Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SH7000 Series

Block Transfer (4 Bytes Aligned)

Lahel·	MOVF4

Functions Used: MOV.L Instruction

Post-Increment Register Indirect Addressing Register Indirect Addressing with Displacement

Contents

1.	Function	2
2.	Arguments	2
3.	Internal Register Changes and Flag Changes	3
4.	Programming Specifications	4
5.	Notes	4
6.	Description	5
7.	Flowchart	9
8.	Program Listing	13

1. Function

Transfers a block of data. Note that the start addresses for the block data source and destination areas must be 4n addresses, and the number of bytes to be transferred must be 4n bytes.

2. Arguments

Description		Storage Location	Data Length (Bytes)
Input	Number of transfer bytes (4n bytes)	R0	4
	Start address of transfer data source area (4n address)	R1	4
	Start address of transfer data destination area (4n address)	R2	4
Output	-	_	_

3. Internal Register Changes and Flag Changes

	(Before Execution) \rightarrow (After Execution)
R0	Number of transfer bytes → Change
R1	Start address of transfer data destination area → Change
R2	Start address of transfer data source area → Change
R3	Work
R4	
R5	
R6	
R7	
R8	
R9	
R10	
R11	
R12	
R13	
R14	
R15	(SP)

T bit * — : No change

* : Change0 : Fixed 01 : Fixed 1

4. Programming Specifications

Program memory (bytes)
142
Data memory (bytes)
0
Stack (bytes)
4
Number of states
114
Reentrant
Yes
Relocation
Yes
Intermediate interrupt
Yes

5. Notes

The number of states indicated in the programming specifications is the value when the number of transfer bytes is 100.

6. Description

(1) Function

Details of the arguments are as follows.

- R0: As the input argument, set the number of transfer bytes (4n bytes). Note that hardware limitations apply.
- R1: As the input argument, set the start address of transfer data destination area (4n address).
- R2: As the input argument, set the start address of transfer data source area (4n address).

Figure 1 shows a software MOVE execution example.

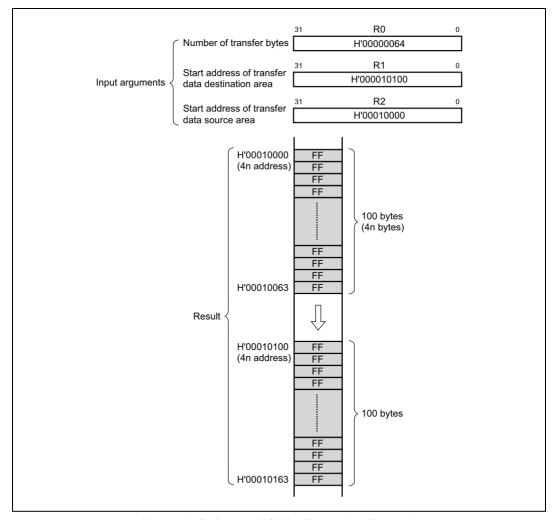


Figure 1 Software MOVE4 Execution Example

(2) Usage Notes

(a) The input arguments should be set so that the transfer data source area and transfer data destination area do not overlap. If the two areas overlap, as shown in figure 2, the data in the source area will be destroyed.

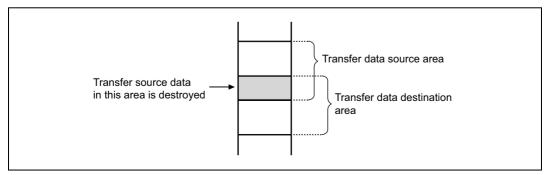


Figure 2 Block Transfer with Overlapping Data

(b) The contents of R0, R1, and R2, which set the number of transfer bytes, the start address of the transfer data destination area, and the start address of the transfer data source area, are changed using the software MOVE instruction. If the values for the number of transfer bytes, the start address of the transfer data destination area, and the start address of the transfer data source area will be needed after the software MOVE instruction is executed, they should be saved beforehand

(3) RAM Used

No RAM is used by the software MOVE4 instruction.

