

RL78/G14, H8/3687 Group

Migration Guide from H8/3687 to RL78/G14: A/D converter

R01AN1990EJ0100 Rev.1.00 Mar.6,2014

Abstract

This application note describes how to migrate from the H8/3687 Group A/D converter to the RL78/G14 A/D converter.

Target Devices

RL78/G14, H8/3687 Group

For details on the A/D converter and the electrical specifications, refer to User's Manuals: Hardware and technical updates.

Contents

1.	Differences between the H8/3687 Group and RL78/G14	3
2.	Register Compatibility	4
3. 3. 3.	2 Absolute Accuracy 8 3.2.1 H8/3687 Group Characteristics 8 3.2.2 RL78/G14 Characteristics 8 3 Analog Input Pins 8 3.3.1 H8/3687 Group 8 3.3.2 RL78/G14 8	5 5 5 6 6 6 6
4. 4. 4.		8999003345
5.	Reference Application Note	2
6.	Sample Code	2
7.	Reference Documents	2

1. Differences between RL78/G14 and the H8/3687 Group

Table 1.1 lists the differences between the RL78/G14 A/D converter and the H8/3687 Group A/D converter.

Item	H8/3687 Group	RL78/G14
Reference voltage	AVcc (3.3 V to 5.5 V)	Select from V_{DD} , AV_{REFP} (1.6 V to V_{DD}), or internal reference voltage (1.45 V)
Analog input voltage	Vss - 0.3 V to AVcc +0.3 ∨ φ/4, φ/8	 Reference voltage (1.46 V) Reference voltage = AVREFP ANI2 to ANI14: 0 V to AVREFP ANI16 to ANI20: 0 V to AVREFP and EVDD0 Reference voltage = VDD ANI0 to ANI14: 0 V to VDD ANI16 to ANI20: 0 V to EVDD0 Reference voltage = internal reference voltage 0 to VBGR fcLk/64, fcLk/32, fcLk/16, fcLk/8, fcLk/6, fcLk/5,
(conversion clocks)	(¢: system clock)	fclk/4, fclk/2
Resolution	10-bit	(fcLk: CPU/peripheral hardware clock frequency) 8-bit or 10-bit
Operating mode (A/D conversion mode)	Single mode, scan mode	Specify by the combination of A/D channel selection mode (select mode, scan mode) and A/D conversion operating mode (sequential conversion mode, one-shot conversion mode)
Analog input pins	8 (AN0 to AN7)	8 channels (30-, 32-, 36-pin), 9 channels (40-pin), 10 channels (44-, 48-pin), 12 channels (52-, 64-pin), 17 channels (80-pin), 20 channels (100-pin)
A/D conversion trigger	Software trigger External trigger (ADTRG)	Software trigger Hardware trigger (Note 1)
Hardware trigger operating mode	N/A	Available (Hardware trigger no-wait mode, hardware trigger wait mode)
A/D conversion time	At least 3.5 µs per channel (at 20-MHz operation)	Specified by the ADM0 register
Number of pins used simultaneously	1 to 4 pins ^(Note 2)	1 or 4 pins ^(Note 2)
Number of A/D conversion result registers	4	1 ^(Note 3)
Availability in STOP mode	N/A	Available (SNOOZE mode)
On-chip reference voltage/ internal reference voltage	N/A	1.45 V (TYP.)
A/D open-circuit detection assist function	N/A	N/A
Temperature sensor	N/A	Available
Test mode	N/A	Available

Notes

1. Hardware trigger can be selected from (a) timer channel 1 count end or capture end interrupt signal (INTTM01), (b) event signal selected by the ELC, (c) real-time clock interrupt signal (INTRTC), or (d) 12-bit interval timer interrupt signal (INTIT).

- 2. Number of pins used simultaneously varies depending on the specified operating mode.
- 3. The RL78/G14 MCU holds one A/D conversion result only. To perform A/D conversion sequentially, use the DTC to read the A/D conversion result before the next conversion is completed. For details on reading the A/D conversion result using the RL78/G14 DTC, refer to the application note "RL78/G14 Transferring the A/D Conversion Result Using the DTC".

2. Register Compatibility

Register compatibility between the H8/3687 Group and RL78/G14 is listed in Table 2.1.

