Product Introduction

Concept

The RH850/F1x microcontroller focus on low power and low cost for the body application.
The device is a high-end microcontroller with a 32-bit RH850G3K core for car body control. The features of this device are the low power consumption, the high processing power and the variable peripheral function.

In particular, Low power consumption is achieved by supporting wide stand-by control and the power supply insulation using the port polling, stand-by control of AD conversion and LIN communication which considered body control application.

This device supports the security and safety function. And the local area network has been strengthened by upgrading each module of CAN, LIN master/slave.

Function Overview

- 32bit single core CPU (V850E3v5-S architecture class)
- The capacity of Code Flash: up to 1 MB
- The capacity of Data Flash: 32 KB
- The capacity of RAM: up to 128 KB
- DMA function
- System protection
- POC/LVI, CVM
- MainOSC which is available for a wide range frequency (8 MHz to 24 MHz)
- External interrupt: 13
- Low Power Sampler watching an outside event in standby mode
- Timer Array Unit D: 1 ch
- Timer Array Unit B: 1 ch
- Timer Array Unit J: 2 ch
- PWM-Diagnosis function: 48 ch
- Encoder Timer: 1 ch
- Motor control: 1 ch
- OS Timer: 1 ch
- Watchdog Timer: 2 ch
- Asynchronous Serial Interface, LIN Master/Slave Controller: 4 ch
- LIN Master Controller: 3 ch
- CAN Controller: up to 6 ch
- Clocked Serial Interface G: 1 ch
- Clocked Serial Interface H: 4 ch
- Data CRC: 4 ch
- A/D Converter: 1 ch
- ADCA0In w/ T\&H: 6 ch
- ADCA0In w/o T\&H: 10 ch
- ADCA0InS: 20 ch
- Key Return: 8 ch

Block Diagram

Note 1. $6 \times$ CAN (384 msg) is supported Gateway device only.
Note 2. ADVANCED line, Gateway-1MB support ICUSB

Pin Map

Product Lineup

Product	Max CPU Frequency	ICUSB	Code Flash	Data Flash	Local RAM (Primary)	Local RAM (Secondary)	Retention RAM (RRAM)	Operationing Temperature (Ta)	
								$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ Caution	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Caution
ECO	80 MHz	No	256 KB	32 KB	0 KB	0 KB	32 KB	R7F7010213AFP	R7F7010214AFP
			384 KB		16 KB			R7F7010223AFP	R7F7010224AFP
			512 KB		32 KB			R7F7010233AFP	R7F7010234AFP
			768 KB		64 KB			R7F7010243AFP	R7F7010244AFP
			1 MB		96 KB			R7F7010253AFP	R7F7010254AFP
Gateway	80 MHz	No	512 KB		32 KB			R7F7010023AFP	R7F7010024AFP
	96 MHz	Yes	1 MB		96 KB			R7F7010033AFP	R7F7010034AFP
ADVANCED	96 MHz	Yes	768 KB		64 KB			R7F7010443AFP	R7F7010444AFP
			1 MB		96 KB			R7F7010453AFP	R7F7010454AFP

Caution: It must be ensured that the junction temperature in the Ta range remains below Tj (Section 1.2.4, Temperature Condition) and does not exceed its limit under application conditions (thermal resistance, power supply current, peripheral current (if not included in power supply current), port output current and injection current).

Section 1 Electrical Specifications

1.1 Overview

The electrical spec of this device is guaranteed by the following operational condition. But, this condition is different depends on each characteristics, so refer to each chapter for more detail.

1.1.1 Pin Groups

Symbol	Pin Group Supplied by	Related Pins/Ports
PgR	REGVCC, AWOVSS	X1, X2
PgE	EVCC, EVSS	Related ports: JP0, P0, P8, P9, P10, P11
		Related pins: RESET, FLMD0
PgA0	AOVREF, A0VSS	Related port: AP0

1.1.2 General Measurement Conditions

1.1.2.1 Common Conditions

- Power supply
- REGVCC $=\mathrm{EVCC}=\mathrm{VPOC}^{* 1}$ to 5.5 V
- $\mathrm{A} 0 \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V
- AWOVSS $=\mathrm{ISOVSS}=\mathrm{EVSS}=\mathrm{A} 0 \mathrm{VSS}=0 \mathrm{~V}$
- Capacitance of the internal regulator
- CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$
- CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$
- Operating temperature
- Ta:
-40 to (depend on the product) ${ }^{\circ} \mathrm{C}$
- Tj:

R7F7010xx3AFP : -40 to $130^{\circ} \mathrm{C}$
R7F7010xx4AFP : -40 to $150^{\circ} \mathrm{C}$

- Load conditions
- $\mathrm{CL}=30 \mathrm{pF}$

Note 1. "VPOC" means POC (power on clear) detection voltage. For more detail, refer to Section 1.8.2, Voltage Detector (POC, LVI, VLVI, CVM) Characteristics.

1.1.2.2 AC Characteristic Measurement Condition

(1) AC test input measurement points

(2) AC test output measurement points

(3) Load conditions

CAUTION

If the load capacitance exceeds 30 pF due to the circuit configuration, it is recommended to insert a buffer in order to reduce capacitance till less than 30 pF .

1.2 Absolute Maximum Ratings

CAUTIONS

1. Do not directly connect outputs (or input/outputs) to each other, power supply and ground.
2. Even momentarily exceeding the absolute maximum rating for just one item creates a threat of failure in the reliability of the products. That is, the absolute maximum ratings are the levels that raise a threat of physical damage to the products. Be sure to use the products only under conditions that do not exceed the ratings. The quality and normal operation of the product are guaranteed under the standards and conditions given as DC and AC characteristics.
3. When designing an external circuit ensure that the connections don't conflict with the port state of this device.

1.2.1 Supply Voltages

Item	Symbol	Condition	MIN.	TYP.	MAX.
System supply voltage	REGVCC	-0.5	6.5	V	
	AWOVSS	-0.5	0.5	V	
	ISOVSS	-0.5	0.5	V	
	EVCC	-0.5	6.5	V	
	EVSS	-0.5	0.5	V	
	AOVREF	-0.5	6.5	V	
	AOVSS	-0.5	0.5	V	

1.2.2 Port Voltages

Item	Pin Group*1	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input voltage	PgR	VI		-0.5		REGVCC + 0.5 (Do not exceed 6.5 V)	V
	PgE			-0.5		$\begin{aligned} & \text { EVCC }+0.5 \\ & \text { (Do not exceed } 6.5 \mathrm{~V} \text {) } \end{aligned}$	V
	PgA0			-0.5		AOVREF + 0.5 (Do not exceed 6.5 V)	V

Note 1. The characteristics of the alternative-function pins are the same as those of the port pins unless otherwise specified.

1.2.3 Port Current

Definition of the condition:

- Per pin: Output current of one GPIO
- Per side: Total output current of all GPIO pins on one side of one IOVxx
- Total: Total output current of both sides of one IOVxx

Note:

- GPIO: General-purpose I/O pin (JP0, P0, P8, P9, P10, P11, AP0)
- IOVxx: Power supply pin for I/O pins (EVCC/EVSS, AOVREF/AOVSS)

Item	Symbol	Pin Group	Condition	MIN.	TYP.	MAX.	Unit
High-level output current	IOH	PgE	Per pin			-10	mA
			Per side (Total of P9_0 to P9_6)			-48	mA
			Per side (Total of P10_6 to P10_9)			-40	mA
			Per side (Total of P10_10 to P10_14, P11_1 to P11_7)			-48	mA
			Per side (Total of P10_0 to P10_2)			-30	mA
			Per side (Total of P0_0 to P0_3, P10_3 to P10_5, P10_15, P11_0)			-48	mA
			Per side (Total of JP0_3 to JP0_5, P0_4 to P0_6, P0_11 to P0_14, P8_2, P8_10 to P8_12)			-48	mA
			Per side (Total of JP0_0 to JP0_2)			-30	mA
			Per side (Total of P0_7 to P0_10, P8_0, P8_1, P8_3 to P8_9)			-48	mA
			Total (EVCC)			-60	mA
		PgA0	Per pin			-10	mA
			Total (AOVREF)			-48	mA

Item	Symbol	Pin Group	Condition	MIN.	TYP.	MAX.	Unit
Low-level output current	IOL	PgE	Per pin			10	mA
			Per side (Total of P9_0 to P9_6)			48	mA
			Per side (Total of P10_6 to P10_14, P11_1, P11_2)			48	mA
			Per side (Total of P11_3 to P11_7)			48	mA
			Per side (Total of P10_0 to P10_2)			30	mA
			Per side (Total of P0_0 to P0_6, P0_11 to P0_14, P10_3 to P10_5, P10_15, P11_0)			48	mA
			Per side (Total of JP0_0 to JP0_5, P8_2, P8_10 to P8_12)			48	mA
			Per side (Total of P0_7 to P0_10)			40	mA
			Per side (Total of P8_0, P8_1, P8_3 to P8_9)			48	mA
			Total (EVSS)			60	mA
		PgAO	Per pin			10	mA
			Total (AOVSS)			48	mA

1.2.4 Temperature Condition

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Storage temperature	Tstg		-55	170	${ }^{\circ} \mathrm{C}$	
Junction temperature	Tj	R7F7010xx3AFP	-40	130	${ }^{\circ} \mathrm{C}$	
		R7F7010xx4AFP	-40	150	${ }^{\circ} \mathrm{C}$	

$x x=21,22,23,24,25,02,03,44,45$
Regarding operation temperature of each product, refer to "Product Lineup".

1.3 Capacitance

Condition: REGVCC $=$ EVCC $=$ AOVREF $=$ AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input capacitance	$\mathrm{Cl}^{* 1}$	$\mathrm{f}=1 \mathrm{MHz}$		10	pF	
	Input/output capacitance	$\mathrm{CIO}^{* 2}$	OV for non measurement			
				10	pF	

Note 1. CI: Capacitance between the input pin and ground
Note 2. CIO: Capacitance between the input/output pin and ground

1.4 Operational Condition

ECO Line, Gateway 512KB

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
CPU clock frequency	$\mathrm{f}_{\text {CPUCLK }}$				80	MHz
Peripheral clock (clock domain) frequency*1	$\mathrm{f}_{\text {CKSCLK_AWDTA }}$	for WDTA0			$240 * 2$	kHz
	f CKSCLK_ATAUJ	for TAUJ0			40	MHz
	$\mathrm{f}_{\text {CKSCLK_AADCA }}$	for ADCA0			40	MHz
	$\mathrm{f}_{\text {CKSCLK_AFOUT }}$	for CSCXFOUT			24	MHz
	$\mathrm{f}_{\text {CKSCLK_IPERI1 }}$	for TAUD0			80	MHz
		for TAUJ1				
		for ENCA0				
		for TAPA				
		for PIC				
	$\mathrm{f}_{\text {CKSCLK_IPERI2 }}$	for TAUB0			40	MHz
		for PWM-diag				
	$\mathrm{f}_{\text {CKSCLK_ILIN }}$	for RLIN2			40	MHz
		for RLIN3				
	$\mathrm{f}_{\text {CKSCLK_ICAN }}$	for RS-CAN (pclk)			80	MHz
	$\mathrm{f}_{\text {CKSCLK_ICANOSC }}$	for RS-CAN (clk_xincan)			24	MHz
	$\mathrm{f}_{\text {CKSCLK_ICSI }}$	for CSIG			80	MHz
		for CSIH				
	f_{RL}	for WDTA1			240*2	kHz
	$\mathrm{f}_{\text {CPUCLK2 }}$	for OSTM			40	MHz
		for RIIC				
	$\mathrm{f}_{\text {EMCLK }}$	for LPS			8	MHz
Power supply	REGVCC	REGVCC = EVCC	VPOC*3		5.5	V
	EVCC					
	AOVREF		3.0		5.5	V

Note 1. For clock specification of peripherals, refer to Section 10, Clock Controller, in the RH850/F1L Group User's Manual: Hardware.
Note 2. This frequency depends on the internal oscillator (LS IntOSC).
Note 3. "VPOC" means POC (power on clear) detection voltage (typ. 2.95 V@at power-on, typ. 2.9 V@after (except) power-on). For detail, refer to Section 1.8.2, Voltage Detector (POC, LVI, VLVI, CVM) Characteristics.
In addition, the guaranteed operation in DC characteristic.
And AC characteristic is guaranteed when more than 3.0 V .
When the power supply voltage is VPOC to 3.0 V , the device does not malfunction.

ADVANCED Line, Gateway 1MB

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
CPU clock frequency	$\mathrm{f}_{\text {CPUCLK }}$				96	MHz
Peripheral clock (clock domain) frequency*1	$\mathrm{f}_{\text {CKSCLK_AWDTA }}$	for WDTA0			240*2	kHz
	$\mathrm{f}_{\text {CKSCLK_ATAUJ }}$	for TAUJ0			40	MHz
	$\mathrm{f}_{\text {CKSCLK_AADCA }}$	for ADCA0			40	MHz
	$\mathrm{f}_{\text {CKSCLK_AFOUT }}$	for CSCXFOUT			24	MHz
	$\mathrm{f}_{\text {CKSCLK_IPERI1 }}$	for TAUD0			80	MHz
		for TAUJ1				
		for ENCA0				
		for TAPA				
		for PIC				
	$\mathrm{f}_{\text {CKSCLK_IPERI2 }}$	for TAUB0			48	MHz
		for PWM-diag				
	$\mathrm{f}_{\text {CKSCLK_ILIN }}$	for RLIN2			48	MHz
		for RLIN3				
	$\mathrm{f}_{\text {CKSCLK_ICAN }}$	for RS-CAN (pclk)			96	MHz
	$\mathrm{f}_{\text {CKSCLK_ICANOSC }}$	for RS-CAN (clk_xincan)			24	MHz
	$\mathrm{f}_{\text {CKSCLK_ICSI }}$	for CSIG			96	MHz
		for CSIH				
	f_{RL}	for WDTA1			240*2	kHz
	$\mathrm{f}_{\text {CPUCLK2 }}$	for OSTM			48	MHz
		for RIIC				
	$\mathrm{f}_{\text {EMCLK }}$	for LPS			8	MHz
Power supply	REGVCC	REGVCC = EVCC	VPOC*3		5.5	V
	EVCC					
	AOVREF		3.0		5.5	V

Note 1. For clock specification of peripherals, refer to Section 10, Clock Controller, in the RH850/F1L Group User's Manual: Hardware.

Note 2. This frequency depends on the internal oscillator (LS IntOSC).
Note 3. "VPOC" means POC (power on clear) detection voltage (typ. 2.95 V@at power-on, typ. 2.9 V@after (except) power-on). For detail, refer to Section 1.8.2, Voltage Detector (POC, LVI, VLVI, CVM) Characteristics.
In addition, the guaranteed operation in DC characteristic.
And AC characteristic is guaranteed when more than 3.0 V .
When the power supply voltage is VPOC to 3.0 V , the device does not malfunction.

