To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS APPLICATION NOTE
H8/3687

Master-Slave Communication using I°C Interface (H8/3687)

Introduction

The H8/3687 group are single-chip microcomputers based on the high-speed H8/300H CPU, and integrate all the
peripheral functions necessary for system configuration. The H8/300H CPU employs an instruction set which is
compatible with the H8/300 CPU.

The H8/3687 group incorporates, as peripheral functions necessary for system configuration, a timer, I°C bus interface,
serial communication interface, and 10-bit A/D converter. These devices can be utilized as embedded microcomputers
in sophisticated control systems.

These H8/300H Series H8/3687- Application Notes consist of a "Basic Edition" which describes operation examples
when using the individual on-chip peripheral functions of the H8/3687 group in isolation; they should prove useful for
software and hardware design by the customer.

The operation of the programs and circuits described in these Application Notes has been verified, but in actual
applications, the customer should always confirm correct operation prior to actual use.

Target Device

H8/3687

Contents
(S o 1= Tor) or=1 £ o] o SRR 2
2 o oo (U = 1T} o PRSPPI 2
R TS T 1] o1 (=3 o e = 10 0 T ST PUPPPOPI 3
4. Reference DOCUMENTScc.uiiiiiiiiiie ittt ettt sir e s bt e ern e neneas 38

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 1 of 40

LENESANS

H8/3687

Master-Slave Communication using I°C Interface

1. Specifications

Communication between microcomputers is carried out via the I°C interface of the H8/3687.

2. Configuration

Figure 2.1 shows a diagram of connection between microcomputers.

Vce (V)

12

26

P56/SDA

27

P57/SCL

H8/3687
(Master mo

de)

P56/SDA

P57/SCL

Vce

H8/3687
(Slave mode)

12

Note: Operating frequency of the H8/3687 is 16 MHz with the power supply voltage of 5 V.

Figure 2.1 Diagram of connection between microcomputers.

REJ06B0105-0100Z/Rev.1.00

September 2003

Page 2 of 40

‘ z H8/3687
. E N ESAS Master-Slave Communication using I°C Interface

3. Sample Programs

3.1 Functions

The H8 microcomputer in master mode transmits four bytes of data, which is received by the H8 microcomputer in
slave mode. The slave-mode microcomputer then returns the same four bytes of data to the master-mode
microcomputer.

3.2 Embedding the Sample Programs

1. Sample program 2-A
Incorporate #define directives.
(For the microcomputer which is to operate in slave mode, #define SLAVE MODE should be included.)
2. Sample program 2-B
Incorporate prototype declarations.
3. Sample program 2-C
Incorporate the source program.
4. Sample program 2-D (interrupt processing for slave mode)
— Add the reset vector for I°C.
— Add I’C setting initialization.
— Add I’C interrupt processing.

3.3 Modification to the Sample Programs

Without modifications to the sample program, the system may not run. The sample programs should be modified to be
suited to your program and system environment.

1. You can use the sample programs without further changes if you use the I/O register definition file available free of
charge from the following Renesas web site.
http://www.renesas.com/eng/products/mpumcu/tool/crosstool/iodef/index.html
When creating definitions by yourself, you may modify the I/O register structures in the sample program as
appropriate.

2. The sample program is designed so that timer Z is configured to start every 10 ms with timeout setting of 5 seconds
in order to give timing of monitoring the state of the I’C interface. The timer processing may be modified according
to your needs, and of course can be used without modification. When using the timer processing in the sample
program without modification, the following changes should be made.

A. Sample program 2-E

e Add the timer Z reset vector.

e Add com_timer as a common variable.

e Add timer Z initial setting processing.

e (The GRA setting should be changed according to the operating frequency of the microcomputer being used,
so that the timer Z interrupt occurs every 10 ms. For setting values, refer to the H8/3664 Hardware Manual,
for the location of modification, refer to the program notes in the sample program.)

e Add timer Z interrupt processing.

3. The I’C interface transfer rate ICCR1(CKS3 to CKS0) should be set according to the target device specifications
and the microcomputer operating frequency. Refer to the H8/3687 Hardware Manual for setting values, and to the
program notes in the sample program for the location of modification. In this sample program, the transfer rate is set
to 200 kbps.

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 3 of 40

http://www.hitachisemiconductor.com/sic/eng/japan/jpn/PRODUCTS/MPUMCU/TOOL/crosstool/iodef/iodef.html

RENESAS ariacs

Master-Slave Communication using I°C Interface

34 Method of use

Four bytes of data are transmitted from the master-mode H8 microcomputer, and after the slave-mode HS
microcomputer receives the data, it returns the same 4 bytes of data to the master-mode device. The following
subroutine is executed by the master-mode device.

1. Transmit 4 bytes of data from the master mode to the slave-mode device
unsigned int com i2c master send
(unsigned char slave addr , unsigned int data length , unsigned char *send data)

Argument Explanation
slave_addr Specifies the slave-mode device address.
In the sample program, this setting is 0x80.
data_length Specifies the length of data for transmission
In the sample program, this setting is 0x4.
*send_data Specifies the address at which to store data for transmission.
Return value Explanation
0 Normal termination
1 Abnormal termination (bus busy timeout)
2 Abnormal termination (transfer preparation completion wait timeout)
3 Abnormal termination (acknowledge timeout)
4 Abnormal termination (transfer completion wait timeout)
5 Abnormal termination (reception completion wait timeout)
6 Abnormal termination (halt condition detection timeout)

Example of use:

int ret ;

unsigned char slave addr ;

unsigned int data length ;

unsigned char send data[256] ;

ret = com_i2c master send (slave addr , data length , &send data[0])

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 4 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

2. The 4 bytes of data returned by the slave-mode device are received by the master-mode device.
unsigned int com i2c master recive
(unsigned char slave addr , unsigned int data length , unsigned char *recive data)

Argument Explanation
slave_addr Specifies the slave-mode device address.

In the sample program, this setting is 0x80.
data_length Specifies the receive data length.

In the sample program, this setting is 0x4.
*recive_data Specifies the address where the received data is stored.
Return value Explanation
0 Normal termination
1 Abnormal termination (bus busy timeout)
2 Abnormal termination (transfer preparation completion wait timeout)
3 Abnormal termination (acknowledge timeout)
4 Abnormal termination (transfer completion wait timeout)
5 Abnormal termination (reception completion wait timeout)
6 Abnormal termination (halt condition detection timeout)

Example of use:

int ret ;

unsigned char slave addr ;

unsigned int data length ;

unsigned char recive data[256] ;

ret = com_i2c master recive (slave addr , data length , &recive datal0O])

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 5 of 40

LENESANS

H8/3687

Master-Slave Communication using I°C Interface

3.5 Description of operation

The operation is as described below. The following figure depicts the operation of the master-mode and the slave-mode
HS8 microcomputers with respect to SDA data flow.

1. Four bytes of data is transmitted from the master-mode H8 microcomputer, and after the slave-mode H8
microcomputer receives the data, it returns the same 4 bytes of data to the master-mode device.

Subroutine name Master-mode

microcomputer processing:

com_i2c_master_send
set_i2c_init
set_start_conditon

Initial settings
Set the start condition.

Set a device address.
(write)

set_slavesel_seq

wait_ack Wait for an acknowledge.

set_data_seq Set write data.

set_data_seq Set write data.

SDA

Start

o|o|lo|oflo

0 (W)
ACK

0

Contents of
the specified
address

ACK =0

Contents of
the specified

Slave-mode
microcomputer
hardware processing:

Slave-mode
microcomputer
software processing:

Recognize the start of
operation.

Confirm selection of
this device.

12C interrupt

Issue a reception interrupt. Confirm data

Return ACK. reception
Receive write data. —_— Read data.
Return ACK.

Receive write data. R Read data.

address +n
ACK=0 |+—— Return ACK.
set_end_proc Set the stop condition. — Stop
REJ06B0105-0100Z/Rev.1.00 September 2003 Page 6 of 40

LENESANS

H8/3687

Master-Slave Communication using I°C Interface

Subroutine name

com_i2c_master_recive

set_start_conditon

set_slavesel_seq

set_master_rcv_mode
start_read_seq

get_data_seq

get_data_seq

start_data_seq

get_end_data_seq

Master-mode
microcomputer processing

Re-set the start condition.

Set the device address.
(read).

Switch to master
reception mode.
Perform dummy read at

the beginning of reading data.

Read data.

Return ACK.

Read data.

Return ACK.

Set to stop receive operation
after reading the last data.

Read the last byte.

Return No ACK.
Set the stop condition.

SDA

Start

o|o|o|o|o|o

1(R)

ACK =0

Contents of
the specified
address

ACK =0

Contents of
the specified
address + (n-1)

ACK =0

Contents of
the specified
address + n

ACK =1

Stop

Slave-mode
microcomputer
hardware processing

Recognize the re-starting of
the operation.

Recognize read mode
Automatically switch to
the slave reception mode

Return ACK.

Transmit data.

Receive ACK.

Transmit data.

Receive ACK.

Transmit data.

Receive No ACK.

Slave-mode
microcomputer
software processing

Wait for entering slave
reception mode.

Return the received data.

Return the received data.

Return the received data.

REJ06B0105-0100Z/Rev.1.00

September 2003

Page 7 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

3.6 List of registers used

The internal registers of the H8 microcomputer used in the sample program are listed below. For detailed information,
refer to the H8/3687 Group Hardware Manual.

1. I’C-related registers

Name Summary

I°C bus control register 1 (ICCR1) Starts or stops operation of the I°C bus interface 2, controls
transmission/reception, and selects master/slave mode,
transmission/reception, and master mode transfer clock frequency.

I°C bus control register 2 (ICCR2) Issues start/stop conditions, operates the SDA pin, monitors the SCL pin,
and controls resets for I°C bus interface 2 control unit.

I°C bus mode register (ICMR) Selects the MSB first or LSB first, controls master mode waits, and sets the
number of transfer bits.

Bus interrupt enable register (ICIER) Enables individual interrupts, validates/invalidates acknowledge, sets
transmit acknowledge, and checks receive acknowledge.

I°C bus status register (ICSR) Used for checking of interrupt request flags and the statuses.

Slave address register (SAR) Sets the slave address and transfer format.

I°C bus transmit data register (ICDRT) 8-bit readable/writable register which stores data for transmission.

I°C bus receive data register (ICDRR) 8-bit register which stores received data.

