

General Description

DA9061-A is a power management integrated circuit (PMIC) optimized for supplying systems with single- and dual-core processors, I/O, DDR memory, and peripherals. It targets car navigation, vehicle infotainment systems, automotive telematics and FPGA based applications.

DA9061-A features three buck converters providing a total current of 6 A. High efficiency is achieved over a wide load range with PFM mode available for low power or sleep modes. All power switches are integrated; therefore, external Schottky diodes are not required. Furthermore, low-profile inductors can be used with DA9061-A. The four LDO regulators with programmable output voltage provide up to 300 mA.

Dynamic voltage control (DVC) allows dynamic control of DA9061-A supply voltages according to the operating point of the system. It is controlled by writing directly to the registers using the I²C compatible 2-wire interface or the GPIOs.

DA9061-A features a programmable power sequencer that handles start-up and shutdown sequences. Power mode transitions can be triggered with software control, GPIOs, or with the on-key. Several types of on-key presses can be detected to trigger different power mode transitions.

An integrated watchdog timer monitors the system.

Five GPIOs are able to perform system functions, including: keypad supervision, application buck, and timing-controlled external regulators/power switches or other ICs.

DA9061-A is also available as a consumer and industrial version DA9061.

Key Features

- Input voltage 2.8 V to 5.5 V
- Three buck converters with dynamic voltage control:
 - □ Buck1: 0.3 V to 1.57 V, 2.5 A
 - □ Buck2: 0.8 V to 3.34 V, 2 A
 - □ Buck3: 0.53 V to 1.8 V, 1.5 A
 - □ 3 MHz switching frequency (enables low profile inductors)
- Four LDO regulators:
 - □ LDO1: 0.9 V to 3.6 V, 100 mA
 - □ LDO2, LDO3, LDO4: 0.9 V to 3.6 V, 300 mA

- Programmable power mode sequencer
- System supply and junction temperature monitoring
- Watchdog timer
- Five GPIOs
- -40 °C to +125 °C junction temperature range
- 40-pin QFN, 6 mm × 6 mm package, 0.5 mm pitch
- Automotive AEC-Q100 Grade 2 (-40 °C to 105 °C)

Applications

- Car navigation systems
- Automotive infotainment
- Single core application processors
- Portable industrial and medical devices
- Telematics
- FPGAs

Block Diagram

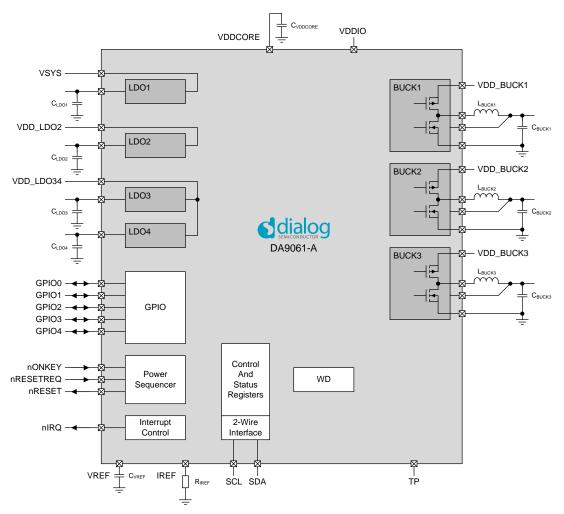


Figure 1: DA9061-A Block Diagram

Contents

Ge	eneral	Descript	tion	1			
Ke	y Feat	tures		1			
Αp	plicat	ions					
ВΙ	ock Di	agram		2			
Co	ntents	S		3			
1			rmation				
•	1.1	•	illiation				
	1.1		e Outline Drawing				
2		ŭ	rerview				
3 Absolute Maximum Ratings							
			_				
4			ed Operating Conditions				
	4.1	4.1.1	Il Characteristics Power Derating Curves				
_			-				
5			aracteristics				
	5.1	•	/0				
	5.2		log				
	5.3		Interface				
	5.4		LDO4				
		5.4.1	LD01				
		5.4.2 5.4.3	LDO2, LDO3, LDO4LDOCORE				
	5.5		onverters				
	5.5	5.5.1	Buck1				
		5.5.2	Buck2				
		5.5.3	Buck3				
	5.6		Oscillator				
	5.7		Supply Voltage Supervision				
	5.8	•	n Temperature Supervision				
	5.9		Consumption				
6	Typic		acteristics				
7			escription				
-	7.1		Signals				
		7.1.1	nONKEY				
		7.1.2	nRESETREQ	30			
		7.1.3	nRESET	31			
		7.1.4	nIRQ	31			
	7.2	2-Wire	Interface	31			
		7.2.1	Register Map Paging				
		7.2.2	Details of the 2-Wire Protocol				
	7.3	GPIOs.		34			
		7.3.1	GPI Functionality	35			
		7.3.2	GPO Functionality	36			
		7.3.3	Alternate Functions	36			

		7.3.4	GPIO Forwarding	37
	7.4	Dynami	c Voltage Control	37
	7.5	Regulat	tor Voltage A and B Selection	37
	7.6	LDOs		38
		7.6.1	Control	38
		7.6.2	Current Limit	38
		7.6.3	Output Pull-Down	38
	7.7	Switchir	ng Regulators	39
		7.7.1	Control	39
		7.7.2	Output Voltage Slewing	39
		7.7.3	Soft-Start	39
		7.7.4	Active Discharge	39
		7.7.5	Peak Current Limit	39
		7.7.6	Operating Mode	40
		7.7.7	Half-Current Mode	40
	7.8	Power N	Modes	41
		7.8.1	NO-POWER Mode	41
		7.8.2	RESET Mode	42
		7.8.3	POWERDOWN Mode	
		7.8.4	Power-Up, Power-Down, and Shutdown Sequences	44
		7.8.5	ACTIVE Mode	
	7.9	Power S	Supply Sequencer	45
		7.9.1	Sub-Sequences	
		7.9.2	Regulator Control	
		7.9.3	GPO Control	
		7.9.4	Wait Step	
		7.9.5	Power-Down Disable	
	7.10	Junction	n Temperature Supervision	48
	7.11		Supply Voltage Supervision	
	7.12	•	Oscillator	
	7.13		log	
8)	
•	8.1	-	r Page Control	
	8.2	•	www	
_				
9			nformation	
	9.1	•	nent Selection	
		9.1.1	Resistors	
		9.1.2	Capacitors	
	0.0	9.1.3	Inductors	
	9.2		yout	
		9.2.1	General Recommendations	
		9.2.2	LDOs and Switched Mode Supplies	
		9.2.3	Optimizing Thermal Performance	
10	Orde	ring Info	ormation	60
11	Pack	age Mar	king	60
Αp	pendi	x A Reai	ister Descriptions	61
•		- 3-	•	

A.1	PAGE 0		61
	A.1.1	Page Control	61
	A.1.2	Power Manager Control and Monitoring	61
	A.1.3	IRQ Events	63
	A.1.4	IRQ Masks	
	A.1.5	System Control	65
	A.1.6	GPIO Control	67
	A.1.7	Power Supply Control	70
A.2	PAGE 1		75
	A.2.1	Power Sequencer	
	A.2.2	Power Supply Control	79
A.3	PAGE 2		83
	A.3.1	Customer Trim and Configuration	83
	A.3.2	Customer Device Specific	86
A.4	PAGE 3		89
	A.4.1	Device Identification	89

1 Package Information

1.1 Pin List

Table 1: Pin Description

Pin No.	Pin Name	Type Table 2	Description
Paddle	GND	GND	Power grounds of the bucks, digital ground
1	VLDO1	AO	LDO1 output voltage
2	VLDO2	AO	LDO2 output voltage
3	VDD_LDO2	PS	LDO2 supply
4	IREF	AO	Reference current
5	VREF	AIO	Reference voltage
6	NC		Connect to GND
7	VSS_ANA	GND	Analog ground
8	NC		Connect to GND
9	VLDO3	AO	LDO3 output voltage
10	VDD_LDO34	PS	LDO3 and LDO4 supply
11	VLDO4	AO	LDO4 output voltage
12	NC		Do not use. Leave floating.
13	SDA	DIO	Data signal of the 2-wire interface
14	SCL	DI	Clock signal of the 2-wire interface
15	nONKEY	DI	Input for power-on key
16	nRESETREQ	DI	Reset request input
17	VLX_BUCK3	AO	Switching node of Buck3
18	VDD_BUCK3	PS	Buck3 supply
19	VDD_BUCK2	PS	Buck2 supply
20	VLX_BUCK2	AO	Switching node of Buck2
21	GPIO0	DIO	General purpose I/O, WDKICK
22	GPIO1	DIO	General purpose I/O
23	VDDIO	PS	IO supply
24	VBUCK3	Al	Voltage feedback of Buck3
25	VBUCK2	Al	Voltage feedback of Buck2
26	VBUCK1	Al	Voltage feedback of Buck1
27	NC		Do not use. Leave floating.
28	GPIO2	DIO	General purpose I/O, PWR_EN
29	GPIO3	DIO	General purpose I/O
30	GPIO4	DIO	General purpose I/O, SYS_EN
31	VLX_BUCK1	AO	Switching node of Buck1
32	VDD_BUCK1	PS	Buck1 supply
33	NC		Connect to GND

Pin No.	Pin Name	Type Table 2	Description
34	NC		Do not use. Leave floating.
35	NC		Do not use. Leave floating.
36	TP	DIO	Test pin
37	nIRQ	DO	Interrupt signal to host processor
38	nRESET	DO	Reset output
39	VDDCORE	AO	Internal supply
40	VSYS	PS	System supply, LDO1 supply

Table 2: Pin Type Definition

Pin type	Description	Pin type	Description
DI	Digital Input	AI	Analog Input
DO	Digital Output	AO	Analog Output
DIO	Digital Input/Output	AIO	Analog Input/Output
PS	Power Supply	GND	Ground connection

1.2 Package Outline Drawing

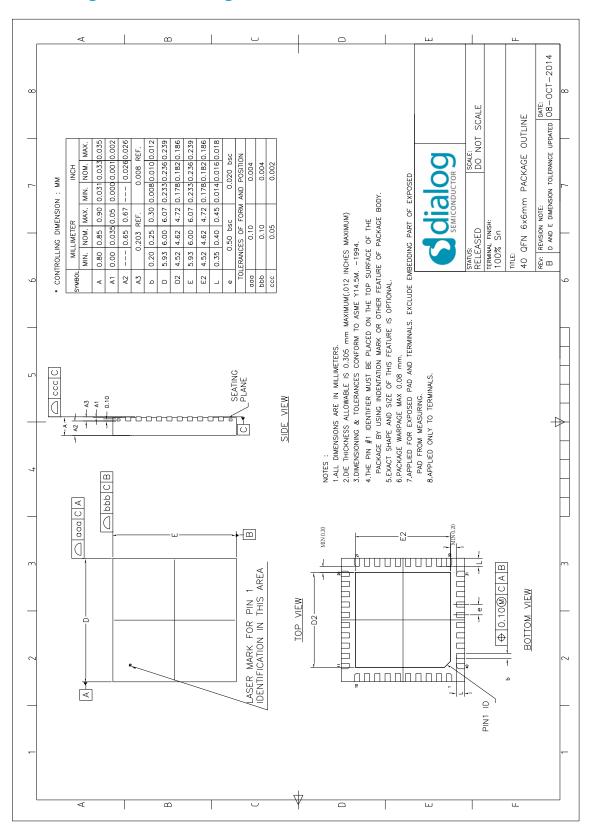


Figure 2: DA9061-A Package Outline Drawing

2 Regulator Overview

Table 3: Regulators

Regulator	Supplied Pins	Supplied Voltage (V)	Supplied Maximum Current (mA)	External Component	Notes
Buck1	VBUCK1	0.3 to 1.57	2500 Note 1	1.0 μH, 44 μF/88 μF	 GPIO and host interface-controlled DVC with variable slew rate (10 mV in [0.5, 1.0, 2.0, 4.0] μs) 10 mV steps < 0.7 V PFM mode only
Buck2	VBUCK2	0.8 to 3.34	2000 Note 2	1.0 μH, 44 μF/88 μF	 GPIO and host interface-controlled DVC with variable slew rate (10 mV in [0.5, 1.0, 2.0, 4.0] μs) 20 mV steps
Buck3	VBUCK3	0.53 to 1.8	1500 Note 2	1.0 μH, 44 μF	 GPIO and host interface-controlled DVC with variable slew rate (10 mV in [0.5, 1.0, 2.0, 4.0] μs) 10 mV steps < 0.7 V PFM mode only
LDO1	VLDO1	0.9 to 3.6	100	1.0 µF	Configurable as always-on50 mV stepsInternally supplied from VSYS
LDO2	VLDO2	0.9 to 3.6	300	2.2 µF	Low noise LDO50 mV steps
LDO3	VLDO3	0.9 to 3.6	300	2.2 µF	Low noise LDO50 mV stepsCommon supply with LDO4
LDO4	VLDO4	0.9 to 3.6	300	2.2 µF	Low noise LDO50 mV stepsCommon supply with LDO3

Note 1 For short durations, to meet peak current requirements, IouT for Buck1 can be operated at up to 20 % higher than the specified maximum operating condition. The part should not be operated in this mode for extended periods and is not guaranteed for continuous operation.

Note 2 For short durations, to meet peak current requirements, I_{OUT} for Buck2 and Buck3 can be operated at up to 10 % higher than the specified maximum operating condition. The part should not be operated in this mode for extended periods and is not guaranteed for continuous operation.

3 Absolute Maximum Ratings

Table 4 lists the absolute maximum ratings of the device. Exceeding these ratings may cause permanent damage to the device. Device functionality is only guaranteed under the conditions listed in Sections 4 and 4.1. Operating the device in conditions exceeding those listed in Sections 4 and 4.1, but compliant with the absolute maximum ratings listed in Table 4, for extended periods of time may affect device reliability.

Table 4: Absolute Maximum Ratings

Parameter	Symbol	Note	Min	Тур	Max	Unit
Storage temperature			-65		+150	°C
Junction temperature	TJ		-40		+150	°C
					Note 1	
Supply voltage	V _{SYS}		-0.3		6.0	V
	V _{ВВАТ}		-0.3		3.2	
	Buck V _{DD}		-0.3		V _{SYS} + 0.4 Note 2	
	V _{TP}		-0.3		8.0 Note 3	
	All other pins		-0.3		V _{SYS} + 0.3 Note 2	V
ESD protection HBM	V _{ESD_HBM}		2000			V
ESD protection CDM	V _{ESD_CDM}	Corner pins	750			V
		All other pins	500			

Note 1 See Sections 5.8 and 7.10 for more detail.

Note 2 Voltage must not exceed 5.5 V.

Note 3 Voltage on TP pin should be 0 V except during in-circuit programming.

4 Recommended Operating Conditions

Table 5: Recommended Operating Conditions

Parameter	Symbol	Note	Min	Тур	Max	Unit
Operating junction temperature	TJ		-40		+125	°C
Supply voltage	Vsys		0		5.5	V
Backup supply	V _{BBAT}		0		3.15	V
Supply voltage I/O	V _{DDIO}	I/O supply voltage Note 1	1.2		3.6	V
TP programming supply	V _{TP_PROG}	Note 2	7.25	7.5	7.75	V

Note 1 VDDIO must not exceed VSYS.

Note 2 Voltage on TP pin should be 0 V except during in-circuit programming.

4.1 Thermal Characteristics

Table 6: QFN Package Ratings

Parameter	Symbol	Note	Тур	Unit
Thermal resistance junction to ambient	R _{0_JA}	Note 1	20.81	°C/W
Thermal resistance junction to Board	R _{θ_} JB	Note 1	5.9	°C/W
Thermal resistance junction to case	R _θ _Jc	Note 1	18.72	°C/W
Maximum power dissipation Note 1	P _{DISS}	Derating factor above T _A = 70 °C: 48.05 mW/°C	3120	mW

Note 1 Obtained from package thermal simulation, 76 mm x 114 mm x 1.6 mm (JEDEC), 6-layer board, 70 μm thick copper top/bottom layers, 35 μm thick copper inside layers, 49 x 0.2 mm thermal vias beneath the device, natural convection (still air).

4.1.1 Power Derating Curves

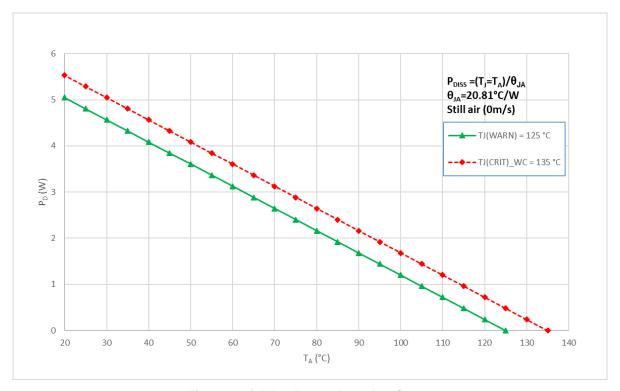


Figure 3: QFN40 Power Derating Curve

Table 7: Typical Temperatures

	T _A = 70 °C	T _A = 85 °C	T _A = 105 °C
Twarn	P _D =3.12 W	P _D =1.92 W	P _D =0.96 W
T _{CRIT}	P _D =2.64 W	P _D =2.40 W	P _D =1.44 W

5 Electrical Characteristics

5.1 Digital I/O

Unless otherwise noted, the following is valid for $T_J = -40$ °C to +125 °C, $V_{SYS} = 2.8$ V to 5.5 V.

Table 8: Digital I/O Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input high voltage	VIH	VDDCORE mode	1.0		Vsys	V
(GPI0-GPI4, nRESETREQ)		VDDIO mode	0.7 * V _{DDIO}		V_{SYS}	
Input low voltage	VIL	VDDCORE mode	-0.3		0.4	V
(GPI0-GPI4, nRESETREQ)		VDDIO mode V _{DDIO} ≥ 1.5 V	-0.3		0.3 * V _{DDIO}	-
Input high voltage (nONKEY)	V _{IH}		1.0		V_{SYS}	V
Input low voltage (nONKEY)	VIL		-0.3		0.4	V
Input high voltage	V _{IH}	VDDCORE mode	1.0			V
(SCL, SDA)		VDDIO mode	0.7 * V _{DDIO}			
Input low voltage	VIL	VDDCORE mode			0.4	V
(SCL, SDA)		VDDIO mode V _{DDIO} ≥ 1.5 V			0.3 * V _{DDIO}	
Output high voltage (GPIO0-GPIO4, nRESET, nIRQ)	Vон	I _{LOAD} = 1 mA Push-pull mode	0.7 * V _{DDIO}			V
Output low voltage (GPIO0–GPIO4, nRESET, nIRQ)	V _{OL}	I _{LOAD} = 1 mA			0.3	V
Output low voltage	V _{OL}	I _{LOAD} = 8 mA			0.4	V
(SDA)		I _{LOAD} = 3 mA			0.4	
Source current capability (GPIO0–GPIO4)	Іон	V _{OUT} = 0.7 * V _{DDIO} V _{DDIO} ≥ 1.8 V		-1		mA
Sink current capability (GPIO0–GPIO4)	loL	Vout = 0.3 V		1		mA
Input capacitance (SCL, SDA)	Cin				10	pF
Pull-down resistance (GPIO0–GPIO4)	R _{PD}		50	100	250	kΩ
Pull-up resistance	R _{PU}	V _{DDIO} = 1.5 V	60	180	310	kΩ
(GPIO0-GPIO4)		$V_{DDIO} = 1.8 \text{ V}$	45	120	190	
		V _{DDIO} = 3.3 V	20	40	60	

5.2 Watchdog

Unless otherwise noted, the following is valid for $T_J = -40$ °C to +125 °C, $V_{SYS} = 2.8$ V to 5.5 V.

Table 9: Watchdog Electrical Characteristics

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Minimum watchdog time	twdmin	Internal 25 kHz oscillator			200	ms
Maximum watchdog time	twdmax	Internal 25 kHz oscillator	2.5			S
Minimum assert time of WDKICK	twdkickmin			150		μs

5.3 2-Wire Interface

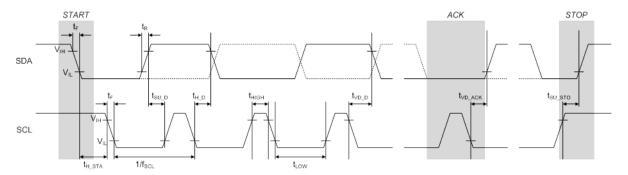


Figure 4: 2-Wire Interface Timing

Unless otherwise noted, the following is valid for $T_J = -40$ °C to +125 °C, $V_{SYS} = 2.8$ V to 5.5 V.

Table 10: 2-Wire Interface Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit			
Bus free time STOP to START	t _{BUF}		0.5			μs			
Bus line capacitive load	Св				150	pF			
Standard/Fast/Fast+ Mode									
SCL clock frequency	fscL	V _{DDIO} ≥ 1.5 V Note 1	0		1	MHz			
Start condition set-up time	tsu_sta		260			ns			
Start condition hold time	th_STA		260			ns			
SCL low time	t _{W_CL}		500			ns			
SCL high time	tw_ch		260			ns			
2-wire SCL and SDA rise time	t _R	(input requirement)			1000	ns			
2-wire SCL and SDA fall time	tF	(input requirement)			300	ns			
Data set-up time	tsu_D		50			ns			
Data hold-time	t _{H_D}		0			ns			
Data valid time	t∨D_D				450	ns			
Data valid time acknowledge	tvd_ack				450	ns			

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit				
Stop condition set-up time	tsu_sto		260			ns				
High Speed Mode										
SCL clock frequency	f _{SCL}	V _{DDIO} ≥ 1.8 V Note 1	0		3.4	MHz				
Start condition set-up time	t _{SU_STA}		160			ns				
Start condition hold time	t _{H_STA}		160			ns				
SCL low time	tw_cL		160			ns				
SCL high time	tw_ch		60			ns				
2-wire SCL and SDA rise time	t _R	(input requirement)			160	ns				
2-wire SCL and SDA fall time	t _F	(input requirement)			160	ns				
Data set-up time	t _{SU_D}		10			ns				
Data hold-time	t _{H_D}		0			ns				
Stop condition set-up time	tsu_sto		160			ns				

Note 1 Minimum clock frequency is 10 kHz if TWOWIRE_TO is enabled.