Table 2.1 Register Compatibility

Item	H8/3687 Group	RL78/G14
On-chip reference voltage	_	ADM2 register Bits ADREFP1 and ADREFP0 ADREFM bit ADS register
A/D conversion result	Registers ADDRA, ADDRB, ADDRC, and ADDRD	ADCR register (10 bits) ADCRH register (8 bits)
Clock division	ADCSR register CKS bit	ADM0 register Bits FR2 to FR0
Clock source		_
A/D operating mode	ADCSR register SCAN bit	ADM0 register ADMD bit ADM1 register ADSCM bit
A/D conversion trigger mode	ADCR register TRGE bit	ADM1 register Bits ADTMD1 and ADTMD0 Bits ADTRS1 and ADTRS0
Analog input pin	ADCSR register Bits CH2 to CH0	ADS register ADPC register PMC0 register PMC10 register PMC12 register PMC14 register
A/D conversion operation control	ADCSR register ADST bit	ADM0 register ADCS bit ADCE bit
Resolution	_	ADM2 register ADTYP bit
A/D open-circuit detection assist control	_	_
A/D input clock control	_	PER0 register ADCEN bit
A/D conversion time mode	_	ADM0 register Bits LV1 and LV0
Check the upper and lower limit values of conversion result	_	ADM2 register ADRCK bit
SNOOZE mode	-	ADM2 register AWC bit
Temperature sensor output	-	ADS register
Set the upper and lower limit of A/D conversion result comparison values	_	ADUL register ADLL register
A/D test function	_	ADTES register Bits ADTES1 and ADTES0

-: No register is applicable.

3. A/D Converter Operation

3.1 A/D Operating Mode

In the RL78/G14 MCU, select the A/D conversion mode by the combination of A/D channel selection mode and A/D conversion operating mode.

Table 3.1 lists the combination of the RL78/G14 channel selection mode and conversion operating mode compatible with the H8/3687 Group operating mode.

Table 3.1 A/D Operating Mode Compatibility

H8/3687 Group	RL78/G14			
	Channel selection mode	Conversion Operating Mode		
_	Select mode	Sequential conversion mode		
Single mode		One-shot conversion mode		
Scan mode	Scan mode	Sequential conversion mode		
_		One-shot conversion mode		

3.2 Absolute Accuracy

RL78/G14 defines the overall error instead of the absolute accuracy defined in the H8/3687 Group.

3.2.1 H8/3687 Group Characteristics

Table 3.2 lists the absolute accuracy of the H8/3687 Group.

Table 3.2 H8/3687 Group Absolute Accuracy

Item		Measurement	Standard			Unit
		conditions	Min.	Тур.	Max.	
Absolute	Conversion time (in single mode) = 134 tcyc	AVCC = 3.3 to 5.0 V	_	_	\pm 8.0	LSB
accuracy	Conversion time (in single mode) = 70 tcyc	AVCC = 4.0 to 5.5 V	_	_	± 8.0	LSB
	Conversion time (in single mode) = 134 tcyc	AVCC = 4.0 to 5.5 V	_	_	± 4.0	LSB

3.2.2 RL78/G14 Characteristics

Table **3.3** lists the RL78/G14 overall error under the following conditions:

When AVREF (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), and AVREF (-) = AVREFM/ANI1 (ADREFM = 1), then the target ANI pins are ANI2 to ANI14 (ANI pins whose power is supplied from VDD).

Table 3.3 RL78/G14 Overall Error

Item	Symbol		Condition	Min.	Тур.	Max.	Unit
Overall error	AINL	10-bit resolution	1.8 V ≤ Vdd ≤ 5.5 V		1.2	± 3.5	LSB
		$AV_{REFP} = VDD$	1.6 V ≤ Vdd ≤ 5.5 V		1.2	± 7.5	LSB

3.3 Analog Input Pins

3.3.1 H8/3687 Group

Analog input pins available in each operating mode for the H8/3687 Group are listed in Table 3.4.

Table 3.4 Analog Input Pins for the H8/3687 Group

Operating mode	Analog input pin			
Single mode Specify one pin from AN0 to AN7.				
Scan mode Specify one to four pins from AN0 to AN3 or AN4 to AN7.				

3.3.2 RL78/G14

Analog input pins available in each channel selection mode for the RL78/G14 are listed in Table 3.5.

