
 APPLICATION NOTE

R01AN1818EJ0510 Rev.5.10 Page 1 of 42
May.29.23

RX Family
DAC Module Using Firmware Integration Technology
Introduction
This application note describes the 12 bit Digital Analog Converter (DAC) module which uses Firmware
Integration Technology (FIT). This module uses DAC to control the operation of the DAC peripheral driver. In
this document, this module is referred to as the DAC FIT module.

Target Devices
• RX111, RX113 Groups
• RX130 Group
• RX13T Group
• RX140 Group
• RX230, RX231 Groups
• RX23E-B Group
• RX23T Group
• RX23W Group
• RX24T Group
• RX24U Group
• RX26T Group
• RX64M Group
• RX651, RX65N Groups
• RX66T Group
• RX66N Group
• RX660 Group
• RX71M Group
• RX72T Group
• RX72M Group
• RX72N Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after
making modifications to comply with the alternate MCU.

Target Compilers
• Renesas Electronics C/C++ Compiler Package for RX Family
• GCC for Renesas RX
• IAR C/C++ Compiler for Renesas RX
For details of the confirmed operation contents of each compiler, refer to “6.1 Confirmed Operation
Environment".

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 2 of 42
May.29.23

Contents

1. Overview ... 4
1.1 DAC FIT Module .. 4
1.2 Overview of the DAC FIT Module ... 4
1.3 Using the FIT DAC module ... 4
1.3.1 Using FIT DAC module in C++ project .. 4
1.4 API Overview ... 4

2. API Information .. 5
2.1 Hardware Requirements ... 5
2.2 Software Requirements ... 5
2.3 Limitations ... 5
2.3.1 RAM Location Limitations ... 5
2.4 Supported Toolchain ... 5
2.5 Interrupt Vector .. 5
2.6 Header Files .. 5
2.7 Integer Types .. 6
2.8 Configuration Overview ... 6
2.9 Code Size .. 6
2.10 Parameters .. 13
2.11 Return Values .. 13
2.12 Callback Function .. 13
2.13 Adding the FIT Module to Your Project ... 13
2.14 “for”, “while” and “do while” statements ... 14

3. API Functions .. 15
R_DAC_Open() ... 15
R_DAC_Close() ... 18
R_DAC_Write() .. 19
R_DAC_Control() .. 20
R_DAC_GetVersion() .. 22

4. Pin Setting ... 23

5. Demo Projects ... 24
5.1 dac_demo_rskrx113, dac_demo_rskrx113_gcc ... 24
5.2 dac_demo_rskrx231, dac_demo_rskrx231_gcc ... 25
5.3 dac_demo_rskrx64m, dac_demo_rskrx64m_gcc ... 25
5.4 dac_demo_rskrx71m, dac_demo_rskrx71m_gcc ... 26
5.5 dac_demo_rskrx65n, dac_demo_rskrx65n_gcc ... 27
5.6 dac_demo_rskrx65n_2m, dac_demo_rskrx65n_2m_gcc ... 27
5.7 dac_demo_rskrx72m, dac_demo_rskrx72m_gcc ... 28

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 3 of 42
May.29.23

5.8 Adding a Demo to a Workspace ... 29
5.9 Downloading Demo Projects ... 29

6. Appendices .. 30
6.1 Confirmed Operation Environment .. 30
6.2 Troubleshooting ... 38

7. Reference Documents ... 39

Related Technical Updates ... 39

Revision History .. 40

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 4 of 42
May.29.23

1. Overview
1.1 DAC FIT Module
The DAC FIT module can be used by being implemented in a project as an API. See section 2.13, Adding
the FIT Module to Your Project for details on methods to implement this FIT module into a project.

1.2 Overview of the DAC FIT Module
This DAC driver supports the DAC peripheral on the RX111, RX113, RX130, RX13T, RX140, RX230, RX231,
RX23E-B, RX23T, RX24T, RX24U, RX26T, RX64M, RX65N, RX651, RX66T, RX66N, RX660, RX71M,
RX72T, RX72M and RX72N. The hardware functionality is detailed in the D/A Converter chapter in the
User’s Manual: Hardware for each MCU.

Data to convert to analog may be either left or right justified, and channels can be output independently.
MCU-specific hardware features are also supported. This includes selecting the reference voltage,
synchronizing conversions with the ADC peripheral, disabling conversions when the output is disabled, and
enabling an internal amplifier for larger loads.

1.3 Using the FIT DAC module
1.3.1 Using FIT DAC module in C++ project
For C++ project, add FIT DAC module interface header file within extern “C”{}:
Extern “C”
{

#include “r_smc_entry.h”
#include “r_dac_rx_if.h”

}

1.4 API Overview
Table 1.1 lists the API functions included in this module.

Table 1.1 API Functions

Function Description
R_DAC_Open() Applies power to the DAC peripheral, initializes the associated

registers, and configures MCU-specific options.
R_DAC_Close() Removes power to the DAC peripheral.
R_DAC_Write() Writes data to channel register for conversion.
R_DAC_Control() Enables or disables channel output. Enables or disabled internal

amplifier (RX64M and RX71M).
R_DAC_GetVersion() Returns at runtime the driver version number.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 5 of 42
May.29.23

2. API Information
This FIT module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements
The MCU used must support the following functions:

 DAC

 GPIO

2.2 Software Requirements
This driver is dependent upon the following FIT module:

 Renesas Board Support Package (r_bsp) v5.20 or higher

2.3 Limitations
2.3.1 RAM Location Limitations
In FIT, if a value equivalent to NULL is set as the pointer argument of an API function, error might be
returned due to parameter check. Therefore, do not pass a NULL equivalent value as pointer argument to an
API function.

The NULL value is defined as 0 because of the library function specifications. Therefore, the above
phenomenon would occur when the variable or function passed to the API function pointer argument is
located at the start address of RAM (address 0x0). In this case, change the section settings or prepare a
dummy variable at the top of the RAM so that the variable or function passed to the API function pointer
argument is not located at address 0x0.

In the case of the CCRX project (e2 studio V7.5.0), the RAM start address is set as 0x4 to prevent the
variable from being located at address 0x0. In the case of the GCC project (e2 studio V7.5.0) and IAR
project (EWRX V4.12.1), the start address of RAM is 0x0, so the above measures are necessary.

The default settings of the section may be changed due to the IDE version upgrade. Please check the
section settings when using the latest IDE.

2.4 Supported Toolchain
This driver has been confirmed to work with the toolchain listed in 6.1, Confirmed Operation Environment

2.5 Interrupt Vector
None.

2.6 Header Files
All API calls and their supporting interface definitions are located in “r_dac_rx_if.h”.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 6 of 42
May.29.23

2.7 Integer Types
This project uses ANSI C99. These types are defined in stdint.h.

2.8 Configuration Overview
The configuration option settings of this module are located in r_dac_rx_config.h. The option names and
setting values are listed in the table below:

Configuration options in r_dac_rx_config.h

DAC_CFG_PARAM_CHECKING_ENABLE 1

If this equate is set to 1, parameter checking is included
in the build. If the equate is set to 0, the parameter
checking is omitted from the build and code size is
reduced. Setting this equate to
BSP_CFG_PARAM_CHECKING_ENABLE utilizes the
system default setting.