5.4 LDOs

5.4.1 LDO1

Unless otherwise noted, the following is valid for T_J = -40 °C to +125 °C.

Table 11: LDO1 Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input voltage	V_{DD}	V _{DD} = V _{SYS} (Internally connected)	2.8		5.5	V
Maximum output current	IOUT_MAX		100			mA
Output voltage	V_{LDO}	Programmable in 50 mV steps	0.9		3.6	V
Output accuracy		I _{OUT} = I _{OUT_MAX} including static line/load regulation	-3%		+3%	
Stabilization capacitor	Соит	Including voltage and temperature coefficient	-55%	1.0	+35%	μF
Output capacitor ESR	R _{COUT_ESR}	f > 1 MHz Including wiring parasitics	0		300	mΩ
Short circuit current	Ishort			200		mA
Dropout voltage	VDROPOUT	VLDO = 3.3 V IOUT = IOUT_MAX		100	150	mV
Static line regulation	Vs_LINE	$V_{DD} = 3.0 \text{ V to } 5.5 \text{ V}$ $I_{OUT} = I_{OUT_MAX}$		5	20	mV
Static load regulation	Vs_load	IOUT = 1 mA to IOUT_MAX		5	20	mV
Line transient response	V _{TR_LINE}	$V_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$ $I_{OUT} = I_{OUT_MAX}$ $tr = tf = 10 \mu\text{s}$		5	20	mV
Load transient response	VTR_LOAD	$V_{DD} = 3.6 \text{ V}, V_{LDO} = 3.3 \text{ V}$ $I_{OUT} = 1 \text{ mA to } I_{OUT_MAX}$ $tr = tf = 1 \mu s$		30	50	mV
Power supply rejection ratio	PSRR	$\begin{aligned} V_{DD} &= 3.6 \text{ V} \\ V_{DD} &- V_{LDO} \geq 0.6 \text{ V} \\ I_{OUT} &= I_{OUT_MAX}/2 \\ f &= f_{VDDLDO} \end{aligned}$				
		f = 10 Hz to 10 kHz	40	60		dB
Output noise	N	$V_{DD} = 3.6 \text{ V}, V_{LDO} = 2.8 \text{ V}$ $I_{OUT} = 5 \text{ mA to } I_{OUT_MAX}$ $f = 10 \text{ Hz to } 100 \text{ kHz}$ $T_A = 25 ^{\circ}\text{C}$		70		μV rms
Quiescent current in ON mode	IQ_ON	T _A = 25 °C		9 + 0.9% І _{ООТ}		μA
Quiescent current in SLEEP mode	IQ_SLEEP	T _A = 25 °C		1.5 + 1.6% І _{ООТ}		μΑ
Quiescent current in OFF mode	IQ_OFF	V _{LDO} < 0.5 V T _A = 25 °C			1	μA
Turn-on time	t _{ON}	10 % to 90 %			350	μs

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
		SLEEP mode			450	
Turn-off time	toff	90 % to 10% Pull-down enabled			1	ms
Pull-down resistance in OFF mode	R _{OFF}	VLDO = 0.5 V Can be disabled via LDO1_PD_DIS		50		Ω

5.4.2 LDO2, LDO3, LDO4

Unless otherwise noted, the following is valid for T_J = -40 °C to +125 °C.

Table 12: LDO2, LDO3, LDO4 Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input voltage	V_{DD}	$V_{DD} = V_{SYS}$	2.8		5.5	V
		Supplied from buck converter	1.5			
Maximum output current	IOUT_MAX	V _{DD} ≥ 1.8 V (Iout = Iout_Max/3, V _{DD} < 1.8 V)	300			mA
Output voltage	V _{LDO}	Programmable in 50 mV steps	0.9		3.6	V
Output accuracy		I _{OUT} = I _{OUT_MAX} Including static line/load regulation	-3%		+3%	
Stabilization capacitor	Соит	Including voltage and temperature coefficient	-55%	2.2	+35%	μF
Output capacitor ESR	RCOUT_ESR	f > 1 MHz Including wiring parasitics	0		300	mΩ
Short circuit current	Ishort			600		mA
Dropout voltage	V _{DROPOUT}	I _{OUT} = I _{OUT} MAX (V _{DD} < 1.8 V, I _{OUT} = I _{OUT} MAX/3) Note 1		100	150	mV
Static line regulation	V _{S_LINE}	V _{DD} = 3.0 V to 5.5 V lout = lout_max		5	20	mV
Static load regulation	Vs_load	IOUT = 1 mA to IOUT_MAX		5	20	mV
Line transient response	V _{TR_LINE}	$V_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$ $I_{OUT} = I_{OUT_MAX}$ $tR = tF = 10 \mu\text{s}$		5	20	mV
Load transient response	VTR_LOAD	$V_{DD} = 3.6 \text{ V}, V_{LDO} = 3.3 \text{ V}$ $I_{OUT} = 1 \text{ mA to } I_{OUT_MAX}$ $tR = tF = 1 \mu \text{s}$		30	50	mV
Power supply rejection ratio	PSRR	$V_{DD} = 3.6 \text{ V}$ $V_{DD} - V_{LDO} \ge 0.6 \text{ V}$ $I_{OUT} = I_{OUT_MAX}/2$ $f = f_{VDDLDO}$				
		f = 10 Hz to 1 kHz f = 1 kHz to 10 kHz f = 10 kHz to 100 kHz	70 60 40	80 70 50		dB
Output noise	N	V _{DD} = 3.6 V V _{LDO} = 2.8 V I _{OUT} = 5 mA to I _{OUT_MAX} f = 10 Hz to 100 kHz		50		μV rms

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent current in ON mode	I _{Q_ON}	T _A = 25 °C		9 + 0.34% l _{OUT}		μΑ
Quiescent current in SLEEP mode	IQ_SLEEP	T _A = 25 °C		2 + 0.7% lout		μΑ
Quiescent current in OFF mode	IQ_OFF	V _{LDO} < 0.5 V T _A = 25 °C			1	μА
Turn-on time	Ton	10 % to 90 %			200	μs
		SLEEP mode			300	
Turn-off time	T _{OFF}	90 % to 10 % Pull-down enabled			1	ms
Pull-down resistance in OFF mode	Roff	V _{LDO} = 0.5 V Can be disabled via LDO <x>_PD_DIS</x>		50		Ω

Note 1 At $V_{DD} = 1.8 \text{ V}$, the dropout voltage at I_{OUT_MAX} increases by 70%.

5.4.3 LDOCORE

Unless otherwise noted, the following is valid for $T_J = -40$ °C to +125 °C, $V_{SYS} = 2.8$ V to 5.5 V.

Table 13: LDOCORE Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output voltage	V _{DDCORE}	Note 1	2.45	2.5	2.55	V
		RESET mode		2.2		V
Stabilization capacitor	Соит	Including voltage and temperature coefficient	-55%	2.2	+35%	μF
Output capacitor ESR	RCOUT_ESR	f > 1 MHz including wiring parasitics	0		300	mΩ
Dropout voltage	VDROPOUT	Note 2		50	100	mV

Note 1 Setting V_{DD_FAULT_LOWER} ≥ 2.65 V avoids LDOCORE dropout, see Section 5.7.

Note 2 The LDOCORE supply, VSYS, must be maintained above VDDCORE + VDROPOUT

NOTE

LDOCORE is only used to supply internal circuits.

5.5 Buck Converters

5.5.1 Buck1

Unless otherwise noted, the following is valid for T_J = -40 °C to +125 °C.

Table 14: Buck1 Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input voltage	V _{DD}	$V_{DD} = V_{SYS}$	2.8		5.5	V
Output capacitor	Соит	Half-current mode including voltage and temperature coefficient	F00/	2 * 22	. 000/	μF
		Full-current mode including voltage and temperature coefficient	-50%	2 * 47	+30%	
Output capacitor ESR	RCOUT_ESR	C _{OUT} = 2 * 22 μF f > 100 kHz Including wiring parasitics		15	50	mΩ
		C _{OUT} = 2 * 47 μF f > 100 kHz Including wiring parasitics		7.5	25	
Inductor value	Lвиск	Including current and temperature dependence	0.7	1.0	1.3	μΗ
Inductor resistance	R _{L_DCR}			55	100	mΩ
PWM Mode						
Output voltage	V _{BUCK}	Programmable in 10 mV steps Note 1	0.3		1.57	V
Output voltage accuracy	VBUCK_ACC	$V_{DD} = 4.2 \text{ V}, V_{BUCK} = 1.03 \text{ V}$ Excluding static line/load regulation and voltage ripple $T_A = 25 ^{\circ}\text{C}$	-1%		+1%	
		Including static line/load regulation and voltage ripple Note 2	-3%		+3%	
Transient load regulation	VTR_LOAD	$V_{DD} = 3.6 \text{ V}, V_{BUCK} = 1.15 \text{ V}$ $I_{OUT} = 200 \text{ mA to } 1000 \text{ mA}$ $di/dt = 3 \text{ A}/\mu\text{s}$ $L = 1 \mu\text{H}$		30	45	mV
Transient line regulation	VTR_LINE	V _{DD} = 3.0 V to 3.6 V I _{OUT} = 500 mA tR = tF = 10 μs		0.2	3	mV
		Half-current mode			1250	
Output current	I _{OUT}	Full-current mode Note 3			2500	mA
Current limit	ILIM	Half-current mode controlled in BUCK <x>_ILIM in 100 mA steps</x>	700		2200	^
		Full-current mode controlled in BUCK <x>_ILIM in 200 mA steps</x>	1400		4400	mA
Current limit accuracy	ILIM_ACC		-20		20	%

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Quiescent current in OFF mode	IQ_OFF				1	μA
Quiescent current in PWM mode	IQ_ON	Half-current mode $V_{DD} = 3.6 \text{ V}$ $I_{OUT} = 0 \text{ mA}$ $T_A = 25 ^{\circ}\text{C}$		9		mA
		Full-current mode $V_{DD} = 3.6 \text{ V}$ $I_{OUT} = 0 \text{ mA}$ $T_A = 25 ^{\circ}\text{C}$		11		
Switching frequency Note 4	f	OSC_FRQ = '0000'	2.85	3	3.15	MHz
Switching duty cycle	DC		14 %		83 %	
Turn-on time	ton	V _{BUCK} = 1.15 V BUCK_SLOWSTART = disabled SLEW_RATE = 10 mV/1 μs BUCK <x>_ILIM = 1500 mA</x>		0.37	1.2	ms
Output pull-down resistance	R _{PD}	V _{BUCK} = 0.5 V Disabled via BUCK <x>_PD_DIS</x>		100	200	Ω
PMOS ON resistance	R _{PMOS}	Half-current mode Including pin and routing VDD = 3.6 V		160		mΩ
		Full-current mode Including pin and routing VDD = 3.6 V		80		11122
NMOS ON resistance	R _{NMOS}	Half-current mode Including pin and routing VDD = 3.6 V		60		0
		Full-current mode Including pin and routing VDD = 3.6 V		30		mΩ
PFM mode						
Output voltage	V _{BUCK_PFM}	Programmable in 10 mV steps	0.3		1.57	V
Mode transition current threshold (PFM to PWM) in AUTO mode Note 5	I _{AUTO_THR}	$V_{DD} = 3.6 \text{ V}$ $V_{BUCK} = 1.15 \text{ V}$ $R_{TRACK} \sim 45 \text{ m}\Omega$ Including bondwire, PCB, and inductor ESR		400		mA
Output current	IOUT_PFM	Forced PFM mode			300	mA
Current limit	I _{LIM_PFM}			1000		mA
Quiescent current	I _{Q_PFM}	Forced PFM mode Iout = 0 mA		27	32	
		AUTO mode lout = 0 mA		35	42	μΑ
Mode transition time	t AUTO	AUTO mode		6		μs

Note 1 If control BUCK<x>_MODE = '10' (Synchronous) then the buck operates in PFM mode for $V_{BUCK} < 0.7 \text{ V}$. For complete control of the buck mode (PWM versus PFM) use BUCK<x>_MODE = '00'.

Note 2 Minimum tolerance 35 mV.

- **Note 3** For short durations, to meet peak current requirements, I_{OUT} for Buck1 can be operated at up to 20 % higher than the specified maximum operating condition. The part should not be operated in this mode for extended periods and is not guaranteed for continuous operation.
- Note 4 Generated from internal 6 MHz oscillator and can be adjusted by ±10% via control OSC_FRQ, see Section 7.12.
- **Note 5** Auto-mode is not recommended for new designs, see Section 7.7.6.

5.5.2 Buck2

Unless otherwise noted, the following is valid for T_J = -40 °C to +125 °C.

Table 15: Buck2 Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input voltage	Vpp	V _{DD} = V _{SYS} I _{OUT} ≤ 1.5 A	2.8		5.5	V
Input voltage	טטע	V _{DD} = V _{SYS} I _{OUT} > 1.5 A	3.3		5.5	
Output capacitor	Соит	I _{OUT} ≤ 1.5 A Including voltage and temperature coefficient	-50%	2 * 22	+30%	μF
		I _{OUT} > 1.5 A Including voltage and temperature coefficient	-50%	2 * 47	+30%	
Output capacitor ESR	RCOUT_ESR	C _{OUT} = 2 * 22 μF f > 100 kHz Including wiring parasitics		15	50	m□
		C _{OUT} = 2 * 47 μF f > 100 kHz Including wiring parasitics		7.5	25	
Inductor value	L _{виск}	Including current and temperature dependence	0.7	1.0	1.3	μH
Inductor resistance	R _{L_DCR}			55	100	mΩ
PWM Mode						
Output voltage	V _{BUCK}	Programmable in 20 mV steps	0.8		3.34	V
Output voltage accuracy	V _{BUCK_ACC}	Including static line and load regulation and voltage ripple Note 1	-3%		+3%	
Transient load regulation	VTR_LOAD	$V_{DD} = 3.6 \text{ V}, V_{BUCK} = 1.8 \text{ V}$ $I_{OUT} = 200 \text{ mA to } 1000 \text{ mA}$ $di/dt = 3 \text{ A}/\mu\text{s}$ $L = 1 \mu\text{H}$		30	45	
		$V_{DD} = 3.6 \text{ V}, V_{BUCK} = 1.8 \text{ V}$ $I_{OUT} = 200 \text{ mA to } 2000 \text{ mA}$ $di/dt = 3 \text{ A}/\mu\text{s}$ $L = 1 \mu\text{H}$		60	90	mV
		$V_{DD} = 5.0 \text{ V}, V_{BUCK} = 3.34 \text{ V}$ $I_{OUT} = 200 \text{ V} \text{ to } 2000 \text{ mA}$ $di/dt = 3 \text{ A}/\mu\text{s}$ $L = 1 \mu\text{H}$		60	90	
Transient line regulation	VTR_LINE	$V_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$ $I_{OUT} = 500 \text{ mA}$ $tr = tf = 10 \mu\text{s}$		0.2	3	mV
Output current		V _{DD} - V _{BUCK} ≥ 1.25 V Note 2			2000	
	Гоит	V _{DD} - V _{BUCK} ≥ 1.00 V			1250	mA
		V _{DD} - V _{BUCK} ≥ 0.75 V			900	
Current limit	I _{LIM}	Controlled in BUCK2_ILIM in 100 mA steps	1700		3200	mA

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Current limit accuracy	ILIM_ACC		-20%		20%	
Quiescent current in OFF mode	IQ_OFF				1	μΑ
Quiescent current in PWM mode	I _{Q_ON}	$I_{OUT} = 0 \text{ mA}$ $T_A = 25 ^{\circ}\text{C}$		9		mA
Switching frequency Note 3	f	OSC_FRQ = '0000'	2.85	3	3.15	MHz
Switching duty cycle	D		15%		100%	
Turn-on time	ton	V _{BUCK} = 1.80 V BUCK_SLOWSTART = disabled SLEW_RATE = 20 mV/2 µs BUCK2_ILIM = 2500 mA		0.44	1.5	ms
Output pull-down resistance	R _{PD}	V _{BUCK} = 0.5 V Disabled via BUCK2_PD_DIS		100	200	Ω
PMOS ON resistance	R _{PMOS}	Including pin and routing V _{DD} = 3.6 V		150		mΩ
NMOS ON resistance	R _{NMOS}	Including pin and routing V _{DD} = 3.6 V		60		mΩ
PFM mode						
Output voltage	V _{BUCK_PFM}	Programmable in 20 mV steps	0.8		3.34	V
Mode transition current threshold (PFM to PWM) in AUTO mode Note 4	lauto_thr	$\begin{split} &V_{DD} = 3.6 \text{ V} \\ &V_{BUCK} = 1.8 \text{ V} \\ &R_{TRACK} \sim 45 \text{ m}\Omega \\ &Including bondwire, PCB, and \\ &inductor ESR \end{split}$		400		mA
Output current	I _{OUT_PFM}	Forced PFM mode			300	mA
Current limit	I _{LIM_PFM}			1000		mA
Quiescent current	I _{Q_PFM}	Forced PFM mode, I _{OUT} = 0 mA		22	25	
		AUTO mode, lout = 0 mA		30	35	μA
Mode transition time	t _{AUTO}	AUTO mode		6		μs

- Note 1 Minimum tolerance 35 mV
- Note 2 For short durations, to meet peak current requirements, I_{OUT} for Buck2 can be operated at up to 10 % higher than the specified maximum operating condition. The part should not be operated in this mode for extended periods and is not guaranteed for continuous operation.
- **Note 3** Generated from internal 6 MHz oscillator and can be adjusted by ±10 % via control OSC_FRQ, see Section 7.12.
- Note 4 Auto-mode is not recommended for new designs, see Section 7.7.6

© 2022 Renesas Electronics

5.5.3 Buck3

Unless otherwise noted, the following is valid for T_J = -40 °C to +125 °C.

Table 16: Buck3 Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input voltage	V _{DD}	V _{DD} = V _{SYS}	2.8		5.5	>
Output capacitor	Соит	Including voltage and temperature coefficient	-50%	2 * 22	+30%	μF
Output capacitor ESR	RCOUT_ESR	f > 100 kHz Including wiring parasitics		15	50	mΩ
Inductor value	Lвиск	Including current and temperature dependence	0.7	1.0	1.3	μH
Inductor resistance	R _{L_DCR}			55	100	mΩ
PWM Mode						
Output voltage	Vвиск	Programmable in 10 mV steps Note 1	0.7		1.8	V
Output voltage accuracy	VBUCK_ACC	Including static line/load regulation and voltage ripple Note 2	-3%		+3%	
Transient load regulation	VTR_LOAD	$V_{DD} = 3.6 \text{ V}$ $V_{BUCK} = 1.35 \text{ V}$ $I_{OUT} = 200 \text{ mA to } 1000 \text{ mA}$ $di/dt = 3 \text{ A/}\mu\text{s}$ $L = 1 \mu\text{H}$		25	40	mV
		$V_{DD} = 3.6 \text{ V}$ $V_{BUCK} = 1.35 \text{ V}$ $I_{OUT} = 200 \text{ mA to } 1500 \text{ mA}$ $di/dt = 3 \text{ A/}\mu\text{s}$ $L = 1 \mu\text{H}$		40	60	mV
Transient line regulation	VTR_LINE	$V_{DD} = 3.0 \text{ V to } 3.6 \text{ V}$ $I_{OUT} = 500 \text{ mA}$ $tR = tF = 10 \mu\text{s}$		0.2	3	mV
Output current	Іоит	V _{DD} - V _{BUCK} ≥ 1.25 V Note 3			1500	mA
		V _{DD} - V _{BUCK} ≥ 1.00 V			1250	
Current limit	ILIM	Controlled in BUCK3_ILIM in 100 mA steps	700		2200	mA
Current limit accuracy	ILIM_ACC	I _{LIM} = 700 mA to 1400 mA	-15		+25	0/
		I _{LIM} = 1400 mA to 2200 mA	-10		+15	%
Quiescent current in OFF mode	IQ_OFF				1	μΑ
Quiescent current in PWM mode	IQ_ON	I _{OUT} = 0 mA T _A = 25 °C		9		mA
Switching frequency Note 4	f	OSC_FRQ = '0000'	2.85	3	3.15	MHz
Switching duty cycle	D		14		83	%

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Turn-on time	ton	VBUCK = 1.35 V BUCK_SLOWSTART = disabled SLEW_RATE = 10 mV/1 µs BUCK3_ILIM = 1500 mA		0.39	1.2	ms
Output pull-down resistance	R _{PD}	VBUCK = 0.5 V Disabled via BUCK3_PD_DIS		100	200	Ω
PMOS ON resistance	R _{PMOS}	Including pin and routing V _{DD} = 3.6 V		150		mΩ
NMOS ON resistance	R _{NMOS}	Including pin and routing V _{DD} = 3.6 V		60		mΩ
PFM mode						
Output voltage	VBUCK_PFM	Programmable in 10 mV steps.	0.53		1.8	V
Mode transition current threshold (PFM to PWM) in AUTO mode Note 5	lauto_thr	$\begin{split} V_{DD} &= 3.6 \text{ V} \\ V_{BUCK} &= 1.35 \text{ V} \\ R_{TRACK} \approx 45 \text{ m}\Omega \\ Including bondwire, PCB, inductor ESR \end{split}$		400		mA
Output current	I _{OUT_PFM}				300	mA
Current limit	I _{LIM_PFM}			1000		mA
Quiescent current	IQ_PFM	Forced PFM mode lout = 0 mA		22	25	
		AUTO mode I _{OUT} = 0 mA		30	35	μΑ
Mode transition time	t _{AUTO}	AUTO mode		6		μs

- Note 1 If control BUCK3_MODE = 10 (Synchronous) then the buck operates in PFM mode for $V_{BUCK} < 0.7 \text{ V}$. For complete control of the buck mode (PWM versus PFM) use BUCK3_MODE = '00'.
- Note 2 Minimum tolerance 35 mV.
- **Note 3** For short durations, to meet peak current requirements, I_{OUT} for Buck3 can be operated at up to 10 % higher than the specified maximum operating condition. The part should not be operated in this mode for extended periods and is not guaranteed for continuous operation.
- **Note 4** Generated from internal 6 MHz oscillator and can be adjusted by ±10% via control OSC_FRQ, see Section 7.12.
- Note 5 Auto-mode is not recommended for new designs, see Section 7.7.6

5.6 Internal Oscillator

Unless otherwise noted, the following is valid for T_J = -40 °C to +125 °C, V_{SYS} = 2.8 V to 5.5 V.