Table 3.5 Analog Input Pins for RL78/G14

Channel selection mode	Analog input pin
Select mode	Specify one pin from pins AN0 to AN14, ANI16 to ANI20, internal reference voltage pin, or temperature sensor output pin
Scan mode	Pins ANI0 to ANI3, ANI1 to ANI4, ANI2 to ANI5, ANI3 to ANI6, ANI4 to ANI7, ANI5 to ANI8, ANI6 to ANI9, ANI7 to ANI10, ANI8 to ANI11, ANI9 to ANI12, ANI10 to ANI 13, ANI11 to ANI14

When using the RL78/G14 MCU, ports which are used as analog input pins must be switched to analog inputs by setting registers ADPC or PMC. Note that the ADPC register switches pins ANI0 to ANI14 to analog inputs in sequence. Careful consideration is required before setting analog input pins.

Symbol		7		6			5		4		3			2		1		0	
ADPC		0		0			0		0		ADPO	23	AD	PC2	A	DPC1		ADPC	0
								Sv	vitch b	etweer	analo	g input	t (A) an	d digita	al I/O (D)			
	ADPC3	ADPC2	ADPC1	ADPC0	ANI14/P156	ANI13/P155	ANI12/P154	ANI11/P153	ANI10/P152	ANI9/P151	ANI8/P150	ANI7/P27	ANI6/P26	ANI5/P25	ANI4/P24	ANI3/P23	ANI2/P22	ANI1/P21	ANI0/P20
	`	`	'	`	ANI1	ANI1	ANI1	AN11	ANI1	AN	AN	A	A	A	A	Al	Al	Al	A
	0	0	0	0	А	А	А	А	А	А	А	А	А	А	А	А	А	А	А
	0	0	0	1	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
	0	0	1	0	D	D	D	D	D	D	D	D	D	D	D	D	D	D	А
	0	0	1	1	D	D	D	D	D	D	D	D	D	D	D	D	D	А	А
	0	1	0	0	D	D	D	D	D	D	D	D	D	D	D	D	А	А	А
	0	1	0	1	D	D	D	D	D	D	D	D	D	D	D	А	А	А	А
	0	1	1	0	D	D	D	D	D	D	D	D	D	D	А	А	А	А	А
	0	1	1	1	D	D	D	D	D	D	D	D	D	А	А	А	А	А	А
	1	0	0	0	D	D	D	D	D	D	D	D	А	А	А	А	А	А	А
	1	0	0	1	D	D	D	D	D	D	D	А	А	А	А	А	А	А	А
	1	0	1	0	D	D	D	D	D	D	А	А	А	А	А	А	А	А	А
	1	0	1	1	D	D	D	D	D	А	А	А	А	А	А	А	А	А	А
	1	1	0	0	D	D	D	D	А	А	А	А	А	А	А	А	А	А	А
	1	1	0	1	D	D	D	А	А	А	А	А	А	А	Α	А	А	А	А
	1	1	1	0	D	D	А	А	А	А	А	А	А	А	А	А	А	А	А
	1	1	1	1	D	А	А	А	А	А	А	А	А	А	А	А	А	А	А

When selecting any one pin from pins ANI0 to ANI14 and ANI16 to ANI20 to perform A/D conversion, do not access ports P20 to P27, P03, P02, P147, P120, P100, P150 to P156 during A/D conversion. Doing so may decrease the accuracy of the conversion.

3.4 Interrupts

When using the H8/3687 Group MCU in scan mode, an interrupt is generated after A/D conversion for all pins selected is completed. However, when using the RL78/G14 MCU, an interrupt is generated when the A/D conversion for each pin is completed.

