
APPLICATION NOTE

R01AN2805EU0280 Rev.2.80 Page 1 of 50
Nov.17.23

RX Family
RSCAN Module Using Firmware Integration Technology
Introduction
This document describes the API for the RSCAN driver for the RX100, RX200 Series. Message transfers
can be done using 1-message deep mailboxes, 4-message deep FIFOs, or any combination thereof.

NOTE: When developing an application with the E1 emulator, and the E1 emulator is powering the
target board, be sure that it is supplying 5.0V and not 3.3V (specified in Debug Configuration) or the
RSCAN will not operate properly.

Target Devices
The following is a list of devices that are currently supported by this API:

• RX140 Group (products with 128-Kbyte or larger ROM)

• RX230, RX231 Group

• RX23E-A Group

• RX23E-B Group

• RX23W Group

• RX24T Group

• RX24U Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX
For details of the confirmed operation contents of each compiler, refer to “6.1 Confirmed Operation
Environment".

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 2 of 50
Nov.17.23

Contents

1. Overview ... 4

2. API Information .. 5
2.1 Hardware Requirements ... 5
2.2 Hardware Resource Requirements ... 5
2.3 Software Requirements ... 5
2.4 Limitations ... 5
2.5 Supported Toolchains ... 5
2.6 Header Files .. 5
2.7 Integer Types .. 5
2.8 Configuration Overview ... 6
2.9 Code Size .. 8
2.10 API Data Types ... 9
2.10.1 Box IDs (mailboxes and FIFOs) .. 9
2.10.2 R_CAN_Open() Data Types ... 9
2.10.3 Callback function events ... 10
2.10.4 R_CAN_InitChan() Data Types ... 10
2.10.5 R_CAN_ConfigFIFO() Data Types .. 10
2.10.6 R_CAN_AddRxRule() Data Types .. 11
2.10.7 R_CAN_SendMsg() Data Types ... 11
2.10.8 R_CAN_GetMsg() Data Types .. 11
2.10.9 R_CAN_GetHistoryEntry() Data Types ... 11
2.10.10 R_CAN_GetStatusMask() Data Types .. 12
2.10.11 R_CAN_GetCountErr() Data Types .. 13
2.10.12 R_CAN_Control() Data Types ... 13
2.11 Return Values .. 13
2.12 Adding the Module to Your Project ... 13
2.13 “for”, “while” and “do while” statements ... 15

3. API Functions .. 16
Summary ... 16
R_CAN_Open() ... 17
R_CAN_InitChan() ... 20
R_CAN_ConfigFIFO() ... 23
R_CAN_AddRxRule() .. 25
R_CAN_Control()... 27
R_CAN_SendMsg() ... 29
R_CAN_GetMsg().. 31
R_CAN_GetHistoryEntry() ... 32
R_CAN_GetStatusMask() ... 33

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 3 of 50
Nov.17.23

R_CAN_GetCountFIFO() .. 35
R_CAN_GetCountErr() .. 36
R_CAN_Close() ... 37
R_CAN_GetVersion() .. 38

4. Pin Setting ... 39

5. Demo Project ... 40
5.1 rscan_demo_rskrx231, rscan_demo_rskrx231_gcc ... 40
5.2 rscan_demo_rskrx24t, rscan_demo_rskrx24t_gcc ... 40
5.3 rscan_demo_rskrx24u, rscan_demo_rskrx24u_gcc ... 41
5.4 rscan_demo_rskrx140, rscan_demo_rskrx140_gcc ... 42

6. Appendices .. 43
6.1 Confirmed Operation Environment .. 43
6.2 Troubleshooting ... 48

Revision History .. 49

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 4 of 50
Nov.17.23

1. Overview
This driver is compatible with the RSCAN driver provided with the RZ/A1. Although the RSCAN peripheral on
the RX100, RX200 Series is single channel, the API remains the same. A static configuration of mailboxes
and FIFOs (boxes) is hardcoded as is done with the RZ/A1, but much fewer resources are available for use.

All mailboxes are one-message deep. There are 4 transmit mailboxes and 4 receive mailboxes. The transmit
mailboxes can optionally be configured for interrupt operation, whereas the receive mailboxes cannot. The
transmit mailboxes do not accept a message for transmit until the previous message has been sent. The
receive mailboxes always contain the most recent message received, overwriting the previous contents
without an error condition being generated. There is no hardware interrupt option available.

The transmit and receive FIFOs are 4-messages deep. FIFOs are used for the sending and receiving of
messages just like a mailbox. These can optionally be configured to be interrupt driven. Setting a receive
FIFO to interrupt on every message received would behave similar to a receive mailbox with interrupt
support.

There is a special FIFO called the Transmit History FIFO, and this FIFO is 8 entries deep. The History FIFO
logs all messages tagged in an R_CAN_SendMsg() call in the order they are sent. Note that any FIFO usage
is optional and are not required for normal operation.

The RSCAN hardware processes all messages transmitted on the bus but uses Receive Rules to determine
which messages to keep and which to ignore. A Receive Rule consists of two parts. The first part performs
filtering on different parts of the message to see if the message should be kept. The second part specifies
which box (receive mailbox or receive FIFO) to route the message to. After the hardware routes a message
to a box, the function R_CAN_GetMsg() is used to read a message from the box.

There are two types of interrupts available- global interrupts and channel interrupts. The global interrupts
indicate when a receive FIFO has received a message as well as when a global error occurs. These
interrupts are enabled in the r_rscan_rx_config.h file. The driver detects the interrupt and calls a user
callback function specified in R_CAN_Open() to process the particular event(s). The channel interrupts
handle several transmit conditions as well as channel errors. These interrupts are also enabled in the
r_rscan_rx_config.h file. The driver detects the interrupt and calls a user callback function specified in
R_CAN_InitChan() to process the particular event(s).

By default, the following interrupts are enabled:

• RX, TX, or History FIFO threshold reached

• RX, TX, or History FIFO overflow occurred

• Channel entered Error Passive state

• Channel entered Bus Off state

• Channel recovered from Bus Off state

The following sequence of function calls is used to setup the CAN:
 R_CAN_Open();
 R_CAN_InitChan(); // do for 1 channel
 R_CAN_ConfigFIFO(); // do for 0 or more FIFOs
 R_CAN_AddRxRule(); // do for 1-16 rules

Once the CAN is setup, the peripheral should enter normal communications mode or a test mode.
 R_CAN_Control(); // Use CAN_CMD_SET_MODE_COMM or CAN_CMD_SET_MODE_TST_xxx

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 5 of 50
Nov.17.23

2. API Information
This Driver API follows the Renesas API naming standards.

2.1 Hardware Requirements
This driver utilizes the RSCAN peripheral.

2.2 Hardware Resource Requirements
In addition to the RSCAN peripheral, the driver requires:

• Two pins allocated for the CAN channel

2.3 Software Requirements
This driver is dependent upon the following FIT module:

• Renesas Board Support Package (r_bsp) v5.20 or higher

2.4 Limitations
Not all features of the peripheral are utilized. These include:

• Configurable depth transmit and receive FIFOs (all fixed at 4 instead of configurable 1 to 16)
• Transmit by message ID priority (will be done by mailbox number, 0 being highest priority)
• Transmit FIFO interval transmission
• Transmit mirroring
• Filter on mirrored messages
• DLC substitution
• Multiple destinations for each received message (will fix at 1 destination; could be up to 3)
• Different methods of Bus Off recovery (will be ISO11898-1 compliant)
• Forcible return from Bus Off
• Selection of protocol error flag accumulation vs first occurrence (will hard-code to accumulative

for all channels)

2.5 Supported Toolchains
This driver has been confirmed to work with the toolchain listed in 6.1, Confirmed Operation Environment.

2.6 Header Files
All API calls and their supporting interface definitions are located in “r_rscan_rx_if.h”.

Build-time configuration options are set in the file "r_rscan_rx_config.h”

Both of these files should be included by the user’s application.

2.7 Integer Types
This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable.
These types are defined in stdint.h.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 6 of 50
Nov.17.23

2.8 Configuration Overview
Static configuration options for this driver are set by the user via the file r_rscan_rx_config.h.

Configuration options in r_rscan_rx_config.h

Equate

Default
Value

Description

CAN_CFG_PARAM_CHECKING_ENABLE 1

Setting to 0 removes parameter checking from the
code.
Setting to 1 includes parameter checking in the
code.

CAN_CFG_CLOCK_SOURCE 0
If this equate is 0, the CAN clock source is ½ the
peripheral clock speed (clkc). If this equate is 1, the
source is the external CAN_CLOCK (clk_xincan).

CAN_CFG_INT_PRIORITY 5 Priority level for all CAN interrupts (0-31)

CAN_CFG_INT_RXFIFO_THRESHOLD 1

Setting to 0 disables interrupt when an RXFIFO
threshold is reached.
Setting to 1 enables interrupt.
Requires FIFO to be initialized via
R_CAN_ConfigFIFO().
CAN_EVT_RXFIFO_THRESHOLD is passed to
the main callback function.

CAN_CFG_INT_DLC_ERR 0

Setting to 0 disables interrupt when a DLC error is
detected.
Setting to 1 enables interrupt.
CAN_EVT_GLOBAL_ERR is passed to the main
callback function.

