Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. #### Notice - 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. - Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. - 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. - 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. - 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. - 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. - 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc. - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support. - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. - 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges. - 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. - 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. - 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics - 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. - (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. - (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. # Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp. The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Renesas Technology Home Page: http://www.renesas.com Renesas Technology Corp. Customer Support Dept. April 1, 2003 #### **Cautions** Keep safety first in your circuit designs! Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. #### Notes regarding these materials - 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. - 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. - 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. - Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com). - 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. - 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. - 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. - 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. - 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein. # **APPLICATION NOTE** # Normal- and Inverse-Phase PWM Output of Three Signals with Independently Controllable Duty Cycles #### Introduction Applies the counter-reset synchronized PWM mode of the H8/3687's timer Z block to output the normal- and inverse-phase versions of three PWM waveforms that have the same period but individually controllable duty cycles. # **Target Device** H8/300H Tiny Series H8/3687 # **Contents** | 1. | Specifications | 3 | |-----|--------------------------|---| | 2. | Functional Descriptions | 4 | | 3. | Description of Operation | 6 | | 4. | Software Description | 7 | | 4.1 | Module | 7 | | 4.2 | Module | 7 | | 4.3 | Internal registers used | 7 | | 4.4 | RAM used | 7 | | 5. | Flowchart | 8 | | 6. | Program Listing | 9 | Feb. 2003 ADE-502-123 16-bit / H8/300H Tiny #### **Cautions** 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document. - 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. - 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. - 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. - 5. This product is not designed to be radiation resistant. - 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. - 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products. Copyright © Hitachi, Ltd., 2003. All rights reserved. Feb. 2003 ADE-502-123 16-bit / H8/300H Tiny Page 2 of 12 http://www.renesas.com/ # 1. Specifications 1. Applies the counter-reset synchronized PWM mode of the H8/3687's timer Z block to output the normal- and inverse-phase versions of three PWM waveforms that have the same period but individually controllable duty cycles. - 2. This sample task involves controlling the H8/3687 to produce outputs of the form shown in figure 1.1: that is, three PWM waveforms, each of which has a controllable duty cycle but the same period, with both normal- and inverse-phase versions of each waveform. The duty cycle is controlled through control of the high-level pulse width. - 3. Any duty cycle from 0 to 100% is specifiable for each pair of normal- and inverse-phase signals by the settings in the relevant registers. Figure 1.1 Output of Three Normal-Phase/Inverse-Phase Pairs with Independently Controllable Duty Cycles Feb. 2003 ADE-502-123 16-bit / H8/300H Tiny Page 3 of 12 http://www.renesas.com/ ## 2. Functional Descriptions 1. In this sample task, the H8/3687 is controlled to produce three PWM waveforms in both normal phase and inverted phase (for a