4. Sample Program

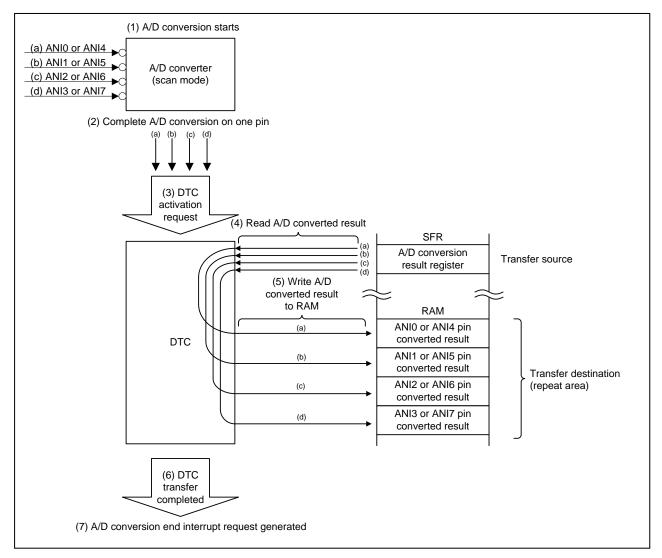
4.1 Specifications

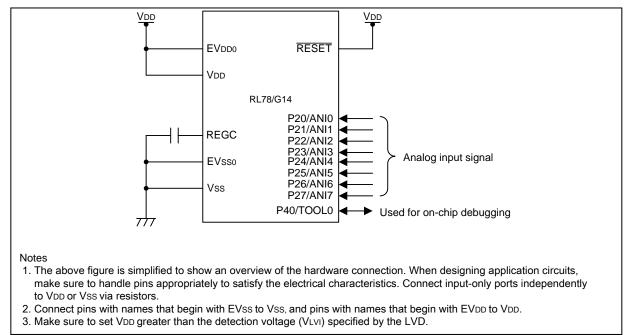
This chapter describes a sample program for RL78/G14, which should be referred as an example of using the DTC (in repeat mode) in conjunction with the A/D converter (in software trigger mode, scan mode, and one-shot conversion mode). A/D conversion is performed on analog input voltage input to pins P20/ANI0 to P23/ANI3 and P24/ANI4 to P27/ANI7 in scan mode and one-shot conversion mode, and DTC transfer is used to store the A/D converted value assigned to each pin to the RAM. A/D conversion is performed for individual pins successively. Every time A/D conversion for a pin is completed, the converted result is stored to the 10-bit A/D conversion result register (ADCR), the DTC is activated, and the A/D converted result is transferred from the ADCR register to the RAM. When A/D conversion and DTC transfer for all of the above pins are completed, an A/D conversion end interrupt request is generated.

Table 4.1 lists the peripheral functions used and their applications. Figure 4.1 shows the operation overview.

Table 4.1 Peripheral Functions Used and Their Applications

Peripheral function	Application
DTC	Transfer the A/D converted result to the RAM
A/D converter	Perform A/D conversion on analog input voltage




Figure 4.1 Operation Overview

4.2 Hardware

4.2.1 Hardware Configuration

Figure 4.2 shows the hardware configuration used for this sample program.

Figure 4.2 Hardware Configuration

4.2.2 Pins Used

Table 4.2 lists the pins used and their functions.

Pin name	I/O	Function
P20/ANI0	Input	A/D converter input (ANI0)
P21/ANI1	Input	A/D converter input (ANI1)
P22/ANI2	Input	A/D converter input (ANI2)
P23/ANI3	Input	A/D converter input (ANI3)
P24/ANI4	Input	A/D converter input (ANI4)
P25/ANI5	Input	A/D converter input (ANI5)
P26/ANI6	Input	A/D converter input (ANI6)
P27/ANI7	Input	A/D converter input (ANI7)

Table 4.2 Pins Used and Their Functions

4.3 Software

4.3.1 Operation Overview

In this sample program, the results of eight pins that are A/D converted in the scan mode are stored to RAM using DTC transfer. The transfer destination (ad_value[]) is set as a repeat area by using DTC in its repeat mode, and the A/D converted results of the eight pins are stored to RAM successively.

When A/D conversion of the ANI0 pin is completed, the first DTC transfer from the transfer source address (ADCR register (FFFF1EH and FFFF1FH) to the transfer destination address (ad_value[0] (FFF500H to FFF501H)) is performed. When A/D conversion of the ANI1 pin is completed, the second DTC transfer is performed. Since the transfer destination is set as a repeat area, the A/D converted result is transferred to ad_value[1] (FFF502H to FFF503H). In the same procedure, DTC transfer for the A/D converted results of pins ANI3 and ANI4 is performed. When the fourth DTC transfer is completed, an A/D conversion end interrupt is generated.

After the A/D converted results for four times are stored using the A/D conversion end interrupt, the ADS register is changed to set ANI4 to 7 pins as conversion targets and A/D conversion is started again. After that, when A/D conversion of the ANI4 pin is completed, DTC transfer is performed in the same way as above. When the fourth DTC transfer is completed, the A/D conversion end interrupt is generated.

Table 4.3 lists the DTC settings and Table 4.4 lists the A/D converter settings.