2. Timer Z-related registers

Timer Z has various functions, but in the sample program it uses the compare-match function with the GRA register
to generate an interrupt every 10 ms.

Name Summary

Timer start register (TSTR) Starts or stops TCNT operation.

Timer mode register W (TMDR) Sets buffer operation and selects synchronous operation.

Timer PWM mode register (TPMR) Sets pins for PWM mode. Not used in this sample program.

Timer function control register (TFCR) Selects operation modes and output level settings. Not used in this sample
program.

Timer output master enable register Enables/disables outputs on channels 0 and 1.

(TOER)

Timer output control register (TOCR) Selects the initial output level that is to be output until the first compare-
match is generated.

Timer counter (TCNT) 16-bit readable/writable register which counts up with the input clock.

General registers A, B, C, D (GRA, GRB, General registers are16-bit readable/writable registers. Each channel has

GRC, GRD) four general registers, therefore, total of eight registers are provided. These

registers can be used either as output-compare registers or input-capture
registers, according to the TIORA and TIORC settings.

Timer control register (TCR) Selects the TCNT counter's input clock, edge for an external clock (when an
external clock is selected), and counter clearing conditions.

Timer 1/O control register (TIORA) Selects the functions of the GRA and GRB to be used as output-compare
registers or as input-capture registers.

Timer status register (TSR) Indicates occurrence of TCNT overflow/underflow and compare-match or
input-capture with GRA/GRB/GRC/GRD.

Timer interrupt enable register (TIER) Enables/disables overflow interrupt requests and compare-match/input-

capture interrupt requests.

PWM mode output level control register Controls the active level in PWM mode. Not used in this sample program.
(POCR)

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 8 of 40

LENESANS

H8/3687

Master-Slave Communication using I°C Interface

3.7

1. Master mode H8 microcomputer processing

Flowcharts

com_i2c_master_send

(Start

[| mitialize 2C bus settings.

| | Set the start condition.

| | Set the slave address (Write).

| | Wait for an acknowledge.

| | Write data sequentially.

| | Issue the stop condition.

(End

Corresponding subroutine name

set_i2c_init

set_start_condition

set_slavesel_seq

wait_ack

set_data_seq

set_end_proc

com_i2c_master_recive

(Start

| | Set the start condition.

| | Set the device address word.

| | Switch to master reception mode.

Perform dummy read at
the beginning of reading data.

| | Read data sequentially.

Before reading the last data, set to
disable the next reception.

| | Read the last byte.

| | Issue the stop condition.

(End

Corresponding subroutine name

set_start_condition
set_slavesel_seq

set_master_rcv_mode

start_read_seq

get_data_seq

start_read_seq

get_end_data_seq

set_end_proc

REJ06B0105-0100Z/Rev.1.00

September 2003

Page 9 of 40

LENESANS

H8/3687

Master-Slave Communication using I°C Interface

2. Slave mode H8 microcomputer processing

12C interrupt processing

(Start)

|
Set the mask to enable Timer Z interrupts to be
used during I2C reception interrupt processing.

Reception interrupt?
ICSR (RDRF) = 1

Yes
Does the slave address
match?

Yes
| Read ICDRR to read the first byte. |

Write mode?
(i.e bit 0 of the read data = 0?)

Yes
|

Wait for reception completion and

Corresponding subroutine name

com_int_ctl (0)

confirm that ICSR (RDRF) = 1.
I

Read receive data and store ICDRR contents to
the address specified by *read_data.

Repeat four times.

Wait for slave transmit mode and confirm

that ICSR (TRS) = 1.

Wait for transfer preparation completion and confirm

that ICSR (TDRE) = 1.

Transmit data.
ICDRT « write_data

Repeat four times.

Wait for transfer preparation completion and confirm

that ICSR (TDRE) = 1.

I
Wait for transfer completion and confirm

that ICSR (TEND) = 1.

Timeout after
5 seconds
]

[Reseticsr (TEND). [
|

Set ICCR1 (TRS) to 0 to return to

slave reception mode.

I
| Dummy-read ICDRR to release SCL.. |

|
[ResetiCsR (aAS). [

|
| | Suppress Timer Z interrupts. | |

[
(End)

com_int_ctl (1)

REJ06B0105-0100Z/Rev.1.00 September 2003

Page 10 of 40

‘ z H8/3687
. E N ESAS Master-Slave Communication using I°C Interface

set_i2C_init
: Initializes 12C bus settings.

(Stlan)

Set the slave address register (SAR).
SVAG to SVAO = 1000000 (unique value)
FS=0 12C format.

Set the 12C control register (ICCR1)

ICE =1 12C use enabled.

RCVD =0 Reception continuation enabled.
MST TRS =00 Slave reception mode.

CKS3:0 =0100 Transfer clock: 200 kbps

Set ICMR (12C mode)

MLS =0 MSB first.

WAIT =0 No wait insertion.
CKS2:0 =001 BC2:0 setting enabled
BC[2:0] =000 12C bus format: 9 bits

(End)

set_start_condition
: Sets the start condition.

(Stlan)

Set to master transmit mode.
ICCR1 (MST, TRS) = 11

Wait for 12C bus to be released and
confirm that ICCR (BBSY) = 0.

Set the start condition. Timeout after
ICCR2 « 0x80 5 seconds

(End)

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 11 of 40

H8/3687

u {E N ESAS Master-Slave Communication using I2C Interface

set_slavesel_seq(unsigned char mode,unsigned char slave_addr)
: Executes slave selection processing.
Mode: Write or read
0: Write, 1: Read
slave_addr: EEPROM device address

(Stlart)

Wait for transfer preparation completion
and confirm that ICSR (TDRE) = 1.
|
Transmit slave address.
In writing, ICDRT « slave_addr
In reading, ICDRT « slave_addr | 0x01

Timeout after
5 seconds

()

wait_ack
: Waits for an acknowledge.

(Start)
|
Wait for transfer preparation completion
and confirm that ICSR (TDRE) = 1.
|
Wait for transfer completion and
confirm that ICSR (TEND) = 1.
I

Wait for ACK and confirm that
ICIER (ACKBR) = 1.

Timeout after
5 seconds
|

()

set_data_seq(unsigned char write_data)
: Sets data for transmission.
write_data: Data to be transmitted

(Start)
I
Wait for transfer preparation completion
and confirm that ICSR (TDRE) = 1.
|

Transmit data.
ICDRT « write_data

Timeout after
5 seconds

(End)

REJ06B0105-0100Z/Rev.1.00 September 2003

Page 12 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

set_master_rcv_mode
: Switches to master reception mode.

(Stlart)

Wait for transfer preparation completion
and confirm ICSR (TDRE) = 1.

Wait for transfer completion and
confirm ICSR (TEND) = 1.

Reset ICSR (TEND).

Switch to master reception mode.
ICCR1 (MST, TRS) « 10

Timeout after
5 seconds

[ResetICSR (TDRE). |

(End)

get_data_seq(unsigned char *read_data)
: Receives data.
*read_data: Address to store read data

(Stlan)

Wait for reception completion
and confirm that ICSR (RDRF) = 1.

Read receive data and store ICDRR
contents to the address specified
by *read_data.

Timeout after
5 seconds

(End)

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 13 of 40

‘ z H8/3687
. E N ESAS Master-Slave Communication using I°C Interface

get_end_data_seq(unsigned char *read_data)
: Receives the last data.
*read_data: Address to store read data

(Stlan)

Wait for reception completion and
confirm that ICSR (RDRF) = 1.
]
Set the stop condition.
ICCR2 « 0x00

Wait for completion of the stoppage and
confirm that ICSR (STOP) = 1.

Read receive data and store ICDRR
contents to the address specified
by *read_data.

Cancel the setting of disabling the next Timeout after
reception after recieving the last byte. 5 seconds

ICCR (RCVD) «1 |

()

set_end_proc
: Executes end sequence.

(Start)
|
Wait for transfer preparation completion
and confirm that ICSR (TDRE) = 1.
|
Wait for transfer completion and confirm
that ICSR (TEND) = 1.
]
Set the stop condition.
ICCR2 « 0x00

I

[ResetiCSR (TEND). |
I

Wait for completion of the stoppage and

confirm that ICSR (STOP) = 1.
1

| Wait for approx. 4 us

| Timeout after
5 seconds

()

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 14 of 40

LENESANS

H8/3687

Master-Slave Communication using I°C Interface

start_read_seq(unsigned char mode)
: Execute preprocessing for data reception.

(Start)

mode = Yes

MULTI_BYTE_READ

No

mode = Yes

Set ICIER (ACKBT) to 0 so as to return
'ACK' after data reception.
ICIER (ACKBT) «<— 0

Dummy-read ICDRR, which causes
reception to start.

SINGLE_BYTE_READ

No

mode = Yes

Set ICIER (ACKBT) to 1 so as to return
'NO ACK' after data reception.
ICIER (ACKBT) « 1

Set ICCR1 (RCVD) to 1 to disable
the next reception after data reception.
ICCR1 (RCVD) « 1

Dummy-read ICDRR, which causes
reception to start.

