RENESANS APPLICATION NOTE

R8C Family R20ANOOSBES0100

)) Rev.1.00
Implementing Interrupts in MR8C/4 Mar 01, 2010
Introduction

The ability to handle multi tasks simultaneously is important in embedded systems. Such capability is achieved by
having external hardware devices that perform device-specific operations in parallel to the core processor. This
concurrency is achieved using interrupts. RTOSs handle interrupts in different ways and require varying methods of
implementing interrupt handlings.

This document describes interrupts, Renesas R8C family interrupts architecture, and how they are implemented in
MR8C/4, their impact on scheduling and real-time, and some interrupt-management strategies.

Target Device
Applicable MCU: R8C Family

Contents
1. Guide in uSiNg thiS DOCUMENLcciiiiiiiiiiiiiie e e e s e e e e e e s re e e e e e s e e sanberreeeeeesesnneeeeeas 2
2. Introduction to Interrupts in Embedded SYSIEMSuiiiiiiiiiiie e 3
3. Overview of Renesas R8C Family Interrupts ArchiteCtUures..........ccccvvveeeeie i 5
4. Understanding RTOS INterrupt ArChItECIUIEceviiiii i e 10
5. Implementing INterrupts in MRBC/Z ... e e e e e 13
6. REfErENCE DOCUMENTS.eiiiiitiiiie ittt ettt e sttt et e s abb et e s aab et e e s sabb et e e sbe et e e snaeeeesnbneeennneeae s 26

R20ANO088ES0100 Rev.1.00 Page 1 of 27

Mar 01, 2010 RENESAS

R8C Family

Implementing Interrupts in MR8C/4

1.

Guide in using this Document

This document aims to equip users with the confidence and capability of implementing interrupts in MR8C/4.

With sufficient coverage ranging from introduction of interrupts in embedded systems to an overview of Renesas R8C
Family interrupt architectures, users will be able to relate the explanation on the implementation of interrupts in
MR8C/4 for the R8C Family devices.

Table 1 Explanation of Document Topics

Topic

Objective

Pre-requisite

Introduction to Interrupts in
Embedded Systems

A basic introduction to interrupts

Fundamental knowledge in embedded
systems

Overview of Renesas R8C
Family Interrupts
Architectures

To reinforce users’ understanding on
the interrupt architectures of R8C
Family devices

Knowledge in Microcontroller

Understanding RTOS
Interrupt Architecture

Provide a brief overview of interrupts
implementation in RTOS and its
associated challenges and concerns

Knowledge in RTOS

Implementing Interrupts in
MR8C/4

Guide users in the implementation of
interrupts in MR8C/4

Knowledge in interrupts architecture of

R8C Family devices

Reference Documents

Listing of documents that equip users
with knowledge in the pre-requisite
requirements

R20ANOO88ES0100 Rev.1.00
Mar 01, 2010

RENESAS

Page 2 of 27

R8C Family Implementing Interrupts in MR8C/4

2. Introduction to Interrupts in Embedded Systems

2.1 Why Interrupts?

To satisfy end-consumers’ increasingly demands, more functionality is consistently added to the embedded system. As
the functional requirements proliferate, size of the software grows. Thereby, it becomes more difficult to ensure that
time-critical items (e.g. capture data from external inputs) are performed properly.

“Interrupts” was introduced to handle this problem. Interrupt signals an event to the microprocessor to instruct it to stop
what it is doing, and handle the incoming task.

2.2 Types of Interrupts

There are two types of interrupts; Hardware and Software. Software interrupts are generated from software through the
issuance of a specified command. Hardware interrupts are triggered by peripherals and external devices connected to
the microprocessor.

2.3 Interrupts Components

2.3.1 Programmable Interrupt Controller (PIC)

PIC is a device that accept and prioritize multiple interrupt sources so that the highest priority interrupt is directed to
core CPU for processing at any point of time. In addition, PIC helps core CPU to determine an interrupt’s exact source.

2.3.2 Interrupts Service Routine (ISR)

ISRs are software routine that handle and process interrupt requests as specified by users. When an interrupt is
generated, processor breaks away its present task, switch to interrupt stack pointer and points to its ISR to process the
interrupt. Execution control is returned to the main program when the ISR completed.

2.3.3 Interrupt Vector Table

Interrupt vector table carries a list of all interrupt service routine and their corresponding properties (e.g. priority level,
address, descriptions, etc) that define the dynamic characteristics of the interrupt sources. Interrupt vector table provides
processor the means to jump into the ISR of the corresponding interrupt by extracting its ISR address listed in the table.
R8C family devices consist of two interrupt vector tables; fixed and relocatable interrupt tables shown in Figure 1.

R20ANO0OSSES0100 Rev.1.00 Page 3 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

Fixed Interrupt Vector Table

Vector Addresses

Interrupt Source Address (L) to (H) Remarks Reference
Undefined instruction OFFDCh to OFFDFh |Interrupt with RBC/Tiny Series
UND instruction Software Manual
Qverflow OFFEOh to OFFE3h |Interrupt with
INTQ instruction
BRK instruction OFFE4h to OFFE7h |If the content of address

OFFETh is FFh,
program execution
starts from the address
shown by the vector in
the relocatable vector

table.

Address match OFFE8h to OFFEBh 12.6 Address Match
Interrupt

Single step (1) OFFECh to OFFEFh
Watchdog timer, OFFFOh to OFFF3h 15. Watchdog Timer,
Oscillation stop detection, 9. Clock Generation Circuit,
Voltage monitor 1/ 6. Voltage Detection Circuit,
comparator A1, 32. Comparator A
Valtage monitor 2/
comparator A2
Address break (1) 0OFFF4h to OFFF7h
(Reserved) OFFF8h to OFFFBh
Reset OFFFCh to OFFFFh 5. Resets

Relocatable Interrupt Vector Table

Vector Addresses (1) Software| Intempt

v eses (Interrupt | Control Reference
Address (Ljto Address (H) | o LB SORE
BRK mstruction 1 0% +3 (D000h £ 0003h) o B RBCITiny Series
Software Manual

