 128 (unsigned long t_address, union
char_rd_datum_union *p_data);

extern unsigned char erase block (unsigned char block num);

extern int *_PkernelBegin, * PkernelEnd, * Pkernel RAMBegin;

extern int *_CkernelBegin, * CkernelEnd, * Ckernel RAMBegin;

extern void PowerON_Reset(void);

#pragma section OtherIntPRG
// vector 1 Reserved

// vector 19 ADI

__interrupt(vect=19) void INT_ADI(void) {/* sleep(); */}

// vector 20 Direct Transition

__interrupt(vect=20) void INT_Direct Transition(void) {/* sleep(); */}

//SCl ISR section fixed at 0x0440
#pragma section SCI_ISR

// vector 18 SCI3

__interrupt(vect=18) void INT_SCI3(void)
{

unsigned short start_address;
unsigned char prog _data_addr[128],countl;

if ((P_SCI3.SSR.BYTE & 0x38) == 0) //Check for SCI error

{
if(P_SCI3.RDR=="U")

{
copyfunc();

erase _block (4); //erase Valid Flag

RES06B0008-0100/Rev.1.00 September 2004 Page 37 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

while(l)
{

//GET START ADDRESS

temp_buff = sci_get();

start_address = (unsigned short) (temp_buff <<8); //high byte
sci_put(temp_buff);

temp_buff = sci_get();

start_address = start_address | (unsigned short) (temp buff);
//low byte

sci_put(temp_buff);

if (start_address == 0x0000) {erase_block (0);}
else if (start_address == 0x0400) {erase_block (1);}
else if (start_address == 0x0800) {erase_block (2);}
else if (start_address == 0x0c00) {erase_block (3);}
else if (start_address == 0x1000) {erase_block (4);}
else if (start_address == 0x8000)

{PowerON_Reset();}//end of flash programming
else nop(); //invalid start address

for(countl=0;countl<128;countl++)

{
prog_data addr[countl] = sci_get(Q);

if(prog_flash_line_ 128 (start_address, (union
char_rd_datum_union *) prog_data_addr)==0x01)
{

}

else sci_put("n”);

sci_put(a®);

}
}

else return; // if not Update flash command then do nothing

}

else

{
//SCl1 error occur
if (P_SCI3.SSR.BIT.OER == 1)
temp_buff = P_SCI3.RDR;
temp_buff = P_SCI3.RDR;
P_SCI3.SSR.BYTE=0x84;
sci_put(“e”);

RES06B0008-0100/Rev.1.00 September 2004 Page 38 of 63

REN ESAS H8/300L SLP Series

SLP User Mode Programming (UserMP)

void sci_put(char byte)

{
while(P_SCI3.SSR.BIT.TDRE==0){}
P_SCI3.TDR=byte;
while(P_SCI3.SSR.BIT.TEND==0){}
}
char sci_get(void)
{
while(P_SCI3.SSR.BIT.RDRF==0){} //Wait until RDRF = 1
if ((P_SCI3.SSR.BYTE & 0x38) ==0) //Check for SCI error
{
return P_SCI3.RDR;
}
else return OxFF; //1f error occur return OxFF
if(P_SCI3.SSR.BIT.RDRF==1) P_SCI3.SSR.BIT.RDRF=0;
}
void copyfunc(void)
{
register int *p, *q;
for (p=_PkernelBegin, g=_Pkernel RAMBegin;p<_ PkernelEnd;p++,q++){*q=*p;}
for (p=_CkernelBegin, g=_Ckernel RAMBegin;p<_CkernelEnd;p++,q++){*q=*p;}
by

#pragma section

RES06B0008-0100/Rev.1.00 September 2004 Page 39 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

9.4 Method 2 [New Workspace] Code Listing

9.4.1 M2 [New Workspace] Main Routine
The figure below shows the flow chart for “m2_new_ws.c”, followed by its code listing.