2.9 Code Size
Typical code sizes associated with this module are listed below.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.8, Configuration Overview. The table lists reference values when the C compiler’s
compile options are set to their default values, as described in 2.4,Supported Toolchain. The compile option
default values are optimization level: 2, optimization type: for size, and data endianness: little-endian. The
code size varies depending on the C compiler version and compile options.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 7 of 42
May.29.23

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks Renesas Compiler
With Parameter
Checking

Without Parameter
Checking

RX130 ROM 314 bytes 282 bytes

RAM 0 byte 0 byte
Maximum stack
usage 32 bytes R_DAC_Open function

used
RX13T ROM 284 bytes 257 bytes

RAM 0 byte 0 byte
Maximum stack
usage 60 bytes R_DAC_Open function

used
RX231 ROM 333 bytes 286 bytes

RAM 0 byte 0 byte
Maximum stack
usage 32 bytes R_DAC_Open function

used
RX23W ROM 329 bytes 286 bytes

RAM 0 0
Maximum stack
usage 32 bytes R_DAC_Open function

used
RX65N ROM 409 bytes 367 bytes

RAM 0 byte 0 byte
Maximum stack
usage 32 bytes R_DAC_Open function

used
RX66T ROM 405 bytes 373 bytes

RAM 0 byte 0 byte
Maximum stack
usage 32 bytes R_DAC_Open function

used
RX66N ROM 551 bytes 497 bytes

RAM 0 byte 0 byte
Maximum stack
usage 8 bytes R_DAC_Open function

used
RX72T ROM 405 bytes 373 bytes

RAM 0 byte 0 byte
Maximum stack
usage 32 bytes R_DAC_Open function

used
RX72M ROM 407 bytes 365 bytes

RAM 0 byte 0 byte
Maximum stack
usage 32 bytes R_DAC_Open function

used
RX72N

ROM 551 bytes 510 bytes
RAM 0 byte 0 byte
Maximum stack
usage 8 bytes R_DAC_Open function

used

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 8 of 42
May.29.23

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks Renesas Compiler
With Parameter
Checking

Without Parameter
Checking

RX140 ROM 360 bytes 329 bytes
RAM 0 byte 0 byte
Maximum stack
usage 8 bytes R_DAC_Open function

used
RX660 ROM 449 bytes 418 bytes

RAM 0 byte 0 byte
Maximum stack
usage 8 bytes R_DAC_Open function

used
RX26T ROM 456 bytes 425 bytes

RAM 0 byte 0 byte
Maximum stack
usage 12 bytes R_DAC_Open function

used
RX23E-B ROM 451 bytes 427 bytes

RAM 0 byte 0 byte
Maximum stack
usage 8 bytes R_DAC_Open function

used

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 9 of 42
May.29.23

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks GCC
With Parameter
Checking

Without Parameter
Checking

RX130 ROM 576 bytes 536 bytes

RAM 0 byte 0 byte
Maximum stack
usage -

RX13T ROM 440 bytes 400 bytes

RAM 0 byte 0 byte
Maximum stack
usage -

RX231 ROM 616 bytes 552 bytes

RAM 0 byte 0 byte
Maximum stack
usage -

RX65N ROM 752 bytes 688 bytes

RAM 0 byte 0 byte
Maximum stack
usage -

RX66T ROM 776 bytes 728 bytes

RAM 0 byte 0 byte
Maximum stack
usage -

RX66N ROM 1048 bytes 975 bytes
RAM 0 byte 0 byte
Maximum stack
usage -

RX72T ROM 776 bytes 728 bytes

RAM 0 byte 0 byte
Maximum stack
usage -

RX72M ROM 746 bytes 704 bytes
RAM 0 byte 0 byte
Maximum stack
usage -

RX72N ROM 1048 bytes 975 bytes
RAM 0 byte 0 byte
Maximum stack
usage -

RX140 ROM 640 bytes 600 bytes
RAM 0 byte 0 byte
Maximum stack
usage -

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 10 of 42
May.29.23

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks Renesas Compiler
With Parameter
Checking

Without Parameter
Checking

RX660 ROM 824 bytes 784 bytes
RAM 0 byte 0 byte
Maximum stack
usage -

RX26T ROM 624 bytes 584 bytes
RAM 0 byte 0 byte
Maximum stack
usage -

RX23E-B ROM 600 bytes 552 bytes
RAM 0 byte 0 byte
Maximum stack
usage -

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 11 of 42
May.29.23

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks IAR Compiler
With Parameter
Checking

Without Parameter
Checking

RX130 ROM 900 bytes 868 bytes

RAM 0 byte 0 byte
Maximum stack
usage 136 bytes

RX13T ROM 640 bytes 600 bytes

RAM 0 byte 0 byte
Maximum stack
usage 56 bytes

RX231 ROM 932 bytes 876 bytes

RAM 0 byte 0 byte
Maximum stack
usage 136 bytes

RX65N ROM 1014 bytes 970 bytes

RAM 0 byte 0 byte
Maximum stack
usage 152 bytes

RX66T ROM 1034 bytes 1002 bytes

RAM 0 byte 0 byte
Maximum stack
usage 148 bytes

RX66N ROM 977 bytes 941 bytes
RAM 0 byte 0 byte
Maximum stack
usage 60 bytes

RX72T ROM 1038 bytes 1002 bytes

RAM 0 byte 0 byte
Maximum stack
usage 148 bytes

RX72M ROM 998 bytes 958 bytes
RAM 0 byte 0 byte
Maximum stack
usage 156 bytes

RX72N ROM 982 bytes 930 bytes
RAM 0 byte 0 byte
Maximum stack
usage 60 bytes

RX140 ROM 728 bytes 696 bytes
RAM 0 byte 0 byte
Maximum stack
usage 56 bytes

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 12 of 42
May.29.23

ROM, RAM and Stack Code Sizes

Device Category

Memory Used

Remarks Renesas Compiler
With Parameter
Checking

Without Parameter
Checking

RX660 ROM 933 bytes 881 bytes
RAM 0 byte 0 byte
Maximum stack
usage 188 bytes

RX26T ROM 921 bytes 889 bytes
RAM 0 byte 0 byte
Maximum stack
usage 60 bytes

RX23E-B ROM 952 bytes 920 bytes
RAM 0 byte 0 byte
Maximum stack
usage 56 bytes

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 13 of 42
May.29.23

2.10 Parameters
This section describes the parameter structure used by the API functions in this module. The structure is
located in r_dac_rx_if.h as are the prototype declarations of API functions.

2.11 Return Values
This section describes return values of API functions. This enumeration is located in r_dac_rx_if.h as are the
prototype declarations of API functions.