1.5 Oscillator Characteristics

Condition: REGVCC $=\mathrm{EVCC}=\mathrm{VPOC}$ to $5.5 \mathrm{~V}, \mathrm{~A} 0 \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V , AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, $\mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$

Item	Symbol	Condition	MIN.	TYP.	MAX.
MainOSC frequency	$\mathrm{f}_{\text {MOSC }}$	Crystal/Ceramic	8		24
MainOSC Current consumption	$\mathrm{I}_{\text {MOSC }}$	After stabilization		MHz	
MainOSC oscillation start point	$\mathrm{V}_{\text {MOSCSP }}$	Crystal/Ceramic	VPOC	$1.9^{* 2}$	$2.3^{* 2}$
MainOSC oscillation operating point	$\mathrm{V}_{\text {MOSCOP }}$		mA		
MainOSC oscillation amplitude	$\mathrm{V}_{\text {MOSCAMP }}$	Crystal/Ceramic	$0.4 \times$ REGVCC $-0.2^{* 2}$		V
MainOSC oscillation stabilization time	$\mathrm{t}_{\text {MSTB }}$			${ }^{* 1}$	V

Note 1. Oscillator stabilization time is time until being set ("1") in MOSCS.MOSCCLKACT bit after MOSCE.MOSCENTRG bit is written " 1 ", and depends on the setting value of MOSCST register. Please decide appropriate oscillation stabilization time by matching test with resonator and oscillation circuit.
Note 2. This is reference value.

CAUTION

The oscillation stabilization time differs according the matching with the external resonator circuit. It is recommended to determine the oscillation stabilization time by an oscillator matching test.

NOTE
Recommended oscillator circuit is shown below.

MainOSC

1.6 Internal Oscillator Characteristics

Condition: REGVCC $=\mathrm{EVCC}=\mathrm{VPOC}$ to $5.5 \mathrm{~V}, \mathrm{~A} O \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V , AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, $\mathrm{CL}=30 \mathrm{pF}$

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
LS IntOSC frequency	f_{RL}		220.8	240	259.2	kHz
HS IntOSC frequency	f_{RH}		7.36	8	8.64	MHz
		$\mathrm{Ta}=25^{\circ} \mathrm{C}$	7.6	8	8.4	MHz
HS IntOSC Current consumption	I_{RH}	After stabilization			$25^{* 1}$	$\mathrm{\mu A}$
HS IntOSC oscillation stabilization time	$\mathrm{t}_{\text {RHSTB }}$			54.4	$\mu \mathrm{~s}$	

Note 1. This is reference value.

1.7 PLL Characteristics

Condition: REGVCC $=\mathrm{EVCC}=\mathrm{VPOC}$ to 5.5 V , AOVREF $=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$,
$\mathrm{CL}=30 \mathrm{pF}$

Item	Symbol		Condition	MIN.	TYP.	MAX.	Unit
Input frequency	$\mathrm{f}_{\text {PLLICLK }}$			8		24	MHz
Output frequency (PLL for CPU)	$\mathrm{f}_{\text {CPLL }}$		ECO line, Gateway 512KB	25		80	MHz
			ADVANCED line, Gateway 1MB	25		96	MHz
Output frequency (PLL for Peripheral)	$\mathrm{f}_{\text {PPLL }}$			25		80	MHz
Output period jitter*1 (PLL for CPU)	$\mathrm{t}_{\text {CPJ }}$	PLLC.OUTBSEL $=0$	$\mathrm{par}=4^{* 2}$	-150		150	ps
			par $=6^{* 2}\left(\mathrm{f}_{\text {CPLL }}=80 \mathrm{MHz}\right)$	-150		150	ps
			par $=6^{* 2}\left(\mathrm{f}_{\text {CPLL }}<80 \mathrm{MHz}\right)$	-200		200	ps
			par $=8^{* 2}$	-250		250	ps
			par $=16^{*}$	-300		300	ps
		PLLC.OUTBSEL = 1 ADVANCED line, Gateway 1MB	$\mathrm{f}_{\text {CPLL }}=96 \mathrm{MHz}$	-150		150	ps
			$\mathrm{f}_{\text {CPLL }}<96 \mathrm{MHz}$	-200		200	ps
Output period jitter*1 (PLL for Peripheral)	$t_{\text {PPJ }}$		par $=4^{* 2}$	-150		150	ps
			par $=6{ }^{* 2}\left(\mathrm{f}_{\text {PPLL }}=80 \mathrm{MHz}\right)$	-150		150	ps
			par $=6^{* 2}\left(\mathrm{f}_{\text {PPLL }}<80 \mathrm{MHz}\right)$	-200		200	ps
			par $=8^{* 2}$	-250		250	ps
			par $=16{ }^{\text {2 }}$	-300		300	ps
Long term jitter*1 (Both PLL for CPU and PLL for Peripheral)	$\mathrm{t}_{\text {LTJ }}$		term $=1 \mu \mathrm{~s}$	-500		500	ps
			term $=10 \mu \mathrm{~s}$	-1		1	ns
			term $=20 \mu \mathrm{~s}$	-2		2	ns
Lock time*3	t LCKP			104	112.3	122.1	$\mu \mathrm{s}$

Note 1. This is reference value.
Note 2. "par" is set by PA[2:0] bit of PLLC register.
Note 3. Lock time is time until being set ("1") in PLLS.PLLCLKACT bit after PLLE.PLLENTRG bit is written " 1 ".

1.8 Power Management Characteristics

1.8.1 Regulator Characteristics

Condition: REGVCC $=\mathrm{EVCC}=\mathrm{VPOC}$ to $5.5 \mathrm{~V}, \mathrm{~A} 0 \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
$\mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}, \mathrm{CL}=30 \mathrm{pF}$

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input voltage	REGVCC		VPOC*1 *		5.5	V
Normal operation voltage	V_{OP}	AWOVCL pin, ISOVCL pin	1.10	1.25	1.35	V
Limited operation voltage	$\mathrm{V}_{\text {LOP }}$	AWOVCL pin, ISOVCL pin	1.35		$1.43^{* 3}$	V
Regulator output voltage	$\mathrm{V}_{\text {RO }}$	AWOVCL pin, ISOVCL pin	1.15	1.25	1.35	V
Output voltage	AWOVCL	AWOVCL pin	1.1	1.25	1.35	V
	ISOVCL	ISOVCL pin	1.1	1.25	1.35	V
Capacitance	CAWOVCL	AWOVCL pin	0.07	0.10	0.13	$\mu \mathrm{~F}$
	CISOVCL	ISOVCL pin	0.07	0.10	0.13	$\mu \mathrm{~F}$
Equivalent series resistance for load capacitance	RVRAWO	for CAWOVCL			$40^{* 2}$	$\mathrm{~m} \Omega$
	RVRISO	for CISOVCL			$40^{* 2}$	$\mathrm{~m} \Omega$
Inrush current during power-on				$100^{* 2}$	mA	

Note 1. "VPOC" means POC (power on clear) detection voltage (typ. 2.95V@at power-on, typ. 2.9V@after (except) power-on).
For detail, refer to Section 1.8.2, Voltage Detector (POC, LVI, VLVI, CVM) Characteristics.
Note 2. This is reference value.
Note 3. Reliability restrictions from 1.35 V to 1.43 V .

1.8.2 Voltage Detector (POC, LVI, VLVI, CVM) Characteristics

Condition: REGVCC $=\mathrm{EVCC}=\mathrm{VPOC}$ to $5.5 \mathrm{~V}, \mathrm{~A} 0 \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, $C L=30 \mathrm{pF}$

Item	Symbol	Condition			MIN.	TYP.	MAX.	Unit
Detection voltage (REGVCC)	VPOC	POC	At power-on (Rise)		2.8	2.95	3.1	V
			After power-on (Fall)		2.8	2.9	3.0	V
	VLVIO	LVI	Rise		3.87	4.0	4.13	V
			Fall		3.9	4.0	4.1	V
	VLVI1		Rise		3.57	3.7	3.83	V
			Fall		3.6	3.7	3.8	V
	VLVI2		Rise		3.37	3.5	3.63	V
			Fall		3.4	3.5	3.6	V
	VVLVI	VLVI			1.8	1.9	2.0	V
Detection voltage (AWOVCL, ISOVCL)	VCVMH	CVM	High voltage ${ }^{\text {Caution }}$		1.40	1.50	1.60	V
	VCVML*8		Low voltage ${ }^{\text {Caution }}$		1.1	1.15	1.20	V
Response time	$\mathrm{t}_{\text {_POC1 }}{ }^{* 6}$	POC	At power-on (Rise)	*1			2	ms
				*2			6.3	ms
			After power-on (Rise)	*3			2	ms
				*4			5	ms
	$\mathrm{t}_{\text {_POC2 }}{ }^{* 7}$		After power-on (Fall)	*5			5	$\mu \mathrm{s}$
	$\mathrm{t}_{\text {D_LVI }}$	LVI					2	ms
	$\mathrm{t}_{\mathrm{D} \text { _VLVI }}$	VLVI	*3				2	ms
				*4			5	ms
	$\mathrm{t}_{\text {_ }}$ CVM	CVM			0.2		10	$\mu \mathrm{s}$
Setup time	$\mathrm{t}_{\text {S_LVI }}$	LVI	LVICNT0, 1 bits are set to 1 (except 00_{B}), then LVI is ready to operate				80	$\mu \mathrm{s}$
REGVCC minimum width	${ }^{\text {W W_POC }}$	POC			0.2			ms
	$t_{\text {W_LVI }}$	LVI			0.2			ms
	$\mathrm{t}_{\mathrm{W} \text { _VLVI }}$	VLVI			0.2			ms

Note 1. Voltage slope (t_{Vs}) : $0.02 \mathrm{~V} / \mathrm{ms} \leq \mathrm{t}_{\mathrm{Vs}} \leq 0.5 \mathrm{~V} / \mathrm{ms}$
Note 2. Voltage slope (t_{Vs}): $0.5 \mathrm{~V} / \mathrm{ms}<\mathrm{t}_{\mathrm{Vs}} \leq 500 \mathrm{~V} / \mathrm{ms}$
Note 3. Voltage slope (t_{Vs}) : $0.02 \mathrm{~V} / \mathrm{ms} \leq \mathrm{t}_{\mathrm{Vs}} \leq 20 \mathrm{~V} / \mathrm{ms}$
Note 4. Voltage slope (t_{Vs}) : $20 \mathrm{~V} / \mathrm{ms}<\mathrm{t}_{\mathrm{Vs}} \leq 500 \mathrm{~V} / \mathrm{ms}$
Note 5. Voltage slope (t_{Vs}) : $0.02 \mathrm{~V} / \mathrm{ms} \leq \mathrm{t}_{\mathrm{Vs}} \leq 500 \mathrm{~V} / \mathrm{ms}$
Note 6. $\quad \mathrm{t}_{\mathrm{D} P \mathrm{POC} 1}$ is the time from detection voltage to release of reset signal.
Note 7. $\quad \mathrm{t}_{\mathrm{D}}$ POC2 2 is the time from detection voltage to occurrence of reset signal.
Note 8. The CVM monitors the internal voltage regulator output to ensure that AWOVCL/ISOVCL is upper than specified minimum level.

Caution: A detection of the voltage AWOVCL or ISOVCL outside the specified level of VCVMH and VCVML is not ensured by CVM.
<POC>

<LVI>

<VLVI>

<CVM>

1.8.3 Power Up/Down Timing

```
    Condition: REGVCC = EVCC = VPOC to 5.5 V, AOVREF = 3.0 V to 5.5 V,
    AWOVSS = ISOVSS = EVSS = AOVSS =0 V,
    CAWOVCL: 0.1 \mu\textrm{F}+/-30%, CISOVCL: 0.1 \mu\textrm{F}+/-30%, Ta =-40 to (depend on the product) }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ ,
    CL = 30 pF
```

Table 1.1 In case the RESET pin is used (except Serial programming mode)

Item	Symbol	Condition	MIN.	TYP.	MAX.
$\left.\begin{array}{l}\text { Voltage slope } \\ (\text { REGVCC } \text { and IOVCC }\end{array}\right)$					

Note 1. IOVCC means EVCC and AOVREF.
Note 2. When the $\overline{\text { RESET }}$ and FLMD0 pin input low level at same time ($\mathrm{t}_{\text {SMDF }}=0 \mu \mathrm{~s}$) in the device entries on-chip debug mode and operates self-programming, following pins have a possibility to unstable level output for less than 23ns.

P10_0, P0_0, P10_5, P8_1
So, when the device was used in the device entries on-chip debug mode and operates self-programming, please input low level in FLMD0 before $\overline{\text { RESET }}$ pin input.

Table 1.2 In case the $\overline{\text { RESET }}$ pin is used (for Serial programming mode)

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Voltage slope (REGVCC and IOVCC*1)	t_{Vs}		$\begin{aligned} & 0.02 \\ & (=50 \mathrm{~ms} / \mathrm{V}) \end{aligned}$		$\begin{aligned} & 500 \\ & (=2 \mu \mathrm{~s} / \mathrm{V}) \end{aligned}$	V/ms
REGVCC \uparrow and IOVCC* ${ }^{\star 1} \uparrow$ to $\overline{\text { RESET }} \uparrow$ delay time	$t_{\text {DPOR }}$	Voltage slope ($\mathrm{tvs}^{\text {) }}$: $0.02 \mathrm{~V} / \mathrm{ms} \leq \mathrm{t}_{\mathrm{Vs}} \leq 0.5 \mathrm{~V} / \mathrm{ms}$	2			ms
		Voltage slope ($\mathrm{tvs}^{\text {) }}$: $0.5 \mathrm{~V} / \mathrm{ms}<\mathrm{t}_{\mathrm{Vs}} \leq 500 \mathrm{~V} / \mathrm{ms}$	6.3			ms
FLMD0 setup time (vs RESET \uparrow)	$\mathrm{t}_{\text {SMDOR }}$		1			ms
$\overline{\text { RESET }} \downarrow$ to REGVCC \downarrow and IOVCC* ${ }^{* 1} \downarrow$ delay time	$\mathrm{t}_{\text {DRPD }}$		0			ms

Note 1. IOVCC means EVCC and AOVREF.

Table 1.3 Boundary scan mode in case of using $\overline{\text { RESET }}$ pin

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Voltage slope (REGVCC and IOVCC* ${ }^{* 1}$)	t_{Vs}		$\begin{aligned} & 0.02 \\ & (=50 \mathrm{~ms} / \mathrm{V}) \end{aligned}$		$\begin{aligned} & 500 \\ & (=2 \mu \mathrm{~s} / \mathrm{V}) \end{aligned}$	V / ms
REGVCC \uparrow and IOVCC \uparrow to RESET \uparrow delay time	$t_{\text {DPOR }}$	Voltage slope ($\mathrm{VVS}^{\text {) }}$: $0.02 \mathrm{~V} / \mathrm{ms} \leq \mathrm{t}_{\mathrm{Vs}} \leq 0.5 \mathrm{~V} / \mathrm{ms}$	2			ms
		Voltage slope (Vvs) : $0.5 \mathrm{~V} / \mathrm{ms}<\mathrm{t}_{\mathrm{Vs}} \leq 500 \mathrm{~V} / \mathrm{ms}$	6.3			ms
FLMD0, FLMD1, MODE0, MODE1 setup time (vs $\overline{R E S E T} \uparrow$)	$\mathrm{t}_{\text {SMDR }}$		1			ms
$\overline{\mathrm{RESET}} \downarrow$ to REGCC \downarrow and IOVCC \downarrow delay time	$t_{\text {DRPD }}$		0			ms
$\overline{\text { DCUTRST }}$ input delay time (vs RESET \uparrow)	$t_{\text {DRTRST }}$		1			ms
RESET hold time (vs DCUTRST \downarrow)	$\mathrm{t}_{\text {HRTRST }}$		0			ms

Note 1. IOVCC means EVCC and AOVREF.