Interrupt Source

Flash memary ready +4 1o +7 (D004 to 0007} FMRDYIC | 35. Flash Memory

1
(Reserved) H - -
W +1210+15 (000Ch o 000Fh) |3 INT7IC__ | 2.4 INT Interrupt
N6 +16 to +19 (0010N to 0013h) 4 INTEIC [12.4THT Interrupt
s +20 to +23 (0014 to 0017h) 5 INTSIC | 2.4 1T Interrupt
e +24 to +27 (0015h to 0D1Bh) & INTAIC | 2.4 INT Interrupt
Timer RC +2810 <31 (001Chto 001Fh) |7 TRCIC | 20. Timer RC
Timer ROD +32 to =25 (0020N to 0023h) & TRDOIC | 21. Timer RD
Timer RD1 +36 to =2 (0024h to 0027h) B TRDAIC

Timer RE =40 to +43 (0028h to 002Bh) 10 TREIC |22, Timer RE
UART2 transmitiNACK2 +44 to +47 (002Ch to 0D2Fh) 11 S2TIC__|25. Serial Interface (UART2)
UART2 receive/ACK2 +45 to =51 (0030h to 0033h) 12 SIRIC
Key input +52 to +55 (0034h o 0D37h) 13 KUPIC [12.5 Key Input Interrupt
AJD conversion +56 to +58 (0038h to 003Bh) 14 ADIC 30 A/D Converter
Synehronous serial <60 to +63 (003Ch to 003Fh) 15 SSUIC/IC | 27. Synchronous Serial
communication unit/ ic Communication Urit (SSU)
12C bus interface 12) 28 2C bus Interface
(Reserved) 16 - -
UARTO transmit <68 to +71 (0044h to 0047h) 17 SOTIC |24 Seral Interface (UARTI (i=
UARTD receive <72 to =75 (0048h to 0D4Bh) 18 SORIC 0or 1))
UARTI transmit <76 to =79 (DD4Ch to 004Fh) 13 SITIC
UARTI receive <80 to =83 (0D50h to 0D53h) 20 SIRIC
I <64 to +E7 (0054h to 0D7h) 21 INT2IC | 2.4 INT Interrupt
Timer RA <66 to +61 (0058h to 0D5BR) 22 TRAIC |18 Timer RA
(Reserved) 23 - -
Timer RE +56 to +59 (0060h to 0D63h) 24 TREIC |15 Timer RB
T +100 to +102 (0084h to 0067h) |25 INTIIC [12.4TRT Interrupt
s +104 ta +107 (0068h to 006BN) | 26 INT3IC
(Reserved) El - -
(Reserved) 25 - -
hTa 11810 +119 (0074 to 0077h) |29 INTOIC | 12.4TNT Interrupt
UART2 bus collision detection +120 to +123 (0078h to 007Bh) |30 UZBCNIC |25, Serial Interface (UART2)
(Reserved) 31 - -
Software (3) <128 to +131 (0080h to 0083 to (321041 |- RECITiny Series

+164 ta +167 (00A4h to DOATH) Softwars Manual
(Reserved) a2 - -
Timer RG +172ta +175 (00ACh to 0DAFh) [43 TRGIC |23 Timer RG
(Reserved) 4d4tods |- -
Voltage monitor 1/comparator A1 [=200 to +203 (00CEh to 00CBh) |50 VCMP1IC | 8. Voltage Detection Circuit
Voltage monitar 204 to =207 (D0CCh to DOCFh) |51 VCMP2IC | 32. Comparator A
(Reserved) 521055 |- -
Software () +224 to +227 (DOEDh to DOESh) to 56 t0 63 |- RECITiny Series

+252 ta +255 (0OFCh to O0FFh) Softwars Manual

Figure 1 Interrupts Vector Tables of R8C/Lx Devices

234 Interrupt Priority Level

To facilitate nested interrupts, a “priority” level is generally provided for each interrupt. An interrupt priority level (IPL)
is assigned by users to individual interrupts to represents how critical the interrupt is. When two interrupts happen at the
same time, the higher priority interrupt will take precedence over the lower priority one.

2.35 Masked/ Unmasked Interrupts

A processor can mask or block interrupts requests to perform a task. Hardware interrupts can be further categorized into
maskable interrupts (IRQ) and non-maskable interrupt (NMI).

IRQs are interrupts that can be disabled to let higher priority ISRs be executed uninterruptedly. Interrupt masking is
usually done by clearing the Interrupt Enable Flag.

NMI is a special type of interrupt that cannot be disabled by standard masking technique and is typically used to signal
attention for reporting of non-recoverable hardware errors, methods for system debugging, and special case handling
such as system resets.

R20ANO0OSSES0100 Rev.1.00 Page 4 of 27
Mar 01, 2010 RENESAS

R8C Family

Implementing Interrupts in MR8C/4

3. Overview of Renesas R8C Family Interrupts Architectures

In the uITRONA4.0 specification, implementation of an interrupt handler is generally dependent on the processor
interrupt architecture and the Programmable Interrupt Controller (PIC). As MR8C/4 conforms to LITRON4.0
specification and specifically designed for R8C family devices, users are required to understand the interrupt
architectures of the R8C family devices in the setup of interrupt handlers and interrupt service routine.

For R8C family devices, there are two main types of interrupts (Software and Hardware). For hardware interrupt, it is
further categorized into Special and Peripheral 1/O interrupts as shown in Figure 2.

~ Software

Undefined instruction (UND instruction)
| Overflow (INTO instruction)

Interrupt

L Hardware —

(nonmaskable interrupt) " BRK instruction

INT instruction

Watchdog timer
: i Oscillation stop detection
Special " Single-step?
(nonmaskable interrupt) Address match

Peripheral 1/O1
{maskable interrupt)

Notes: 1. Peripheral function interrupts are generated by the peripheral functions built into the

microcomputer system.

2. This is a dedicated interrupt for development support tools. Do not use this interrupt.

Figure 2 Classifications of Interrupts

For R8C family devices, there are two vector tables, namely, “Fixed Vector Table” and “Relocatable Vector Table”.

As the names imply, “Fixed Vector Table” resides in allocated addresses (e.g. OFFDCh to OFFFFh). Whereas
“Relocatable Vector Table” can be allocated at any desired location within the devices’ entire memory space by INTB

register relative addressing.

Figure 3 and Figure 4 provide the “Fixed Vector Table” and “Relocatable Vector Table” of R8C/Lx devices

respectively.