Below are the different error codes API functions can return. This enum is found in r_dac_rx_if.h along with
the API function declarations.
/* DAC API ERROR CODE DEFINITIONS */
typedef enum e_dac_err
{
 DAC_SUCCESS=0,
 DAC_ERR_BAD_CHAN, // non-existent channel number
 DAC_ERR_INVALID_CMD, // non-existent operation command
 DAC_ERR_INVALID_ARG, // argument is not valid for parameter
 DAC_ERR_NULL_PTR, // received null ptr; missing required argument
 DAC_ERR_LOCK_FAILED, // failed to lock DAC module (module already open)
 DAC_ERR_UNLOCK_FAILED // failed to unlock DAC module
 DAC_ERR_ADC_NOT_POWERED, // cannot sync because ADC is not powered
 DAC_ERR_ADC_CONVERTING, // cannot sync because ADC is converting
 DAC_ERR_BIAS_CURRENT_SOURCE // bias current source (IREF) is not enabled
} dac_err_t;

2.12 Callback Function
None.

2.13 Adding the FIT Module to Your Project
This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (2) below. However, the Smart Configurator only supports some RX
devices. Please use the methods of (3) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for
details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 14 of 42
May.29.23

2.14 “for”, “while” and “do while” statements
In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :
/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example :
/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 15 of 42
May.29.23

3. API Functions

R_DAC_Open()
This function applies power to the DAC module, initializes the associated registers, and configures MCU-
specific options.

Format
dac_err_t R_DAC_Open (

dac_cfg_t * p_cfg

)

Parameters
dac_cfg_t *p_cfg
 Pointer to the configuration structure.

Sample structure used for p_cfg:
typedef struct st_dac_cfg
{
 bool fmt_flush_right; // all MCUs
 bool sync_with_adc; // RX113/RX130/RX230/RX231/
// RX24U/RX63N/RX631/RX64M/
// RX65N/RX651/RX71M
 uint8_t sync_unit; // 0 or 1; RX64M/RX71M
 // RX65N/RX651
 bool ch_conv_off_when_output_off; // RX210/RX63N/RX631/RX64M/
 // RX65N/RX651/RX71M
 dac_refv_t ref_voltage; // RX113/RX230/RX231
} dac_cfg_t;

typedef enum e_dac_refv // DAC reference voltage
{
 DAC_REFV_AVVC0_AVSS0 = 1,
 DAC_REFV_INTERNAL_AVSS0 = 3,
 DAC_REFV_VREFH_VREFL = 6
} dac_refv_t;

Return Values
[DAC_SUCCESS] /* Successful; DAC initialized */
[DAC_ERR_NULL_PTR] /* p_cfg pointer is NULL */
[DAC_ERR_LOCK_FAILED] /* Failed to lock DAC module; already opened */
[DAC_ERR_INVALID_ARG] /* Invalid unit number for sync_unit */
[DAC_ERR_ADC_NOT_POWERED] /* Cannot sync because ADC is not powered */
[DAC_ERR_ADC_CONVERTING] /* Cannot sync because ADC is converting */

Properties
Prototyped in file “r_dac_rx_if.h”

Description
This function applies power to the DAC module, initializes the associated registers, and configures MCU-
specific options.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 16 of 42
May.29.23

Example
 dac_err_t err;
 dac_cfg_t config;

 /* Initialize RX63N DAC */
 config.fmt_flush_right = true;
 config.sync_with_adc = false;
 config.ch_conv_off_when_output_off = true;
 err = R_DAC_Open(&config);

Special Notes:
Data must be left or right justified by the application. The “fmt_flush_right” parameter just tells the DAC how
to interpret the data.

To avoid a “DAC_ERR_ADC_CONVERTING”, open the DAC module after the ADC is opened but before
scanning has begun on the ADC.

The DAC I/O pins must be configured prior to calling this function. An example initialization follows:

 R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_MPC); // unlock
#ifdef BSP_MCU_RX113
 /*
 * Per Note 1 below Table 19.1 Allocation of Pin Functions to Multiple
* Pins (10/10) in the RX113 Group User's Manual: Hardware:
 * Select general input (by setting the Bm bits for the given pin in the
 * PDR and PMR for the given port to 0) for the pin if this pin function
 * is to be used.
 */
 PORTJ.PDR.BIT.B0 = 0;
 PORTJ.PMR.BIT.B0 = 0;
 PORTJ.PDR.BIT.B2 = 0;
 PORTJ.PMR.BIT.B2 = 0;

 /* Set the pin function for PJ0 & PJ2 to be used as DAC analog output pins. */
 MPC.PJ0PFS.BIT.ASEL = 1;
 MPC.PJ2PFS.BIT.ASEL = 1;

 /*
 * Uncomment the two lines below if you want to use VREFH/VREFL for the DAC
 * reference voltage.
 */
 //MPC.P41PFS.BIT.ASEL = 1; // Configure P41 as a VREFH analog pin
 //MPC.P42PFS.BIT.ASEL = 1; // Configure P42 as a VREFL analog pin

#else /* RX111, RX210, RX63N */

 /* Configure I/O port pins for analog outputs as general input pins.
 PORT0.PDR.BIT.B3 = 0;
 PORT0.PMR.BIT.B3 = 0;
 PORT0.PDR.BIT.B5 = 0;
 PORT0.PMR.BIT.B5 = 0;

 /* Set the pin function for P03 & P05 to be used as DAC analog output pins. */
 MPC.P03PFS.BIT.ASEL = 1;
 MPC.P05PFS.BIT.ASEL = 1;

#endif

 R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_MPC); // lock

Note when using an amplifier

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 17 of 42
May.29.23

When using an amp, set true in ch_conv_off_when_output_off.

Note when using the A/D converter
When the D/A A/D synchronous conversion (sync_with_adc = true) is enabled, if the A/D converter (1) is to be
placed in the module stop state, first, execute the R_DAC_Close function.

Note 1. The intended A/D converter is unit 1 for RX64M/RX651/RX65N/RX66N/RX71M/RX72M/RX72N and

unit 2 for RX24U/RX26T/RX66T/RX72T.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 18 of 42
May.29.23

R_DAC_Close()
This function removes power from the DAC peripheral.

Format
dac_err_t R_DAC_Close (void)

Parameters
None.

Return Values
[DAC_SUCCESS] /* Successful; channels closed */
[DAC_ERR_UNLOCK_FAILED] /* Failed to unlock DAC module */

Properties
Prototyped in file “r_dac_rx_if.h”.

Description
Disables DAC channel output and powers down the peripheral.

Example
 :
 /* Initialize DAC Peripheral */
 err = R_DAC_Open(&config);
 :
 :
 /* Shut down DAC Peripheral */
 err = R_DAC_Close();

Special Notes:
When the D/A A/D synchronous conversion (sync_with_adc = true) is enabled, if the A/D converter (1) is to be
placed in the module stop state, first, execute the R_DAC_Close function.

Note 1. The intended A/D converter is unit 1 for RX64M/RX651/RX65N/RX66N/RX71M/RX72M/RX72N and

unit 2 for RX24U/RX26T/RX66T/RX72T.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 19 of 42
May.29.23

R_DAC_Write()
This function writes data to channel data register.

Format
dac_err_t R_DAC_Write (

uint8_t const chan,

uint16_t data

)

 Parameters
uint8_t const chan
 Channel to write to.

uint16_t data
 Data to write.

Return Values
[DAC_SUCCESS] /* Data written to channel register successfully */
[DAC_ERR_BAD_CHAN] /* Non-existent channel number */

Properties
Prototyped in file “r_dac_rx_if.h”

Description
Writes data to the channel register for conversion. Depending upon the MCU, this data may be 8-, 10-, 12-,
or 16-bits in length. The data must be aligned properly for the selected format before issuing a Write().