M2 Initial

Workspace
Main

A\ 4

Init SCI pointer
function call SCI3

[nterrupt

No Data
valid

Yes

Initialize 1/0 Port &
Timer A
nterrupt

—

Dummy Loop

Figure 29 Flow Chart for M2 [New Workspace] Main Routine

RES06B0008-0100/Rev.1.00 September 2004 Page 40 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

/***l

/* >/
/* FILE :M2_new_ws.c */
/* DATE :Mon, Sep 29, 2003 */
/* DESCRIPTION :Main Program */
/* CPU TYPE :H8/38024F >/
/* >/
/* This file is generated by Renesas Project Generator (Ver.2.1). */
/* */

/***l

#include "iodefine.h"
#include <machine.h>

//pointer function call to init SCI
typedef void C*init_SCl_FnPtr)(void);
#define init_SCI_Fn (init_SCI_FnPtr)((unsigned short *)(0x0400))

void main(void)

{
unsigned long datavalid = 0x55AA1234, *VALID;
unsigned int delay = 0;
Cinit_SCl_Fn) QO;
VALID = (unsigned long *)OX7FFC;
if (*VALID != datavalid)
{
while(1l); //wait for interrupt
}
P_10.PDR9.BIT.P93 = 1;
P_10.PDR9.BIT.P92 = 1;
P_SYSCR.IENR1.BIT.IENTA = 1;
P_TMRA_TMA_BIT.TMA = 10;
set_imask_ccr(0);
while (1)
{
//write user code here
}
by

//Code Valid Flag

#pragma section Valid

const unsigned long DATA = 0x55AA1234;
#pragma section

RES06B0008-0100/Rev.1.00 September 2004 Page 41 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

9.4.2 M2 [New Workspace] Interrupt Routine
The figure below shows the flow chart for “intprg.c”, followed by its code listing.

M2 New Workspace

Timer A Overflow
ISR

A\ 4

Clear Interrupt
Request Flag

v

Toggle Port 92 and
93

Return from
Interrupt

Figure 30 The Flow Chart for M2 [New Workspace] Timer A Interrupt Service Routine

RES06B0008-0100/Rev.1.00 September 2004 Page 42 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

/***l

/* >/
/* FILE sintprg.c */
/* DATE :Mon, Sep 29, 2003 */
/* DESCRIPTION :Interrupt Program */
/* CPU TYPE :H8/38024F >/
/* >/
/* This file is generated by Renesas Project Generator (Ver.2.1). */
/* */

/***l

#include "iodefine.h"
#include <machine.h>
#pragma section IntPRG
// vector 1 Reserved

// vector 10 Reserved

// vector 11 Timer A Overflow
__interrupt(vect=11) void INT_TimerA(void)

{
unsigned int delay = 0;
if (P_SYSCR.IRR1.BIT.IRRTA == 1)
P_SYSCR.IRR1.BIT.IRRTA = 0;
P_10.PDR9.BIT.P93 "= 1;
P_10.PDR9.BIT.P92 "= 1;

}

__interrupt(vect=16) void INT_TimerG(void) {/* sleep(); */}
// vector 17 Reserved

// vector 18 SCI3

// vector 19 ADI

__interrupt(vect=19) void INT_ADI(void) {/* sleep(); */}

// vector 20 Direct Transition

__interrupt(vect=20) void INT_Direct Transition(void) {/* sleep(); */}

//1Insert SCl ISR vector address as 0x0440

#pragma section SCI_ISR

static const unsigned short DATA = 0x0440;

// __interrupt(vect=18) void INT_SCI3(void) {/* sleep(); */}

RES06B0008-0100/Rev.1.00 September 2004 Page 43 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

9.5 Kernel Code Listing

9.5.1 Flash Kernel Program
The figure below shows the flow chart for “kernel.c”, followed by its code listing.

Kerndl
Program

A

v
Programming Write Pulse Function Flash Block Erasing
Function (apply_write_pulse) Function
(prog_flash_line_128) (erase_block)

Figure 31 The Flow Chart for Kernel Program

Note: Pleaserefer to the ' Flash Memory Programming Mode’ Application note for more details.

RES06B0008-0100/Rev.1.00 September 2004 Page 44 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

/'l Renesas H8/38024F exanpl e flash progranm ng and erasing routines
11

/'l kernel.c

/1

/1 dock speed = 9.8304MHz

/1 H8/38024F uses SCI 3 for user node

/1l Kernel start address - OxF780

#i ncl ude "i odefine. h" /1 10 header file
#i ncl ude <machi ne. h>

/1 HB8/38024F specific

#def i ne FLASH SWE P_ROM FLMCRL. Bl T. SVE
#defi ne FLASH PSU P_ROM FLMCRL. BI T. PSU
#define FLASH P P_ROM FLMCRL.BIT.P
#define FLASH PV P_ROM FLMCRL. BI T. PV
#defi ne FLASH EBR1 P_ROM EBR. BYTE

#def i ne FLASH ESU P_ROM FLMCRL. BI T. ESU
#define FLASH E P_ROM FLMCRL.BIT. E
#define FLASH EV P_ROM FLMCRL. BI T. EV
#define FLASH FENR P_ROM FENR BI T. FLSHE