MULTI_FINAL_BYTE_READ

Set ICIER (ACKBT) to 1 so as to return
'NO ACK' after data reception.
ICIER (ACKBT) « 1

Set ICCR1 (RCVD) to 1 to disable
the next reception after data reception.
ICCR1 (RCVD) « 1

()

REJ06B0105-0100Z/Rev.1.00

September 2003

Page 15 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

3.8 Program Listing

2 */
2 */
/* 1. Sample Program 2-A #define directives ---—----—-—--————--—- */
/* ,, */
/* ,, */

] Kk kK Kk Kk kK KKk K Kk ok ok Kk ok ok ok ok Kk ok ko ok Kk ok ok Kk ok Kk ok kK ko ok ko ok ok ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok Kk ok ok K ko ko

/* For I2CEEPROM access */

6 Kk kK Kk Kk kKK ok K Kk ok ok Kk ok ok ok ok Kk ok Kk ok Kk ok Kk ok Kk ok ok ko ok Kk ok ok ok ko ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok ok Kk ko

#define CMD_WRITE_OPERATION 0
#define DATA READ_OPERATION 1
#define MULTI_BYTE READ 0
#define SINGLE_BYTE READ 1
#define MULTI_FINAL BYTE READ 2

[KRR KKK KK KKK KK KK KKK KKK KK K KKK KKK KK K KK KK KK KKK KKK K KK KKK KKK K KKK K KKK K K KKK K KKK K XK K KK K KK K KK K K kR K K kK K K XK K X KRR K Xk K

/* I2CEEPROM access error codes (codes other than 0) */

] Kk kK Kk Kk kK KKk Kk ok ok Kk ok ok ok ok Kk ok Kk ok ok Kk ok ok Kk ok Kk ok ok ko ok ko ok ok ko ok kK ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok Kk ok ok K Kk ko

#define I2C_BBSY_TOUT 1
#define I2C_TDRE_TOUT 2
#define I2C_ACKBR_TOUT 3
#define I2C_TEND_TOUT 4
#define I2C_RDRF_TOUT 5
#define I2C_STOP_TOUT 6
#define I2C_TRS_TOUT 7

/**/
/* l This should only be defined for the slave mode device. */
/**/
/* slave mode */

] Kk kK Kk Kk kKK kK Kk ok ok Kk ok ok ok ok kK ok ko ok Kk ok ok Kk ok ok Kk ok kK ko ok ko ok ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok Kk ok ok ok ko ko

#define SLAVE_ MODE

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 16 of 40

‘ z H8/3687
o E N ESAS Master-Slave Communication using I°C Interface

2 */

/**/
R R e
/* I2C BUS access processing */
R R]
/**/
void com delay(int delaytime) ;

void com_int ctl (unsigned char kind) ;

void set_i2c_init();

unsigned int set_start_condition();

unsigned int wait_ack();

unsigned int set_slavesel_ seq (unsigned char mode ,unsigned char slave_addr) ;

unsigned int set_data_seqg(unsigned char write_data);

unsigned int set_end proc ();

unsigned int set_master rcv_mode () ;

void start_read_seq (unsigned char mode) ;
unsigned int get_end data_seq (unsigned char *read data);

unsigned int get data_seq (unsigned char *read_data);

unsigned int com_i2c_master_send (unsigned char slave_addr , unsigned int data_length , unsigned char *send data) ;

unsigned int com_i2c_master_ recive (unsigned char slave_addr , unsigned int data_length , unsigned char *recive data) ;

/* ,,, */
/* ,,, */
/* 3. Sample */
2 */
/2 */

[R KKK KK KKK KK KK KKK KKK KK KKK KK K KKK K KKK K KKK K KKK K KK KKK KKK K KKK K K KKK K KK KK K KK K K KK K KK K KK K KK K K kR K K kKR K K XK K X KRR K Xk K
] R KKKKKK KKK K KK KKK KK KKK K KKK KKK KK K KK K KKK K KK KKK KK KK KKK K KKK K K KKK K KKK K KKK K KK K K KK K KK K KKK K KR K K kKK K XK K XK KR K Xk K

[R KKK KK KK KKK KKK KK KK KKK K KKK KKK KK K KKK K KK KKK KKK K KK KKK KKK K KKK K K KKK K KK KK K KKK K XK K KK K KK K KK K K KR K K kKR K XKk K XK R K Xk K

/* */
/* I2C EEPROM control */
/* */

[R KKK KK KKK KK KK KKK KKK KK K KKK KKK KK K KKK KK KKK KKK K KK KK KKK K KKK K K KKK K KK KK K KKK K KKK K KK K KK K KK K K KR K K kKR K XK K XKk K Xk K
[R KKKKK K KKK K KK KKK KK KKK KKK KK KKK KK K KKK K KKK K KK KKK KKK KKK K KKK K K KKK K KK KK K KKK K XK K KK K KK K KK K K kR K K kK K KKk K XK Rk K Xk K
[R KKK KK KK KKK KK KKK KKK KK KKK KK K KKK K KKK K KKK K KK KKK KK KKK KKK K KKK K K KKK K KK KK K KKK K XK K K KK K KK K KKK K KR K K kKK K XK K XK Rk K Xk K

/3 Kk kK Kk Kk kK KK ok K Kk ok ok Kk ok ok ok ok Kk ok Kk ok ok Kk ok ok Kk ok Kk ok kK ko ok ko ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok Kk ok ok K ko ok ok ko ko

/* 1. Module name: com_int_ctl */
/* 2. Function overview: Clears set_imask ccr to 0 to enable Timer Z interrupts alone. */
/* 3. History of revisions: REV Date created/revised Created/revised by Revision contents */
/* 000 2002.04.10 Ueda New */

/**/
void com int ctl (unsigned char kind)

{

if (kind =

0){

R e

/* Disables I2C reception interrupts */

3 kK kK Kk kR KKk KKKk ok Kk ok Kk kK Kk ok K Kk ok ok Kk ok ok Kk ok ok ko ok ko ok Kk ok Kk ok Kk ok ok Kk ok ok Kk ok ok kK ko ok ok Kk ok ok Kk ok ok K Kk ok

IIC2.ICIER.BIT.RIE = 0 ; /* Disables I2C reception interrupts */

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 17 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

36 kK Kk ok KK kK KKk KKKk kK Kk ok kK Kk ok Kk ok ok Kk ok Kk ok ok ok ok ko ok Kk ok Kk ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok ok Kk ok ok kK ko

/* Enables Timer Z interrupts */

3 Kk kK Kk kR KKk KKKk Kk kK ok kK Kk ok K Kk ok Kk ok ok Kk ok ok ok ok ko ok Kk ok Kk ok Kk ok ok Kk ok ok Kk ok ok ok ko ok K ko ok ok Kk ok ok K Kk ok

TZ0.TIER.BIT.IMIEA =1 ; /* timerz IMFA enable */

3 Kk kK Kk ok KKk KKKk ok Kk kK Kk kK Kk ok K Kk ok ok Kk ok Kk ok ok ko ok ko ok ko ok Kk ok Kk ok ok Kk ok ok kK ko ok Kk ok ok ok Kk ok ok Kk ok ok K Kk ok

/* Cancels interrupt disable */

R e

set_imask_ccr(0); /* Enables interrupts */

else{

6k Kk kK Kk kR KKk K KKk ok Kk kK Kk kK Kk ok K Kk ok ok Kk ok Kk ok ok ko ok ko ok Kk ok Kk ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok Kk ok ok Kk ok ok K Kk ok

/* Disable interrupts (reason: to prevent other interrupts during interrupt processing) */

R

set_imask_ccr(l); /* Disables interrupts */

R e

/* Enables I2C reception interrupts */

3 kK kK Kk kR KKk KKKk ok Kk ok Kk kK Kk ok K Kk ok ok Kk ok ok Kk ok ok ko ok ko ok Kk ok Kk ok Kk ok ok Kk ok ok Kk ok ok kK ko ok ok Kk ok ok Kk ok ok K Kk ok

IIC2.ICIER.BIT.RIE =1 ; /* Enables I2C reception interrupt */

3 kK ok Kk kK KKk K KKk ok Kk kK ok kK ko ok K Kk ok Kk ok Kk ok ok ko ok ko ok Kok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok ok Kk ok ok K Kk ko

/* Disables TimerZ interrupts */

/36 kK ok Kk kKK kK KKk kK Kk kK ok kK Kk ok ok Kk ok kKK ok Kk ok ok ok ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ok Kok ok ok Kk ok ok K Kk ok

TZ0.TIER.BIT.IMIEA = 0 ; /* timerz IMFA enable */

6 Kk kK Kk kK Kk kK KK kK Kk ok ok Kk ok ok ok ok kK ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ok ok ok ok ok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok kK Kk ok ok ko ko

/* 1. Module name: com_delay */
/* 2. Function overview: Delay of any desired time */
/* 3. History of revisions: REV Date created/revised Created/revised by Revision contents */
/* 000 2002.03.25 Ueda New */

/**/
void com delay(int delaytime

{

register int i,a;

for (i=0; i<delaytime;i++)

at+;

[R KKKKK K KKK K KK KKK KK KKK KKK KK KKK KK K KKK K KKK K KK KKK KKK KKK K KKK K K KKK K KK KK K KKK K XK K KK K KK K KK K K kR K K kK K KKk K XK Rk K Xk K

/* 1. Module name: set_i2c_init */
/* 2. Function overview: Sets initial settings prior to I2 access */
/* 3. History of revisions: REV Date created/revised Created/revised by Revision contents */
/* 000 2002.12.14 Ueda New */

KK KKK KK KKK KK KK KKK KK KKK K KKK KKK KK K KK K KKK K KK KKK KK KKK KKK K KKK K K KKK K KKK K KK K KK K KK K KK K KKK K kR K K kK K XKk K XK KR K Xk K

void set_i2c_init()

{
/***/
/* SAR Slave address register */
/* SVA6:0 = 1000000 (unique value) */
/* FS = 0 1I2C format */

R R R R R R R R B R R R R R R AR R R R R RS R R T S T
/* ## (program note) ######HEHEFHEFEEHEHHFH SRR HEHEEHEHHEHEAH R EREH B R AR AR R R ~/
/* ## SVA6:0 are used in the slave mode. They should be set to a unique address that is different from the ## */
/* ## addresses used for other slave devices connected to the I2C bus ## */

JF R ¢/

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 18 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

IIC2.SAR.BYTE= 0x80 ;

] kK Kk kK Kk kK Kk kK ok Kk ok Kk ok ok Kk kK Kk ok ok Kk ok Kk ok Kk ok ok ko ok ko ok ko ok Kk ok Kk ok ok Kk ok ok Kk ok ok ok ok ok kK Kk ok ok Kk ok ok K Kk ok

/* ICCR1 Sets the I2C control register */
/* ICE =1 I2C use enabled */
/* RCVD =0 Reception disabled */
/* MST, TRS = 00 Slave receive mode */
/* CKS3:0 = 0100 Transfer clock frequency (¢/80, transfer rate: 200 kbps) */

6k Kk kK Kk kK Kk kKK ok Kk ok Kk ok ok Kok ok Kk ok ek Kk ok Kk ok kK ok ok ko ok ko ok ok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ok Kk ok ok Kk ok ok K Kk ok

IIC2.ICCR1.BYTE = 0x84 ;
/* ## (program note) ######F#FHEHHHHFHFEFRHHHERERFRFRHHRERERFEFHH R R R F R R/
/* ## Setting of CKS3:0 should be changed according to the required transfer rate. ## */
/* ## For details, please refer to the H8/3687 Hardware Manual. ## o/