CAN_CFG_INT_FIFO_OVFL 1

Setting to 0 disables interrupt when a TX, GW, or
RX FIFO overflows.
Setting to 1 enables interrupt.
Requires FIFO to be initialized via
R_CAN_ConfigFIFO().
CAN_EVT_ GLOBAL_ERR is passed to the main
callback function.

CAN_CFG_INT_HIST_FIFO_OVFL 1

Setting to 0 disables interrupt when a History FIFO
overflows.
Setting to 1 enables interrupt.
Requires FIFO to be initialized via
R_CAN_ConfigFIFO().
CAN_EVT_ GLOBAL_ERR is passed to the main
callback function.

CAN_CFG_INT_TXFIFO_THRESHOLD 1

Setting to 0 disables interrupt when a TXFIFO
threshold is reached.
Setting to 1 enables interrupt.
Requires FIFO to be initializes via
R_CAN_ConfigFIFO().
CAN_EVT_TRANSMIT is passed to the channel
callback function.

CAN_CFG_INT_HIST_FIFO_THRESHOLD 1

Setting to 0 disables interrupt when the HIST_FIFO
threshold is reached. Setting to 1 enables interrupt.
Requires FIFO to be initialized via
R_CAN_ConfigFIFO().
CAN_EVT_ TRANSMIT is passed to the channel
callback function.

CAN_CFG_INT_MBX_TX_COMPLETE 0
Setting to 0 disables interrupt when the mailbox
completes transmission.
Setting to 1 enables interrupt.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 7 of 50
Nov.17.23

Configuration options in r_rscan_rx_config.h

Equate

Default
Value

Description

CAN_EVT_ TRANSMIT is passed to the channel
callback function.

CAN_CFG_INT_MBX_TX_ABORTED 0

Setting to 0 disables interrupt when the mailbox
transmit is aborted.
Setting to 1 enables interrupt.
CAN_EVT_ TRANSMIT is passed to the channel
callback function.

CAN_CFG_INT_BUS_ERROR 0

Setting to 0 disables interrupt when a bus error is
detected.
Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the
channel callback function.

CAN_CFG_INT_ERR_WARNING 0

Setting to 0 disables interrupt when an error
warning is detected.
Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the
channel callback function.

CAN_CFG_INT_ERR_PASSIVE 1

Setting to 0 disables interrupt when an error
passive is detected.
Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the
channel callback function.

CAN_CFG_INT_BUS_OFF_ENTRY 1

Setting to 0 disables interrupt when a Bus Off error
is detected.
Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the
channel callback function.

CAN_CFG_INT_BUS_OFF_RECOVERY 1

Setting to 0 disables interrupt when a Bus Off
recovery is detected.
Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the
channel callback function.

CAN_CFG_INT_OVERLOAD_FRAME_TX 0

Setting to 0 disables interrupt when an overload is
detected.
Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the
channel callback function.

CAN_CFG_INT_BUS_LOCK 0

Setting to 0 disables interrupt when a bus lock is
detected.
Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the
channel callback function.

CAN_CFG_INT_ARB_LOST 0

Setting to 0 disables interrupt when arbitration loss
is detected.
Setting to 1 enables interrupt.
CAN_EVT_CHANNEL_ERR is passed to the
channel callback function.

Table 2.1: Info about the configuration

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 8 of 50
Nov.17.23

2.9 Code Size
The code size is based upon optimization level 2 for the RXC Toolchain. These code sizes include all
interrupt handlers (configured active or not), as well as all FIFO support code.
The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.8 Configuration Overview. The table lists reference values when the C compiler’s
compile options are set to their default values, as described in 2.5 Supported Toolchains. The compile option
default values are optimization level: 2, optimization type: for size, and data endianness: little-endian. The
code size varies depending on the C compiler version and compile options.

ROM, RAM and Stack Code Sizes

Device Category Memory Used
Renesas Compiler GCC IAR Compiler
With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX231

ROM 3211 bytes 2683 bytes 5824 bytes 4976 bytes 5547 bytes 4916 bytes

RAM 20 bytes 20 bytes 20 bytes 20 bytes 20 bytes 20 bytes

STACK 36 bytes 36 bytes - - 144 bytes 144 bytes

RX23W

ROM 3211 bytes 2683 bytes - - - -

RAM 20 bytes 20 bytes - - - -

STACK 72 bytes 72 bytes - - - -

RX23E-A

ROM 3237 bytes 2723 bytes 6104 bytes 5232 bytes 5421 bytes 4782 bytes

RAM 20 bytes 20 bytes 20 bytes 20 bytes 24 bytes 24 bytes

STACK 100 bytes 100 bytes - - 96 bytes 96 bytes

RX140
(products
with 128-
Kbyte or

larger
ROM)

ROM 3204 bytes 2710 bytes 6088 bytes 5208 bytes 5296 bytes 4661 bytes

RAM 20 bytes 20 bytes 0 bytes 0 bytes 20 bytes 20 bytes

STACK 68 bytes 68 bytes - - 124 bytes 124 bytes

RX23E-B

ROM 3305 bytes 2811 bytes 4008 bytes 3288 bytes 5136 bytes 4501 bytes

RAM 20 bytes 20 bytes 20 bytes 20 bytes 20 bytes 20 bytes

STACK 68 bytes 68 bytes - - 96 bytes 96 bytes

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 9 of 50
Nov.17.23

2.10 API Data Types
This section details the data types that are used with the driver’s API functions.

2.10.1 Box IDs (mailboxes and FIFOs)
typedef enum e_can_box
{
 CAN_BOX_NONE = 0, // unused parameter value

 CAN_BOX_CH0_TXMBX_0 = (CAN_FLG_TXMBX | 0),
 CAN_BOX_CH0_TXMBX_1 = (CAN_FLG_TXMBX | 1),
 CAN_BOX_CH0_TXMBX_2 = (CAN_FLG_TXMBX | 2),
 CAN_BOX_CH0_TXMBX_3 = (CAN_FLG_TXMBX | 3),

 CAN_BOX_RXMBX_0 = (CAN_FLG_RXMBX | 0),
 CAN_BOX_RXMBX_1 = (CAN_FLG_RXMBX | 1),
 CAN_BOX_RXMBX_2 = (CAN_FLG_RXMBX | 2),
 CAN_BOX_RXMBX_3 = (CAN_FLG_RXMBX | 3),

 CAN_BOX_RXFIFO_0 = (CAN_FLG_FIFO | CAN_MASK_RXFIFO_0),
 CAN_BOX_RXFIFO_1 = (CAN_FLG_FIFO | CAN_MASK_RXFIFO_1),

 CAN_BOX_TXFIFO = (CAN_FLG_FIFO | CAN_MASK_CH0_TXFIFO_0),

 CAN_BOX_HIST_FIFO = (CAN_FLG_FIFO | CAN_MASK_CH0_HIST_FIFO),
} can_box_t;

2.10.2 R_CAN_Open() Data Types
typedef enum e_can_timestamp_src
{
 CAN_TIMESTAMP_SRC_HALF_PCLK = 0,
 CAN_TIMESTAMP_SRC_CANMCLK = 1, // obtained from EXTAL pin
 CAN_TIMESTAMP_SRC_END_ENUM
} can_timestamp_src_t;

typedef enum e_can_timestamp_div
{
 CAN_TIMESTAMP_DIV_1 = 0,
 CAN_TIMESTAMP_DIV_2 = 1,
 CAN_TIMESTAMP_DIV_4 = 2,
 CAN_TIMESTAMP_DIV_8 = 3,
 CAN_TIMESTAMP_DIV_16 = 4,
 CAN_TIMESTAMP_DIV_32 = 5,
 CAN_TIMESTAMP_DIV_64 = 6,
 CAN_TIMESTAMP_DIV_128 = 7,
 CAN_TIMESTAMP_DIV_256 = 8,
 CAN_TIMESTAMP_DIV_512 = 9,
 CAN_TIMESTAMP_DIV_1024 = 10,
 CAN_TIMESTAMP_DIV_2048 = 11,
 CAN_TIMESTAMP_DIV_4096 = 12,
 CAN_TIMESTAMP_DIV_8192 = 13,
 CAN_TIMESTAMP_DIV_16384 = 14,
 CAN_TIMESTAMP_DIV_32768 = 15,
 CAN_TIMESTAMP_DIV_END_ENUM
} can_timestamp_div_t;

typedef struct st_can_cfg
{
 can_timestamp_src_t timestamp_src;
 can_timestamp_div_t timestamp_div;
} can_cfg_t;

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 10 of 50
Nov.17.23

2.10.3 Callback function events
typedef enum e_can_cb_evt // callback function events
{
 // Main Callback Events
 CAN_EVT_RXFIFO_THRESHOLD, // RX FIFO threshold
 CAN_EVT_GLOBAL_ERR, // RX or Hist FIFO overflow, or DLC error

 // Channel Callback Events
 CAN_EVT_TRANSMIT, // mbx tx complete or aborted,
 // tx or history FIFO threshold
 CAN_EVT_CHANNEL_ERR,
} can_cb_evt_t;

2.10.4 R_CAN_InitChan() Data Types
typedef struct st_can_bitrate
{
 uint16_t prescaler; // 1-1024
 uint8_t tseg1; // 4-16
 uint8_t tseg2; // 2-8
 uint8_t sjw; // 1-4
} can_bitrate_t;