Table 1.4 In case the $\overline{\text { RESET }}$ pin is not used and fixed to high level by pull-up*1

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Voltage slope (REGVCC and IOVCC*2)	t_{vs}		$\begin{aligned} & 0.02 \\ & (=50 \mathrm{~ms} / \mathrm{V}) \end{aligned}$		$\begin{aligned} & 500 \\ & (=2 \mu \mathrm{~s} / \mathrm{V}) \end{aligned}$	V/ms
REGVCC \uparrow and IOVCC \uparrow to FLMDO hold time	$\mathrm{t}_{\text {HPOMD }}$	Voltage slope (t_{Vs}) : $0.02 \mathrm{~V} / \mathrm{ms} \leq \mathrm{t}_{\mathrm{Vs}} \leq 0.5 \mathrm{~V} / \mathrm{ms}$	2			ms
		Voltage slope (t_{Vs}) : $0.5 \mathrm{~V} / \mathrm{ms}<\mathrm{t}_{\mathrm{Vs}} \leq 500 \mathrm{~V} / \mathrm{ms}$	6.3			ms
FLMDO \downarrow to REGVCC \downarrow and IOVCC*2 \downarrow delay time	${ }_{\text {t MMDPD }}$		1			$\mu \mathrm{s}$

Note 1. This operating condition is available only in normal operation mode (include self-programming mode). When the device is used in except normal operation mode, please use the $\overline{R E S E T}$ pin.
Note 2. IOVCC means EVCC and AOVREF.

1.8.4 CPU Reset Release Timing

Condition: REGVCC $=\mathrm{EVCC}=\mathrm{VPOC}$ to 5.5 V , AOVREF $=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$,
$C L=30 \mathrm{pF}$
Table 1.5 In case the $\overline{\text { RESET }}$ pin is not used

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
REGVCC \uparrow to CPU reset release*1	$t_{\text {DPCRR }}$	Voltage slope (t_{Vs}) : $0.02 \mathrm{~V} / \mathrm{ms} \leq \mathrm{t}_{\mathrm{Vs}} \leq 0.5 \mathrm{~V} / \mathrm{ms}$			2.58	ms
		Voltage slope ($\mathrm{tvs}^{\text {) : }} 0.5 \mathrm{~V} / \mathrm{ms}<\mathrm{t}_{\mathrm{Vs}} \leq 500 \mathrm{~V} / \mathrm{ms}$			8.30	ms

Note 1. This is reference value.

Table 1.6 In case the $\overline{\text { RESET }}$ pin is used

Item	Symbol	Condition	MIN.	TYP.	MAX.
$\overline{\text { RESET } \uparrow \text { to }}$	$t_{\text {DRCRR }}$			$8^{* 2}$	
CPU reset release					

Note 1. This is reference value.
Note 2. At least $t_{\text {DPCRR }}$ time is necessary reaching from VPOC (max) even if power up sequence is kept shown on Section 1.8.3, Power Up/Down Timing.

1.9 Pin Characteristics

Condition: Some of the conditions mentioned in this chapter can be selected by software and described in the hardware user's manual
(1/2)

Pin Name	Port Input Buffer Function						Port Output Drive Strength Mode	Other Port Function	
	CMOS	SHMT1	SHMT2	SHMT4	TTL	Analog		Pull-up	Pull-down
RESET	-	-	\checkmark	-	-	-	-	-	-*4
FLMD0	-	\checkmark	-	-	-	-	-	\checkmark	\checkmark
APO_0	\checkmark	-	-	-	-	\checkmark	Slow	-	$\sqrt{* 1}$
APO_1	\checkmark	-	-	-	-	\checkmark	Slow	-	$\sqrt{* 1}$
APO_2	\checkmark	-	-	-	-	\checkmark	Slow	-	$V^{* 1}$
APO_3	\checkmark	-	-	-	-	\checkmark	Slow	-	$V^{* 1}$
APO_4	\checkmark	-	-	-	-	\checkmark	Slow	-	$\sqrt{* 1}^{*}$
AP0_5	\checkmark	-	-	-	-	\checkmark	Slow	-	$\downarrow^{* 1}$
APO_6	\checkmark	-	-	-	-	\checkmark	Slow	-	${ }^{* 1}$
AP0_7	\checkmark	-	-	-	-	\checkmark	Slow	-	$\downarrow^{* 1}$
APO_8	\checkmark	-	-	-	-	\checkmark	Slow	-	$\sqrt{* 1}^{*}$
AP0_9	\checkmark	-	-	-	-	\checkmark	Slow	-	$\sqrt{* 1}^{*}$
AP0_10	\checkmark	-	-	-	-	\checkmark	Slow	-	$\sqrt{* 1}^{*}$
APO_11	\checkmark	-	-	-	-	\checkmark	Slow	-	$\sqrt{* 1}$
AP0_12	\checkmark	-	-	-	-	\checkmark	Slow	-	$V^{* 1}$
AP0_13	\checkmark	-	-	-	-	\checkmark	Slow	-	$\downarrow^{* 1}$
AP0_14	\checkmark	-	-	-	-	\checkmark	Slow	-	$\downarrow^{* 1}$
AP0_15	\checkmark	-	-	-	-	\checkmark	Slow	-	$\downarrow^{* 1}$
JP0_0	-	-	-	\checkmark	\checkmark	-	Slow	\checkmark	\checkmark
JP0_1	-	-	-	\checkmark	-	-	Slow/Fast	\checkmark	\checkmark
JP0_2	-	-	-	\checkmark	\checkmark	-	Slow	\checkmark	\checkmark
JP0_3	-	-	-	\checkmark	\checkmark	-	Slow	\checkmark	\checkmark
JP0_4	-	-	-	\checkmark	-	-	Slow	\checkmark	\checkmark
JP0_5	-	-	-	\checkmark	-	-	Slow/Fast	\checkmark	\checkmark
P0_0	-	\checkmark	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P0_1	-	\checkmark	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P0_2	-	\checkmark	-	\checkmark	-	-	Slow/Fast ${ }^{*}$	\checkmark	\checkmark
P0_3	-	\checkmark	-	\checkmark	-	-	Slow/Fast ${ }^{2}$	\checkmark	\checkmark
P0_4	-	\checkmark	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P0_5	-	\checkmark	-	\checkmark	-	-	Slow/Fast ${ }^{* 3}$	\checkmark	\checkmark
P0_6	-	\checkmark	-	\checkmark	-	-	Slow/Fast ${ }^{*}$	\checkmark	\checkmark
P0_7	-	\checkmark	-	\checkmark	-	-	Slow/Fast	\checkmark	\checkmark
P0_8	-	-	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P0_9	-	\checkmark	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P0_10	-	-	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P0_11	-	\checkmark	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P0_12	-	\checkmark	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P0_13	-	\checkmark	-	\checkmark	-	-	Slow/Fast	\checkmark	-
P0_14	-	-	-	\checkmark	-	-	Slow/Fast	\checkmark	-
P10_0	-	\checkmark	-	\checkmark	-	-	Slow/Fast	\checkmark	\checkmark

Pin Name	Port Input Buffer Function						Port Output Drive Strength Mode	Other Port Function	
	cmos	SHMT1	SHMT2	SHMT4	TTL	Analog		Pull-up	Pull-down
P10_1	-	-	-	\checkmark	-	-	Slow/Fast ${ }^{* 3}$	\checkmark	\checkmark
P10_2	-	\checkmark	-	\checkmark	-	-	Slow/Fast ${ }^{\text {* }}$	\checkmark	\checkmark
P10_3	-	\checkmark	-	\checkmark	-	-	Slow/Fast	\checkmark	\checkmark
P10_4	-	\checkmark	-	\checkmark	-	-	Slow/Fast	\checkmark	\checkmark
P10_5	-	-	-	\checkmark	-	-	Slow/Fast	\checkmark	\checkmark
P10_6	-	\checkmark	-	\checkmark	-	-	Slow/Fast	\checkmark	\checkmark
P10_7	-	-	-	\checkmark	-	-	Slow/Fast	\checkmark	\checkmark
P10_8	-	-	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P10_9	-	\checkmark	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P10_10	-	-	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P10_11	-	\checkmark	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P10_12	-	-	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P10_13	-	\checkmark	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P10_14	-	-	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P10_15	-	\checkmark	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P11_0	-	-	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P11_1	-	\checkmark	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P11_2	-	-	-	\checkmark	-	-	Slow/Fast ${ }^{* 3}$	\checkmark	\checkmark
P11_3	-	$\sqrt{*} 6$	-	\checkmark	-	-	Slow/Fast ${ }^{* 3}$	\checkmark	\checkmark
P11_4	-	-	-	\checkmark	-	-	Slow	\checkmark	\checkmark
P11_5	-	$\sqrt{*} 6$	-	\checkmark	-	-	Slow	\checkmark	-
P11_6	-	\checkmark	-	\checkmark	-	-	Slow/Fast ${ }^{* 3}$	\checkmark	-
P11_7	-	-	-	\checkmark	-	-	Slow/Fast ${ }^{* 3}$	\checkmark	-
P8_0	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{* 5}$
P8_1	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{* 5}$
P8_2	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{* 5}$
P8_3	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{*} 5$
P8_4	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{*}^{5}$
P8_5	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{* 5}$
P8_6	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	\downarrow^{*}
P8_7	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\downarrow^{* 1}$
P8_8	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{* 1}$
P8_9	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{* 1}$
P8_10	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{* 1}^{*}$
P8_11	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$V^{* 1}$
P8_12	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{* 1}$
P9_0	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{*}^{5}$
P9_1	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{*}^{5}$
P9_2	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{* 5}$
P9_3	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{* 5}$
P9_4	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{*}^{5}$
P9_5	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{* 5}$
P9_6	-	-	-	\checkmark	-	\checkmark	Slow	\checkmark	$\sqrt{*}^{5}$

Note 1. Pull-down resistors for ADC diagnostic purpose. Control via ADC self-diagnostic register.
Note 2. Supports Cload: 100pF
Note 3. Supports Cload: 50pF
Note 4. At a power-on clear reset, an on-chip pull-down resistor at the RESET pin is enabled until the flash sequence is completed.
Note 5. Pull-down resistors for ADC diagnostic and internal pull-down purposes. For ADC diagnostic, control via ADC self-diagnostic register. For internal pull-down, control via PD register.
Note 6. Only available in RH850/F1L for Gateway.

Caution: Regarding external pull-up resistor of RESET pin, please connect less than $6.6 \mathrm{k} \Omega$.

Condition: REGVCC $=\mathrm{EVCC}=\mathrm{VPOC}$ to $5.5 \mathrm{~V}, \mathrm{~A} 0 \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, $\mathrm{CL}=30 \mathrm{pF}$

Item	Symbol	Condition		MIN.	TYP.	MAX.	Unit
High level input voltage	VIH	CMOS		$0.65 \times$ IOVCC		IOVCC + 0.3	V
		SHMT1 (except FLMD0 pin)		$0.7 \times$ IOVCC		IOVCC + 0.3	V
		SHMT1 (FLMD0 pin)*3		$0.66 \times$ EVCC		EVCC + 0.3	V
		SHMT2		$0.75 \times$ IOVCC		IOVCC + 0.3	V
		SHMT4		$0.8 \times$ IOVCC		IOVCC + 0.3	V
		TTL	EVCC = VPOC to 3.6 V	2.0		EVCC + 0.3	V
			EVCC $=3.6 \mathrm{~V}$ to 5.5 V	2.2		EVCC + 0.3	V
Low level input voltage	VIL	CMOS		-0.3		$0.35 \times$ IOVCC	V
		SHMT1		-0.3		$0.3 \times$ IOVCC	V
		SHMT2		-0.3		$0.25 \times$ IOVCC	V
		SHMT4		-0.3		$0.5 \times$ IOVCC	V
		TTL		-0.3		0.8	V
Input hysteresis for Schmitt	VH	SHMT1		0.3			V
		SHMT2		$0.2 \times$ IOVCC			V
		SHMT4		0.1			V
Input leakage current	ILIH	RESET, FLMDO, JP0, P0, P8, P9 pin, $\mathrm{VI}=\mathrm{EVCC}^{* 2}$				0.5	$\mu \mathrm{A}$
		P10, P11 pin				0.5	$\mu \mathrm{A}$
		AP0 pin, VI = A0VREF*2				0.5	$\mu \mathrm{A}$
	ILIL	RESET, FLMDO, JP0, PO, $\mathrm{P} 8, \mathrm{P} 9$ pin, $\mathrm{VI}=0 \mathrm{~V}^{* 2}$				-0.5	$\mu \mathrm{A}$
		P10, P11 pin, VI = $0 \mathrm{~V}^{*}{ }^{2}$				-0.5	$\mu \mathrm{A}$
		AP0 pin, VI = 0 V*2				-0.5	$\mu \mathrm{A}$
Internal pull-up resistance	RU	except FLMD0 pin		$20(275 \mu \mathrm{~A})$	40	100	$\mathrm{k} \Omega$
		FLMD0*3		$10(550 \mu \mathrm{~A})$	19	48	$\mathrm{k} \Omega$
Internal pull-down resistance	RD	except FLMD0 pin		$20(275 \mu \mathrm{~A})$	40	100	$\mathrm{k} \Omega$
		FLMD0		10 ($550 \mu \mathrm{~A}$)	19	50	$\mathrm{k} \Omega$
High level output voltage	VOH	Fast mode					
			$\mathrm{IOH}=-5 \mathrm{~mA}(6 \mathrm{pins})^{* 4}$	IOVCC - 1.0			V
			$\mathrm{IOH}=-3 \mathrm{~mA}(10 \mathrm{pins})^{* 4}$	IOVCC - 1.0			V
			$\mathrm{IOH}=-1 \mathrm{~mA}(16 \mathrm{pins})^{* 4}$	IOVCC - 0.5			V
			$\mathrm{IOH}=-0.1 \mathrm{~mA}(16 \mathrm{pins})^{* 4}$	IOVCC - 0.5			V
		Slow mode					
			$\mathrm{IOH}=-1 \mathrm{~mA}(16 \mathrm{pins})^{* 4}$	IOVCC - 0.5			V
			$\mathrm{IOH}=-0.1 \mathrm{~mA}(16 \mathrm{pins})^{* 4}$	IOVCC-0.5			V
Low level output voltage	VOL	Fast mode					
			$\mathrm{IOL}=5 \mathrm{~mA}(6 \mathrm{pins})^{* 4}$			0.4	V
			$\mathrm{IOL}=3 \mathrm{~mA}(10 \mathrm{pins})^{* 4}$			0.4	V
			$\mathrm{IOL}=1 \mathrm{~mA}\left(16\right.$ pins) ${ }^{* 4}$			0.4	V
		Slow mode					
			IOL $=1 \mathrm{~mA}\left(16\right.$ pins) ${ }^{* 4}$			0.4	V
Rise/Fall time	$\mathrm{t}_{\text {KRP }} / \mathrm{t}_{\text {KFP }}$	Fast mode (except below pins) ${ }^{* 5}$	$\mathrm{CL}=30 \mathrm{pF}$			7	ns
			$\mathrm{CL}=50 \mathrm{pF}$			12	ns
			$\mathrm{CL}=100 \mathrm{pF}$			24	ns
		$\begin{aligned} & \text { Fast mode } \\ & \text { (P0_5, P0_6, P10_1, } \\ & \text { P10_2, P11_2, P11_3, } \\ & \text { P11_6, P11_7)*6 } \end{aligned}$	$\mathrm{CL}=50 \mathrm{pF}$			6	ns
		$\begin{aligned} & \hline \text { Fast mode } \\ & \text { (P0_2, P0_3)*6 } \end{aligned}$	$\mathrm{CL}=100 \mathrm{pF}$			6.15	ns
		Slow mode*5	$\mathrm{CL}=30 \mathrm{pF}$			37	ns
			$\mathrm{CL}=50 \mathrm{pF}$			62	ns
			CL = 100 pF			124	ns

