

General purpose Motor control IC

1 Over View

RAJ306000GFT is general-purpose Motor control IC for three phase Brush less DC motor applications. RAJ306000GFT has built in MCU(RL78/G1F) and a pre-driver. This has three half bridge circuits and can drive two N channel-MOSFET (High-side & Low-side). This enable effective motor drive control by detecting a rotor position by a signal from hall IC and optimally changing three phase energization timing. And is also capable for sensor-less control. In addition, this is equipped a safety function for overheat, overvoltage, and overcurrent and the lock detection for motor. Built-in MCU supports H/W of the safe standard of IEC60730. This can realize motor performance depending on application by the setting of the parameter for motor output by the built-in MCU.

This can support up to 500mA as a drive peak current of external MOSFET.

Built-in MCU are correspond the development tool of the RL78 family.

2 Features

Applications

Power Tools and Lawn Equipment, Printers, Fans and Valves

Total

- (1) Operating Power Supply Voltage: 6V to 30V
- (2) Operating temperature : Ta = -40 to +85 degC
- (3) Support function of Input terminal for Speed control signal and signal of Start/Stop.
- (4) Built-in 5V Regulator
- (5) Low power consumption
 VM current (Excluding 5V/7V Regulator & Charge-pump) : [MCU block]: +5.2mA(HS Mode : fIH=32MHz, VDD=5V)
 [pre-Driver Block]: +13.5mA [VM = 22.5V]
 VM standby current : 64uA (Typ.)
- (6) GPIO : 28ch, Port for Input : 2ch

Controller Function

- (1) CPU: 16bit CISC CPU (RL78/G1F)
- (2) Flash ROM: 64KB
- (3) Data Flash: 4KB
- (4) RAM: 5.5KB
- (5) CSI: 2Chanel ----SPI:2ch, IIC:2ch, UART:1ch
- (6) Timer
 - Timer Array Unit: 1 unit -----16bit, 4 channel
 - Timer RD for Motor Control -----16bit, 2 channel
 - Timer RG with Encoding function
 - -----16bit, 1 channel
- 64 MHz motor control input capture timer (Timer RX)
 (7) 10-bit resolution A/D Converter: 9ch Set of Internal reference Voltage and External reference Voltage is possible.
- (8) Event Link Controller (ELC) : 6ch (External terminal)

Data Sheet

R18DS0028EJ0101 Rev.01.01 10-Oct/2017

Pre-Driver Function

- (1) Three-Phase Brushless DC Motor Controller
- Support Hall IC type & Hall sensor-less type
- Support the setting for Gain amp level
- The Self-align dead off time generator function.
- Gate drive peak current of 500mA.
- (2) Drive of 6 N-Channel MOSFET is available.
- (3) Gate drive current for MOSFET is up to 500mA Support Charge pump function.
- (4) Safety function:Overheat, Overvoltage,Overcurrent of the output phase, UVLO
- (5) Setting the threshold level of the hall IC signal input level is possible.
- (6) Output wave form mode for motor control : PWM Output : 2 mode
- (Support a commutation mode)
- (7) Built in TSD(Thermal shut down) Temperature Monitoring

3 PIN FUNCTION

3 PIN FUNCTION

PIN ASSIGNMENT [P-HTFQFP64 [JEITA] (7x7)]

3 PIN FUNCTION

Pin Functions-1 [P-HTFQFP64 [JEITA] (7x7)]