/1 H8/38024F specific

#def i ne MAX_FLASH ADDR 0x8000

#def i ne FLASH LI NE_SI ZE 128

#def i ne NO_OF_FLASH BLOCKS 5

#defi ne XTAL 9830400L

#def i ne MAX_PROG_COUNT 1000

#def i ne MAX_ERASE_ATTEMPTS 100

#def i ne BLANK_VALUE OxFFFF /| OXFFFFFFFF for SH,

/1 OXFFFF for H8S/ 300H

/'l array bel ow should contain the start addresses of the flash nenory bl ocks
/1 final array elenment should contain the end address of the flash nmenory (+1)

#pragma section kernel _const //only applicable for M_init_ws
//additional constant section define needed

const unsigned | ong eb_block addr [NO OF FLASH BLOCKS + 1] = {

0x00000000L,

0x00000400L,

0x00000800L,

0x00000000L,

0x00001000L,

0x00008000L /* max flash address + 1 */
s
#defi ne BLANK 1
#def i ne NOT_BLANK 2
#def i ne PROG_PASS 0x01
#def i ne PROG_FAI L 0x02
#def i ne ERASE_PASS 0x01
#def i ne ERASE_FAI L 0x02

RES06B0008-0100/Rev.1.00 September 2004 Page 45 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

// delay values
// note this is xtal frequency specific
// these values are for the H8/38024F Timer F with a clock divider of 4

#define ONE_USEC ((1L * XTAL) / 8000000L)
#define TWO_USEC ((2L * XTAL) / 8000000L)
#define FOUR_USEC ((4L * XTAL) / 8000000L)
#define FIVE_USEC ((5L * XTAL) / 8000000L)
#define TEN_USEC ((1L * XTAL) / 800000L)
#define TWENTY_USEC ((2L * XTAL) / 800000L)
#define THIRTY_USEC ((3L * XTAL) / 800000L)
#define FIFTY_USEC ((5L * XTAL) / 800000L)
#define ONE_HUNDRED_USEC ((1L * XTAL) / 80000L)
#define TWO_HUNDRED_USEC ((2L * XTAL) 7/ 80000L)
#define TEN_MSEC ((1L * XTAL) 7/ 800L)

// typedef for reading the flash memory
// should be the size of the data bus connection to the flash memory
typedef unsigned short read_datum;

// function prototypes

unsigned char prog flash _line_ 128 (unsigned long t_address, union
char_rd_datum_union *p_data);

void delay (unsigned short);

void init_delay timer (void);

unsigned char erase block (unsigned char block num);

void apply write_pulse(unsigned short prog pulse);

extern void sci_put(char byte);

// variables

volatile unsigned long delay counter;

union char_rd_datum_union {

unsigned char c[FLASH _LINE_SIZE];

read_datum u[FLASH LINE_SIZE / sizeof (read_datum)];
} prog_data;

//DEFINE SECTION FOR KERNEL PROGRAM
#pragma section kernel

/**

/*

/* FUNCTION : prog_flash_line_128

/* DESCRIPTION : program 128 bytes of flash memory

/* INPUT : flash start address,

/* program data pointer

/* OUTPUT : PROG_PASS if programming is successful

/* PROG_FAIL if programming is unsucessful

/* Other information:

/* t_address is the start address for the flash line to

/* be programmed and must be on a flash line boundary e.g.

/* multiple of 128 (this is not checked and so must be

/* ensured by the caller) data to be programmed should be

/* passed to this function in the form of a "char_rd_datum_union*
/* union pointer data must be written to the flash in byte units

RES06B0008-0100/Rev.1.00 September 2004 Page 46 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Please note that for the H8/38024F during the dummy write,
setting the PSU and P bits no RTS intructions are permitted.
Therefore no functions calls are allowed.

For this reason at these points in this function the code from
the "delay”™ function has been inlined to eliminate any RTS
instructions. For further information on this see the Flash ROM
section of the H8/38024F hardware manual version 4 or later.