Table 17: Internal Oscillator Electrical Characteristics

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Oscillator frequency	fosc	OSC_FRQ = '0000'	5.7	6	6.3	MHz

Note 1 Oscillator frequency can be further adjusted by about ±10%, see Section 7.12.

© 2022 Renesas Electronics

5.7 System Supply Voltage Supervision

Unless otherwise noted, the following is valid for $T_J = -40$ °C to +125 °C, $V_{SYS} = 2.8$ V to 5.5 V.

Table 18: System Supply Voltage Supervision Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Under-voltage lockout lower threshold	VPOR_LOWER			2.0		V
Under-voltage lockout upper threshold	VPOR_UPPER			2.3		V
V _{SYS} under-voltage lower threshold	V _{DD_FAULT_LOWER} Note 1		2.5	2.8	3.25	V
V _{SYS} under-voltage lower threshold accuracy	Vsys_lower		-2%		+2%	
V _{SYS} hysteresis	VDD_FAULT_HYS Note 2		100	200	450	mV
V _{SYS} upper threshold	VDD_FAULT_UPPER		-2%	VDD_FAULT_LOWER + VDD_FAULT_HYS	+2%	
Reference voltage	V _{REF}		-1%	1.2	+1%	V
V _{REF} decoupling capacitor	C _{VREF}			2.2		μF
Reference current resistor	Riref		-1%	200	+1%	kΩ

Note 1 Can be set in 50 mV steps via control VDD_FAULT_ADJ in register CONFIG_B, setting $V_{DD_FAULT_LOWER} \ge 2.65 \text{ V}$ avoids LDOCORE dropout, see Section 5.4.3.

5.8 Junction Temperature Supervision

Unless otherwise noted, the following is valid for $T_J = -40$ °C to +125 °C, $V_{SYS} = 2.8$ V to 5.5 V.

Table 19: Junction Temperature Supervision Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
POR temperature threshold Note 1	T _{POR}	Note 2	145	150	155	°C
Critical temperature threshold Note 1	T _{CRIT}	Note 2	135	140	145	°C
Warning temperature threshold Note 1	Twarn	Note 2	120	125	130	°C

Note 1 See section 7.10.

Note 2 Thermal thresholds are non-overlapping.

© 2022 Renesas Electronics

Note 2 Can be set in 50 mV steps via control VDD_HYST_ADJ in register CONFIG_B.

5.9 Current Consumption

Unless otherwise noted, the following is valid for $T_J = -40$ °C to +125 °C, $V_{SYS} = 2.8$ V to 5.5 V.

Table 20: Current Consumption Electrical Characteristics

Operating mode	Symbol	Test Conditions	V _{SYS} (Typ)	Unit
POWERDOWN mode	IDDPD	V _{SYS} > 3.0 V LDOCORE enabled Bucks and LDOs disabled	40	μΑ
ACTIVE mode	IDDACT	Bucks and LDOs enabled	400	μΑ

6 Typical Characteristics

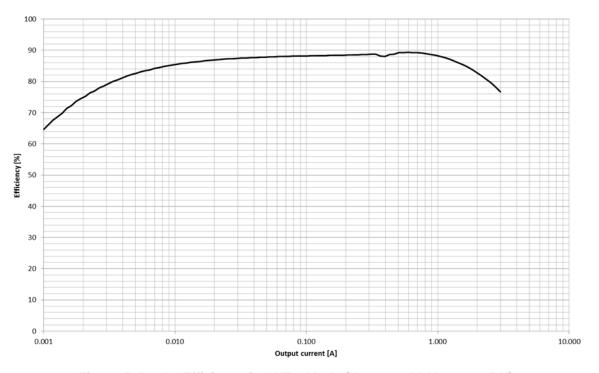


Figure 5: Buck1 Efficiency in AUTO Mode ($V_{IN} = 3.60 \text{ V}$, $V_{OUT} = 1.15 \text{ V}$)

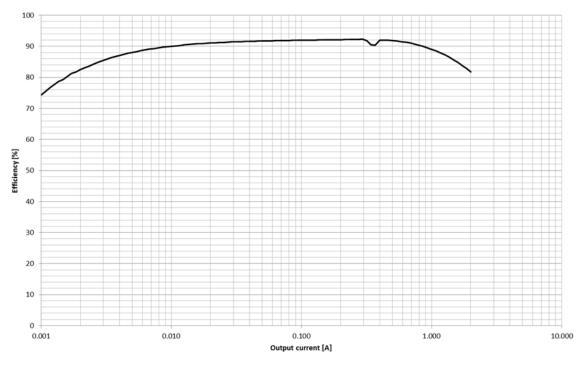


Figure 6: Buck2 Efficiency in AUTO Mode ($V_{IN} = 3.60 \text{ V}, V_{OUT} = 1.80 \text{ V}$)

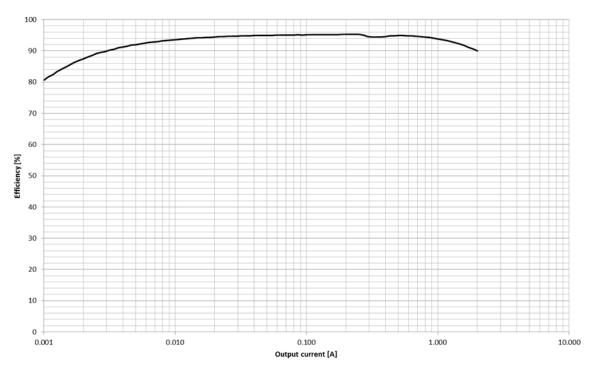


Figure 7: Buck2 Efficiency in AUTO Mode (V_{IN} = 5.00 V, V_{OUT} = 3.34 V)

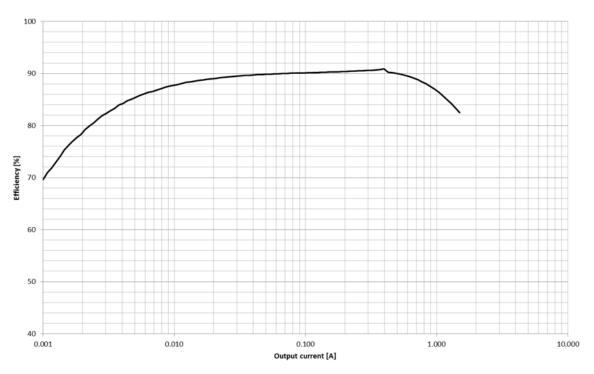


Figure 8: Buck3 Efficiency in AUTO Mode ($V_{IN} = 3.60 \text{ V}$, $V_{OUT} = 1.35 \text{ V}$)

7 Functional Description

7.1 Control Signals

Each of the input signals described below feature a debounce filter. They share a common debounce time control (DEBOUNCING).

7.1.1 nONKEY

nONKEY is an edge-sensitive signal that controls the power mode of DA9061-A. Both falling and rising edges are detected and the time between the edges is measured. This enables different lengths of key press detection. The detection circuitry is enabled in all power modes of the device.

The status of the signal after debouncing can be read from NONKEY (reg. STATUS_A). The mask bit M_NONKEY prevents interrupt and wakeup events that would normally be caused by an nONKEY event.

nONKEY has four modes of operation, see Table 21, which can be selected by NONKEY_PIN. NONKEY_LOCK controls the wakeup event generation of the nONKEY. If NONKEY_LOCK is asserted (depends on NONKEY_PIN), a short nONKEY press (shorter than KEY_DELAY) will not generate a wakeup.

Table 21: nONKEY Functions

nONKEY_PIN	Function
00	An event (E_nONKEY) is generated when nONKEY is asserted. If not masked, the event causes an interrupt. A wakeup is triggered if the device is in POWERDOWN mode.
01	A timer is started when nONKEY is asserted. If the signal is de-asserted before the time programmed in KEY_DELAY, an event (E_nONKEY) is generated at the rising edge. If the signal stays asserted and the timer reaches the programmed value, an event is generated and nONKEY_LOCK is asserted.
10	A timer is started when nONKEY is asserted. If the signal is de-asserted before the time programmed in KEY_DELAY, an event (E_nONKEY) is generated at the rising edge. If the signal stays asserted and the timer reaches the programmed value, an event is generated, nONKEY_LOCK is asserted, and a power-down sequence is triggered by automatically clearing SYSTEM_EN.
11	A timer is started when nONKEY is asserted. If the signal is de-asserted before the time programmed in KEY_DELAY, an event (E_nONKEY) is generated at the rising edge, SYSTEM_EN is cleared, and STANDBY is asserted. If the signal stays asserted and the timer reaches the programmed value, an event is generated, nONKEY_LOCK is asserted, and SYSTEM_EN and STANDBY are cleared.

Whenever nONKEY_LOCK is asserted, a long key press (longer than the time programmed in KEY_DELAY) is required to wake up from POWERDOWN mode. If the wakeup is also desired after a short key press, nONKEY LOCK has to be cleared before entering the POWERDOWN mode.

7.1.2 nRESETREQ

nRESETREQ is an active-low reset request that causes DA9061-A to enter RESET mode. The transition to the RESET mode is handled by the power sequencer and it can be sped up by setting the HOST_SD_MODE bit. Before entering the RESET mode, a fault log bit is set (nRESETREQ) and nRESET is asserted.

nRESETREQ should be tied to an always-on rail that is supplied in all modes of the DA9061-A such as VSYS. It is not recommended to tie nRESETREQ to any of the regulator outputs.

7.1.3 nRESET

nRESET is an active-low reset output intended for resetting the host processor of the system. The signal can be configured as either push-pull or open drain output (PM_O_TYPE).

nRESET is always asserted upon a cold boot from the no-power mode. It is always asserted at the beginning of a shutdown sequence to the RESET mode. nRESET may also be asserted at the beginning of the sequence to the POWERDOWN mode, if configured in control NRES_MODE.

De-assertion of nRESET is controlled by a reset timer. After being asserted, nRESET remains low until the reset timer, which was started from the selected trigger signal, expires. The reset timer trigger can be selected via RESET_EVENT and set to one of the following: an external signal triggering the wakeup (EXT_WAKEUP), an internal signal indicating the end of the first power-up sub-sequence (SYS_UP), an internal signal indicating the end of the second power-up sub-sequence (PWR_UP), or the transition of DA9061-A from reset to POWERDOWN mode. The expiry time can be configured via RESET_TIMER from 1 ms to 1 s. If RESET_TIMER is set to 0 ms, nRESET is deasserted immediately after the trigger selected with RESET_EVENT.

7.1.4 nIRQ

nIRQ is a level-sensitive interrupt signal. It can be configured either as a push-pull or an open drain output (selected via PM_O_TYPE). The polarity of nIRQ can be selected with IRQ_TYPE.

nIRQ is asserted when an unmasked event has occurred. The nIRQ will not be released until all event registers have been cleared. New events that occur while reading an event register are saved until the event register is cleared, ensuring that the host processor captures them. The same will happen to all events occurring when the power sequencer is in transition.

7.2 2-Wire Interface

The 2-wire interface provides access to the control and status registers. The interface supports operations compatible to the standard, fast, fast-plus, and high-speed modes of the I²C bus specification Rev. 3. Communication on the 2-wire bus is always between two devices; one acting as the master and the other as the slave. The DA9061-A only operates as a slave. The default address is 0xB0, this is configurable via OTP, see IF_BASE_ADDR. I²C addresses are stated as 8-bit addresses including R/W bit; for example, 0xB0 is the 8-bit address equivalent to the 7-bit address 0x58 plus the R/W bit = 0 (Write).

SCL transmits 2-wire clock data and SDA transmits the bidirectional data. The 2-wire interface is open-drain supporting multiple devices on one line. The bus lines have to be pulled high by an external pull-up resistor ($2 \text{ k}\Omega$ to $20 \text{ k}\Omega$). The attached devices drive the bus lines low by connecting them to ground. As a result, two devices can drive the bus simultaneously without conflict. In standard/fast mode the highest frequency of the bus is 400 kHz. The exact frequency can be determined by the application and it does not have any relation to the DA9061-A internal clock signals. DA9061-A stays within the described host clock speed limitations and does not initiate clock slow-down. An automatic interface reset is triggered when the clock signal ceases toggling for >35 ms (controlled in TWOWIRE_TO).

When the SDA is stuck, the bus clears after receiving nine clock pulses. Operation in high-speed mode at 3.4 MHz requires a minimum interface supply voltage of 1.8 V and a mode change in order to enable slope-control. The high-speed mode can be enabled on a transfer-by-transfer basis by sending the master code (0000 1XXX) at the beginning of the transfer. The DA9061-A does not make use of clock stretching and delivers read data without delay up to 3.4 MHz.

Alternatively, the interface can be configured to use high-speed mode continuously via PM_IF_HSM, so that the master code is not required at the beginning of every transfer. This reduces communication overhead on the bus and limits the attachable bus slaves to compatible devices.

7.2.1 Register Map Paging

The 2-wire interface has direct access to two pages of the DA9061-A register map (up to 256 addresses). The register at address zero on each page is used as a page control register (the LSB of control PAGE is ignored). Writing to the page control register changes the active page for all subsequent read/write operations unless an automatic return to page 0 is selected using control REVERT. Unless REVERT was asserted after modifying the active page, it is recommended to read back the page control register to ensure that future data exchange is accessing the intended registers.

DA9061-A also offers an alternative way to access register pages which avoids writing explicitly to PAGE. DA9061-A responds to multiple consecutive slave addresses and updates PAGE automatically based on the slave address. For example, when IF_BASE_ADDR[7:4] = 0xB the slave address changes PAGE as follows:

Slave address = $0xB0 \Rightarrow PAGE = 0x00$

Slave address = $0xB2 \Rightarrow PAGE = 0x02$

7.2.2 Details of the 2-Wire Protocol

All data is transmitted across the 2-wire bus in 8-bit groups. To send a bit, the SDA line is driven at the intended state while the SCL is low. Once the SDA has settled, the SCL line is brought high and then low. This pulse on SCL stores the SDA bit in the receiver's shift register.

A 2-byte serial protocol is used: one address byte and one data byte. Data and address transfer transmits the MSB first for both read and write operations. All transmissions begin with the START condition from the master during which the bus is in IDLE state (the bus is free). It is initiated by a high-to-low transition on the SDA line while the SCL is in high state. A STOP condition is indicated by a low-to-high transition on the SDA line while the SCL is in high state. The START and STOP conditions are illustrated in Figure 9.

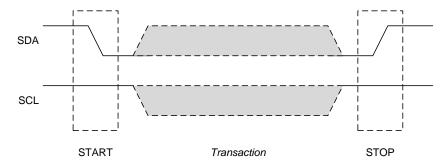


Figure 9: Timing of the START and STOP Conditions

DA9061-A monitors the 2-wire bus for a valid slave address whenever the interface is enabled. It responds immediately when it receives its own slave address. This is acknowledged by pulling the SDA line low during the following clock cycle (white blocks marked with 'A' in the following figures).

The protocol for a register write from master to slave consists of a START condition, a slave address, a read/write-bit, 8-bit address, 8-bit data, and a STOP condition. DA9061-A responds to all bytes with an ACK. A register write operation is illustrated in Figure 10.

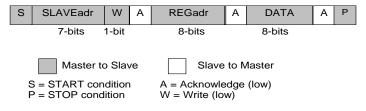


Figure 10: Byte Write Operation

When the host reads register data the DA9061-A first has to access the target register address with write access and then with read access and a repeated START, or alternatively a second START, condition. After receiving the data, the host sends NACK and terminates the transmission with a STOP condition, see Figure 11.

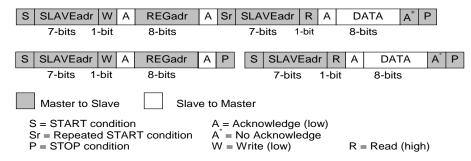


Figure 11: Examples of Byte Read Operations

Consecutive (page) read-out mode is initiated from the master by sending an ACK instead of NACK after receiving a byte, see Figure 12. The 2-wire control block then increments the address pointer to the next register address and sends the data to the master. The data bytes are read continuously until the master sends a NACK followed by a subsequent STOP condition directly after receiving the data. If a non-existent 2-wire address is read out then the DA9061-A will return code zero.

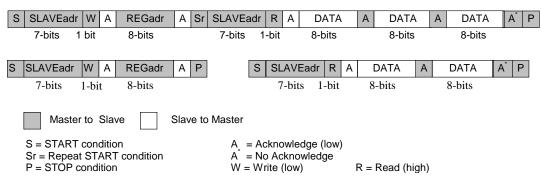


Figure 12: 2-Wire Page Read

The slave address after the repeated START condition must be the same as the previous slave address.

Consecutive (page) write mode is supported if the master sends several data bytes after sending the register address. The 2-wire control block then increments the address pointer to the next 2-wire address, stores the received data, and sends an ACK until the master sends a STOP condition. The page write mode is illustrated in Figure 13.

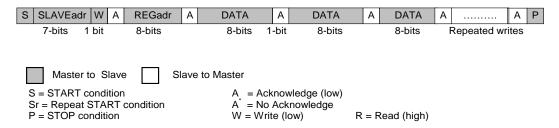


Figure 13: 2-Wire Page Write

A repeated write mode can be enabled with WRITE_MODE control. In this mode, the master can execute back-to-back write operations to non-consecutive addresses by transmitting register addresses and data pairs. The data is stored in the address specified by the preceding byte. The repeated write mode is illustrated in Figure 14.

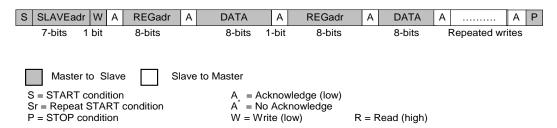


Figure 14: 2-Wire Repeated Write

If a new START or STOP condition occurs within a message, the bus returns to idle mode.

7.3 GPIOs

DA9061-A features five general purpose IO pins. The basic structure of the GPIOs is depicted in Figure 15. As illustrated, there are several additional functions:

- alternate function
- forwarding
- regulator control
- sequencer WAIT_STEP
- interrupt and wakeup generation

The GPIOs are operational in POWERDOWN and ACTIVE modes. However, GPIs can be configured as disabled in POWERDOWN mode in register PD_DIS (control GPI_DIS). In other modes, the GPIO is disabled and all ports are configured as open drain outputs in high impedance state. The level transitions on inputs will no longer be detected, but I/O drivers will keep their configuration and programmed levels.

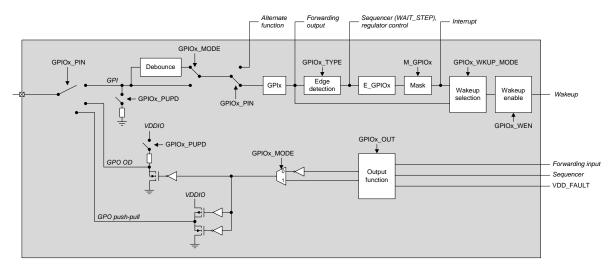


Figure 15: General GPIO Block Diagram

The functionality of a GPIO is configured in GPIO<x>_PIN, as listed in Table 22.

Table 22: GPIO Functions

GPIO <x>_PIN</x>	Functio n	GPIO <x>_MOD E</x>	GPIO <x>_TY PE</x>	GPIO <x>_WKUP_MO DE</x>	GPIO <x>_WEN</x>
0	Alternate function	No effect	No effect	No effect	No effect
1	GPI	0: Debounce off 1: Debounce on	0: Active low 1: Active high	0: Edge-sensitive wakeup 1: Level-sensitive wakeup	0: Wakeup disabled 1: Wakeup enabled
2	GPO Open drain	0: Output low 1: Output high	No effect	No effect	No effect
3	GPO Push-pull	0: Output low 1: Output high	No effect	No effect	No effect

7.3.1 **GPI Functionality**

When configured as a GPI, the polarity of the input can be selected with GPIO<x>_TYPE. A debouncing filter can be applied on the input signals with a configurable debouncing time (control DEBOUNCING). An event is generated at the active edge of the input. The active edge is determined by the signal polarity configured in GPIO<x>_TYPE. The event can be further configured to generate a wakeup via GPIO<x>_WKUP_MODE and GPIO<x>_WEN. An internal pull-down can be activated for the inputs in GPIO<x>_PUPD.

A level sensitive wakeup event can also be configured for each GPI via GPIO<x>_WKUP_MODE and GPIO<x>_WEN. The functionality of the level-sensitive wakeup is described in Table 25.