	PIN	Sub	I/O level	IN/OUT or	Initial		
Number	Name	Function		Power/GND	Condition	Function	Remarks
Number	Name	Tunction		1 OWEI/OND	Condition	T difetion	Кептака
		TO00/					
		TRGCLKB/				GPIO / TAU output / TRG external clock B input / TBJ	
1	P01	TD IIOO/	VDD	I/O	INPUT	in sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-	1
		TRJIOU/				input,output / (INTPTO)	
		(INTP10)					
		. ,					
		TI00/				GPIO / The pins for inputting an external count clock.	
2	P00	TROCIKA		1/0	INDUT	conture trigger for TALL/TRC external clock A input /	1
2	FUU	INGULNA/	000	1/0	INFUT	capture ingger for TAO / TKG external clock A input /	
		(TRJO0)/(INTP8)				(TRJ output) / (INTP8)	
2	D1//1	PCLBUZ1/		1/0		GPIO / Output Clock / INTP7	1
5	F 141	INTP7	VDD	1/0	INFUT		
-							
4	P140	POLBUZU/	VDD	I/O	INPUT	GPIO / Output Clock / INTP6	1
		INTP6					
5	P43	INTP9	VDD	I/O	INPUT	GPIO / INTP9	1
с С	D40	INITED			INDUT		4
0	P42	INTPO	VDD	1/0	INPUT	GFIO/INTE8	1
7	P41	(TRJIO0)	VDD	I/O	INPUT	GPIO / (Output for TRJ)	1
8	P40	TOOL 0	VDD	1/0	INPUT	GPIO / TOOL0 for E1 on-chip debugging	1
					INDUT	Enternal Report	
9	/RESET	-	VDD	-	INPUT	Enternar Reset	1
10	P137	INTP0	VDD	INPUT	INPUT	Only input / INTP0	1
11	P122	X2/EXCLK	VDD	INPLIT	INPLIT	Only input / Input of Main clock from External	1
	1 122	72/EXOLIC			111 01	Dis for comparting a substance whether the literation	
12	REGC		VDD	_	_	Pin for connecting regulator output stabilization	1
_						capacitance for internal operation of MCU.	
13	VSS		VDD	GND		Ground potential for MCU	1
14				Power			4
14	000		000	Power			
15	P60	SCLA0	VDD	I/O	INPUT	GPIO / Serial clock I/O pins of serial interface IICA0	1
	_						
16	P61	SDAA0	VDD	I/O	INPUT	GPIO/ Serial data I/O pins of serial interface IICA0	1
17	D62	/99100		1/0		GPIO / Chip select input pin of serial interface CSI00	1
17	FUZ	/33100	VDD	1/0	INFUT	[*1]	
10	Dea			1/0	INDUT	GPIO	1
18	P63	-	VDD	1/0	INPUT	GFIO	
		TI03/TO03/					
						CDIO / TALL input / TALL output / / TB Lipput/output) /	
19	P31	(183100)/		1/0	INPLIT	GPIO/TAO Input/TAO output/(TRJ input/output)/	1
10	101	(PCLBUZ0)/	100	"0		(Output clock) / Comparator 1 output	
		000011					
20	P77	KR7/INTP11	VDD	I/O	INPUT	GPIO / KR7 / INTP11	1
21	D76			1/0	INDUT	GPIO/KR6/INTP10	1
21	P70	KR0/INTPTU	VDD	1/0	INPUT		
		KRE / SCK01/				GPIO / KR5 / Serial clock I/O pins of serial interface	
22	P75	KK5/ 50K01/	VDD	I/O	INPUT	CSI01 / Serial clock output pins of serial interface	1
		SCL01					
						IICUT	
00	574	KR4 / SI01/	100	1/0	NIDUT	GPIO / KR4 / Serial data input pins of serial interface	
23	P74	SDA01	VDD	1/0	INPUT	CSI01 / Serial data I/O pins of serial interface IIC01	1
		00/101					
24	P73	KR3/S001		1/0	INPLIT	GPIO/KR3/Serial data output pins of serial interface	1
						CSI01	
25	VREG5		VREG5(5V)	IN/OUT	IN/OUT	VREG5 pin function is depends on VREG5_SEL pin level	
						VREGD_SEL=GIND.	
			VEFOE	15.1		Built-in 5V regulator is selected.(Output 5V)	
26	VREG5_SEL		VREG5	IN	IIN	VREG5 SEL=5V:	
						External EV regulator is calcated (Input EV)	
						External 5V regulator is selected (input 5V)	
07		I		CNID	CNID	Ground potential 1 for analog and logic circuits of	
27	AGND1		GND	GND	GND	Pre-Driver	
	704		VIDEOL	15.1	15.1	Terminal fea Test (Heuselluse as ette OND)	
28	171		VKEG5	IIN	IÍN	reminal for rest. (Usually conect to GND)	
29	VM		VM	POWER	POWER	Power Supply input	
30	CP1		VGB	-	-	Charge pump Pin 1 (CP1)	1
0.1	000		, <u>, , , , , , , , , , , , , , , , , , </u>	-	-	Charge nump Din 2 (CD2)	
31	UP2		VGB	-	-	Charge pullip Fill 2 (CF2)	
32	VGB		VGB	OUT	OUT	Gate drive voltage for Low-side	
33	TP?		VREG5	IN	IN	Terminal for Test, (Usually conect to GND)	1
24	0.02		1/44			Chargo numn Bin 3 (CP3)	
34	UP3		VIVI	-	-	Charge pullip Fill 3 (CF3)	
35	CP4		VGT	-	-	Charge pump Pin 4 (CP4)	
36	VGT		VGT	OUT	OUT	Gate drive voltage for High-side	
27			CNID	CND	CND	Ground notential 1 for driving circuits of Pro Driver	
31	DIVGND1		GND	GND	GND	Ground potential infordition driving circuits of Pre-Driver	
20						Output of Pre-driver for W phase Low-side	
30	WLOUT		vGD	001	001	(Nch MOSFET)	
20	\//		1/6.4	IN	INI	Detection of BEME level for Wiphase	
29	٧V	L	VIVI	IIN	IN		
40	WHOUT		VCT			Output of Pre-driver for W phase High-side	
40	VVHOUT		vGI	001	001	(Nch MOSFET)	
<u> </u>						Output of Pro-driver for Vinhead Lewiside	-
41	VLOUT		VGB	OUT	OUT	output of Pre-universitie v phase Low-side	
	.2001			231		(Nch MOSFET)	
42	V		VM	IN	IN	Detection of BEMF level for V phase	
~~	v		• 101			Output of Pro-driver for Vinheas High side	
43	VHOUT		VGT	OUT	OUT	auparon Fre-unventor v phase Figh-side	
				-	_	(NCN MOSFET)	
· · ·					<i></i>	Output of Pre-driver for U phase Low-side	
44	ULOUT		VGB	OUT	OUT	(Nich MOSEET)	
L							
45	U		VM	IN	IN	Detection of BEMF level for U phase	
			1.00-	au :=	au :	Output of Pre-driver for U phase High-side	
46	UHOUT		VGT	OUT	OUT	(Nch MOSEET)	
47	DrvGND2	1	GND	GND	GND	Ground potential 2 for driving circuits of Pre-Driver	1

*1: RL78/G1F terminal. And Please refer to "RL78/G1F User's manual: Hardware" (R01UH0516EJ0110) about Terminal function of RL78/G1F.

*2: The nullification of the SSI00 function is necessary.

Pin Functions-2 [P-HTFQFP64 [JEITA] (7x7)]

	PIN	Sub	I/O level	IN/OUT or	Initial			
Number	Name	Function		Power/GND	Condition	Function	Remarks	
48	AGND2		GND	GND	GND	Ground potential 2 for analog and logic circuits of Pre-Driver.		
49	COMMON		VM	IN	IN	Input for Common signal of Motor		
50	ISENN		VREG5	IN	IN	Connect Negative side of Shunt resistor		
51	ISENP		VREG5	IN	IN	Connect Positive side of Shunt resistor		
52	WH		VREG5	IN	IN	Input of Hall IC signal for W phase		
53	VH		VREG5	IN	IN	Input of Hall IC signal for V phase		
54	UH		VREG5	IN	IN	Input of Hall IC signal for U phase		
55	P26	ANI6	VDD	I/O	ANALOG	A/D converter analog input / GPIO	1	
56	P25	ANI5	VDD	I/O	ANALOG	A/D converter analog input / GPIO	1	
57	P24	ANI4	VDD	I/O	ANALOG	A/D converter analog input / GPIO	1	
58	P23	ANI3 / ANO1/ PGAGND	VDD	I/O	ANALOG	GPIO / A/D converter analog input / D/A converter output / PGA reference voltage input	1	
59	P22	ANI2 /ANO0/ PGAI/IVCMP0	VDD	I/O	ANALOG	GPIO / A/D converter analog input / D/A converter output / PGA voltage input / Comparator 0 analog voltage input	1	
60	P21	ANI1/AVREFM/ IVCMP13	VDD	I/O	ANALOG	GPIO / A/D converter analog input / A/D converter reference potential (- side) input / Comparator 1 analog voltage input/reference	1	
61	P20	ANI0 /AVREFP/ IVCMP12 / (INTP11)	VDD	I/O	ANALOG	GPIO / A/D converter analog input / A/D converter reference potential (+ side) input / Comparator 1 analog voltage input/reference voltage input / (INTP11)	1	
62	P04	SCK10/SCL10	VDD	I/O	ANALOG	GPIO / Serial clock I/O pins of serial interface CSI10 / Serial clock output pins of serial interface IIC10	1	
63	P03	SI10 /ANI16/ RxD1/SI10/ SDA10/ IVCMP11	VDD	I/O	ANALOG	GPIO / Serial data input pins of serial interface CSI10 / A/D converter analog input / Serial data input pins of serial interface UART1 / Serial data input pins of serial interface CSI10 / Serial data I/O pins of serial interface IIC10 / Comparator 1 analog voltage input/reference voltage input	1	
64	P02	SO10 /ANI17/ TxD1/ IVCMP10	VDD	I/O	ANALOG	GPIO / Serial data output pins of serial interface CSI10 / Serial data output pins of serial interface CSI10 / Serial data output pins of serial interface UART1 / Comparator 1 analog voltage input/reference voltage input	1	

*1: RL78/G1F terminal. And Please refer to "RL78/G1F User's manual: Hardware" (R01UH0516EJ0110) about Terminal function of RL78/G1F.