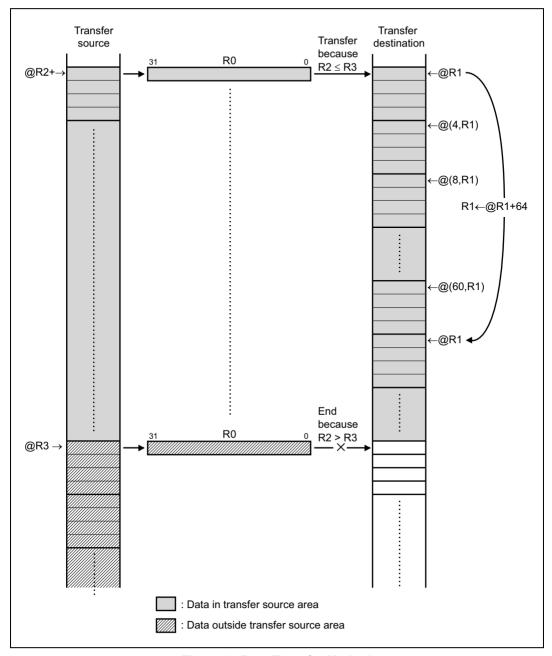
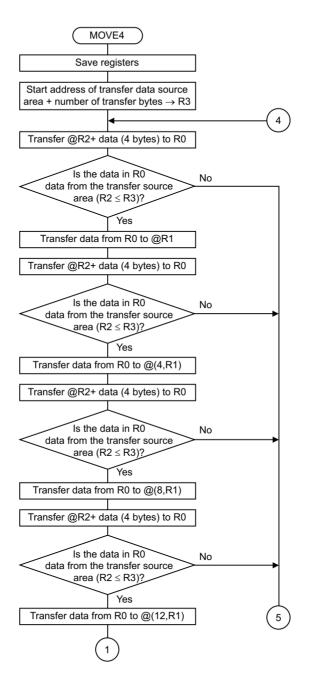
(4) Usage Example

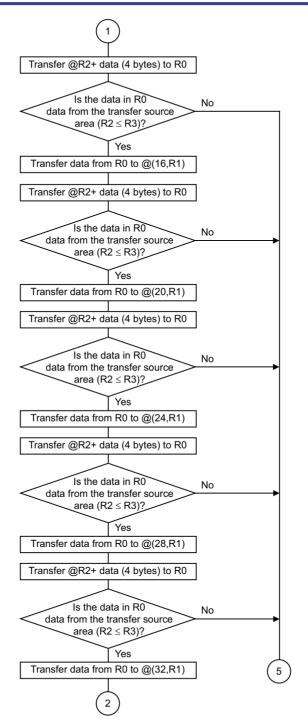
After the start address of the transfer data destination area, the start address of the transfer data source area, and the number of transfer bytes have been set in the input arguments, the software MOVE4 instruction is executed by a subroutine call.

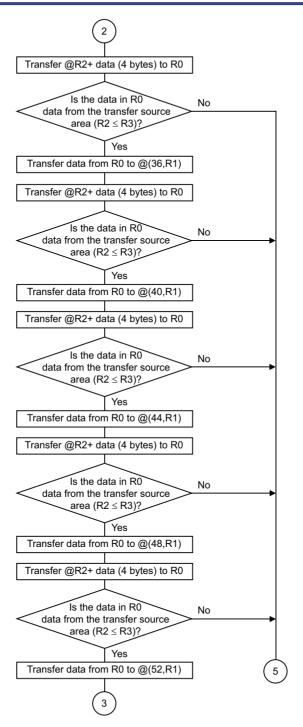
```
MOV.L DATA1,R0
                                 .... Sets number of transfer bytes in input argument (R0)
                                 .... Sets start address of transfer data destination area in input argument (R1)
         MOV.L DATA2,R1
                                 . . . . Subroutine call to software MOVE4
                  MOVE4
         BSR
         MOV.L DATA3,R2
                                 .... Sets start address of transfer data source area in input argument (R2)
        .align
DATA1
        .data.1 H'00000064
        .data.l H'00010100
DATA2
DATA3
        .data.1 H'00010000
```