7.3.1.1 Regulator Control

GPIO1, GPIO2, and GPIO3 can be used for controlling DA9061-A regulators. When configured as GPIs, they can be used to enable regulators or select between their two output voltage settings.

As seen in Figure 15, the regulator control is branched after the GPIO<x>_TYPE control allowing active edge delegation for the regulator control. Finally, the functionality for the GPI is selected with the regulator controls BUCK<x>_GPI, LDO<x>_GPI, VBUCK<x>_GPI, and VLDO<x>_GPI.

One GPI can be used to control the same function on multiple regulators simultaneously. When a regulator is controlled by a GPI, the same function (on/off or voltage selection) can no longer be controlled by the power supply sequencer. The regulator still responds normally to register writes to the control bit.

Enable/Disable Control

A GPI is used for enabling/disabling regulators when it is selected in one of the BUCK<x>_GPI or LDO<x>_GPI controls. A passive to active transition sets the regulator enable bit (BUCK<x>_EN, LDO<x>_EN), and an active to passive transition clears it.

Output Voltage Control

A GPI is used for the output voltage selection when it is selected in one of the VBUCK<x>_GPI or VLDO<x>_GPI controls. A passive to active transition sets the voltage selection bit (VBUCK<x>_SEL, VLDO<x>_SEL), and an active to passive edge clears it.

7.3.1.2 Sequencer WAIT STEP

GPIO3 can be used for the WAIT_STEP functionality. The power sequencer can be programmed to wait for either a rising or falling edge of the WAIT_STEP input, see Section 7.9.4. The active edge is selected from GPIO<x>_TYPE.

7.3.2 **GPO Functionality**

The outputs can be configured as push-pull or open drain outputs, see Table 22. An internal pull-up can be enabled/disabled from GPIO<x>_PUPD (open drain mode). The GPIO<x>_MODE settings can control the output state.

Instead of controlling the output with GPIO<x>_MODE, a selection of alternatives is available in the GPIO<x>_OUT controls. These include: the forwarding function, see Section 7.3.4, the power supply sequencer, see Section 7.9, and the status of the supply voltage supervision (nVDD_FAULT). When the GPIO is configured as an output and GPIO<x>_OUT is set to 0x0, the GPIO<x>_MODE determines the state of the output.

7.3.2.1 nVDD FAULT

nVDD_FAULT gives the status of the system supply monitoring, see Section 7.11. The assertion of nVDD_FAULT indicates that the main supply input voltage is low (Vsys < Vdd_FAULT_UPPER) and therefore informs the host processor that the power will soon shut down. It can be configured to drive a GPO from the GPIO<x>_OUT controls. The driver type (push-pull, open drain) selection and pull-up resistor control function normally. The GPIO<x>_MODE can be used to invert the incoming nVDD_FAULT signal.

7.3.3 Alternate Functions

GPIO0, GPIO2, and GPIO4 can be used for alternate functions. These are digital control signals that don't employ the debouncing, event detection, or interrupt generation functions. Only the input buffer of the GPIO block is employed. The alternate functions of DA9061-A are listed in Table 23 and described in the following subsections. A debouncing filter can be applied also on the alternate functions with a configurable debouncing time (control DEBOUNCING).

Table 23: GPIO Alternate Input Functions

GPIO	Alternate Function	Description
GPIO0	WDKICK	Watchdog kick or disable
GPIO1	-	
GPIO2	PWR_EN	Power mode control
GPIO3	-	
GPIO4	SYS_EN	Power mode control

7.3.3.1 SYS EN

SYS_EN (pin GPIO4) controls the SYSTEM_EN bit and thereby the power mode of DA9061-A. It is part of the power supply sequencer functionality described in Section 7.9. SYS_EN is an edge-sensitive signal and its polarity can be chosen in the GPIO4_TYPE control.

Asserting SYS_EN causes an interrupt (E_GPIx) and a wakeup event. De-asserting SYS_EN triggers a power-down sequence but no interrupt.

7.3.3.2 PWR EN

PWR_EN (pin GPIO2) controls the POWER_EN bit and thereby the power mode of DA9061-A. It is part of the power supply sequencer functionality described in Section 7.9. PWR_EN is an edge-sensitive signal and its polarity can be chosen in the GPIO2_TYPE control. A wakeup event can be generated after assertion of PWR_EN if so configured in GPIO2_WEN.

7.3.3.3 WDKICK

A rising edge of the WDKICK signal resets the watchdog counter. The polarity of the signal can be chosen in the GPIO0_TYPE control. If the signal is kept asserted, the watchdog is disabled as the counter is not incremented (WDG_MODE), see Section 7.13.

7.3.4 **GPIO Forwarding**

GPIO forwarding works between GPIOs 0, 1, 2, and 3. Any of these GPIs can be routed directly to GPO0, 1, and 3 after debouncing. Forwarding is one of the options for the GPIO<x>_OUT control.

7.4 Dynamic Voltage Control

All of DA9061-A's buck converters can be controlled in several ways to achieve Dynamic Voltage Control (DVC). The buck converters feature a voltage ramping feature that enables smooth transition from one voltage setting to another.

All output voltages can be controlled with software via the 2-wire interface (VBUCK<x>_A). The 2-wire interface is operational when the device is in ACTIVE mode.

7.5 Regulator Voltage A and B Selection

In addition, all regulators feature A and B settings which can be programmed with different voltages (VBUCK<x>_A, VBUCK<x>_B), one of which is chosen according to the operating mode of the system (VBUCK<x>_SEL, VLDO<x>_SEL). In addition to the output voltage, the A and B settings include a bit to force the regulator into SLEEP mode which reduces the quiescent current.

The selection between the A and B settings can be done either with software via the 2-wire interface or by the power sequencer, see Section 7.9. Furthermore, each regulator can be enabled with a GPI pin, see Section 7.3.1.1, and the selection between the A and B settings done with another GPI.

7.6 LDOs

All LDOs employ Dialog Semiconductor's Smart Mirror™ dynamic biasing technology, see Figure 16, which maintains high performance over a wide range of operating conditions and a power saving mode (SLEEP mode) to minimize the quiescent current during very low output current. The circuit technique offers significantly higher gain bandwidth performance than conventional designs, enabling higher power supply rejection performance at higher frequencies. PSRR is maintained across the full operating current range however quiescent current consumption is scaled to demand improved efficiency when current demand is low.

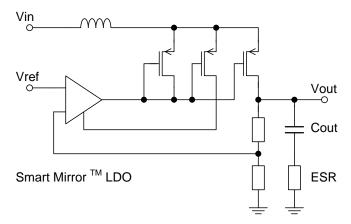


Figure 16: Smart Mirror Voltage Regulator

7.6.1 Control

The LDOs can be enabled by writing directly to a control bit (LDO<x>_EN), controlling it via a GPI, see Section 7.3.1.1, or assigning it to a power sequencer step, see Section 7.9.2. Each LDO features two voltage control registers (VLDO<x>_A/VLDO<x>_B) that allow two output voltage preconfigurations. The active setting can then be selected either with a control bit (VLDO<x>_SEL), via a GPI, see Section 7.3.1.1, or automatically based on the DA9061-A power mode. The SLEEP mode of the LDOs can be linked to either the A or B setting (LDO<x>_SL_A/LDO<x>_SL_B). Therefore, the LDO will switch to SLEEP mode when the setting is active.

LDO1 differs from the other LDOs because it can be configured as an always-on regulator. This means that it is also enabled in RESET mode, see Section 7.8.2.

7.6.2 Current Limit

Each LDO provides over-current detection. The current limit is fixed for each LDO based on their current capability. If any of the LDOs' current limit is exceeded for longer than 10 ms, an event, E_LDO_LIM, is triggered. The status of the limit comparator can be observed from LDO<x>_ILIM (reg. STATUS_D). If an LDO's current limit is exceeded for longer than 200 ms, the LDO is automatically disabled. This shutdown feature can be disabled by clearing the LDO_SD control. Once disabled due to an over-current, the LDO must be re-enabled by one of the sources described in Section 7.6.1.

7.6.3 Output Pull-Down

When over-voltage (1.06 * VLDO<x>) occurs, the voltage regulators enable an internal load to discharge the output back to its configured voltage. This feature can be disabled in LDO<x>_PD_DIS.

7.7 Switching Regulators

DA9061-A includes four step-down switching regulators operating at 3 MHz. All switching regulators employ a synchronous topology with an internal NFET, thus eliminating the need for an external Schottky diode. The output voltage can be set in 10 mV steps (20 mV steps for Buck2) and the regulation accuracy is ±3% over the whole operating temperature range. Static line and load regulation are also considered in this accuracy.

The switching frequency (3 MHz) is high enough to warrant the use of a small 1.0 µH inductor. The programming of the converter current limit depends on the coil parameters, as illustrated in Table 24.

Table 24: Buck Current Limit

Min. ISAT (mA)	Frequency (MHz)	Buck Current Limit (mA)
1750	3	1500
1460	3	1200
1180	3	950
940	3	750

7.7.1 Control

The buck can be enabled manually by writing directly to a control register, with an external signal connected to GPI, see Section 7.3.1.1, or by assigning it to a power sequencer step, see Section 7.9.2. Each buck converter features two voltage control registers (VBUCK<x>_A/VBUCK<x>_B) which can be programmed with two different voltages. The active setting can then be selected via a control bit (VBUCK<x>_SEL), via a GPI, see Section 7.3.1.1, or automatically based on the power mode of DA9061-A.

7.7.2 Output Voltage Slewing

To limit in-rush current from the input supply, the buck converters can achieve a new output voltage with controlled ramping. Ramping is achieved by stepping through all the VBUCK values between the old and new settings, at a rate defined by SLEW_RATE. The actual output slew rate, in mV/µs, for a particular buck converter is then defined by the minimum voltage step of that buck and the common step time programmed in SLEW_RATE. During PFM mode, the negative slew rate is load dependent and might be lower than the one mentioned above. An event E_DVC_RDY is triggered when all buck converters have reached their target voltage.

7.7.3 Soft-Start

The buck converter supports two options for starting up. The normal start-up option ramps up the power rail as fast as possible; typically within 1 ms. This implies a high in-rush current. The slow start-up is selected by setting BUCK_SLOWSTART, which increases the start-up time and limits the input current.

7.7.4 Active Discharge

When switching off a buck converter the output rail can be actively discharged. This feature is enabled by setting BUCK_ACTV_DISCHRG. The discharge is implemented by ramping down the output voltage using DVC.

7.7.5 Peak Current Limit

All buck converters feature a programmable current limit (BUCK<x>_ILIM). The current limit protects the inductor and the pass devices from excessive current. If the current limit is exceeded, the buck continues to run normally but the duty cycle is limited.

7.7.6 Operating Mode

The operating mode of each converter can be set via the buck control (BUCK<x>_MODE) to synchronous (PWM), sleep (PFM), or auto. In auto mode the buck converter switches between PWM and PFM depending on the load current. The current consumption during PWM operation is 10 mA and drops to <1 µA in shutdown.

NOTE

It is not recommended that the Auto mode transition feature is used under certain operating conditions. Customers wishing to use the Auto mode transition feature should first check with their Dialog FAE.

In addition, the buck mode can be controlled with the A and B setting. If BUCK<x>_SL_B is set, the buck is forced to SLEEP mode when the B setting is active. Similarly, if BUCK<x>_SL_A is set, the buck is forced to SLEEP mode when the A setting is active.

7.7.7 Half-Current Mode

Buck1 can operate in half-current mode where the quiescent current is reduced by disabling half of the pass devices. As the name implies, enabling this option halves the output current, and therefore, this feature is valuable in applications where quiescent current is critical and full current is not needed. This feature is controlled with BUCK1_FCM. If the bit is asserted (BUCK1_FCM = 1), the buck is in full-current mode and the full current is available. If the bit is de-asserted, the buck is in half-current mode. Operating the buck in full-current mode requires twice as much output capacitance ($2 \times 47 \mu F$) as the half-current mode ($2 \times 22 \mu F$).

7.8 Power Modes

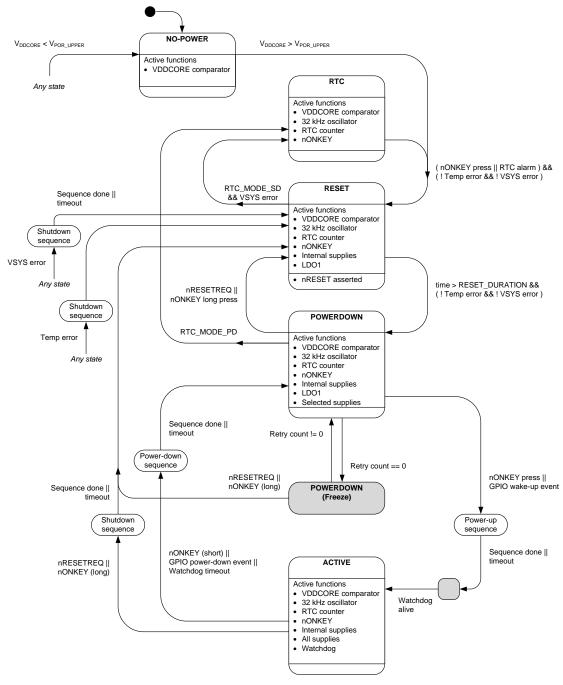


Figure 17: DA9061-A Power Modes (State Transition Conditions Follow C-Language Syntax)

7.8.1 NO-POWER Mode

The NO-POWER mode is initial state when powering up the DA9061-A for the first time. When the system supply rises above a threshold, DA9061-A enters RESET mode.

7.8.2 RESET Mode

In RESET mode, the internal supplies, and LDO1 (if configured as an always-on supply) are enabled. All other DA9061-A supplies are disabled.

DA9061-A is in RESET mode whenever a complete application shutdown is required. RESET mode can be triggered by the user, a host processor, or an internal event.

RESET mode can be triggered by the user:

- from a long press of nONKEY (interruptible by host) defined by control SHUT_DELAY
- by pressing a reset switch that is connected to port nRESETREQ (non-interruptible)

RESET mode can be forced from the host processor (non-interruptible):

- by asserting nRESETREQ (falling edge)
- by writing to control SHUTDOWN

DA9061-A error conditions that force RESET mode (non-interruptible) are:

- no WATCHDOG write (WDKICK signal assertion) from the host inside the watchdog time window (if watchdog was enabled)
- an under-voltage detected on VSYS (Vsys < Vdd_Fault_Lower)
- an internal junction over-temperature

With the INT_SD_MODE, HOST_SD_MODE and KEY_SD_MODE controls, the shutdown sequences from internal fault, host or user triggered, are individually configured to either implement the reverse timing of the power-up sequence or transfer immediately to the RESET mode by skipping any delay from sequencer or dummy slot timers. For the host to determine the reason for the reset a FAULT_LOG register stores the root cause (either KEY_RESET or NRESETREQ). The host processor resets this register by writing asserted bits with '1'.

KEY_SD_MODE = 1 triggers a complete power on reset (POR) (instead of entering RESET mode) after the related keys are pressed extendedly.

If an OTP read is aborted, DA9061-A enters RESET mode without an asserted bit inside register FAULT_LOG.

A shutdown sequence to RESET mode will start with the assertion of the nRESET port. After the sequencer completes the power down sequence (sequencer position 0), DA9061-A continues to RESET mode with only the following active circuits: LDOCORE (at reduced output voltage 2.2 V), control interfaces and GPIOs, BCD counter, band-gap and over-temperature/VSYS comparators. All regulators, except for LDO1, are automatically disabled to avoid battery drainage. As described in Section 7.1.3, nRESET is always asserted at the beginning of a shutdown sequence to RESET mode, and remains asserted when DA9061-A is in RESET mode.

When entering RESET mode, all user and system events are cleared. The DA9061-A's register configuration will be re-loaded from OTP when leaving the RESET mode (with the exception of control AUTO_BOOT in case of a VDD_START fault).

FAULT_LOG, GP_ID_10 to GP_ID_19 and other non-OTP loaded registers will not be changed when leaving the RESET mode.

Some reset conditions such as writing a 1 to control SHUTDOWN, a watchdog error, or a junction over-temperature will be automatically cleared. Other reset triggers such as asserting nRESETREQ, need to be released to proceed from RESET to POWERDOWN mode. If the application requires regulators to discharge completely before a power-up sequence, a minimum duration of the RESET mode can be selected via RESET_DURATION.

If the reset was initiated by a user's long press of nONKEY, initially only KEY_RESET is set and the nIRQ port will be asserted. KEY_RESET signals the host that a shutdown sequence is started. If the host does not then clear KEY_RESET within 1 second by writing a '1' to the related bit in register FAULT_LOG, the shutdown sequence will complete. When the reset condition has disappeared, DA9061-A requires a supply ($V_{SYS} > V_{DD_FAULT_UPPER}$) that provides enough power to start-up from the POWERDOWN mode.

7.8.3 POWERDOWN Mode

The POWERDOWN mode is a low-power state where most of the regulators are disabled. The transition from active to POWERDOWN mode (and vice versa) is handled by the programmable sequencer. Entry to POWERDOWN mode from ACTIVE mode is triggered by the de-assertion of SYSTEM_EN (either via SYS_EN or register access) or by a short press of nONKEY. The POWERDOWN mode is also passed during start-up and shutdown to RESET mode sequences.

In POWERDOWN mode the internal supplies are enabled, and the control interface and GPIOs are operational.

The power state machine features a retry counter that limits the number of transitions from POWERDOWN to ACTIVE under certain conditions. A watchdog timeout triggers POWERDOWN mode entry, but it does not necessarily clear the conditions that trigger a transition back to the ACTIVE mode. This could cause an endless loop between the ACTIVE and POWERDOWN modes. Therefore, after each watchdog timeout the retry counter is decremented, and after the retry counter reaches zero, DA9061-A blocks all wakeup events and stays in POWERDOWN mode. This freeze function can be regarded as a substate of the POWERDOWN mode that is undetectable from outside the DA9061-A.

Table 25 describes the state transitions with a level-sensitive wakeup and the freeze function.

Table 25: State Transitions with a Level-Sensitive (LS) GPI

Current state	LS GPI	SYS_EN	PWR_EN	Freeze Note 1	Next state
POWERDOWN	х	х	х	1	POWERDOWN
POWERDOWN	0	0	х	0	POWERDOWN
POWERDOWN	х	1	0	0	SYSTEM
POWERDOWN	х	1	1	0	ACTIVE
POWERDOWN	1	х	0	0	SYSTEM
POWERDOWN	1	х	1	0	ACTIVE
SYSTEM	0	0	х	х	POWERDOWN
SYSTEM	х	1	0	х	SYSTEM
SYSTEM	х	1	1	х	ACTIVE
SYSTEM	1	х	0	х	SYSTEM
SYSTEM	1	х	1	х	ACTIVE
ACTIVE	0	0	х	х	POWERDOWN
ACTIVE	х	1	0	х	SYSTEM
ACTIVE	х	1	1	х	ACTIVE
ACTIVE	1	х	0	х	SYSTEM
ACTIVE	1	х	1	х	ACTIVE

Note 1 In this table, "Freeze" represents the result of the comparison retry count = 0.

The following events will reset the retry counter and release the state machine from the freeze state:

- De-assertion of all blocked level-sensitive wakeup conditions
- Entry to the RESET mode (over-temperature error, nRESETREQ or long press of nONKEY)

The freeze operation is illustrated in Figure 18. Once the freeze state is cleared, DA9061-A continues operating normally. The freeze function can be enabled in the FREEZE_EN register and the number of retries triggering the freeze can be configured in NFREEZE.

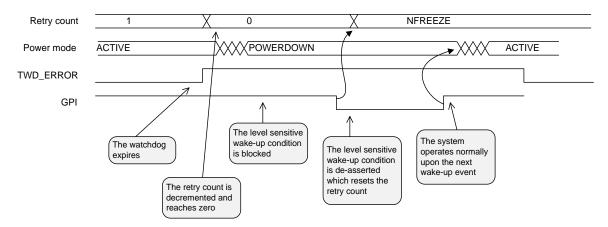


Figure 18: Freeze Function

7.8.4 Power-Up, Power-Down, and Shutdown Sequences

The power-up, power-down, and shutdown sequences, see Figure 17, are handled by the power supply sequencer, see Section 7.9. All power-up sequences are identical, and the power-down sequences mirror the power-up sequences.

The shutdown sequences are also identical to the power-down sequence, but after reaching POWERDOWN mode, the state machine automatically proceeds to RESET mode. The shutdown sequences caused by an internal error or nRESETREQ can be sped up from the INT_SD_MODE and HOST_SD_MODE controls: see Section 7.8.2.

7.8.5 ACTIVE Mode

In the ACTIVE mode, all supplies and functions are active. The transition from POWERDOWN to ACTIVE mode is handled by the programmable sequencer. DA9061-A enters ACTIVE mode after the sequence has completed and the watchdog is enabled (if configured to use watchdog).

Status information can be read from the host processor via the 2-wire interface and DA9061-A can flag interrupt requests to the host via a dedicated interrupt port (nIRQ).

7.9 Power Supply Sequencer

DA9061-A features a programmable power supply sequencer that handles the system power-up, power-down, and shutdown sequences. The sequencer has a step-up counter, a timer that controls the step period, and a set of comparators that trigger power-on/off events at specific steps of the counter. The structure of the sequencer is depicted in Figure 19.

The sequencer is composed of 16 steps, and the step time can be programmed between 32 µs and 8.192 ms. The sequencer will step until it reaches a programmable maximum value (MAX_COUNT), whereupon an interrupt is issued. At each step, the sequencer will enable all the functions that are pointing to that particular step.