Item	Symbol	Condition		MIN.	TYP.
Output frequency	f_{O}	Fast mode	$\mathrm{CL}=30 \mathrm{pF}$	Mnit	
	Slow mode	$\mathrm{CL}=30 \mathrm{pF}$	40	MHz	
		$\mathrm{CL}=50 \mathrm{pF}$	MHz		
		$\mathrm{CL}=100 \mathrm{pF}$	3	MHz	

Note 1. "IOVCC" means the pins are assigned to the power supply (EVCC and AOVREF).
Note 2. Not select the analog input function of ADCn.
Note 3. When the internal pull-up resistor of FLMD0 pin is applied by FLMDCNT register, please connect $95 \mathrm{k} \Omega$ or more as external pull-down resistor.
Note 4. The number of pin indicates simultaneous ON.
Note 5. Measurement point: $0.1 \times$ IOVCC to $0.9 \times$ IOVCC
Note 6. Measurement point: $0.2 \times$ IOVCC to $0.8 \times I O V C C$

1.9.1 Output Current

Item	Symbol	Pin Group	Condition	MIN.	TYP.	MAX.	Unit
High-level output current	IOH	PgE	Per side (Total of P9_0 to P9_6)			-7	mA
			Per side (Total of P10_6 to P10_9)			-20	mA
			Per side (Total of P10_10 to P10_14, P11_1 to P11_7)			-30	mA
			Per side (Total of P10_0 to P10_2)			-15	mA
			Per side (Total of P0_0 to P0_3, P10_3 to P10_5, P10_15, P11_0)			-30	mA
			Per side (Total of JPO_3 to JP0_5, P0_4 to P0_6, P0_11 to P0_14, P8_2, P8_10 to P8_12)			-30	mA
			Per side (Total of JP0_0 to JP0_2)			-3	mA
			Per side (Total of P0_7 to P0_10, P8_0, P8_1, P8_3 to P8_9)			-17	mA
			Total (EVCC)			-60	mA
		PgA0	Total (AOVREF)			-16	mA
Low-level output current	IOL	PgE	Per side (Total of P9_0 to P9_6)			7	mA
			Per side (Total of P10_6 to P10_14, P11_1, P11_2)			30	mA
			Per side (Total of P11_3 to P11_7)			25	mA
			Per side (Total of P10_0 to P10_2)			15	mA
			Per side (Total of P0_0 to P0_6, P0_11 to P0_14, P10_3 to P10_5, P10_15, P11_0)			30	mA
			Per side (Total of JP0_0 to JP0_5, P8_2, P8_10 to P8_12)			10	mA
			Per side (Total of P0_7 to P0_10)			8	mA
			Per side (Total of P8_0, P8_1, P8_3 to P8_9)			9	mA
			Total (EVSS)			60	mA
		PgA0	Total (AOVSS)			16	mA

Note 1. For detail of the definition of "side" and "total", refer to Section 1.2.3, Port Current.

1.10 Power Supply Currents

Condition: REGVCC, EVCC and AOVREF total current. But the I/O buffer is stopped.

ECO Line, Gateway 512KB

Item	Symbol	Condition				MIN.	TYP.*1	MAX.	Unit
		CPU	PLL	Ta	Peripheral* ${ }^{\text {2 }}$				
RUN mode current	IDDR	Run	Run	-40 to $125^{\circ} \mathrm{C}$	Run(\#1)		25	60	mA
				$25^{\circ} \mathrm{C}$	Stop(\#1)		19		mA
RUN mode current (During data/code flash programming)	IDDR3	$\begin{aligned} & \text { Run } \\ & (80 \mathrm{MHz}) \end{aligned}$	Run	-40 to $125^{\circ} \mathrm{C}$	Run(\#2)		36	60	mA
HALT mode current	IDDH	$\begin{aligned} & \text { Run } \\ & (80 \mathrm{MHz}) \end{aligned}$	Run	-40 to $125^{\circ} \mathrm{C}$	Run(\#3)		20	56	mA

ADVANCED Line, Gateway 1MB

Item	Symbol	Condition				MIN.	TYP.*1	MAX.	Unit
		CPU	PLL	Ta	Peripheral* ${ }^{2}$				
RUN mode current	IDDR	$\begin{aligned} & \text { Run } \\ & (96 \mathrm{MHz}) \end{aligned}$	Run	-40 to $125^{\circ} \mathrm{C}^{\text {Caution }}$	Run(\#1)		28	72	mA
				$25^{\circ} \mathrm{C}$	Stop(\#1)		21		mA
RUN mode current (During data/code flash programming)	IDDR3	$\begin{aligned} & \text { Run } \\ & \text { (} 96 \mathrm{MHz} \text {) } \end{aligned}$	Run	-40 to $125^{\circ} \mathrm{C}^{\text {Caution }}$	Run(\#2)		39	72	mA
HALT mode current	IDDH	$\begin{aligned} & \text { Run } \\ & (96 \mathrm{MHz}) \end{aligned}$	Run	-40 to $125^{\circ} \mathrm{C}^{\text {Caution }}$	Run(\#3)		22	68	mA
				Condition					
Item	Symbol	CPU	PLL	Ta	Peripheral ${ }^{*}{ }^{\text {a }}$	MIN.	TYP.*1	MAX.	Unit
STOP mode current	IDDS	Stop	Stop	-40 to $85^{\circ} \mathrm{C}$	Stop(\#2)		0.35	3.5	mA
				$105^{\circ} \mathrm{C}$	Stop(\#2)			8	mA
				$125^{\circ} \mathrm{C}$	Stop(\#2)			12	mA
DeepSTOP mode current	IDDDS	Power off	Power off	-40 to $85^{\circ} \mathrm{C}$	Stop(\#3)		35	350	$\mu \mathrm{A}$
				$105^{\circ} \mathrm{C}$	Stop(\#3)			700	$\mu \mathrm{A}$
				$125^{\circ} \mathrm{C}$	Stop(\#3)			1000	$\mu \mathrm{A}$
Cyclic RUN mode current	IDDCR	Run(HSIntOSC)	Stop	-40 to $85^{\circ} \mathrm{C}$	Run(\#4)		1.6	11	mA
				$105^{\circ} \mathrm{C}$	Run(\#4)			17	mA
				$125^{\circ} \mathrm{C}$	Run(\#4)			24	mA
Cyclic STOP mode current	IDDCS	Stop	Stop	-40 to $85^{\circ} \mathrm{C}$	Run(\#5)		0.40	6	mA
				$105^{\circ} \mathrm{C}$	Run(\#5)			9	mA
				$125^{\circ} \mathrm{C}$	Run(\#5)			13	mA

Note 1. The condition of "TYP." shows the specification with the following conditions. Also, the value is just for reference only.

- $\mathrm{Ta}=25^{\circ} \mathrm{C}$
- REGVCC = EVCC = AOVREF $=5.0 \mathrm{~V}$
- AWOVSS $=\mathrm{EVSS}=\mathrm{A} O \mathrm{VSS}=0 \mathrm{~V}$

Note 2. Operating condition of each peripheral function is shown in the table of next page.

Caution: It must be ensured that the junction temperature in the Ta range remains below $\mathrm{Tj} \leq 150^{\circ} \mathrm{C}$ and does not exceed its limit under application conditions (thermal resistance, power supply current, peripheral current (if not included in power supply current), port output current and injection current).

Function		Run					Stop		
		(\#1)	(\#2)	(\#3)	(\#4)	(\#5)	(\#1)	(\#2)	(\#3)
AWO	MainOSC	Run	Run	Run	Stop	Stop	Run	Stop	Stop
	HS IntOSC	Run	Run	Run	Run	Stop	Run	Stop	Stop
	FOUT	Stop							
	LPS	Stop							
	RRAM	Read/Write	Read/Write	No access	Fetch	No access	Read/Write	No access	No access
	WDTA0	Stop							
	TAUJO	Run	Run	Run	$\begin{aligned} & \text { Run } \\ & \text { (LS IntOSC) } \end{aligned}$	$\begin{array}{\|l} \hline \text { Run } \\ \text { (LS IntOSC) } \end{array}$	Stop	Stop	Stop
	CLMAO	Run	Run	Run	Run	Stop	Stop	Stop	Stop
	CLMA1	Run	Run	Run	Stop	Stop	Stop	Stop	Stop
	ADCAO	Run*1	Run*1	Run*1	Stop	Stop	Stop	Stop	Stop
ISO	CPU	Run (PLL)	Run (PLL)	Halt (PLL)	$\begin{aligned} & \text { Run } \\ & \text { (HS IntOSC) } \end{aligned}$	Stop	Run (PLL)	Stop	Power off
	DMA	Run	Run	Run	Stop	Stop	Stop	Stop	
	PLL	Run	Run	Run	Stop	Stop	Run	Stop	
	Code flash	Fetch	Fetch	No access	No access	No access	Fetch	No access	
	Data flash	Read	WritelErase	No access	No access	No access	Read	No access	
	PLRAM	Read/Write	Read/Write	No access	No access	No access	Read/Write	No access	
	SLRAM	Read/Write	Read/Write	No access	No access	No access	Read/Write	No access	
	OSTMO	Run	Run	Run	Stop	Stop	Stop	Stop	
	WDTA1	Stop							
	TAUDO	Run	Run	Run	Stop	Stop	Stop	Stop	
	TAUBn	Run	Run	Run	Stop	Stop	Stop	Stop	
	TAUJ1	Run	Run	Run	Stop	Stop	Stop	Stop	
	TAPA, PIC	Stop							
	ENCAO	Run	Run	Run	Stop	Stop	Stop	Stop	
	PWM-diag	Run	Run	Run	Stop	Stop	Stop	Stop	
	RLIN3n	Run	Run	Run	Stop	Stop	Stop	Stop	
	RLIN2n	Wait	Wait	Wait	Stop	Stop	Stop	Stop	
	RS-CANn	Wait	Wait	Wait	Stop	Stop	Stop	Stop	
	CSIGn	Run	Run	Run	Stop	Stop	Stop	Stop	
	CSIHn	Run	Run	Run	Stop	Stop	Stop	Stop	
	RIIC0	Wait	Wait	Wait	Stop	Stop	Stop	Stop	
	CLMA2	Run	Run	Run	Stop	Stop	Stop	Stop	

Note 1. T\&H used.

1.11 Interrupt Timing

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AOVREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=\mathrm{EVSS}=\mathrm{AOVSS}=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$,
CL $=30 \mathrm{pF}$

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
NMI input high/low level width*1	$t_{\text {WNIH }} /$ $t_{\text {WNIL }}$	Edge detection mode	600			ns
		Level detection mode (EMCLK is operated by HS IntOSC)	756			ns
		Level detection mode (EMCLK is operated by LS IntOSC)	5.13			$\mu \mathrm{s}$
NMI pulse rejection*2	$t_{\text {WNIRJ }}$		100			ns
INTPn input high/low level width*1	$t_{\text {WITH }} /$ $t_{\text {WITL }}$	Edge detection mode	600			ns
		Level detection mode (EMCLK is operated by HS IntOSC)	756			ns
		Level detection mode (EMCLK is operated by LS IntOSC)	5.13			$\mu \mathrm{s}$
INTPn pulse rejection*2	$t_{\text {WITRJ }}$		100			ns

Note 1. NMI and INTPn input width is needed to ensure that the internal interrupt signal is activated.
Note 2. Pulses shorter than this minimum is ignored. This is reference value. Noise such as the figure can be filtered.

1.12 RESET Timing

```
Condition: REGVCC \(=\mathrm{EVCC}=3.0 \mathrm{~V}\) to 5.5 V , \(\mathrm{A} 0 \mathrm{VREF}=3.0 \mathrm{~V}\) to 5.5 V ,
    AWOVSS \(=\) ISOVSS \(=\mathrm{EVSS}=\mathrm{AOVSS}=0 \mathrm{~V}\),
    CAWOVCL: \(0.1 \mu \mathrm{~F}+/-30 \%\), CISOVCL: \(0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40\) to (depend on the product) \({ }^{\circ} \mathrm{C}\),
    CL \(=30 \mathrm{pF}\)
```

Item	Symbol	Condition	MIN.	TYP.	MAX.
$\overline{\text { RESET }}$ input low level width*1	$t_{\text {WRSL }}$	$* 3$	0.6		
		$* 4$	5.0	$\mu \mathrm{~s}$	
		$* 5$	600	$\mu \mathrm{~s}$	
$\overline{\text { RESET }}$ pulse rejection ${ }^{* 2}$	$t_{\text {WRSRJ }}$		0.1	$\mu \mathrm{~s}$	

Note 1. $\overline{\text { RESET input width is needed to ensure that the internal reset signal is activated. }}$
Note 2. Pulses shorter than this minimum is ignored. This is reference value.Noise such as the figure can be filtered.

Note 3. After $\overline{\text { RESET }}$ is asserted there will be a period where GPIO output could become an undefined status and after 600 μ s will become Hi-z. (figure (a))
Note 4. If during RUN mode or HALT mode, after RESET is asserted GPIO pin will become Hi-z. For other modes, after $\overline{\mathrm{RESET}}$ is asserted there will be a period where GPIO output could become an undefined status and after 600us will become Hi-z. (figure (a) and (b))
Note 5. GPIO output states will become Hi-z after RESET is asserted. (figure (b))
(a) In case of either
$t_{\text {WRSL }}<5 \mu \mathrm{~s}$, any mode or
$\mathrm{t}_{\text {WRSL }}<600 \mu \mathrm{~s}$, any mode except for RUN and HALT mode.

(b) In case of either $5 \mu \mathrm{~s} \leq \mathrm{t}_{\text {WRSL }}$, RUN and HALT mode or $600 \mu \mathrm{~s} \leq \mathrm{t}_{\mathrm{WRSL}}$, any mode.