4 BLOCK DIAGRAM

4 BLOCK DIAGRAM

(Incase of using Hall IC)

IFMD : Intelligent Front-end Motor Driver

• GPIO terminal: 28ch

(Include ADC:9ch & Terminal for External interrupt: 6ch)

- Input terminal: 2ch
- *1) PIOCR00 = 01 [Setting required]
- *2) SSIE00 = 0 [Setting required]----Invalidation of $\overline{SSI00}$

Note : Please refer to "RL78/G1F User's manual: Hardware (R01UH0516EJ0110) ".

5 ELECTRICAL CHARACTERISTICS

1)

5 ELECTRICAL CHARACTERISTICS ABSOLUTE MAXIMUM RATING (Ta=25 degC) [P-HTFQFP64 [JEITA]

ITEM	SYMBOL	RATING	UNIT	NOTES
Power dissipation	Pd	5180	mW	
Thermal derating	КӨ	-41.5	mW/degC	Condition: refer to P.8
Power supply for motor drive	VM	-0.3 to +60	V	Refer to Note 4
Power supply	VDD	- 0.3 to +6.5	V	Port: VDD(MCU)
REGC terminal input voltage range	VIREGC	-0.3 to +2.8 Note1	V	Port: REGC
VREG5 terminal input voltage range	VIVREG5	-0.3 to +6.5	V	Port: VREG5
VGT output voltage range	VVGT	-0.3 to +48.0	V	Port :VGT
CP4 terminal voltage range	VCP4	-0.3 to +48.0	V	Port :CP4
CP3 terminal voltage range	VCP3	-0.3 to +48.0	V	Port :CP3
VGB output voltage range	VVGB	-0.3 to +18.0	V	Port :VGB
CP2 terminal voltage range	VCP2	-0.3 to +18.0	V	Port :CP2
CP1 terminal voltage range	VCP1	-0.3 to +18.0	V	Port :CP1
UHOUT, VHOUT, WHOUT output voltage range	VH_OUT	-0.5 to +48.0	V	Port :UHOUT, VHOUT, WHOUT
UHOUT, VHOUT, WHOUT output voltage range	Vphase	-0.5 to +48.0	V	Port :U, V, W, COMMON
ULOUT, VLOUT, WLOUT output voltage range	VL_OUT	-0.5 to +18.0	V	Port :ULOUT, VLOUT, WLOUT
Sense current terminal	ISEN	-0.3 to VREG5 + 0.3	V	Port : ISENP, ISENN
Digital terminal Input voltage range	DVIN1	-0.3 to VDD + 0.3 Note2	V	Port :P00 to P04, P20~P26, P31, P40 to P43, P73 to P77, P122, P137, P140, P141, EXCLK, /RESET
	DVIN2	-0.3 to +6.5	V	Port: P60 to P63 (Nch open-drain)
Output Voltage	DVOUT	-0.3 to VDD + 0.3 Note2	V	Port: P00 to P04, p20 to P26, P31, P40 to P43, P73 to P77, P140, P141
Analog input voltage	AVIN1	-0.3 to VDD + 0.3 And -0.3 to AVREF(+) + 0.3 Note2, 3	V	Port: ANI0 to ANI6, ANI16, ANI17
	AVIN2	-0.3 to VREG5 + 0.3	V	Port :VREG5_SEL, TP1, TP2
Hall sensor input terminal voltage	HVIN	-0.3 to VREG5 + 0.3	V	Port : UH, VH, WH
Hall sensor input terminal voltage1	DIOH1	-40	mA/Terminal	Port :P00 to P04, P31, P40 to P43, P73 to P77, P140, P141
		-70	mA/Total	Port : P00 to P04, P40 to P43, P140, P141
		-100	mA/Total	Port :P31, P73 to P77

1) Not subject to production test, specified by design.

5 ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATING (Ta=25 degC) [P-HTFQFP64 [JEITA] ¹⁾

ITEM	SYMBOL	RATING	UNIT	NOTES
Hall sensor input terminal voltage2	DIOH2	-0.5	mA/Terminal	Port : P20 to P26 (Total current of these terminal: 1.7mA)
Digital output current of Low level 1	DIOL1	+40	mA/Terminal	Port :P00 to P04, P31, P40 to P43, P60 to P63, P73 to P77, P140, P141
		+70	mA/Total	Port :P00 to P04, P40 to P43, P140, P141
		+100	mA/Total	Port :P31, P73 to P77
Digital output current of Low level 2	DIOL2	+1	mA/Terminal	Port : P20 to P26 (Total current of their terminal: 4.3mA)
Maximum junction temperature	Tj	+150	degC	IFMD chip
Operating temperature	Торе	-40 to +85	degC	
Storage temperature	Tstg	-65 to +150	degC	

1) Not subject to production test, specified by design.

- **Note 1.** Connect the REGC pin to VSS via a capacitor (0.47 to 1 uF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
- Note 2. Must be 6.5 V or lower.
- **Note 3.** Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.
- Note 4. Please do not apply the voltage more than 48V to VM terminal more than 1us. In addition, when the VM voltage is as above 48V at DC level, the serge protective circuit of this IC works,
 - and the applied voltage is clamped.
- **Caution** Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. **Remark 2.** AVREF (+): + side reference voltage of the A/D converter.
- **Remark 3.** VSS, GND: Reference voltage.
 - Port of GND: Drive block: DrvGND1, DrvGND2, Analog block: AGND1, AGND2 Port of VSS: VSS (MCU)

ABSOLUTE MAXIMUM RATING (TA=25 degC)

Notes) Glass epoxy board: 76.2mm x 114.5mm x 1.6mm, copper-occupancy ratio in a 4-layer board: 50% in layers 1 and 4, 95% in layers 2 and 3. [Note that the allowable power consumption changes according to the conditions imposed on the board.]

Thermal Information

ITEM	SYMBOL RATING UNIT	NOTES
ψjt	1.99 degC/W	junction-to-case (package top surface) thermal resistance
θја	24.1 degC/W	junction-to-ambient thermal resistance
Exposed power pad / heat slug area	28.1 mm ²	

Note1: Glass epoxy board: 76.2mm x 114.5mm x 1.6mm, copper-occupancy ratio in a 4-layer board: 50% in layers 1 and 4, 95% in layers 2 and 3.

[Note that the allowable power consumption changes according to the conditions imposed on the board.]

