
APPLICATION NOTE

R01AN0172EJ0103 Rev.1.03 Page 1 of 30
Jan. 31, 2011

1. Abstract
This document describes the use example of CPU rewrite mode (EW0 mode).

2. Introduction
The application example described in this document applies to the following microcomputers (MCUs):

• MCU: M16C/63 Group, M16C/64 Group, M16C/64A Group, M16C/64C Group,
 M16C/65 Group (only program ROM 1 is 512K byte or less), M16C/65C Group, M16C/6C Group,
 M16C/5LD Group, M16C/56D Group, M16C/5L Group, M16C/56 Group, M16C/5M Group,
 M16C/57 Group

This application note can be used with other M16C Family MCUs which have the same special function registers
(SFRs) as the above groups. Check the user’s manual for any modifications to functions. Careful evaluation is
recommended before using the program described in this application note.

R01AN0172EJ0103
Rev.1.03

Jan. 31, 2011

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD, 56D, 5L, 56, 5M,
and 57 Groups
The Use Example of CPU Rewrite Mode (EW0 mode)

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 2 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

3. CPU Rewrite Mode

3.1 EW0 Mode Features
EW0 mode allows the user to rewrite the user ROM and the data areas by issuing program and erase
commands generated from the CPU rewrite program already transferred to the RAM.
The CPU continues to operate during program and erase operations in EW0 mode. Peripheral function
interrupts will be accepted during program and erase commands if the vector and the interrupting
program are located in the RAM.

3.2 EW0 Mode Settings
The MCU enters CPU rewrite mode when the FMR01 bit in the FMR0 register is set to 1 (CPU rewrite
mode enabled) and is ready to accept commands. EW0 mode is selected by setting the FMR60 bit in
the FMR6 register to 0. Software commands control programming and erasing. The FMR0 register or
status register indicates whether a program or erase operation is completed as expected or not.
Figure 3.1 shows Setting and Resetting of EW0 Mode.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 3 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

Figure 3.1 Settings and Resetting of EW0 Mode

Single-chip mode or memory expansion mode

Procedure to Enter EW0 Mode

Transfer the rewrite control program
to an area other than flash memory (1)

Jump to the rewrite control program transferred
to an area other than the flash memory.

(In the following steps, use the rewrite control
program in an area other than the flash memory)

Set registers CM0, CM1, and PM1

FMR6 ← 0x02

Execute the software commands

Execute the read array command

FMR01 ← 0

Jump to the desired address in the flash memory

Note:
 1. Bits PM10 and PM13 in the PM1 register become 1 in CPU rewrite mode. Execute the rewrite program in
 internal RAM or an external area which can be used when both bits PM10 and PM13 are 1.
 Do not use the area (40000h to BFFFFh) where accessible space is expanded when the PM13 bit is 0 and
 4-MB mode is set.

The CPU clock frequency of CPU rewrite mode (EW0
and EW1 modes) may be different depending on the MCU
used. Refer to the User’s manual for details. Also, set
the PM17 bit in the PM1 register to 1 (wait state).

To set the FMR01 bit to 1, write 0 and then 1 in succession.
Make sure no interrupts or DMA transfers will occur before
writing 1 after writing 0.
To set the FMR01 bit write to this bit from a program in
an area other than flash memory.

After having carried out the read array command,
CPU rewrite mode disabled.

Rewrite control program (1)

FMR01 ← 0

FMR01 ← 1

FMR11 ← 1 FMR6 register write enabled

FMR11 ← 0

EW0 mode

FMR6 register write disabled

CPU rewrite mode disabled

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 4 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

3.3 Memory Map
The flash memory is used as ROM in this product. The flash memory comprises program ROM 1,
program ROM 2, and data flash.
The flash memory is divided into several blocks, each of which can be protected (locked) from
programming or erasing. The flash memory can be rewritten in CPU rewrite, standard serial I/O, and
parallel I/O modes.
If the size of program ROM 1 is over 512 KB, blocks 8 to 11 can be used when the IRON bit in the PRG2C register
is 1 (program ROM 1 addresses 40000h to 7FFFFh enabled).
Program ROM 2 can be used when the PRG2C0 bit in the PRG2C register is set to 0 (program ROM 2 enabled).
Program ROM 2 includes a user boot code area.
Data flash can be used when the PM10 bit in the PM1 register is set to 1 (0E000h to 0FFFFh: data flash).
Data flash is divided into block A and block B.
Figure 3.2 shows a Flash Memory Block Diagram for M16C/65.
Refer to the respective hardware manuals for other models.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 5 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