R20ANOO88ES0100 Rev.1.00
Mar 01, 2010

RENESAS

Page 5 of 27

R8C Family

Implementing Interrupts in MR8C/4

Vector Addresses

INTOQ instruction

Interrupt Source Address (L) fo (H) Remarks Reference
Undefined instruction O0FFDCh to OFFDFh |Interrupt with RBCITiny Series
UND instruction Software Manual
Overflow OFFEOR to OFFE3h |Interrupt with

BRK instruction

OFFE4h to OFFE7h

table.

If the content of address
0FFETh is FFh,
program execution
starts from the address
shown by the vector in
the relocatable vector

Address match

OFFES8h to OFFEBh

12.6 Address Match
Interrupt

Single step (1)

OFFECh to OFFEFh

Watchdog timer,
Oscillation stop detection,
Voltage monitor 1/
comparator A1,

Vaoltage monitor 2/
comparator A2

OFFFOh to OFFF3h

15. Watchdog Timer,

9. Clock Generation Circuit,
6. Voltage Detection Circuit,
32. Comparator A

Address break (1)

0FFF4h to OFFFTh

(Reserved)

OFFF8h to OFFFBh

Reset

OFFFCh to OFFFFh

o

Resets

Figure 3 Fixed Vector Tables of R8C/Lx Devices

Vector Addresses (1) Software | Interrupt
Interrupt Scurce Address (L) to Address (H) Interrupt Corﬂml Reference
: : Mumber | Register
BRI instruction (3) +0 to +3 (000Ch to 0003h) o - RECITiny Series
Softwars Manual

Flash memory ready +4 to +7 (0004h to 0007h) 1 FMRDYIC | 35. Flagh Memory
(Reserved) 2 - -
INTT +12 to +15 (000Ch to 000FR) 3 INTTIC 12.4 INT Interrupt
INTE +16 to +19 (0010h to 0013h) 4 INTGIC 12.4 INT Interrupt
NS =20 to +23 (0014h to 0017h) 3 INTSIC [12 4 TNT Interrupt
INT4 +24 to +27 (0018h to 001Bh) B INT4IC 12.4 INT Interrupt
Timer RC +28 to +31 (001Ch to 001Fh) 7 TRCIC 20. Timer RC
Timer RDO +32 to +35 (0020h to 0023h) 8 TROOIC | 21. Timer RD
Timer RD1 +36 to +38 (0024h to 0027h) 9 TRO1IC
Timer RE +40 to +43 (0028h to 002Bh) 10 TREIC 22. Timer RE
UARTZ fransmit/NACK?2 +44 to +47 (002Ch to 002Fh) 11 S2TIC 25. Serial Interface (UARTZ)
UARTZ receive/ACK2 +48 to +51 (0030h to 0033h) 12 S2RIC
Key input +52 to +55 {0034h to 0037h) 13 KUPIC 12.5 Key Input Inferrupt
AID conversion +56 to +58 (0033h to 003Bh) 14 ADIC 30. A/D Converter
Synchronous serial +60 to +63 {003Ch to 003Fh) 15 SSUICAIC | 27. Synchronous Serial
communicafion unit/ IC Communication Unit {SSU),
12C bus interface (2) 28. 12C bus Interface
(Reserved) 16 - -
UARTO transmit +68 to +71 (0044h to 0047h) 17 SOTIC 24, Serial Interface (UARTI (i =
UARTO receive +72 to +75 (0043h to 004Eh) 18 SORIC Dor 1))
UART1 transmit +76 to +79 (004Ch to 004Fh) 19 S1TIC
UART1 receive +80 to +83 (0050h to 0053h) 20 S1RIC
INTZ +84 to +87 (0054h to 0057h) ey INT2IC 12.4 INT Interrupt
Timer RA +85 to +81 (0053h to 005Bh) 22 TRAIC 18. Timer RA
(Reserved) 23 - -
Timer RB +06 to +99 (0060h to 00E3h) 24 TREIC 19. Timer RB
INT1 +100 to +1032 (0084h to 00E7TH) 25 INT1IC 12.4mlmerrupt
INT3 +104 to +107 (D068 to D0EBh)} |26 INT3IC
(Reserved) 27 - -
(Reserved) 28 - -
INTO +116 to +119 (0074h to 0O7Th) 29 INTOIC 13_4m|me|—mpt
UART2 bus collision detection +120 to =123 (0078h to 007Bh) 20 U2BCHIC | 25. Serial Interface (UARTZ2)
(Reserved) H - -
Software (3] +128 to +121 (0080h to 0083h) to |32 to 41 |- REC/Tiny Serizs

+164 to +167 (00A4h to DDATH) Softwars Manual
(Reserved) 42 - -
Timer RG +172to +175 (D0AChH to ODAFh) |43 TRGIC 23. Timer RG
(Reserved) 44 to 45 |- -
‘Joltage monitor 1/comparator &1 [+200 to +203 (00CEh to 00CBh) |50 VCMP1IC | 6. Voltage Detection Circuit
\/oltage monitor 2icomparator A2 | +204 to +207 (00CCh to DOCFh) |51 YCMP2IC | 32. Comparator A
(Reserved) 5210355 |- -
Software (3 +224 to +227 (00EOH to 00E3n) to |56 to 63 |- RECITiny Series

+252 to +255 (0OFCh to 00FFh)

Softwars Manual

Figure 4 Relocatable Vector Tables of R8C/Lx Devices

Figure 5 illustrates an example of defining the starting address locations of “Fixed Vector Table” and “Relocatable
Vector Table” for a R8C23 device.

R20ANOO88ES0100 Rev.1.00

Mar 01, 2010

RENESAS

Page 6 of 27

R8C Family Implementing Interrupts in MR8C/4

bddressisize) Sect ion

000000(000400)
0004000000263 [D] data_NE
000660002227 [0 bss NE
0009000000183 [D] data_NO
0009260000217 [0 bss_ND
0009270002307 [D] stack

000bF7(000150% DT istack INTB regjster defined zero relative addressing

000447 (0032691 thus set Fixed Vector Table starting address at

004000(000008) ERT rom_RE "00fedc”

0040080000017 ERT rom_ RO

883822%88%% E jgt;mg% _intbh_ = 0x00; /7 set variable vector’'s address
0042640000017

e e 0

009dc2(0000e1) [ET interruet L S L L i

009223 (006039

00fedc(0001007 [RI wector /#pragma sectaddress tfvector ,ROMDATA Oxffde
00ffdc(000024) [RI fvector

010000 (0effff)
Offfff

Figure 5 Vector Tables Definition for RBC23 Device

3.1 Software Interrupts

Software interrupts refers to interrupt requests that are put up by instructions in the R8C instruction set. Figure 6
provides a list of software interrupts for R8C22/23 devices.