Example
 dac_err_t err;
 uint16_t g_short;
 :
 :
 /* Write data for conversion to 0V on channel 1 */
 g_short = 0x0000;
 err = R_DAC_Write(DAC_CH1, g_short);

Special Notes:
None.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 20 of 42
May.29.23

R_DAC_Control()
This function is used to enable/disable channel features.

Format
dac_err_t R_DAC_Control (

uint8_t const chan,

dac_cmd_t const cmd

)

 Parameters
uint8_t const chan
 Channel to operate on.

dac_cmd_t const cmd
 Command to run (see enumeration below).

The cmd values are as follows:
typedef enum e_dac_cmd
{
 DAC_CMD_OUTPUT_ON, // Analog output of channel is enabled
 DAC_CMD_OUTPUT_OFF, // Analog output of channel is disabled
 DAC_CMD_AMP_ON, // RX64M/RX71M: Gain of 1 amplifier. See Electrical
 DAC_CMD_AMP_OFF, // Characteristics in User's Manual: Hardware.
 DAC_CMD_ASW_ON, // RX65N/RX66N,RX72M,RX72N: Wait for the channel 0
 output buffer amplifier to become stable (the pin
 is Hi-Z).
 DAC_CMD_ASW_OFF, // A wait for stabilization of the channel 0
 output buffer amplifier is released (output is
 enabled).
 DAC_CMD_BUF_ON, // The output of the buffer amplifier is pulled down.
 DAC_CMD_BUF_OFF, // The output of the buffer amplifier is not pulled
 down.
 DAC_CMD_STB_ON, // The analog output pin is pulled down by a 1-kΩ
 resistor while D/A conversion is disabled.
 DAC_CMD_STB_OFF, // The analog output pin is placed in the Hi-Z state
 while D/A conversion is disabled.
 DAC_CMD_END_ENUM
} dac_cmd_t;

Return Values
[DAC_SUCCESS] /* Successful; channel initialized */
[DAC_ERR_BAD_CHAN] /* Non-existent channel number */
[DAC_ERR_BIAS_CURRENT_SOURCE] /* Bias current source (IREF) is not enabled */
[DAC_ERR_INVALID_CMD] /* Invalid command */

Properties
Prototyped in file “r_dac_rx_if.h”.

Description
The output of conversion data written in data register by Write() function is enable by OUTPUT command
while Amp is enable by AMP command, The output permission must be set after enabling amp.

Example
 dac_cfg_t config;
 dac_err_t err;

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 21 of 42
May.29.23

 /* Initialize RX64M,RX71M DAC */
 config.fmt_flush_right = true;
 config.sync_with_adc = true;
 config.sync_unit = 1;
 config.ch_conv_off_when_output_off = true;

 err = R_DAC_Open(&config);

 /* Write data for 0V on channel 0 */
 err = R_DAC_Write(DAC_CH0, 0x0);

 /* Drive a larger load */
 err = R_DAC_Control(DAC_CH0, DAC_CMD_AMP_ON);
 /* It is necessary to wait more than 3us. */

 /* Output converted data */
 err = R_DAC_Control(DAC_CH0, DAC_CMD_OUTPUT_ON);

 /* Write data for 3.3V on channel 0 */
 err = R_DAC_Write(DAC_CH0, 0x0FFF);

Special Notes:
Amp output is generated after R_DAC_Write(DAC_CHx, 0x0) is executed.
When amp out is in use (DAC_CMD_AMP_ON command running), set true in
ch_conv_off_when_output_off.
When using an amp, follow the process below.

1. Execute DAC_CMD_ASW_ON command in R_DAC_Control function.*
2. Execute DAC_CMD_AMP_ON command in R_DAC_Control function.
3. Execute DAC_CMD_OUTPUT_ON command in R_DAC_Control function
4. Wait more than 3us
5. Execute DAC_CMD_ASW_OFF command in R_DAC_Control function.*
6. Write D/A output value in R_DAC_Write function.

Note *. (Only RX65N, RX66N, RX72M, RX72N)

The DAC_CMD_OUTPUT_ON and DAC_CMD_OUTPUT_OFF commands must be executed while the A/D
converter (1) to be synchronized with is stopped when the D/A A/D synchronous conversion is enabled.

Note 1. For RX64M/RX651/RX65N/RX66N/RX71M/RX72M/RX72N, unit 1 of the A/D converter is to be

stopped, and for RX24U/RX26T/RX66T/RX72T, unit 2 is to be stopped. The other MCUs do not
need to specify the unit to be stopped since they only have one unit.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 22 of 42
May.29.23

R_DAC_GetVersion()
This function returns the driver version number at runtime.

Format
uint32_t R_DAC_GetVersion (void)

Parameters
None.

Return Values
Version number.

Properties
Prototyped in file “r_dac_rx.h”

Description
Returns the version of this module. The version number is encoded such that the top 2 bytes are the major
version number and the bottom 2 bytes are the minor version number.

Example
 uint32_t version;
 :
 version = R_DAC_GetVersion();

Special Notes:
None.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 23 of 42
May.29.23

4. Pin Setting
To use the DAC FIT module, assign output signals of the peripheral function to pins with the multi-function
pin controller (MPC). The pin assignment is referred to as the “Pin Setting” in this document. Please perform
the pin setting before calling the R_DAC_Open() function.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 24 of 42
May.29.23

5. Demo Projects
Demo projects include function main() that utilizes the FIT module and its dependent modules (e.g. r_bsp).
This FIT module includes the following demo projects.

5.1 dac_demo_rskrx113, dac_demo_rskrx113_gcc
This is a simple demo of the RX113 D/A Converter (R12DAA) for the RSKRX113 starter kit (FIT module
“r_dac_rx”). The demo uses the r_dac_rx API to enable, configure, and write to the DAC. A continuous loop
is entered in which low, medium, and high data values are written to DAC channel 1 for 1 second each. LED
0 (green) is lit when a low value is written, LED 1 (orange) is lit when a medium value is written, and LED 2
(red) is lit when a high value is written. See the “Notes for Measuring the DAC Channel 0/1 Output Signals”
section below for details on accessing and configuring the DAC output channel signals and reference
voltages on the RSKRX113 board.

Setup and Execution
1. Compile and download the sample code.

2. Attach multimeter leads or oscilloscope probes to the DAC channel output pin(s) if desired.

3. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.

4. Set breakpoints and watch global variables

Boards Supported
RSKRX113

Notes For Measuring the DAC Channel 0/1 Output Signals
• DAC channel 0 (DA0) output uses I/O Port PJ0 which maps to pin 2 of the MCU.

Per the RSKRX113 schematic, DA0 shares pin 2 with switch 1 (SW1). To use pin 2 for the DA0 analog
output signal a 0 ohm resistor needs to be moved from R241 to R239. Once this has been done DA0
can be accessed via header JA1_13 or J1_2. Note that once this link configuration change is made SW1
will not be usable.

• DAC channel 1 (DA1) output uses I/O Port PJ2 which maps to physical pin 100.

Per the RSKRX113 schematic, DA1 can be accessed via header JA1_14.

DA1 can also be accessed via J4_25.