Figure 3.2 Flash Memory Block Diagram

00E000h

00EFFFh
00F000h
00FFFFh
010000h

013FFFh

Block A : 4 KB

Block B : 4 KB

Program ROM 2 : 16 KB

04FFFFh
050000h

05FFFFh
060000h

06FFFFh
070000h

07FFFFh
080000h

08FFFFh
090000h

09FFFFh
0A0000h

0AFFFFh
0B0000h

0FFFFFh

0BFFFFh
0C0000h

0CFFFFh
0D0000h

0DFFFFh
0E0000h

0EFFFFh
0F0000h

040000h

Block 0 : 64 KB

Block 10 : 64 KB

Block 11 : 64 KB

Block 9 : 64 KB

Block 8 : 64 KB

Block 7 : 64 KB

Block 6 : 64 KB

Block 5 : 64 KB

Block 1 : 64 KB

Block 2 : 64 KB

Block 3 : 64 KB

Block 4 : 64 KB

Program
ROM 1

Data flash

Program
ROM 1
size
768 KB

Program
ROM 1
size
640 KB

Program
ROM 1
size
512 KB

Program
ROM 1
size
384 KB

Program
ROM 1
size
256 KB

Program
ROM 1
size
128 KB

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 6 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

4. Description of the Application Example
This application note provides a monitor program example where the sample program is received from the
master device and the sample program execute and program ROM 2 area rewrite commands are executed.

Figure 4.1 shows the system structure.

Figure 4.1 System Structure Diagram

The control commands used in this application note are as follows.

Note:
1. When the program and erase have successfully completed, 6Fh ('o') is returned. If an error occurs,

65h ('e') is returned.

UART0 clock asynchronous serial I/O mode is used in communications with the master device. The UART0 settings
are as follows.

Mode: Clock asynchronous serial I/O mode
Communication bit rate: 38400 bps
CTS/RTS: N/A
Stop bit: 1 stop bit
Parity: None
Data bit length: 8 bits

Table 4.1 Control Commands
Control

Command
Name

Command
Explanation

1st - 3rd
bytes 4th byte 5th byte 6th byte and beyond

Program (write)
command

Writes the sample
program "prg" Size

(2 bytes)
Data

(max. 256 bytes)
Sum Value
(2 bytes)

Results
(1)

Erase command
Erases the
program ROM 2
area

"ers" Results
(1)

Data and sum value transmission, and
results receipt are repeated up to the
size of the program.

Sample program
execute
command

Executes the
written sample
program

"run"

Master device → Transferred to the monitor program

Monitor Program → Transferred to the master device

A monitor program
(M16C/65 Group)

A master device
(PC, etc.)

Clock asynchronous serial I/O mode (38400 bps)
-The sample program transmission
-Each command transmission and reception

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 7 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

The following explains the operations of this application note.
(1) The monitor program waits to receive the control command.
(2) When the received command is "prg"

(2-1) Receive sample size (2-byte data).
(2-2) Receive one packet (maximum 256 bytes) of program data.
(2-3) Receive packet data sum value (2-byte data).
(2-4) Compare received packet data sum value and the received sum value.
 (2-4-1) If no match, send error code to master device.
 (2-4-2) If they match, the CPU clock is set to 10 MHz or lower and one packet of data is written in the
 program ROM 2 area before returning the CPU clock to its original setting.
 (2-4-2-1) When the data has been successfully written, the write complete code is sent to the master device.
 (2-4-2-2) If a write error occurs, an error code is sent to the master device and program data receipt is
 stopped.
 (2-5) If an error does not occur, steps (2-2) through (2-4) are repeated until receipt of the sample program is
 completed.

(3) When the received command is "ers"
(3-1) The CPU clock is set to 10 MHz or lower and the program ROM 2 area is erased before returning the CPU
 clock to its original setting.
 (3-2-1) When successfully erased, the erase complete code is sent to the master device.
 (3-2-2) If an erase error occurs, an error code is sent to the master device.

(4) When the received command is "run"
(4-1) The sample program written in the program ROM 2 area is executed.

Figure 4.2. shows an example of the monitor program operation.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 8 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

Figure 4.2 Monitor Program Operation Example

A monitor program A master device

Send erase command
"ers"

Reset start

Transfer write control
program to RAM

Erase Program ROM 2

Send sample program
(256 bytes)

Program written to
program ROM 2

Send program (write)
complete code

Check sum value

Send sample program
execution command

"run"

Repeated for size
of sample program

Receive sample
program (256 bytes)

Send program (write)
command "prg"

Send sample program
size (2 bytes)

Receive size (2 bytes)

Receive program
(write) complete code

Transfer write control
program to RAM

Send erase
complete code

Receive sum value
(2 bytes)