Function name	Setting value		
	Control data 0		
Transfer mode	Repeat mode		
Repeat mode interrupt	Enabled		
Source address control	Fixed		
Destination address control	Repeat area		
Chain transfer	Disabled		
Transfer block size	2 bytes		
Number of DTC transfers	4		
Transfer source address	ADCR register address (FFF1EH)		
Transfer destination address	Start address of ad_value[] (FF500H)		

Table 4.3 DTC Settings

Setting item	Setting value		
Conversion clock (f _{AD})	f _{CLK} /64		
A/D conversion modes	 A/D conversion trigger mode: Software trigger mode A/D conversion channel selection mode: Scan mode A/D conversion operating mode: One-shot conversion mode 		
Resolution	10 bits		
Analog input channels	 Set ANI0 to 3 as conversion targets for initial setting and after A/D conversion for ANI4 to 7 is completed Scan 0: ANI0 Scan 1: ANI1 Scan 2: ANI2 Scan 3: ANI3 Set ANI4 to 7 as conversion targets when an A/D conversion end interrupt is generated Scan 0: ANI4 Scan 1: ANI5 Scan 2: ANI6 Scan 3: ANI7 		
Conversion result comparison upper limit (ADUL register)	FFH		
Conversion result comparison lower limit (ADLL register)	00H		
Conversion result upper limit/lower limit check	INTAD is generated when ADLL register ≤ ADCR register ≤ ADUL register		

- (1) Perform the initial setting for the A/D converter and DTC.
- (2) Set the ADCS bit in the ADM0 register to 1 (conversion operation enabled) to start A/D conversion.
- (3) When A/D conversion of pins ANI0, ANI1, ANI2, and ANI3 is completed, DTC is activated.
- (4) DTC reads the A/D converted results from the ADCR register and transfers them to RAM (ad_value[0] to ad_value[3]) corresponding to each pin.
- (5) When the fourth DTC transfer is completed, an A/D conversion end interrupt is generated. The A/D converted results of ad_value[0] to ad_value[3] are right-shifted 6 bits in an interrupt handling routine and stored to variables an0_value to an3_value.
- (6) After the A/D converted results are stored, change the ADS register to set the pins ANI4 to 7 as conversion targets.
- (7) Set the ADCS bit in the ADM0 register to 1 (conversion operation enabled) to start A/D conversion.
- (8) When A/D conversion of pins ANI4, ANI5, ANI6, and ANI7 is completed, DTC is activated.
- (9) DTC reads the A/D converted results from the ADCR register and transfers them to RAM (ad_value[0] to ad_value[3]) corresponding to each pin.
- (10) When the fourth DTC transfer is completed, an A/D conversion end interrupt is generated. The A/D converted results of ad_value[0] to ad_value[3] are right-shifted 6 bits in an interrupt handling routine and stored to variables an4_value to an7_value.

Figure 4.3 shows a timing diagram of DTC transfer and A/D conversion. Figure 4.4 illustrates the relationship between the ADCR register and RAM.

	(1) Initial setting ⊥	(2) A/D convers	sion starts	This b	it automatically conversion is o		
ADCS bit in the ADM0 register	1 V 0 ———	¥		This bit autom	atically becom	es 0 afte	r DTC transfer is completed.
DTCEN15 bit in the DTCEN1 register	1 <u> </u>						
A/D converter operat	 tion	A/D conversion 1 (ANI0 or ANI4)	A/D conversion 2 (ANI1 or ANI5)	A/D conversion (ANI2 or ANI6)	3 A/D conversion 4 (ANI3 or ANI7)		A/D conversion 1 (ANI0 or ANI4)
ADCR regis	ster		Converted result 1	Converted result 2	Converted result 3	•	Converted result 4
A/D conversion end interrupt request flag	·						(5) Interrupt generated When an interrupt is acknowledged, this bit automatically becomes 0.
(ADIF bit in the IF1H register)	0		(3) DTC activated	(3)	(3)	(3)	
D	отс 		(4) DTC transfer	(4)	(4)	(4)	
ad_value	[0] 				Converte	ed result	1
ad_value	 [1]				С	converte	d result 2
ad_value	:[2]					Co	onverted result 3
ad_value	:[3]					,	Converted result 4
			/	Program e	xecuted.		·
Bus operati	ion Program e	executed	DTC V transfer	DTC V transfer	DTC V transfer	DTC transfer	Program executed

Figure 4.3 Timing Diagram of DTC Transfer and A/D Conversion

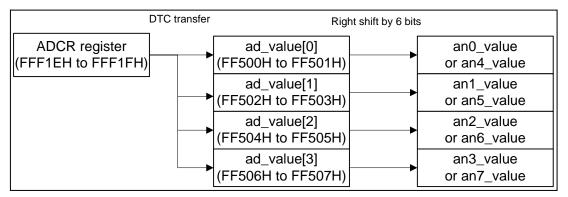


Figure 4.4 Relationship between the ADCR Register and RAM

4.3.2 Option Byte Setting

Table 4.5 lists the option byte setting.