The power-up and -down sequences cannot be configured separately. When DA9061-A is powering down, the sequencer will execute whatever was configured for the power-up sequence but in reverse order. Supplies can also be configured to stay on in POWERDOWN mode. In this case, the sequencer does not disable the regulator but switches to its B-configuration, see Section 7.5.

If any pointer is programmed to a step higher than MAX_COUNT, the function is no longer controlled by the sequencer. Only the regulator control pointers (LDO<x>_STEP, BUCK<x>_STEP) are allowed to point to step 0. Setting any other pointer to step 0, effectively disables that function.

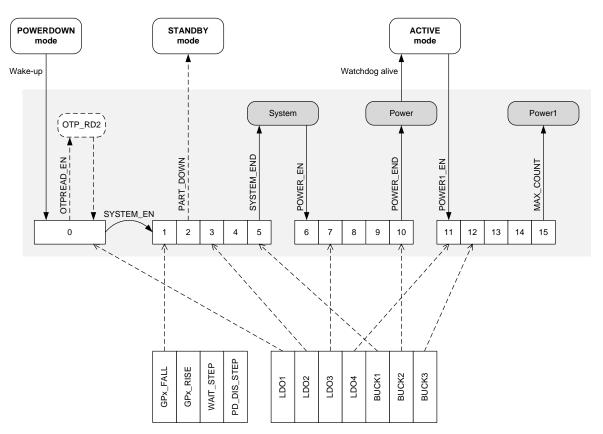


Figure 19: Structure of the Power Supply Sequencer

NOTE

STANDBY mode can only be reached on power-down, not power-up.

7.9.1 Sub-Sequences

As illustrated in Figure 19, the sequencer is partitioned into three sub-sequences. These three sub-sequences can be used to define three power modes for the target application and to move between them in a controlled sequence as a response to control signals or register writes.

The first sub-sequence starts from step 0 and ends at a step defined by the SYSTEM_END pointer. After the power-up is triggered, DA9061-A performs a partial OTP read (OTP_RD2) if OTPREAD_EN is set. It then waits for control SYSTEM_EN to trigger the first sub-sequence. If SYSTEM_EN is already set in the OTP the first sub-sequence starts automatically after the power-up trigger. Alternatively, SYSTEM_EN can be asserted through the SYS_EN input. When the sequencer reaches the SYSTEM_END step the first sub-sequence is completed and the sequencer starts waiting for control POWER_EN to trigger the second sub-sequence. If POWER_EN is already set in the OTP, the sequencer does not stop after the first sub-sequence. Alternatively, POWER_EN can be asserted through the PWR_EN input or via a register access.

The second sub-sequence starts from the step following SYSTEM_END and stops at a step defined by the POWER_END pointer. When the sequencer reaches the POWER_END step (and the watchdog is active), DA9061-A enters ACTIVE mode. The final sub-sequence is triggered by asserting POWER1_EN via a register write. The third sub-sequence starts from the step following POWER_END and stops at a step defined by the MAX_COUNT pointer. If MAX_COUNT points to an earlier step than SYSTEM_END or POWER_END the remaining steps of the sequencer are disabled.

The power-down sequences are executed in reverse order to the power-up sequences. If the power-down sequence is triggered from the ACTIVE mode by de-asserting POWER_EN, the sequencer stops after reversing to the SYSTEM_END step. However, if the power-down sequence is triggered by de-asserting SYSTEM_EN, the sequencer does not stop and reverses back to step 0. Furthermore, if the power-down sequence is triggered by a watchdog timeout, the sequencer reverses to step 0 immediately.

A partial power-down can be achieved by setting control STANDBY. This makes the sequencer stop at the step pointed to by the PART_DOWN pointer. The next power-up will then start from the PART_DOWN step, instead of step 0. The PART_DOWN pointer has to point to a step smaller than the SYSTEM_END pointer.

7.9.2 Regulator Control

Each of DA9061-A's buck converters and LDOs can be assigned to any of the sequencer steps. In general, when the sequencer reaches a step to which a regulator is assigned, that regulator is enabled by the sequencer. Likewise, when the sequencer reaches the same step on the way down, the regulator is disabled. Multiple supplies can point to the same counter step; however, enabling multiple regulators in the same slot can lead to increased in-rush currents.

In the simplest scheme, the sequencer enables regulators during a power-up, and disables them during a power-down. This functionality is achieved by setting BUCK<x>_AUTO/LDO<x>_AUTO and clearing BUCK<x>_CONF/LDO<x>_CONF. Alternatively, the sequencer can be configured to keep the regulator enabled, but switch between the A and B settings in ACTIVE and POWERDOWN modes. The functionality of the BUCK<x>_AUTO/LDO<x>_AUTO and BUCK<x>_CONF/LDO<x>_CONF controls is summarized in Table 26.

Table 26: Regulator Control Functionality of the Power Supply Sequencer

Power-	Up (Sequ	encer Dir	ection Up)		
		POWER Mode (B		ACTIVE (After)	E Mode	
AUTO	CONF	EN	SEL	EN SEL		Sequencer Functionality
0	0	x	x	0	0	The regulator is disabled at the step pointed to by BUCK <x>_STEP/LDO<x>_STEP and the A-setting (VBUCK<x>_A/VLDO<x>_A) is activated.</x></x></x></x>
Х	1	х	х	1	0	The regulator is enabled at the step pointed to by
1	х	х	х	1	0	BUCK <x>_STEP/LDO<x>_STEP and the A-setting (VBUCK<x>_A/VLDO<x>_A) is activated.</x></x></x></x>
Power-	Down (S	equencer	Direction	Down)		
		ACTIVE (Before)		POWEI Mode (RDOWN After)	
AUTO	CONF	EN	SEL	EN	SEL	
х	0	х	х	0	0	The regulator is disabled at the step pointed to by BUCK <x>_STEP/LDO<x>_STEP and the A-setting (VBUCK<x>_A/VLDO<x>_A) is activated.</x></x></x></x>
Х	1	х	х	1	1	The regulator stays enabled but it is switched to the B-setting (VBUCK <x>_B/VLDO<x>_B).</x></x>

Step 0 of the sequencer has a special meaning. If control DEF_SUPPLY is set, the sequencer treats all regulators pointing to step 0 as default supplies. This means that the regulators are enabled automatically when entering the POWERDOWN mode. Regulators assigned to other steps are only enabled after a wakeup condition occurs. Apart from this, step 0 acts the same as steps 1 to 15. If control DEF_SUPPLY is 0, step 0 of the sequencer does not have any affect.

As mentioned in Section 7.6.1, LDO1 can be programmed as an always-on supply. This is achieved by setting controls DEF_SUPPLY, LDO1_CONF, and LDO1_EN in the OTP. In normal operation, when the sequencer moves between ACTIVE and POWERDOWN modes, LDO1 behaves as presented in Table 26. However, if DA9061-A moves to the RESET mode, this configuration keeps LDO1 enabled. This is not the case for any other regulator.

7.9.3 **GPO Control**

Any GPO can be asserted or de-asserted in a sequencer step (GP_RISE<x>_STEP, GP_FALL<x>_STEP). The GPO control is summarized in Table 27. If a GPO is controlled by the sequencer, it is driven to its inactive state when DA9061-A is in RESET mode. The GPIO control only works in sequencer steps greater than zero.

Table 27: GPO Control Functionality of the Power Supply Sequencer

GPIO <x>_MODE</x>	GPO State After Reset	Sequencer Direction	Previous GPO state	GPO Transition at GP_RISE <x></x>	GPO Transition at GP_FALL <x></x>
0 (active low)	High	Up High		High to low	-
			Low	-	Low to high
		Down	High	-	High to low
			Low	Low to high	-
1 (active high)	Low	Up	High	-	High to low
			Low	Low to high	-
		Down	High	High to low	-
			Low	-	Low to high

Datasheet Revision 2.6 11-Feb-2022

7.9.4 Wait Step

One of the sequencer steps (any step greater than zero) can be configured as a wait step, in which the sequencer stays until an event is detected in the GPI3 input, see Section 7.3.1.2.

NOTE

The E_GPI3 event has to be cleared after the power-up sequence completes. Otherwise, the wait step in the next power-up sequence will be ineffective.

The wait step features an optional 500 ms timeout, which can be used when the wait event never occurs. If the timeout occurs, the steps following the wait step are not executed and a shutdown sequence to RESET mode is triggered. The shutdown reason is signaled with the WAIT_SHUT bit. Alternatively, the wait step can be used as a configurable delay in the sequence (WAIT_MODE, WAIT_TIME).

7.9.5 Power-Down Disable

The PD_DIS_STEP pointer can be used to define a step in the power-up sequence above which a group of functions will be enabled. The functions concerned can be controlled in the PD_DIS register. Similarly, in the power-down sequence, the same groups of functions will be disabled when the sequencer proceeds below the PD_DIS_STEP.

7.10 Junction Temperature Supervision

To protect DA9061-A from damage due to excessive power dissipation, the junction temperature is continuously monitored. The monitoring is split into three thresholds T_{WARN} (125 °C), T_{CRIT} (140 °C), and T_{POR} (150 °C).

If the junction temperature rises above the first threshold (T_{WARN}), the event E_TEMP (in register EVENT_B) is asserted. If the event is not masked, this will issue an interrupt. This first level of temperature supervision is intended for non-invasive temperature control, where the necessary measures for cooling the system down are left to the host software.

If the junction temperature increases even further and crosses the second threshold (Tcrit) the temperature error flag TEMP_CRIT (in register FAULT_LOG) is issued and a shutdown sequence to RESET mode is triggered, see Section 7.8.2. The nRESET output is asserted at the beginning of the shutdown sequence. Therefore, the second level of the temperature supervision does not rely on the host software to take counter-measures. The fault flag can be evaluated by the application after the next power up.

There is also a third temperature threshold (T_{POR}) which causes DA9061-A to enter RESET mode without any sequencing and stop all functions. This prevents possible permanent damage due to fast temperature increases.

7.11 System Supply Voltage Supervision

Two comparators supervise the system supply VSYS. One is monitoring the under-voltage level (V_{DD_FAULT_LOWER}) and the other is indicating a good system supply (V_{DD_FAULT_UPPER}). The V_{DD_FAULT_LOWER} threshold is OTP configurable and can be set via the VDD_FAULT_ADJ control from 2.5 V to 3.25 V in 50 mV steps. The V_{DD_FAULT_UPPER} threshold is also OTP configurable and can be set via the VDD_HYST_ADJ control from 100 mV to 450 mV higher than the V_{DD_FAULT_LOWER} threshold.

 V_{SYS} dropping below the $V_{DD_FAULT_UPPER}$ threshold asserts the event E_VDD_WARN (in register EVENT_B). If the event is not masked, this will issue an interrupt, which can be used by the host processor as an indication to decrease its activity. The status can also be signaled with a dedicated nVDD_FAULT signal, see Section 7.3.2.1.

If V_{SYS} drops below $V_{DD_FAULT_LOWER}$, the supply error flag VDD_FAULT (in register FAULT_LOG) is asserted and a shutdown sequence to RESET mode is triggered, see Section 7.8.2. The nRESET output is asserted at the beginning of the shutdown sequence.

7.12 Internal Oscillator

An internal oscillator provides a nominal 6.0 MHz clock that is divided to 3.0 MHz for the buck converters. The frequency of the internal oscillator is adjusted during the initial start-up sequence of DA9061-A to within 5 % of the nominal 6.0 MHz.

Some applications require that the software is able to modify the oscillator frequency at runtime, for example to avoid interference effects caused by harmonics of the buck converter operating frequency. This can be achieved by writing a non-zero value to control OSC_FRQ. This control is a signed 4-bit value where each step changes the frequency by about 1.33 %, which gives a range from -10.65 % (-8) to +9.33 % (+7).

The tolerance of this frequency will affect most absolute timer values and PWM repetition rates.

7.13 Watchdog

The watchdog provides system monitoring functionality. A watchdog timeout triggers shutdown to POWERDOWN mode, signaled in register FAULT_LOG. The watchdog can also be configured to control a secondary reset output in addition to nRESET. This requires that one of the GPIOs is configured as a GPO, controlled by the sequencer. The assertion/de-assertion is used as a reset, and the GPIO is configured as a sequencer controlled GPO. This way, after the watchdog triggers the power-down, the reset output is asserted by the sequencer during the power-down sequence.

Once enabled, the watchdog cannot be stopped and it runs in ACTIVE mode (this feature can be bypassed with an OTP configuration). The source clock of the watchdog is the internally generated slow frequency clock.

After a cold boot, the watchdog is activated when entering ACTIVE mode. This first watchdog kick is required for DA9061-A to move to the ACTIVE mode after a cold boot, as illustrated in Figure 17. After the watchdog is activated, the host must kick the watchdog periodically within the watchdog period programmed with the TWDSCALE control. An interrupt can be generated to warn the host processor of the watchdog timeout. The time for the warning interrupt is half of the watchdog period.

The kick can be done by a register write to control WATCHDOG (reg. CONTROL_F) or with the GPIO0 pin configured as a WDKICK input. With control WDG_MODE = 1, the behavior of the WDKICK input is modified so that either a pulse or a permanently asserted input prevents a watchdog timeout. In this mode the parameter tWDMIN is not applicable.

If the host processor fails to feed the watchdog, DA9061-A asserts a fault bit and enters POWERDOWN mode. The watchdog timeout can also be configured to assert a reset output. This requires that one of the GPIOs is configured as a reset output and assigned to a power sequencer step, see Section 7.9.

After each watchdog timeout a retry counter is decremented. If the retry counter reaches zero, DA9061-A will stay in POWERDOWN mode, as described in Section 7.8.3. The number of allowed retries can be programmed in the NFREEZE control.

© 2022 Renesas Electronics

8 Register Map

8.1 Register Page Control

The device register map is larger than the address range directly addressable from the host interface. The page control register provides the higher address bits and control for using the paging mechanism. There are several copies of this register, one per host interface. These copies are mirrored to addresses 0x080, 0x100 and 0x180.

8.2 Overview

Table 28 provides a summary of the registers. A description of each register is provided in Appendix A.

Table 28: Register Summary

Address	Name	7	6	5	4	3	2	1	0		
Page Contr	Page Control										
0x000	PAGE_C ON	REVERT	WRITE_MO DE PAGE								
Power Manager Control and Monitoring											
0x001	STATUS _A	Reserved					DVC_BUSY	Reserved	NONKEY		
0x002	STATUS _B	Reserved			GPI4	GPI3	GPI2	GPI1	GPI0		
0x004	STATUS _D	Reserved				LDO4_ILIM	LDO3_ILIM	LDO2_ILIM	LDO1_ILIM		
0x005	FAULT_ LOG	WAIT_SHU T	NRESETRE Q	KEY_RESE T	TEMP_CRIT	VDD_STAR T	VDD_FAULT	POR	TWD_ERROR		
IRQ Events											
0x006	EVENT_ A	Reserved	EVENTS_C	EVENTS_B	E_SEQ_RD Y	E_WDG_WA RN	Reserved	Reserved	E_NONKEY		
0x007	EVENT_ B	E_VDD_WA RN	Reserved	E_DVC_RD Y	Reserved	E_LDO_LIM	Reserved	E_TEMP	Reserved		
0x008	EVENT_ C	Reserved			E_GPI4	E_GPI3	E_GPI2	E_GPI1	E_GPI0		
IRQ Masks											
0x00A	IRQ_MA SK_A	Reserved			M_SEQ_RD Y	M_WDG_W ARN	Reserved	Reserved	M_NONKEY		
0x00B	IRQ_MA SK_B	M_VDD_WA RN	Reserved	M_DVC_RD Y	Reserved	M_LDO_LIM	Reserved	M_TEMP	Reserved		
0x00C	IRQ_MA SK_C	Reserved			M_GPI4	M_GPI3	M_GPI2	M_GPI1	M_GPI0		
System Co	ntrol										
0x00E	CONTR OL_A	Reserved	M_POWER1 _EN	M_POWER_ EN	M_SYSTEM _EN	STANDBY	POWER1_EN	POWER_EN	SYSTEM_EN		
0x00F	CONTR OL_B	BUCK_SLO WSTART	NFREEZE		nONKEY_L OCK	NRES_MOD E	FREEZE_EN	WATCHDOG _PD	Reserved		
0x010	CONTR OL_C	DEF_SUPP LY	SLEW_RATE		OTPREAD_ EN	AUTO_BOO T	DEBOUNCING	i			
0x011	CONTR OL_D	Reserved					TWDSCALE				
0x012	CONTR OL_E	V_LOCK	Reserved			Reserved	Reserved	Reserved	Reserved		
0x013	CONTR OL_F	Reserved					WAKE_UP	SHUTDOWN	WATCHDOG		
0x014	PD_DIS	PMCONT_D IS	Reserved	BBAT_DIS	CLDR_PAU SE	Reserved	PMIF_DIS	Reserved	GPI_DIS		
GPIO Cont	rol										

Address	Name	7	6	5	4	3	2	1	0	
0x015	GPIO_0	GPIO1_WE	GPIO1_TYP	GPIO1_PIN		GPIO0_WE	GPIO0_TYPE	GPIO0_PIN		
	_1 GPIO_2	N GPIO3_WE	GPIO3_TYP ORIGINAL RINA		N GPIO2_WE	_	GPIO2_PIN			
0x016	_3	N N	E GPIO3_PIN			N N	GPIO2_TYPE			
0x017	GPIO_4	Reserved				GPIO4_WE N	GPIO4_TYPE GPIO4_PIN			
0x01C	GPIO_W KUP_M ODE	Reserved			GPIO4_WK UP_MODE	GPIO3_WK UP_MODE	GPIO2_WKU P_MODE	GPIO1_WKU P_MODE	GPIO0_WKUP _MODE	
0x01D	GPIO_M ODE0_4	Reserved			GPIO4_MO DE	GPIO3_MO DE	GPIO2_MOD E	GPIO1_MOD E	GPIO0_MODE	
0x01E	GPIO_O UT0_2	GPIO2_OUT		GPIO1_OUT			GPIO0_OUT			
0x01F	GPIO_O UT3_4	Reserved			GPIO4_OUT		GPIO3_OUT			
Power Sup	ply Control									
0x021	BUCK1_ CONT	Reserved	VBUCK1_GP	I	Reserved	BUCK1_CO NF	BUCK1_GPI		BUCK1_EN	
0x022	BUCK3_ CONT	Reserved	VBUCK3_GP	I	Reserved	BUCK3_CO NF	BUCK3_GPI		BUCK3_EN	
0x024	BUCK2_ CONT	Reserved	VBUCK2_GP	I	Reserved	BUCK2_CO NF	BUCK2_GPI		BUCK2_EN	
0x026	LDO1_C ONT	LDO1_CON F	VLDO1_GPI		Reserved	LDO1_PD_D IS	LDO1_GPI	LDO1_EN		
0x027	LDO2_C ONT	LDO2_CON F	VLDO2_GPI		Reserved	LDO2_PD_D IS	LDO2_GPI	LDO2_EN		
0x028	LDO3_C ONT	LDO3_CON F	VLDO3_GPI		Reserved	LDO3_PD_D IS	LDO3_GPI	LDO3_EN		
0x029	LDO4_C ONT	LDO4_CON F	VLDO4_GPI		Reserved	LDO4_PD_D IS	LDO4_GPI	LDO4_EN		
0x032	DVC_1	VLDO4_SEL	VLDO3_SEL	VLDO2_SEL	VLDO1_SEL	VBUCK2_S EL	VBUCK3_SEL Reserved		VBUCK1_SEL	
Power Seq	uencer					1				
0x081	SEQ	NXT_SEQ_S	TART			SEQ_POINTER				
0x082	SEQ_TI MER	SEQ_DUMM'	Y			SEQ_TIME				
0x083	ID_2_1	LDO2_STEP				LDO1_STEP				
0x084	ID_4_3	LDO4_STEP				LDO3_STEP				
0x088	ID_12_1 1	PD_DIS_STE	Р			Reserved				
0x089	ID_14_1 3	Reserved				BUCK1_STE	-			
0x08A	ID_16_1 5	BUCK2_STE	P			BUCK3_STE	<u> </u>			
0x08D	ID_22_2 1	GP_FALL1_S	STEP			GP_RISE1_S	TEP			
0x08E	ID_24_2 3	GP_FALL2_S	STEP			GP_RISE2_S	TEP			
0x08F	ID_26_2 5	GP_FALL3_S	STEP			GP_RISE3_S	TEP			
0x090	ID_28_2 7	GP_FALL4_S	STEP			GP_RISE4_STEP				
0x091	ID_30_2 9	GP_FALL5_S	STEP			GP_RISE5_STEP				
0x092	ID_32_3 1					WAIT_STEP				
0x095	SEQ_A	POWER_ENG)			SYSTEM_END				
0x096	SEQ_B	PART_DOWN	١			MAX_COUNT				