1.13 Low Power Sampler (DPIN input) Timing

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~A} 0 \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V , AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$, CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, $\mathrm{CL}=30 \mathrm{pF}$

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
DPINn input delay time (vs SELDP2-0)	$\mathrm{t}_{\text {DSDDI }}$				150	ns

Note 1. $\mathrm{n}=7$ to 0

1.14 CSCXFOUT Timing

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to 5.5 V , $\mathrm{A} 0 \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=\mathrm{EVSS}=\mathrm{AOVSS}=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, CL $=30 \mathrm{pF}$
<Output driver strength>
CSCXFOUT: Slow or fast mode (refer to the condition in the following table)

Item	Symbol	Condition		MIN.	TYP.	MAX.	Unit
CSCXFOUT output cycle	$\mathrm{t}_{\text {FOUT }}$	Slow mode		$\begin{aligned} & 100 \\ & (\max .10 \mathrm{MHz}) \end{aligned}$			ns
		Fast mode (Except JP0_3 pin)*1		$\begin{aligned} & 41.6 \\ & (\max .24 \mathrm{MHz}) \end{aligned}$			ns
CSCXFOUT high level width	$t_{\text {WKHFO }}$	Slow mode	$\mathrm{N}: 1^{* 2}$ or even value*3	$\mathrm{t}_{\text {FOUT }} / 2-37$			ns
			N : Odd value $(N \geq 5)^{* 3, * 4}$	$\begin{aligned} & \mathrm{t}_{\text {FOUT }} \times \\ & (\mathrm{N}+1) / 2 \mathrm{~N}-37 \end{aligned}$			ns
		Fast mode (Except JPO_3 pin)*1	$\mathrm{N}: 1^{* 2}$ or even value*3	$\mathrm{t}_{\text {FOUT }} / 2-10$			ns
			N : Odd value $(\mathrm{N} \geq 3)^{* 3}$	$\begin{aligned} & \mathrm{t}_{\text {FOUT }} \times \\ & (\mathrm{N}+1) / 2 \mathrm{~N}-10 \end{aligned}$			ns
CSCXFOUT low level width	$\mathrm{t}_{\text {WKLFO }}$	Slow mode	$\mathrm{N}: 1^{* 2}$ or even value*3	$\mathrm{t}_{\text {FOUT }} / 2-37$			ns
			N : Odd value $(\mathrm{N} \geq 5)^{* 3, * 4}$	$\begin{aligned} & \mathrm{t}_{\text {FOUT }} \times \\ & (\mathrm{N}-1) / 2 \mathrm{~N}-37 \end{aligned}$			ns
		Fast mode (Except JPO_3 pin) ${ }^{* 1}$	$\mathrm{N}: 1^{* 2}$ or even value*3	$\mathrm{t}_{\text {FOUT }} / 2-10$			ns
			N : Odd value $(N \geq 3)^{* 3}$	$\begin{aligned} & \mathrm{t}_{\text {FOUT }} \times \\ & (\mathrm{N}-1) / 2 \mathrm{~N}-10 \end{aligned}$			ns
CSCXFOUT rise/ fall time	$\mathrm{t}_{\mathrm{KRFO}} /$ $t_{\text {KFFO }}$	Slow mode				37	ns
		Fast mode (Except JP0_3 pin)*1				10	ns

Note 1. JP0_3 does not support fast mode.
Note 2. When MainOSC, HS IntOSC or LS IntOSC is selected as source clock with the condition of N=1, the characteristics of output signal depends on the selected source clock. It is recommended to use output signal after evaluation on an actual environment.
Note 3. " N " is the value of "Clock divisor N" defined by FOUTDIV register.
Note 4. The selection of $\mathrm{N}=3$ is prohibited when slow mode is used.

1.15 Mode Timing

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AOVREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=\mathrm{EVSS}=\mathrm{AOVSS}=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$,
CL $=30 \mathrm{pF}$

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
FLMD0,1 input high/low level width*1	$t_{\text {WFMDH }} /$ $t_{\text {WFMDL }}$		600			ns
FLMD0, 1 pulse rejection*2	$t_{\text {WFMDRJ }}$		100			ns
MODE0, 1 input high/low level width*1	$t_{\text {WMDH }}{ }^{\prime}$ $t_{\text {WMDL }}$		600			ns
MODE0, 1 pulse rejection*2	${ }^{\text {W WMDRJ }}$		100			ns

Note 1. FLMD0,1 and MODE0,1 input width is needed to ensure that the internal mode signal is activated.
Note 2. Pulses shorter than this minimum is ignored. This is reference value. Noise such as the figure can be filtered.

1.16 Timer Timing

```
Condition: REGVCC \(=\mathrm{EVCC}=3.0 \mathrm{~V}\) to 5.5 V , \(\mathrm{A} 0 \mathrm{VREF}=3.0 \mathrm{~V}\) to 5.5 V ,
AWOVSS \(=\) ISOVSS \(=\mathrm{EVSS}=\mathrm{AOVSS}=0 \mathrm{~V}\),
CAWOVCL: \(0.1 \mu \mathrm{~F}+/-30 \%\), CISOVCL: \(0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40\) to (depend on the product) \({ }^{\circ} \mathrm{C}\),
CL \(=30 \mathrm{pF}\)
```

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
TAUDOly input high/low level width ($y=0$ to 15)	$t_{\text {WTDIH }}{ }^{\prime}$ $t_{\text {WTDIL }}$		$\mathrm{n} \times$ Tsamp + 20 *1, *2			ns
TAUD0Oy output cycle ($\mathrm{y}=0$ to 15)	$\mathrm{t}_{\text {TDCYK }}$	Slow mode			10	MHz
TAUBOly input high/low level width ($\mathrm{y}=0$ to 15)	$t_{\text {WTBIH }}{ }^{\prime}$ $t_{\text {WTBIL }}$		$n \times$ Tsamp $+20^{* 1, ~ * 2 ~}$			ns
TAUB0Oy output cycle ($\mathrm{y}=0$ to 15)	$\mathrm{t}_{\text {TBCYK }}$	Slow mode			10	MHz
TAUJxly input high/low level width ${ }^{* 3}$ ($x=0, y=0$ to 3)	$t_{\text {WTJIH }} /$ $t_{\text {WTJIL }}$		600			ns
TAUJxly pulse rejection* ${ }^{*}$	twtiJRJ		100			ns
TAUJxOy output cycle ($x=0, y=0$ to 3)	$\mathrm{t}_{\text {TJCYK }}$	Slow mode			10	MHz
TAPA0ESO input high/low level width ${ }^{* 3}$	$t_{\text {WESIH }}{ }^{\prime}$ $t_{\text {WESIL }}$		600			ns
TAPAOESO pulse rejection*4	$t_{\text {WESIRJ }}$		100			ns
TAPAOUy/Vy/Wy output cycle ($\mathrm{y}=\mathrm{P}, \mathrm{N}$)	$\mathrm{t}_{\text {TPCYK }}$	Slow mode			10	MHz
ENCAOTINy input high/low level width ($y=0,1$)	$t_{\text {WENTIH }} /$ $t_{\text {WENTIL }}$		$\mathrm{n} \times$ Tsamp $+20^{* 1}$			ns
ENCA0Ey input high/low level width ($\mathrm{y}=0,1, \mathrm{C}$)	$t_{\text {WENyIH }} /$ $t_{\text {WENyIL }}$		$\mathrm{n} \times$ Tsamp $+20^{* 1}$			ns
PWGAyO output cycle ($\mathrm{y}=0$ to 47)	$t_{\text {PWGCYK }}$	Slow mode			10	MHz

Note 1. n : Sampling number of the digital noise filter for each input.
Tsamp: Sampling time of the digital noise filter for each input.
Note 2. Input more than 1 count clock width of each timer counter channel.
Note 3. TAUJxly and TAPA0ESO input width is needed to ensure that the internal timer input signal is activated.
Note 4. Pulses shorter than this minimum is ignored. This is reference value. Noise such as the figure can be filtered.

1.17 RLIN2/RLIN3 Timing

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AOVREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=\mathrm{EVSS}=\mathrm{AOVSS}=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, $\mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, CL $=30 \mathrm{pF}$

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
RLIN3 transfer rate		LIN specification	1	20	kbps	
		LIN extended baudrate	1	$115.2^{\star 1}$	kbps	
		UART function	1.5	Mbps		
RLIN2 transfer rate	LIN specification	1	20	kbps		

Note 1. The LIN extended baudrate is not part of the LIN standard specification.

1.18 RS-CAN Timing

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AOVREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=\mathrm{ISOVSS}=\mathrm{EVSS}=\mathrm{A} O V S S=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, $\mathrm{CL}=30 \mathrm{pF}$

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Transfer rate					1	Mbps
Internal delay time* ${ }^{* 1}$	$t_{\text {NODE }}$			100	ns	

Note 1. $\quad t_{\text {NODE }}=$ Internal input delay time $\left(\mathrm{t}_{\text {INPUT }}\right)+$ Internal output delay time ($\mathrm{t}_{\text {OUTPUT }}$)

1.19 CSI Timing

1.19.1 CSIG Timing

Condition: REGVCC = EVCC $=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~A} 0 \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, $C L=30 \mathrm{pF}$

Table 1.7 CSIG Timing (Master Mode)
<Output driver strength>
CSIGnSO, CSIGnSC (output): Fast mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Macro operation clock cycle time	$\mathrm{t}_{\mathrm{KCYG}}$	ECO line, Gateway 512KB	12.5 (max. 80 MHz)			ns
		ADVANCED line, Gateway 1MB	10.42 (max. 96 MHz)			ns
CSIGnSC cycle time	$\mathrm{t}_{\text {KCYMGn }}$		100			ns
CSIGnSC high level width	$\mathrm{t}_{\text {KWHMGn }}$		$0.5 \times \mathrm{t}_{\mathrm{KCYMGn}}-10$			ns
CSIGnSC low level width	$\mathrm{t}_{\text {KWLMGn }}$		$0.5 \times \mathrm{t}_{\text {KCYMGn }}-10$			ns
CSIGnSI setup time (vs. CSIGnSC)	$\mathrm{t}_{\text {SSIMGn }}$		30			ns
CSIGnSI hold time (vs. CSIGnSC)	$\mathrm{t}_{\text {HSIMGn }}$		0			ns
CSIGnSO output delay (vs. CSIGnSC)	$\mathrm{t}_{\text {DSOMGn }}$				7	ns
CSIGnRYI setup time (vs. CSIGnSC)	$t_{\text {SRYIGn }}$	$\begin{aligned} & \hline \text { CSIGnCTL1.CSIGnSIT }=x \\ & \text { CSIGnCTL1.CSIGnHSE }=1 \end{aligned}$	$2 \times \mathrm{t}_{\text {KCYGn }}+25$			ns
CSIGnRYI High level width	$t_{\text {WRYIGn }}$	CSIGnCTL1.CSIGnHSE = 1	$\mathrm{t}_{\text {KCYGn }}+5$			ns

Table 1.8 CSIG Timing (Slave Mode)
<Output driver strength>
CSIGnSO: Fast mode
CSIGnRYO: Slow mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Macro operation clock cycle time	$\mathrm{t}_{\mathrm{KCYG}}$	ECO line, Gateway 512KB	12.5 (max. 80 MHz)			ns
		ADVANCED line, Gateway 1MB	10.42 (max. 96 MHz)			ns
CSIGnSC cycle time	$\mathrm{t}_{\text {KCYSGn }}$		200			ns
CSIGnSC high level width	$t_{\text {KWHSGn }}$		$0.5 \times \mathrm{t}_{\mathrm{KCYSGn}}-10$			ns
CSIGnSC low level width	$\mathrm{t}_{\text {KWLSGn }}$		$0.5 \times \mathrm{t}_{\mathrm{KCYSGn}}-10$			ns
CSIGnSI setup time (vs. CSIGnSC)	$\mathrm{t}_{\text {SSISG }}$		20			ns
CSIGnSI hold time (vs. CSIGnSC)	$t_{\text {HSISGn }}$		$\mathrm{t}_{\mathrm{KCYGn}}+5$			ns
CSIGnSO output delay (vs. CSIGnSC)	${ }_{\text {t }}^{\text {DSOSG }}$ n				30	ns
CSIGnRYO output delay	$\mathrm{t}_{\text {SRYOGn }}$	$\mathrm{t}_{\mathrm{KCYSGn}} \geq 8 \times \mathrm{t}_{\mathrm{KCYG}}$			38	ns
		$\mathrm{t}_{\mathrm{KCYSGn}}<8 \times \mathrm{t}_{\text {KCYG }}$			$38+\mathrm{t}_{\mathrm{KCYG}}$	ns
CSIGnSSI setup time (vs.CSIGnSC)	$\mathrm{t}_{\text {SSSISGn }}$		$0.5 \times \mathrm{t}_{\mathrm{KCYSGn}}-5$			ns
$\overline{\text { CSIGnSSI }}$ hold time (vs. CSIGnSC)	$\mathrm{t}_{\text {HSSISGn }}$		$\mathrm{t}_{\mathrm{KCYG}}+5$			ns

$$
\mathrm{n}=0
$$

1.19.2 CSIH Timing

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AOVREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, $\mathrm{CL}=30 \mathrm{pF}$

Table $1.9 \quad$ CSIH Timing (Master Mode)

> <Output driver strength>
> CSIHnSO, CSIHnSC (output): Fast mode (CL = 100pF@n=0 / 50pF@n=1-3)
> CSIHnCSSm: Slow mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Macro Operation clock cycle time	$\mathrm{t}_{\text {KCYHn }}$	ECO line, Gateway 512KB	12.5 (max. 80 MHz)			ns
		ADVANCED line, Gateway 1MB	10.42 (max. 96 MHz)			ns
CSIHnSC cycle time	$\mathrm{t}_{\text {KCYM }}$		100			ns
CSIHnSC high level width	$\mathrm{t}_{\text {KWHMHn }}$		$0.5 \times \mathrm{t}_{\text {KCYMHn }}-10$			ns
CSIHnSC low level width	$\mathrm{t}_{\text {KWLMHn }}$		$0.5 \times \mathrm{t}_{\text {KCYMHn }}-10$			ns
CSIHnSI setup time (vs. CSIHnSC)	${ }^{\text {tSSIMHn }}$	SI Positive edge mode (CSIHnCTL1.CSIHnSLRS = 0)	19			ns
		SI Negative edge mode (CSIHnCTL1.CSIHnSLRS = 1)	14			ns
CSIHnSI hold time (vs. CSIHnSC)	$\mathrm{t}_{\text {HSIMHn }}$	SI Positive edge mode (CSIHnCTL1.CSIHnSLRS = 0)	0			ns
		SI Negative edge mode (CSIHnCTL1.CSIHnSLRS = 1)	$\mathrm{t}_{\mathrm{KCYHn}} / 2$			ns
CSIHnSO output delay (vs. CSIHnSC)	$\mathrm{t}_{\text {DSOMHn }}$				7	ns
CSIHnRYI setup time (vs. CSIHnSC)	$\mathrm{t}_{\text {SRYIHn }}$	$\begin{aligned} & \text { CSIHnCTL1.CSIHnSIT }=x \\ & \text { CSIHnCTL1.CSIHnHSE }=1 \end{aligned}$	$2 \times \mathrm{t}_{\mathrm{KCYHn}}+25$			ns
CSIHnRYI high level width	$\mathrm{t}_{\text {WRYIHn }}$	CSIHnCTL1.CSIHnHSE = 1	$\mathrm{t}_{\text {KCYHn }}+5$			ns
CSIHnCSS0-7 inactive width	$\mathrm{t}_{\text {Wscsbin }}$		CSIDLE $\times \mathrm{t}_{\text {KCYM }}{ }_{\text {¢ }}-15$			ns
CSIHnCSSO-7 setup time (vs. CSIHnSC)	$\mathrm{t}_{\text {SSCSBHn0 }}$	CSIHnCFGx.CSIHnDAP $=0$	CSSETUP $\times \mathrm{t}_{\text {KCYM }}$ - 23			ns
	$\mathrm{t}_{\text {SSCSBHn1 }}$	CSIHnCFGx.CSIHnDAP $=1$	$($ CSSETUP +0.5$) \times \mathrm{t}_{\text {KCYMHn }}-23$			ns
CSIHnCSSO-7 hold time (vs. CSIHnSC)	$\mathrm{t}_{\text {HSCSBHn0 }}$	CSIHnCTL1.CSIHnSIT $=0$	CSSHOLD $\times \mathrm{t}_{\text {KCYM }}$ - 5			ns
	$\mathrm{t}_{\text {HSCSBHn1 }}$	CSIHnCTL1.CSIHnSIT = 1	$($ CSSHOLD +0.5$) \times \mathrm{t}_{\text {KCYMHn }}-5$			ns

$\mathrm{n}=0$ to 3

NOTE

CSIDLE: Setting value of CSIHnCFGx.CSIHnIDx[2:0]
CSSETUP: Setting value of CSIHnCFGx.CSIHnSPx[3:0]
CSSHOLD: Setting value of CSIHnCFGx.CSIHnHDx[3:0]
x : Depends on number of the chip select signals.