Table 4.5 Option Byte Setting

Address	Setting value	Content
000C0H/010C0H	11101111B	Stops the watchdog timer (counting is stopped after a reset is released)
000C1H/010C1H	01111111B	Sets the LVD in reset mode Detection voltage: 2.81 V at the rising edge, 2.75 V at the falling edge
000C2H/010C2H	11101000B	High-speed on-chip oscillator HS mode 32 MHz
000C3H/010C3H	10000100B	Enables on-chip debugging

4.3.3 Constant

Table 4.6 lists the constant used in the sample code.

Table 4.6 Constant Used in the Sample Code

Constant name	Setting value	Content
ad_value	0FF500H	DTC transfer destination address

4.3.4 Variables

Table 4.7 lists the global variables.

Table 4.7 Global Variables

Туре	Variable name	Content	Function used
unsigned short	ad_value[8]	A/D converted result storage address of ANI0 to ANI7	r_adc_interrupt
unsigned short	an0_value	Store A/D converted result of ANI0	r_adc_interrupt
unsigned short	an1_value	Store A/D converted result of ANI1	r_adc_interrupt
unsigned short	an2_value	Store A/D converted result of ANI2	r_adc_interrupt
unsigned short	an3_value	Store A/D converted result of ANI3	r_adc_interrupt
unsigned short	an4_value	Store A/D converted result of ANI4	r_adc_interrupt
unsigned short	an5_value	Store A/D converted result of ANI5	r_adc_interrupt
unsigned short	an6_value	Store A/D converted result of ANI6	r_adc_interrupt
unsigned short	an7_value	Store A/D converted result of ANI7	r_adc_interrupt
unsigned char	ad_ch_tgr	A/D conversion target switch flag	r_adc_interrupt

4.3.5 Functions

Table 4.8 lists the functions.

Table 4.8 Function

Function name	Outline
Hdwinit	Initial setting
R_Systeminit	Initial setting of peripheral functions
R_CGC_Create	Initial setting of CPU
R_ADC_Create	Initial setting of the A/D converter
R_DTC_Create	Initial setting of DTC
Main	Main processing
R_DTCD0_Start	DTC activation
R_ADC_Start	A/D conversion start
r_adc_interrupt	A/D conversion interrupt

4.3.6 Flowcharts

(1) Overall Flowchart

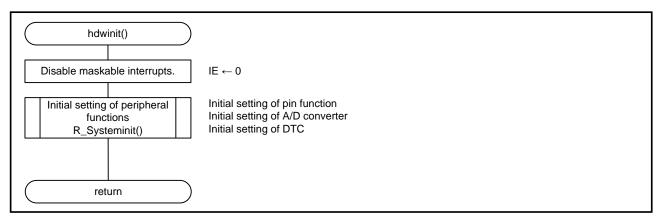
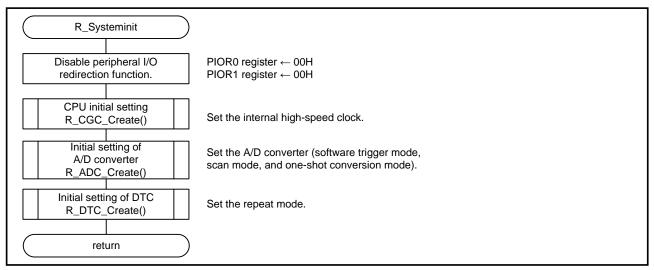

Figure 4.5 is an overall flowchart.

Figure 4.5 Overall Flowchart

(2) Initial Setting


Figure 4.6 shows the initial setting.

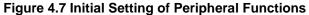


Figure 4.6 Initial Setting

(3) Initial Setting of Peripheral Functions

Figure 4.7 shows the initial setting of peripheral functions.

(4) Initial Setting of CPU

Figure 4.8 shows the initial setting of CPU.