Execute sample
program

Send sum value
 (2 bytes)

Transfer and set
relocatable vector for

RAM

Transfer and set
relocatable vector for

RAM

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 9 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

5. Structure

Declaration typedef struct buff{
unsigned char prg_data[RECORD_SIZE];
unsigned short rev_sum;
}REV_BUFF;

Variable unsigned char
prg_data[RECORD_SIZE]

RECORD_SIZE (256) byte sample
program storage array

unsigned short rev_sum Sum value storage variable
Function Structure that stores the received sample program (256 bytes) and the sum

value.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 10 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

6. Function Table

Declaration void peripheral_init(void)
Outline Peripheral function initial setting function
Argument None
Variable(global) None
Returned value None
Function Sets the UART0 send and receive setting and the timer A0 10 ms timer setting.

Declaration void cpu_slow(void)
Outline CPU slowdown process function
Argument None
Variable(global) None
Returned value None
Function Sets the main clock divider to CM06 = 0, CM17 - CM16 = 01 (divide-by-2 mode),

PM17 = 1 (1 wait).

Declaration void cpu_fast(void)
Outline CPU speed up process function
Argument None
Variable(global) None
Returned value None
Function Sets the main clock divider to CM06 = 0, CM17-CM16 = 00 (no division mode),

PM17 = 0 (no wait).

Declaration unsigned char rev_byte(unsigned char *rev_data)
Outline Command 1-byte receive function
Argument Argument Type Meaning

unsigned char *rev_data Receive command storage array address
Variable(global) None
Returned value Return Value Type Value Meaning

unsigned char COMPLETE Successfully completed
TIMEOUT Timeout
RECEIVE_ERROR Receive error

Function Stores the 1 byte received data in the array.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 11 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

Declaration unsigned char rev_cmd_check(unsigned char *cmd_buff)
Outline Command check function
Argument Argument Type Meaning

unsigned char *cmd_buff Start address of the received command
storage array

Variable(global) None
Returned value Return Value Type Value Meaning

unsigned char REV_ERASE Erase command received
REV_PROGRAM Program command received
REV_RUN Sample program execution command

received
REV_ERROR Receive error

Function Determines the received character string and returns the appropriate command.

Declaration void erase(void)
Outline Flash erase function
Argument None
Variable(global) None
Returned value None
Function Executes the block erase function located on the RAM, determines if the erase was

successful and sends a message.

Declaration void receive_program(void)
Outline Flash write function
Argument None
Variable(global) Variable Name Contents

REV_BUFF rb Structure that stores the received program
data and the sum value

Returned value None
Function Receives the sample program size, program data and sum value sent from the master

device. Executes the program function located on the RAM and writes the received
program data. Determines if it the write was received correctly and sends a message.

Declaration unsigned short rev_size(void)
Outline Sample program size receive function
Argument None
Variable(global) None
Returned value Return Value Type Value Meaning

unsigned short rev_size Received size data
Function Receives the sample program size sent from the master device.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 12 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

Declaration unsigned char rev_data(REV_BUFF *buff,unsigned short *size)
Outline Sample program data receive function
Argument Argument Type Meaning

REV_BUFF *buff Start address of the receive data storage
structure

unsigned short *size Address of the variable where the size is
stored

Variable(global) Variable Name Content
REV_BUFF rb Stores sum value

Returned value Return Value Type Value Meaning
unsigned char COMPLETE Receive successful

FAIL Receive failed
Function Receives 256 bytes sample program data and the sum value.

Compares the received packet data sum value and the received sum value.
When the received data is below the record size, the remaining space is filled with
0xFFh.

Declaration void note_program_start(void)
Outline Sample program execute function
Argument None
Variable(global) None
Returned value None
Function Executes the sample program written in the 10000h address.

Declaration void send_message(const unsigned char *mess)
Outline Message send function
Argument Argument Type Meaning

const unsigned char mess* Start address of the send message array
Variable(global) None
Returned value None
Function Sends a message.

Declaration void send_to_ram(void)
Outline Write control program transfer function
Argument None
Variable(global) None
Returned value None
Function Transfers the erase function, program function and the full status check function to the

RAM.

Declaration void send_to_ram_vector(void)
Outline Interrupt handler for RAM transfer function
Argument None
Variable(global) None
Returned value None
Function Transfers the interrupt handler to use on the RAM.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 13 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

Declaration void renewal_of_ram_vector(void)
Outline Relocatable vector table for RAM create function
Argument None
Variable(global) None
Returned value None
Function Create the relocatable vector table for the RAM.