5 ELECTRICAL CHARACTERISTICS

RECOMMENDED OPERATING CONDITIONS (TA=25 degC)

ITEM	SYMBOL	RATING	UNIT	NOTES	
Power voltage for motor drive	VM	+6 to +30	V		
Output current of 5V Regulator	IVREG5	30 [Max]	mA	Total: 60mA [Max]	Note1

Note1) Breakdown of 60mA(Max)

For External parts: 30mA(Max), For RAJ306000GFT IC 30mA

5 ELECTRICAL CHARACTERISTICS

Deverseter	Currente e l	Condition	R	ated leve	el	Linit	Natas	
Parameter	Symbol	Condition	MIN	MIN TYP		Unit	Notes	
Power Supply Block								
VM operation current	І∨м	VREG5,VREG7 and Charge Pump	-	13.5	19	mA	Pre Driver block (Using Hall IC)	
VM Standby currents	ISTBY	Motor: OFF, PS Register (04h): 00h, System clock: Stop	-	64	96	uA		
VREG5 Output voltage	Vvreg5	IOUT = 1 to 30mA	4.75	5	5.25	V		
VREG5 Output current	I _{VREG5}		-	-	30	mΑ		
Gate Driver Block						L		
Charge pump voltage for High side	Vvgt	IO=100uA	VM+10	-	VM+15	V	VM=22.5V	
Charge pump voltage for Low side	Vvgb	IO=100uA	10	-	15	V		
Gate drive output voltage for High side	Vouth	IO=100uA	VM+10	-	VM+15	V	VM=22.5V	
Gate drive output voltage for Low side	Voutl	IO=100uA	10	-	15	V		
Overcurrent Detection Bl	ock							
Input voltage level of connection terminal for Shunt resistance	VISEN	Port: ISENP	0.0	-	1.0	V	Note1)	

Note 1) Please use ISENP terminal detecting a potential difference of the Shunt resistance at the range of a standard to show as above. In addition, Please use the electric potential of ISENP terminal and the ISENN terminal by relation condition of "ISENP>ISENN".

These note item is relate to the limitation of the input range for the AMP operation.

RAJ306000GFT 5 ELECTRICAL CHARACTERISTICS

lectrical character	131163 (1	a – 25 ueyo, vivi – 22.	.ov, voc	- GINL	v = 0v			
Parameter	Symbol	Condition	F	Rated leve		Unit	Notes	
i alametei	Symbol	Condition	MIN	TYP	MAX	Onit		
Hall signal Block								
Hall IC input signal		HAIC_TH: 000	+ 0.32	+ 0.40	+ 0.48			
	HAIC_TH	HAIC_TH: 001	+ 0.56	+ 0.70	+ 0.84			
		HAIC_TH: 010	+ 0.80	+ 1.00	+ 1.20			
Hall IC input signal		HAIC_TH: 011	+ 1.04	+ 1.30	+ 1.56	v		
Threshold voltage level		HAIC_TH: 100	+ 1.28	+ 1.60	+ 1.92	v		
		HAIC_TH: 101	+ 1.52	+ 1.90	+ 2.28			
		HAIC_TH: 110	+ 1.76	+ 2.20	+ 2.64			
		HAIC_TH: 111	+ 2.00	+ 2.50	+ 3.00			
		HAIC_HYS: 00	-	0	-			
Hystersis	HIU_V_W_hys	HAIC_HYS: 01	-	50	-	mV		
		HAIC_HYS: 10	-	100	-			

toristics (Ta = 25 deg() VM = 22 5V VSS = GND = 0V) Flectric

IC Thermal characteristics

Parameter	Symbol	Condition	F	Rated Leve		Notes	
rarameter	Cymbol	Condition	MIN	TYP	MAX		Notes
Safety protection block							
Overheat protection	חפד			150		deaC	Note 2)
operating temperature	130			150		ueyo	Note 2)

Note 2) The targeted TSD temperature of the above is the design targeted value of this IC,

and Renesas can not guarantees an operating temperature of the above.

(Renesas can not inspect all product operation at the temperature of the above.)

Reference data of device characteristics (Ta = 25 degC, VM = 22.5V, VSS = GND = 0V)

Paramotor	Symbol	Condition	F	Rated leve	el	Unit	Notos
Falailletei	Symbol	Condition	MIN	TYP	MAX		NOLES
Gate Driver Block							
		IDR_H_P = 111	Typ	9.5	Typ	Ω	Note 3)
Impedance of		IDR_H_P = 100	- 20%	14.0	⊥ 20%	Ω	
the gate drive output	ROLITH	IDR_H_P = 000	- 2070	65.0	1 2070	Ω	
	Noom	IDR_H_N = 111	Typ	38.5	Typ	Ω	
(Thigh side)		IDR_H_N = 100	- 25%	10.0	+ 25%	Ω	
		IDR_H_N = 000	- 2070	5.0	1 20 /0	Ω	
		IDR_L_P = 111	Tun	5.0	Tun	Ω	Note 3)
Impedance of		IDR_L_P = 100	- 20%	7.0	iyp. ⊥ 20%	Ω	
the date drive output	ROUTI	IDR_L_P = 000	2070	27.0		Ω	
(I ow side)		IDR_L_N = 111	Typ	17.5	Typ	Ω	
		IDR_L_N = 100	- 25%	5.0	+ 25%	Ω	
		IDR_L_N = 000		2.5		Ω	

Note 3) The Impedance for the gate drive output of the above is the design targeted value of this IC, and Renesas can not guarantees a resistance level of the above.

6 BLOCK EXPLANATION

Serial Array Unit

The constitution of the serial unit array for RAJ306000GFT are the following. Channel of CSI00: CSI00 is used for the communication of RL78/G1F MCU and the Pre-driver at the inside of RAJ306000GFT.

Unit	Channel	Used as CSI	Used as UART	Used as Simplified I ² C
0	0 A: [For internal communication]	CSI00(Slave select function is invalid.) A: [For internal communication]		
	1	CSI01		IIC01
	2	CSI10	UART1(TxD1)	IIC10
	3		UART1(RxD1)	
1	0			
	1			

A: CSI00 is used for the communication of RL78/G1F MCU and the analog device

HS(High-speed main) mode

CSI00 specification

Communication between RL78/G1F(MCU) and the analog device by the CSI mode is possible. The write setting of each register for the Pre-driver and the reading of register state for the Pre-driver are possible by using CSI mode communication.

CSI00 is assigned to the communication between RL78/G1F(MCU) and the Pre-driver. Therefore, CSI00 of RAJ306000GFT can not use for the communication with external parts. In addition, input function for the slave select of CSI00 is also invalid.

[SSIE00 = 0 [Setting required]----Invalidation of SSI00]

Shown about specification of CSI00(SCK00), CSI01 and CSI10 as follows.