CAUTION

When the serial clock level is changed during the communication (CSIHnCFGx.CSIHnCKPx) and the IDLE has a setting of 0.5 transmission clock period an inactive width time $t_{\text {WSCSBHn }}$ of " $0.5 \times \mathrm{t}_{\mathrm{KCYMHn}}$ " is added.

Table 1.10 CSIH Timing (Slave Mode)

<Output driver strength>
CSIHnSO, CSIHnSC (output): Fast mode
CSIHnRYO: Slow mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Macro Operation clock cycle time	$\mathrm{t}_{\mathrm{KCYH}}$	ECO line, Gateway 512KB	12.5 (max. 80 MHz)			ns
		ADVANCED line, Gateway 1MB	10.42 (max. 96 MHz)			ns
CSIHnSC cycle time	$\mathrm{t}_{\mathrm{KCYSH}}$		200			ns
CSIHnSC high level width	$\mathrm{t}_{\text {KWHSHn }}$		$0.5 \times \mathrm{t}_{\mathrm{KCYSHn}}-10$			ns
CSIHnSC low level width	$\mathrm{t}_{\text {KWLSHn }}$		$0.5 \times \mathrm{t}_{\mathrm{KCYSHn}}-10$			ns
CSIHnSI setup time (vs. CSIHnSC)	$\mathrm{t}_{\text {SSISHn }}$		20			ns
CSIHnSI hold time (vs. CSIHnSC)	$\mathrm{t}_{\text {HSISHn }}$		$\mathrm{t}_{\mathrm{KCYHn}}+5$			ns
CSIHnSO output delay (vs. CSIHnSC)	$\mathrm{t}_{\text {DSOSHn }}$				30	ns
CSIHnRYO output delay	$\mathrm{t}_{\text {SRYOHn }}$	$\mathrm{t}_{\text {KCYSHn }} \geq 8 \times \mathrm{t}_{\text {KCYHn }}$			38	ns
		$\mathrm{t}_{\mathrm{KCYSHn}}<8 \times \mathrm{t}_{\text {KCYH }}$			$38+\mathrm{t}_{\mathrm{KCYHn}}$	ns
$\overline{\text { CSIHnSSI }}$ setup time (vs. CSIHnSC)	$\mathrm{t}_{\text {SSSISHn }}$		$0.5 \times \mathrm{t}_{\mathrm{KCYSHn}}-5$			ns
$\overline{\mathrm{CSIHnSSI}}$ hold time (vs. CSIHnSC)	$\mathrm{t}_{\text {HSSISHn }}$		$\mathrm{t}_{\mathrm{KCYHn}}+5$			ns

(1) SCKO/SI/SO

Master Mode:

- CSIG (CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 $=0 / 0$ or $1 / 1$)
- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm $=0 / 0$ or $1 / 1$)

- CSIG (CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 $=1 / 0$ or $0 / 1$)
- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm $=1 / 0$ or $0 / 1$)

(2) RYI

- CSIG: Only master mode (CSIGnCTL1: $\mathrm{CSIGnHSE}=1, \mathrm{CSIGnCTL1}: \operatorname{CSIGnSIT}=0)$
- CSIH: Only master mode (CSIHnCTL1: $\mathrm{CSIHnHSE}=1, \mathrm{CSIHnCTL} 1: \operatorname{CSIHnSIT}=0)$
- CSIG (CSIGnCTL1: CSIGnCKR = 0)
- CSIH (CSIHnCFGm: CSIHnCKPm = 0)

- CSIG (CSIGnCTL1: CSIGnCKR = 1)
- CSIH (CSIHnCFGm: CSIHnCKPm = 1)

(3) CSSn

Only Master Mode (Setup Time):

- CSIHnCFGm: $\mathrm{CSIHnCKPm}=0$, CSIHnCFGm: $\mathrm{CSIHnDAPm}=0$

- CSIHnCFGm: $\mathrm{CSIHnCKPm}=0$, $\mathrm{CSIHnCFGm}:$ CSIHnDAPm $=1$

Only Master Mode (Hold Time):

- CSIHnCTL1: CSIHnSIT $=0$, CSIHnCFGm: CSIHnCKPm $=0$, CSIHnCFGm: CSIHnDAPm $=0$

- CSIHnCTL1: CSIHnSIT $=1$, CSIHnCFGm: $\mathrm{CSIHnCKPm}=0, \mathrm{CSIHnCFGm}:$ CSIHnDAPm $=0$

(4) SCKO/SI/SO

Slave Mode:

- CSIG (CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 $=0 / 0$ or $1 / 1$)
- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm $=0 / 0$ or $1 / 1$)

- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm $=1 / 0$ or $0 / 1$)

(5) RYO

- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm $=0 / 0$)

- $\operatorname{CSIG}($ CSIGnCTL1: CSIGnCKR/CSIGnCFG0: $\operatorname{CSIGnDAP0}=0 / 1)$
- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: $\operatorname{CSIHnDAPm}=0 / 1$)

- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm = 1/0)

- CSIG (CSIGnCTL1: CSIGnCKR/CSIGnCFG0: $\operatorname{CSIGnDAP} 0=1 / 1)$
- CSIH (CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm = 1/1)

(6) SSI

Slave Mode:

- CSIG (CSIGnCTL1: CSIGnSSE=1, CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 $=0 / 0$ or $1 / 1$)
- CSIH (CSIHnCTL1: CSIHnSSE=1, CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm $=0 / 0$ or $1 / 1$)

- CSIG (CSIGnCTL1: CSIGnSSE=1, CSIGnCTL1: CSIGnCKR/CSIGnCFG0: CSIGnDAP0 $=1 / 0$ or 0/1)
- CSIH (CSIHnCTL1: CSIHnSSE=1, CSIHnCFGm: CSIHnCKPm/CSIHnCFGm: CSIHnDAPm $=1 / 0$ or $0 / 1$)

1.20 RIIC Timing

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AOVREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$
Table 1.11 RIIC Timing (Normal Mode)

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
RIIC0SCL clock period	$\mathrm{f}_{\text {CLK }}$				100	kHz
Bus free time (between stop/start condition)	$\mathrm{t}_{\text {BUF }}$		4.7			$\mu \mathrm{s}$
Hold time*1	t_{HD} : STA		4.0			$\mu \mathrm{s}$
RIICOSCL clock low-level width	tow		4.7			$\mu \mathrm{s}$
RIICOSCL clock high-level time	$\mathrm{t}_{\text {HIGH }}$		4.0			$\mu \mathrm{s}$
Setup time for start/restart condition	$\mathrm{t}_{\text {SU }}$: STA		4.7			$\mu \mathrm{s}$
Data hold time	t_{HD} : DAT	CBUS compatible master	5.0			$\mu \mathrm{s}$
		IIC mode	0*2			$\mu \mathrm{s}$
Data setup time	$\mathrm{t}_{\text {SU }}$: DAT		250			ns
Stop condition setup time	$\mathrm{t}_{\text {SU }}$: STO		4.0			$\mu \mathrm{s}$
Capacitance load of each bus line	Cb				400	pF

Note 1. At the start condition, the first clock pulse Is generated after the hold time.
Note 2. The system requires a minimum of 300 ns hold time internally for the RIICOSDA signal (at VIH min. of RIICOSCL signal). In order to occupy the undefined area at the falling edge of RIICOSCL.
Note 3. If the system does not extend the RIICOSCL signal low hold time ($t_{\text {Low }}$), only the maximum data hold time (t_{HD} : DAT) needs to be satisfied.

Table 1.12 RIIC Timing (Fast Mode)

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
RIICOSCL clock period	$\mathrm{f}_{\text {CLK }}$				400	kHz
Bus free time (between stop/start condition)	$t_{\text {BUF }}$		1.3			$\mu \mathrm{s}$
Hold time*1	t_{HD} : STA		0.6			$\mu \mathrm{s}$
RIICOSCL clock low-level width	t Low		1.3			$\mu \mathrm{s}$
RIICOSCL clock high-level time	$\mathrm{t}_{\text {HIGH }}$		0.6			$\mu \mathrm{s}$
Setup time for start/restart condition	$\mathrm{t}_{\text {SU }}$: STA		0.6			$\mu \mathrm{s}$
Data hold time	t_{HD} : DAT	IIC mode	$0{ }^{* 2}$			$\mu \mathrm{s}$
Data setup time	$\mathrm{t}_{\text {SU }}$: DAT		100*4			ns
Stop condition setup time	$\mathrm{t}_{\text {SU }}$: STO		0.6			$\mu \mathrm{s}$
Pulse width with spike suppressed by input filter	$\mathrm{t}_{\text {SP }}$		0		50	ns
Capacitance load of each bus line	Cb				400	pF

Note 1. At the start condition, the first clock pulse Is generated after the hold time.
Note 2. The system requires a minimum of 300 ns hold time internally for the RIICOSDA signal (at VIH min. of RIICOSCL signal). In order to occupy the undefined area at the falling edge of RIIC0SCL.
Note 3. If the system does not extend the RIICOSCL signal low hold time ($t_{\text {Low }}$), only the maximum data hold time ($t_{H D}$: DAT) needs to be satisfied.
Note 4. The fast mode IIC bus can be used in normal mode IIC bus system. In this case, set the fast mode IIC bus so that it meets the following conditions.

- If the system does not extend the RIIC0SCL signal's low state hold time: t_{Su} : DAT $\geq 250 \mathrm{~ns}$
- If the system extends the RIIC0SCL signal's low state hold time:

Transmit the following data bit to the RIICOSDA line prior to releasing the RIICOSCL line (1250 ns: Normal mode IIC bus specification).

1.21 ADTRG Timing

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AOVREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=\mathrm{EVSS}=\mathrm{AOVSS}=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$,
CL $=30 \mathrm{pF}$

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
ADCAnTRGm input high/	$t_{\text {WADH }} /$		$k \times$ Tsamp $+20^{* 1}$			
low level width	$t_{\text {WADL }}$			$n s$		

Note 1. k: Sampling number of the digital noise filter for each input. Tsamp: Sampling time of the digital noise filter for each input.

1.22 Key Return Timing

```
Condition: REGVCC \(=\mathrm{EVCC}=3.0 \mathrm{~V}\) to 5.5 V , \(\mathrm{A} O \mathrm{VREF}=3.0 \mathrm{~V}\) to 5.5 V ,
    AWOVSS \(=\) ISOVSS \(=\) EVSS \(=\) AOVSS \(=0 \mathrm{~V}\),
    CAWOVCL: \(0.1 \mu \mathrm{~F}+/-30 \%\), CISOVCL: \(0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40\) to (depend on the product) \({ }^{\circ} \mathrm{C}\),
    \(\mathrm{CL}=30 \mathrm{pF}\)
```

Item	Symbol	Condition	MIN.	TYP.	MAX.
KROIn input low level width*1	$\mathrm{t}_{\text {WKRL }}$		600		ns
KROIn pulse rejection*2	$\mathrm{t}_{\text {WKRRJ }}$		100	ns	

Note 1. KROIn input width is needed to ensure that the internal key input signal is activated.
Note 2. Pulses shorter than this minimum is ignored. This is reference value. Noise such as the figure can be filtered.

1.23 DCUTRST Timing

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AOVREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=\mathrm{EVSS}=\mathrm{AOVSS}=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, $\mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, CL $=30 \mathrm{pF}$

Item	Symbol	Condition	MIN.	TYP.	MAX.
$\overline{\text { DCUTRST }}$ input low level width*	Unit				
$\overline{\text { DCUTRST pulse rejection*2 }}$	t $_{\text {WTRL }}$		600		ns

Note 1. $\overline{\text { DCUTRST }}$ input width is needed to ensure that the internal DCU reset input signal is activated.
Note 2. Pulses shorter than this minimum is ignored. This is reference value. Noise such as the figure can be filtered.

1.24 Debug Interface Characteristics

1.24.1 Nexus Interface Timing

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~A} 0 \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, $\mathrm{CL}=30 \mathrm{pF}$
<Input buffer>
DCUTDI, DCUTCK, DCUTMS, $\overline{\text { DCUTRST: TTL }}$
<Output driver strength>
DCUTDO, $\overline{\text { DCURDY: }}$ Fast mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
DCUTCK cycle width	t ${ }_{\text {DCKW }}$		50			ns
DCUTDI setup time (vs DCUTC K \uparrow)	$t_{\text {SDI }}$		12			ns
DCUTDI hold time (vs DCUTCK \uparrow)	$\mathrm{t}_{\mathrm{HDI}}$		3			ns
DCUTMS setup time (vs DCUTCK \uparrow)	$\mathrm{t}_{\text {SMS }}$		12			ns
DCUTMS hold time (vs DCUTCK \uparrow)	$\mathrm{t}_{\mathrm{HMS}}$		3			ns
DCUTDO delay time (\downarrow DCUTCK)	$\mathrm{t}_{\text {DDO }}$		0		20	ns
$\overline{\text { DCURDY }}$ delay time (\downarrow DCUTCK)	$t_{\text {RDYZ }}$		0		20	ns

1.24.2 LPD (4 pin) Interface Timing

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~A} O \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, $C L=100 \mathrm{pF}$
<Input buffer>
LPDCLK, LPDI: TTL
<Output driver strength>
LPDCLKOUT, LPDO: Fast mode

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
LPDCLK cycle time/ LPDCLKOUT cycle time	t LPDCLKCY		$\begin{aligned} & 83.3 \\ & \text { (max.12MHz) } \end{aligned}$			ns
LPDCLK High-level width/ LPDCLK Low-level width	t LPDCKW		$0.5 \times \mathrm{t}_{\text {LPDCLKCY }}-10$			ns
LPDCLKOUT High-level width/ LPDCLKOUT low-level width	t LPDCKOW		t ${ }_{\text {LPDCKW }}$ - 10			ns
LPDI setup time (LPDCLK \uparrow)	$\mathrm{t}_{\text {LPDIS }}$		41			ns
LPDI hold time (LPDCLK \uparrow)	$\mathrm{t}_{\text {LPDIH }}$		3			ns
LPDCLK to LPDCLKOUT delay time	t LPDCKOD				44	ns
LPDO delay time (LPDCLKOUT \uparrow)	$\mathrm{t}_{\text {LPDOD }}$		0		15	ns

1.24.3 LPD (1 pin) Interface Timing

Condition: REGVCC = EVCC $=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~A} 0 \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V , AWOVSS $=$ ISOVSS $=\mathrm{EVSS}=\mathrm{AOVSS}=0 \mathrm{~V}$, CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, $C L=50 \mathrm{pF}$
<Input buffer>
LPDIO: TTL
<Output driver strength>
LPDIO: Fast mode
<External pull-up resistor>
LPDIO: $4.7 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
LPD (1 pin) Baud rate				2.0	Mbps	

1.25 Flash Programming Characteristics

1.25.1 Code Flash

The code flash memory is shipped in the erased state. If the code flash memory is read where it has not been written after erasure (no write condition), an ECC error is generated, resulting in the occurrence of an exception.