/* Sample settings for 500kbps */
#define CAN_RSK_27MHZ_PCLKB_500KBPS_PRESCALER 3
#define CAN_RSK_27MHZ_PCLKB_500KBPS_TSEG1 5
#define CAN_RSK_27MHZ_PCLKB_500KBPS_TSEG2 3
#define CAN_RSK_27MHZ_PCLKB_500KBPS_SJW 1

#define CAN_RSK_32MHZ_PCLKB_500KBPS_PRESCALER 2
#define CAN_RSK_32MHZ_PCLKB_500KBPS_TSEG1 11
#define CAN_RSK_32MHZ_PCLKB_500KBPS_TSEG2 4
#define CAN_RSK_32MHZ_PCLKB_500KBPS_SJW 4
 // alternate settings
#define CAN_RSK_8MHZ_XTAL_500KBPS_PRESCALER 1 // 2
#define CAN_RSK_8MHZ_XTAL_500KBPS_TSEG1 10 // 5
#define CAN_RSK_8MHZ_XTAL_500KBPS_TSEG2 5 // 2
#define CAN_RSK_8MHZ_XTAL_500KBPS_SJW 1 // 1

2.10.5 R_CAN_ConfigFIFO() Data Types
typedef enum e_can_fifo_threshold // NOTE: History FIFO can only have a
{ // threshold of 1 or 6
 CAN_FIFO_THRESHOLD_1 = 1, // every message
 CAN_FIFO_THRESHOLD_2 = 3, // 4/8 of 4
 CAN_FIFO_THRESHOLD_3 = 5, // 6/8 of 4
 CAN_FIFO_THRESHOLD_6 = 6, // History FIFO Only!
 CAN_FIFO_THRESHOLD_FULL = 7, // 8/8 of 4
 CAN_FIFO_THRESHOLD_END_ENUM
} can_fifo_threshold_t;

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 11 of 50
Nov.17.23

2.10.6 R_CAN_AddRxRule() Data Types
typedef struct st_can_filter
{
 uint8_t check_ide:1;
 uint8_t ide;
 uint8_t check_rtr:1;
 uint8_t rtr;
 uint32_t id;
 uint32_t id_mask;
 uint8_t min_dlc;
 uint16_t label; // 12-bit label
} can_filter_t;

2.10.7 R_CAN_SendMsg() Data Types
typedef struct st_can_txmsg
{
 uint8_t ide;
 uint8_t rtr;
 uint32_t id;
 uint8_t dlc;
 uint8_t data[8];
 bool_t one_shot; // no retries on error; txmbx only
 bool_t log_history; // true if want to log
 uint8_t label; // 8-bit label for History FIFO
} can_txmsg_t;

2.10.8 R_CAN_GetMsg() Data Types
typedef struct st_can_rxmsg
{
 uint8_t ide;
 uint8_t rtr;
 uint32_t id;
 uint8_t dlc;
 uint8_t data[8];
 uint16_t label; // 12-bit label from receive rule
 uint16_t timestamp;
} can_rxmsg_t;

2.10.9 R_CAN_GetHistoryEntry() Data Types
typedef struct st_can_history
{
 can_box_t box_id; // box which sent message
 uint8_t label; // associated 8-bit label
} can_history_t;

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 12 of 50
Nov.17.23

2.10.10 R_CAN_GetStatusMask() Data Types
typedef enum e_can_stat
{
 CAN_STAT_FIFO_EMPTY,
 CAN_STAT_FIFO_THRESHOLD,
 CAN_STAT_FIFO_OVFL, // bits reset after reading
 CAN_STAT_RXMBX_FULL,
 CAN_STAT_GLOBAL_ERR, // DLC error bit is reset after reading
 CAN_STAT_CH_TXMBX_SENT, // bits reset after reading
 CAN_STAT_CH_TXMBX_ABORTED, // bits reset after reading
 CAN_STAT_CH_ERROR, // bits reset after reading
 CAN_STAT_END_ENUM
} can_stat_t;

/* Returned mask values (multiple bits may be set at the same time)

/* CAN_STAT_CH_TXMBX_SENT, CAN_STAT_CH_TXMBX_ABORTED */
#define CAN_MASK_TXMBX_0 (0x0001)
#define CAN_MASK_TXMBX_1 (0x0002)
#define CAN_MASK_TXMBX_2 (0x0004)
#define CAN_MASK_TXMBX_3 (0x0008)

/* CAN_STAT_RXMBX_FULL */
#define CAN_MASK_RXMBX_0 (0x0001)
#define CAN_MASK_RXMBX_1 (0x0002)
#define CAN_MASK_RXMBX_2 (0x0004)
#define CAN_MASK_RXMBX_3 (0x0008)

/* CAN_STAT_FIFO_EMPTY, CAN_STAT_FIFO_THRESHOLD, CAN_STAT_FIFO_OVFL */
#define CAN_MASK_RXFIFO_0 (0x00000001)
#define CAN_MASK_RXFIFO_1 (0x00000002)
#define CAN_MASK_TXFIFO (0x00000100)
#define CAN_MASK_HIST_FIFO (0x00800000)

/* CAN_STAT_GLOBAL_ERR */
#define CAN_MASK_ERR_DLC (0x0001)
#define CAN_MASK_ERR_RX_OVFL (0x0002)
#define CAN_MASK_ERR_HIST_OVFL (0x0004)
#define CAN_MASK_ERR_FIFO_OVFL (0x0006)

/* CAN_STAT_CH_ERROR */
#define CAN_MASK_ERR_PROTOCOL (0x0001)
#define CAN_MASK_ERR_WARNING (0x0002)
#define CAN_MASK_ERR_PASSIVE (0x0004)
#define CAN_MASK_ERR_BUS_OFF_ENTRY (0x0008)
#define CAN_MASK_ERR_BUS_OFF_EXIT (0x0010)
#define CAN_MASK_ERR_OVERLOAD (0x0020)
#define CAN_MASK_ERR_DOMINANT_LOCK (0x0040)
#define CAN_MASK_ERR_ARB_LOST (0x0080)
#define CAN_MASK_ERR_STUFF (0x0100)
#define CAN_MASK_ERR_FORM (0x0200)
#define CAN_MASK_ERR_ACK (0x0400)
#define CAN_MASK_ERR_CRC (0x0800)
#define CAN_MASK_ERR_RECESSIVE_BIT (0x1000)
#define CAN_MASK_ERR_DOMINANT_BIT (0x2000)
#define CAN_MASK_ERR_ACK_DELIMITER (0x4000)

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 13 of 50
Nov.17.23

2.10.11 R_CAN_GetCountErr() Data Types
typedef enum e_can_count
{
 CAN_COUNT_RX_ERR,
 CAN_COUNT_TX_ERR,
 CAN_COUNT_END_ENUM
} can_count_t;

2.10.12 R_CAN_Control() Data Types
typedef enum e_can_cmd
{
 CAN_CMD_ABORT_TX, // argument: transmit mailbox id
 CAN_CMD_RESET_TIMESTAMP,
 CAN_CMD_SET_MODE_COMM, // start normal bus communications
 CAN_CMD_SET_MODE_TST_STANDARD,
 CAN_CMD_SET_MODE_TST_LISTEN,
 CAN_CMD_SET_MODE_TST_EXT_LOOPBACK,
 CAN_CMD_SET_MODE_TST_INT_LOOPBACK,
 CAN_CMD_END_ENUM
} can_cmd_t;

2.11 Return Values
API function return values. This enum is found in r_rscan_rx_if.h along with the API function declarations.
typedef enum e_can_err // CAN API error codes
{
 CAN_SUCCESS=0,
 CAN_ERR_OPENED, // Call to Open already made
 CAN_ERR_NOT_OPENED, // Call to Open not yet made
 CAN_ERR_INIT_DONE, // Call to InitChan already made for channel
 CAN_ERR_CH_NO_INIT, // Channel not initialized
 CAN_ERR_INVALID_ARG, // Invalid argument passed to function
 CAN_ERR_MISSING_CALLBACK, // Callback func not provided and ints requested
 CAN_ERR_MAX_RULES, // Max configured rules already present
 CAN_ERR_BOX_FULL, // Transmit mailbox or FIFO is full
 CAN_ERR_BOX_EMPTY, // Receive mailbox or FIFO is full
 CAN_ERR_ILLEGAL_MODE, // Not in proper mode for request
 CAN_ERR_TIME_OUT // Time Out error
} can_err_t;

2.12 Adding the Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (2) below. However, the Smart Configurator only supports some RX
devices. Please use the methods of (3) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for
details.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 14 of 50
Nov.17.23

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 15 of 50
Nov.17.23

2.13 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example:
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example:
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example:
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 16 of 50
Nov.17.23

3. API Functions
Summary
The following functions are included in this design:

Function Description

R_CAN_Open() Initializes the driver’s internal structures and all of the receive mailboxes.

R_CAN_InitChan() Sets the bit rate clock for the channel and initializes all of the transmit
mailboxes.

R_CAN_ConfigFIFO() Initializes a FIFO for usage. This function should not be called if FIFOs are not
used.

R_CAN_AddRxRule() Adds a receive rule to a channel. Specifies receive message filter and
destination routing.