total of six waveforms), with each having an independently controllable duty cycle. This is achieved through the combination of channels 0 and 1 of timer Z (counter-reset synchronized PWM mode). - 1) Figure 2.1 is a block diagram of timer Z, which is used in this sample task. In the sample task, the following functions of timer Z are used. - Clearing of the counter in response to a compare-match (counter clearing). - The output of paired normal- and inverse-phase PWM waveforms, where the levels of both waveforms in the pair change at the same point; this is achieved through the use in tandem of channels 0 and 1 of timer Z (counter-reset synchronized PWM mode). Figure 2.1 Timer Z Channels 0 and 1 in the Counter-Reset Synchronized PWM Mode 2. Table 2.1 shows the function assignments for this task. The three pairs of PWM waveforms are output by assigning the timer Z functions to the pins and registers indicated in table 2.1. Feb. 2003 ADE-502-123 16-bit / H8/300H Tiny Page 4 of 12 http://www.renesas.com/ #### **Table 2.1 Function Assignments** | Pin or Register Name | Assigned Function | | | |----------------------|-----------------------------------------------------------------------------------------------------|--|--| | FTIOB0 | Pulse-output pins | | | | FTIOD0 | | | | | FTIOA1 | | | | | FTIOB1 | | | | | FTIOC1 | | | | | FTIOD1 | | | | | TSTR | Enabling and disabling of counting by the channel 0 and channel 1 timers. | | | | TCR0 | Selects the input clock and the condition that drives clearing of the channel 0 timer counter. | | | | TFCR | Specifies the counter-reset synchronized PWM mode. | | | | TOCR | Specifies the initial output until the first compare-match occurs. | | | | TOER | Enables and disables the timer output. | | | | GRA0 | Specifies the output pulse cycle. | | | | GRB0 | Specifies the timing of the level change in the pulses to be output from the FTIOB0 and FTIOD0 pins | | | | GRC0 | Specifies the timing of the level change in the pulse to be output from the FTIOA1 and FTIOC1 pins. | | | | GRD0 | Specifies the timing of the level change in the pulse to be output from the FTIOB1and FTIOD1 pins. | | | | TCNT0 | Channel 0 timer counter | | | Page 5 of 12 http://www.renesas.com/ ## 3. Description of Operation Figure 3.1 shows the principle of operation. Hardware and software processing by the H8/3687 are applied in the way shown in figure 3.1 to produce three pairs of waveforms, each with the same period and an independently controlled duty cycle, and with each pair consisting of a normal-phase signal and the corresponding inverse-phase signal. Figure 3.1 Principle of operation for the Output of Three Pairs (Normal/Inverse Phase) of Signals with Independently Controllable Duty Cycles Feb. 2003 ADE-502-123 16-bit / H8/300H Tiny Page 6 of 12 http://www.renesas.com/ # 4. Software Description #### 4.1 Module | Module Name | Label Name | Assigned Function | |--------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Main routine | main | Specifies the timing of the level changes in the three pairs of output pulse waveforms in GRB0, GRC0, and GRD0 and specifies the period for the waveforms in GRA0. | # 4.2 Arguments No argument is used in this sample task. # 4.3 Internal registers used | Pin and Register Names | Assigned Function | | | |------------------------|---------------------------------------------------------------------------------------------|--|--| | TSTR | Enables or disables counting by timer channels 0 and 1. | | | | TCR0 | Selects the input clock and the condition that clears the channel 0 timer counter. | | | | TFCR | Specifies the reset-synchronous PWM mode. | | | | TOCR | Specifies the initial output until the first compare-match occurs. | | | | TOER | Enables or disables the timer output. | | | | GRA0 | Specifies the output pulse cycle. | | | | GRB0 | Specifies the timing of the level change for the PWM-output pair on FTIOB0 and FTIOD0 pins. | | | | GRA1 | Specifies the timing of the level change for the PWM-output pair on FTIOA1 and FTIOC1 pins. | | | | GRB1 | Specifies the timing of the level change for the PWM-output pair on FTIOB1 and FTIOD1 pins. | | | | TCNT0 | Channel 0 timer counter | | | #### 4.4 RAM used This sample task uses no RAM. Feb. 2003 ADE-502-123 16-bit / H8/300H Tiny Page 7 of 12 http://www.renesas.com/ ### 5. Flowchart 1. Main routine Feb. 2003 ADE-502-123 16-bit / H8/300H Tiny Page 8 of 12 http://www.renesas.com/ ### 6. Program Listing ``` H8/300HN Series -H8/3687- Application Note PWM Output of Three Normal- and Inverse-Phase Signal Pairs Function :Timer Z Reset Synchronous PWM Mode External Clock: 16 MHz Sub-clock: 32.768 kHz #include <C:\ch38\include\machine.h> Symbol Definition struct BIT { /* bit7 */ unsigned char b7:1; b6:1; /* bit6 */ unsigned char /* bit5 */ unsigned char b5:1; /* bit4 */ unsigned char b4:1; unsigned char b3:1; /* bit3 */ /* bit2 */ unsigned char b2:1; /* bit1 */ unsigned char b1:1; /* bit0 */ unsigned char b0:1; }; #define TCR0 *(volatile unsigned char *)0xF700 /* Timer Control Register 0 #define TIORA0 *(volatile unsigned char *)0xF701 /* Timer I/O Control Register A0 #define TIORC0 *(volatile unsigned char *)0xF702 /* Timer I/O Control Register CO * / #define *(volatile unsigned char *)0xF703 /* Timer Status Register 0 TSR0 #define TSR0_BIT (*(struct BIT *)0xF703) /* Timer Status Register 0 #define IMIFA_0 TSR0_BIT.b0 /* Input Capture/Compare match Flag A #define *(volatile unsigned char *)0xF704 /* Timer Interrupt Enable Register 0 * / TIER0 ``` Feb. 2003 ADE-502-123 16-bit / H8/300H Tiny Page 9 of 12 http://www.renesas.com/ ``` *(volatile unsigned char *)0xF705 #define POCR 0 /* Port Output Level Control Register * / #define *(volatile unsigned short *)0xF706 /* Timer Counter 0 TCNT0 #define *(volatile unsigned short *)0xF708 /* General Register A0 GRA0 * / #define GRB0 *(volatile unsigned short *)0xF70A /* General Register B0 #define /* General Register CO GRC0 *(volatile unsigned short *)0xF70C #define *(volatile unsigned short *)0xF70E /* General Register D0 GRD0 #define *(volatile unsigned char *)0xF710 /* Timer Control Register 1 TCR1 #define /* Timer I/O Control Register Al TIORA1 *(volatile unsigned char *)0xF711 #define TIORC1 *(volatile unsigned char *)0xF712 /* Timer I/O Control Register C1 #define *(volatile unsigned char *)0xF713 /* Timer Status Register 1 * / TSR1 #define TIER1 *(volatile unsigned char *)0xF714 /* Timer Interrupt Enable Register 0 #define POCR1 *(volatile unsigned char *)0xF715 /* Port Output Level Control Register #define TCNT1 *(volatile unsigned short *)0xF716 /* Timer Counter 1 #define GRA1 *(volatile unsigned short *)0xF718 /* General Register A1 #define GRB1 *(volatile unsigned short *)0xF71A /* General Register B1 #define *(volatile unsigned short *)0xF71C /* General Register C1 GRC1 #define GRD1 *(volatile unsigned short *)0xF71E /* General Register D1 #define *(volatile unsigned char *)0xF720 /* Timer Start Register TSTR #define TMDR *(volatile unsigned char *)0xF721 /* Timer Mode Register #define TPMR *(volatile unsigned char *)0xF722 /* Timer PWM Mode Register #define TECR *(volatile unsigned char *)0xF723 /* Timer Function Control Register * / /* Timer Output Master Enable Register */ #define TOER *(volatile unsigned char *)0xF724 /* Function definition /* SP Set extern void INIT (void); void main (void); extern void _INITSCT(); Vector Address /* VECTOR SECTION SET V1 #pragma section void (*const VEC_TBL1[])(void) = { /* 0x00 - 0x0f */ INIT /* 00 Reset }; ``` Feb. 2003 ADE-502-123 16-bit / H8/300H Tiny Page 10 of 12 http://www.renesas.com/ ``` #pragma section/* P /* Main Program void main (void) _INITSCT(); /* Disable interrupts set_imask_ccr(1); TSTR = 0xFC; /* Stop the timer TOCR = 0x07; /* PWM initial output "0" TCR0 = 0x20; /* GRA Compare Match Clear Mode TFCR = 0 \times 01; /* Reset Synchronous PWM Mode TCNT0 = 0x0000; /* Initial value GRA0 = 0x320; /* Cycle 50us GRB0 = 0xF0; /* Duty cycle 30% GRA1 = 0xF0; /* Duty cycle 30% GRB1 = 0xF0; /* Duty cycle 30% * / TOER = 0 \times 00; /* Enable output on FTIOB0, */ /* FTIO00, FTIOA1, FTIOB1,FTIOC1, FTIOD1 */ TIER0 = 0x00; /* Disable interrupts */ TSTR = 0xFD; /* TCNT0 Start */ while(1){} ; } ``` Feb. 2003 ADE-502-123 16-bit / H8/300H Tiny Page 11 of 12 http://www.renesas.com/ # INIT.SRC (Program Listing) ``` .EXPORT_INIT .IMPORT_main ; .SECTION P,CODE _INIT: MOV.W #H'FF80,R7 LDC.B #B'10000000,CCR JMP @_main ; .END ``` #### Link address specification | Section Name | Address | |--------------|---------| | CV1 | H'0000 | | Р | H'0100 | | В | H'F780 | Feb. 2003 ADE-502-123 16-bit / H8/300H Tiny Page 12 of 12 http://www.renesas.com/