JF R ¢/

R L R e

/* ICMR Sets I2C mode */
/* MLS = 0 MSB first */
/* WAIT = 0 No wait inserted */
/* BCWP = 0 BC2: 0 setting enabled */
/* BC[2:0] = 000 I2C bus format: 9 bits */

R L R T

IIC2.ICMR.BYTE= 0x00 ;

[R KKK KK KK KKK KK KKK KKK KK K KKK K KKK K KKK K KK KKK KKK K KK KKK KKK K KKK K K KKK K KKK K KKK K XK K KK K KK K KK K K kR K K kK K K XK K XK Rk K Xk Kk

/* 1. Module name: set_start_condition */
/* 2. Function overview: Sets the I2C start condition. */
/* 3. History of revisions: REV Date created/revised Created/revised by Revision contents */
/* 000 2002.12.14 Ueda New */

R R e
unsigned int set_start_condition()

{

int ret , Timer_ wk;

ret = NORMAL END ;

/***~k~k~k~k~k~k~k~k************************/
/* Confirms that ICCR2 (BBSY)=0. */
/***~k~k~k~k~k~k~k~k************************/
com_timer.wait_ 100ms_scan = 50 ;

while (IIC2.ICCR2.BIT.BBSY == 1){ /* Waits for the I2C bus to be released */

Timer wk = com_timer.wait_ 100ms_scan ;

if (Timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_BBSY TOUT; /* BAbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICCR2.BIT.BBSY= 0;
#endif

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 19 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

6 Kk kK Kk kK Kk kKK ok Kk ok ok Kk ok ok Kk ok ok Kk ok ek Kk ok ok Kk ok kK ko ok ko ok ko ok ok ko ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ko ok ok Kk ok ok Kk ok ok K Kk ok

/* Sets master transmit mode */

]k Kk ok K Kk kK Kk ok KK ok Kk ok ok Kk ok ok Kok ok Kk ok ok Kk ok Kk ok ok ok ok ko ok ko ok ok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok Kk ok ok Kk ok ok K Kk ok

IIC2.ICCR1.BYTE = 0xB4 ; /* Sets master transmit mode */

]k kK kK Kk kK KKk KK ok Kk ok ok Kk ok ok Kk ok K Kk ok ok Kk ok ok Kk ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok Kok ok ok Kk ok ok K Kk ok

/* Sets the start condition */

]k Kk kK Kk kK Kk ok KK ok Kk ok Kk ok ok Kk kK Kk ok Kk ok Kk ok Kk ok ok ko ok ko ok ko ok Kk ok Kk ok ok Kk ok ok K ko ok ok ko ok ok Kok ok ok Kk ok ok K Kk ok

IIC2.ICCR2.BYTE = 0x80 ;
/* ## (program note) ####F#FH#HHHHHHHHFHE R R R R R R R R R R R R R /
/* ## Bits 7 and 6, which set the start condition, have to be set simultaneously, so they must be ## */
/* ## written in byte units 4 x/
/* ## Be aware that if these are set one bit at a time, the start condition may not be set properly. ## o/

/% EREEEEER R R R R R R R R R R R R R Y/

exit

return (ret);

[R K KKK K KKK KK KKK KK KKK KK K KKK K KKK KKK KKK KKK K KKK K KKK K KKK K KKK K K KKK K KK K K KK K K XK K KK K KKK K K K K kR K K kK K XKk K XK KR K Xk K

/* 1. Module name: set_slavesel seq */
/* 2. Function overview: Executes I2C slave selection processing. */
/* 3. History of revisions: REV Date created/revised Created/revised by Revision contents */
/* 000 2002.12.14 Ueda New */

[R KKK KK KK KKK KKK KK KK KKK K KKK K KKK K KKK K KKK K KKK K KKK K KKK KK KKK K K KKK K KK K K KK K K KK K KK K KK K KK K K kR K K kKK K XK K XKk K Xk K

unsigned int set_slavesel seq (unsigned char mode ,unsigned char slave_addr

{
int ret , Timer wk;
unsigned char write_data ;
ret = NORMAL END ;
/***/
/* Confirms that ICSR (TDRE)=1. */
/***/
com_timer.wait_ 100ms_scan = 50 ;
while (IIC2.ICSR.BIT.TDRE == 0) { /* Waits until the preparation */
/* for transfer has been completed. */
Timer wk = com_timer.wait 100ms_scan ;
if (Timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_TDRE_TOUT; /* BAbnormal end (timeout) */
goto exit ;
}
#ifdef UT
IIC2.ICSR.BIT.TDRE = 1 ;
#endif
}
/***/
/* Sets the slave address */
/***/
if (mode == DATA_READ_OPERATION) {
slave_addr = slave_addr | 0x01 ;
}
IIC2.ICDRT = slave_addr ;
exit

return (ret);

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 20 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

] KKk kK Kk KKk kKK ok K Kk ok ok Kk ok ok ok ok Kok ok Kk ok ok Kk ok ok Kk ok kK ok ok Kk ok ok ko ok ko ok Kk ok kK ok ok Kk ok ok Kk ok ok ok ok ok kK ko ok K ko ok ok Kk ko

/*
/*
/*
/*

1. Module name: wait_ack */
2. Function overview: Waits for the I2C ACK. */
3. History of revisions: REV Date created/revised Created/revised by Revision contents */

000 2002.12.14 Ueda New */

[RR KKKKKK KKK KKK KKK KK KKK KKK KK KKK KK K KKK KK KKK KKK K KK KK KKK K K KKK K KKK K KK KK K KK K K XK K KK K KK K KK K K KR K K kKR K K KK K XKk K Xk K

unsigned int wait_ack ()

{

int ret , Timer wk;

ret = NORMAL_END ;

]k kK kK Kk kK KKk KK ok Kk ok ok Kk ok ok Kk ok K Kk ok ok Kk ok ok Kk ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok Kok ok ok Kk ok ok K Kk ok

/* Confirms that ICSR (TDRE)=1. */

3 Kk kK Kk kK Kk ok Kk ok KKk ok ok ok Kk kR Kk ok ek Kk ok ok Kk ok ko ok ko ok ko ok ok ok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok Kk ok ok Kk ok ok K Kk ok

com_timer.wait 100ms_scan = 50 ;
while (IIC2.ICSR.BIT.TDRE == 0) { /* Waits until the preparation */
/* for transfer has been completed */
Timer wk = com_timer.wait_ 100ms_scan ;
if (Timer_ wk /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_TDRE_TOUT; /* BAbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICSR.BIT.TDRE = 1 ;
#endif

] Kk ok Kk kK Kk ok KKk KKk ok Kk ok ok Kk ok Kk ok K Kk ok Kk ok ok ok ok ko ok ko ok ko ok Kk ok Kk ok ok Kk ok ok ok ok ok Kk ok ok ok Kok ok ok Kk ok ok K Kk ok

/* Confirms that ICSR (TEND)=1. */

R L e e

com_timer.wait 100ms_scan = 50 ;
while (IIC2.ICSR.BIT.TEND == 0) { /* Waits until the preparation */
/* for transfer has been completed. */
Timer wk = com_timer.wait_ 100ms_scan ;
if (Timer wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_TEND_TOUT; /* BAbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICSR.BIT.TEND = 1 ;
#endif

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 21 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

6 Kk kK Kk kK Kk ok Kk ok Kk ok ok Kk ok ok Kk kK Kk ok ek Kk ok Kk ok ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok kK Kk ok ok Kk ok kK Kk ok

/* Confirms that ICIER (ACKBR)=1. */

] kK Kk kK Kk kK Kk kK ok Kk ok Kk ok ok Kk kK Kk ok ok Kk ok Kk ok Kk ok ok ko ok ko ok ko ok Kk ok Kk ok ok Kk ok ok Kk ok ok ok ok ok kK Kk ok ok Kk ok ok K Kk ok

com_timer.wait 100ms_scan = 50 ;

while (IIC2.ICIER.BIT.ACKBR == 1) { /* Waits for ACK to be returned. */

Timer wk = com_timer.wait 100ms_scan ;

if (Timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_ACKBR_TOUT; /* RAbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICIER.BIT.ACKBR = 0 ;

#endif

exit :

return (ret);

[R KKKKKK KKK K KK KKK KKK KK KKK KK KKK KK KKK K KKK K KK KKK KKK K KKK K KKK K K KKK K KKK K KKK K XK K K KK K KK K KK K K kR K K kKK K XK K XK Rk K Xk K

/* 1. Module name: set_data_seqg */
/* 2. Function overview: Executes I2C data setting processing */
/* 3. History of revisions: REV Date created/revised Created/revised by Revision contents */
/* 000 2002.12.14 Ueda New */

[KRR KKK KK KKK KK KK KKK KKK KK K KKK KKK KK K KK KK KK KKK KKK K KK KKK KKK K KKK K KKK K K KKK K KKK K XK K KK K KK K KK K K kR K K kK K K XK K X KRR K Xk K

unsigned int set_data_seq (unsigned char write data)

{
int ret , Timer wk;
ret = NORMAL_END ;
/***‘k******/
/* Confirms that ICSR (TDRE)=1. */
L
com_timer.wait_ 100ms_scan = 50 ;
while (IIC2.ICSR.BIT.TDRE /* Waits until the preparation */
/* for transfer has been completed. */
Timer wk = com_timer.wait 100ms_scan ;
if (Timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_TDRE_TOUT; /* Bbnormal end (timeout) */
goto exit ;
}
#ifdef UT
IIC2.ICSR.BIT.TDRE = 1 ;
#endif
}
L
/* Sets data */
L
IIC2.ICDRT = write data ; /* dummy write */
exit :

return (ret);

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 22 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

] KKk kK Kk KKk kKK ok K Kk ok ok Kk ok ok ok ok Kok ok Kk ok ok Kk ok ok Kk ok kK ok ok Kk ok ok ko ok ko ok Kk ok kK ok ok Kk ok ok Kk ok ok ok ok ok kK ko ok K ko ok ok Kk ko

/*
/*
/*
/*

1. Module name: set master rcv_mode */
2. Function overview: Switches to master receive mode */
3. History of revisions: REV Date created/revised Created/revised by Revision contents */