No. Types Activation Method Location Maskable Property
Undefined
! it When an UND Fixed wector table N labl
on-maskable
instruction iz executed | (OFFDCh to 0FFDFL)
Interrupt
Orerflowr When an arithmetic Fixed wector table
2) Mon-maskable
Interrupt operation owerflow (0FFEQOh to OFFE3h)
When a BRE Fized vector table
3 ERK Int t Non-maskabl
RERE instruction is executed | (OFFE4h to OFFE7h) e
When an INT
4 INT Insouction ins?ruction followed by Relocatable vector Non:riaskabile (0ta 63)
Interrupt an interrupt number (0 table
to 63) iz executed

Figure 6 Types of Software Interrupts

The maskable property of INT instruction interrupt differs for R8C/Lx devices. In R8C/Lx devices, software interrupt
numbers 0 to 31 and 42 to 55 are maskable, whereas software interrupt numbers 32 to 41 and 56 to 63 are non-maskable.

3.1.1 Writing Software Interrupts

With reference to the software interrupts listing in Figure 6, only INT instruction interrupt (that resides in relocatable
vector table) may be defined by users. Therefore, software interrupts are written by defining the INT number as
illustrated in Figure 7.

R20ANO0OSSES0100 Rev.1.00 Page 7 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

vaid 5w int100) p Declare function protoype before

h #pragam declaration

#pragma INTCALL 10 sw_int100) . Preprocessor directive to
define interrupt handler

void sw_int10 (void) N
{

Interrupr routine for
>_ Timer RE peripheral

intermi:;t handling codes interrupt

I —

Figure 7 Writing Software Interrupts

3.2 Hardware Interrupts
Hardware interrupts comprise of Special and Peripheral 1/O interrupts.

3.2.1 Special Interrupts

Special interrupts are used to handle non-recoverable errors pertaining to the processor, which need immediate attention.
They are therefore non-maskable. Listings of special interrupts vary from one device to another in the R8C family.
Figure 8 shows classification of special interrupts for R8C22/23 and R8C/Lx devices respectively.

No. R8C22/23 Group ' 'RBCLX Group
1 Watchdog timer Watchdog timer
2 Oscillation stop detection Oscillation stop detection
3 Voltage monitor 2 Woltage monitor 2/ comparator A2
4 Single step Single step
2 Address break Address break
& Address match Address match
7 Woltage monitor 1/ comparater Al

Figure 8 Comparing Special Interrupts of R8C22/23 and R8C/Lx Devices

With reference to Figure 8, R8C/Lx devices consist of one additional special interrupts “Voltage monitor 1/ comparator
Al1” as compared to R8C22/23 devices even though they belonged to the same R8C family. Thus, it is crucial for users
to find out the Special interrupts available to the specific device prior to using it.

3.2.2 Peripheral I/O Interrupts

These maskable interrupts are used to response to events triggered by peripherals built into the microcomputer (MCU)
system. With the types of peripheral features vary with each R8C model, so do the types of Peripheral I/O interrupts.
For R8C family, software interrupt numbers are appended to the peripheral 1/O interrupts. This implies MCU will
execute the same interrupt routine when the INT instruction is executed as when a peripheral function interrupt is
generated. Figure 9 shows few of peripheral 1/O interrupts available for RBC/Lx devices.

R20ANO0OSSES0100 Rev.1.00 Page 8 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4
No. RBCZX23 Group REBCLX Group
Sofiware Softwrare
Interrupt Source Interrupt Interrupt Source Intermupt
Number Number
1 CAND Wakeup 3 Flash memory ready 1
2 Can0 Successful receive 4 Timer RC 7
3 CAND Successful ansmit 5 Timer RDO 2
4 CANOD Error i Timer RD1 a
5 Timer RD (Channel 0) 8 Timner RE 10
] Timer RD (Channel 1) 9 UART? manamit/NACK?2 11
7 Timer RE 10 TART2 receive/ACED 2
8 Key Inpur 13 Eey input 13
Q AD 14 AJD conwversion 14
Clack Synchronous Serial [/ Symchronous serial
10 | writh Chip Select/T2C bus 15 commmumication unit/12C bus 15
Interface interface
11 UTARTO Tranamit 17 TARTO Tranamit 17
2 UARTO Receive 18 TARTO Receive 18
13 | UART! Transmit 19 UART! Transmit 19
14 | TART1 Receive 20 TART] Receive 20
15 | Timer RA 22 Timer RA 22
16 | Timer EB 24 Timer BB 24
17 TTARTZ bus collizion -
: detecdon i
18 Timer EG 43

Figure 9 Comparing Peripheral I/O Interrupts of R8C22/23 and R8C/Lx Devices

3.2.3

Writing Hardware Interrupts

For hardware interrupts, only peripheral interrupts (that resides in relocatable vector table) may be defined by users.

There are two steps involved in writing a hardware interrupt in R8C family (refer to Figure 10). They are

1. Define interrupt service routine for the hardware interrupt (To be executed by user)

2. Register interrupt service routine in interrupt vector table (Automatically generated by compiler)

R20ANOO88ES0100 Rev.1.00

Mar 01, 2010

RENESAS

Page 9 of 27

R8C Family

Implementing Interrupts in MR8C/4

B Lefine Inte

(Generated by User)

t Service Routine for the Hardware Interrupt

#pragma interrupt timer re{vect=10) >

woid _timer re (void)

{

interrupt handling codes

—

FPreprocessor directive to
define interrupt handler

Interrupt routine for

: Timer RE perijpheral
interrupt

section vector, ROMDATA
org _ VECTOR_ADR__
Af a
Jword dummy int . wector [
Jword dummy int . wector 1
Jword dummyint . wector 2 Registering interrupt
Jword dummy_int . wector 3 handler for peripheral
Jword duminy_int . wector 4 Timer RE
Jword dumimy int L wector 5
Jword dummy int . wector 6
Jword dummyint . wector 7
Jword dummyint . wector A
1 TITTy TII
ord _titner re wector 10
Jword dummy 1ot , wector 11
Jword dummy int . wector 12
Jword dummyint . wector 13
Tword duminy int L wector 14

Figure 10 Writing Hardware Interrupts

4. Understanding RTOS Interrupt Architecture

Interrupts are part of a mechanism provided by embedded processor architectures to allow for disruption of processor’s
normal execution path and attend to external events. Generally, handling of interrupts in an embedded application with
RTOS is implemented in two layers, namely RTOS layer (first layer) and application layer (second layer).