Address	Name	7	6	5	4	3	2	1	0
0x097	WAIT	WAIT_DIR		TIME_OUT	_OUT WAIT_MOD WAIT_TIME				
0x099	RESET	RESET_EVE	NT	RESET_TIME	R				
Power Sup	oly Control					T			
0x09A	BUCK_I LIM_A	Reserved				BUCK2_ILIM			
0x09B	BUCK_I LIM_B	Reserved				BUCK3_ILIM			
0x09C	BUCK_I LIM_C	Reserved				BUCK1_ILIM			
0x09E	BUCK1_ CFG	BUCK1_MOD	Ε	BUCK1_PD_ DIS	Reserved				Reserved
0x09F	BUCK3_ CFG	BUCK3_MOD	E	BUCK3_PD_ DIS	Reserved	Reserved	Reserved		
0x0A0	BUCK2_ CFG	BUCK2_MOD	E	BUCK2_PD_ DIS	Reserved				
0x0A4	VBUCK1 _A	BUCK1_SL_ A	VBUCK1_A						
0x0A5	VBUCK3 _A	BUCK3_SL_ A	VBUCK3_A						
0x0A7	VBUCK2 _A	BUCK2_SL_ A	VBUCK2_A						
0x0A9	VLDO1_ A	LDO1_SL_A	Reserved	rved VLDO1_A					
0x0AA	VLDO2_ A	LDO2_SL_A	Reserved	VLDO2_A					
0x0AB	VLDO3_ A	LDO3_SL_A	Reserved	VLDO3_A					
0x0AC	VLDO4_ A	LDO4_SL_A	Reserved	VLDO4_A					
0x0B5	VBUCK1 _B	BUCK1_SL_ B	VBUCK1_B						
0x0B6	VBUCK3 _B	BUCK3_SL_ B	VBUCK3_B						
0x0B8	VBUCK2 _B	BUCK2_SL_ B	VBUCK2_B						
0x0BA	VLDO1_ B	LDO1_SL_B	Reserved	VLDO1_B					
0x0BB	VLDO2_ B	LDO2_SL_B	Reserved	VLDO2_B					
0x0BC	VLDO3_ B	LDO3_SL_B	Reserved	VLDO3_B					
0x0BD	VLDO4_ B	LDO4_SL_B	Reserved	VLDO4_B					
Customer 7	rim and Co	onfiguration							
0x105	INTERF ACE	IF_BASE_AD	DR			Reserved			
0x106	CONFIG _A	Reserved	PM_IF_HSM	PM_IF_FMP	PM_IF_V	IRQ_TYPE	PM_O_TYPE	Reserved	PM_I_V
0x107	CONFIG _B	Reserved	VDD_HYST_/	ADJ		VDD_FAULT	_ADJ		
0x108	CONFIG _C	Reserved	BUCK2_CLK _INV	Reserved	BUCK3_CLK _INV	BUCK1_CLK _INV	BUCK_ACTV _DISCHRG	Reserved	
0x109	CONFIG _D	Reserved		FORCE_RE SET	Reserved		SYSTEM_EN _RD	NIRQ_MODE	GPI_V
0x10A	CONFIG _E	Reserved			BUCK2_AU TO	Reserved	BUCK3_AUT O	Reserved	BUCK1_AUTO
0x10C	CONFIG _G	Reserved				LDO4_AUT O	LDO3_AUTO	LDO2_AUTO	LDO1_AUTO

Address	Name	7	6	5	4	3	2	1	0
0x10D	CONFIG _H	Reserved	BUCK1_FC M	Reserved	Reserved	Reserved	Reserved		
0x10E	CONFIG _I	LDO_SD	INT_SD_MO DE	HOST_SD_ MODE	KEY_SD_M ODE	WATCHDO G_SD	nONKEY_SD	NONKEY_PIN	
0x10F	CONFIG _J	IF_RESET	TWOWIRE_ TO	RESET_DUR	ATION	SHUT_DELA	Y	KEY_DELAY	
0x110	CONFIG _K	Reserved			GPIO4_PUP D	GPIO3_PUP D	GPIO2_PUPD	GPIO1_PUPD	GPIO0_PUPD
0x112	CONFIG _M	OSC_FRQ				WDG_MOD E	Reserved	Reserved	Reserved
Customer [Device Spe	cific							
0x121	GP_ID_ 0	GP_0							
0x122	GP_ID_ 1	GP_1							
0x123	GP_ID_ 2	GP_2							
0x124	GP_ID_ 3	GP_3							
0x125	GP_ID_ 4	GP_4							
0x126	GP_ID_ 5	GP_5							
0x127	GP_ID_ 6	GP_6							
0x128	GP_ID_ 7	GP_7							
0x129	GP_ID_ 8	GP_8							
0x12A	GP_ID_ 9	GP_9							
0x12B	GP_ID_ 10	GP_10							
0x12C	GP_ID_ 11	GP_11							
0x12D	GP_ID_ 12	GP_12							
0x12E	GP_ID_ 13	GP_13							
0x12F	GP_ID_ 14	GP_14							
0x130	GP_ID_ 15	GP_15							
0x131	GP_ID_ 16	GP_16							
0x132	GP_ID_ 17	GP_17							
0x133	GP_ID_ 18	GP_18							
0x134	GP_ID_ 19	GP_19							
0x181	DEVICE _ID	DEV_ID							
0x182	VARIAN T_ID	MRC				VRC			
0x183	CUSTO MER_ID	CUST_ID							

0x184

9 Application Information

9.1 Component Selection

The following recommended components are examples selected from requirements of a typical application. The final component selection will be dependent on the specific application. The electrical characteristics (for example, supported voltage/current range) have to be cross-checked and component types may need to be adapted from the individual needs of the target circuitry.

9.1.1 Resistors

Table 29: Recommended Resistors

Pin	Value	Tol.	Size (mm)	Rating (mW)	Part
IREF	200 kΩ	±1%	1005	100	Panasonic ERJ2RKF2003x

9.1.2 Capacitors

Ceramic capacitors are used as bypass capacitors at all VDD and output rails. When selecting a capacitor, especially ones with high capacitance and small size, the DC bias characteristic has to be taken into account.

On the VSYS main supply rail, a minimum distributed capacitance of 40 μ F (actual capacitance after voltage and temperature derating) is required.

Buck input capacitors should be within 1.5 mm distance from the supply pin, and the output capacitor should be close to the inductor.

Table 30: Recommended Automotive Grade Capacitors

Pin	Value	Tol.	Size (mm)	Height (mm)	Temp. Char.	Rating (V)	Part
VLDO1	1 x 1 µF	±10%	2012	1.25	X7R	16	GCM21BR71C105KA58
VLDOx	1 x 2.2 μF	±20%	2012	1.25	X7R	10	GCM21BR71A225MA37
VBUCK2 I _{OUT} ≤ 1.5 A	2 x 22 µF	±20%	3216	1.6	X7R	6.3	GCM31CR70J226ME23
VBUCK2 I _{OUT} > 1.5 A	2 x 47 µF	±10%	3216	1.6	X7R	6.3	GCM32ER70J476KE19
VBUCK3	2 x 22 µF	±20%	3216	1.6	X7R	6.3	GCM31CR70J226ME23
VBUCK1 (half-current mode)	2 x 22 µF	±20%	3216	1.6	X7R	6.3	GCM31CR70J226ME23
VBUCK1 (full-current mode)	2 x 47 µF	±10%	3216	1.6	X7R	6.3	GCM32ER70J476KE19
VSYS	1 x 1 µF	±10%	2012	1.25	X7R	16	GCM21BR71C105KA58
VDD_BUCKx	2 x 22 µF	±20%	3216	1.6	X7R	6.3	GCM31CR70J226ME23
	4 x 10 μF	±20%	2012	1.25	X7R	10	GCM21BR71A106ME22
VDD_LDO2	1 x 1 µF	±10%	2012	1.25	X7R	16	GCM21BR71C105KA58
VDD_LDO34	1 x 1 µF	±10%	2012	1.25	X7R	16	GCM21BR71C105KA58
VDDCORE	2.2 µF	±20%	2012	1.25	X7R	10	GCM21BR71A225MA37
VREF	220nF	±20%	1005	0.5	X7R	16	GCM155R71C224ME02

Table 31:Recommended Consumer Grade Capacitors

Pin	Value	Tol.	Size (mm)	Height (mm)	Temp. Char.	Rating (V)	Part
VLDO1	1 μF	±10%	1005	0.55	X5R	10	GRM155R61A105KE15
VLDOx	2.2 µF	±20%	1005	0.55	X5R	10	GRM155R60J225ME95#
VBUCK2	2 x 22 µF	±20%	2012	0.95	X5R	6.3	GRM219R60J226M***
I _{OUT} ≤ 1.5 A		±20%	1005	0.5	X5R	4.0	CL05A226MR5NZNC
VBUCK2	2 x 47 µF	±20%	2012	0.95	X5R	4.0	GRM219R60G476M***
I _{ОUТ} > 1.5 A		±20%	1608	0.8	X5R	4.0	CL10A476MR8NZN
VBUCK3	2 x 22 µF	±20%	1608	1	X5R	6.3	GRM188R60J226MEA0
		±20%	1005	0.5	X5R	4.0	CL05A226MR5NZNC
		±20%	1608	0.8	X5R	4.0	CL10A476MR8NZN
VBUCK1	2 x 22 µF	±20%	1608	1	X5R	6.3	GRM188R60J226MEA0
(half-current mode)		±20%	1005	0.5	X5R	4.0	CL05A226MR5NZNC
VBUCK1	2 x 47 µF	±20%	2012	0.95	X5R	4.0	GRM219R60G476M***61
(full-current mode)		±20%	1608	0.8	X5R	4.0	CL10A476MR8NZN
VSYS	1 x 1 µF	±10%	1005	0.5	X5R	10	GRM155R61A105KE15D
VDD_BUCKx	2 x 22 µF	±20%	2012	1.25	X5R	10	LMK212BJ226MG-T
	4 x 10 μF	±20%	1005	0.5	X5R	10	GRM155R61A106ME21
VDD_LDO2	1 x 1 µF	±10%	1005	0.5	X5R	10	GRM155R61A105KE15D
VDD_LDO34	1 x 1 µF	±10%	1005	0.5	X5R	10	GRM155R61A105KE15D
VDDCORE	2.2 µF	±20%	1005	0.55	X5R	6.3	GRM155R60J225ME95
VREF	220 nF	±15%	1005	0.5	X5R	16	GRM155R71C224KA12

9.1.3 Inductors

Inductors should be selected based upon the following parameters:

- ISAT specifies the current causing a reduction in the inductance by a specific amount, typically 30 %
- IRMS specifies the current causing a temperature rise of a specific amount
- DC resistance (DCR) is critical for converter efficiency and should be therefore minimized.
- ESR at the buck switching frequency is critical to converter efficiency in PFM mode and should be therefore minimized.

Inductance is given in Table 32.

Table 32: Recommended Inductors

Buck	Value	ISAT (A)	IRMS (A)	DCR (typ. mΩ)	Size (W×L×H mm)	Part
Buck1 (half-current mode), Buck2, Buck3	1 μΗ	2.7	2.3	55	2.0×1.6×1.0	Toko 1285AS-H-1R0M
		2.65	2.45	60	2.0×1.6×1.0	Tayo Yuden MAKK2016T1R0M
		2.9	2.2	60	2.0×1.6×1.0	TDK TFM201610A-1R0M
Buck1	1 μΗ	3.4	3	60	2.5×2.0×1.0	Toko1269AS-H-1R0M

Buck	Value	ISAT (A)	IRMS (A)	DCR (typ. mΩ)	Size (W×L×H mm)	Part
(full-current mode)		3.6	3.1	45	2.5×2.0×1.2	Tayo Yuden MAMK2520T1R0M
		3.8	3.5	45	2.5×2.0×1.2	Toko 1239AS-H-1R0M
		3.9	3.1	48	3.2×2.5×1.0	Toko1276AS-H-1R0M
		4.7	4.1	35	2.5×2.0×1.2	TDK TFM252012ALMA1R0MT AA
		3.35	2.5	52	3.0×3.0×1.2	Cyntec PST031B-1R0MS
		4.9	7.9	18.5	3.5x3.5x1.5	Coilcraft XGL3515-102ME
		8.8	12	8.2	4.0×4.0×2.1	Coilcraft XGL4020-102ME

9.2 PCB Layout

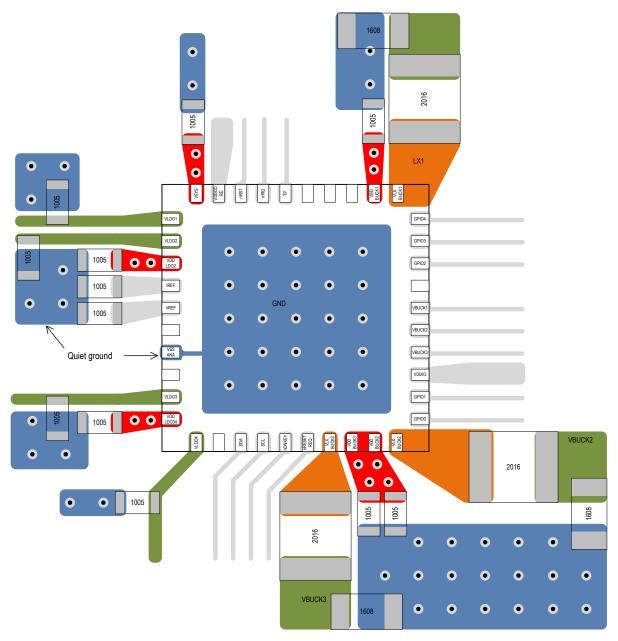


Figure 20: PCB Layout for DA9061-A

9.2.1 General Recommendations

Appropriate trace width and quantity of vias should be used for all power supply paths.

Too high trace resistances can prevent the system from achieving the best performance, for example, the efficiency and the current ratings of switching converters might be degraded. Furthermore, the PCB may be exposed to thermal hot spots, which can lead to critical overheating due to the positive temperature coefficient of copper.

Special care must be taken with the DA9061-A pad connections. The traces connecting the pads should of the same width as the pads and they should become wider as soon as possible.

It is recommended to create a separate quiet ground to which the VREF capacitor, IREF resistor, and the crystal capacitors are connected. The PCB layout should ensure these component grounds are kept quiet, that is, they should be separated from the main ground return path for the noisy power

ground. The quiet ground can then be connected to the main ground at the paddle, as shown in Figure 20.

All traces carrying high discontinuous currents should be kept as short as possible.

Noise sensitive analog signals, such as feedback lines or crystal connections, should be kept away from traces carrying pulsed analog or digital signals. This can be achieved by separation or shielding with quiet signals or ground traces.

9.2.2 LDOs and Switched Mode Supplies

The placement of the distributed capacitors on the VSYS rail must ensure that all VDD inputs and VSYS are connected to a bypass capacitor close to the pad. It is recommended placing at least two 1 μ F capacitors close to the VDD_LDOx pads and at least one 10 μ F close to the VDD_BUCKx pads.

Using a local power plane underneath the device for VSYS might be considered.

Transient current loops in the area of the switching converters should be minimized.

The common references (IREF, VREF) should be placed close to the device and cross-coupling to any noisy digital or analog trace must be avoided.

Output capacitors of the LDOs can be placed close to the input pins of the supplied devices (remote from the DA9061-A).

Care must be taken with trace routing to ensure that no current is carried on feedback lines of the buck output voltages (VBUCK<x>).

The inductor placement is less critical since parasitic inductances have negligible effect.

9.2.3 Optimizing Thermal Performance

DA9061-A features a ground paddle which should be connected with as many vias as possible to the PCB's main ground plane in order to achieve good thermal performance.

Solder mask openings for the landing pads must be arranged to prohibit solder flowing into vias.

10 Ordering Information

The ordering number consists of the part number followed by a suffix indicating the packing method. The "xx" represents a placeholder for the specific OTP variant. For details and availability, please consult Dialog Semiconductor's website or your local sales representative.

Table 33: Ordering Information

Part Number	Package (mm)	Package Description	MOQ	Comment
DA9061-xxAM1-A	QFN40, 6 x 6	Tray, 490 pcs	14 Trays - 6860	AEC-Q100 Grade 2
DA9061-xxAM2-A, Note 1	QFN40, 6 x 6	T&R, 4000 pcs		AEC-Q100 Grade 2
DA9061-xxAMC-A	QFN40, 6 x 6	T&R, 1100 pcs	6 Reels, - 6600	AEC-Q100 Grade 2
DA9061-xxAM1-AT	QFN40, 6 x 6	Tray, 490 pcs	14 Trays - 6860	AEC-Q100 Grade 2
DA9061-xxAM2-AT, Note 1	QFN40, 6 x 6	T&R, 4000 pcs		AEC-Q100 Grade 2
DA9061-xxAMC-AT	QFN40, 6 x 6	T&R, 1100 pcs	6 Reels, - 6600	AEC-Q100 Grade 2

Note 1 Large reel sizes are no longer supported, contact sales for further information

11 Package Marking

Package Marking									
A1 Corner >			N	l arking	Conte	ent			Format
1st	•			TR					Orientation
2nd		3				O	0		Logo
3rd	D	A	9	0	6	1	(e3	Part No.
4th	X	X	V	V	-	A	T		OTP/Silicon Version/Option
5th	у	у	w	W	z	z	z	z	Date Code
Date Code Format: yy = Year, ww = Week, zzzz = Traceability									
xx identifies th	ne OTP \	√ariant,	vv ma	y be u	sed to	show	the s	ilicon v	ersion.
-A and -AT op	tionally i	ndicate	the Au	utomot	ive and	d Auto	motiv	e high t	emp test options.

Appendix A Register Descriptions

This appendix describes the registers summarized in Section 8. In the following tables, if the description does not explicitly list behaviors for 0 and 1, then the description applies to 1 only.

A.1 PAGE 0

A.1.1 Page Control

Table 34: PAGE_CON (0x000)

Field	Bit	Туре	Description
REVERT	7:7	R/W	PAGE switches the register page until rewritten. PAGE reverts to 0 after one access.
WRITE_MODE	6:6	R/W	2-wire sequential write style. 0: Write data to consecutive addresses 1: Write data to random addresses using address/data pairs
Reserved	5:2	R/W	Reserved
PAGE	1:0	R/W	The top 2 bits of the register address. 00: Selects register space 0x00 to 0x7F 01: Selects register space 0x80 to 0xFF 10: Selects register space 0x100 to 0x17F 11: Selects register space 0x180 to 0x1FF

The device register map is larger than the address range directly addressable from the host interface. The page control register provides the higher address bits and control for using the paging mechanism. There are several copies of this register which are mirrored to addresses 0x080, 0x100 and 0x180.

A.1.2 Power Manager Control and Monitoring

Table 35: STATUS_A (0x001)

Field	Bit	Туре	Description
Reserved	7:3	R	Reserved
DVC_BUSY	2:2	R	One or more DVC capable supplies are ramping
Reserved	1:1	R	Reserved
NONKEY	0:0	R	

Table 36: STATUS_B (0x002)

Field	Bit	Туре	Description
Reserved	7:5	R	Reserved
GPI4	4:4	R	GPI4 level
GPI3	3:3	R	GPI3 level
GPI2	2:2	R	GPI2 level
GPI1	1:1	R	GPI1 level
GPI0	0:0	R	GPI0 level

Table 37: STATUS_D (0x004)

Field	Bit	Туре	Description	
Reserved	7:4	R	Reserved	
LDO4_ILIM	3:3	R	LDO4 over-current indicator	
LDO3_ILIM	2:2	R	LDO3 over-current indicator	
LDO2_ILIM	1:1	R	LDO2 over-current indicator	
LDO1_ILIM	0:0	R	LDO1 over-current indicator	

Table 38: FAULT_LOG (0x005)

Field	Bit	Туре	Description
WAIT_SHUT	7:7	R Note 1	Power-down due to sequencer WAIT STEP timeout, see Section 7.9.4.
NRESETREQ	6:6	R Note 1	Power-down due to nRESETREQ pin or control SHUTDOWN.
KEY_RESET	5:5	R Note 1	Power-down due to nONKEY.
TEMP_CRIT	4:4	R Note 1	Junction over-temperature
VDD_START	3:3	R Note 1	Power-down due to VSYS under-voltage before or within 16 s after release of nRESET.
VDD_FAULT	2:2	R Note 1	Power-down due to VSYS under-voltage.
POR	1:1	R Note 1	DA9061-A starts up from NO-POWER.
TWD_ERROR	0:0	R Note 1	Watchdog timeout

Note 1 Cleared from the host by writing back the read value.

A.1.3 IRQ Events

Table 39: EVENT_A (0x006)

Field	Bit	Туре	Description
Reserved	7:7	R	Reserved
EVENTS_C	6:6	R	Event in register EVENT_C is active.
EVENTS_B	5:5	R	Event in register EVENT_B is active.
E_SEQ_RDY	4:4	R Note 1	Sequencer reached final position.
E_WDG_WARN	3:3	R Note 1	Watchdog timeout warning
Reserved	2:1		Reserved
E_NONKEY	0:0	R Note 1	nONKEY event

Note 1 Cleared from the host by writing back the read value.

Table 40: EVENT_B (0x007)

Field	Bit	Туре	Description
E_VDD_WARN	7:7	R Note 1	VSYS under-voltage (Vsys ≤ Vdd_fault_upper).
Reserved	6:6	R	Reserved
E_DVC_RDY	5:5	R Note 1	All supplies have finished DVC ramping.
Reserved	4:4	R	Reserved
E_LDO_LIM	3:3	R Note 1	Any LDO over-current
Reserved	2:2	R	Reserved

Field	Bit	Туре	Description
E_TEMP	1:1	R Note 1	Junction over-temperature (T _J > T _{WARN})
Reserved	0:0		Reserved

Note 1 Cleared from the host by writing back the read value.

Table 41: EVENT_C (0x008)

Field	Bit	Туре	Description
Reserved	7:5	R	Reserved
E_GPI4	4:4	R Note 1	GPI4 event
E_GPI3	3:3	R Note 1	GPI3 event
E_GPI2	2:2	R Note 1	GPI2 event
E_GPI1	1:1	R Note 1	GPI1 event
E_GPI0	0:0	R Note 1	GPI0event

Note 1 Cleared from the host by writing back the read value.