Declaration unsigned char block_erase_ew0(unsigned short far* ers_addr)
Outline Block erase function
Argument Argument Type Meaning

unsigned short far* ers_addr Address of block to be erased
Variable(global) None
Returned value Return Value Type Value Meaning

unsigned char COMPLETE Successfully completed
CMD_SEQ_ERR Command sequence error
PROGRAM_ERR Program write error
ERASE_ERR Erase error

Function Erases the specified block in EW0 mode and executes a full status check.
Returns the appropriate error message when an error occurs.

Declaration unsigned char program_write_ew0
(unsigned short far* write_addr,unsigned short *buff)

Outline Program function
Argument Argument Type Meaning

unsigned short far* write_addr Start address of write destination
unsigned short *buff Data to be written (256 bytes)

Variable(global) None
Returned value Return Value Type Value Meaning

unsigned char COMPLETE Successfully completed
CMD_SEQ_ERR Command sequence error
PROGRAM_ERR Program write error
ERASE_ERR Erase error

Function Writes 256 bytes of data from the specified address in EW0 mode.

Declaration unsigned char full_status_check(void)
Outline Full status check function
Argument None
Variable(global) None
Returned value Return Value Type Value Meaning

unsigned char COMPLETE Successfully completed
CMD_SEQ_ERR Command sequence error
PROGRAM_ERR Program write error
ERASE_ERR Erase error

Function Executes a full status check and returns the results.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 14 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

Declaration void asm_smovf(void _far *_source, void _near *_dest, unsigned int _size)
Outline RAM transfer process function
Argument Argument Type Meaning

void_far *_source Source address (program)
void_near *_dest Destination address (RAM area)
unsigned int _size Transfer size

Variable(global) None
Returned value None
Function Transfers the specified area to the RAM area.

Declaration void ram_int_dummy(void)
Outline Interrupt handler for RAM of dummy function
Argument None
Variable(global) None
Returned value None
Function Dummy function for the RAM. Add program if needed.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 15 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7. Flowchart

7.1 Main Function

main(void)

CPU initial setting
mcu_init()

CPU initial setting processing

3 bytes received?

Received correctly?

Reception size initialization

A reception command

command
= REV_ERASE

default

Yes (i = 3)

No (i ≤ 2)

Peripheral function initial setting

Flash erase
erase()

peripheral_init()

Peripheral function
initialization processing

rev_byte(&rev_command[i])
The command 1 byte reception

rev_cmd_check(&rev_command[0])
A reception command check

Flash write
receive_program()

Reception size initialization

Sample program practice
note_program_start()

No (result = TIMEOUT or REV_ERROR)

Yes (result = COMPLETE)

command
= REV_PROGRAM

command
= REV_RUN

Increment receive size

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 16 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.2 CPU Initial Setting Function

mcu_init(void)

prcr ← 0x43

cm2 ← 0x00

Protection OFF

pm0 ← 0x00

pm1 ← 0x08 The entire area is usable.
No wait state

cm1 ← 0xA0

cm0 ← 0x08

return

Single-chip mode

Main clock used as CPU clock.

Main clock divide-by-4 mode

prcr ← 0x00 Protection ON

prg2c ← 0x00 Enable program ROM 2

cm1 ← 0x60

cm1 ← 0x20

Main clock divide-by-2 mode

Main clock no division mode

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 17 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.3 Peripheral Function Initial Setting Function

peripheral_init(void)

uclksel0 ← 0x00 UART0 clock prior to division: f1

pclkr ← 0x03

return

u0mr ← 0x05
UART mode character bit length is 8 bits,
Internal clock, one stop bit,
Parity disabled, No reverse

prcr ← 0x00 Protection ON

UART0 setting

SI/O clock: f1SIO, Timer A clock: f1TIMAB

prcr ← 0x01 Protection OFF

u0c0 ← 0x08 U0BRG count source: f1SIO

u0brg ← XIN_BRG
Transmission rate of XIN

u0c1 ← 0x07 Transmission enabled
Reception enabled

8 MHz
38400 bps × 16

- 1XIN_BRG =

tacs0 ← 0x00

Timer A0 setting

ta0mr ← 0x82

ta0 ← TIM10MS

ta0ic ← 0x00

ta0s ← 1

Bits TCK1 to TCK0 enabled

One-shot timer mode
Count source: f32

10 ms timer setting

Timer A0 interrupt disabled

Timer A0 count starts

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 18 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.4 CPU Slowdown Process Function

7.5 CPU Speed Up Process Function

cpu_slow(void)

prcr ← 0x03 Protection OFF

Main clock divide-by-2 mode

cm1 ← 0x60

cm0 ← 0x08

prcr ← 0x00 Protection ON

return

pm17 ← 1 Wait state (1 wait)

cpu_fast(void)

prcr ← 0x03 Protection OFF

Main clock no division mode

cm1 ← 0x20

cm0 ← 0x08

prcr ← 0x00 Protection ON

return

pm17 ← 0 No wait state

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 19 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.6 Command 1-byte Receive Function

rev_byte(unsigned char *rev_data)

return (result)

1 byte received?