Condition: REGVCC $=\mathrm{EVCC}=\mathrm{VPOC}$ to $5.5 \mathrm{~V}, \mathrm{~A} 0 \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to $\left(\right.$ depend on the product) ${ }^{\circ} \mathrm{C}$, $\mathrm{CL}=30 \mathrm{pF}$
Table 1.13 Basic characteristics

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Operation frequency	$\mathrm{f}_{\text {PCLK }}{ }^{* 3}$	ECO line, Gateway 512KB	$4^{* 4}$	40	MHz	
		ADVANCED line, Gateway 1MB	$4^{* 4}$	48	MHz	
Number of rewrites**	CWRT	Data retention of 20 years*2	1000		times	

Note 1. The number of rewrites is the number of erasures for each block. When the number of rewrites is " n " ($n=1000$), the device can be erased " n " times for each block. For example, when a block of 32 KB is erased after 256 bytes of writing have been performed for different addresses 128 times, the number of rewrites is counted as 1 . However, multiple writing to the same address is not possible with 1 erasure (overwriting prohibited).
Note 2. Retention period under average $\mathrm{Ta}=85^{\circ} \mathrm{C}$. This is the period starting on completion of a successful erasure of the code flash memory.
Note 3. $\quad f_{\text {PCLK }}=1 / 2 f_{\text {CPUCLK }}$: System operating frequency for internal flash.
Note 4. Only for program/erase operation.

Table 1.14 Programming characteristic (1/2)

Item	Symbol	Condition	Block size	MIN.	TYP.	MAX.	Unit
Programming time		$\begin{aligned} & \mathrm{f}_{\mathrm{PCLK}} \geq 20 \mathrm{MHz} \\ & \text { CWRT }<100 \text { times } \end{aligned}$	256 B		0.4*1	6*1	ms
			8 KB		20	90	ms
			32 KB		80	360	ms
			256 KB		0.6	2.7	s
			384 KB		0.9	4.1	S
			512 KB		1.2	5.4	S
			768 KB		1.7	8.1	s
			1 MB		2.3	10.8	s
		$\begin{aligned} & \mathrm{f}_{\mathrm{PCLK}} \geq 20 \mathrm{MHz} \\ & \mathrm{CWRT} \geq 100 \text { times } \end{aligned}$	256 B		0.5*1	$7.2^{* 1}$	ms
			8 KB		24	108	ms
			32 KB		96	432	ms
			256 KB		0.7	3.3	S
			384 KB		1.1	4.9	S
			512 KB		1.4	6.5	s
			768 KB		2.1	9.8	s
			1 MB		2.7	13	s

Table 1.14 Programming characteristic (2/2)

Item	Symbol	Condition	Block size	MIN.	TYP.	MAX.	Unit
Erase time		$\begin{aligned} & \mathrm{f}_{\mathrm{PCLK}} \geq 20 \mathrm{MHz} \\ & \mathrm{CWRT}<100 \text { times } \end{aligned}$	8 KB		39	120	ms
			32 KB		141	480	ms
			256 KB		1.2	3.5	s
			384 KB		1.7	5.3	s
			512 KB		2.3	7	s
			768 KB		3.4	10.5	s
			1 MB		4.5	14	s
		$\begin{aligned} & \mathrm{f}_{\mathrm{PCLK}} \geq 20 \mathrm{MHz} \\ & \text { CWRT } \geq 100 \text { times } \end{aligned}$	8 KB		47	144	ms
			32 KB		169	576	ms
			256 KB		1.4	4.2	s
			384 KB		2.1	6.3	s
			512 KB		2.7	8.4	s
			768 KB		4.1	12.6	s
			1 MB		5.4	16.8	s

Note 1. Only the processing time of the hardware. The overhead required by the software is not included.

1.25.2 Data Flash

The data flash memory is shipped in the erased state. If the data flash memory is read where it has not been written after erasure (no write condition), an ECC error is generated, resulting in the occurrence of an exception

Condition: REGVCC = EVCC $=\mathrm{VPOC}$ to 5.5 V , AOVREF $=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, $\mathrm{CL}=30 \mathrm{pF}$

Table 1.15 Basic characteristics

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Operation frequency	$\mathrm{f}_{\text {PCLK }}{ }^{* 3}$	ECO line, Gateway 512KB	$4^{* 4}$	40	MHz	
		ADVANCED line, Gateway 1MB	$4^{* 4}$	48	MHz	
Number of rewrites*1	CWRT	Data retention 20 years $^{* 2}$	125 k		times	
		Data retention 3 years*2	250 k	times		

Note 1. The number of rewrites is the number of erasures for each block. When the number of rewrites is " n " ($n=125000$), the device can be erased " n " times for each block. For example, when a block of 64 bytes is erased after 4 bytes of writing have been performed for different addresses 168 times, the number of rewrites is counted as 1 . However, multiple writing to the same address is not possible with 1 erasure (overwriting prohibited).
Note 2. Retention period under average $\mathrm{Ta}=85^{\circ} \mathrm{C}$. This is the period starting on completion of a successful erasure of the data flash memory.
Note 3. $\quad f_{\text {PCLK }}=1 / 2 \mathrm{f}_{\text {CPUCLK }}$: System operating frequency for internal flash.
Note 4. Only for program/erase operation.

Table 1.16 Programming characteristics

Item	Symbol	Condition	Block size	MIN.	TYP.	MAX.	Unit
Programming time		$\mathrm{f}_{\text {PCLK }} \geq 20 \mathrm{MHz}$	4 B		$0.16{ }^{* 1}$	1.7*1	ms
		$\mathrm{f}_{\text {PCLK }} \geq 20 \mathrm{MHz}$	32 KB		1.4	6.8	s
Erasure time		$\mathrm{f}_{\text {PCLK }} \geq 20 \mathrm{MHz}$	64 B		$1.7 * 1$	10*1	ms
		$\mathrm{f}_{\text {PCLK }} \geq 20 \mathrm{MHz}$	32 KB		0.9	5.2	S
Blank check time		$\mathrm{f}_{\text {PCLK }} \geq 20 \mathrm{MHz}$	4 B			30*1	$\mu \mathrm{s}$
			64 B			100*1	$\mu \mathrm{s}$
			32 KB			35.2	ms

Note 1. Only the processing time of the hardware. The overhead required by the software is not included.

1.25.3 Serial Programming Interface

1.25.3.1 Serial Programmer Setup Timing

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~A} 0 \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V , AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, $\mathrm{CL}=30 \mathrm{pF}$

Item	Symbol	Condition	MIN.	TYP.
FLMD0 pulse input start time	$t_{R P}$	1.5	MAX.	
FLMD0 pulse input end time	$t_{R P E}$		11.5	
FLMD0 low/high level width	$t_{P W}$	0.8	ms	
FLMD0 rise time	t_{R}	t_{F}		
FLMD0 fall time			20	ns

NOTE
IOVCC: EVCC = AOVREF

1.25.3.2 FLSCI3 Interface

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~A} 0 \mathrm{VREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, CL $=30 \mathrm{pF}$

Item	Symbol	Condition	MIN.	TYP.	MAX.	Unit
FLSCI3 transfer rate		1-wired UART mode			1	Mbps
		2-wired UART mode			2	Mbps
FLSCI3SCI cycle time	$\mathrm{t}_{\text {KCYSF }}$	3 -wired clock sync mode	200*1			ns
FLSCI3SCI high level width	$\mathrm{t}_{\text {KWHSF }}$	3 -wired clock sync mode	$\mathrm{t}_{\text {KCYSF }} / 2-15$			ns
FLSCI3SCI low level width	$t_{\text {KWLSF }}$	3-wired clock sync mode	$\mathrm{t}_{\text {KCYSF }} / 2-15$			ns
FLSCI3SI setup time (vs. FLSCl3SCI)	$\mathrm{t}_{\text {SSISF }}$	3 -wired clock sync mode	55			ns
FLSCI3SI hold time (vs. FLSCl3SCI)	$\mathrm{t}_{\text {HSISF }}$	3-wired clock sync mode	55			ns
FLSCI3SO output delay (vs. FLSCl3SCI)	$\mathrm{t}_{\text {DSOSF }}$	3-wired clock sync mode Not continuous transfer (data: 1st bit)			0	ns
		3-wired clock sync mode Not continuous transfer (data: except 1st bit)			$\begin{aligned} & -t_{\text {KWHSF }}+3 \\ & \times \mathrm{t}_{\text {Pcyc }}+36 \end{aligned}$	ns
FLSCI3SO hold time (vs. FLSCl3SCI)	$\mathrm{t}_{\text {HSOSF }}$	3 -wired clock sync mode	$2 \times t_{\text {Pcyc }}$			ns

Note 1. Input the external clock that is more than 6 clocks of PCLK.

NOTE
$t_{\text {Pcyc }}$ is period of PCLK.

1.26 A/D Converter Characteristics

Condition: REGVCC $=\mathrm{EVCC}=3.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{AOVREF}=3.0 \mathrm{~V}$ to 5.5 V ,
AWOVSS $=$ ISOVSS $=$ EVSS $=$ AOVSS $=0 \mathrm{~V}$,
CAWOVCL: $0.1 \mu \mathrm{~F}+/-30 \%$, CISOVCL: $0.1 \mu \mathrm{~F}+/-30 \%, \mathrm{Ta}=-40$ to (depend on the product) ${ }^{\circ} \mathrm{C}$, $\mathrm{CL}=30 \mathrm{pF}$

Item	Symbol	Condition			MIN.	TYP.	MAX.	Unit		
Pull-down resistor for discharge mode		ADCnIm pins			350	500	650	$k \Omega$		
		ADCnImS pins			100	215	800	k Ω		
Accuracy of self-diagnosis function	TESH0SN	12bit mode	Self-diagnosis voltage level $=$ AnVREF		4015-\|TOEn			4095	-	
			Self-diagnosis voltage level $=2 / 3$ AnVREF		2651-\|TOEn		2731	2811+\|TOEn		-
			Self-diagnosis voltage level $=1 / 2 \mathrm{AnVREF}$		1968-\|TOEn		2048	2128+\|TOEn		-
			Self-diagnosis voltage level = 1/3AnVREF		1285-\|TOEn		1365	1445+\|TOEn		-
			Self-diagnosis voltage level = AnVSS		0		80+\|TOEn		-	
		10bit mode	Self-diagnosis voltage level = AnVREF		1003-\|TOEn			1023	-	
			Self-diagnosis voltage level $=2 / 3$ AnVREF		663-\|TOEn		683	703+\|TOEn		-
			Self-diagnosis voltage level $=1 / 2$ AnVREF		492-\|TOEn		512	532+\|TOEn		-
			Self-diagnosis voltage level $=1 / 3$ AnVREF		321-\|TOEn		341	361+\|TOEn		-
			Self-diagnosis voltage level = AnVSS		0		20+\|TOEn		-	
Integral nonlinearity error* ${ }^{* 1}$	ILEn	12-bit mode	AnVREF = 4.5 V to 5.5 V	ADCAnIm (w/o T\&H)			± 2.0	LSB		
				ADCAOIO-5 (w/ T\&H)			± 3.0	LSB		
			AnVREF = 3.6 V to 4.5 V	ADCAnIm (w/o T\&H)			± 3.0	LSB		
				ADCAOIO-5 ($\mathrm{w} / \mathrm{T} \mathrm{\& H}$)			± 4.0	LSB		
			AnVREF = 3.0 V to 3.6 V	ADCAnIm (w/o T\&H)			± 4.0	LSB		
				ADCAOIO-5 (w/ T\&H)			± 5.0	LSB		
		10-bit mode	AnVREF = 4.5 V to 5.5 V	ADCAnIm			± 1.0	LSB		
				ADCAnImS			± 2.0	LSB		
			AnVREF = 3.0 V to 4.5 V	ADCAnIm			± 1.5	LSB		
				ADCAnImS			± 2.5	LSB		
Differential nonlinearity error ${ }^{* 1}$	DLEn	12-bit mode	AnVREF = 4.5 V to 5.5 V	ADCAnIm (w/o T\&H)			± 1.0	LSB		
				ADCAOIO-5 (w/ T\&H)			± 2.0	LSB		
			AnVREF = 3.6 V to 4.5 V	ADCAnIm (w/o T\&H)			± 3.0	LSB		
				ADCAOIO-5 (w/ T\&H)			± 4.0	LSB		
			AnVREF = 3.0 V to 3.6 V	ADCAnIm (w/o T\&H)			± 3.0	LSB		
				ADCAOIO-5 (w/ T\&H)			± 4.0	LSB		
		10-bit mode	AnVREF =$4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$	ADCAnIm			± 1.0	LSB		
				ADCAnImS			± 1.5	LSB		
			AnVREF = 3.0 V to 4.5 V	ADCAnIm			± 1.0	LSB		
				ADCAnImS			± 2.0	LSB		
Zero scale error (offset error)* ${ }^{* 1}$	ZSEn	12-bit mode	AnVREF = 4.5 V to 5.5 V	ADCAnIm (w/o T\&H)			± 3.5	LSB		
				ADCAOIO-5 (w/ T\&H)			± 5.5	LSB		
			AnVREF = 3.6 V to 4.5 V	ADCAnIm (w/o T\&H)			± 5.5	LSB		
				ADCA0IO-5 (w/ T\&H)			± 7.5	LSB		
			AnVREF = 3.0 V to 3.6 V	ADCAnIm (w/o T\&H)			± 7.5	LSB		
				ADCAOIO-5 (w/ T\&H)			± 9.5	LSB		
		10-bit mode	AnVREF = 4.5 V to 5.5 V	ADCAnIm			± 0.5	LSB		
				ADCAnImS			± 1.5	LSB		
			AnVREF = 3.6 V to 4.5 V	ADCAnlm			± 1.0	LSB		
				ADCAnImS			± 2.0	LSB		
			AnVREF = 3.0 V to 3.6 V	ADCAnIm			± 1.5	LSB		
				ADCAnImS			± 2.5	LSB		

Item	Symbol	Condition			MIN.	TYP.	MAX.	Unit
Full scale error*1	FSEn	12-bit mode	AnVREF = 4.5 V to 5.5 V	ADCAnIm (w/o T\&H)			± 3.5	LSB
				ADCAOIO-5 (w/ T\&H)			± 5.5	LSB
			AnVREF = 3.6 V to 4.5 V	ADCAnIm (w/o T\&H)			± 5.5	LSB
				ADCA0I0-5 (w/ T\&H)			± 7.5	LSB
			AnVREF = 3.0 V to 3.6 V	ADCAnIm (w/o T\&H)			± 7.5	LSB
				ADCAOIO-5 (w/ T\&H)			± 9.5	LSB
		10-bit mode	AnVREF = 4.5 V to 5.5 V	ADCAnIm			± 0.5	LSB
				ADCAnImS			± 1.5	LSB
			AnVREF = 3.6 V to 4.5 V	ADCAnIm			± 1.0	LSB
				ADCAnImS			± 2.0	LSB
			AnVREF = 3.0 V to 3.6 V	ADCAnIm			± 1.5	LSB
				ADCAnImS			± 2.5	LSB

$\mathrm{n}=0$
Note 1. This does not include quantization error.
Note 2. $3.0+1.3 \times$ (the number of used $T \& H$)
Note 3. Include the oscillation accuracy of HS IntOSC.
Note 4. When the external multiplexer is used, the detail time of A/D conversion is MPX setup time, sampling time and successive approximation time. MPX setup time is same as "sampling time + successive approximation time"
Note 5. Conversion accuracy when ADCAOImS terminal is converted in 12-bit mode: Conversion accuracy can be applied if lower 2-bit is ignored from conversion result.