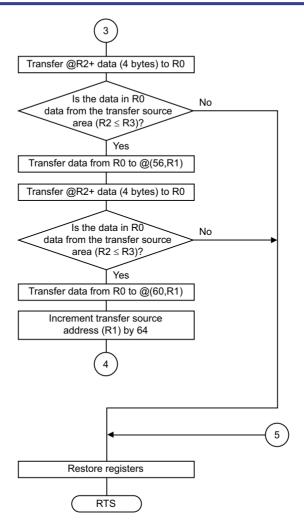

(5) Operating Principle

- (a) Since the transfer source and transfer destination addresses are both 4n addresses (4 bytes aligned), data is transferred from the source to the destination 4 bytes at a time.
- (b) Post-increment register indirect addressing (@R2+) is used to specify the transfer source address, which is then automatically incremented by 4 after each 4 bytes are transferred. Register indirect addressing with displacement is used to specify the transfer destination address. The displacement is 0 to 60, so it is necessary to increment the transfer destination address by 64 after each 60 bytes is transferred. No other increment processing is needed.
- (c) A value equal to the start address of the transfer data source area (R2) plus the number of transfer bytes is set in R3. After the setting is made, R0, which was previously set to the number of data bytes, is used as workspace for the data transfer. After the transfer source data is transferred to R0, it is determined whether or not R2 is less than or equal to R3. If this condition is met (R2 \leq R3), the data in R0 is data from the transfer source area and it is transferred to the transfer destination. If the condition is not met (R2 \geq R3), the data in R0 is data from outside the transfer source area and the transfer terminates


Figure 3 Data Transfer Method


7. Flowchart



8. Program Listing

```
:*******************
1
                      1
2
                      2
                      3
                                NAME ; MOVING MEMORY BLOKS (MOVE4)
3
4
                          ;*****************
5
                      5
                                 ENTRY: RO (NUMBER OF TRANSFER)
7
                      7
                          ٠.
Ω
                      8
                          : *
                                       R1
                                           (DESTINATION ADDRESS)
9
                      9
                                       R2 (SOURCE ADDRESS)
                         ; *
1 0
                     10
                             RETURNS : NOTHING
11
                     11
                         ;***********************
                     12
13 00001000
                     13
                                .SECTION A, CODE, LOCATE=H'1000
   00001000
                    14 MOVE4 .EQU $
                                                     ; Entry point
15 00001000 2F36
                    15
                               MOV.L R3,@-R15
                                                    ; Escape register
16 00001002 6323
                    16
                                MOV
                                      R2,R3
17 00001004 330C
                                ADD R0,R3
                     17
18 00001005
                    18 MOVE41
                                MOV.L @R2+,R0
19 00001006 6026
                    19
                                                    ; Load source data
                                CMP/HS R2,R3
20 00001008 3322
                     20
                                                     ; R2 <= R3 ?
21 0000100A 8B3E
                    21
                                BF MOVE4 END
                                                    ; No
22 0000100C 2102
                     22
                                MOV.L R0,@R1
                                                     ; Yes -> Store source data
23 0000100E
                    23 MOVE42
24 0000100E 6026
                    24
                                MOV.L @R2+,R0
                                                     ; Load source data
25 00001010 3322
                     25
                                CMP/HS R2,R3
                                                     ; R2 <= R3 ?
                                BF MOVE4_END
26 00001012 8B3A
                     26
                                                     ; No
27 00001014 1101
                    27
                                MOV.L R0,@(4,R1)
                                                     ; Yes -> Store source data
28 00001016
                     28
                        MOVE43
29 00001016 6026
                     29
                                MOV.L @R2+,R0
                                                     ; Load source data
30 00001018 3322
                     30
                                CMP/HS R2.R3
                                                     ; R2 <= R3 ?
31 0000101A 8B36
                     31
                                BF
                                      MOVE4 END
                                                     ; No
32 0000101C 1102
                     32
                                MOV.L R0,@(8,R1)
                                                     ; Yes -> Store source data
33 0000101E
                    33 MOVE44
                                MOV.L @R2+,R0
34 0000101E 6026
                     34
                                                     ; Load source data
35 00001020 3322
                    35
                                CMP/HS R2,R3
                                                     ; R2 <= R3 ?
36 00001022 8B32
                                BF MOVE4_END
                    36
                                                     ; No
37 00001024 1103
                     37
                                MOV.L R0,@(12,R1)
                                                     ; Yes -> Store source data
38 00001026
                     38 MOVE45
39 00001026 6026
                    39
                                MOV.L @R2+,R0
                                                     ; Load source data
40 00001028 3322
                     40
                                CMP/HS R2,R3
                                                     ; R2 <= R3 ?
41 0000102A 8B2E
                     41
                                BF MOVE4 END
                                                     ; No
42 0000102C 1104
                                MOV.L R0,@(16,R1)
                     42
                                                     ; Yes -> Store source data
43 0000102E
                         MOVE46
                     43
44 0000102E 6026
                     44
                                MOV.L @R2+,R0
                                                     ; Load source data
45 00001030 3322
                                CMP/HS R2,R3
                                                     ; R2 <= R3 2
                     45
46 00001032 8B2A
                     46
                                BF
                                       MOVE4 END
47 00001034 1105
                     47
                                MOV.L R0,@(20,R1)
                                                     ; Yes -> Store source data
                     48 MOVE47
48 00001036
49 00001036 6026
                     49
                                MOV.L @R2+,R0
                                                     ; Load source data
```