R20ANOO88ES0100 Rev.1.00
Mar 01, 2010

Page 10 of 27
RENESAS

R8C Family Implementing Interrupts in MR8C/4

The RTOS layer, being the first layer, functions as an interrupt handler in accepting the control of an interrupt when it
occurred. Upon receiving the control, the RTOS interrupts handler calls the application layer interrupt service routine
corresponding to the interrupt for processing.

4.1 RTOS Interrupt Architecture Design Challenges

Generally, there are two fundamental challenges in the designing of RTOS interrupt architecture. The first challenge is
to ensure the integrity of internal RTOS data when servicing interrupt/s. The second challenge is to achieve a
deterministic and low interrupt latency that will not affect the real-time performance of the system.

4.1.1 Challenge 1: Ensure Integrity of Internal RTOS Data

A major challenge in RTOS design involves supporting asynchronous access by interrupt routines and RTOS service
calls to internal RTOS data structures. An ISR or RTOS service call while modifying a data structure should not be
allowed to be interrupted that allows a different ISR or RTOS service call to make unrelated modifications to the same
data structure as shown in Figure 11.

Asynchronous access resalts
in data corruption!
RTOS&mZ [| 5 | 5 6 |1 |
| |
| |
WVariable =’ : :
el I 0 N
| | | |
i i i i
v -]],ET 1 1 1 1
c | 0 5 4 4 |
! ! i i i i l
! ! | | | | !
! ! | | | | !
| | |
ISR2 ! ! o E F !
| | |
| I 3 i |
| | |] |
| | | Interrupt | |
I I I OCear " I
ISR1 A2l B i
CODES

A: Read RTOS data 2’ and store value in local wariable 1
B: Decrement wariable 1

C: Store variable T walue in RTOS data “Z'

[: Read RTO8 data "Z' and store value in local wariable =’
E: Increment variable %'

F: Store variable % value in KT O3 data ‘2

Figure 11 Race Condition of Interrupts

Unified and segmented interrupt architectures are two common approaches to prevent corruption to internal RTOS data
structures by interrupt service routines (ISRs) and RTOS service calls.

In unified interrupt architecture (refer to Figure 12), interrupts are temporarily disabled when ISR or RTOS service calls
is accessing the critical sections of code/data. This prevents other interrupts from making uncoordinated changes to the
same critical sections.

R20ANO0OSSES0100 Rev.1.00 Page 11 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

All interrupt processing
is done in ISR

Figure 12 Unified Interrupt Architecture

In segmented interrupt architecture, interrupts are not disabled during ISR. To prevent interrupts occurring during ISR
from accessing the same RTOS data structure and thereby corrupting it, sesgmented architecture disable the application
scheduler, and divide the ISR into two or more pieces as shown in Figure 13.

= Interrupt processing is split into multiple pieces (Le. ISR1 & ISR2)
* ISR behaves like traditional ISR but does not access RTOS data
= ISR2 performs RTOS data access at application level under scheduler control

Figure 13 Segmented Interrupt Architecture

In unified interrupt architecture approach, interrupt latency is introduced while the interrupts are temporary disabled.
Additional system resources are also required for the allocation of separate system stack used to process all interrupts
and nested interrupts. However, unified interrupt architecture is easier to implement, introduce less system overhead,
less likely to result in stack resource problems and shorter interrupt completion time as compared with segmented
interrupt architecture.

MR8C/4 employs unified interrupt architecture, and thus enjoys its benefits.

4.1.2 Challenge 2: Achieve Deterministic and Low Interrupt Latency

The deterministic characteristic of an embedded system and its corresponding worse case interrupt latency can be
computed by examining all of the sources of interrupt response delays to ascertain which particular source causes the
longest delay to the servicing and completion of the highest priority interrupt. Areas of examination encompass:

e Worse case hardware-induced delay
e Worse case software-induced (e.g. by RTOS kernel) delay
e Longest interrupt disabling region by a lower priority interrupt

To achieve a deterministic and low interrupt latency system, quality-programming techniques coupled with proper
RTOS interrupt architecture are required.

R20ANO0OSSES0100 Rev.1.00 Page 12 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

Quality programming techniques generally involves:

Keeping ISRs as simple and short as possible

Avoid using instructions that take many cycles to execute
Avoid improper usage of RTOS service calls in ISRs
Prioritize interrupts appropriately with relative to tasks
Keep interrupt disabling regions as short as possible

ok~

R8C family devices leverage on an efficient and versatile instruction set and register architecture. Equipped with fast
instruction execution time which has 20 (out of total 89) instructions that execute in a single cycle, powerful
mathematical instructions and frequently used instructions (MOV, ADD, SUB, JMP) that are just 1-byte long, interrupt
latency incurred by R8C MCUs is minimal.

MR8C/4 provides an adequate set of absolutely necessary and deterministic RTOS service calls that can be executed
from ISRs. This gives users the convenience and ensures improper RTOS service calls are not used in ISRs.

By employing unified interrupt architecture, MR8C/4 ensures interrupt disabling regions are kept sufficiently short.

5. Implementing Interrupts in MR8C/4

MR8C/4 RTOS provides a flexible interrupt control mechanism that is fast and deterministic with the following
characteristics:

e Options to create interrupt handlers in C or Assembly.

e Selection for OS-dependent (kernel) or OS-independent (non-kernel) interrupts
e Support for nested interrupts

e Support up to 7 priority levels (Highest priority at 7)

e Execute at higher precedence than dispatcher

e Execute in own independent contexts (hon-task)

o Dedicated interrupt stack

51 Understanding Interrupt Processing in MR8C/4
There are basically three different kind of scenarios of interrupt processing in MR8C/4:
1. Interrupt occurs when processing task (refer Figure 14)

2. Interrupt occurs when processing service call (refer Figure 15)
3. Interrupt occurs within interrupt handler (refer Figure 16)

R20ANO0OSSES0100 Rev.1.00 Page 13 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