Yes (ir_ta0ic = 1)

No (ri_u0c1 = 0)

ta0os ← 0

Not timeout

Timer A0 interrupt request clear

rev_buff ← u0rb

Yes

No (result
= TIMEOUT)

ta0ic ← 0x00

ta0os ← 1 Timer A0 one-shot start

10 ms elapsed?

result ← TIMEOUT

Timer A0 one-shot stop

Received correctly?

*rev_data ← rev_ buff & 0x00ff result ← RECEIVE_ERROR

Yes (ri_u0c1 = 1)
No (ir_ta0ic = 0)

result ← COMPLETE The initialization of the reception result

(result = COMPLETE)

Yes ((rev_buff & 0xf000) = 0x0000)

No

It is stored away once by a buffer.

It is stored away reception
data by an array.

Timeout is processed for
command receive only.
Timeout is not processed for
other messages received, so
the user must add them, if
necessary.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 20 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.7 Command Check Function

rev_cmd_check
(unsigned char *cmd_buff)

return (command)

cmd_buff = ers

Yes

No

command ← REV_ERASE The erase command
reception

cmd_buff = prg

Yes

No

command ← REV_PROGRAM The program command
reception

cmd_buff = run

command ← REV_RUN
The sample program
practice command
reception

command ← REV_ERROR The initialization
of the reception result

No

Yes

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 21 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.8 Flash Erase Function

erase(void)

return

Erased correctly? No (result = FAIL)

ep ← RP_ERASE

Yes (result = COMPLETE)

result ← FAIL

Set address of the block_erase_ew0
program on the RAM to ep.

The initialization of the erase result

Note:
 1. This application note only sends a message when an error occurs.
 Add error processes as necessary.

cpu_slow()
CPU slow process

cpu_fast()
CPU fast process

send_message(mess_err)
The erase error transmission (1)

send_message(mess_erase_ok)
The erase completion transmission

Transfer write control program.
send_to_ram()

The note control program
transmission

(*ep)((unsigned short far*)
(BLOCK_PGROM2_END))

Execute erase program located on
the RAM

Transfer the interrupt handler used on the RAM.
send_to_ram_vector()

Interrupt handler for RAM transfer
function

Create the relocatable vector table for the RAM.
renewal_of_ram_vector_t()

Relocatable vector table for RAM
create function

Save to the INTB register

Set address of the relocatable vector
table for RAM to the INTB register

Recover the INTB register

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 22 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.9 Flash Write Function

receive_program(void)

write_start_addr ← BLOCK_PGROM2

No error and no size
received

Do sum values match?

wp ← RP_PROGRAM

Written correctly?
No

Yes

No

Yes

No

Set 10000h address (program ROM 2 start address).

Receive the sent program size.

Store write program address in wp.

cpu_slow()
CPU slow process

cpu_fast()
CPU fast process

write_start_addr ← write_start_addr + (RECORD - SIZE / 2)

Yes

return

The program completion transmission
send_message(mess_program_ok)

(result = COMPLETE)

(result = FAIL)

Update write address.

The program error transmission (1)

send_message(mess_err)

Sample program size received
rev_size()

Sample program data received
rev_data(&rb,&r_size)

(result = COMPLETE)

Transfer write control program to RAM.
send_to_ram()

Write control program transferred

Execute write process located on the RAM
(*wp)(unsigned short far*,unsigned short*)

Note:
 1. This application note only sends a message when an error occurs.
 Add error processes as necessary.

Transfer interrupt handler used on RAM.
send_to_ram_vector()

Interrupt handler for RAM transfer
function

Create relocatable vector table for RAM.
renewal_of_ram_vector_t()

Relocatable vector table for RAM
create function

Save to the INTB register

Set address of relocatable vector table
for RAM to the INTB register

Recover the INTB register

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 23 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.10 Sample Program Size Receive Function

rev_size(void)

return (rev_size)

rev_size ← rev_size << 8

1 byte received?

Yes (ri_u0c1 = 1)

No (ri_u0c1 = 0)

rev_size ← u0rb & 0x00ff

1 byte received?

Store size upper data.

rev_size |= u0rb & 0x00ff Store size lower data and match to upper data.

Shift stored data 8 bits to the left.