/

//

Program 128 bytes functions start here

unsigned char prog flash _line_ 128 (unsigned long t_address, union
char_rd_datum_union *p_data)

{

unsigned char i;

unsigned short n_prog count;

// loop counter for programming attempts (0 -> MAX_PROG_COUNT)
unsigned short d;

// variable used for various loop counts

unsigned short ax;

// loop counter for incrementing "uc_v_write address”

// pointer (an unsigned short produces more efficient code than unsigned
// char in this case)
unsigned char m;
// flag to indicate if re-programming is required (1=yes, 0=no)
unsigned char *dest_address; // pointer for writing to flash
unsigned char *uc_v_write_address;
// pointer for writing to address to be verified
read_datum *ul_v_read_address; // pointer for reading verify address
union char_rd_datum_union additional prog data, re_program_data;
// storage on stack for intermediate
// programming data
//1Init Timer F start
// 16 bit timer F counter, System clock /7 4 selected
P_TMRF.TCRF.BYTE = 0x86;

//TCF cleared when TCF and OCRF match
P_TMRF.TCSRF.BIT.CCLRH = 1;
//Init Timer F end

// enable access to the flash registers
FLASH_FENR = 1;

// enable flash writes
FLASH SWE = 1;

// wait tSSWE (1 us)
delay(ONE_USEC);

// copy data from program data area to reprogram data area
for (d=0; d<FLASH_LINE_SIZE; d++)

RES06B0008-0100/Rev.1.00 September 2004 Page 47 of 63

REN ESAS H8/300L SLP Series

SLP User Mode Programming (UserMP)

{
}

// program the data in FLASH LINE_SIZE (128) byte chunks
for (n_prog_count=0; n_prog_count<MAX PROG_COUNT; n_prog_count++)

{

re_program _data.c[d] = p_data->c[d];

// clear reprogram required flag
m = 0;

// copy data from reprogram data area into the flash with byte wide
// access
dest_address = (unsigned char *) t_address;

for (d=0; d<FLASH_LINE_SIZE; d++)
{

}

*dest_address++ = re_program_data.c[d];

// to minimise code space the code to apply a write pulse has been
// placed into a separate function called "apply write pulse”

if (n_prog_count < 6)

{

}

else

{

apply _write pulse(THIRTY_USEC);

apply _write pulse(TWO_HUNDRED_ USEC);

// verify the data via word wide reads
uc_v_write_address = (unsigned char *) t_address;
ul_v _read_address = (read_datum *) t_address;

// enter program verify mode
FLASH_PV = 1;

// wait tSPV (4 us)
delay (FOUR_USEC);

// read data in read_datum size chunks
// verify loop
for (d=0; d<(FLASH_LINE_SIZE / sizeof(read_datum)); d++)
{
// dummy write of H'FF to verify address
*uc_v_write_address = Oxff;

// see note at beginning of function
// no RTS allowed here so "apply_write pulse® function inlined

P_TMRF.OCRF.BYTE.H
P_TMRF.OCRF.BYTE.L

(TWO_USEC)>>8;
(TWO_USEC) ;

RES06B0008-0100/Rev.1.00 September 2004 Page 48 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

// Clear compare match flag
P_TMRF.TCSRF.BIT.CMFH = 0;

// Clear counter and start the timer F
P_TMRF.TCF.BYTE.H = 0;
P_TMRF.TCF.BYTE.L = O;

// Loop until we have a compare match
while (P_TMRF.TCSRF.BIT.CMFH == 0);

// increment this pointer to get to next verify address
for (ax=0; ax<sizeof(read datum); ax++)
uc_v_write_address++;

// read verify data
// check with the original data
if (*ul_v_read address != p_data->u[d])
{
// 1 or more bits failed to program
//
// set the reprogram required flag
m=1;

}

//Enable watchdog timer
P_WDT.TCSRW.BYTE = Ox5A;
P_WDT.TCW = 0x00;

P_WDT.TCSRW.BYTE = OxF4;

// check if we need to calculate additional programming data
if (n_prog_count < 6)
{
// calculate additional programming data
// simple ORing of the reprog and verify data
additional_prog data.u[d] = re_program data.u[d] |
*ul_v_read_address;

}

// calculate reprog data
re_program _data.u[d] = p_data->u[d] | ~(p_data->u[d] |
*ul_v_read_address);

// increment the verify read pointer
ul_v_read_address++;

//Disable watchdog timer
P_WDT.TCSRW.BYTE = OxF2;
} 7/ end of verify loop
// exit program verify mode
FLASH_PV = 0;

// check if additional programming is required
if (n_prog_count < 6)

RES06B0008-0100/Rev.1.00 September 2004 Page 49 of 63

REN ESAS H8/300L SLP Series

SLP User Mode Programming (UserMP)

{

// perform additional programming

//

// copy data from additional programming area to flash memory
dest_address = (unsigned char *) t_address;

for (d=0; d<FLASH_LINE_SIZE; d++)

{

}

apply_write pulse(TEN_USEC);

*dest_address++ = additional_prog data.c[d];