Current MR8C/M Interrupt Handler/
Task of Ezecution Interrupt Service Routine

Figure 14 Interrupt Occurring when Processing Task

Current MR8C/4 MRS8C/4 Service Interrupt Handler/
Task of Execution Call Execution Interrupt Service Routine

Service Gall (o
Processing

Processing

Figure 15 Interrupt Occurring when Processing Service Call

R20ANO08SES0100 Rev.1.00 Page 14 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

Current MR8C/4 Interrupt Handlerl/ Interrupt Handler2/
Task of Execution Interrupt Service Routinel Interrupt Service Routine2
A

In tPHHpt‘i‘ _________ Interrupt

A—— Processing

i Interrupt

Processing

Figure 16 Interrupt Occurring within Interrupt Handler

5.2 Defining Kernel/ Non-Kernel Interrupts
In MR8C/4, interrupts are classified into kernel and non-kernel types.

A kernel interrupt allows kernel service calls to be issued within its ISR. Longer interrupt processing time will be
incurred for kernel interrupts as their ISRs can only be completed after the service calls within the ISRs are being
processed (refer to Figure 17). Therefore, non-maskable interrupts and Watchdog Timer interrupt must not be defined
as kernel interrupts.

A non-kernel interrupt does not allow kernel service calls to be issued within its ISR. Since service call is not allowed
within the non-kernel interrupt service routine, no extra delay will be incurred due to the service call processing. Non-
kernel interrupts are therefore generally reserved for the NMI and critical interrupts.

Service Service
call call
begins ends
Interrupt

Interrupt Main
handler ki
Interrupt begins handler code
occurs ends continues

! ! oo

[—>] [e———> Time

Interrupt Interrupt
o ncy *Service Call Processing Time Ten ination
g > Time
Interrupt
Processing
Time

* Service call processing resulting in longer interrupt processing duration

Figure 17 Kernel Interrupt Service Routine with Service Call

R20ANOOSSES0100 Rev.1.00 Page 15 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

The interrupt priority level and kernel interrupt mask level dictates whether it is a kernel or non-kernel interrupts. To
define an interrupt as a kernel interrupt, assign its priority level to be lower or equal to the kernel interrupt mask level.
Conversely, assign an interrupt priority level to be higher than the kernel interrupt mask level if it is designated to be a
non-kernel interrupt (refer to Figure 18).

*Kernel
Lowest mask Highest
Pl'iOl'il'.Y lewel prlorn:y
lzfel l leIfl
0 1 2 3 4 5 6 7
| | | | 1 | |]
|t .+; |
Kernel Non-Kernel
(OS-dependent) (OS-independent)
Interrupt Handler Interrupt Handler

* The above illustration assumes kernel mask level set at 3

Figure 18 Defining Kernel and Non-Kernel Interrupts Handler

Figure 19 provides an example of defining INT1 as a kernel interrupt handler.

/¢ System Definition
system{
stack_size 400;
priority 25V
system_[PL 4
1;
15

Kemel mask level defined at 4

tic_nume
tic_deno

. Defme INT1 handler as
Integ;iﬁ)ﬁfvegt$gg?5¥/” kernel interrupt handler

entry_address = INT_INT1()
pragma_switch = E;

void Configurelnterrupts(void)

/% Enable INTIn Interrupt %/

intlen=1;
A% Set INTIn Interrupt priority */
intlic = 0x02;
1 ‘\ INT1 priority level defined at 2

(below kernel mask level)

Figure 19 Defining INT1 as Kernel Interrupt Handler

5.3 Enabling/Disabling Interrupts

Although it is possible to control (enable/disable) interrupts by manipulating the IPL value, it is not recommended as
the manipulation can only be done by resetting the interrupt flag to zero. However, there are two other methods that are
more appropriate to fulfill this requirement:

1. Modify corresponding interrupt control register (SRF) of the interrupt
2. Utilitize service calls “loc_cpu” and “unl_cpu”
3. Setting ‘I’ flag to enable/disable maskable interrupts

R20ANO0OSSES0100 Rev.1.00 Page 16 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

Method 3 uses the least overhead among the three methods mentioned above. Inaddition, it is the easier to execute.
However, it is important to take note that no service call is allowed to be invoked in the setting of the ‘I’ flag. Figure 20
illustrates this concern.

azm{*FCLR I*): fiMaskable Interrupts Disabled

Service calls not dlowed
in the secing of T flag

a;.sr.n{”fset I"); ffMaskable Interrupts Enabled

Figure 20 Setting ‘I’ Flag for Controlling Interrupts

531 Enable/Disable Non-Kernel Interrupts

Method 1 (as mentioned above) is used to control non-kernel interrupts. Figure 21 illustrates the process of
disabling/enabling a non-kernel interrupt in R8C/Lx devices by modifying its SRF register.

5.3.2 Enable/Disable Kernel Interrupts

To control kernel interrupts, user is only required to use the “loc_cpu” and “unl_cpu” service calls. “loc_cpu” disable
kernel interrupts by placing system in CPU locked state. “unl_cpu” release system from CPU locked state. Figure 22
illustrates the process of disabling/enabling a kernel interrupt in R8C/Lx devices by using service calls “loc_cpu” and
“unl_cpu”.

R20ANO0OSSES0100 Rev.1.00 Page 17 of 27
Mar 01, 2010 RENESAS

R8C Family

Implementing Interrupts in MR8C/4

@ Timer RB declared as non-kernel interrupt

/4 System Definition
system
stack size 400;
priority 2hh;
system [PL 4:
tic_nume 1:
tic_deno 1:

1;

interrupt_wvector[24]]
oz _int = NO;

entry address = TimerRBHandler();

E;

pragma_switch

@ TRBIC interrupt control register of RECLX

Bit b7 b& b5 b4 b3 b2 b1 B0
Symbull — | — | — — IR ez | ILVLD
After Rezet X S x [i] 1]
Bit Symkal Eit Hame Funclion W
bO ILVLD |Intermupt prionty level select bit “EIDEI E': Level D (interrupt disabled) R
B /Lt 001 Level 1 R
B2 o= 010: Level 2 i
011:Level 3
100: Level 4
101: Level &
110:Level 8
111:Level T
b3 133 Intarmupt request bit - Mo interrupt requested R
12 Internupt requested Wil
ba — Mothing is assigned. If necessary, set to 0. When read, the content is undefined. —
b5 —
b —
b7 —

@ Modifying TRBIC intermupt cantrol register
to enable/disable Timer RB interrupt

tinclude <itron.h>
tinclude <kernsl .h>
finclude "kernel _id.h”

¥oid task] (VP _INT stacd)

trbic = 0; *+—

trbic = 5: +«—

Figure 21 Enable/Disable Non-Kernel Interrupts

R20ANO0O88ES0100 Rev.