During communication at same potential (CSI mode) (master mode, SCKp... external clock input)

(TA = 250eg0, 4.00V <=	VDD = 5.2	50, 035 - 00)					
noromotor	Symbol	Co	adition	C	SI00	CSI01	, CSI10	Linit
parameter	Symbol	Condition		MIN	MAX	MIN	MAX	Unit
SCKp cycle time	tKCY1	tkcy1>=4/fclk	4.06V <= VDD <= 5.25V	1000	-	250	-	ns
SCKp high-/low-level width	tĸнı, tĸ∟ı	4.06V <= \	4.06V <= VDD <= 5.25V		-	tксү1/2 – 24	-	ns
SIp setup time (to SCKp↑) * _{Note1}	tsıĸ1	4.06V <= \	4.06V <= VDD <= 5.25V		-	66	-	ns
SIp hold time (from SCKp↑) * _{Note1}	tĸsı1		-		-	38	-	ns
Delay time from SCKp↓ to SOp output * _{Note1}	tks01	C = 30	0pF *Note2	-	50	-	50	ns

◆ Target Products: RAJ306000GFT (TA = -40 to +85degC) (TA = 25deaC, 4.06V <= VDD <= 5.25V, Vss = 0V)

Note 1. When DAPmn = 0 ,CKPmn = 0, or DAPmn = 1 , CKPmn = 1.

"Edge polarty of SCKp" reveresed when DAPmn = 0, CKPmn = 1 or DAPmn = 1, CKPmn = 0.

Note 2. C is the loDAPmn = 0 and ad capacitance of the SCKp and SOp output lines.

Remark 1. p: CSI number (p = 01,10), m: Unit number (m = 0), n: Channel number (n = 1,2)

• During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

◆ Target Products: RAJ306000GFT (TA = -40 to +85degC) (TA = 25degC, 4.06V <= VDD <= 5.25V, Vss = 0V)

Deremeter	Sumphal	Can	dition	HS(High-speed	11		
Parameter	Symbol	Con		MIN	MAX	Unit	
SCKn avala time	#// 0//2	4.06V <= VDD	20MHz >= 4/fMCK	16/fмск	-	ns	
	IKC 12	<= 5.25V	fMCK >= 20MHz	12/fмск	-	ns	
SCKp high-/low-level width	tKH2, tKL2	4.06V <= V[DD <= 5.25V	tксү2/2 – 24	-	ns	
SIp setup time (to SCKp↑) * Note1	tSIK1	4.06V <= V[4.06V <= VDD <= 5.25V			ns	
SIp hold time (from SCKp↑) * Note1	tKSI1	-		1/fмск + 62	-	ns	
Delay time from SCKp↓ to SOp output * Note1	tKSO1	C = 30	DF *Note2	-	2/fмск + 66	ns	

Note 1. When DAPmn = 0 ,CKPmn = 0, or DAPmn = 1 , CKPmn = 1.

"Edge polarty of SCKp" reveresed when DAPmn = 0 ,CKPmn = 1 or DAPmn = 1 , CKPmn = 0.

Note 2. C is the load capacitance of the SOp output lines.

Note 4. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Remark 1. p: CSI n umber (p = 01, 10), m: Unit number (m = 0), n: Channel number (n = 1, 2), g: PIM number (g = 0, 1, 3, 5, 7) **Remark 2.** fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,n: Channel number (mn = 10, 11))

Note : Please refer to "RL78/G1F User's manual: Hardware (R01UH0516EJ0110)" about Terminal function of RL78/G1F About specification of "simplified I2C mode".

6 BLOCK EXPLANATION

• During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

Target Products: RAJ306000GFT (TA = -40 to +85degC)

(TA = 25degC, 4.06V <= VDD <= 5.25V , Vss = 0V)

Deremeter	Symphol	Conditio	HS(High-speed	Linit		
Parameter	Зупрог	Conditio	MIN	MAX	Unit	
SCKn quela tima	+KCV2		20MHz >= 4/fMCK	16/fмск	-	ns
	ING 12	4.000 ~- 000 ~- 5.250	fMCK >= 20MHz	12/fмск	-	ns
SCKp high-/low-level width	tKH2, tKL2	4.06V <= VDD	<= 5.25V	tксү2/2 – 24	-	ns
SIp setup time (to SCKp↑) *Note1	tSIK1	4.06V <= VDD <= 5.25V		1/fмск + 40	-	ns
SIp hold time (from SCKp↑) * Note1	tKSI1	-		1/fмск + 62	-	ns
Delay time from SCKp↓ to SOp output * _{Note1}	tKSO1	C = 30pF *Note2		-	2/fмск + 66	ns

Note 1. When DAPmn = 0 ,CKPmn = 0, or DAPmn = 1 , CKPmn = 1.

"Edge polarty of SCKp" reveresed when DAPmn = 0, CKPmn = 1 or DAPmn = 1, CKPmn = 0.

Note 2. C is the load capacitance of the SOp output lines.

Note 3. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Remark 1. p: CSI number (p = 01, 10), m: Unit number (m = 0), n: Channel number (n = 1, 2), g: PIM number (g = 0, 1, 3, 5, 7) **Remark 2.** fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 10, 11))

Note : Please refer to "RL78/G1F User's manual: Hardware (R01UH0516EJ0110)" about Terminal function of RL78/G1F About specification of "simplified I2C mode".

CSI mode serial transfer timing (during communication at same potential)

1) When DAPmn = 0, CKPmn = 0 or DAPmn = 1, CKPmn = 1

Edge polarty of SCK00 reversed) when DAPmn = 0, CKPmn = 1 or DAPmn = 1, CKPmn = 0.

6 BLOCK EXPLANATION

Shown about specification of UART1 as follows.

• During communication at same potential (UART mode)

◆ Target Products: RAJ306000GFT (TA = -40 to +85degC)

(TA = 25deg, 4.06V <= VDD <= 5.25V, Vss = 0V)

Parameter	Symbol	Conditions	HS (high-sp mod	eed main) le	Unit
			MIN	MAX	
Transfer rate Note1	-	4.06V <= VDD<= 5.25V	-	fMCK/12	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note2	-	2.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:

HS (high-speed main) mode: 32 MHz (4.06V <= VDD<= 5.25V)

Remark 1. fMCK: Serial array unit operation clock frequency

6 BLOCK EXPLANATION

R18DS0028EJ0101 10-Oct/2017

Normal operation lo

Citatge purp operation, please confirm the date of the ALMRAW1 register after 3ms passed. When overvoltage is detected, please do not operate a pre-driver until Voltage evel Charge nump

Ļ≁

] No

Yes

Pattern 1 Brake, Hi-Z or

side Brake

★ No

N

Reset Pre-Driver

Reset MCU

Functions of Clock Generator

The clock generator generates the clock to be supplied to the CPU and peripheral hardware. RL78/G1F MCU is mounted on RAJ306000GFT is support the high-speed on-chip oscillator (High-speed OCO). The frequency

at which to oscillate can be selected from among fHOCO = 64, 48, 32, 24, 16, 12, 8, 6,

4, 3, 2, or 1 MHz (TYP.) by using the option byte (000C2H). When 64 MHz or 48 MHz is selected as fHOCO, flH is set to 32 MHz or 24 MHz, respectively. When 32 MHz or less is selected as fHOCO, flH is not divided and set to the same frequency as fHOCO. After a reset release, the CPU always starts operating with this high-speed on-chip oscillator clock. Oscillation can be stopped by executing the STOP instruction or setting of the HIOSTOP bit (bit 0 of the CSC register).