// check if flash line has successfully been programmed
if (m==0)

// program verified ok
//

// disable flash writes
FLASH_SWE = 0;

// wait tCSWE (100 us)
delay (ONE_HUNDRED_USEC);

// end of successful programming
// disable access to the flash registers
FLASH_FENR = O;
return (PROG_PASS);
}

} /7 end of for loop (N<MAX_PROG_COUNT) at this point we have made
// MAX_PROG_COUNT programming attempts

// failed to program after MAX_PROG_COUNT attempts
// disable flash writes
FLASH_SWE = 0;

// wait tCSWE (100 us)
delay (ONE_HUNDRED_USEC);

// end of failed programming

// disable access to the flash registers
FLASH_FENR = O;

return (PROG_FAIL);

by
// Program 128 bytes functions end here

RES06B0008-0100/Rev.1.00 September 2004 Page 50 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

/*
/*
/*
/*

AAAKXIAAAIAAAXAAAAIAAAXAAAAAAAXAhAdhhAdrdhhiikx

FUNCTION apply_write_pulse

DESCRIPTION :Applies programming pulse to flash memory
INPUT :prog_pulse = 30us, 200us or 10us

OUTPUT :None

/
//

apply _write pulse functions start here

void apply write_pulse(unsigned short prog_pulse)

{

//Enable watchdog timer
P_WDT.TCSRW.BYTE = Ox5A;
P_WDT.TCW = 0x00;

P_WDT.TCSRW.BYTE = OxF4;

// enter program setup mode
FLASH_PSU = 1;

// no RTS allowed here so "apply_write pulse® function inlined

P_TMRF.OCRF.BYTE.H
P_TMRF.OCRF.BYTE.L

FIFTY_USEC>>8;
FIFTY_USEC;

// Clear compare match flag
P_TMRF.TCSRF.BIT.CMFH = 0;

// Clear counter and start the timer F
P_TMRF.TCF.BYTE.H 0;
P_TMRF.TCF.BYTE.L 0;

// Loop until we have a compare match
while (P_TMRF.TCSRF.BIT.CMFH == 0);

// start programming pulse
FLASH P = 1;
// no RTS allowed here so "apply_write pulse® function inlined

P_TMRF.OCRF.BYTE.H
P_TMRF.OCRF.BYTE.L

prog_pulse>>8;
prog_pulse;

// Clear compare match flag
P_TMRF.TCSRF.BIT.CMFH = 0;

// Clear counter and start the timer F
P_TMRF.TCF.BYTE.H = O;
P_TMRF.TCF.BYTE.L = O;

// Loop until we have a compare match
while (P_TMRF.TCSRF.BIT.CMFH == 0);

// stop programming

RES06B0008-0100/Rev.1.00 September 2004 Page 51 of 63

LENESANS

H8/300L SLP Series

SLP User Mode Programming (UserMP)

}

FLASH P = 0;

// delay (FIVE_USEC);
P_TMRF.OCRF.BYTE.H
P_TMRF.OCRF.BYTE.L

FIVE_USEC>>8;
FIVE_USEC;

// Clear compare match flag
P_TMRF.TCSRF.BIT.CMFH = 0;

// Clear counter and start the timer F

//P_TMRF.TCF.WORD = O;
P_TMRF.TCF.BYTE.H = O;
P_TMRF.TCF.BYTE.L = O;

// Loop until we have a compare match
while (P_TMRF.TCSRF.BIT.CMFH == 0);

// exit program setup mode
FLASH_PSU = 0;

// wait tCPSU (5 us)

// delay (FIVE_USEC);
P_TMRF_.OCRF.BYTE.H = FIVE_USEC>>8;
P_TMRF.OCRF.BYTE.L = FIVE_USEC;

// Clear compare match flag
P_TMRF.TCSRF.BIT.CMFH = 0;

// Clear counter and start the timer F
//P_TMRF.TCF.WORD =
P_TMRF.TCF.BYTE.H = 0;
P_TMRF.TCF.BYTE.L =

// Loop until we have a compare match
while (P_TMRF.TCSRF.BIT.CMFH == 0);
//Disable watchdog timer
P_WDT.TCSRW.BYTE = OxF2;

// apply_write_pulse functions end here

RES06B0008-0100/Rev.1.00 September 2004

Page 52 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

/ nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
/-k

/* FUNCTION :erase_block

/* DESCRIPTION :Erase flash memory block

/* INPUT :block_num = 0,1,2,3,4

/* OUTPUT :ERASE_PASS is attempt is successful

/* ERASE_FAIL is attempt fails

Y faaiaiaiaiaissisiaisiaiaiaisadisisiaiaiaiaidaiasisiaiaiaiaidaisisiniaiaiaisaasisiaiaiaiaiaiaaiaiaiaiaiaiaiaiaiaioiaia /