• GROUND can be accessed via JA1_2 (pin 4 next to it is also a ground pin)

• The RX113 supports three possible DAC reference voltages via the DAVREFCR register:

1. AVCC0/AVSS0

On the RSKRX113 board, AVCC0/AVSS0 are connected to UC_VCC (typ. 3.3V) and GROUND,
respectively.

2. Internal reference voltage/AVSS0

Typically 1.4V and GROUND, respectively.

3. VREFH/VREFL

On the RSKRX113 board, VREFH/VREFL are not connected. They go to J4_18 (CON_VREFH) and
J4_17 (CON_VREFL), respectively. In order to use VREFH/VREFL as the DAC reference voltage:

• I/O pins P41 & P42 must be configured via the MPC as analog pins.

• VREFH/VREEFL must be connected to high/low supply voltages:

Refer to the “DAC Configuration” section of the RSKRX113 User’s Manual (R20UT2762EJ0100)
for details on the option links for configuring these signals.

• An alternative option is:

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 25 of 42
May.29.23

Connect J3_12 (GROUND) to J4_17 (CON_VREFL)

Connect J3_10 (UC_VCC, 3.3V) to J4_18 (CON_VREFH)

5.2 dac_demo_rskrx231, dac_demo_rskrx231_gcc
This is a simple demo of the RX231 D/A Converter (R12DAA) for the RSKRX231 starter kit (FIT module
“r_dac_rx”). The demo uses the r_dac_rx API to enable, configure, and write to the DAC. A continuous loop
is entered in which low, medium, and high data values are written to DAC channel 1 for 1 second each. LED
0 (green) is lit when a low value is written, LED 1 (orange) is lit when a medium value is written, and LED 2
(red) is lit when a high value is written. See the “Operation” notes below for details on accessing and
configuring the DAC output channel signals and reference voltages on the RSKRX231 board.

Setup and Execution
1. Compile and download the sample code.

2. Attach multimeter leads or oscilloscope probes to the DAC channel output pin(s) if desired.

3. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.

4. Set breakpoints and watch global variables

Boards Supported
RSKRX231

Notes For Measuring the DAC Channel 0/1 Output Signals
• DAC channel 0 (DA0) output uses I/O Port P03 which maps to pin 2 of the MCU. It can be accessed via

J1_2.

• DAC channel 1 (DA1) output uses I/O Port P05 which maps to pin 100 of the MCU. It can be accessed
via JA1_14 (or J4_25).

• GROUND can be accessed via JA1_2 (pin 4 next to it is also a ground pin)

• The RX231 supports three possible DAC reference voltages via the DAVREFCR register:

1. AVCC0/AVSS0

On the RSKRX231 board, AVCC0/AVSS0 are connected to UC_VCC (typ. 3.3V) and GROUND,
respectively.

2. Internal reference voltage/AVSS0

Typically 1.4V and GROUND, respectively.

3. VREFH/VREFL

On the RSKRX231 board, VREFH/VREFL are connected to UC_VCC (typ. 3.3V) and GND,
respectively. To connect an external reference voltage, CON_VREFH (J1_1) and CON_VREFL
(J1_3) can be used after moving the following 0 ohm resistors:

• For CON_VREFH move R68 to R67

• For CON_VREFL move R65 to R66

5.3 dac_demo_rskrx64m, dac_demo_rskrx64m_gcc
This is a simple demo of the RX64M D/A Converter (R12DA) for the RSKRX64M starter kit (FIT module
“r_dac_rx”). The demo uses the r_dac_rx API to enable, configure, and write to the DAC. A continuous loop
is entered in which low, medium, and high data values are written to DAC channel 0 for 1 second each. LED
1 is lit when a low value is written, LED 2 is lit when a medium value is written, and LED 3 is lit when a high
value is written. See the “Operation” notes below for details on accessing and configuring the DAC output
channel signals on the RSKRX64M board.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 26 of 42
May.29.23

Setup and Execution
1. Compile and download the sample code.

2. Attach multimeter leads or oscilloscope probes to the DAC channel output pin(s) if desired.

3. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.

4. Set breakpoints and watch global variables

Boards Supported
RSKRX64M

Notes For Measuring the DAC Channel 0/1 Output Signals
• DAC channel 0 (DA0) output uses I/O Port P03 which maps to pin 4 of the MCU.

Per the RSKRX64M schematic, DA0 shares pin 4 with LED 0. To use pin 4 for the DA0 analog output
signal a 0 ohm resistor needs to be moved from R277 to R189. Once this has been done DA0 can be
accessed via header JA1_13. Note that once this link configuration change is made LED 0 will not be
usable.

• DAC channel 1 (DA1) output uses I/O Port P05 which maps to pin 2 of the MCU.

Per the RSKRX64M schematic, DA1 shares pin 2 with LED 1. To use pin 2 for the DA1 analog output
signal a 0 ohm resistor needs to be moved from R280 to R188. Once this has been done DA1 can be
accessed via header JA1_14. Note that once this link configuration change is made LED 1 will not be
usable.

• On the RSKRX64M board the DA reference voltage AVCC1 (VREFH) and AVSS1 (VREFL) are
connected to UC_VCC (typ. 3.3V) and GROUND, respectively.

5.4 dac_demo_rskrx71m, dac_demo_rskrx71m_gcc
This is a simple demo of the RX71M D/A Converter (R12DA) for the RSKRX71M starter kit (FIT module
“r_dac_rx”). The demo uses the r_dac_rx API to enable, configure, and write to the DAC. A continuous loop
is entered in which low, medium, and high data values are written to DAC channel 0 for 1 second each. LED
1 is lit when a low value is written, LED 2 is lit when a medium value is written, and LED 3 is lit when a high
value is written. See the “Operation” notes below for details on accessing and configuring the DAC output
channel signals on the RSKRX71M board.

Setup and Execution
1. Compile and download the sample code.

2. Attach multimeter leads or oscilloscope probes to the DAC channel output pin(s) if desired.

3. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.

4. Set breakpoints and watch global variables

Boards Supported
RSKRX71M

Notes For Measuring the DAC Channel 0/1 Output Signals
• DAC channel 0 (DA0) output uses I/O Port P03 which maps to pin 4 of the MCU.

Per the RSKRX71M schematic, DA0 shares pin 4 with LED 0. To use pin 4 for the DA0 analog output
signal a 0 ohm resistor needs to be moved from R281 to R195. Once this has been done DA0 can be
accessed via header JA1_13. Note that once this link configuration change is made LED 0 will not be
usable.

• DAC channel 1 (DA1) output uses I/O Port P05 which maps to pin 2 of the MCU.

Per the RSKRX71M schematic, DA1 shares pin 2 with LED 1. To use pin 2 for the DA1 analog output
signal a 0 ohm resistor needs to be moved from R284 to R194. Once this has been done DA1 can be

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 27 of 42
May.29.23

accessed via header JA1_14. Note that once this link configuration change is made LED 1 will not be
usable.

• On the RSKRX71M board the DA reference voltage AVCC1 (VREFH) and AVSS1 (VREFL) are
connected to UC_VCC (typ. 3.3V) and GROUND, respectively.