The frequency specified by using an option byte can be changed by using the high-speed on-chip oscillator frequency select register (HOCODIV).

For details about the frequency, refer to Chapter 5 Clock Generator in "RL78/G1F user's Manual: hardware (R01UH0516EJ0110) ".

• On-chip oscillator characteristics

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fIH	4.06V <= VDD <= 5.25V	1	-	32	MHz
High-speed on-chip oscillator clock frequency	-	TA = -20 to +85 degC	-1	-	+1	%
accuracy		TA = -40 to -20 degC	-1.5	-	1.5	%
Low-speed on-chip oscillator clock frequency	fIL	-	-	15	-	kHz
Low-speed on-chip oscillator clock frequency accuracy	-	-	-15	-	+15	%

$(TA = -40 \text{ to } +85 \text{ degC}, 4.06V \le VDD \le 5.25V, Vss = 0V)$

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H/010C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Communication Format

Shown a communication format of the 3-wire serial I/O communication as follows.

The data when the communication format except the following communication format was used become invalid.

-Write	
CS(P05)	
SCLK(SCK00)	
MOSI(SO00)	R/W(L) Add[6] Add[5] Add[4] Add[3] Add[2] Add[1] Add[0] WData[7] WData[5] WData[3] WData[2] WData[1] WData[0]
MISO(SI00)	Hi-z "L" level
-Read	
C3(105)	
SCLK(SCK00)	
MOSI(SO00)	R/W(H) Add[6] Add[5] Add[4] Add[3] Add[2] Add[1] Add[0] Don't Care

6 BLOCK EXPLANATION

Control Registers

Shown Register Map as follows.

Add.	Register Name	Symbol	Initial value	7	6	5	4	3	2	1	0	
02h	Power Save Control Register	PS_ALL	00h	0	0	0	0	0	0	0	PS_ALL_N	
04h	By Function Power Save Control Setting Register	PS	00h	PS_PRE_N	0	PS_BMF_N	PS_CSAMP_N	PS_VMC_N	PS_HALL_N	PS_CPREG_N	PS_CP_N	
06h	Software Reset Register	SW_RESET	00h	0	0	0	0	0	0	0	SW_RESET	
08h	ADC Selector Register	ADC_SEL	00h	0	0	0	0		ADC_CH	SEL3 to 0		
0Ah	U Phase Moter Control Signal Select Register	SELSIG_U	03h	0	;	SELSIG_U_H2 to	0	0	;	SELSIG_U_L2 to	0	
0Ch	V Phase Moter Control Signal Select Register	SELSIG_V	14h	0	Ş	SELSIG_V_H2 to	0	0	:	SELSIG_V_L2 to	0	
0Eh	W Phase Moter Control Signal Select Register	SELSIG_W	25h	0	5	SELSIG_W_H2 to	0	0	5	SELSIG_W_L2 to	0	
10h	Hall Signal Processing Setting Register	HALL_SIG	00h	BEMF_MODE_SEL	CENTERTAP_SEL	HALL_MODE_SEL	PWM_SEL	HALL_POLA		HALL_SEL2 to 0)	
12h	ALARM Status Register1	ALMSTS1	FFh	VREG5_OVP_N	VGT_OVP1_N	VGT_OVP2_N	VGT_UVP_N	VGB_OVP_N	VGB_UVP_N	OCP_N	TSDOP_N	
14h	ALARM Operation Setting Register1	ALMOPE1	00h	0	0	0	VGT_UVP_OPE_N	0	VGB_UVP_OPE_N	OCP_OPE_N	TSD_OPE_N	
16h	ALARM Pin Output Setting Register1	ALMOUT1	00h	REGV5_OVP_ALE_N	VGT_OVP1_ALE_N	VGT_OVP2_ALE_N	VGT_UVP_ALE_N	VGB_OVP_ALE_N	VGB_UVP_ALE_N	OCP_ALE_N	TSD_ALE_N	
18h	ALARM Status Register2	ALMSTS2	FFh	1	1	1	1	1	1	1	VM_UVP_N	
1Ah	Current Sense setting Register2	CS SET2	00h	CSAMP	REF1 to 0	CSAMP ATT	0	0	0	0	0	
1Ch	ALARM Pin Output Setting Register2	ALMOUT2	00h	0	0	0	0	0	0	0	VM_UVP_ALE_N	
1Eh	Error Detection Wait Time Setting Register	ERROR WAIT	00h	0	0	0	REGV5_OVP_WAIT	UVCP V	VAIT1 to 0	OCPW/	AIT1 to 0	
20h	Current Sense setting Register1	CS SET1	00h	0	S	HUNT SEL2 to	0		OCP SE	L H3 to 0		
22h	Hall IC Threshold Adjustment Register	HAIC_TH	00h	0	0	HAIC_H	YS1 to 0	0		HAIC_TH2 to 0)	
24h	Pre-Driver Drive Status Register	PDDSTS	F0h	1	1	1	LDS_N	FG	HALL_MONI_U	HALL_MONI_V	HALL_MONI_W	
26h	LD Judgment Wait Time Register	LDWAIT	00h	LD_ALE_N	0	0	0	0		LD_WAIT2 to 0)	
28h	Motor Drive Control Setting Register	DRIVE_SET	00h	OCP_HYS_N	ALM_LATCH_CLR	0	DECAY_MODE_SEL	DT_REG_N	OCP_ERR_SEL	DIR_SEL	MOT_EN	
2Ah	-	-	-	0	0	0	0	0	0	0	0	
2Ch	High Side Output Current Capability Setting Register	IDRCNT_H	00h	0		IDR_H_P2 to 0)	0		IDR_H_N2 to ()	
2Eh	Low Side Output Current Capability Setting Register	IDRCNT_L	00h	0	IDR_L_P2 to 0		0	IDR_L_N2 to 0)		
30h	Pch Slew Rate Setting Register	TRCNT_P	00h	0		TR_H_P2 to 0		0		TP_L_P2 to 0		
32h	Charge Pump Setting Register1	CPSET1	01h	0	0	0	0	0	0	CP_CLK	DIV1 to 0	
34h	Charge Pump Setting Register2	CPSET2	02h	0	0	0	0	CP_BOOST_N	VREG10_OUT	/REG6P5_OU	0	
36h	Cahrge Pump Trimming Register	CP_TRIM	00h				CP_TRIM7	- CP_TRIMO				
38h to 3Eh	-	-	-	0	0	0	0	0	0	0	0	
40h	5V Regulator Voltage Setting	VREG5 TRIM	00h				/REG5 TRIM7	- VREG5 TRIN	10			
42h	Ext. FET Curent Detect AMP Setting Register	CSAMP TRIM	00h		CSAMP TRIM7 - (-CSAMP TRIMO			
44h to 56h	-	-	-	0	0	0	0	0	0	0	0	
58h	ALARM Raw Status Monitor Register1	ALMRAW1	FFh	1	VGT OVP1 RAW N	VGT OVP2 RAW N	VGT UVP RAW N	VGT OVP RAW N	VGB UVP RAW N	1	1	
5Ah	-	-	-	0	0	0	0	0	0	0	0	
5Ch	TOIN Pin Monitor Register	TOIN MONI		TOINA	TOINB	TOINC	TOIND	TOINE	TOINF	TOING	TOINH	
5Eh	WHO AM I	WHO AM I	6Ah	0	1	1	0	1	0	1	0	
60h	Trimming Protect Register	TRIM PT	00h				TRIM PT7	- TRIM PTO				
62h to	······································	-										
72h	-	-	-	0	0	0	0	0	0	0	0	
74h	Trimming Data Valid Regsiter		00h	0	0	0	0	0	0	0	TRIM_EN	
76h	-	-	-	0	0	0	0	0	0	0	0	
78h	High Precise BGR Temp. Correction Register	BGR_TRIM	FFh				BGR_TRIM_7	- BGR_TRIM0				
7Ah	BUFFAMP Absolute Vaue Correction Register	BFAMP_TRIM	FFh			B	FAMP_TRIM_7	- BFAMP_TRIN	1_0			
7Ch to 7Eh	-	-	-	0	0	0	0	0	0	0	0	