Mar 01, 2010

1.00
RENESAS

Page 18 of 27

R8C Family Implementing Interrupts in MR8C/4

@ INT1 declared as kernel interrupt in ternplate.cfg

/7 Svstem Definition

system]
stack size = 400;
priority = 7hh;
system [PL = 4;
tic_nume = 1;
tic_deno =1;

b

interrupt vector[25]1
os_int = YES;
entry address = [NT _INTT():
pragma_switch = E;

@ INT1 interrupt control register of RBCLX

Bit b7 b6 b5 4 b3 h2 b1 b0
Symbaol | — | — | — | POL | IR | ILVLZ | ILVLA | ILVLOD
After Reset X X 1] 0 X 0 0
Eit Symbal Bit Name Function W
[ili] VLD [Ink i Ty level select bt CITTED RW
MIEITURE priofty Ievel sEECEBE1°0'0 0: Level 0 interrupt disabled) ,
b1 ILYL 001 Level 1 R
B2 | ILvike 010: Level 2 RIW
011:Level 3
100 Level 4
101 Level &
110 Level G
111 Level 7
b3 IR Interrupt request bit 0 Mo interrupt requested RMW
1: Interrupt requested (1
b FOL |Polarity switch bit (2} 0: Falling edge selected R
1: Rising edge selected 2}
b5 — Resenved bit Sefto 0. RW
b6 — MNothing is assigned. T necessary, sel o 0. When read, the conient is undefined. —
b7 —
@ Using service calls “loc_cpu” and "unl cpu”
to enable/disable INT 1 interrupt
finclude <itron.h>
finclude <kernel.h>
finclude “kernel _id.h
void task](¥P_INT stacd)
intlic = 0x03; J#Define INT 1 priority 3 %/
ercd = loc_cpul); « —
ercd = unl _cpul); «+——o
Figure 22 Enable/Disable Kernel Interrupts
R20ANO0O088ES0100 Rev.1.00 Page 19 of 27

Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

5.4 Coding Interrupts in C Language

54.1 Defining Interrupt Vector Tables
Figure 23 illustrates the definition of vector tables in “c_sec.inc” file for RBC/Lx devices.

Elb __INT_VECTOR

.section INTERRUPT _YECTOR “#——___ Defines Relocatable Vector

.org 0fd00OH 4————— " Table to starts from 0fd00H
__INT_VECTOR:

.section FIX IMTERRUPT VECTOR #———__ Defines Fized Vector Table

Lorg OFFOH «——— to starts from Offd8H
. reserved

.addr OFFFFFFH
; OFS2

byte OFFH

JWDT disable *Important

.ofsreg OFFH " Tq disable Watchdog Timer Interrupt

Figure 23 Defining Vector Tables in “c_sec.inc” in C Language

5.4.2 Writing Kernel Interrupt Handler
Step 1: Define kernel mask level

The kernel mask level is defined in configurator file (e.g. template.cfg) under the system definition.

/4 Svstem Definition

system{
stack size = 400;
priority = 7hh;
System_IPL = b 4——— Kemnel mask level defined a5
tic_nume =1;
| tic_deno =1;

Figure 24 Defining Kernel Mask Level in C Language
Step 2: Define interrupt vector

The interrupt vector is defined in the configurator file (e.g. template.cfg). Figure 25 illustrates an example of defining
INT1 vector as a kernel interrupt.

R20ANO0OSSES0100 Rev.1.00 Page 20 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

/ 1'Vector number

. 2K ernelf Non-kernel
interrupt vector[25]] . "
os int = YES: interrupt handler defmition
entry _address = INT _INT1(); #—— 3Interrupt handler
. pragma_switch = E;‘__________ function name
, 4 Options for #pragma
Extended functions

1. Refersto the software interrupt number as specified for the particular interruptin the device
user manual,

2 "YES" denoteskernel interrupt handler. #pragma INTHANDLER/E INT_INTI1 will be cutput.
"NO* denotes non-kemnel interrupt handler. #pragma INTTERRUPT/E INT_INT1 will be
output,

3, Refersto the function name of the interrupt handler

4 Two switch eptions are available ('B’ and 'E') for non-kernel interrupt handlers. Only one
option ('E’) isawvailable for kernel interrupt handlers.
‘B’ indicates bank- switching with register bank 1 specified.
‘E’ specify nested interrupts allowed.

Figure 25 Defining Interrupt Vector
Step 3: Define interrupt handler

The final step is to define the interrupt handler in the “.c” file. The function name for the interrupt handler is the same as
being defined in step 2. Figure 26 illustrates an example of this step.

tinclude <itron.h>

finclude <kernel.h>)
#include “kernel id.h” MRESC/4 files to be mchaded

void Configurelnterrupts(void)

I INT1 interrupt priority level defmed at 2
intlen=1: ‘// (lower than system IPL)
intlic = 0x02;
] Function name of interrupt handler. “void”
. . ‘_,,,// must be specified for both return value and
void INT INTT(void) aroumment of handler

..Processing starts..
] Other than “ret_int”, all service calls may

be issued within the kermnel mterrupt

...Processing ends... handler.

Figure 26 Defining Interrupt Handler

R20ANO0OSSES0100 Rev.1.00 Page 21 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

5.4.3 Writing Non-Kernel Interrupt Handler
Step 1: Define kernel mask level

The kernel mask level is defined in configurator file (e.g. template.cfg) under the system definition.

/4 System Definition

system]|
stack size = 400;
priority = 2hh;
system [PL = b, 44— Kemel mask level defimed a5
tic_nume =1;
} tic_deno =1;

Figure 27 Defining Kernel Mask Level

Step 2: Define interrupt vector

interrupt_vector[25]] Non-kernel interrupe

os int = No: < handler specified
entry_address INT_INTT();
pragma_switch B:

Figure 28 Defining Interrupt Vector
Step 3: Define interrupt handler

Figure 29 illustrates an example of defining non-kernel interrupt handler in C language.

ftinclude <itron.h>
tinclude <kernel .h> MERSC/4 files to be inchided

finclude "kernel id.h”

void Configurelnterrupts(void)
INT1 mterrupt priority level defined at 6

intlen=1; (higher than system IPL)

intlic = 0x06;
] Function name of interrupt handler. “void”
void INT INTI (void]d’/ rmust be specified for both returm walie and
I - argument of handler

..Processing starts..