000 2002.12.14 Ueda New */

[RR KKKKKK KKK KKK KKK KK KKK KKK KK KKK KK K KKK KK KKK KKK K KK KK KKK K K KKK K KKK K KK KK K KK K K XK K KK K KK K KK K K KR K K kKR K K KK K XKk K Xk K

unsigned int set_master_ rcv_mode ()

{

int ret , Timer wk;

unsigned char dummy data ;

ret = NORMAL_END ;

6 Kk kK Kk kK Kk ok KKk kKK ok ok Kk ok ok Kk ok K Kk ok ok Kk ok Kk ok ok ok ok ko ok ko ok ok ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok ok ok ok Kk ok ok Kk ok ok K Kk ok

/* Confirms that ICSR (TDRE)=1. */

R L T

com_timer.wait 100ms_scan = 50 ;
while (IIC2.ICSR.BIT.TDRE == 0) { /* Waits until the preparation */
/* for transfer has been completed. */
Timer wk = com_timer.wait_ 100ms_scan ;
if (Timer wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_TDRE_TOUT; /* BAbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICSR.BIT.TDRE = 1 ;
#endif

6 Kk kK Kk kK Kk kKK ok Kk ok ok Kk ok ok Kk ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok Kk ok ok K Kk ok

/* Confirms that ICSR (TEND)=1. */

R L e

com_timer.wait 100ms_scan = 50 ;

while (IIC2.ICSR.BIT.TEND == 0) { /* Waits until the transfer has been completed. */

Timer wk = com_timer.wait_ 100ms_scan ;

if (Timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_TEND_TOUT; /* BAbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICSR.BIT.TEND = 1 ;
#endif

] Kk kK Kk kK Kk kKK ok Kk ok ok ok ok Kk kK Kk ok K Kk ok ok Kk ok Kk ok ok ko ok ko ok Kk ok ok Kk ok ok kK ok ok Kk ok ok Kk ok ok Kk ok ok ok Kk ok ok Kk ok ok K Kk ok

/* Resets ICSR (TEND) */

R L T e

IIC2.ICSR.BIT.TEND = 0 ;

]k Kk ok Kk kK Kk ok KKk Kk ok Kk ok ok Kk ok K Kk ok ok Kk ok Kk ok kK ko ok ko ok ok ko ok ko ok ok Kk ok ok kK ok ok Kk ok ok K ko ok ok ok ok ok Kok ok ok Kk ok ok K Kk ok

/* Switches to master receive mode */

6 Kk kK Kk kK Kk ok Kk ok Kk kK Kk ok ok Kk kK Kk ok ok Kk ok ok Kk ok ok ok kK ko ok ko ok Kk ok ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ok Kk ok ok Kk ok ok K Kk ok

IIC2.ICCRL.BYTE = OxA4 ;

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 23 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

6 Kk kK Kk kK Kk ok Kk ok Kk ok ok Kk ok ok Kk kK Kk ok ek Kk ok Kk ok ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok kK Kk ok ok Kk ok kK Kk ok

/* Resets ICSR (TDRE) */

/***/
IIC2.ICSR.BIT.TDRE = 0 ;
exit

return (ret);

[K KKK KK KKK KK KKK KK KK KKK K KKK K KKK K KKK K KK KK K KK KKK KKK K KKK K KKK K K KKK K KKK K KKK K KK K K KK K KK K K KR K K kR K K kKR K XKk K XK KR K Xk K

/* 1. Module name: start_read_seg */
/* 2. Function overview: Carries out a dummy read at the start of read processing */
/* 3. History of revisions: REV Date created/revised Created/revised by Revision contents */
/* 000 2002.12.14 Ueda New */

/**/
void start_read seq (unsigned char mode)
int ret , Timer_ wk;

unsigned char dummy data ;

ret = NORMAL END ;

if (mode == MULTI_BYTE_READ) {

.
/ /
/* Sets value for ACK returned after data reception to “0” (ACK) */

/36 kK kK KK ok Kk K KKk kK ko ok Kk kK Kk ok K Kk ok Kk ok ok Kk ok ok ok ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok kK ko ok ok ok ok ok Kk ok ok Kk ok ok kK ko

IIC2.ICIER.BIT.ACKBT = 0 ;

R R R L R T B T L S R 7
/* Initiates reception by executing a dummy read */
/**/
dummy_ data = IIC2.ICDRR ;
/* ## (program note) ######FH#HHHHHHHHEH R R R R R R R R R </
/* ## Reception begins when a dummy read is carried out, and data is sent from the device synchronized. ## */
/* ## with the SCL #H */
/* ## A low level signal is sent to the device synchronized with the ninth SCL, in response to the ICSR (ACKB) ## */
/* ## set to 0 previously. ## */
ValR sisdssssssdsssdssssssdatassssapsdadsssssssstssassssssststssssssspspstssssssssdassdsssspsdsdassssasatadsdsssss

}
if (mode == SINGLE_BYTE_READ) {

R e

/* Sets value for ACK returned after data reception to “1” (NOACK) */

6 Kk ok KK kR KKk KKKk kK kK Kk kK Kk ok K Kk ok ok Kk ok Kk ok kK ko ok ko ok Kk ok ok Kk ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok Kok ok ok Kk ok ok kK ko

IIC2.ICIER.BIT.ACKBT = 1 ;

R e

/* Disables the next reception after the current data reception */

3k Kk Kk kR KKk KKKk ok Kk ok Kk kK ko ok K Kk ok ok Kk ok Kk ok ok ko ok ko ok Kk ok Kk ok Kk ok ok Kk ok ok Kk ok ok ok ko ok ok Kok ok ok Kk ok ok K Kk ok

IIC2.ICCR1.BIT.RCVD = 1 ;

R e

/* Initiates reception by executing a dummy read */

R e

dummy data = IIC2.ICDRR ;

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 24 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

/* ## (program note) #######FHHFHHERERERHHHERERER R AR AR AR R R R R R R R R R R R ¢/

/* ## Reception begins when a dummy read is carried out, and data is sent from the device synchronized ## */
/* ## with the SCL. ## x/
/* ## A high level signal is sent to the device synchronized with the ninth SCL, #H o/
/* ## in response to IIC2.ICIER.BIT.ACKBT set to 1 previously. ## */
/* ## The SCL clock for the next reception is not sent, in response to IIC2.ICIER.BIT.ACKBT set to 1 previously. ## */

% EREEEEER R R R R R R R R R R R R R R R ¢/

if (mode ==MULTI_FINAL_BYTE_READ) {

R e

/* Sets value for ACK returned after data reception to “1” (NOACK) */

R e

IIC2.ICIER.BIT.ACKBT = 1 ;

R e

/* Disables the next reception after the current data reception */

6 kK Kk ok Kk ok KKk K KKk Kk kKK Kk kK Kk ok K Kk ok ok Kk ok Kk ok ok ko ok ok ok kK ok ok Kk ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok ok Kk ok ok K Kk ok

IIC2.ICCRL1.BIT.RCVD = 1 ;

] Kk kK Kk Kk kKK ok K Kk ok ok Kk ok ok ok ok kK ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok kK ko ok ko ok ok ko ok ok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ko

/* 1. Module name: get_data_seq */
/* 2. Function overview: Reads data from the I2C target device */
/* 3. History of revisions: REV Date created/revised Created/revised by Revision contents */
/* 000 2002.12.14 Ueda New */

[R KKKKK K KKK K KK KKK KK KKK KKK KK KKK KK K KKK K KKK K KK KKK KKK KKK K KKK K K KKK K KK KK K KKK K XK K KK K KK K KK K K kR K K kK K KKk K XK Rk K Xk K

unsigned int get_data_seq (unsigned char *read data)

{
int ret , Timer_ wk;
unsigned char dummy data ;
ret = NORMAL_END ;
/**~k~k~k************************/
/* Confirms that ICSR (RDRF)=1. */
/***/
com_timer.wait_100ms_scan = 50 ;
while (IIC2.ICSR.BIT.RDRF == 0) { /* Waits until the reception has been completed. */
Timer wk = com_timer.wait_ 100ms_scan ;
if (Timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_RDRF_TOUT; /* Bbnormal end (timeout) */
goto exit ;
}
#ifdef UT
IIC2.ICSR.BIT.RDRF = 1 ;
#endif
}
/**~k~k~k************************/
/* Reads received data. */
/**~k~k~k************************/
read data = IIC2.ICDRR ; / data read */
exit

return (ret);

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 25 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

] KKk kK Kk KKk kKK ok K Kk ok ok Kk ok ok ok ok Kok ok Kk ok ok Kk ok ok Kk ok kK ok ok Kk ok ok ko ok ko ok Kk ok kK ok ok Kk ok ok Kk ok ok ok ok ok kK ko ok K ko ok ok Kk ko

/*
/*
/*
/*

1. Module name: get_end data seq */
2. Function overview: Reads data from the I2C target device */
3. History of revisions: REV Date created/revised Created/revised by Revision contents */

000 2002.12.14 Ueda New */

[RR KKKKKK KKK KKK KKK KK KKK KKK KK KKK KK K KKK KK KKK KKK K KK KK KKK K K KKK K KKK K KK KK K KK K K XK K KK K KK K KK K K KR K K kKR K K KK K XKk K Xk K

unsigned int get_end data_seq (unsigned char *read_data)

{

int ret , Timer wk;

unsigned char dummy data ;

ret = NORMAL_END ;

R B R R S S AR R R S]
/* Confirms that ICSR(RDRF)=1. */
/***‘k*******/
com_timer.wait 100ms_scan = 50 ;

while (IIC2.ICSR.BIT.RDRF == 0) { /* Waits until the reception has been completed. */

Timer wk = com_timer.wait_ 100ms_scan ;

if (Timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_RDRF_TOUT; /* BAbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICSR.BIT.RDRF = 1 ;
#endif

] Kk ok Kk kK Kk ok KKk KKk ok Kk ok ok Kk ok Kk ok K Kk ok Kk ok ok ok ok ko ok ko ok ko ok Kk ok Kk ok ok Kk ok ok ok ok ok Kk ok ok ok Kok ok ok Kk ok ok K Kk ok

/* Sets the stop condition */

R L e e

IIC2.ICCR2.BYTE = 0x00 ;

R B R B R R AL AR AV
/* Confirms that ICSR (STOP)=1. */
R B B R R RS AV
com_timer.wait 100ms_scan = 50 ;

while (IIC2.ICSR.BIT.STOP == 0) { /* Waits until the stop condition is detected. */