R_CAN_SendMsg() Loads a message into a transmit mailbox or FIFO for transmission.

R_CAN_GetMsg() Fetches a message from a receive mailbox or FIFO.

R_CAN_GetHistoryEntry() Fetches a log entry from a transmit history FIFO.

R_CAN_GetStatusMask() Returns a 32-bit mask based upon the status requested. Bit #defines have the
form CAN_MASK_xxx.

R_CAN_GetCountFIFO() Returns the number of messages in a FIFO.

R_CAN_GetCountErr() Returns the number of transmit or receive errors.

R_CAN_Control() Handles special operations and mode changes.

R_CAN_Close() Removes power to the CAN peripheral and disables the associated interrupts.

R_CAN_GetVersion() Returns the driver version number.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 17 of 50
Nov.17.23

R_CAN_Open()
This function initializes the driver’s internal structures and all of the receive mailboxes.

Format
can_err_t R_CAN_Open(can_cfg_t *p_cfg,
 void (* const p_callback)(can_cb_evt_t event,
 void *p_args));

Parameters
p_cfg
 Pointer to configuration structure. The element type definitions are provided in Section 2.10.1.

 typedef struct st_can_cfg
 {
 can_timestamp_src_t ts_source;
 can_timestamp_div_t ts_divisor;
 } can_cfg_t;

p_callback

Optional pointer to main callback function. Must be present if interrupts are enabled in
r_rscan_rx_config.h for RX FIFOs or global errors
event

First parameter for callback function. Specifies the interrupt source (see Section 2.10.3)
p_args

Second parameter for callback function (unused).

Return Values
CAN_SUCCESS: Successful
CAN_ERR_OPENED: Call to Open already made
CAN_ERR_INVALID_ARG: An element of the p_cfg structure contains an invalid value.
CAN_ERR_MISSING_CALLBACK: A callback function was not provided and

 a main callback interrupt is enabled in config.h
CAN_ERR_TIME_OUT: Time Out error

Properties
Prototyped in file “r_rscan_rx_if.h”

Description
This function initializes the driver’s internal structures, applies clock to the peripheral, and sets the Global
and Channel Modes to Reset. The timestamp is configured as per the p_cfg argument, and all receive
mailboxes are initialized.

If interrupts are enabled in r_rscan_rx_config.h for receive FIFO thresholds, or DLC or FIFO overflow errors,
a callback function must be provided here. Otherwise, NULL is entered.

Reentrant
No.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 18 of 50
Nov.17.23

Example: Polling Configuration
 /* All main callback interrupt sources are set to 0 in r_rscan_rx_config.h
*/

 can_cfg_t config;
 can_err_t err;

 /* Configure timestamp and Open driver */
 config.timestamp_src = CAN_TIMESTAMP_SRC_HALF_PCLK;
 config.timestamp_div = CAN_TIMESTAMP_DIV_1024;
 err = R_CAN_Open(&config, NULL);
Example: Interrupt Configuration
 /* 1+ main callback interrupt sources are set to 1 in r_rscan_rx_config.h */

 can_cfg_t config;
 can_err_t err;

 /* Configure timestamp and Open driver */
 config.timestamp_src = CAN_TIMESTAMP_SRC_HALF_PCLK;
 config.timestamp_div = CAN_TIMESTAMP_DIV_1024;
 err = R_CAN_Open(&config, MyCallback);

/* Sample callback function */
void MyCallback(can_cb_evt_t event, void *p_args)
{
uint32_t mask;
can_err_t err;

 if (event == CAN_EVT_RXFIFO_THRESHOLD)
 {
 mask = R_CAN_GetStatusMask(CAN_STAT_FIFO_THRESHOLD, NULL, &err);

 /* check RXFIFOs in use */
 if (mask & CAN_MASK_RXFIFO_1)
 {
 /* read messages */
 }
 }
 else if (event == CAN_EVT_GLOBAL_ERR)
 {
 mask = R_CAN_GetStatusMask(CAN_STAT_GLOBAL_ERR, NULL, &err);

 if (mask & CAN_MASK_ERR_DLC)
 {
 /* handle DLC error */
 }

 if (mask & CAN_MASK_ERR_FIFO_OVFL)
 {
 mask = R_CAN_GetStatusMask(CAN_STAT_FIFO_OVFL, NULL, &err);

 /* check the RXFIFOs, GWFIFO, and HIST_FIFOs in use */
 if (mask & CAN_MASK_HIST_FIFO)
 {
 /* handle error */
 }
 }
 }
}

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 19 of 50
Nov.17.23

Special Notes:
The ports pins used by the RSCAN peripheral should be initialized prior to calling R_CAN_Open(). Here are
some examples:

RX231:
 R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_MPC);

 PORT5.PODR.BIT.B5 = 1;
 PORT5.PODR.BIT.B4 = 0;
 MPC.P54PFS.BYTE = 0x10; // Pin Func Select P54 CTXD0
 MPC.P55PFS.BYTE = 0x10; // Pin Func Select P55 CRXD0
 PORT5.PDR.BIT.B4 = 1; // set TX pin direction to output
 PORT5.DSCR.BIT.B4 = 1; // High-drive output
 PORT5.PDR.BIT.B5 = 0; // set RX pin direction to input (dflt)
 PORT5.PMR.BIT.B4 = 1; // set TX pin mode to peripheral
 PORT5.PMR.BIT.B5 = 1; // set RX pin mode to peripheral

 R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_MPC);

RX24T:
 R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_MPC);

 PORTA.PODR.BIT.B1 = 1;
 PORTA.PODR.BIT.B0 = 0;
 MPC.PA0PFS.BYTE = 0x10; // Pin Func Select PA0 CTXD0
 MPC.PA1PFS.BYTE = 0x10; // Pin Func Select PA1 CRXD0
 PORTA.PDR.BIT.B0 = 1; // set TX pin direction to output
 PORTA.DSCR.BIT.B0 = 1; // High-drive output
 PORTA.PDR.BIT.B1 = 0; // set RX pin direction to input (dflt)
 PORTA.PMR.BIT.B0 = 1; // set TX pin mode to peripheral
 PORTA.PMR.BIT.B1 = 1; // set RX pin mode to peripheral

 R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_MPC);

RX24U:
 R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_MPC);

 PORTF.PODR.BIT.B3 = 1;
 PORTF.PODR.BIT.B2 = 0;
 MPC.PF2PFS.BYTE = 0x10; // Pin Func Select PF2 CTXD0
 MPC.PF3PFS.BYTE = 0x10; // Pin Func Select PF3 CRXD0
 PORTF.PDR.BIT.B2 = 1; // set TX pin direction to output
 PORTF.DSCR.BIT.B2 = 1; // High-drive output
 PORTF.PDR.BIT.B3 = 0; // set RX pin direction to input (dflt)
 PORTF.PMR.BIT.B2 = 1; // set TX pin mode to peripheral
 PORTF.PMR.BIT.B3 = 1; // set RX pin mode to peripheral

 R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_MPC);

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 20 of 50
Nov.17.23

R_CAN_InitChan()
This function sets the bit rate clock for the channel and initializes all of the transmit mailboxes.

Format
can_err_t R_CAN_InitChan(uint8_t chan,
 can_bitrate_t *p_baud,
 void (* const p_chcallback)(uint8_t chan,
 can_cb_evt_t event,
 void *p_args));
Parameters
chan
 Channel to initialize (0 is only valid value).

p_baud
 Pointer to bit rate structure. See the “Bit Timing Setting” section under CAN Module in the Hardware

Manual for calculating settings. Some default values are provided in r_rscan_rx_if.h.

 typedef struct st_can_bitrate
 {
 uint16_t prescaler;
 uint8_t tseg1;
 uint8_t tseg2;
 uint8_t sjw;
 } can_bitrate_t;

p_chcallback

Optional pointer to channel callback function. Must be present if interrupts are enabled in
r_rscan_rx_config.h for TX mailboxes, TX FIFOs, History FIFOs, or bus errors.
channel

First parameter for channel callback function. Specifies the channel interrupt occurred on (always 0).
event

Second parameter for channel callback function. Specifies the interrupt source (see Section 2.10.3)
p_args

Third parameter for callback function (unused).

Return Values
CAN_SUCCESS: Successful
CAN_ERR_ILLEGAL_MODE: Not in global reset mode (results from call to Open())
CAN_ERR_INVALID_ARG: An invalid argument was provided
CAN_ERR_MISSING_CALLBACK: A callback function was not provided and a channel interrupt is enabled in
config.h

Properties
Prototyped in file “r_rscan_rx_if.h”

Description
This function initializes all of the channel’s transmit mailboxes, sets the bit rate, and enables interrupt
sources for the channel as specified in the r_rscan_rx_config.h file. Default values for p_baud are provided in
r_rscan_rx_if.h.

If interrupts are enabled in r_rscan_rx_config.h for TX mailboxes, TX FIFOs, History FIFOs, or bus errors, a
callback function must be provided here. Otherwise, NULL is entered.