No (ri_u0c1 = 0)

Yes (ri_u0c1 = 1)

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 24 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.11 Sample Program Data Receive Function

rev_data(REV_BUFF *buff,
unsigned short *size)

return (result)

Receive data remaining and
the record size not received

Yes (ri_u0c1 = 1)

No (ri_u0c1 = 0)

sum
← sum + (buff -> prg_data[i])

1 byte received?

buff -> prg_data[i]
← u0rb & 0x00ff

sum ← 0

Store received data.

Decrement the receive size.

result ← COMPLETE

buff -> prg_data[i] ← 0xff

Yes

result ← FAIL

Initialize sum value.

Yes (i = RECORD_SIZE)

No (i < RECORD_SIZE)

*size ← *sum - 1

1 byte received?

buff -> rev_sum
← u0rb & 0x00ff

1 byte received?

buff -> rev_sum
← (buff -> rev_sum) | ((u0rb & 0x00ff) << 8)

Was the data stored in the
record size prg_data[i]?

Sum value is equal

Yes (sum = (buff -> rev_sum))

No

Add sum value.

No

Receive sum value (lower data).

Combine the received sum value (upper data) and
the sum value (lower data).

If the received data is less than 256 bytes,
the remaining space is filled with FFh.

Initialize receive results.

No (ri_u0c1 = 0)

Yes (ri_u0c1 = 1)

No (ri_u0c1 = 0)

Yes (ri_u0c1 = 1)

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 25 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.12 Sample Program Execute Function

7.13 Message Send Function

7.14 Write Control Program Transfer Function

note_program_start(void)

p ← BLOCK_PGROM2 Store 10000h address (program ROM 2 start address) in p.

return

Execute write program
(*p)()

send_message(const
unsigned char *mess)

return

Yes
(*mess = ’\0')

No (*mess != ‘\0’)

Is there data in the send
buffer?

u0tb ← *mess Send 1 byte.

Yes (ti_u0c1 = 0)

No (ti_u0c1 = 1)

Wait until no data remains
in the U0TB register.

All character strings
sent?

send_to_ram(void)

return

asm(“POPC FLG") Recover the flag register.

asm(“fclr I")

Transfer block erase function, program function
and full status check function to RAM area.

Note:
 1. ((void far *) block_erase_ew0, (void near *)ram_p, ((unsigned short) size / 2))

Maskable interrupt disabled.

asm_smovf (1)

RAM transfer process

size ←
dummy - block_erase_ew0 + 1 Calculate the size of the function to be transferred.

asm(“PUSHC FLG") Save to the flag register.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 26 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.15 Interrupt Handler for RAM Transfer Function

7.16 Relocatable Vector Table for RAM Create Function

send_to_ram_vector(void)

return

asm(“POPC FLG”) Recover the flag register.

asm(“FCLR I”)

Transfer interrupt hander used on the RAM.

Note:
 1. ((void far *)ram_int_dummy, (void near *)ram_vector, ((unsigned short)size / 2))

Disable maskable interrupt.

size ←
dummy2 - ram_int_dummy + 1 Calculate the size of the function to be transferred.

asm(“PUSHC FLG”) Save to the flag register.

asm_smovf (1)

RAM transfer process

renewal_of_ram_vector_t(void)

return

ram_vector_table[i] ←
offset_table_for_ram[i] +

(unsigned long)(&ram_vector[0])

Set the address of the interrupt handler for the
RAM to the relocatable vector table for the
RAM.

Create relocatable
vector for RAM completed?

Yes (i ≥ 64)

No (i < 64)

i ← i + 1

i ← 0 Initialize counter.

Increase counter.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 27 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.17 Block Erase Function

block_erase_ew0(unsigned
short far* ers_addr)

Currently erasing?

No (fmr00 = 1)

Yes

full_status_check()
Full status check

*ers_addr ← ERS_CMD

fmr01 ← 0

Enable CPU rewrite mode.

fmr01 ← 1

fmr1 ← 0x82

fmr6 ← 0x02

fmr1 ← 0x80

Enable FMR6 register write.

Set to EW0 mode.

Disable FMR6 register write.

*ers_addr ← CNF_CMD

Erased correctly?
No

*ers_addr ←
CLR_STS_CMD

(erase_result
= COMPLETE)

(erase_result
= CMD_SEQ_ERR)

(erase_result
= PROGRAM_ERR)

(erase_result
= ERASE_ERR)

*ers_addr ←
CLR_STS_CMD

*ers_addr ←
CLR_STS_CMD

Yes (fmr00 = 0)

fmr01 ← 0

return(erase_result)

Disable CPU rewrite mode.

Write 0020h in the block highest (even-numbered) address.

Write 00D0h in the block highest (even-numbered) address.