Timer wk = com_timer.wait 100ms_scan ;

if (Timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_STOP_TOUT; /* RAbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICSR.BIT.RDRF = 1 ;

#endif

R L e

/* Reads received data */

6k Kk kK Kk kK Kk ok kKK ok Kk ok Kk ok ok Kk ok K Kk ok ek Kk ok Kk ok Kk ok ok ko ok ko ok ok ko ok ok Kk ok Kk ok ok Kk ok ok ok ok ok Kk ok ok ok Kk ok ok Kk ok ok Kk ok

read_data = IIC2.ICDRR ; / data read */

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 26 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

6 Kk kK Kk kK Kk ok Kk ok Kk ok ok Kk ok ok Kk kK Kk ok ek Kk ok Kk ok ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok kK Kk ok ok Kk ok kK Kk ok

/* Cancels the setting of disabling the next reception after the current data reception */
L

IIC2.ICCR1.BIT.RCVD o /* Cancels the reception stop setting */

exit :

return (ret);

[R KKK KK KK KKK KK KKK KKK KK K KKK K KKK K KK KK K KKK K KKK K KK KK KKK KK K KKK K KKK K KK K K KK K K XK K K KK K KK K KK K K kK K K KR K KKk K XK KR K Xk K

/* 1. Module name: set_end_proc */
/* 2. Function overview: Executes an I2C end sequence */
/* 3. History of revisions: REV Date created/revised Created/revised by Revision contents */
/* 000 2002.12.14 Ueda New */

/**/
unsigned int set_end proc ()

{

int ret , Timer wk;
ret = NORMAL END ;
/***/

/* Confirms that ICSR (TDRE)=1. */

6 Kk kK Kk kK Kk ok Kk ok Kk ok ok Kk ok ok Kk ok R Kk ok ok Kk ok ok Kk ok ok ok ko ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok ok ok kK Kk ok ok K Kk ok

com_timer.wait_ 100ms_scan = 50 ;
while (IIC2.ICSR.BIT.TDRE == 0) { /* Waits until the preparation */
/* for transfer has been completed. */
Timer wk = com_timer.wait 100ms_scan ;
if (Timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_TDRE_TOUT; /* Bbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICSR.BIT.TDRE = 1 ;

#endif

/***/
/* Confirms that ICSR (TEND)=1. */
L
com_timer.wait_ 100ms_scan = 50 ;

while (IIC2.ICSR.BIT.TEND == 0) { /* Waits until the transfer has been completed. */

Timer wk = com_timer.wait 100ms_scan ;

if (Timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_TEND_TOUT; /* Rbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICSR.BIT.TEND = 1 ;

#endif

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 27 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

/*

*/

exit

6 Kk kK Kk kK Kk ok Kk ok Kk ok ok Kk ok ok Kk kK Kk ok ek Kk ok Kk ok ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok kK Kk ok ok Kk ok kK Kk ok

/* Sets the stop condition */

] kK Kk kK Kk kK Kk kK ok Kk ok Kk ok ok Kk kK Kk ok ok Kk ok Kk ok Kk ok ok ko ok ko ok ko ok Kk ok Kk ok ok Kk ok ok Kk ok ok ok ok ok kK Kk ok ok Kk ok ok K Kk ok

IIC2.ICCR2.BYTE = 0x00 ; /* Sets the stop condition. */

R L T

/* Resets ICSR (TEND) */

] Kk kK Kk kK Kk kKK ok KKk ok Kk ok ok Kk ok K Kk ok ek Kk ok Kk ok ok ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok ok ok ok kK Kk ok ok K Kk ok

IIC2.ICSR.BIT.TEND = 0 ;

R L R T e e

/* Confirms that ICSR (STOP)=1. */

]k kK kK Kk kK KKk KK ok Kk ok ok Kk ok ok Kk ok K Kk ok ok Kk ok ok Kk ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok Kok ok ok Kk ok ok K Kk ok

com_timer.wait_ 100ms_scan = 50 ;

while (IIC2.ICSR.BIT.STOP == 0) { /* Waits until the stop condition is detected. */

Timer wk = com_timer.wait 100ms_scan ;

if (Timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_STOP_TOUT; /* RAbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICSR.BIT.RDRF = 1 ;

#endif

* Waits for approx. 4 Us. *

com_delay(5) ;

return (ret);

] K kK Kk kK KKk kKK ok K Kk ok ok Kk ok ok ok ok Kk ok Kk ok ok Kk ok ok Kk ok ok Kk ok kK ko ok ko ok ko ok ok ko ok kK ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok K kK ko

/*
/*
/*
/*

1. Module name: com_i2c_master_ recive */
2. Function overview: Receives data of the specified length from the slave device */
3. History of revisions: REV Date created/revised Created/revised by Revision contents */

000 2002.12.14 Ueda New */

/3 Kk kK Kk Kk kK KK ok K Kk ok ok Kk ok ok ok ok Kk ok Kk ok ok Kk ok ok Kk ok Kk ok kK ko ok ko ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok Kk ok ok K ko ok ok ko ko

unsigned int com_i2c_master_ recive (unsigned char slave_addr , unsigned int data_length , unsigned char *recive_data

{

int ret , 1 ;

union {
unsigned int d_int ;
unsigned char d_byte[2];
} buf;

ret = NORMAL_END ;

R L e

/* Sets the start condition. */

6k Kk kK Kk kK Kk ok kKK ok Kk ok Kk ok ok Kk ok K Kk ok ek Kk ok Kk ok Kk ok ok ko ok ko ok ok ko ok ok Kk ok Kk ok ok Kk ok ok ok ok ok Kk ok ok ok Kk ok ok Kk ok ok Kk ok

ret = set_start_condition() ; /* Sets the start condition */

if (ret

{ goto exit ;}

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 28 of 40

‘ z H8/3687
o E N ESAS Master-Slave Communication using I°C Interface

6 Kk kK Kk kK Kk ok Kk ok Kk ok ok Kk ok ok Kk kK Kk ok ek Kk ok Kk ok ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok kK Kk ok ok Kk ok kK Kk ok

/* Sets the device address word (read) */

] kK Kk kK Kk kK Kk kK ok Kk ok Kk ok ok Kk kK Kk ok ok Kk ok Kk ok Kk ok ok ko ok ko ok ko ok Kk ok Kk ok ok Kk ok ok Kk ok ok ok ok ok kK Kk ok ok Kk ok ok K Kk ok

ret = set_slavesel seq (DATA READ OPERATION , slave_addr) ;

if (ret 0) { goto exit ;}

6 Kk ok Kk kK Kk ok kKK ok Kk ok ok Kk ok ok Kk ok Kk ok ok Kk ok Kk ok kK ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok ok Kok ok ok Kk ok ok K Kk ko

/* Switches to master receive mode */

6k Kk kK Kk kK Kk kKK ok Kk ok Kk ok ok Kok ok Kk ok ek Kk ok Kk ok kK ok ok ko ok ko ok ok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ok Kk ok ok Kk ok ok K Kk ok

ret = set_master_rcv_mode () ;

if (ret !=0) { goto exit ;}

]k kK kK Kk kK KKk KK ok Kk ok ok Kk ok ok Kk ok K Kk ok ok Kk ok ok Kk ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok Kok ok ok Kk ok ok K Kk ok

/* Carries out a dummy read at the start of data reading */

3 Kk kK Kk kK Kk ok Kk ok KKk ok ok ok Kk kR Kk ok ek Kk ok ok Kk ok ko ok ko ok ko ok ok ok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok Kk ok ok Kk ok ok K Kk ok

start_read_seq (MULTI_BYTE READ) ;

R L R e

/* Reads data continuously */

L
for (i=0; i< (data_length-1) ; i++){
ret = get_data_seq (&buf.dﬁbyte[O])

if (ret !=0) { goto exit ;}

*recive _data = buf.d byte[0] ;

*recive_data ++ ;

R L e e

/* Makes settings before reading the last data */

R R T e

start_read seq (MULTI_FINAL BYTE READ) ;

6 Kk kK Kk kK Kk kKK ok Kk ok ok Kk ok ok Kk ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok Kk ok ok K Kk ok

/* Issues the stop condition after the last data (1 byte) has been read */
/***/
ret = get_end data_seq (&buf.d byte[0]) ;

if (ret

=0) { goto exit ;}

*recive_data = buf.d byte[0] ;

return (ret);

exit :
L
/* Resets the I2C control and issues the stop condition if an error occurs */
/***/
IIC2.ICCR2.BYTE = 0x02 ; /* Resets I2C control */
IIC2.ICCR2.BYTE = 0x00 ; /* Sets the stop condition */

return (ret);

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 29 of 40

’ z H8/3687
o E N ESAS Master-Slave Communication using I°C Interface

[R KKK KK KKK KK KKK KK KK KKK KKK KK KKK KK K KKK K KKK K KKK K KKK K KKK K K KKK K KKK K KK K K KKK K XK K K KK K KK K KK K K KR K K kKR K K XK K XK Rk K Xk Kk

/*
/*
/*
/*

1. Module name: com_i2c_master_send */
2. Function overview: Transmits data of the specified length from the master to a slave device */
3. History of revisions: REV Date created/revised Created/revised by Revision contents */

000 2002.12.14 Ueda New */

] Kk kK Kk kK Kk kKK ok Kk ok ok Kk ok ok ko ok Kok ok Kk ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ok ok ok ok ko ok Kk ok ok Kk ok ok kK ok ok ok Kk ok ok Kk ok ok K ko ok ok ok k ko

unsigned int com_i2c master_send (unsigned char slave_addr , unsigned int data_length , unsigned char *send data)

{

exit

int ret , i ;

union {
unsigned int d_int ;
unsigned char d_bytel2];
} buf;

ret = NORMAL END ;

] Kk ok Kk kK Kk ok kKK ok Kk ok Kk ok ok Kk ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ok Kok ok kK Kk ok ok Kk ok

/* Initializes the I2C bus */

R L e

set_i2c_init () ;

] Kk ok Kk kK Kk kKK ok kK ko ok Kk ok ok Kk ok K Kk ok ek Kk ok ok Kk ok kK ko ok ko ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok ok ok ok ok Kk ok ok K Kk ok