A.1.4 IRQ Masks

Table 42: IRQ_MASK_A (0x00A)

Field	Bit	Туре	Description
Reserved	7:5		Reserved
M_SEQ_RDY	4:4	R/W	IRQ mask for sequencer final position indication (E_SEQ_RDY)
M_WDG_WARN	3:3	R/W	IRQ mask for watchdog timeout warning (E_WDG_WARN)
Reserved	2:1		Reserved
M_NONKEY	0:0	R/W	IRQ mask for nONKEY event (E_NONKEY)

Table 43: IRQ_MASK_B (0x00B)

Field	Bit	Туре	Description
M_VDD_WARN	7:7	R/W	IRQ mask for under-voltage event (E_VDD_WARN) V _{SYS} < V _{DD_FAULT_UPPER}
Reserved	6:6		Reserved
M_DVC_RDY	5:5	R/W	All supplies have finished DVC ramping.
Reserved	4:4		Reserved
M_LDO_LIM	3:3	R/W	IRQ mask for LDO over-current event (E_LDO_LIM)
Reserved	2:2		Reserved
M_TEMP	1:1	R/W	IRQ mask for junction over-temperature event (E_TEMP)
Reserved	0:0		Reserved

Table 44: IRQ_MASK_C (0x00C)

Field	Bit	Туре	Description
Reserved	7:5		Reserved
M_GPI4	4:4	R/W	IRQ mask for GPI4 event (E_GPI4)
M_GPI3	3:3	R/W	IRQ mask for GPI3 event (E_GPI3)
M_GPI2	2:2	R/W	IRQ mask for GPI2 event (E_GPI2)
M_GPI1	1:1	R/W	IRQ mask for GPI1 event (E_GPI1)
M_GPI0	0:0	R/W	IRQ mask for GPI0 event (E_GPI0)

A.1.5 System Control

Table 45: CONTROL_A (0x00E)

Field	Bit	Туре	Description
Reserved	7:7		Reserved
M_POWER1_EN	6:6	R/W	Write mask for POWER1_EN
M_POWER_EN	5:5	R/W	Write mask for POWER_EN
M_SYSTEM_EN	4:4	R/W	Write mask for SYSTEM_EN
STANDBY	3:3	R/W	Clearing control SYSTEM_EN or releasing SYS_EN (GPIO4 alternate function) or a long press of nONKEYwill: 0: Power-down to slot 0.
			1: Power-down as far as defined by the PART_DOWN pointer.
POWER1_EN	2:2	R/W	Target status of power domain POWER1. Bus write masked with M_POWER1_EN.
POWER_EN	1:1	R/W	Target status of power domain POWER. Bus write masked with M_POWER_EN.
SYSTEM_EN	0:0	R/W	Target status of power domain SYSTEM. Bus write masked with M_SYSTEM_EN.

Table 46: CONTROL_B (0x00F)

Field	Bit	Туре	Description
BUCK_SLOWSTART	7:7	R/W	Enable buck slow start (reduced inrush current; increased start-up time).
NFREEZE	6:5	R/W	Block all wakeups after NFREEZE watchdog restart trials.
nONKEY_LOCK	4:4	R/W	0: normal POWERDOWN mode 1: Power-down controlled by KEY_DELAY
NRES_MODE	3:3	R/W	If powering down / up:0: Keep nRESET not asserted 1: Assert / clear nRESET when entering / leaving POWERDOWN
FREEZE_EN	2:2	R/W	Enable watchdog restart limit NFREEZE.
WATCHDOG_PD	1:1	R/W	Watchdog timer is on (1) / off (0) in POWERDOWN mode.
Reserved	0:0		Reserved

Table 47: CONTROL_C (0x010)

Field	Bit	Туре	Description
DEF_SUPPLY	7:7	R/W	1: OTP enables / disables all supplies (except LDOCORE) when sequencer enters slot 0.
SLEW_RATE	6:5	R/W	Buck DVC slew rate step width [10 mV/step (20 mV/step for Buck3)] 00: 4 μ s 01: 2 μ s 10: 1 μ s 11: 0.5 μ s
OTPREAD_EN	4:4	R/W	When leaving POWERDOWN mode supplies are configured from OTP.
AUTO_BOOT	3:3	R/W	After progressing from RESET mode the sequencer 0: requires a wakeup event to start-up. 1: starts up automatically.
DEBOUNCING	2:0	R/W	GPI, nONKEY and nRESETREQ debounce time 000: no debouncing 001: 0.1 ms 010: 1.0 ms 011: 10.24 ms 100: 51.2 ms 101: 256 ms 110: 512 ms 111: 1024 ms

Table 48: CONTROL_D (0x011)

Field	Bit	Туре	Description
Reserved	7:3		Reserved
TWDSCALE	2:0	R/W	Watchdog timeout scaling 0: Watchdog disabled Other: Timeout = 2.048 * 2^(TWDSCALE-1) s

Table 49: CONTROL_E (0x012)

Field	Bit	Туре	Description
V_LOCK	7:7	R/W	Prevent host from writing to registers 0x81 - 0x120 except 0x100.
Reserved	6:0		Reserved

Table 50: CONTROL_F (0x013)

Field	Bit	Туре	Description
Reserved	7:3		Reserved
WAKE_UP	2:2	R/W	Wake-up from POWERDOWN mode. Cleared automatically.
SHUTDOWN	1:1	R/W	Power down to RESET mode. Cleared automatically.
WATCHDOG	0:0	R/W	Reset watchdog timer. Cleared automatically.

Table 51: PD_DIS (0x014)

Field	Bit	Туре	Description
PMCONT_DIS	7:7	R/W	Disable SYS_EN, PWR_EN and PWR1_EN in POWERDOWN mode.
Reserved	6:5		Reserved
CLDR_PAUSE	4:4	R/W	Disable calendar update in POWERDOWN mode.
Reserved	3:3		Reserved
PMIF_DIS	2:2	R/W	Disable 2-wire interface in POWERDOWN mode.
Reserved	1:1		Reserved
GPI_DIS	0:0	R/W	Disable E_GPI <x> events in POWERDOWN mode.</x>

A.1.6 **GPIO Control**

Table 52: GPIO_0_1 (0x015)

Field	Bit	Туре	Description
GPIO1_WEN	7:7	R/W	0: Passive-to-active transition triggers wakeup.
			1: No wakeup
GPIO1_TYPE	6:6	R/W	GPI: active high (1) / low (0)
GPIO1_PIN	5:4	R/W	Function of GPIO1 pin (see GPIO1_OUT if output)
			00: Reserved
			01: Input (opt. regul. HW ctrl.)
			10: Output (open drain)
			11: Output (push-pull)
GPIO0_WEN	3:3	R/W	0: Passive-to-active transition triggers wakeup.
			1: No wakeup
GPIO0_TYPE	2:2	R/W	GPI: active high (1) / low (0)
GPIO0_PIN	1:0	R/W	Function of GPIO0 pin (see GPIO0_OUT if output)
			00: Watchdog trigger input
			01: Input
			10: Output (open drain)
			11: Output (push-pull)

Table 53: GPIO_2_3 (0x016)

Field	Bit	Туре	Description
GPIO3_WEN	7:7	R/W	Passive-to-active transition triggers wakeup. No wakeup
GPIO3_TYPE	6:6	R/W	GPI: active high (1) / low (0)
GPIO3_PIN	5:4	R/W	Function of GPIO3 pin (see GPIO3_OUT if output) 00: Reserved 01: Input (opt. regul. HW ctrl.) 10: Output (open drain) 11: Output (push-pull)
GPIO2_WEN	3:3	R/W	Passive-to-active transition triggers wakeup. No wakeup
GPIO2_TYPE	2:2	R/W	GPI: active high (1) / low (0)
GPIO2_PIN	1:0	R/W	Function of GPIO2 pin (see GPIO2_OUT if output) 00: GPI as PWR_EN 01: Input (opt. regul. HW ctrl.) 10: Output (open drain) 11: nVDD_FAULT

Table 54: GPIO_4 (0x017)

Field	Bit	Туре	Description
Reserved	7:4		Reserved
GPIO4_WEN	3:3	R/W	O: Passive-to-active transition triggers wakeup. 1: No wakeup
GPIO4 TYPE	2:2	R/W	GPI: active high (1) / low (0)
_			
GPIO4_PIN	1:0	R/W	Function of GPIO pad (see GPIO4_OUT if output)
			00: GPI as SYS_EN
			01: Input
			10: Output (open drain)
			11: Output (push-pull)

Table 55: GPIO_WKUP_MODE (0x01C)

Field	Bit	Туре	Description
Reserved	7:5		Reserved
GPIO4_WKUP_MODE	4:4	R/W	GPI4 wakeup is edge (0) / level (1) sensitive.
GPIO3_WKUP_MODE	3:3	R/W	GPI3 wakeup is edge (0) / level (1) sensitive.
GPIO2_WKUP_MODE	2:2	R/W	GPI2 wakeup is edge (0) / level (1) sensitive.
GPIO1_WKUP_MODE	1:1	R/W	GPI1 wakeup is edge (0) / level (1) sensitive.
GPIO0_WKUP_MODE	0:0	R/W	GPI0 wakeup is edge (0) / level (1) sensitive.

Table 56: GPIO_MODE0_4 (0x01D)

Field	Bit	Туре	Description
Reserved	7:5		Reserved
GPIO4_MODE	4:4	R/W	Output, STATIC: the output value Output, other: active low (0) / high (1) Input: debouncing off (0) / on (1)
GPIO3_MODE	3:3	R/W	Output, STATIC: the output value Output, other: active low (0) / high (1) Input: debouncing off (0) / on (1)
GPIO2_MODE	2:2	R/W	Output, STATIC: the output value Output, other: active low (0) / high (1) Input: debouncing off (0) / on (1)
GPIO1_MODE	1:1	R/W	Output, STATIC: the output value Output, other: active low (0) / high (1) Input: debouncing off (0) / on (1)
GPIO0_MODE	0:0	R/W	Output, STATIC: the output value Output, other: active low (0) / high (1) Input: debouncing off (0) / on (1)

Table 57: GPIO_OUT0_2 (0x01E)

Field	Bit	Туре	Description
GPIO2_OUT	7:6	R/W	GPIO output function 00: Static value according GPIO2_MODE 01: nVDD_FAULT 10: Reserved 11: Sequencer controlled
GPIO1_OUT	5:3	R/W	GPIO output function 000: Static value according GPIO1_MODE 001: nVDD_FAULT 010: Reserved 011: Sequencer controlled 100: Forward GPI0 101: Reserved 110: Forward GPI2 111: Forward GPI3
GPIO0_OUT	2:0	R/W	GPIO output function 000: Static value according GPIO0_MODE 001: nVDD_FAULT 010: Reserved 011: Sequencer controlled 100: Reserved 101: Forward GPI1 110: Forward GPI2 111: Forward GPI3

Table 58: GPIO_OUT3_4 (0x01F)

Field	Bit	Туре	Description
Reserved	7:5		Reserved
GPIO4_OUT	4:3	R/W	GPIO output function 00: Static value according GPIO4_MODE 01: nVDD_FAULT 10: Reserved 11: Sequencer controlled
GPIO3_OUT	2:0	R/W	GPIO output function 000: Static value according GPIO3_MODE 001: nVDD_FAULT 010: 32 kHz crystal clock (OUT_32K) 011: Sequencer controlled 100: Forward GPI0 101: Forward GPI1 110: Forward GPI2 111: Reserved

A.1.7 Power Supply Control

Table 59: BUCK1_CONT (0x021)

Field	Bit	Туре	Description
Reserved	7:7		Reserved
VBUCK1_GPI	6:5	R/W	Voltage controlling GPI (passive to active transition: VB*_B, act. to pas.: VB*_A) 00: Sequencer controlled 01: Select GPI1 10: Select GPI2 11: Select GPI3
Reserved	4:4		Reserved
BUCK1_CONF	3:3	R/W	Default supply, or sequenced and on in POWERDOWN
BUCK1_GPI	2:1	R/W	Enabling GPI (passive to active transition: enable, act. to pas.: disable) 00: Sequencer controlled 01: Select GPI1 10: Select GPI2 11: Select GPI3
BUCK1_EN	0:0	R/W	Disable (0) / enable (1) the buck (dependent on on/off priority order)

Table 60: BUCK3_CONT (0x022)

Field	Bit	Туре	Description
Reserved	7:7		Reserved
VBUCK3_GPI	6:5	R/W	Voltage controlling GPI (passive to active transition: VB*_B, act. to pas.: VB*_A) 00: Sequencer controlled 01: Select GPI1

Field	Bit	Туре	Description
			10: Select GPI2
			11: Select GPI3
Reserved	4:4		Reserved
BUCK3_CONF	3:3	R/W	Default supply, or sequenced and on in POWERDOWN
BUCK3_GPI	2:1	R/W	Enabling GPI
			(passive to active transition: enable, act. to pas.: disable)
			00: Sequencer controlled
			01: Select GPI1
			10: Select GPI2
			11: Select GPI3
BUCK3_EN	0:0	R/W	Disable (0) / enable (1) the buck (dependent on on/off priority order)

Table 61: BUCK2_CONT (0x024)

Field	Bit	Туре	Description
Reserved	7:7		Reserved
VBUCK2_GPI	6:5	R/W	Voltage controlling GPI (passive to active transition: VB*_B, act. to pas.: VB*_A) 00: Sequencer controlled 01: Select GPI1 10: Select GPI2 11: Select GPI3
Reserved	4:4		Reserved
BUCK2_CONF	3:3	R/W	Default supply, or sequenced and on in POWERDOWN
BUCK2_GPI	2:1	R/W	Enabling GPI (passive to active transition: enable, act. to pas.: disable) 00: Sequencer controlled 01: Select GPI1 10: Select GPI2 11: Select GPI3
BUCK2_EN	0:0	R/W	Disable (0) / enable (1) the buck (dependent on on/off priority order)

Table 62: LDO1_CONT (0x026)

Field	Bit	Туре	Description
LDO1_CONF	7:7	R/W	Default supply, or sequenced and on in POWERDOWN
VLDO1_GPI	6:5	R/W	Voltage controlling GPI (passive to active transition: VLDO*_B, act. to pas.: VLDO*_A) 00: Sequencer controlled 01: Select GPI1 10: Select GPI2 11: Select GPI3
Reserved	4:4		Reserved
LDO1_PD_DIS	3:3	R/W	Pull-down resistor enabled when the LDO is off Pull-down resistor disabled when the LDO is off
LDO1_GPI	2:1	R/W	Enabling GPI (passive to active transition: enable, act. to pas.: disable) 00: Sequencer controlled 01: Select GPI1 10: Select GPI2 11: Select GPI3
LDO1_EN	0:0	R/W	Disable (0) / enable (1) the LDO (dependent on on/off priority order)

Table 63: LDO2_CONT (0x027)

Field	Bit	Туре	Description
LDO2_CONF	7:7	R/W	Default supply, or sequenced and on in POWERDOWN
VLDO2_GPI	6:5	R/W	Voltage controlling GPI (passive to active transition: VLDO*_B, act. to pas.: VLDO*_A) 00: Sequencer controlled 01: Select GPI1 10: Select GPI2 11: Select GPI3
Reserved	4:4		Reserved
LDO2_PD_DIS	3:3	R/W	O: Pull-down resistor enabled when the LDO is off Pull-down resistor disabled when the LDO is off
LDO2_GPI	2:1	R/W	Enabling GPI (passive to active transition: enable, act. to pas.: disable) 00: Sequencer controlled 01: Select GPI1 10: Select GPI2 11: Select GPI3
LDO2_EN	0:0	R/W	Disable (0) / enable (1) the LDO (dependent on on/off priority order)

Table 64: LDO3_CONT (0x028)

Field	Bit	Туре	Description
LDO3_CONF	7:7	R/W	Default supply, or sequenced and on in POWERDOWN
VLDO3_GPI	6:5	R/W	Voltage controlling GPI (passive to active transition: VLDO*_B, act. to pas.: VLDO*_A) 00: Sequencer controlled 01: Select GPI1 10: Select GPI2 11: Select GPI3
Reserved LDO3_PD_DIS	4:4 3:3	R/W	Reserved 0: Pull-down resistor enabled when the LDO is off
LDO3_GPI	2:1	R/W	1: Pull-down resistor disabled when the LDO is off Enabling GPI (passive to active transition: enable, act. to pas.: disable) 00: Sequencer controlled 01: Select GPI1 10: Select GPI2 11: Select GPI3
LDO3_EN	0:0	R/W	Disable (0) / enable (1) the LDO (dependent on on/off priority order)

Table 65: LDO4_CONT (0x029)

Field	Bit	Туре	Description
LDO4_CONF	7:7	R/W	Default supply, or sequenced and on in POWERDOWN
VLDO4_GPI	6:5	R/W	Voltage controlling GPI (passive to active transition: VLDO*_B, act. to pas.: VLDO*_A) 00: Sequencer controlled 01: Select GPI1 10: Select GPI2 11: Select GPI3
Reserved	4:4		Reserved
LDO4_PD_DIS	3:3	R/W	O: Pull-down resistor enabled when the LDO is off 1: Pull-down resistor disabled when the LDO is off
LDO4_GPI	2:1	R/W	Enabling GPI (passive to active transition: enable, act. to pas.: disable) 00: Sequencer controlled 01: Select GPI1 10: Select GPI2 11: Select GPI3
LDO4_EN	0:0	R/W	Disable (0) / enable (1) the LDO (dependent on on/off priority order)

Table 66: DVC_1 (0x032)

Field	Bit	Туре	Description
VLDO4_SEL	7:7	R/W	Select VLDO4_A (0) / VLDO4_B (1).
VLDO3_SEL	6:6	R/W	Select VLDO3_A (0) / VLDO3_B (1).
VLDO2_SEL	5:5	R/W	Select VLDO2_A (0) / VLDO2_B (1).
VLDO1_SEL	4:4	R/W	Select VLDO1_A (0) / VLDO1_B (1).
VBUCK2_SEL	3:3	R/W	Select VBUCK2_A (0) / VBUCK2_B (1).
VBUCK3_SEL	2:2	R/W	Select VBUCK3_A (0) / VBUCK3_B (1).
Reserved	1:1		Reserved
VBUCK1_SEL	0:0	R/W	Select VBUCK1_A (0) / VBUCK1_B (1).

A.2 PAGE 1

A.2.1 Power Sequencer

Table 67: SEQ (0x081)

Field	Bit	Туре	Description
Reserved	7:4	R/W	Reserved
SEQ_POINTER	3:0	R	Actual power sequencer position

Table 68: SEQ_TIMER (0x082)

Field	Bit	Туре	Description
SEQ_DUMMY	7:4	R/W	Waiting time for power sequencer slots which do not have an associated power supply.
			0000: 32 μs
			0001: 64 μs
			0010: 96 μs
			0011: 128 μs
			0100: 160 µs
			0101: 192 μs
			0110: 224 μs
			0111: 256 μs
			1000: 288 µs
			1001: 384 µs
			1010: 448 µs
			1011: 512 µs
			1100: 1.024 ms
			1101: 2.048 ms
			1110: 4.096 ms
			1111: 8.192 ms
SEQ_TIME	3:0	R/W	Length of each sequencer time slot
			0000: 32 μs
			0001: 64 μs
			0010: 96 μs
			0011: 128 μs
			0100: 160 μs
			0101: 192 µs
			0110: 224 µs
			0111: 256 μs
			1000: 288 µs
			1001: 384 µs
			1010: 448 μs
			1011: 512 μs
			1100: 1.024 ms
			1101: 2.048 ms
			1110: 4.096 ms
			1111: 8.192 ms

Table 69: ID_2_1 (0x083)

Field	Bit	Туре	Description
LDO2_STEP	7:4	R/W	Sequencer step for LDO2
LDO1_STEP	3:0	R/W	Sequencer step for LDO1

Table 70: ID_4_3 (0x084)

Field	Bit	Туре	Description
LDO4_STEP	7:4	R/W	Sequencer step for LDO4
LDO3_STEP	3:0	R/W	Sequencer step for LDO3

Table 71: ID_12_11 (0x088)

Field	Bit	Туре	Description
PD_DIS_STEP	7:4	R/W	Sequencer step for PD_DIS register functionality
Reserved	3:0	R/W	Reserved

Table 72: ID_14_13 (0x089)

Field	Bit	Туре	Description
Reserved	7:4	R/W	Reserved
BUCK1_STEP	3:0	R/W	Sequencer step for Buck1

Table 73: ID_16_15 (0x08A)

Field	Bit	Туре	Description
BUCK2_STEP	7:4	R/W	Sequencer step for Buck2
BUCK3_STEP	3:0	R/W	Sequencer step for Buck3

Table 74: ID_22_21 (0x08D)

Field	Bit	Туре	Description
GP_FALL1_STEP	7:4	R/W	Sequencer step to de-assert GPO0
GP_RISE0_STEP	3:0	R/W	Sequencer step to assert GPO0

Table 75: ID_24_23 (0x08E)

Field	Bit	Туре	Description
GP_FALL2_STEP	7:4	R/W	Sequencer step to de-assert GPO1
GP_RISE1_STEP	3:0	R/W	Sequencer step to assert GPO1

Table 76: ID_26_25 (0x08F)

Field	Bit	Туре	Description
GP_FALL3_STEP	7:4	R/W	Sequencer step to de-assert GPO2
GP_RISE2_STEP	3:0	R/W	Sequencer step to assert GPO2

Table 77: ID_28_27 (0x090)

Field	Bit	Туре	Description
GP_FALL4_STEP	7:4	R/W	Sequencer step to de-assert GPO3
GP_RISE3_STEP	3:0	R/W	Sequencer step to assert GPO3

Table 78: ID_30_29 (0x091)

Field	Bit	Туре	Description
GP_FALL5_STEP	7:4	R/W	Sequencer step to de-assert GPO4
GP_RISE4_STEP	3:0	R/W	Sequencer step to assert GPO4

Table 79: ID_32_31 (0x092)

Field	Bit	Туре	Description
Reserved	7:4	R/W	Reserved
WAIT_STEP	3:0	R/W	Sequencer step for WAIT register functionality

Table 80: SEQ_A (0x095)

Field	Bit	Туре	Description
POWER_END	7:4	R/W	End of POWER power domain in the sequencer SYSTEM_END <= POWER_END <= MAX_COUNT must be true.
SYSTEM_END	3:0	R/W	End of SYSTEM power domain in the sequencer PART_DOWN <= SYSTEM_END <= POWER_END must be true.