When executing the block erase function, set
the CPU clock to 10 MHz or lower using the
CM0 register CM06 bit and CM1 register
CM17-CM16 bits. Also, set the PM1 register
PM17 bit to 1 (wait). (In this application note,
the CPU clock is set in the CPU Slow Process
Function.)

*ers_addr ← READ_CMD Execute the read array command.

asm(“PUSHC FLG”)

asm(“FCLR I”) Disable maskable interrupt.

Save to the flag register.

asm(“POPC FLG”) Recover the flag register.

Note:
 1. CPU clock frequencies that can be used in CPU rewrite mode (EW0 and EW1 modes) differ for each product.
 Refer to the user’s manual for details.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 28 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.18 Program Function

program_write_ew0(unsigned short far*
write_addr,unsigned short *buff)

256 bytes written?
No (i < (RECORD_SIZE / 2))

Yes (fmr00 = 0)

full_status_check()
Full status check

write_addr[i] ← PRG_CMD

fmr01 ← 0

Enable CPU rewrite mode.
fmr01 ← 1

fmr1 ← 0x82

fmr6 ← 0x02

fmr1 ← 0x80

Enable FMR6 register write.

Set to EW0 mode.

Disable FMR6 register write.

Written correctly?

No

*write_addr ←
CLR_STS_CMD

(program_result = COMPLETE)

(program_result
= CMD_SEQ_ERR)

(program_result
= PROGRAM_ERR)

(program_result
= ERASE_ERR)

*write_addr ←
CLR_STS_CMD

*write_addr ←
CLR_STS_CMD

Yes
(i ≥ (RECORD_SIZE / 2))

fmr01 ← 0

return(program_result)

Disable CPU rewrite mode.

Write 0041h in write address.

Write data.write_addr[i] ← buff[i]

write_addr[i] ← buff[i+1]

Currently writing?

Write data.

No (fmr00 = 1)

Yes

When executing the program function,
set the CPU clock to 10 MHz or lower
using the CM0 register CM06 bit and
CM1 register CM17-CM16 bits. Also,
set the PM1 register PM17 bit to 1
(wait). (In this application note, the
CPU clock is set in the CPU Slow
Process Function.)

i ← i + 2

write_addr[0] ← READ_CMD Execute the read array command.

asm(“PUSHC FLG”)

asm(“FCLR I”) Disable maskable interrupt.

Save the flag register.

Note:
 1. The frequency of the CPU clock used for the CPU rewrite mode (EW0 and EW1 modes) may be different depending on
 MCUs. Refer to the User’s manual for details.

asm(“POPC FLG”) Recover the flag register.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 29 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

7.19 Full Status Check Function

7.20 RAM Transfer Process Function

full_status_check(void)

return (check_result)

FMR07 = 1
and

FMR06 = 1?

Yes

No

FMR06 = 1? Yes

No

Command sequence error

FMR07 = 1? Erase error

Program error

Yes

No

asm_smovf (void _far *_source,
 void _near *_dest, unsigned int _size)

return

[Argument]
*_source: source function start address (R2R0)
*_dest: destination RAM area start address (A1)
_size: transfer data size (by word) (R3)

asm(“pushm R1,A0”) Save to RI register and A0 register.

asm(“mov.w R0,A0”) Transfer the lower 16 bits of the source address (R0) to the A0 register.

asm(“mov.w R2,R1”) Transfer the upper 4 bits of the source address (R2) to the R1 register.

asm(“mov.b R1L,R1H”) Transfer the upper 4 bits of the source address (R1L) to the R1H
register.

asm(“smovf.w”) Transfer to RAM area.

asm(“popm R1,A0”) Recover R1 register and A0 register.

M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD,
56D, 5L, 56, 5M, and 57 Groups

R01AN0172EJ0103 Rev.1.03 Page 30 of 30
Jan. 31, 2011

The Use Example of CPU Rewrite Mode (EW0 mode)

8. Sample Program
A sample program can be downloaded from the Renesas Electronics website.
To download, click “Application Notes” in the left-hand side menu of the M16C Family page.