/* Sets the start condition */

R L T

ret = set_start_condition() ; /* Sets the start condition */

if (ret !=0) { goto exit ;}

] Kk kK Kk kK Kk kKK ok KKk ok Kk ok ok Kk ok K Kk ok ek Kk ok Kk ok ok ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok ok ok ok kK Kk ok ok K Kk ok

/* Sets the device address word (write) */

/***k*k******************k*k*k/
ret = set_slavesel seq (CMD_WRITE_OPERATION , slave_ addr) ;

if (ret !=0) { goto exit ;}

6 Kk kK Kk kK Kk ok Kk ok Kk ok ok Kk ok ok Kk ok R Kk ok ok Kk ok ok Kk ok ok ok ko ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok ok ok kK Kk ok ok K Kk ok

/* Waits for an acknowledgement */

] kK Kk kK Kk kK Kk kKK ok kKK ok ok Kk ok ok Kk ok K Kk ok ok Kk ok Kk ok kK ko ok ko ok ko ok ok ok ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok kK ok ok ok Kk ok ok K Kk ok

ret = wait_ack() ;

if (ret

]k kK Kk kK Kk kK Kk kKK ok KKk ok Kk ok ok Kk ok Kk ok Kk ok Kk ok ok ok ok ko ok ko ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok kK ok ok ok Kk ok ok K Kk ok

0) { goto exit ;}

/* Writes data continuously */
/***/
for (i=0; i< data_length ; i++){
buf.d byte[0] = *send data ;
ret = set_data_seq (buf.d byte[0]) ;
if (ret !=0) { goto exit ;}

*send_data ++ ;

/***/
/* Issues the stop condition */
/***/
ret = set end proc () ;

if (ret !=0) { goto exit ;}

return (ret);

/***/
/* Resets the I2C control and issues the stop condition if an error occurs */
/***/
IIC2.ICCR2.BYTE = 0x02 ; /* Resets I2C control */
IIC2.ICCR2.BYTE = 0x00 ; /* Sets the stop condition */

return (ret);

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 30 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

/* __ */
/* __ */
/* 4 . Sample Program 2-D Slave Mode Processing ——=—=—=——=— - - - - - oo */
/* ,, */
/* ,, */
/* __ */
/* 4.1 Addition of the reset VeCtOor ——— === - ——m - oo oo */
/* __ */
/* Set the jump destination to h8_iZc. */
/* ,, */
/* 4.2 i2C initial settings —————— oo */
/* __ */

JF R x/
% EREEEEE R R R R R R R R R R R R R R R R R R R

/* */
Vad Sets the I2C bus */
/* */

JF R~/
JF R x/

#ifdef SLAVE_MODE

R L e e

/* SAR Slave address register */
/* SVA6:0 = 1000000 (unique value) */
/* FS = 0 1I2C format */

R L e e

/* ## (program note) ######H#HE#HEFEEHEHHFH SRR HEREEHEHHE R A B R EREE B R E AR R R R ~/
/* ## SVA6:0 are used in the slave mode. They should be set to a unique address that is different #H o/
/* ## from the addresses used for other slave devices connected to the I2C bus ## */

JF R ¢/

IIC2.SAR.BYTE= 0x80 ;

R L T e e

/* ICCR1 Sets the I2C control register */
/* ICE = 1 I2C use enabled */
/* RCVD = 0 Reception disabled */
/* MST, TRS = 00 Slave receive mode */
/* CKS3:0 = 0100 Transfer clock frequency (¢/80, transfer rate: 200 kbps) */

R L e

IIC2.ICCR1.BYTE = 0x84 ;
/* ## (program note) ######FHFHHHHHHHHEH R R R R R R R R R
/* ## Setting of CKS3:0 should be changed according to the required transfer rate. #H */
/* ## For detailed information, please refer to the H8/3687 Hardware Manual. ## */

/% EHEEHEEE R R R R R R R R R R R R R R R Y/

] Kk kK Kk kK Kk kKK ok Kk ok ok ok ok Kk kK Kk ok K Kk ok ok Kk ok Kk ok ok ko ok ko ok Kk ok ok Kk ok ok kK ok ok Kk ok ok Kk ok ok Kk ok ok ok Kk ok ok Kk ok ok K Kk ok

/* ICMR Sets I2C mode */
/* MLS = 0 MSB first */
/* WAIT = 0 No wait inserted */
/* BCWP = 0 BC2:0 setting enabled */
/* BC[2:0] = 000 I2C bus format: 9 bits */

6k Kk kK Kk kK Kk ok kKK ok Kk ok Kk ok ok Kk ok K Kk ok ek Kk ok Kk ok Kk ok ok ko ok ko ok ok ko ok ok Kk ok Kk ok ok Kk ok ok ok ok ok Kk ok ok ok Kk ok ok Kk ok ok Kk ok

IIC2.ICMR.BYTE= 0x00 ;

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 31 of 40

‘ z H8/3687
o E N ESAS Master-Slave Communication using I°C Interface

6 Kk kK Kk kK Kk ok Kk ok Kk ok ok Kk ok ok Kk kK Kk ok ek Kk ok Kk ok ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok kK Kk ok ok Kk ok kK Kk ok

/* ICIER Sets I2C interrupts */
/* TIE = 0 Transmit interrupts disabled */
/* TEIE = 0 Transmit-end interrupts disabled */
/* RIE = 1 Receive interrupts enabled */
/* NAKIE = 0 NACK-receive interrupts disabled */
/* STIE = 0 Stop-condition-detection interrupts disabled */
/* ACKE = 0 Acknowledgement judgments not used */
/* ACKBR = 0 Reception acknowledgement */
/* ACKBT = 0 Transmission acknowledgement (ACK = 0) */

R L R T e e

IIC2.ICIER.BYTE= 0x20 ; /* Enables receive interrupts */
#endif
2 */
/* 4.4 i2C interrupt processing -—-—----—----—---——--———————— */
/* ,, */

[R KKK KK KK KKK KKK KK KKK KK KKK KK K KKK K KKK KK KKK KKK K KK KK KKK K K KKK K KKK K KKK K K KKK K XK K K KK K KK K KK K K kR K K kR R K K XKk K X KRR K Xk K

/*
/*
/*
/*

1. Module name: h8 i2c */
2. Function overview: Processing executed in response to an interrupt from the I2C bus */
3. History of revisions: REV Date created/revised Created/revised by Revision contents */

000 2002.12.14 Ueda New */

[KKK K KKK KKK KKK KK KKK KK KKK KKK KK KKK KK K KKK K KK KKK KK KKK KKK K KKK K KKK K K KKK K KK K K KKK K XK K KK K KK K KK K K KR K K KR K K XK K XKk K Xk K

#pragma interrupt(h8_ i2c

void h8_i2c (void

{

int 1 , j , timer_wk;
unsigned int ret ;
unsigned char slave_addr , dummy data ;

unsigned char read_datal[5] ;

ret = NORMAL END ;

R L e e

/* Clears set_imask_ccr to 0 to mask IREQO-3 and SCI rcvint interrupts. */

/* Enable timer Z interrupts alone */

] Kk kK Kk kK Kk kKK ok Kk ok Kk ok ok Kk kK Kk ok ok Kk ok Kk ok Kk ok ok ko ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ok Kk ok

com_int_ctl(0) ; /* Clears ccr to 0 to enable timer Z interrupts alone */

R L T

/* Checks if it is a receive interrupt */

R L e

if (IIC2.ICSR.BIT.RDRF == 1)({ / Reception */

if (IIC2.ICSR.BIT.AAS

1) { /* Slave address matching */

] Kk ok Kk ok KKk kK KKk kK Kk kK Kk ok K Kk kK Kk ok kK ok ok Kk ok ok ko ok ko ok ok Kk ok Kk ok ok Kk ok ok Kk ok ok ok ok ok K ko ok kK ko ok kK ko

/* Receives salve_addr and r/w */

R T e

slave_addr = IIC2.ICDRR ;

if ((slave_addr & 0x01) == 0){ /* write */

D R R S I I I I Ty
/* Receives 4-byte data */

[REEE KK KKK KKK KKK H KKK KKK R KKK KKK R KK KK EF KKK KKK R KK KK I KKK AR KKK XK KKK KKK KKK XK R KKK KKK KKK KKK KKK [

for (i=0; i< 4 ; i++){

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 32 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

G]
/* Confirms that ICSR (RDRF)=1. */
R]
com_timer.wait 100ms_scan = 50 ;

while (IIC2.ICSR.BIT.RDRF == 0) { /* Waits until the reception has been completed. */

timer wk = com_timer.wait 100ms_scan ;

if (timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_RDRF_TOUT; /* RAbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICSR.BIT.RDRF = 1 ;

#endif

R]

/* Reads received data */

3k K kK Kk kK Kk ok Kk ok kKK ok Kk ok ok Kk ok Kk ok ok ko ok Kk ok kK ok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk kK Kk kK

read data[i] = IIC2.ICDRR ; /* data read */

[REEE KK KKK KKK KKK H KKK KKK R KK KK EF R KK KKK F R KK KKK R KKK KA KKK I KKK KKK KKK KKK KKK KKK KKK KK KA KK KK KK [

/* Confirms that ICCR1 (TRS)=1. */

3k kK kKK kK Kk kK Kk kK Kk ok Kk ok Kk ok kK ok kK ok ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ko Kk ko ok kK

com_timer.wait_ 100ms_scan = 50 ;
while (IIC2.ICCR1.BIT.TRS == 0) { /* Waits until the system enters */
/* the slave transmit mode */
timer wk = com_timer.wait 100ms_scan ;
if (timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_TRS_TOUT; /* Bbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICCRL.BIT.TRS = 1 ;

#endif

/* ## (program note) ######HEHHHHEHEEHEHHEH SRR HER SRR HEREEHEHHE R A B R E SRR R
/* ## In the data of the 5th byte, because the 8th-bit data (R/W) is “1”, the system automatically ## */
/* ## switches to the slave transmit mode, so there is no need to set IIC.ICCR.BIT.TRS to 1. ## */

JF R </

for (i=0; i< 4 ; i++){
/***/
/* Confirms that ICSR (TDRE)=1. */
G]
com timer.wait 100ms scan = 50 ;

while (IIC2.ICSR.BIT.TDRE

0) { /* Waits until preparation */
/* for transfer has been completed */

timer wk = com_timer.wait 100ms_scan ;

if (timer_wk == 0)({ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_TDRE_TOUT; /* RAbnormal end (timeout) */

goto exit ;