SH7000 Series Block Transfer (4 Bytes Aligned)

50	00001038	3322	50		CMP/HS	R2,R3	;	R2 <= R3 ?
51	0000103A	8B26	51		BF	MOVE4_END	;	No
52	0000103C	1106	52		MOV.L	R0,@(24,R1)	;	Yes -> Store source data
53	0000103E		53	MOVE 48			;	
54	0000103E	6026	54		MOV.L	@R2+,R0	;	Load source data
55	00001040	3322	55		CMP/HS	R2,R3	;	R2 <= R3 ?
56	00001042	8B22	56		BF	MOVE4_END	;	No
57	00001044	1107	57		MOV.L	R0,@(28,R1)	;	Yes -> Store source data
58	00001046		58	MOVE 49			;	
59	00001046	6026	59		MOV.L	@R2+,R0	;	Load source data
60	00001048	3322	60		CMP/HS	R2,R3	;	R2 <= R3 ?
61	0000104A	8B1E	61		BF	MOVE4_END	;	No
62	0000104C	1108	62		MOV.L	R0,@(32,R1)	;	Yes -> Store source data
63	0000104E		63	MOVE410			;	
64	0000104E	6026	64		MOV.L	@R2+,R0	;	Load source data
65	00001050	3322	65		CMP/HS	R2,R3	;	R2 <= R3 ?
66	00001052	8B1A	66		BF	MOVE4_END	;	No
67	00001054	1109	67		MOV.L	R0,@(36,R1)	;	Yes -> Store source data
68	00001056		68	MOVE411			;	
69	00001056	6026	69		MOV.L	@R2+,R0	;	Load source data
70	00001058	3322	70		CMP/HS	R2,R3	;	R2 <= R3 ?
71	0000105A	8B16	71		BF	MOVE4_END	;	No
72	0000105C	110A	72		MOV.L	R0,@(40,R1)	;	Yes -> Store source data
73	0000105E		73	MOVE412			;	
74	0000105E	6026	74		MOV.L	@R2+,R0	;	Load source data
75	00001060	3322	75		CMP/HS	R2,R3	;	R2 <= R3 ?
76	00001062	8B12	76		BF	MOVE4_END	;	No
77	00001064	110B	77		MOV.L	R0,@(44,R1)	;	Yes -> Store source data
78	00001066		78	MOVE413			;	
79	00001066	6026	79		MOV.L	@R2+,R0	;	Load source data
80	00001068	3322	80		CMP/HS	R2,R3	;	R2 <= R3 ?
81	0000106A	8B0E	81		BF	MOVE4_END	;	No
82	0000106C	110C	82		MOV.L	R0,@(48,R1)	;	Yes -> Store source data
83	0000106E		83	MOVE414			;	
84	0000106E	6026	84		MOV.L	@R2+,R0	;	Load source data
85	00001070	3322	85		CMP/HS	R2,R3	;	R2 <= R3 ?
86	00001072	8B0A	86		BF	MOVE4_END	;	No
87	00001074	110D	87		MOV.L	R0,@(52,R1)	;	Yes -> Store source data
88	00001076		88	MOVE415			;	
89	00001076	6026	89		MOV.L	@R2+,R0	;	Load source data
90	00001078	3322	90		CMP/HS	R2,R3	;	R2 <= R3 ?
91	0000107A	8B06	91		BF	MOVE4_END	;	No
92	0000107C	110E	92		MOV.L	R0,@(56,R1)	;	Yes -> Store source data
93	0000107E		93	MOVE416			;	
94	0000107E	6026	94		MOV.L	@R2+,R0	;	Load source data
95	00001080	3322	95		CMP/HS	R2,R3	;	R2 <= R3 ?
96	00001082	8B02	96		BF	MOVE4_END	;	No
97	00001084	110F	97		MOV.L	R0,@(60,R1)	;	Yes -> Store source data
98			98				;	
99	00001086	AFBE	99		BRA	MOVE41	;	
100	00001088	7140	100		ADD	#D'64,R1	;	R1 <- R1 + 64

SH7000 Series Block Transfer (4 Bytes Aligned)

101 0000108A	101	MOVE_END		;
102 0000108A 000B	102	RTS		;
103 0000108C 63F6	103	MOV.L @	@R15+,R3	; Return register
104	104	.END		
*****TOTAL ERRORS	0			
*****TOTAL WARNINGS	0			

SH7000 Series Block Transfer (4 Bytes Aligned)

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.