// erase block functions start here
unsigned char erase block (unsigned char block num)
{

unsigned char erase, ax, X;

unsigned long attempts;

read_datum *ul_v_read;

unsigned char *uc_v_write;

//1Init Timer F start
// 16 bit timer F counter, System clock /7 4 selected
P_TMRF.TCRF.BYTE = 0x86;

//TCF cleared when TCF and OCRF match
P_TMRF.TCSRF.BIT.CCLRH = 1;

// check that block is not already erased

erase = BLANK;

for (attempts=eb_block_addr[block _num]; attempts<eb_ block addr[block num +
1]; attempts++)

if (*(unsigned char *) attempts != OxffF)
erase = NOT_BLANK;

}

if (erase == BLANK)
return ERASE_PASS;
else
{
// block needs erasing
//
// enable access to the flash registers
FLASH_FENR = 1;

// enable flash writes
FLASH SWE = 1;

// wait tSSWE (1us)
delay (ONE_USEC);

// initialise the attempts counter
// 0 as we check for less than MAX (nhot <= MAX)
attempts = O;

// set the correct EB bit in correct EBR register
FLASH EBR1 = 1<<block_num;
erase = 0;

RES06B0008-0100/Rev.1.00 September 2004 Page 53 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

while ((attempts < MAX _ERASE_ATTEMPTS) && (erase == 0))
{

// increment the attempts counter

attempts++;
// enter erase setup mode
FLASH_ESU = 1;

// wait tSESU (100 us)
delay (ONE_HUNDRED_USEC);

// start erasing
FLASH_E = 1;

// wait tSE (10 ms)
delay (TEN_MSEC);

// stop erasing
FLASH_E = 0;

// wait tCE (10 us)
delay (TEN_USEC);

// exit erase setup mode
FLASH_ESU = 0;

// wait tCESU (10 us)
delay (TEN_USEC);

// enter erase verify mode
FLASH_EV = 1;

// wait tSEV (20 us)
delay (TWENTY_USEC);

// verify flash has been erased

// setup the pointers for reading and writing the flash
ul_v _read = (read_datum *) eb block addr [block num];
uc_v_write = (unsigned char *) eb_block _addr [block num];

erase = 1;
while ((erase == 1) && (ul_v_read < (read_datum *) eb_block_addr
[block_num + 17))
{
// this loop will exit either when one word is not erased (“erase”
// becomes 0)
// or all addresses have been read as erased ("erase” stays as 1)
// it "erase” stays as 1 the outer while loop will exit as the
// block has been erased
//
// dummy write
*uc_v_write = Oxff;

// see note at beginning of function

RES06B0008-0100/Rev.1.00 September 2004 Page 54 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

// no RTS allowed here so "apply_write pulse®” function inlined
P_TMRF.OCRF.BYTE.H = TWO_USEC>>8;
P_TMRF_.OCRF.BYTE.L = TWO_USEC;

// Clear compare match flag
P_TMRF.TCSRF.BIT.CMFH = 0;

// Clear counter and start the timer F
P_TMRF.TCF.BYTE.H =

= 0;
P_TMRF.TCF.BYTE.L = O;

// Loop until we have a compare match
while (P_TMRF.TCSRF.BIT.CMFH == 0);

if (*ul_v_read '= BLANK VALUE)

{
// this word is not erased yet
erase = 0;

}

else

{
// advance to the next byte write address
for (ax=0; ax<sizeof(read datum); ax++)

uc_v_write++;

// advance to the next verify read address
ul_v_read++;

}

}

// exit erase verify mode
FLASH_EV = 0;

// wait tCEV (4 us)
delay (FOUR_USEC);
} /7 end of outer while loop

// end either of erase attempts or block has been erased ok
//

// disable flash writes

FLASH_SWE = 0;

// wait tCSWE (100 us)
delay (ONE_HUNDRED_USEC);

// check if block has been erased ok

if (erase == 1)

{
// successfully erased
// disable access to the flash registers
FLASH_FENR = O;

RES06B0008-0100/Rev.1.00 September 2004 Page 55 of 63

REN ESAS H8/300L SLP Series

SLP User Mode Programming (UserMP)

return ERASE_PASS;