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 33 of 40

‘ z H8/3687
o E N ESAS Master-Slave Communication using I°C Interface

exit

#ifdef UT
IIC2.ICSR.BIT.TDRE = 1 ;

#endif

}

R]

/* Sets data */

36k Kk Kk kK Kk ok ok Kk ok Kk ok ok Kk ok ok Kk ok ok kK ko ok ok ok ko ok Kk ok ok Kk ok ok Kk ok Kk ok Kk ok ok Kk ok ok Kk kK kK kK

IIC2.ICDRT = read datali] ;

/* ## (program note) #######HHHHHHERERERHHFERERER R AR R R R R R R R R R </

/* ## This example shows a case in which 4-byte data from the master device is received. #H o/
/* ## If the received data is configured as a packet and sent together with the packet length, ## */
/* ## transmission and reception of variable-length data is also possible. ## */

JF R ¢/

[REEE KK KKK IR KKK KK IR KKK KKK R KKK KK F R KK KKK IR KK KKK R KK KKK KKK AR KKK XK KKK KKK KKK KKK KKK KKK KKK KKK KK kK [

/* Confirms that ICSR (TDRE) = 1 */

3k Kk kK Kk kK Kk kK Kk ok K Kk ok Kk ok Kk ok Kk ok ok Kk ok ok ko ok ko ok kK ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok kK kK

com_timer.wait_ 100ms_scan = 50 ;
while (IIC2.ICSR.BIT.TDRE == 0) { /* Waits until preparation */
/* for transfer has been completed */
timer wk = com_timer.wait 100ms_scan ;
if (timer_wk == 0){ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_TDRE_TOUT; /* Bbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICSR.BIT.TDRE = 1 ;

#endif

R L L L

/* Confirms that ICSR (TEND)=1. */

3 K kK Kk kK Kk kK Kk ok Kk ok Kk ok Kk ok kK ok ok ok ok ok ok Kk ok kK ok K Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok kR kK

com_timer.wait_ 100ms_scan = 50 ;
while (IIC2.ICSR.BIT.TEND == 0) { /* Waits until the transfer has been completed */

timer wk = com_timer.wait 100ms_scan ;

if (timer_wk == 0)({ /* If this remains 1 for 5 seconds, */
/* exits with an error. */
ret = I2C_TEND_TOUT; /* Rbnormal end (timeout) */

goto exit ;

#ifdef UT
IIC2.ICSR.BIT.TEND = 1 ;

#endif

6k Kk kK Kk kK Kk ok kKK ok Kk ok Kk ok ok Kk ok K Kk ok ek Kk ok Kk ok Kk ok ok ko ok ko ok ok ko ok ok Kk ok Kk ok ok Kk ok ok ok ok ok Kk ok ok ok Kk ok ok Kk ok ok Kk ok

/*

Resets ICSR (TEND) */

R L R T

IIC2.ICSR.BIT.TEND = 0 ;

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 34 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

6 Kk kK Kk kK Kk ok Kk ok Kk ok ok Kk ok ok Kk kK Kk ok ek Kk ok Kk ok ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok kK Kk ok ok Kk ok kK Kk ok

/* Resets ICCR1 (TRS) (slave receive mode) */

] kK Kk kK Kk kK Kk kK ok Kk ok Kk ok ok Kk kK Kk ok ok Kk ok Kk ok Kk ok ok ko ok ko ok ko ok Kk ok Kk ok ok Kk ok ok Kk ok ok ok ok ok kK Kk ok ok Kk ok ok K Kk ok

IIC2.ICCRL1.BYTE = 0x84 ;

R L T

/* SCL is released when a dummy read is carried out. */

] Kk kK Kk kK Kk kKK ok KKk ok Kk ok ok Kk ok K Kk ok ek Kk ok Kk ok ok ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok ok ok ok kK Kk ok ok K Kk ok

dummy data = IIC2.ICDRR ; /* data read */

R L R T e e

/* Resets the interrupt source. */

]k kK kK Kk kK KKk KK ok Kk ok ok Kk ok ok Kk ok K Kk ok ok Kk ok ok Kk ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok Kok ok ok Kk ok ok K Kk ok

IIC2.ICSR.BIT.AAS =0 ; /* Slave address matching */

R L T

/* Outputs an error message to the console. */

/**~k***~k~k~k~k~k~k~k************************/
sprintf (com_debug_info, "recive data =%02X%02X%02X%02X \n",
read_data[0],read data[l],read data[2],read _data[3]);

com write_sireal data(&com_debug_info[0]) ;

if (ret != NORMAL END) { /* Abnormal end (timeout */
sprintf (com_debug info," 1i2c_int_exec err (%02X)\n",ret);

com write_sireal data(&com_debug_info[0]) ;

R L e e

/* Unmasks the IREQ0-3 and SCI rcvint interrupts */

R R T e

com_int ctl(1l) ;

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 35 of 40

‘ z H8/3687
o E N ESAS Master-Slave Communication using I°C Interface

/2 */
/2 */
/* 5 Sample Program 2-E TimerZ ProCessing =—=—————=————m - mm oo */
/* ,,, */
/* ,,, */
/2 */
/* 5.1 Addition of the reset VeCtOr ——=—=————m e m oo */
2 */
/* Set the jump destination to h8_ timerz. */
/* ,,, */
/* 5.2 Common variable definitions for TimerZ —=——————————— oo */
/2 */
struct {

int counter; /* 100 ms counter */

int wait_10ms; /* For wait time of 10 ms */

int wait_100ms; /* For wait time in 100 ms units (common) */

int wait_100ms_scan; /* For wait time in 100 ms units (for I2C) */

}com_timer;

/* ,,, */
/* 5.3 TimerZ initial settings —-—----—--———--————-———————— */
/* ,,, */

JF R x/
JF R x/

/* */
/* Sets Timerz */
/* */

% EHEEEEE R R R R R R R R R R R R R R R R R
JF R x/

] Kk ok Kk kK Kk ok KKk KKk ok Kk ok ok Kk ok Kk ok K Kk ok Kk ok ok ok ok ko ok ko ok ko ok Kk ok Kk ok ok Kk ok ok ok ok ok Kk ok ok ok Kok ok ok Kk ok ok K Kk ok

/* Sets TimerZ initial settings */
/***/
TZ.TSTR.BYTE = 0x00 ;
TZ.TMDR.BYTE = 0x00 ;
TZ.TPMR.BYTE = 0x00 ;
TZ.TFCR.BYTE = 0x00 ;
TZ.TOER.BYTE = OXFF ;

TZ.TOCR.BYTE = 0x00 ;

TZ0.TCR.BYTE = 0x23 ;
/* CCLR[2:0] = 001 Clears the counter on a GRA compare-match */
/* CKEG[1:0] = 00 Counts up at the rising edge */
/* TPSC[2:0] = 011 Counts using internal clock ¢/8 */
TZ0.TIORA.BYTE = 0x00 ;
/* IOA[2:0] = 000 */
/* GRA functions as an output-compare register */
TZ0.TIER.BYTE = 0x01 ;
/* IMIEA = 1 Enables IMFA */
TZ0.GRA = 20000 ; /* Generates an interrupt every 10 msec */

/* ## (program note) ######F#FHEHHHHFHFEFHHHHERERFRFRFHRERERFEFRH R BB </
/* ## The set values differ depending on the operating frequency of the microcomputer. Please refer #H */
/* ## to the H8/3687 Hardware Manual. ## */
VadR sisdsssdssdsssssdssaspatatsssssspsdsssssspsssssssssssssstsstssssssspsssssssspsdasstssspsssdassssasasasstsasasasass i

TZ0.TCNT =07 /* Clears the timer counter */

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 36 of 40

‘ z H8/3687
. E N ESAS Master-Slave Communication using I°C Interface

6 Kk kK Kk kK Kk ok Kk ok Kk ok ok Kk ok ok Kk kK Kk ok ek Kk ok Kk ok ok ok ok ko ok ko ok K ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok kK Kk ok ok Kk ok kK Kk ok

/* Starts Timerz */
R R R R B T4
TZ.TSTR.BYTE = 0x01 ; /* timer start */

/* STRO = 1 TCNT Ollstart */

/* - */
/* 5.4 TimerZ interrupt processing */
/* ,,, */
/**/
Vad 1. Module name: h8_TimerZz */
/* 2. Function overview: 10-msec interval timer processing */
/* 3. History of revisions: REV Date created/revised Created/revised by Revision contents */
/* 000 2002.02.11 Ueda New */

/**/
#pragma interrupt(h8 timerz)
void h8 timerz(void

{

6 Kk kK Kk kK Kk kKK ok Kk ok ok Kk ok ok Kk ok ok Kk ok ek Kk ok ok Kk ok kK ko ok ko ok ko ok ok ko ok Kk ok ok Kk ok ok Kk ok ok ok ok ok ko ok ok Kk ok ok Kk ok ok K Kk ok

/* Clears the interrupt source */

R L R T

com_global.dummy = TZ0.TSR.BYTE; /* dummy read */

TZ0.TSR.BIT.IMFA = 0; /* IMFA clear */

/***/
/* Decrement by 1 every 10 msec */
/***/
if(com timer.wait 10ms>0)

com_timer.wait_10ms --;

/***/
/* Counting up */
/***/
com_timer.counter++;
if(com timer.counter >= 10) {
J R s
/* Decrement by 1 every 10 msec */
/**/
if(com timer.wait_100ms>0)
com timer.wait 100ms --;

if(com_timer.wait_100ms_scan>0)

com_timer.wait 100ms_scan --

com_timer.counter = 0;

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 37 of 40

‘ z H8/3687
. E N ESAS Master-Slave Communication using I°C Interface

4. Reference Documents

e HB8/3687 Group Hardware Manual (published by Renesas Technology Corp.)
e I°CBus Usage (published by Phillips)

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 38 of 40

‘ z H8/3687
. E N ESAS Master-Slave Communication using I°C Interface

Revision Record

Description
Rev. Date Page Summary

1.00 Sep.29.03 — First edition issued

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 39 of 40

RENESAS ariacs

Master-Slave Communication using I°C Interface

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

REJ06B0105-0100Z/Rev.1.00 September 2003 Page 40 of 40

	Cover
	1. Specifications
	2. Configuration
	3. Sample Programs
	4. Reference Documents