R_CGC_Create		
Set X1 oscillation.	CMC register ← 41H Bits EXCLK and OSCSEL = 01B AMPH bit = 1	: X1 oscillation mode : 10 MHz < fX ≤ 20 MHz
Set X1 oscillation stabilization time.	OSTS register Bits OSTS0 to OSTS2 ← 111B	: Oscillation stabilization time: 13.1 ms
Operate high-speed system clock.	CSC register MSTOP bit ← 0	: Operate the X1 oscillator.
Refer to OSTC register and wait for X1 clock oscillation stabilization time.		
Set main system clock.	CKC register MCM0 bit ← 1	: Set the high-speed system clock.
Stop subsystem clock.	CSC register XTSTOP bit ← 1	: Stop the XT1 oscillator.
Operation clock of real-time clock interval timer	OSMC register ← 10H WUTMMCK0 bit = 1	: Low-speed on-chip oscillator clock
Set CPU/peripheral hardware clock.	CKC register CSS bit ← 0	: Set the main system clock.
Stop internal high-speed oscillator.	CSC register HIOSTOP bit ← 1	
return		

Figure 4.8 Initial Setting of CPU

(5) Initial Setting of the A/D Converter

Figure 4.9 shows the initial setting of the A/D converter.

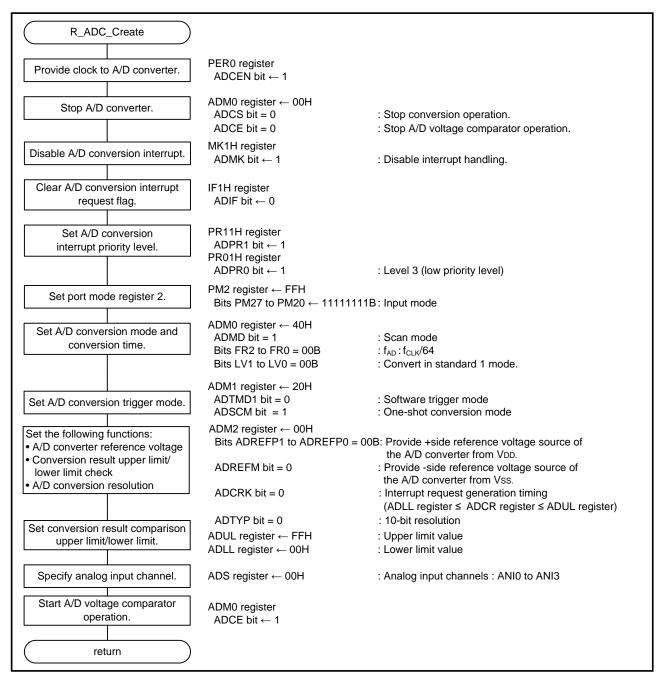


Figure 4.9 Initial Setting of the A/D Converter

(6) Initial Setting of DTC

Figure 4.10 is the DTC initial setting flowchart, and Figure 4.11 shows the memory map of the DTC used area.

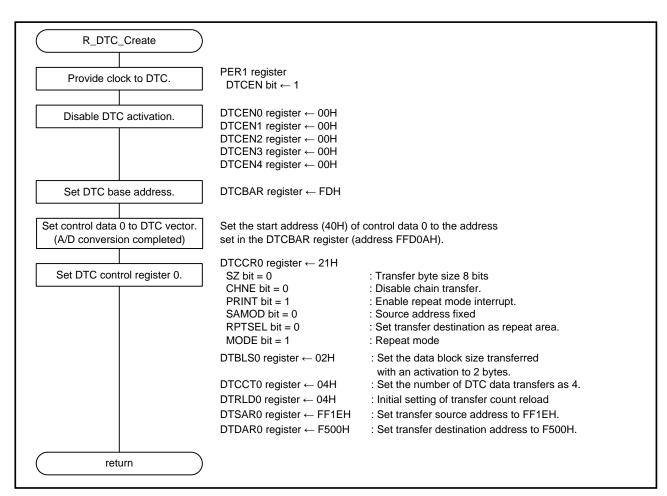
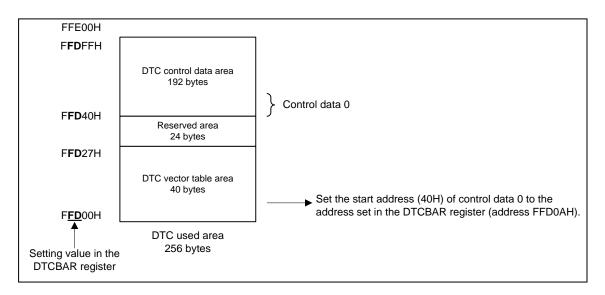




Figure 4.10 Initial Setting of DTC

(7) Main Processing

Figure 4.12 shows the main processing.