Table 81: SEQ_B (0x096)

Field	Bit	Туре	Description
PART_DOWN	7:4	R/W	Sequencer slot to stop at, when going down into STANDBY state.
			1 <= PART_DOWN <= SYSTEM_END must be true.
MAX_COUNT	3:0	R/W	End of POWER1 power domain in the sequencer
			POWER_END <= MAX_COUNT must be true.

Table 82: WAIT (0x097)

Field	Bit	Туре	Description
WAIT_DIR	7:6	R/W	WAIT_STEP power sequence selection
			00: Do not wait during WAIT_STEP of power sequencer except for normal slot time.
			01: Wait during up sequence.
			10: Wait during down sequence.
			11: Wait during up and down sequence.
TIME_OUT	5:5	R/W	Timeout when WAIT_MODE = 0
			0: no timeout when waiting for external signal (GPIO3).
			1: 500 ms timeout when waiting for external signal (GPIO3).
WAIT_MODE	4:4	R/W	0: Wait for external signal (GPIO3) to be active.
			1: Start timer and wait for expiration.
WAIT_TIME	3:0	R/W	Wait timer during WAIT STEP of power sequencer (+/- 10%) 0000: Do not wait during WAIT_STEP of power sequencer except for normal slot time. 0001: 512 µs 0010: 1.0 ms 0011: 2.0 ms 0110: 4.1 ms 0101: 8.2 ms 0110: 16.4 ms 0111: 32.8 ms 1000: 65.5 ms
			1001: 128 ms 1010: 256 ms 1011: 512 ms
			1100: 1.0 s
			1101: 2.0 s
			1110: 4.1 s
			1111: 8.2 s

Table 83: RESET (0x099)

Field	Bit	Туре	Description
RESET_EVENT	7:6	R/W	Reset timer started by: 00: EXT_WAKEUP 01: SYS_UP (register control or pin) 10: PWR_UP (register control or pin) 11: Leaving PMIC RESET mode
RESET_TIMER	5:0	R/W	0: Release nRESET immediately after the event selected by RESET_EVENT. 1 - 31: 1.024 ms * RESET_TIMER 32-63: 1.024 ms * 32 * (RESET_TIMER-31)

A.2.2 Power Supply Control

Table 84: BUCK_ILIM_A (0x09A)

Field	Bit	Туре	Description
Reserved	7:4		Reserved
BUCK2_ILIM	3:0	R/W	Buck2 current limit = (1700 + BUCK2_ILIM * 100) mA

Table 85: BUCK_ILIM_B (0x09B)

Field	Bit	Туре	Description
Reserved	7:4	R/W	Reserved
BUCK3_ILIM	3:0	R/W	Buck3 current limit = (700 + BUCK3_ILIM * 100) mA

Table 86: BUCK_ILIM_C (0x09C)

Field	Bit	Туре	Description
Reserved	7:4	R/W	Reserved
BUCK1_ILIM	3:0	R/W	Buck1 current limit = (700 + BUCK1_ILIM * 100) mA In full-current mode the limit is internally doubled.

Table 87: BUCK1_CFG (0x09E)

Field	Bit	Туре	Description
BUCK1_MODE	7:6	R/W	Controls the mode of the buck: 00: Controlled by BUCK1_SL_A and BUCK1_SL_B 01: Sleep (PFM) 10: Synchronous (PWM) 11: Automatic
BUCK1_PD_DIS	5:5	R/W	Disable pull-down resistor when disabled.
Reserved	4:1	R/W	Reserved
Reserved	0:0	R/W	Reserved

Table 88: BUCK3_CFG (0x09F)

Field	Bit	Туре	Description
BUCK3_MODE	7:6	R/W	Controls the mode of the buck:
			00: Controlled by BUCK3_SL_A and BUCK3_SL_B

			01: Sleep (PFM)
			10: Synchronous (PWM)
			11: Automatic
BUCK3_PD_DIS	5:5	R/W	Disable pull-down resistor when disabled.
Reserved	4:0	R/W	

Table 89: BUCK2_CFG (0x0A0)

Field	Bit	Туре	Description
BUCK2_MODE	7:6	R/W	Controls the mode of the buck: 00: Controlled by BUCK3_SL_A and BUCK3_SL_B 01: Sleep (PFM) 10: Synchronous (PWM) 11: Automatic
BUCK2_PD_DIS	5:5	R/W	Disable pull-down resistor when disabled.
Reserved	4:0	R/W	Reserved

Table 90: VBUCK1_A (0x0A4)

Field	Bit	Туре	Description
BUCK1_SL_A	7:7	R/W	This control is only effective when BUCK1_MODE = 0 0: forced to synchronous mode (PWM) when 'A' setting is active. 1: forced to sleep mode (PFM) when 'A' setting is active.
VBUCK1_A	6:0	R/W	From 0.3 V (0x00) to 1.57 V (0x7F) in steps of 10 mV

Table 91: VBUCK3_A (0x0A5)

Field	Bit	Туре	Description
BUCK3_SL_A	7:7	R/W	This control is only effective when BUCK3_MODE = 0 0: forced to synchronous mode (PWM) when 'A' setting is active. 1: forced to sleep mode (PFM) when 'A' setting is active.
VBUCK3_A	6:0	R/W	From 0.53 V (0x00) to 1.8 V (0x7F) in steps of 10 mV

Table 92: VBUCK2_A (0x0A7)

Field	Bit	Туре	Description
BUCK2_SL_A	7:7	R/W	This control is only effective when BUCK2_MODE = 0 0: forced to synchronous mode (PWM) when 'A' setting is active. 1: forced to sleep mode (PFM) when 'A' setting is active.
VBUCK2_A	6:0	R/W	From 0.80 V (0x00) to 3.34 V (0x7F) in steps of 20 mV

Table 93: VLDO1_A (0x0A9)

Field	Bit	Туре	Description
LDO1_SL_A	7:7	R/W	Force LDO sleep mode if VLDO1_A is active.
Reserved	6:6	R/W	Reserved
VLDO1_A	5:0	R/W	From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV Less than 0x02: 0.90 V; greater than 0x38: 3.60 V

Table 94: VLDO2_A (0x0AA)

Field	Bit	Туре	Description
LDO2_SL_A	7:7	R/W	Force LDO sleep mode if VLDO2_A is selected.
Reserved	6:6	R/W	Reserved
VLDO2_A	5:0	R/W	From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV
			Less than 0x02: 0.90 V; greater than 0x38: 3.60 V

Table 95: VLDO3_A (0x0AB)

Field	Bit	Туре	Description
LDO3_SL_A	7:7	R/W	Force LDO sleep mode if VLDO3_A is selected.
Reserved	6:6	R/W	Reserved
VLDO3_A	5:0	R/W	From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV Less than 0x02: 0.90 V; greater than 0x38: 3.60 V

Table 96: VLDO4_A (0x0AC)

Field	Bit	Туре	Description
LDO4_SL_A	7:7	R/W	Force LDO sleep mode if VLDO4_A is selected.
Reserved	6:6	R/W	Reserved
VLDO4_A	5:0	R/W	From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV Less than 0x02: 0.90 V; greater than 0x38: 3.60 V

Table 97: VBUCK1_B (0x0B5)

Field	Bit	Туре	Description
BUCK1_SL_B	7:7	R/W	This control is only effective when BUCK1_MODE = 0 0: forced to synchronous mode (PWM) when 'B' setting is active. 1: forced to sleep mode (PFM) when 'B' setting is active.
VBUCK1_B	6:0	R/W	From 0.3 V (0x00) to 1.57 V (0x7F) in steps of 10 mV

Table 98: VBUCK3_B (0x0B6)

Field	Bit	Туре	Description
BUCK3_SL_B	7:7	R/W	This control is only effective when BUCK3_MODE = 0 0: forced to synchronous mode (PWM) when 'B' setting is active. 1: forced to sleep mode (PFM) when 'B' setting is active.
VBUCK3_B	6:0	R/W	From 0.53 V (0x00) to 1.8 V (0x7F) in steps of 10 mV

Table 99: VBUCK2_B (0x0B8)

Field	Bit	Туре	Description
BUCK2_SL_B	7:7	R/W	This control is only effective when BUCK2_MODE = 0 0: forced to synchronous mode (PWM) when 'B' setting is active. 1: forced to sleep mode (PFM) when 'B' setting is active.
VBUCK2_B	6:0	R/W	From 0.80 V (0x00) to 3.34 V (0x7F) in steps of 20 mV

Table 100: VLDO1_B (0x0BA)

Field	Bit	Туре	Description
LDO1_SL_B	7:7	R/W	Force LDO sleep mode when B setting is active.
Reserved	6:6	R/W	Reserved
VLDO1_B	5:0	R/W	From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV Less than 0x02: 0.90 V; greater than 0x38: 3.60 V

Table 101: VLDO2_B (0x0BB)

Field	Bit	Туре	Description
LDO2_SL_B	7:7	R/W	Force LDO sleep mode if VLDO2_B is selected.
Reserved	6:6	R/W	Reserved
VLDO2_B	5:0	R/W	From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV Less than 0x02: 0.90 V; greater than 0x38: 3.60 V

Table 102: VLDO3_B (0x0BC)

Field	Bit	Туре	Description
LDO3_SL_B	7:7	R/W	Force LDO sleep mode if VLDO3_B is selected.
Reserved	6:6	R/W	Reserved
VLDO3_B	5:0	R/W	From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV Less than 0x02: 0.90 V; greater than 0x38: 3.60 V

Table 103: VLDO4_B (0x0BD)

Field	Bit	Туре	Description
LDO4_SL_B	7:7	R/W	Force LDO sleep mode if VLDO4_B is selected.
Reserved	6:6	R/W	Reserved
VLDO4_B	5:0	R/W	From 0.90 V (0x02) to 3.60 V (0x38) in steps of 50 mV
			Less than 0x02: 0.90 V; greater than 0x38: 3.60 V

A.3 PAGE 2

A.3.1 Customer Trim and Configuration

Table 104: INTERFACE (0x105)

Field	Bit	Туре	Description
IF_BASE_ADDR	7:4	R Note 1	2-wire slave address MSBs. The LSBs of the slave address are "000". The complete slave address is then IF_BASE_ADDR * 23. However, the device also responds to IF_BASE_ADDR * 23+1.
Reserved	3:0		Reserved

Note 1 The interface configuration can be written/modified only for unmarked samples which do not have the control OTP_APPS_LOCK asserted/fused.

Table 105: CONFIG_A (0x106)

Field	Bit	Туре	Description
Reserved	7:7	R	Reserved
PM_IF_HSM	6:6	R/W	2-wire interface permanently in high speed mode.
PM_IF_FMP	5:5	R/W	2-wire interface selects fast-mode+ timings.
PM_IF_V	4:4	R/W	2-wire supplied from VDDCORE (0) / VDDIO (1).
IRQ_TYPE	3:3	R/W	nIRQ is active low (0) / high (1).
PM_O_TYPE	2:2	R/W	nRESET and nIRQ are push pull (0) / open drain (1).
Reserved	1:1	R/W	Reserved
PM_I_V	0:0	R/W	nRESETREQ, SYS_EN, PWR_EN and KEEPACT supplied from VDDCORE (0) / VDDIO (1).

Table 106: CONFIG_B (0x107)

Field	Bit	Туре	Description
Reserved	7:7	R/W	Reserved
VDD_HYST_ADJ	6:4	R/W	nVDD_FAULT comparator hysteresis from 100 mV (0x0) to 450 mV (0x7) in 50 mV steps.
VDD_FAULT_ADJ	3:0	R/W	nVDD_FAULT comparator level from 2.5 V (0x0) to 3.25 V (0xF) in 50 mV steps.

Table 107: CONFIG_C (0x108)

Field	Bit	Туре	Description
Reserved	7:7	R/W	Reserved
BUCK2_CLK_INV	6:6	R/W	Invert Buck2 clock polarity.
Reserved	5:5	R/W	Reserved
BUCK3_CLK_INV	4:4	R/W	Invert Buck3 clock polarity.
BUCK1_CLK_INV	3:3	R/W	Invert Buck1 clock polarity.
BUCK_ACTV_DISCHRG	2:2	R/W	Enable active discharging of buck rails.
Reserved	1:0	R/W	Reserved

Table 108: CONFIG_D (0x109)

Field	Bit	Туре	Description
Reserved	7:6	R/W	Reserved
FORCE_RESET	5:5	R/W	Keep nRESET always asserted
Reserved	4:3	R/W	Reserved
SYSTEM_EN_RD	2:2	R/W	Suppress loading SYSTEM_EN during OTP_RD2
NIRQ_MODE	1:1	R/W	nIRQ will be asserted from events during POWERDOWN
GPI_V	0:0	R/W	GPIs, except power manager controls, supplied from VDDCORE (0) / VDDIO (1).

Table 109: CONFIG_E (0x10A)

Field	Bit	Туре	Description
Reserved	7:5	R/W	Reserved
BUCK2_AUTO	4:4	R/W	Enable and select VBUCK2_A when powering up
Reserved	3:3	R/W	Reserved
BUCK3_AUTO	2:2	R/W	Enable and select VBUCK3_A when powering up
Reserved	1:1	R/W	Reserved
BUCK1_AUTO	0:0	R/W	Enable and select VBUCK1_A when powering up

Table 110: CONFIG_G (0x10C)

Field	Bit	Туре	Description
Reserved	7:4	R/W	Reserved
LDO4_AUTO	3:3	R/W	Enable and select VLDO4_A when powering up
LDO3_AUTO	2:2	R/W	Enable and select VLDO3_A when powering up
LDO2_AUTO	1:1	R/W	Enable and select VLDO2_A when powering up
LDO1_AUTO	0:0	R/W	Enable and select VLDO1_A when powering up

Table 111: CONFIG_H (0x10D)

Field	Bit	Туре	Description
Reserved	7:7	R/W	Reserved
BUCK1_FCM	6:6	R/W	Buck full-current mode (double pass device and current limit).
Reserved	5:0	R/W	Reserved

Table 112: CONFIG_I (0x10E)

Field	Bit	Туре	Description
LDO_SD	7:7	R/W	Enable switching off an LDO if an over-current is detected longer than 200 ms.
INT_SD_MODE	6:6	R/W	Skip sequencer and dummy slots on shutdown from internal fault.
HOST_SD_MODE	5:5	R/W	Skip sequencer and dummy slots on shutdown from SHUTDOWN or nRESETREQ.
KEY_SD_MODE	4:4	R/W	Enable power-on reset on shutdown from nONKEY.
WATCHDOG_SD	3:3	R/W	Enable shutdown instead of power-down on watchdog timeout.
nONKEY_SD	2:2	R/W	Enable shutdown via long press of nONKEY.
NONKEY_PIN	1:0	R/W	nONKEY function, see Section 7.11

Table 113: CONFIG_J (0x10F)

Field	Bit	Туре	Description
IF_RESET	7:7	R/W	Enable host interface reset via nRESETREQ pin
TWOWIRE_TO	6:6	R/W	Enable 35 ms timeout for 2-wire interfaces
RESET_DURATION	5:4	R/W	Minimum RESET mode duration: 00: 22 ms 01: 100 ms 10: 500 ms 11: 1 s
SHUT_DELAY	3:2	R/W	Shut down delay (+ KEY_DELAY) for nONKEY
KEY_DELAY	1:0	R/W	nONKEY locking threshold

Table 114: CONFIG_K (0x110)

Field	Bit	Туре	Description
Reserved	7:5	R/W	Reserved
GPIO4_PUPD	4:4	R/W	GPI: pull-down enabled open drain GPO: pull-up enabled
GPIO3_PUPD	3:3	R/W	GPI: pull-down enabled open drain GPO: pull-up enabled
GPIO2_PUPD	2:2	R/W	GPI: pull-down enabled open drain GPO: pull-up enabled
GPIO1_PUPD	1:1	R/W	GPI: pull-down enabled open drain GPO: pull-up enabled
GPIO0_PUPD	0:0	R/W	GPI: pull-down enabled open drain GPO: pull-up enabled

Table 115: CONFIG_M (0x112)

Field	Bit	Туре	Description
OSC_FRQ	7:4	R/W	Adjust internal oscillator frequency:
			1000: -10.67 %
			 1111: -1.33 %
			0000: 0.00 %
			0001: +1.33 %
			 0111: +9.33 %
WDG_MODE	3:3	R/W	Activate watchdog halt operation mode
Reserved	2:2	R/W	Reserved
Reserved	1:1	R/W	Reserved
Reserved	0:0	R/W	Reserved

A.3.2 Customer Device Specific

Table 116: GP_ID_0 (0x121)

Field	Bit	Туре	Description
GP_0	7:0	R/W	General purpose register Note 1

Note 1 Initial value at start-up is the OTP ini file version number.

Table 117: GP_ID_1 (0x122)

Field	Bit	Туре	Description
GP_1	7:0	R/W	General purpose register

Table 118: GP_ID_2 (0x123)

Field	Bit	Туре	Description
GP_2	7:0	R/W	General purpose register

Table 119: GP_ID_3 (0x124)

Field	Bit	Туре	Description
GP_3	7:0	R/W	General purpose register

Table 120: GP_ID_4 (0x125)

Field	Bit	Туре	Description
GP_4	7:0	R/W	General purpose register

Table 121: GP_ID_5 (0x126)

Field	Bit	Туре	Description
GP_5	7:0	R/W	General purpose register

Table 122: GP_ID_6 (0x127)

Field	Bit	Туре	Description
GP_6	7:0	R/W	General purpose register

Table 123: GP_ID_7 (0x128)

Field	Bit	Туре	Description
GP_7	7:0	R/W	General purpose register

Table 124: GP_ID_8 (0x129)

Field	Bit	Туре	Description
GP_8	7:0	R/W	General purpose register

Table 125: GP_ID_9 (0x12A)

Field	Bit	Туре	Description
GP_9	7:0	R/W	General purpose register

Table 126: GP_ID_10 (0x12B)

Field	Bit	Туре	Description
GP_10	7:0	R/W	General purpose register Note 1

Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the SHUTDOWN control in register CONTROL_F.

Table 127: GP_ID_11 (0x12C)

Field	Bit	Туре	Description
GP_11	7:0	R/W	General purpose register Note 1

Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the SHUTDOWN control in register CONTROL_F.

Table 128: GP_ID_12 (0x12D)

Field	Bit	Туре	Description
GP_12	7:0	R/W	General purpose register Note 1

Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the SHUTDOWN control in register CONTROL_F.

Table 129: GP_ID_13 (0x12E)

Field	Bit	Туре	Description
GP_13	7:0	R/W	General purpose register Note 1

Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the SHUTDOWN control in register CONTROL_F.

Table 130: GP_ID_14 (0x12F)

Field	Bit	Туре	Description
GP_14	7:0	R/W	General purpose register Note 1

Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the SHUTDOWN control in register CONTROL_F.

Table 131: GP_ID_15 (0x130)

Field	Bit	Туре	Description
GP_15	7:0	R/W	General purpose register Note 1

Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the SHUTDOWN control in register CONTROL_F.

Table 132: GP_ID_16 (0x131)

Field	Bit	Туре	Description
GP_16	7:0	R/W	General purpose register Note 1

Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the SHUTDOWN control in register CONTROL_F.

Table 133: GP_ID_17 (0x132)

Field	Bit	Туре	Description
GP_17	7:0	R/W	General purpose register Note 1

Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the SHUTDOWN control in register CONTROL_F.

Table 134: GP_ID_18 (0x133)

Field	Bit	Туре	Description
GP_18	7:0	R/W	General purpose register Note 1

Note 1 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the SHUTDOWN control in register CONTROL_F.

Table 135: GP_ID_19 (0x134)

Field	Bit	Туре	Description
GP_19	7:0	R/W	General purpose register Note 2

Note 2 The value is persistent through a warm reset such as triggered by the nRESETREQ pin or by the SHUTDOWN control in register CONTROL_F.

© 2022 Renesas Electronics

A.4 PAGE 3

A.4.1 Device Identification

Table 136: DEVICE_ID (0x181)

Field	Bit	Туре	Description
DEV_ID	7:0	R	Device ID

Table 137: VARIANT_ID (0x182)

Field	Bit	Туре	Description
MRC	7:4	R	Mask revision code
VRC	3:0	R/W	Chip variant code

Table 138: CUSTOMER_ID (0x183)

Field	Bit	Туре	Description
CUST_ID	7:0	R	Customer ID

Table 139: CONFIG_ID (0x184)

Field	Bit	Туре	Description
CONFIG_REV	7:0	R	OTP settings revision

Status Definitions

Revision	Datasheet Status	Product Status	Definition
1. <n></n>	Target	Development	This datasheet contains the design specifications for product development. Specifications may be changed in any manner without notice.
2. <n></n>	Preliminary	Qualification	This datasheet contains the specifications and preliminary characterization data for products in pre-production. Specifications may be changed at any time without notice in order to improve the design.
3. <n></n>	Final	Production	This datasheet contains the final specifications for products in volume production. The specifications may be changed at any time in order to improve the design, manufacturing and supply. Major specification changes are communicated via Customer Product Notifications. Datasheet changes are communicated via www.dialog-semiconductor.com.
4. <n></n>	Obsolete	Archived	This datasheet contains the specifications for discontinued products. The information is provided for reference only.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Disclaimer Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/