No service calls may be ismied within the
non-kernel intermupt handler

...Processing ends. ..

Figure 29 Defining Interrupt Handler

R20ANO0OSSES0100 Rev.1.00 Page 22 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

55 Coding Interrupts in Assembly Language

55.1 Defining Interrupt Vector Tables
Figure 30 illustrates the definition of vector tables in “asm_sec.inc” file for R8C/Lx devices.

e +
:| VECTOR TABLE |
e e m e m e —————————————— *
.glh __INT _VECTOR
'SECTION™ INTERRUPT_VECTOR . LcfmesRelocatable Vector
DRG UFDUUH ' Table to starts from 0FDOOH
INT VECTOR:
CSECTION FIX_INTERRUPT _VECTOR s Defnes Fized Vector Table
LOTE OFFD8H -4— to starts from OFFDSH
. reserved
addr OFFFFFFH
: OFS2
Lhyte OFFH
T rtant:
“WDT disable e

ofsreg OFFH - To disable Watchdog Timer Intermupt

Figure 30 Defining Vector Tables in “asm_sec.inc”

5.5.2 Writing Kernel Interrupt Handler
Step 1: Define kernel mask level

The kernel mask level is defined in configurator file (e.g. template.cfg) under the system definition. This step is
identical to step 1 of coding interrupts in C language.

// System Definition

system]{
stack size = 400;
priority = 7hbh;
system [PL = b; #——— Kemel mask level defmed a5
tic_nume =1;
| tic deno =1;

Figure 31 Defining Kernel Mask Level

Step 2: Define interrupt vector

int t + 25 Kernel interrupt

" eg;i?nfvei $|Eg, A]i”-f_handlerspeciﬁed
entry_address INT_INTT();
pragma_switch E:

Figure 32 Defining Interrupt Vector

R20ANO0OSSES0100 Rev.1.00 Page 23 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

Step 3: Define interrupt handler

INCLUDE sfr_r83ba.inc

.GLB Configurelnterrupts

BSET intlen .

MOV .B #0ZH, intlic ——____ INT1 interrupt priority level defined
at 2 (lower than system [PL)

INCLUDE mr8e.inc
.GLB INT_INT1 -¢—— Global declaration of interrupt handler
function name

INT_INTT:

/ Save registers to stack
PUSHM RO, A0

Serwvice calls may be issued within
irel _wai #ID_taSM*"—#mekemelinterrupthandler

POPM RO, AD
ret_int —

Ramsters are rastorad
“ret_nt” st be used to return from

mterrupt handler

Figure 33 Defining Interrupt Handler

5.5.3 Writing Non-Kernel Interrupt Handler
Step 1: Define kernel mask level

/4 System Definition

system]
stack size = 400;
priority = 7h5;
System_IPl_ = h: 44— Keomel mask level defined a5
tic_nume = 1;
| tic_deno = 1;

Figure 34 Defining Kernel Mask Level

Step 2: Define interrupt vector

interrupt_vector[26]1{ Non-kemnel interrupt

os int = MNo: d— handler specified
entry_address INT_INT1();

pragma_switch E;

Figure 35 Defining Interrupt Vector

R20ANO0OSSES0100 Rev.1.00 Page 24 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts i

n MR8C/4

Step 3: Define interrupt handler

.INCLUDE sfr_r83ba.inc

.GLB _Configurelnterrupts
BSET intlen .
MOV.B #0BH. intTic ——____ INTI nterrupt priority level defined
at & (higher than system IPL)
INCLUDE mr8c.inc
.GLB INT_INT1] -¢—— Public declaration of interrupt handler
function name
INT INTT:
Save registers to stack
PUSHH RO, AQ4— T
:Interrupt Processing 4—— Service calls cannot be issued within
POPM RO, AD the kernel interrupt handler
REIT

Registers are restorad

EEIT must be used to return fram
mterrupt handler

Figure 36 Defining Interrupt Handler

R20ANO0OSSES0100 Rev.1.00
Mar 01, 2010 RENESAS

Page 25 of 27

R8C Family Implementing Interrupts in MR8C/4

6. Reference Documents
User’s Manual

e MRB8C/4 V1.00 User’s Manual
e R8C Family Hardware Manual
The latest version can be downloaded from the Renesas Technology website

Document
e Pardon the Interruption: Two Approaches to RTOS Interrupt Architectures (William E.Lamie)

R20ANO0OSSES0100 Rev.1.00 Page 26 of 27
Mar 01, 2010 RENESAS

R8C Family Implementing Interrupts in MR8C/4

Website and Support

Renesas Technology Website
. http://www.renesas.com/

Inquiries
. http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

R20ANO0OSSES0100 Rev.1.00 Page 27 of 27
Mar 01, 2010 RENESAS

Revision Record

Description

Rev. Date Page Summary

1.00 March.01.10 — First edition issued

A-1

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1.

Handling of Unused Pins

e Handle unused pins in accord with the directions given under Handling of Unused Pins in the

manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

Processing at Power-on

e The state of the product is undefined at the moment when power is supplied.

— The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.
¢ In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
¢ In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

Prohibition of Access to Reserved Addresses

e Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSl is not guaranteed if they are accessed.

Clock Signals

e After applying a reset, only release the reset line after the operating clock signal has become

stable. When switching the clock signal during program execution, wait until the target clock signal has

stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

Differences between Products

e Before changing from one product to another, i.e. to one with a different type number, confirm

that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ
because of the differences in internal memory capacity and layout pattern. When changing to

Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product i with a Renesas El sales office. Also, please pay regular and careful attention to additional and different information to
be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and
regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohil under any i domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product
depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application categorized as "Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the
use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.
The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;
personal electronic equipment; and industrial robots.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
designed for life support.

"Specific": Aircraft; equipment; i P ; nuclear reactor control systems; medical equipment or systems for life support (e.qg. artificial life support devices or systems), surgical

implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage
range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the
use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,
please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your r iance with i laws and ions.
11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) "Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

1RENESAS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Lid.

1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632

Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2010 Renesas Electronics Corporation. All rights reserved.
Colophon 1.0