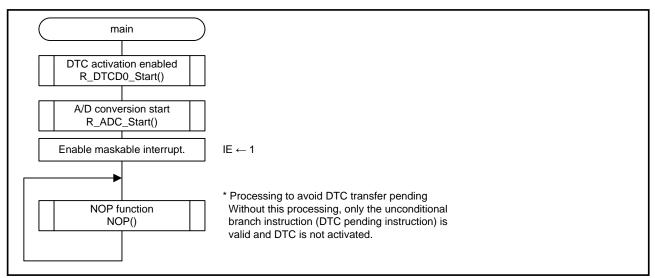
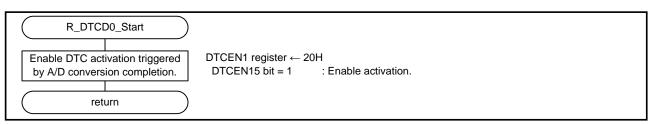


Figure 4.12 Main Processing

*DTC Pending Instruction

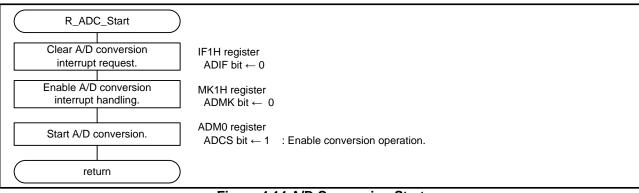
Even if a DTC transfer request is generated, DTC transfer is held immediately after the instructions below. Also, the DTC is not activated between PREFIX instruction code and the instruction immediately after that code.


- Call/return instruction
- Unconditional branch instruction
- Conditional branch instruction
- Read access instruction for code flash memory
- Bit manipulation instructions for IFxx, MKxx, PRxx, and PSW, and 8-bit manipulation instruction that has the ES register as operand
- Instruction for accessing the data flash memory

Notes:

- 1. When a DTC transfer request is acknowledged, all interrupt requests are held until DTC transfer is completed.
- 2. While the DTC is held pending by the DTC pending instruction, all interrupt requests are held.

(8) DTC Activation


Figure 4.13 is the DTC activation flowchart.

(9) A/D Conversion Start

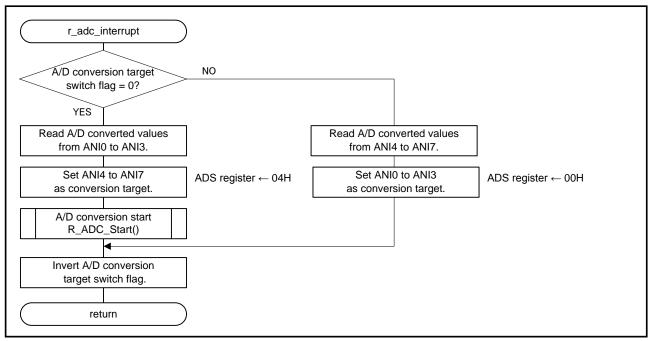

Figure 4.14 is a flowchart to start A/D conversion.

Figure 4.14 A/D Conversion Start

(10) A/D Conversion Interrupt

Figure 4.15 is a flowchart of A/D conversion interrupt.

5. Reference Application Note

RL78/G14 Transferring A/D Conversion Result Using the DTC Rev.2.00

6. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

7. Reference Documents

RL78/G14 User's Manual: Hardware Rev. 2.00 H8/3687 Group Hardware Manual Rev.5.00 The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/contact/

RL78/G14, H8/3687 Group Application Note Migration Guide from H8/3687 to RL78/G14: A/D Converter

Data of issue		Description	
Rev.	Rev. Date of issue Page		Summary
1.00	Mar.6,2014		First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at
 - which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product. the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quility". The recommended applications for each Renesas Electronic product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

Notice
 . Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military quipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by vou or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) Renesas Electronics* as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information. Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +11-408-588-6130 Renesas Electronics Canada Limited 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-889-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Dusseldorf, Germany Tel: +49-211-65030, Fax: +449-211-650-31327 Renesas Electronics (China) Co., Ltd. Thi Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghi) Co., Ltd. Unit 301, Tower A, Central Towers, 555 LanGao Rd., Putuo District, Shanghai, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics (Shanghi) Co., Ltd. Unit 301, Tower A, Central Towers, 555 LanGao Rd., Putuo District, Shanghai, China Tel: +86-21-8286-9318, Fax: +86-21-2226-0999 Renesas Electronics Inde Song Kong Limited Unit 101-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-8475-8400, Fax: +852 2475-9670 Renesas Electronics Singapore Pte. Ltd. 305 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +855-2475-9300, Fax: +856 2475-9570 Renesas Electronics Korea Co., Ltd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +80-37-955-9390, Fax: +805-2455-9510