Reentrant
Yes, for different channels.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 21 of 50
Nov.17.23

Example: Polling Configuration
 /* All channel interrupt sources are set to 0 in r_rscan_rx_config.h */

 can_bitrate_t baud;
 can_err_t err;

 /* Initialize channel 0 for RSKRX231 */
 baud.prescaler = CAN_RSK_8MHZ_XTAL_500KBPS_PRESCALER;
 baud.tseg1 = CAN_RSK_8MHZ_XTAL_500KBPS_TSEG1;
 baud.tseg2 = CAN_RSK_8MHZ_XTAL_500KBPS_TSEG2;
 baud.sjw = CAN_RSK_8MHZ_XTAL_500KBPS_SJW;

 err = R_CAN_InitChan(CAN_CH0, &baud, NULL);
Example: Interrupt Configuration
 /* 1+ channel interrupt sources are set to 1 in r_rscan_rx_config.h */

 can_bitrate_t baud;
 can_err_t err;

 /* Initialize channel 0 for RSKRX231 */
 baud.prescaler = CAN_RSK_8MHZ_XTAL_500KBPS_PRESCALER;
 baud.tseg1 = CAN_RSK_8MHZ_XTAL_500KPS_TSEG1;
 baud.tseg2 = CAN_RSK_8MHZ_XTAL_500KPS_TSEG2;
 baud.sjw = CAN_RSK_8MHZ_XTAL_500KPS_SJW;

 err = R_CAN_InitChan(CAN_CH0, &baud, MyChanCallback);

/* Sample callback function template */
void MyChanCallback(uint8_t chan,
 can_cb_evt_t event,
 void *p_args)
{
uint32_t mask;
can_err_t err;

 if (event == CAN_EVT_TRANSMIT)
 {
 mask = R_CAN_GetStatusMask(CAN_STAT_CH_TXMBX_SENT, chan, &err);

 /* check transmit mailboxes in use */
 if (mask & CAN_MASK_TXMBX_3)
 {
 /* do stuff */
 }

 mask = R_CAN_GetStatusMask(CAN_STAT_CH_TXMBX_ABORTED, chan, &err);

 /* check transmit mailboxes in use */
 if (mask & CAN_MASK_TXMBX_0)
 {
 /* do stuff */
 }

 mask = R_CAN_GetStatusMask(CAN_STAT_FIFO_THRESHOLD, NULL, &err);

 /* check transmit and history FIFOs in use */
 if (mask & CAN_MASK_TXFIFO)
 {
 /* load next batch of messages for transmit */
 }

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 22 of 50
Nov.17.23

 }

 else if (event == CAN_EVT_CHANNEL_ERR)
 {
 mask = R_CAN_GetStatusMask(CAN_STAT_CH_ERROR, chan, &err);

 /* check individual errors if desired */
 if (mask & CAN_MASK_ERR_BUS_OFF_ENTRY)
 {
 /* handle error */
 }

 if (mask & CAN_MASK_ERR_BUS_OFF_EXIT)
 {
 /* handle recovery */
 }
 }
}

Special Notes:
None.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 23 of 50
Nov.17.23

R_CAN_ConfigFIFO()
This function initializes a FIFO for usage. This function should not be called if FIFOs are not used.

Format
can_err_t R_CAN_ConfigFIFO(can_box_t fifo,
 can_fifo_threshold_t threshold,
 can_box_t txmbx_id);

Parameters
fifo_id
 Box id for FIFO (see Section 2.10.1)

threshold
 Number of messages needed in FIFO to set interrupt flag (see Section 2.10.5). Note that the only valid

thresholds for the History FIFOs is 1 or 6 entries. All others may use 1, 2, 3, or full (4).

txmbx_id
 Box id for associated transmit mailbox (for transmit FIFOs only). This argument is ignored for receive

and history FIFOs.

Return Values
CAN_SUCCESS: Successful
CAN_ERR_ILLEGAL_MODE: Not in global reset mode (results from call to Open())
CAN_ERR_CH_NO_INIT: Channel not initialized yet
CAN_ERR_INVALID_ARG: An invalid argument was provided

Properties
Prototyped in file “r_rscan_rx_if.h”

Description
FIFO usage is optional.

This function is used to activate a FIFO. Transmit and receive FIFOs are 4 entries deep (history FIFO is 8
deep). The transmit FIFO must have associated with it a standard transmit mailbox. The number of the
mailbox determines the priority of the FIFO when transmitting (mailbox 0 = highest priority; mailbox 3 =
lowest).

Reentrant
Yes, for different FIFOs.

Example: RX FIFO

 can_err_t err;

 /*
 * Set interrupt flag on every message received on RX FIFO 0.
 * Interrupt occurs if CAN_CFG_INT_RXFIFO_THRESHOLD is set to 1 in config.h.
 * Interrupt calls main callback function with CAN_EVT_RXFIFO_THRESHOLD.
 */
 err = R_CAN_ConfigFIFO(CAN_BOX_RXFIFO_0,
 CAN_FIFO_THRESHOLD_1,
 CAN_BOX_NONE); // unused field here

Example: TX FIFO

 can_err_t err;

 /*
 * Associate mailbox 3 with TX FIFO 0 on channel 0.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 24 of 50
Nov.17.23

 * Set interrupt flag when 2 messages remain in FIFO.
 * Interrupt occurs if CAN_CFG_INT_TXFIFO_THRESHOLD is set to 1 in config.h.
 * Interrupt calls channel callback function with CAN_EVT_TRANSMIT.
 */
 err = R_CAN_ConfigFIFO(CAN_BOX_TXFIFO,
 CAN_FIFO_THRESHOLD_2,
 CAN_BOX_CH0_TXMBX_3);

Example: History FIFO

 can_err_t err;

 /*
 * Set threshold to 6 for History FIFO.
 * Interrupt occurs if CAN_CFG_INT_HIST_FIFO_THRESHOLD is set to 1 in config.h.
 * Interrupt calls channel callback function with CAN_EVT_TRANSMIT.
 */
 err = R_CAN_ConfigFIFO(CAN_BOX_HIST_FIFO,
 CAN_FIFO_THRESHOLD_6,
 CAN_BOX_NONE); // unused field here

Special Notes:
None.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 25 of 50
Nov.17.23

R_CAN_AddRxRule()
This function adds a receive rule to a channel. Specifies receive message filter and destination routing.

Format
can_err_t R_CAN_AddRxRule(uint8_t chan,
 can_filter_t *p_filter,
 can_box_t dst_box);

Parameters
chan

Channel to apply rule to (always 0)
p_filter

Pointer to rule information.
 typedef struct st_can_filter
 {
 uint8_t check_ide:1;
 uint8_t ide;
 uint8_t check_rtr:1;
 uint8_t rtr;
 uint32_t id;
 uint32_t id_mask;
 uint8_t min_dlc;
 uint16_t label; // 12-bit label
 } can_filter_t;

dst_box

Destination box (receive mailbox or receive FIFO) to route message to (see Section 2.10.1).

Return Values
CAN_SUCCESS: Successful
CAN_ERR_ILLEGAL_MODE: Not in global reset mode (results from call to Open())
CAN_ERR_CH_NO_INIT: Channel not initialized yet
CAN_ERR_INVALID_ARG: An invalid argument was provided
CAN_ERR_MAX_RULES: Max rules already present (as defined in r_rscan_rx_config.h,

Properties
Prototyped in file “r_rscan_rx_if.h”

Description
This function is used to add a receive rule to a channel. There are two parts to this. The first part is
specifying a filter as to which fields to inspect on received messages. The second part is to specify a
destination to route the message to if it passes the filter test.

A “1” in the id_mask field indicates that the corresponding bit in a received message ID will be checked
against the bit in the id field in this filter (see Examples).

The label field in the rule is optional. It is associated with each message that passes the filter. This may
serve as a quick identification of a message when it is fetched from a receive box (mailbox or FIFO) using
R_CAN_GetMsg()..

Reentrant
No.

Example 1: Match a range of messages
 can_filter_t filter;
 can_err_t err;

 /* Setup filter */

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 26 of 50
Nov.17.23

 filter.check_ide = 1; // check the IDE field in message
 filter.ide = 0; // 11-bit ID
 filter.check_rtr = 0; // do not check the RTR field in message
 filter.rtr = 0; // (value does not matter here; not checking)
 filter.id = 0x040; // message ID
 filter.id_mask = 0x7F0; // messages with IDs of 0x040-0x04F are accepted
 filter.min_dlc = 4; // message data must be at least four bytes long
 filter.label = 0x800; // arbitrary label applied to msgs of this type

 /* Add rule to channel 0. Route filtered messages to receive mailbox 3. */
 err = R_CAN_AddRxRule(CAN_CH0, &filter, CAN_BOX_RXMBX_3);

Example 2: Exact match for message
 can_filter_t filter;
 can_err_t err;

 /* Setup filter */
 filter.check_ide = 1; // check the IDE field in message
 filter.ide = 0; // 11-bit ID
 filter.check_rtr = 0; // do not check the RTR field in message
 filter.rtr = 0; // (value does not matter here; not checking)
 filter.id = 0x040; // message ID
 filter.id_mask = 0x7FF; // ID must match 0x040 exactly
 filter.min_dlc = 6; // message data must be at least six bytes long
 filter.label = 0x700; // arbitrary label applied to msgs of this type

 /* Add rule to channel 0. Route filtered messages to receive mailbox 2. */
 err = R_CAN_AddRxRule(CAN_CH0, &filter, CAN_BOX_RXMBX_2);

Special Notes:
Rules cannot be entered after entering communications mode.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 27 of 50
Nov.17.23

R_CAN_Control()
This function handles special operations and mode changes.