5.5 dac_demo_rskrx65n, dac_demo_rskrx65n_gcc
This is a simple demo of the RX65N D/A Converter (R12DA) for the RSKRX65N starter kit (FIT module
“r_dac_rx”). The demo uses the r_dac_rx API to enable, configure, and write to the DAC. A continuous loop
is entered in which low, medium, and high data values are written to DAC channel 0 for 1 second each. LED
1 is lit when a low value is written, LED 2 is lit when a medium value is written, and LED 3 is lit when a high
value is written. See the “Operation” notes below for details on accessing and configuring the DAC output
channel signals on the RSKRX65N board.

Setup and Execution
1. Compile and download the sample code.

2. Attach multimeter leads or oscilloscope probes to the DAC channel output pin(s) if desired.

3. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.

4. Set breakpoints and watch global variables

Boards Supported
RSKRX65N

Notes For Measuring the DAC Channel 0/1 Output Signals
• DAC channel 0 (DA0) output uses I/O Port P03 which maps to pin 4 of the MCU.

Per the RSKRX65N schematic, DA0 shares pin 4 with LED 0. To use pin 4 for the DA0 analog output
signal a 0 ohm resistor needs to be moved from R306 to R192. Once this has been done DA0 can be
accessed via header JA1_13. Note that once this link configuration change is made LED 0 will not be
usable.

• DAC channel 1 (DA1) output uses I/O Port P05 which maps to pin 2 of the MCU.

Per the RSKRX65N schematic, DA1 shares pin 2 with LED 1. To use pin 2 for the DA1 analog output
signal a 0 ohm resistor needs to be moved from R308 to R184. Once this has been done DA1 can be
accessed via header JA1_14. Note that once this link configuration change is made LED 1 will not be
usable.

On the RSKRX65N board the DA reference voltage AVCC1 (VREFH) and AVSS1 (VREFL) are
connected to UC_VCC (typ. 3.3V) and GROUND, respectively.

5.6 dac_demo_rskrx65n_2m, dac_demo_rskrx65n_2m_gcc
This is a simple demo of the RX65N-2MB D/A Converter (R12DA) for the RSKRX65N-2MB starter kit (FIT
module “r_dac_rx”). The demo uses the r_dac_rx API to enable, configure, and write to the DAC. A
continuous loop is entered in which low, medium, and high data values are written to DAC channel 0 for 1
second each. LED 1 is lit when a low value is written, LED 2 is lit when a medium value is written, and LED 3
is lit when a high value is written. See the “Operation” notes below for details on accessing and configuring
the DAC output channel signals on the

RSKRX65N-2MB board.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 28 of 42
May.29.23

Setup and Execution
1. Compile and download the sample code.

2. Attach multimeter leads or oscilloscope probes to the DAC channel output pin(s) if desired.

3. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.

4. Set breakpoints and watch global variables

Boards Supported
RSKRX65N-2MB

Notes For Measuring the DAC Channel 0/1 Output Signals
• DAC channel 0 (DA0) output uses I/O Port P03 which maps to pin 4 of the MCU.

Per the RSKRX65N-2MB schematic, DA0 shares pin 4 with Switch 1. To use pin 4 for the DA0 analog
output signal a 0 ohm resistor needs to be moved from R480 to R120. Once this has been done DA0
can be accessed via header JA1_13. Note that once this link configuration change is made Switch 1 will
not be usable.

• DAC channel 1 (DA1) output uses I/O Port P05 which maps to pin 2 of the MCU.

Per the RSKRX65N-2MB schematic, DA1 shares pin 2 with Switch 2. To use pin 2 for the DA1 analog
output signal a 0 ohm resistor needs to be moved from R479 to R119. Once this has been done DA1
can be accessed via header JA1_14. Note that once this link configuration change is made Switch 2 will
not be usable.

• On the RSKRX65N-2MB board the DA reference voltage AVCC1 (VREFH) and AVSS1 (VREFL) are
connected to UC_VCC (typ. 3.3V) and GROUND, respectively.

5.7 dac_demo_rskrx72m, dac_demo_rskrx72m_gcc
This is a simple demo of the RX72M D/A Converter (R12DA) for the RSKRX72M starter kit (FIT module
“r_dac_rx”). The demo uses the r_dac_rx API to enable, configure, and write to the DAC. A continuous loop
is entered in which low, medium, and high data values are written to DAC channel 0 for 1 second each. LED
1 is lit when a low value is written, LED 2 is lit when a medium value is written, and LED 3 is lit when a high
value is written. See the “Operation” notes below for details on accessing and configuring the DAC output
channel signals on the

RSKRX72M board.

Setup and Execution
5. Compile and download the sample code.

6. Attach multimeter leads or oscilloscope probes to the DAC channel output pin(s) if desired.

7. Click ‘Reset Go’ to start the software. If PC stops at Main, press F8 to resume.

8. Set breakpoints and watch global variables

Boards Supported
RSKRX72M

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 29 of 42
May.29.23

Notes For Measuring the DAC Channel 0/1 Output Signals
• DAC channel 0 (DA0) output uses I/O Port P03 which maps to pin 4 of the MCU.

Per the RSKRX72M schematic, DA0 shares pin 4 with SERIAL-CTS. To use pin 4 for the DA0 analog
output signal a 0 ohm resistor needs to be moved from R275 to R218. Once this has been done DA0
can be accessed via header JA1_13. Note that once this link configuration change is made SERIAL-CTS
will not be usable.

• DAC channel 1 (DA1) output uses I/O Port P05 which maps to pin 2 of the MCU.

Per the RSKRX72M schematic, DA1 shares pin 2 with DSW-CATID3. To use pin 2 for the DA1 analog
output signal a 0 ohm resistor needs to be moved from R201 to R214. Once this has been done DA1
can be accessed via header JA1_14. Note that once this link configuration change is made DSW-
CATID3 will not be usable.

On the RSKRX72M board the DA reference voltage AVCC1 (VREFH) and AVSS1 (VREFL) are connected to
UC_VCC (typ. 3.3V) and GROUND, respectively.

5.8 Adding a Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To add
a demo
project to a workspace, select File >> Import >> General >> Existing Projects into Workspace, then click
“Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to the
FITDemos subdirectory, select the desired demo zip file, then click “Finish”.

5.9 Downloading Demo Projects
Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on this application note and select
“Sample Code (download)” from the context menu in the Smart Browser >> Application Notes tab.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 30 of 42
May.29.23

6. Appendices
6.1 Confirmed Operation Environment
This section describes confirmed operation environment for the DAC FIT module.