}
else
{
// failed to erase this block
// disable access to the flash registers
FLASH_FENR = O;
return ERASE_FAIL;
}

}
+

// erase block functions end here

/**

/-k

/* FUNCTION :delay

/* DESCRIPTION :Timer F delay function
/* INPUT :d = time in us

/* OUTPUT :None

/***/

// delay functions start here
void delay (unsigned short d)

{
// load compare match value into the output compare register
P_TMRF.OCRF.BYTE.H = d>>8;
P_TMRF.OCRF.BYTE.L = d;

// Clear compare match flag
P_TMRF_.TCSRF.BIT.CMFH = 0;

// Clear counter and start the timer F

P_TMRF.TCF.BYTE.H =

= 0;
P_TMRF.TCF.BYTE.L = O;

// Loop until we have a compare match
while (P_TMRF.TCSRF.BIT.CMFH == 0);
P_TMRF_.TCSRF.BIT.CMFH = 0;

// delay functions start here

#pragma section
//end of kernel section

RES06B0008-0100/Rev.1.00 September 2004 Page 56 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

9.5.2 ROM to RAM Mapping Program
The following code listing is the ROM to RAM mapping section declaration of “ROMtoRAM.c”.

This code, which is stored in ROM but executed in RAM, has to be treated differently. The section has to be correctly
mapped, to allow the compiler to generate the correct executing code.

ROM

U e

Progrm
0x0400— g

XF780
Pkernel_ RAM
Pkemel Section

RAM

Ckernel_const

0x0800

0x0CO00

0x1000

<—0XFF80

Figure 32 Memory Map for Kernel Section

E£E++| Azsembly Link/Libr andard Librar_l,ll CPU LI_'I
Categony IDUlDUt X

Tupe of output file ; IStype via abzolute j
Data record header INone j INone j

Debug infarmation : IIn output load module j

Fiom | Ram [Add
D R
Pkernel PkemelRakd Fol cdify, .

Femove

i

Options Link./Library :

noprelink. ram D=R Fkemel=FkemelRaM nomessage list
"${CONFIGDIRMPROJECTMAME].map" show
symbol.reference nooptimize start

Le LD |

Figure 33 ROM to RAM Section Mapping Configuration

RES06B0008-0100/Rev.1.00 September 2004 Page 57 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

#pragma asm
.SECTION PkernelRAM,CODE,ALIGN=2

.SECTION Pkernel,CODE,ALIGN=2
.SECTION Ckernel_const,DATA,ALIGN=2

;Start Address of Section ROMCODE - kernel
__PkernelBegin .DATA.W (STARTOF Pkernel)

;End Address of Section ROMCODE - kernel
__PkernelEnd .DATA.W (STARTOF Pkernel) + (SIZEOF Pkernel)

;Start Address of Section RAMCODE - kernel
__Pkernel _RAMBegin .DATA.W (STARTOF PkernelRAM)

.EXPORT __ PkernelBegin

.EXPORT __ PkernelEnd

.EXPORT __ Pkernel RAMBegin
#pragma endasm

RES06B0008-0100/Rev.1.00 September 2004 Page 58 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

Note: The above code is written in assembly languages. Thus “Assembly source code (*.src)” output file type needs
to be configured from the Renesas H8 Tiny/SLP Toolchain in the Options menu as below:

H8 Tiny/SLP Toolchain E 21
Configuration C/C++ | Toolchain Option |
Debu -
oo T ooy]
= All Loaded Projects

=13 user_mode_demo
I: fj Emﬂle

E] dbsct.c o T emplate
i sction :
| mipig Static z
o E] resetprg.c IF‘rngu'n section [P) [I : J
e e o Stare sling datain:
. R |F |I:nmt section "l

i 2.0 Detaul: I]s Mull/Div operation specificaton :

IZ 3 Co+ source file |Basad on ANSI|Guarantes 16bit a3 a result of 16k Ebltj
-] C/C++ > Assembly Olutput deectory

-] Assembly sowrce file | [E\Hew2 38024CPUBDuser_mode_demo Modify... |
&[] Linkage symbol file

Options C/AC++

-cpu=slp -code=asmeode i’
-object="$[CONFIGDIR MSFILELEAF] src'' -debug -nalist
-speed=register,switch,shift struct, expression Joop=2,inline= + |

4 | X

Ok Cancel

Figure 34 ROM to RAM .c File Configuration

RES06B0008-0100/Rev.1.00 September 2004 Page 59 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

10. Serial Communication Debugging Technique

If modification is made to the interfacing protocol, programmer can make use of the following technique to assist
him/her in troubleshooting. A simple serial communication tool can be built to monitor the TX & RX lines between the
PC and the SLP.