9. Reference Documents
M16C/63 Group User’s Manual: Hardware Rev.1.00
M16C/64 Group User’s Manual: HardwareRev.1.05
M16C/64A Group User’s Manual: Hardware Rev.1.10
M16C/64C Group User’s Manual: Hardware Rev.0.10
M16C/65 Group User’s Manual: Hardware Rev.1.10
M16C/65C Group User’s Manual: Hardware Rev.0.10
M16C/6C Group User’s Manual: Hardware Rev.1.00
M16C/5LD Group, M16C/56D Group User’s Manual: Hardware Rev.1.10
M16C/5L Group, M16C/56 Group User’s Manual: Hardware Rev.1.00
M16C/5M Group, M16C/57 Group User’s Manual: Hardware Rev.1.01
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual
M16C Series, R8C Family C Compiler Package V.5.45
C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

 Website and Support
Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

http://japan.renesas.com/
http://japan.renesas.com/inquiry

A - 1

Revision History
M16C/63, 64, 64A, 64C, 65, 65C, 6C, 5LD, 56D, 5L, 56, 5M,

and 57 Groups
 The Use Example of CPU Rewrite Mode (EW0 mode)

Rev. Date
Description

Page Summary
1.00 Sep. 02, 2009 — First edition issued
1.01 Oct. 14, 2009 27, 28 The processing of the read array command execution is added
1.02 Jan. 29, 2010 26 Updated the flowchart of "7.14 Write Control Program Transfer Function"
1.03 Jan. 31, 2011 — M16C/5L, M16C/5LD, M16C/5M, M16C/64C, M16C/65C, M16C/56D,

M16C/56, and M16C/57 Groups are added
— Partially modified
1 The condition of M16C/65 Group can be used is added in “2. Introduction”

3 The explanation in “Figure 3.1 Settings and Resetting of EW0 Mode” is
devised

6 The explanation in “Figure 4.1 System Structure Diagram” is added

8 The processing of “Transfer and set relocatable vector for RAM” command
is added

12 Function table of Interrupt handler for RAM transfer function is added
13 Function table of Relocatable vector table for RAM create function is added
14 Function table of Interrupt handler for RAM of dummy function is added

21
The processing of Interrupt handler for RAM transfer function, Relocatable
vector table for RAM create function, and Save to the INTB register
commands are added

22
The processing of Interrupt handler for RAM transfer function, Relocatable
vector table for RAM create function, and Save to the INTB register
commands are added

25

In “7.14 Write Control Program Transfer Function”:
The processing of Save to the flag register and Recover to the flag register
commands are added
The handler of Interrupt enabled command is deleted

26 “7.15 Interrupt Handler for RAM Transfer Function” and “7.16 Relocatable
Vector Table for RAM Create Function” are added

27

Note 1 is added in “7.17 Block Erase Function”
The processing of Save to the flag register, Disable maskable interrupt,
and Recover to the flag register commands are added
Devised from “fmr0 ←0x00” to “fmr01 ← 0
Devised from “fmr0 ←0x02” to “fmr01 ← 1

28

Note 1 is added in “7.18 Program Function”
The processing of Save to the flag register, Disable maskable interrupt,
and Recover to the flag register commands are added
Devised from “fmr0 ← 0x00” to “fmr01 ← 0
Devised from “fmr0 ← 0x02” to “fmr01 ← 1

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes
on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under
General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each
other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation

with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the
vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur
due to the false recognition of the pin state as an input signal become possible. Unused
pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register

settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states
of pins are not guaranteed from the moment when power is supplied until the reset
process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power
reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do

not access these addresses; the correct operation of LSI is not guaranteed if they are
accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock
signal has stabilized.
 When the clock signal is generated with an external resonator (or from an external

oscillator) during a reset, ensure that the reset line is only released after full stabilization of
the clock signal. Moreover, when switching to a clock signal produced with an external
resonator (or by an external oscillator) while program execution is in progress, wait until
the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different part number, confirm
that the change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different part numbers may

differ because of the differences in internal memory capacity and layout pattern. When
changing to products of different part numbers, implement a system-evaluation test for
each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2011 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

	1. Abstract
	2. Introduction
	3. CPU Rewrite Mode
	3.1 EW0 Mode Features
	3.2 EW0 Mode Settings
	3.3 Memory Map

	4. Description of the Application Example
	5. Structure
	6. Function Table
	7. Flowchart
	7.1 Main Function
	7.2 CPU Initial Setting Function
	7.3 Peripheral Function Initial Setting Function
	7.4 CPU Slowdown Process Function
	7.5 CPU Speed Up Process Function
	7.6 Command 1-byte Receive Function
	7.7 Command Check Function
	7.8 Flash Erase Function
	7.9 Flash Write Function
	7.10 Sample Program Size Receive Function
	7.11 Sample Program Data Receive Function
	7.12 Sample Program Execute Function
	7.13 Message Send Function
	7.14 Write Control Program Transfer Function
	7.15 Interrupt Handler for RAM Transfer Function
	7.16 Relocatable Vector Table for RAM Create Function
	7.17 Block Erase Function
	7.18 Program Function
	7.19 Full Status Check Function
	7.20 RAM Transfer Process Function

	8. Sample Program
	9. Reference Documents
	Website and Support
	Revision History