Table 6.1 Confirmed Operation Environment (Rev.5.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2023-04
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.10
Board used Renesas Solution Starter Kit for RX23E-B (product No.:

RTK0ES1001C00001BJ)

Table 6.2 Confirmed Operation Environment (Rev.5.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202204
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.5.00
Board used Renesas Flexible Motor Control Kit for RX26T(product

No.:RTK0EMXE70S00020BJ)

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 31 of 42
May.29.23

Table 6.3 Confirmed Operation Environment (Rev.4.90)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202202
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.90
Board used Renesas Starter Kit for RX113 (product No.: R0K505113CxxxBE)

Renesas Starter Kit for RX231 (product No.: R0K505231SxxxBE)
Renesas Starter Kit for RX64M (product No.: R0K50564MxxxxBE)
Renesas Starter Kit+ for RX65N (product No.: RTK5005651CxxxxxBE)
Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit for RX71M (product No.: R0K50571MCxxxBE)
Renesas Starter Kit+ for RX72M (product No.: RTK5572MNDCxxxxxBJ)

Table 6.4 Confirmed Operation Environment (Rev.4.80)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2022-04
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.80
Board used Renesas Starter Kit for RX660 (product No.: RTK556609HCxxxxxBJ)

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 32 of 42
May.29.23

Table 6.5 Confirmed Operation Environment (Rev.4.70)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2021-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202104
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.70
Board used Renesas Starter Kit for RX66T (product No: RTK50566T0SxxxxxBE)

Table 6.6 Confirmed Operation Environment (Rev.4.60)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 2021-07
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.202004
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.60
Board used Target board for RX140 (Part Number.: RTK5RX140xxxxxxxxx)

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 33 of 42
May.29.23

Table 6.7 Confirmed Operation Environment (Rev.4.50)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.8.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

Endian Little endian
Revision of the module Rev.4.50
Board used Renesas Starter Kit+ for RX72M (product No.: RTK5572Mxxxxxxxxxx)

Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX65N (product No.: RTK50565NCxxxxxBE)
Renesas Starter Kit+ for RX64M (product No.: RTK50564Mxxxxxxxx)
Renesas Starter Kit+ for RX71M (product No.: RTK50571Mxxxxxxxx)
Renesas Starter Kit+ for RX113 (product No.: RTK505113xxxxxxxx)
Renesas Starter Kit+ for RX231 (product No.: RTK505231xxxxxxxx)

Table 6.8 Confirmed Operation Environment (Rev.4.40)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.40
Board used Renesas Starter Kit+ for RX72N (product No.: RTK5572Nxxxxxxxxxx)

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 34 of 42
May.29.23

Table 6.9 Confirmed Operation Environment (Rev.4.30)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.7.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.30
Board used RX13T CPU Card (product No.: RTK0EMXA10C00000BJ)

Table 6.10 Confirmed Operation Environment (Rev.4.20)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201902
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.20
Board used Renesas Starter Kit+ for RX72M (product No.: RTK50572Mxxxxxxxxx)

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 35 of 42
May.29.23

Table 6.11 Confirmed Operation Environment (Rev.4.10)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.5.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.4.10
Board used Renesas Solution Starter Kit+ for RX23W (product No.: RTK5523Wxxxxxxxxx)

Table 6.12 Confirmed Operation Environment (Rev.4.00)

Item Contents
Integrated development
environment

Renesas Electronics e2 studio Version 7.4.0
IAR Embedded Workbench for Renesas RX 4.10.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

GCC for Renesas RX 4.8.4.201803
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
Linker option: The following user defined option should be added to the
default settings of the integrated development environment, if “Optimize size
(-Os)” is used:
-Wl,--no-gc-sections
This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.10.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.4.00
Board used Renesas Starter Kit+ for RX65N-2MB (product No.: RTK50565Nxxxxxxxxx)

Table 6.13 Confirmed Operation Environment (Rev.3.30)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 7.3.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.3.30
Board used Renesas Starter Kit for RX72T (product No.: RTK5572Txxxxxxxxxx)

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 36 of 42
May.29.23

Table 6.14 Confirmed Operation Environment (Rev.3.21)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 7.3.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.3.21

Board used
Renesas Starter Kit for RX66T (product No.: RTK50566T0SxxxxxBE)
Renesas Starter Kit+ for RX65N-2M (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX130-512KB (product No.: RTK5051308CxxxxxBR)

Table 6.15 Confirmed Operation Environment (Rev.3.20)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 7.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.00.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.3.20

Board used
Renesas Starter Kit for RX66T (product No.: RTK50566T0SxxxxxBE)
Renesas Starter Kit+ for RX65N-2M (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX130-512KB (product No.: RTK5051308CxxxxxBR)

Table 6.16 Confirmed Operation Environment (Rev.3.11)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 6.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.3.11

Board used Renesas Starter Kit+ for RX65N-2M (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX130-512KB (product No.: RTK5051308CxxxxxBR)

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 37 of 42
May.29.23

Table 6.17 Confirmed Operation Environment (Rev.3.10)

Item Contents
Integrated development
environment Renesas Electronics e2 studio Version 6.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.3.10

Board used Renesas Starter Kit+ for RX65N-2M (product No.: RTK50565N2CxxxxxBR)
Renesas Starter Kit+ for RX130-512KB (product No.: RTK5051308CxxxxxBR)

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 38 of 42
May.29.23

6.2 Troubleshooting
(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file

“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

 Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)”

 Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added to
the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_dac_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then I got an error for when the configuration
setting is wrong.

A: The setting in the file “r_dac_rx_config.h” may be wrong. Check the file “r_dac_rx_config.h”. If there is
a wrong setting, set the correct value for that. Refer to 2.8, Configuration Overview for details.

(4) Q: Analog output is not done.

A: The pin setting may not be performed correctly. When using this FIT module, the pin setting must be
performed. Refer to 4, Pin Setting for details.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 39 of 42
May.29.23

7. Reference Documents
User’s Manual: Hardware
The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools
RX Family Compiler CC-RX User’s Manual (R20UT3248)
The latest versions can be downloaded from the Renesas Electronics website.

Related Technical Updates
This module reflects the content of the following technical updates.
 None

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 40 of 42
May.29.23

Revision History

Rev.

Date

Description
Page Summary

1.00 Nov.15.13 — First edition issued
2.00 Apr.02.14 — Updated for new API and RX210 & RX63N/631 support
2.10 Sep.08.14 — Added RX64M support
2.20 Jan.20.15 — Added RX113 support
2.30 Mar.19.15 — Added RX71M support
2.40 Jun.30.15 — Added RX231 support
2.50 Sep.30.15 — Added RX23T support
2.60 Oct.1.15 — Added RX130 support
2.70 Dec.1.15 — Added RX230 support
 1, 5 Changed the document number for the “Board Support

Package Firmware Integration Technology Module” application
note.

 3 Changed the description in section 2.
 3 Removed “DAA” from the required peripheral lists in sections

2.1 and 2.2.
 7, 11 Modified some code examples shown in the Parameters and

Example in sections 3.3 and 3.6.
 14 Added “4. Demo Projects”.
2.80 Feb.1.16 — Added RX24T support
 18 Added “Related Technical Updates”.
2.91 Oct.1.16 — Added RX65N Group support
 5 ROM, RAM and stack Code Sizes description change
 8 Added The notice when using an amplifier
 11, 12 Description, Example change, Special Notes addition
3.00 Feb.28.17 — Added support for the RX24T (including ROM 512 KB version)

and RX24U Groups.
 3 Added RXC v2.06.00 to “2.5 Supported Toolchains”.
 9, 10, 13 3.3 R_DAC_Open(), 3.4 R_DAC_Close(), and

3.6 R_DAC_Control(): Added the note when enabling the D/A
A/D synchronous conversion in the Special Notes.

 Program For RX64M, RX71M, and RX65N, the code has been modified
to set unit 0 as the unit to be synchronized with and also
generate an error when the D/A A/D synchronous conversion
is enabled.