Format
can_err_t R_CAN_Control(can_cmd_t cmd,
 uint32_t arg1);

Parameters
cmd
 Specifies which command to run.
 typedef enum e_can_cmd
 {
 CAN_CMD_ABORT_TX, // argument: transmit mailbox id
 CAN_CMD_RESET_TIMESTAMP,
 CAN_CMD_SET_MODE_COMM, // start normal bus communications
 CAN_CMD_SET_MODE_TST_STANDARD,
 CAN_CMD_SET_MODE_TST_LISTEN,
 CAN_CMD_SET_MODE_TST_EXT_LOOPBACK,
 CAN_CMD_SET_MODE_TST_INT_LOOPBACK,
 CAN_CMD_END_ENUM
 } can_cmd_t;

arg1
 Argument which is specific to command. Most commands do not require an argument.
 For the command CAN_CMD_ABORT_TX, the argument is a transmit mailbox id (see Section 2.10.1).

Return Values
CAN_SUCCESS: Successful
CAN_ERR_INVALID_ARG: An invalid argument was provided
CAN_ERR_ILLEGAL_MODE: Changing to requested mode is illegal from current mode.
CAN_ERR_TIME_OUT: Time Out error

Properties
Prototyped in file “r_rscan_rx_if.h”

Description
This function is used for resetting the timestamp counter, aborting transmission of mailbox messages, and
changing the CAN mode.

The following sequence of function calls is used to setup the CAN:
 R_CAN_Open();
 R_CAN_InitChan();
 R_CAN_ConfigFIFO(); // do for 0 or more FIFOs
 R_CAN_AddRxRule(); // do for 1-16 rules

Once the CAN is setup, the peripheral should enter normal communications mode or a test mode.
 R_CAN_Control(); // Use CAN_CMD_SET_MODE_COMM or CAN_CMD_SET_MODE_TST_xxx

Note: If a Bus Off condition is detected on a channel, the channel enters Halt Mode and all communications
cease. They cannot resume until after a Bus Off Recovery condition is detected and the application calls
R_CAN_Control(CAN_CMD_SET_MODE_COMM).

Reentrant
Yes.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 28 of 50
Nov.17.23

Example: Enter Normal Communications Mode
 can_err_t err;

 err = R_CAN_Control(CAN_CMD_SET_MODE_COMM, 0);
Example: Abort Transmit
 can_err_t err;

 /* Abort transmit on mailbox 0 on channel 0*/
 err = R_CAN_Control(CAN_CMD_ABORT_TX, CAN_BOX_CH0_TXMBX_0);

Special Notes:

Summary of different test modes:

• Standard Test Mode: Allows for CRC testing
• Listen-only Mode: Used for detecting communication speed. Cannot call R_CAN_SendMsg() in

this mode.
• Internal Loopback Mode: Messages sent on a channel are handled as received messages and

processed on that same channel. Here, the CAN transceiver is bypassed.
• External Loopback Mode: Same as Internal Loopback mode, only the transceiver is used.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 29 of 50
Nov.17.23

R_CAN_SendMsg()
This function loads a message into a transmit mailbox or FIFO for transmission.

Format
can_err_t R_CAN_SendMsg(can_box_t box_id,
 can_txmsg_t *p_txmsg);

Parameters
box_id
 Transmit box id (mailbox or FIFO; see Section 2.10.1)

p_txmsg
 Pointer to message to send
 typedef struct st_can_txmsg
 {
 uint8_t ide;
 uint8_t rtr;
 uint32_t id;
 uint8_t dlc;
 uint8_t data[8];
 bool_t one_shot; // no retries on error; txmbx only
 bool_t log_history; // true if want to log
 uint8_t label; // 8-bit label for History FIFO
 } can_txmsg_t;

Return Values
CAN_SUCCESS: Successful
CAN_ERR_INVALID_ARG: An invalid argument was provided
CAN_ERR_BOX_FULL: Transmit mailbox or FIFO is full
CAN_ERR_ILLEGAL_MODE: Cannot send message in current mode.
CAN_ERR_TIME_OUT: Time Out error

Properties
Prototyped in file “r_rscan_rx_if.h”

Description
This function places a message into a 1-message deep transmit mailbox or 4-message deep transmit FIFO.
If there is already a message waiting to send in the mailbox, or 4 messages already exist in the FIFO,
CAN_ERR_BOX_FULL is returned immediately. If the box_id is for a transmit mailbox and interrupts are not
enabled (CAN_CFG_INT_MBX_TX_COMPLETE is 0), this function blocks until the message is sent. If
interrupts are enabled or the message is for a transmit FIFO, the function will return immediately after
loading the message into the transmit registers.

Reentrant
Yes, for different boxes.

Example:
 can_txmsg_t txmsg;
 can_err_t err;

 /* Setup message */
 txmsg.ide = 0; // ID field is 11-bits
 txmsg.rtr = 0; // local message
 txmsg.id = 0x022; // destination ID
 txmsg.dlc = 5; // data length
 txmsg.data[0] = ‘h’; // data…
 txmsg.data[1] = ‘e’;
 txmsg.data[2] = ‘l’;

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 30 of 50
Nov.17.23

 txmsg.data[3] = ‘l’;
 txmsg.data[4] = ‘o’;
 txmsg.one_shot = false; // do normal retries on error
 txmsg.log_history = false; // do not log in History FIFO
 txmsg.label = 0; // (label ignored because not logging message)

 /*
 * Place message in transmit mailbox 2
 * If transmit complete interrupt is not enabled, the function returns
 * after the message has been sent (assuming no error occurred).
 */
 err = R_CAN_SendMsg(CAN_BOX_CH0_TXMBX_2, &txmsg);

Special Notes:
None.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 31 of 50
Nov.17.23

R_CAN_GetMsg()
This function fetches a message from a receive mailbox or FIFO.

Format
can_err_t R_CAN_GetMsg(can_box_t box_id,
 can_rxmsg_t *p_rxmsg);

Parameters
box_id
 Receive box id (mailbox or FIFO; see Section 2.10.1)

p_rxmsg
 Pointer to message buffer to load
 typedef struct st_can_rxmsg
 {
 uint8_t ide;
 uint8_t rtr;
 uint32_t id;
 uint8_t dlc;
 uint8_t data[8];
 uint16_t label; // 12-bit label from receive rule
 uint16_t timestamp;
 } can_rxmsg_t;

Return Values
CAN_SUCCESS: Successful
CAN_ERR_CH_NO_INIT: Channel not initialized yet
CAN_ERR_INVALID_ARG: An invalid argument was provided
CAN_ERR_BOX_EMPTY: No message available to fetch

Properties
Prototyped in file “r_rscan_rx_if.h”

Description
This function loads the message from a receive mailbox or FIFO into the message buffer provided. If there
are no messages in the box, this function does not block and returns a CAN_ERR_BOX_EMPTY.

Reentrant
Yes, for different boxes.

Example:
 can_rxmsg_t rxmsg;
 can_err_t err;

 /* Wait for message to appear in receive mailbox 3 */
 while (R_CAN_GetMsg(CAN_BOX_RXMBX_3, &rxmsg) == CAN_ERR_BOX_EMPTY)
 ;

 /* rxmsg contains message */

Special Notes:
None.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 32 of 50
Nov.17.23

R_CAN_GetHistoryEntry()
This function fetches a log entry from a transmit history FIFO.

Format
can_err_t R_CAN_GetHistoryEntry(can_box_t box_id,
 can_history_t *p_entry);

Parameters
box_id
 Transmit history FIFO (see Section 2.10.1)

p_entry
 Pointer to entry buffer to load

 typedef struct st_can_history
 {
 can_box_t box_id; // box which sent message
 uint8_t label; // associated 8-bit label
 } can_history_t;

Return Values
CAN_SUCCESS: Successful
CAN_ERR_INVALID_ARG: An invalid argument was provided
CAN_ERR_BOX_EMPTY: No entry available to fetch

Properties
Prototyped in file “r_rscan_rx_if.h”

Description
An entry is added to the history FIFO each time an R_CAN_SendMsg() is called with the “log_history” in the
argument structure is set to TRUE. This function loads a log entry from a transmit history FIFO into the entry
buffer provided. If there are no entries in the FIFO, this function does not block and returns a
CAN_ERR_BOX_EMPTY. The use of this feature is not required for normal operations.

Reentrant
Yes, for different boxes.

Example:
 can_history_t entry;
 can_err_t err;

 /* Process all entries in transmit history FIFO */
 while (R_CAN_GetMsg(CAN_BOX_HIST_FIFO, &entry) == CAN_SUCCESS)
 {
 /* process entries here */
 }

Special Notes:
None.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 33 of 50
Nov.17.23

R_CAN_GetStatusMask()
This function returns a 32-bit mask based upon the status requested. Bit #defines have the form
CAN_MASK_xxx.