The detail is shown in "RL78/G1F User's manual: Hardware" (R01UH0516EJ0110), so please see it.

7 PACKAGE SPECIFICATION

7 PACKAGE SPECIFICATION[P-HTFQFP64 [JEITA] <u>TOP</u>

RENESAS

8 BUILT-IN RL78/G1F PIN SPEC

8 BUILT-IN RL78/G1F PIN SPEC

	RL78/G1F 64Pin specification						RAJ306000 Series				
Function	~ -		After Reset		F (2)			Terminal			
Name	Pin Type	VO	Release	Alternate Function	Function	Function	Alternate Function	No.			
P00	7-1-4	VO	Input port	TI00/TRGCLKA/(TRJO0)/(INTP8)	Port 0.	P00	TI00/TRGCLKA/(TRJO0)/(INTP8)	2			
P01	8-1-3		input port	TO00/TRGCLKB/TRJI00/(INTP10)	7-bit I/O port.	P01	TO00/TRGCLKB/TRJIO0/(INTP10)	1			
P02	7-9-2			ANI17/SO10/TxD1/IVCMP10	Input/output can be specified in 1-bit units.	SO10	P02/ANI17/TxD1/IVCMP10	64			
P03	8-9-2		Analog function	ANI16/SI10/RxD1/SDA10/IV/CMP11	Use of an on-chip pull-up resistor can be specified	SI10	P03/ANI16/RxD1/SI10/SDA10/IV/CMP11	63			
P04	8-1-4			SCK10/SCI 10	by a software setting at input port	SCK10	P04/SCI 10	62			
104	0-1-4				hout of D01 D02 and D04 can be act to TTL input huffer	GOILIO	104/50210	02			
P05	ſ			(INTP10)	input of PU1, PU3 and PU4 can be set to TTL input buffer.						
	712		Input port		Output of P00 and P02 to P04 can be set to N-ch						
P06	7-1-5			(INTP11)/(TRJIO0)	open-drain output (EVDD tolerance).	Interconnect		CLK			
					P02 and P03 can be set to analog input ^{Note} .						
P10	8-3-8	VO			Port 1	Interconnect		TOINE			
D14	7 2 0	10			R hit I/O part	Interconnect					
PII	7-3-0			ANIZ I/STI I/SDA TI/TRUIUCT	o-bit vO port.	Interconnect		TOINE			
P12	7-3-7			ANI22/SO11/TRDIOB1/(INTP5)	Input/output can be specified in 1-bit units.	Interconnect		TOINC			
P13	7-3-8			ANI23/TxD2/SO20/TRDIOA1/IrTxD	Use of an on-chip pull-up resistor can be specified	Interconnect		TOINB			
D14	0.2.0			ANI24/RxD2/SI20/SDA20/TRDIOD0/	by a softw are setting at input port.	Interconnect		TOIND			
P14	0-3-0		Analog function	(SCLA0)/IrRxD	Input of P10, P14 to P17 can be set to TTL input	Interconnect		TOIND			
P15	8-1-8		-	SCK20/SCI 20/TRDIOB0/(SDAA0)	buffer	Interconnect		TOINA			
				TI01/TO01/INTP5/TPDIOC0/	Output of P10 P11 P13 to P15 and P17 can be						
P16	8-1-7			(0100/D-D0)/(TDDIO0.4)	output of 110, 111, 115 to 110, and 117 can be	Interconnect		TOINH			
				(SIUU/RXDU)/(TRDIOAT)	set to N-ch open-drain output (EV DD tolerance).						
P17	8-1-8			1102/1002/1RDIOA0/1RDCLK/	P10 to P14 can be set to analog input ^{Note} .	Interconnect		TOING			
	0.0			(SO00/TxD0)/(TRDIOD0)				10.10			
P20	1.0.1	VO		ANI0/AVREFP/IVCMP12/(INTP11)	Port 2.	ANIO	P20/AVREFP/IVCMP12	61			
P21	4-9-1			ANI1/AVREFM/IVCMP13	8-bit VO port.	ANI1	AV _{REFM} /P21/VCMP13	60			
P22	4-16-1			ANI2/ANO0/PGA //// CMP0	Input/output can be specified in 1-bit unite	ΔNI2	P22/ANO0/PGAI///CMP0	50			
D23	1-15-1				Can be set to analog inputNote			E0			
F23			Analog function		oan be set to analog input	AINIO					
P24	ſ			ANIA	4	ANI4	P24	57			
P25	4-3-3			ANI5	J	ANI5	P25	56			
P26	+ 0 0			ANI6		ANI6	P26	55			
P27	1			ANI7	1	Interconnect		ISENADIN			
	-	10		INTP3/RTC1HZ/SCK00/SCL00/	Port 3			1			
P30	8-1-4				2-bit I/O port	Interconnect		SPI			
	,			11000/(110001)	2-bit vo port.						
	ſ				input/output can be specified in 1-bit units.						
			Input port		Use of an on-chip pull-up resistor can be specified						
DD 1	710		input por t	TI03/TO03/INTP4/(TRJIO0)/	by a softw are setting at input port.	D 24		10			
P31	7-1-5			(PCLBUZ0)/VCOUT1	Input of P30 can be set to TTL input buffer.	P31	103/1003/INTP4/(1RJ00)//V00011	19			
					Output of P30 can be set to N-ch open-drain output						
					(EV DD tolerance).						
P40	[10		10010	Port 4.	TOOLU	P40	8			
P41				(TRJIO0)	4-bit VO port.	P41	(TRJIO0)	7			
P42	7-1-3		Input port	(INTP8)	Input/output can be specified in 1-bit units.	P42	INTP8 Note 2	6			
D 40				(1) (200)	Use of an on-chip pull-up resistor can be specified	B 10	IN JEEPO Marta D	-			
P43				(INTP9)	by a software setting at input port.	P43	INTP9 Note 2	5			
		1/0			Port 6	-					
P50	8-1-4	10		INTF1/300/RCD0/100ERCD/3DA00/		Interconnect		SPI			
-				TRGIOA/(TRJOU)/(TRDIOC1)	6-bit VO port.						
P51	7-1-4			INTP2/SO00/TxD0/TOOLTxD/TRGIOB/	Input/output can be specified in 1-bit units.	Interconnect		SPI			
			bout port	(TRDIOD1)	Use of an on-chip pull-up resistor can be specified			0.1.			
P52			Input port	(INTP1)	by a softw are setting at input port.	Interconnect		HIC U			
P53	7-1-3			(INTP2)	Input of P50 and P55 can be set to TTL input buffer.	Interconnect		HIC V			
P54				(INTP3)	Output of P50, P51, and P55 can be set to N-ch	Interconnect		HIC W			
DEE	044			(INTED4)/(DCI DLIZ1)/(CCK00)	energ drain extrust (D)(DD televenes)	Interconnect					
P00	8-1-4			(INTP4)/(PCLBUZ1)/(SCK00)	open-drain output (EVDD tolerance).	Interconnect		ALARIVI			