PC
Application
Software
PC Tx
— ; _ 5 MCU Rx
oy = < Serid
o PCRx Mlonitpringl
PC Tx not
Serial < connected “
< : =
Watcher <R RSS 38024F CPU Board
PC Tx not
Seridl > connected
Watcher < PC Rx
USB to serial
Convertor

Figure 35 Serial Communication Monitoring Tool
In this case the PC will require three serial ports:

1. For the Flash GUI to control the SLP
2. Tomonitor the PC TX line
3. To monitor the PC RX line

A good software for monitoring COM port activity isthe “ SerialWatcher.exe” . It is able to display data in hexadecimal
and ASCII and is able to support up to 8 COM ports at atime.

% Serial Watcher (COM1 closed) i oy o]
File Port Display Help

—Fort fumber —Data width— Party—— —Hard. handzhak| —Enable
Qoen || G com || Z8b || o None | | Nome e
Copy C i ML ¢ Odd £ RTS/CTS [~ RTS
" COM4 b e
Clear " COMS o Bils— i —Soft. handshak— Speed:
: " COME 5 " Mark @ Mone [z2400 ~]
cocomr || = 1
" COME | | &~ 5 " Space | | £ Hon/Xoff
Data received:
| =

Figure 36 Serial Watcher 2.0.4 for Windows

The user may download the serial watcher software from http://www.pcremotecontrol .com/serialwatcher.zip .

RES06B0008-0100/Rev.1.00 September 2004 Page 60 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

11. References

Tcl Related:
1. http://www.activestate.com/Products/ActiveTcl/

2. http://freewrap.sourceforge.net/

Other Related Application Notes:

1. F-ZTAT™ Microcomputer On-Board Programming (Application Note ref. no: ADE-502-042, http://renesas.com,)

2. F-ZTAT™ Microcomputer Single Power Supply F-ZTAT™ On-Board Programming, (Application Note ref. no:
ADE-502-055, http://renesas.com)

RES06B0008-0100/Rev.1.00 September 2004 Page 61 of 63

z H8/300L SLP Series
u EN ESAS SLP User Mode Programming (UserMP)

Revision Record

Description
Rev. Date Page Summary

1.00 Sep.10.04 — First edition issued

RES06B0008-0100/Rev.1.00 September 2004 Page 62 of 63

REN ESAS H8/300L SLP Series

SLP User Mode Programming (UserMP)

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (i) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

RES06B0008-0100/Rev.1.00 September 2004 Page 63 of 63

	Top Page
	1. Overview
	1.1 Boot Mode Programming
	1.2 User Mode Programming

	2. GUI
	2.1 GUI Overview
	2.2 GUI Scripting Languages
	2.2.1 Tcl/Tk Overview
	2.2.2 TCL/TK LICENSE TERMS
	2.2.3 Tcl/Tk Scripting Interpretive Program Installation
	2.2.4 Tcl/Tk Scripting Interpretive Program Execution

	2.3 GUI Component

	3. UI (User Interface)
	4. Kernel
	5. Application
	6. Communication Protocol
	7. MCU Coding Implementation
	7.1 Data Update
	7.2 Code Upgrade
	7.2.1 Method 1 [M1]
	7.2.2 Method 2 [M2]

	8. Overall Operation and Observations
	8.1 Environment Setup
	8.2 Programming using GUI
	8.2.1 Method 1 Demonstration
	8.2.2 Method 2 Demonstration

	9. Code Listing
	9.1 Method 1 [Initial Workspace] Code Listing
	9.1.1 M1 [Initial Workspace] Main Routine
	9.1.2 M1 [Initial Workspace] Application Routine
	9.1.3 M1 [Initial Workspace] Interrupt Routine

	9.2 Method 1 [New Workspace] Code Listing
	9.3 Method 2 [Initial Workspace] Code Listing
	9.3.1 M2 [Initial Workspace] Main Routine
	9.3.2 M2 [Initial Workspace] Interrupt Routine

	9.4 Method 2 [New Workspace] Code Listing
	9.4.1 M2 [New Workspace] Main Routine
	9.4.2 M2 [New Workspace] Interrupt Routine

	9.5 Kernel Code Listing
	9.5.1 Flash Kernel Program
	9.5.2 ROM to RAM Mapping Program

	10. Serial Communication Debugging Technique
	11. References
	Revision Record
	Keep safety first in your circuit designs!
	Notes regarding these materials