Format
uint32_t R_CAN_GetStatusMask(can_stat_t type,
 uint8_t chan,
 can_err_t *p_err);
Parameters
type
 Specifies which status to return.
 typedef enum e_can_stat
 {
 CAN_STAT_FIFO_EMPTY,
 CAN_STAT_FIFO_THRESHOLD,
 CAN_STAT_FIFO_OVFL, // bits reset after reading
 CAN_STAT_RXMBX_FULL,
 CAN_STAT_GLOBAL_ERR, // DLC error bit is reset after reading
 CAN_STAT_CH_TXMBX_SENT, // bits reset after reading
 CAN_STAT_CH_TXMBX_ABORTED, // bits reset after reading
 CAN_STAT_CH_ERROR, // bits reset after reading
 CAN_STAT_END_ENUM
 } can_stat_t;
chan
 Specifies which channel to return status for (must be 0). Applies only to CAN_STAT_CH_xxx requests.
p_err
 Pointer to returned error code.
 CAN_SUCCESS: Successful
 CAN_ERR_INVALID_ARG: An invalid argument was provided

Return Values
32-bit box or error mask whose bit definitions have the form CAN_MASK_xxx and are defined in Section 2.10.10.

Properties
Prototyped in file “r_rscan_rx_if.h”

Description
This function returns a mask based upon the status type requested. All bit masks have the form
CAN_MASK_xxx (see Section 2.10.10).

Reentrant
Yes.

Example
 can_err_t err;
 can_rxmsg_t rxmsg;

 /* Wait for a message to come in on any receive mailbox */
 while (R_CAN_GetStatusMask(CAN_STAT_RXMBX_FULL, 0, &err) == 0)
 ;

 /* Check if receive mailbox 3 is full */
 if (R_CAN_GetStatusMask(CAN_STAT_RXMBX_FULL, 0, &err) & CAN_MASK_RXMBX_3)
 {
 /* get message */
 R_CAN_GetMsg(CAN_BOX_RXMBX_3, &rxmsg);
 }

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 34 of 50
Nov.17.23

Special Notes:
None.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 35 of 50
Nov.17.23

R_CAN_GetCountFIFO()
This function returns the number of items in a FIFO.

Format
uint32_t R_CAN_GetCountFIFO(can_box_t box_id,
 can_err_t *p_err);

Parameters
box_id
 Specifies which FIFO to check (see Section 2.10.1).
p_err
 Pointer to returned error code.
 CAN_SUCCESS: Successful
 CAN_ERR_INVALID_ARG: An invalid argument was provided

Return Values
Number of items in the FIFO

Properties
Prototyped in file “r_rscan_rx_if.h”

Description
This function returns the number of items in the FIFO specified by box_id. This function is not required for
normal operations.

Reentrant
Yes.

Example
 uint32_t cnt;
 can_err_t err;

 /* Determine the number of messages in the History FIFO for channel 0 */
 cnt = R_CAN_GetCountFIFO(CAN_BOX_CH1_HIST_FIFO, &err);

Special Notes:
All FIFO usage is optional.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 36 of 50
Nov.17.23

R_CAN_GetCountErr()
Returns the number of transmit or receive errors.

Format
uint32_t R_CAN_GetCountErr(can_count_t type,
 uint8_t chan,
 can_err_t *p_err);
Parameters
type
 Specifies which status to return.
 typedef enum e_can_count
 {
 CAN_COUNT_RX_ERR,
 CAN_COUNT_TX_ERR,
 CAN_STAT_END_ENUM
 } can_count_t;
chan
 Specifies which channel to return error count for (must be 0).
p_err
 Pointer to returned error code.
 CAN_SUCCESS: Successful
 CAN_ERR_INVALID_ARG: An invalid argument was provided

Return Values
The number of errors detected.

Properties
Prototyped in file “r_rscan_rx_if.h”

Description
This function returns the number of receive or transmit errors on a channel based upon the count type
requested.

Reentrant
Yes.

Example
 uint32_t rxcnt,txcnt;
 can_err_t err;

 /* Get the number of errors detected */
 rxcnt = R_CAN_GetCountErr(CAN_COUNT_RX_ERR, CAN_CH0, &err);
 txcnt = R_CAN_GetCountErr(CAN_COUNT_TX_ERR, CAN_CH0, &err);

Special Notes:
This use of this function is optional. It can be used to detect the health of the network and how close the
network is to entering the Error Passive state (128 errors) or Bus Off state (255 errors).

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 37 of 50
Nov.17.23

R_CAN_Close()
This function removes clock from the CAN peripheral and disables the associated interrupts.

Format
void R_CAN_Close(void);

Parameters
None

Return Values
None

Properties
Prototyped in file “r_rscan_rx_if.h”

Description
This function halts all existing communications, disables all interrupts (if any), and shuts down the peripheral.

Reentrant
Yes, but no need to ever call more than once.

Example

 R_CAN_Close();

Special Notes:
None.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 38 of 50
Nov.17.23

R_CAN_GetVersion()
This function returns the driver version number at runtime.

Format
uint32_t R_CAN_GetVersion(void);

Parameters
None

Return Values
Version number.

Properties
Prototyped in file “r_rscan_rx_if.h”

Description
Returns the version of this module. The version number is encoded such that the top two bytes are the major
version number and the bottom two bytes are the minor version number.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 39 of 50
Nov.17.23

4. Pin Setting
To use the RSCAN FIT module, assign input/output signals of the peripheral function to pins with the multi-
function pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document. Please
perform the pin setting after calling the R_CAN_Open function.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 40 of 50
Nov.17.23

5. Demo Project
Demo projects are complete stand-alone programs. They include function main() that utilizes the module
and its dependent modules (e.g.. r_bsp). The standard naming convention for the demo project is
<module>_demo_<board> where <module> is the peripheral acronym (e.g. s12ad, cmt, sci) and the
<board> is the standard RSK (e.g. rskrx231). For example, rscan FIT module demo project for RSKRX231
will be named as rscan_demo_rskrx231. Similarly, the exported .zip file will be
<module>_demo_<board>.zip. For the same example, the zipped export/import file will be named as
rscan_demo_rskrx231.zip.

5.1 rscan_demo_rskrx231, rscan_demo_rskrx231_gcc
This program requires the connection of a CAN device (such as a sniffer) capable of receiving and sending
messages. The program spins in a loop sending then receiving one message at a time. The messages
received must have an ID of 0x60-0x6F and contain at least 4 bytes of data.

The baud rate is set to 500Kbps.

This program can run using either mailboxes without interrupts or FIFOs with interrupts. The desired
operation is configured by changing the value of USE_FIFOS in main.c to 0 for mailboxes or 1 for FIFOs.

5.2 rscan_demo_rskrx24t, rscan_demo_rskrx24t_gcc
This program requires the connection of a CAN device (such as a sniffer) capable of receiving and sending
messages. The program spins in a loop sending then receiving one message at a time. The messages
received must have an ID of 0x60-0x6F and contain at least 4 bytes of data.

The baud rate is set to 500Kbps.

This program can run using either mailboxes without interrupts or FIFOs with interrupts. The desired
operation is configured by changing the value of USE_FIFOS in main.c to 0 for mailboxes or 1 for FIFOs.

The RSKRX24T must be populated with a large memory version of the RX24T (such as the 512Kb EAxFP)
in order to have CAN peripheral support. Additionally, an external CAN transceiver board is required. The
following is an example using the MikroElektronika CAN-1 board (www.mikroe.com/add-on-
boards/communication/can).

It is recommended to solder a 2x3 header across J2 pins 15-20 on the RSKRX24T. Dip switch lines 1 and 5
should be in the ON position on the CAN-1 board. Connect the boards in the following manner:

RSKRX24T CAN-1

CRXD0 J2 pin 15 P0

CTXD0 J2 pin 16 P1

VCC J2 pin 17 VCC

GND J2 pin 19 GND

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 41 of 50
Nov.17.23

120Ω resistor P0-P1 (opt. termination resistor depending upon your
network)

5.3 rscan_demo_rskrx24u, rscan_demo_rskrx24u_gcc
This program requires the connection of a CAN device (such as a sniffer) capable of receiving and sending
messages. The program spins in a loop sending then receiving one message at a time. The messages
received must have an ID of 0x60-0x6F and contain at least 4 bytes of data.

The baud rate is set to 500Kbps.

This program can run using either mailboxes without interrupts or FIFOs with interrupts. The desired
operation is configured by changing the value of USE_FIFOS in main.c to 0 for mailboxes or 1 for FIFOs.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 42 of 50
Nov.17.23

5.4 rscan_demo_rskrx140, rscan_demo_rskrx140_gcc
This program requires the connection of a CAN device (such as a sniffer) capable of receiving and sending
messages. The program spins in a loop sending then receiving one message at a time. The messages
received must have an ID of 0x60-0x6F and contain at least 4 bytes of data.

The baud rate is set to 500Kbps.

This program can run using either mailboxes without interrupts or FIFOs with interrupts. The desired
operation is configured by changing the value of USE_FIFOS in main.c to 0 for mailboxes or 1 for FIFOs.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 43 of 50
Nov.17.23

6. Appendices
6.1 Confirmed Operation Environment
This section describes confirmed operation environment for the RSCAN FIT module.