3.10 Jul.21.17 — Added support for the RX130-512KB and RX65N-2MB.
 3 Added RXC v2.07.00 to “2.5 Supported Toolchains”.
 6 Changed section 2.11 “Adding the FIT Module to Your Project”
 15 Added section 4. Pin Setting.
3.11 Oct.31.17 18 5.4 dac_demo_rskrx71m Notes For Measuring the DAC

Channel 0/1 Output Signals: Change resistors to R281, R195
for channel 0, R284, R194 for channel 1.

 19, 20 Added RSKRX65N, RSKRX65N-2M to “5. Demo Projects”
 20 Added 5.8 Downloading Demo Projects
 21 Added 6. Appendices
3.20 Sep 28, 2018 1, 3 Added support for the RX66T.
 5 Added code size corresponding to RX66T
 22 6.1 Confirmed Operation Environment:

Added table for Rev.3.20
3.21 Nov 16, 2018 — Added document number in XML
 22 Changed Renesas Starter Kit Product No for RX66T.

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 41 of 42
May.29.23

Added table for Rev.3.21
3.30 Feb 01, 2019 Program Added support for RX72T
 1, 3 Added support for RX72T
 5 Added code size corresponding to RX72T
 8-15 Removed ‘Reentrant’ description in each API function.
 22 6.1 Confirmed Operation Environment:

Added table for Rev.3.30
4.00 May.20.19  Supported the following compilers:

- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX

 1 Deleted the RX210, RX631, and RX63N in Target Devices for
end of update these devices.

 Added the section of Target compilers.
 Deleted related documents.
 3 1.2 Overview of the DAC FIT Module

Deleted the description of RX210, RX631, and RX63N.
 4 2.2 Software Requirements
 Requires r_bsp v5.20 or higher
 5-7 Updated the section of 2.8 Code Size.
 24 Table 6.1 Confirmed Operation Environment:

Added table for Rev.4.00
 28 Deleted the section of Website and Support.
 Program Changed below for support GCC and IAR compiler:

Deleted the inline expansion of the R_DAC_GetVersion
function.

4.10 Jun.28.19 1 Added support for RX23W
 5 Added code size corresponding to RX23W
 24

Program

6.1 Confirmed Operation Environment:
Added Table for Rev.4.10
Added support for RX23W.

4.20 Aug.15.19 1 Added support for RX72M.
 5-7 Added code size corresponding to RX72M
 24 6.1 Confirmed Operation Environment:

Added Table for Rev.4.20
Table 6.2: Corrected board name for RX23W

 Program Added support for RX72M.
4.30 Nov.25.19 1,3 Added support for RX13T.
 4 2.3 Limitations

Added limitations.
 6-8 Added code size corresponding to RX13T
 25 6.1 Confirmed Operation Environment:

Added Table for Rev.4.30
 Program Added support for RX13T.

Changed the comment of API functions to the doxygen style.
4.40 Dec.30.19 1,3 Added support for RX66N, RX72N.
 6-8 Added code size corresponding to RX66N, RX72N
 16 Added new cmd values in dac_cmd_t for RX65N, RX66N,

RX72M, RX72N
 17 Added additional steps in Special Notes if using amplifier

stabilization Wait
 25 6.1 Confirmed Operation Environment:

Added Table for Rev.4.40
 Program Added support for RX66N, RX72N.

Added support for amplifier stabilization wait for RX65N,

RX Family DAC Module Using Firmware Integration Technology

R01AN1818EJ0510 Rev.5.10 Page 42 of 42
May.29.23

RX66N, RX72M, RX72N
4.50 Jun.30.20 20-25 Updated and added new demo project

Added RSKRX72M to “5. Demo Projects”.
 26 6.1 Confirmed Operation Environment:

Added Table for Rev.4.50
 Program Updated and added new demo project
4.60 Apr.15.21 1, 4 Added support for RX140
 4 Added 1.3 Using the FIT DAC module.

Added 1.3.1 Using FIT DAC module in C++ project.
 7-10 Added code size corresponding to RX140
 28 6.1 Confirmed Operation Environment:

Added Table for Rev.4.60
 Program Added support for RX140

Added CS+ support for demo project.
4.70 Mar.14.22 28 6.1 Confirmed Operation Environment:

Added Table for Rev.4.70
 Program Added support for RX66T-48Pin
4.80 Mar.31.22 1, 4 Added support for RX660
 8, 10, 12 Added code size corresponding to RX660
 30 6.1 Confirmed Operation Environment:

Added Table for Rev.4.80
 Program Added support for RX660
4.90 Jul.29.22 30 6.1 Confirmed Operation Environment:

Added Table for Rev.4.90
 Program Updated demo projects
5.00 Aug.15.22 1, 4 Added support for RX26T
 8, 10, 12 Added code size corresponding to RX26T
 30 6.1 Confirmed Operation Environment:

Added Table for Rev.5.00
 Program Added support for RX26T
5.10 May.29.23 1, 4 Added support for RX23E-B
 8, 10, 12 Added code size corresponding to RX23E-B
 13 Deleted the description of FIT configurator from "2.13 Adding

the FIT Module to Your Project"
 13, 20 Added new return values in dac_err_t for RX23E-B
 17, 18, 21 R_DAC_Open(), R_DAC_Close(), and R_DAC_Control():

Updated the note when enabling the D/A A/D synchronous
conversion in the Special Notes

 19 Modified the Description in R_DAC_Write()
 20 Added new cmd values in dac_cmd_t for RX23E-B
 30 6.1 Confirmed Operation Environment:

Added Table for Rev.5.10
 Program Added support for RX23E-B

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor
devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the
level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal
elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal
produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the
input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these
addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.

 © 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 DAC FIT Module
	1.2 Overview of the DAC FIT Module
	1.3 Using the FIT DAC module
	1.3.1 Using FIT DAC module in C++ project

	1.4 API Overview

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Limitations
	2.3.1 RAM Location Limitations

	2.4 Supported Toolchain
	2.5 Interrupt Vector
	2.6 Header Files
	2.7 Integer Types
	2.8 Configuration Overview
	2.9 Code Size
	2.10 Parameters
	2.11 Return Values
	2.12 Callback Function
	2.13 Adding the FIT Module to Your Project
	2.14 “for”, “while” and “do while” statements

	3. API Functions
	R_DAC_Open()
	R_DAC_Close()
	R_DAC_Write()
	R_DAC_Control()
	R_DAC_GetVersion()

	4. Pin Setting
	5. Demo Projects
	5.1 dac_demo_rskrx113, dac_demo_rskrx113_gcc
	5.2 dac_demo_rskrx231, dac_demo_rskrx231_gcc
	5.3 dac_demo_rskrx64m, dac_demo_rskrx64m_gcc
	5.4 dac_demo_rskrx71m, dac_demo_rskrx71m_gcc
	5.5 dac_demo_rskrx65n, dac_demo_rskrx65n_gcc
	5.6 dac_demo_rskrx65n_2m, dac_demo_rskrx65n_2m_gcc
	5.7 dac_demo_rskrx72m, dac_demo_rskrx72m_gcc
	5.8 Adding a Demo to a Workspace
	5.9 Downloading Demo Projects

	6. Appendices
	6.1 Confirmed Operation Environment
	6.2 Troubleshooting

	7. Reference Documents
	Related Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