P60	r i i	10		SCLA0	Port 6.	P60	SCLA0	15			
P61				SDAA0	4-bit I/O port.	P61	SDAA0	16			
D62	12-1-2		Input port	/88/00	Input/output can be specified in 1-bit units.	Deo.	(SSI00 (Need to get SSIF00 = 0)	17			
P02	1			/00/00	Output of P60 to P63 is N-ch open-drain output	P62	/SSIUU (Need to set SSIEUU = U)	17			
P63				_	(6 V tolerance)	P63	_	18			
P70	7-1-3	10		KR0/SCK21/SCL21/(\/COUTTA)	Bort 7						
170	7 4 4	.0			0.121/0						
P/1	7-1-4			NR1/SE1/SDA21/(VCOUID)	o-bit vO port.						
P/2	7-1-3			KR2/SO21	input/output can be specified in 1-bit units.						
P73			Input port	KR3/SO01	Use of an on-chip pull-up resistor can be specified	P73	SO01	24			
P74	7-1-4		input por t	KR4/INTP8/SI01/SDA01	by a softw are setting at input port.	P74	SI01/SDA01 Note 2	23			
P75				KR5/INTP9/SCK01/SCL01	Output of P71 and P74 can be set to N-ch opendrain	P75	SCK01/SCL01 Note 2	22			
P76	7-1-3			KR6/INTP10/(RxD2)	output (EVDD tolerance).	P76	INTP10	21			
170					ouput (EV DD tolerande).	077	NED11	20			
F11				1337/INTETT/(1XUZ)	Devt 40	P//	II XII (]	20			
P120	7-3-3	VO	Analog function	ANI19/VCOUT0	Port 12.						
					1-bit I/O port and 4-bit input-only port.						
P121				X1	P120 can be set to analog input.						
P122	1			X2/EXCLK	For only P120, input/output can be specified.	P122	X2/EXCLK	11			
P123	2-2-1	Input	Input port	XT1	For only P120, use of an on-chip pull-up resistor						
	~ 2 - 1	=.put	parport		can be energified by a software softing at input port	-					
P124	1			XT2/EXCLKS	can be specified by a software setting at input port.						
			-	ļ	P120 can be set to analog input ^{rivee} .						
P130	1-1-1	Output	Output port	—	Port 13.						
P137	2-1-2	Input	Input port	INTP0	1-bit output-only port and 1-bit input-only port.	P137	INTPO	10			
P140				PCLBUZ0/INTP6	Port 14.	P140	PCLBUZ0/INTP6	4			
P141	7-1-3		Input port	PCLBUZ1/INTP7	4-bit VO port.	P141	PCLBUZ1/INTP7	3			
D1/6					Innut/output can be enecified in 1 hit units	Interconnect					
1 140	-	1/0		-	Input output can be apointed in Pull Units.	Inter connect					
1	Ĩ	*0		1	Use or an on-chip pull-up resistor can be specified						
P147	7-3-3		Analog function	ANI18/IVREF0	by a software setting at input port.						
1	1		Ĭ	1	P147 can be set to analog input ^{Note} .						
					have the second second second						
	[1	input-oniy pin for external reset.			1			
/RESET	2-1-1	Input	-	-	Connect to VDD directly or via a resistor when	/RESET	-	9			
1	1		1	1	external reset is not used.		1	1			

Note: Each pin can be specified as either digital or analog by setting port mode control register x (PMCx) (Can be specified in 1-bit units). **Remark**: Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0 to 2 (PIOR0 to PIOR2).

8 PRE-DRIVER I/O CIRCUIT

8 PRE-DRIVER I/O CIRCUIT

R18DS0028EJ0101 10-Oct/2017 RENESAS

I/O Circuit

*1: On RL78/G1F terminal, please refer to "RL78/G1F User's manual: Hardware" (R01UH0516EJ0110).

Revision History	RAJ306000GFT Data Sheet
5	

Davi	Dete		Description				
Kev	Date	Page	Summary				
1.00	2017.09.06	-					
1.01	2017.09.26	3, 4, 5, 13, 14, 17~19, 23	"RL78/G1F User's manual: Hardware" (IMB-PB-170186 -> R01UH0516EJ0110)				

All trademarks and registered trademarks are the property of their respective owners.

Notes for CMOS devices

(1) Voltage application waveform at input pin:	Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
(2) Handling of unused input pins:	Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
(3) Precaution against ESD:	A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
(4) Status before initialization:	Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
(5) Power ON/OFF sequence:	In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
(6) Input of signal during power off state:	Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application xamples 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard" Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified ranges. 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you. 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction, such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the countries asserting jurisdiction over the parties or transactions 10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party. 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. (Rev.3.0-1 November 2016) RENESAS **Renesas Electronics Corporation** SALES OFFICES http://www.renesas.com Refer to "http://www.renesas.com/" for the latest and detailed information Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Notice

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tei: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 p Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141