Table 6.1 Confirmed Operation Environment (Rev.2.80)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202305
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.80
Board used Renesas Solution Starter Kit for RX23E-B (product No.:

RTK0ES1001C00001BJ)

Table 6.2 Confirmed Operation Environment (Rev.2.70)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-04
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.70
Board used Renesas Solution Starter Kit for RX23E-B (product No.:

RTK0ES1001C00001BJ)

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 44 of 50
Nov.17.23

Table 6.3 Confirmed Operation Environment (Rev.2.60)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-01
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.60
Board used Renesas Starter Kit for RX140 (product No.: RTK551406BCxxxxxxx)

Table 6.4 Confirmed Operation Environment (Rev.2.50)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202202
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.50
Board used Renesas Starter Kit+ for RX231 (product No.: R0K505231SxxxBE)

Renesas Starter Kit+ for RX24U (product No.: RTK500524UCxxxxxBR)

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 45 of 50
Nov.17.23

Table 6.5 Confirmed Operation Environment (Rev.2.40)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-01
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.40
Board used Renesas Starter Kit+ for RX140 (product No.: RTK55140xxxxxxxxxx)

Table 6.6 Confirmed Operation Environment (Rev.2.30)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

Endian Llittle endian
Revision of the module Rev.2.30
Board used Renesas Starter Kit+ for RX231 (product No.: RTK505231xxxxxxxx)

Renesas Starter Kit+ for RX24U (product No.: RTK50524Uxxxxxxxx)

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 46 of 50
Nov.17.23

Table 6.7 Confirmed Operation Environment (Rev.2.21)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.21
Board used Renesas Solution Starter Kit+ for RX23E-A

(product No.: RTK0ESXBxxxxxxxxxx)

Table 6.8 Confirmed Operation Environment (Rev.2.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module
IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.20
Board used Renesas Starter Kit+ for RX23E-A (product No.: RTK5523E-Axxxxxxxxx)

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 47 of 50
Nov.17.23

Table 6.9 Confirmed Operation Environment (Rev.2.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.10
Board used Renesas Starter Kit+ for RX23W (product No.: RTK5523Wxxxxxxxxx)

Table 6.10 Confirmed Operation Environment (Rev.2.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.4.0
IAR Embedded Workbench for Renesas RX 4.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.00
Board used Renesas Starter Kit for RX231 (product No.: R0K505231xxxxxx)

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 48 of 50
Nov.17.23

6.2 Troubleshooting
 (1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)”

 Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added to
the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_rscan_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then I got an error for when the configuration
setting is wrong.

A: The setting in the file “r_rscan_rx_config.h” may be wrong. Check the file “r_rscan_rx_config.h”. If
there is a wrong setting, set the correct value for that. Refer to 2.8 Configuration Overview for details.

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 49 of 50
Nov.17.23

Revision History

Rev.

Date

Description
Page Summary

1.00 May 20, 2015 — Initial release
1.10 Sep 12, 2016 1,4,5,17,

18
Added support for RX230, RX24U, and RX24T-512

1.20 Dec 06, 2018 —

Fixed big endian bug. Added __evenaccess to private structure
and union definitions.

1.21 Feb 01, 2019 —

Changes associated with functions:
Added support setting function of configuration option Using
GUI on Smart Configurator.
[Description]
Added a setting file to support configuration option setting
function by GUI.

2.00 May.20.19 —

1

5

7
37
38
40
40
40

Supported the following compilers:
- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX
Target Devices: Removed 512KB from RX24T group
Added the section of Target compilers.
Deleted related documents.
2.3 Software Requirements
Requires r_bsp v5.20 or higher
Updated the section of 2.9 Code Size.
Added 4. Pin Setting
Changed section “5. Demo Projects”
Deleted the section of Website and Support.
Added 6. Appendices
6.1 Confirmed Operation Environment:
Added table for Rev.2.00

 program Changed bellow for support GCC and IAR compiler:
1. Deleted the inline expansion of the R_CAN_GetVersion
function.
2. Replaced nop with the intrinsic functions of BSP.
3. Replaced the declaration of interrupt functions with the
macro definition of BSP.

2.10 Jun.28.19 1 Added support for RX23W
 8 Added code size corresponding to RX23W
 40

Program

6.1 Confirmed Operation Environment:
Added Table for Rev.2.10
Added support for RX23W.

2.20 Oct.15.19 1 Added support for RX23E-A
 8

10, 23, 24
Added code size corresponding to RX23E-A
Changed data type of check_ide and check_rtr

 40

Program

6.1 Confirmed Operation Environment:
Added Table for Rev.2.20
Added support for RX23E-A.
Added support for atomic control
Fixed IAR warnings in R_CAN_GetMsg()
Changed data type of check_ide and check_rtr

2.21 Mar.31.20 8
41

Updated the section of 2.9 Code Size
6.1 Confirmed Operation Environment:
Added Table for Rev.2.21

RX Family RSCAN Module Using Firmware Integration Technology

R01AN2805EU0280 Rev.2.80 Page 50 of 50
Nov.17.23

2.30 Jun.30.20 39,40
41

Program

Updated and added new demo project
6.1 Confirmed Operation Environment:
Added Table for Rev.2.30
Updated and added new demo project

2.31 Oct.30.20 Program Made correction to XML <zipsource>
2.32 Sep.13.21 19

Program
Removed reference to APN R01AN3455.
Added CS+ support for demo project.

2.40 Nov.11.21 1, 4

8
41

Program

Added support for RX140 (products with 128-Kbyte or larger
ROM)
Updated the section of 2.9 Code Size
6.1 Confirmed Operation Environment:
Added Table for Rev.2.40
Added support for RX140 (products with 128-Kbyte or larger
ROM)

2.41 Jun.30.22 21

Program

Remove CAN_ERR_MAX_ONE_GWFIFO macro from
application note
Changed the default value of CAN clock source to PCLK.

2.50 Jul.29.22 41

9

Program

Table 6.1: Confirm Operation Environment:
Added Table for Rev. 2.50.
Fixed RXMBX enum error: CAN_BOX_RXMBX_4 is removed
and replaced by CAN_BOX_RXMBX_3. Changed value of
CAN_BOX_RXMBX_2
Updated demo projects
Fixed RXMBX enum error: CAN_BOX_RXMBX_4 is removed
and replaced by CAN_BOX_RXMBX_3. Changed value of
CAN_BOX_RXMBX_2

2.60 Mar.21.2023 41 Updated and added new demo project
 42 6.1 Confirmed Operation Environment:

Added Table for Rev.2.60
 Program Added new demo project
2.70 May.29.2023 1

8
10
13

14

Added support for RX23E-B
Added code size corresponding to RX23E-B
Fixed fifo threshold enum error.
Deleted the description of FIT configurator and updated new
description in "2.12 Adding the FIT Module to Your Project"
Added section 2.13 “for”, “while”, and “do while” statements.

 42 6.1 Confirmed Operation Environment:
Added Table for Rev.2.70

 Program Added support for RX23E-B.
Fixed fifo threshold enum error.

2.80 Nov.17.2023 13 2.11 Return Values:
Added CAN_ERR_TIME_OUT return value.

 17, 27, 29 R_CAN_Open(), R_CAN_Control(), and R_CAN_SendMsg():
- Return Values: Added CAN_ERR_TIME_OUT.

 43 6.1 Confirmed Operation Environment:
Added Table for Rev.2.80

 Program Added CAN_ERR_TIME_OUT return to while loop in
R_CAN_Open, R_CAN_Control, and R_CAN_SendMsg
function.
Added WAIT_LOOP comments.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

 © 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	2. API Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.3 Software Requirements
	2.4 Limitations
	2.5 Supported Toolchains
	2.6 Header Files
	2.7 Integer Types
	2.8 Configuration Overview
	2.9 Code Size
	2.10 API Data Types
	2.10.1 Box IDs (mailboxes and FIFOs)
	2.10.2 R_CAN_Open() Data Types
	2.10.3 Callback function events
	2.10.4 R_CAN_InitChan() Data Types
	2.10.5 R_CAN_ConfigFIFO() Data Types
	2.10.6 R_CAN_AddRxRule() Data Types
	2.10.7 R_CAN_SendMsg() Data Types
	2.10.8 R_CAN_GetMsg() Data Types
	2.10.9 R_CAN_GetHistoryEntry() Data Types
	2.10.10 R_CAN_GetStatusMask() Data Types
	2.10.11 R_CAN_GetCountErr() Data Types
	2.10.12 R_CAN_Control() Data Types

	2.11 Return Values
	2.12 Adding the Module to Your Project
	2.13 “for”, “while” and “do while” statements

	3. API Functions
	Summary
	R_CAN_Open()
	R_CAN_InitChan()
	R_CAN_ConfigFIFO()
	R_CAN_AddRxRule()
	R_CAN_Control()
	R_CAN_SendMsg()
	R_CAN_GetMsg()
	R_CAN_GetHistoryEntry()
	R_CAN_GetStatusMask()
	R_CAN_GetCountFIFO()
	R_CAN_GetCountErr()
	R_CAN_Close()
	R_CAN_GetVersion()

	4. Pin Setting
	5. Demo Project
	5.1 rscan_demo_rskrx231, rscan_demo_rskrx231_gcc
	5.2 rscan_demo_rskrx24t, rscan_demo_rskrx24t_gcc
	5.3 rscan_demo_rskrx24u, rscan_demo_rskrx24u_gcc
	5.4 rscan_demo_rskrx140, rscan_demo_rskrx140_gcc

	6. Appendices
	6.1 Confirmed Operation Environment
	6.2 Troubleshooting

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