CAUTION

When an external digital pulse is applied to AP0, P8 and P9 pins during an A/D conversion this may lead to an A / D conversion result with a larger conversion error as expected due to the coupling noise of the external digital pulse.

The same behavior may apply when the digital buffer is used as output pin. For the output port the potential degradation increases with the driven total output current of the port. In addition the conversion resolution may drop if the output current fluctuates at adjacent pins due to the coupling effect of the external circuit connected to these port pins.

1.27 Injection Currents

For the injection current, there are two type specifications. These type are depend on Package, Flash size and Product name. These relationships are shown as the following table.

Flash Size	Product Name	Applicable Type
$1 \mathrm{MB} /$	Except below products	Type 1
768 KB	R7F701xxxxAFP\#YJ1	Type 2
	R7F701xxxxAFP\#YK1	
	R7F701xxxxAFP\#YB1	
	R7F701xxxxAFP\#AA1	
$512 \mathrm{~KB} /$	R7F701xxxxAFP\#KA1	Type 1
$384 \mathrm{~KB} /$	Except below products	Type 2
256 KB	R7F701xxxxAFP\#YJ1	
	R7F701xxxxAFP\#YJ2	
	R7F701xxxxAFP\#YK1	
	R7F701xxxxAFP\#YK2	
	R7F701xxxxAFP\#YB2	

Table 1.17 Definition of Pin Group

Symbol	Power Supply for Pin Group	Pin for Type 1 Products	Pin for Type 2 Products
PgE	EVCC, EVSS	JP0, P0, P10, P11	JP0, P0, P10, P11
PgE'	EVCC, EVSS	P8, P9	Not Available*1
PgA0	AOVREF, A0VSS	AP0	AP0

Note 1. Do not apply an overvoltage on P8 and P9 pins.

1.27.1 Absolute Maximum Ratings

Item	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Positive overload current VIN > VCC	$\mathrm{I}_{\text {INJPM }}$	PgE	Per pin			10	mA
			total			60	mA
		PgE'	Per pin			10	mA
			Total			60	mA
		PgA0	Per pin			10	mA
			total			60	mA
Negative overload current VIN < VSS	$\mathrm{I}_{\text {INJNM }}$	PgE	Per pin			-10	mA
			total			-60	mA
		PgE'	Per pin			-10	mA
			Total			-60	mA
		PgA0	Per pin			-10	mA
			total			-60	mA

CAUTIONS

1. The DC injection current (total) must satisfy the specifications of the injection current per pin.
2. In case of injected current for PgA0, TESHOSN cannot be kept. Its deviating value will increase sharply with increasing absolute value of injection current.

1.27.2 DC Characteristics for Overload Current

Item	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Positive overload current VIN > VCC	$\mathrm{I}_{\text {INJP }}$	PgE	Per pin			2	mA
			Total			50	mA
		PgE'	Per pin			3	mA
			Total			20	mA
		PgA0	Per pin			3	mA
			Total			20	mA
Negative overload current VIN < VSS	$\mathrm{I}_{\text {INJN }}$	PgE	Per pin			-2	mA
			Total			-50	mA
		PgE'	Per pin			-3	mA
			Total			-20	mA
		PgA0	Per pin			-3	mA
			Total			-20	mA

NOTE
These specifications are not tested on sorting and are specified based on the device characterization.

1.27.3 DC Characteristics for Pins Influenced by Injected Current on an Adjacent Pin

Item	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Leakage current coupling factor for positive overload current	KINJP	PgE	Per pin			3.0×10^{-6}	-
		PgE'	Per pin			3.0×10^{-6}	-
		PgA0	Per pin			4.8×10^{-6}	-
Leakage current coupling factor for negative overload current	$\mathrm{K}_{\text {INJN }}$	PgE	Per pin			7.5×10^{-6}	-
		PgE'	Per pin			7.5×10^{-6}	-
		PgA0	Per pin			2.6×10^{-6}	-

NOTES

1. This is reference value.
2. An overload current through a pin will cause a certain error current in the adjacent pins. This error current must be added to the respective leakage current (ILIH or ILIL) of the adjacent pins.
3. The amount of error leakage current depends on the overload current and is defined by the overload coupling factor $\mathrm{K}_{\text {INJ }}$.
The total current through a pin is:
$\left|I_{\text {total }}\right|=\mid I L I H$ or ILIL $\mid+\left(\left|I_{I_{N J n}}\right| \times K_{\text {INJn }}\right)$

1.27.4 AD Characteristics for Pins Influenced by Injected Current on an Adjacent

Item	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Degradation of overall error*1	$I_{\text {INJP }}$	3 mA per pin	ADCAnIm			± 1.3	LSB
			ADCAnImS			± 1.3	LSB
		Total 20 mA	ADCAnlm			± 3.8	LSB
			ADCAnImS			± 3.8	LSB
	$I_{\text {INJN }}$	-3 mA per pin	ADCAnlm			± 1.4	LSB
			ADCAnImS			± 1.4	LSB
		Total -20 mA	ADCAnlm			± 4.5	LSB
			ADCAnImS			± 4.5	LSB

$\mathrm{n}=0$
Note 1. This value is the degradation by injected current on an adjacent pin. Therefore, this value is added to the specification of A/D converter's overall error defined separately as the electrical specifications.
Note 2. This is reference value.

CAUTION

When there is an increased leakage current on the analog input pins, based on currents injected into the pins adjacent to the converted channel, the effect on the ADC accuracy depends on the external analog source impedance.
[Example] Conditions: AOVREF $=5.0 \mathrm{~V}$, external analog source impedance $=10 \mathrm{k} \Omega$.
If there is a leakage current of $1 \mu \mathrm{~A}$ by injected current, the effect on the ADC accuracy is $1(\mu \mathrm{~A}) \times$ $10 \mathrm{k}(\Omega) / 5(\mathrm{~V})=0.2 \%$ FSR

1.28 Thermal Characteristics

1.28.1 Parameters

Item	Symbol	Estimate	Unit	Note
Thermal Resistance	Өja	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Conforming to JESD51-7 (4 layers)
Thermal Characterization Parameter	$\psi \mathrm{jb}$	34	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Conforming to JESD51-7 (4 layers)

Note: The thermal resistance depend on the usage environment.

1.28.2 Assumed Board

Conforming to JESD51-7 (4 layers)

	Board size (mm)		
	\mathbf{X}	\mathbf{Y}	Area (mm $\left.{ }^{\mathbf{2}}\right)$
Board	76.2	114.3	8709.66
Remaining copper raes		Thickness of conductors	
$50-95-95-50 \%$		$70-35-35-70 \mu \mathrm{~m}$	

Section 2 Package Dimensions

REVISION HISTORY

RH850/F1L (100 pin Version) Datasheet

Rev.	Date	Description	
		Page	Summary
0.10	Jun 25, 2013	-	First Edition issued
0.81	Dec 03, 2013	1	1.1.2.1 Common Conditions, Power supply, Capacitance of the internal regulator changed
		4	1.2.3 Port Current changed
		5	1.3 Capacitance, note 1 and note 2 changed
		5	1.4 Operational Condition, note 2 changed
		5	1.5 Oscillator Characteristics, CAUTION changed
		6	1.7 PLL Characteristics changed
		6	1.8 Regulator Characteristics changed; note 1 changed
		7, 8	1.9 Pin Characteristics changed, note 2 and note 6 changed
		9	1.10 Power Supply Currents changed
		11	1.11 Interrupt Timing changed
		12	1.12 Power Up/Down Timing, timing diagram changed
		18	1.20.2 CSIH Timing, CAUTION changed
		31	1.24 POC Characteristics changed
		32	1.25 LVI Characteristics, changed
		33	1.26 VLVI Characteristics changed
		35	1.28 Core Voltage Monitor Characteristics changed
		35, 36	1.29 A/D Converter Characteristics changed
		37	1.30 Flash Characteristics, (1) Code Flash, Table 1.9 Basic Characteristics, note 2 changed
		37	1.30 Flash Characteristics, (1) Code Flash, Table 1.10 Programming Characteristics changed
		38	1.30 Flash Characteristics, (2) Data Flash, Table 1.11 Basic Characteristics, note 2 changed
		38	1.30 Flash Characteristics, (2) Data Flash, Table 1.12 Programming Characteristics, note 2 changed
		39, 40	1.31 Injection Currents, added
1.00	Aug 19, 2014	All	Arrangement of sections
		1 to 4	Product Introduction, added
		5	1.1 Overview, changed
		5	1.1.1 Pin Groups, changed
		5	1.1.2.1 Common Conditions, changed
		7	1.2 Absolute Maximum Ratings, CAUTIONS 1., changed
		7	1.2.2 Port Voltages, changed
		9	1.2.4 Temperature Condition, changed
		9	1.3 Capacitance, changed
		10, 11	1.4 Operational Condition, changed
		12	1.5 Oscillator Characteristics, changed; one figure added
		13	1.6 Internal Oscillator Characteristics, changed
		13	1.7 PLL Characteristics, changed
		14	1.8 Power Management Characteristics, subsection added
		14	1.8.1 Regulator Characteristics, changed
		15 to 17	1.8.2 Voltage Detector (POC, LVI, VLVI, CVM) Characteristics, added

Rev.	Date	Description	
		Page	Summary
1.00	Aug 19, 2014	18 to 20	1.8.3 Power Up/Down Timing, changed; Table 1.2 Boundary scan mode in case of using RESET pin added; two figures added
		21	1.8.4 CPU Reset Release Timing, added
		22, 23	1.9 Pin Characteristics, changed
		25	1.9.1 Output Current, subsection added
		26, 27	1.10 Power Supply Currents, changed
		28	1.11 Interrupt Timing, changed; two figures added
		29	1.12 $\overline{\text { RESET }}$ Timing, changed; figure added
		29	1.13 Low power sampler (DPIN input) timing, subsection added
		30	1.14 CSCXFOUT Timing, changed
		31	1.15 Mode Timing, changed; two figures added
		32, 33	1.16 Timer Timing, changed; figure added
		34	1.17 RLIN2/RLIN3 Timing, changed
		34	1.18 RS-CAN Timing, changed
		35	1.19.1 CSIG Timing, changed
		36, 37	1.19.2 CSIH Timing, changed
		46	1.20 RIIC Timing, changed
		49	1.21 ADTRG Timing, changed
		49	1.22 Key Return Timing, changed; figure added
		50	1.23 DCUTRST Timing, added
		51	1.24 Debug Interface Characteristics, added
		51	1.24.1 NEXUS Interface Timing, added
		52	1.24.2 LPD (4 pin) Interface Timing, added
		53	1.24.3 LPD (1 pin) Interface Timing, added
		54, 55	1.25.1 Code Flash, subsection number changed, description changed
		56	1.25.2 Data Flash, subsection number changed, description changed
		57	1.25.3.1 Serial Programmer Setup Timing, changed
		58	1.25.3.2 FLSCI3 Interface, added
		59 to 61	1.26 A/D Converter Characteristics, changed
		62	1.26.1 Equivalent Circuit of the Analog Input Block, changed
		63	1.27 Injection Currents, changed
		63	1.27.1 Absolute Maximum Ratings, changed
		63	1.27.2 DC Characteristics for Overload Current, changed
		64	1.27.3 DC Characteristics for Pins Influenced by Injected Current on an Adjacent Pin, changed
		65	1.27.4 AD Characteristics for Pins Influenced by Injected Current on an Adjacent, subsection added; description changed
		-	1.31.4 A/D Diagnosis Function Influenced by Injected Current, deleted
1.10	Dec 25, 2014	5	1.1.2.1 Common Conditions: Changed
		10, 11	1.4 Operational Condition: Note 3 changed
		12	1.5 Oscillator Characteristics: Changed, figure of "MainOSC" changed
		13	1.7 PLL Characteristics: Changed
		15 to 17	1.8.2 Voltage Detector (POC, LVI, VLVI, CVM) Characteristics: Changed, figures of "POC" changed, and figure of "CVM" added
		18	Table 1.1 In case the $\overline{\text { RESET }}$ pin is used: Changed

Rev.	Date	Description	
		Page	Summary
1.10	Dec 25, 2014	19	Table 1.2 Boundary scan mode in case of using $\overline{\text { RESET }}$ pin: Changed
		20	Table 1.3 In case the $\overline{\text { RESET }}$ pin is not used and fixed to high level by pull-up*1: Changed
		21	Table 1.4 In case the $\overline{\text { RESET }}$ pin is not used: Changed
		22 to 25	1.9 Pin Characteristics: Changed
		32, 33	1.16 Timer Timing: Changed, figure changed
		46	1.20 RIIC Timing: Description of condition changed
		46	Table 1.10 RIIC Timing (Normal Mode): Changed
		47, 48	Table 1.11 RIIC Timing (Fast Mode): Changed, figure changed
		54	1.25.1 Code Flash: Description of condition changed
		54,55	Table 1.13 Programming characteristic: Changed
		56	1.25.2 Data Flash: Description of condition changed
		56	Table 1.15 Programming characteristics: Changed
		58	1.25.3.2 FLSCI3 Interface: Figure changed
		59	1.26 A/D Converter Characteristics: Changed
		63	1.27 Injection Currents: Changed
		63	1.27.1 Absolute Maximum Ratings: Changed
		64	1.27.2 DC Characteristics for Overload Current: Changed
		64	1.27.3 DC Characteristics for Pins Influenced by Injected Current on an Adjacent Pin: Changed
1.20	Jun 30, 2015	1	typo (master/a slave -> master/slave)
		1,12,29,33	description alignment (MainOsc -> MainOSC)
		$5,12,13,15,18,2$ $2,26,30,3132,33$ $, 34,35,37,38,39$, $49,52,53,54,55$, $56,57,59,60,61$, 62	description alignment (AWOVCL -> CAWOVCL, ISOVCL -> CISOVCL)
		8	correction, listed Port
		$\begin{aligned} & 10,11,13,28,29 \\ & 30,33,32,33,64 \end{aligned}$	description alignment (IntOsc -> IntOSC)
		12	correction of "MainOSC oscillation operation point" level (MIN:2.4->empty, TYP.:empty->0.5xREGVCC)
		12	Addition of "MainOSC oscillation amplitude"
		12	additon precise conditions (such as "Crystal", "Ceramic")
		12	Improvement of figures (MainOSC)
		14	addition of "Conditon for AWOVCL"(empty -> AWOVCL pin)
		14	addition of "Conditon for ISOVCL"(empty -> ISOVCL pin)
		14	correction of "Equivalent series resistance ..."(for AWO area -> for CAWOVCL)
		14	correction of "Equivalent series resistance ..."(for ISO area -> for CISOVCL)
		15	VCVML:1.00 -> 1.1 (MIN>), 1.05 -> 1.15 (TYP.), 1.10 -> 1.20 (MAX.)
		15	$\begin{aligned} & \text { correction: (Note 1-5) } \\ & \text { "=" -> "-" } \end{aligned}$
		15	description alignment for "Note 5": "'=0.02 V/ms to $500 \mathrm{~V} / \mathrm{ms}$ " -> ":0.02 V/ms <= $\left.\mathrm{T}_{\mathrm{Vs}}<=<500 \mathrm{~V} / \mathrm{ms} "\right)$
		17	correction of name for REGVCC level (VLVI -> VVLVI)
		18,19	correction of Power Up/Down timing (FLMD0 hold time, FLMD0 setup time)
		18,19	case separation for timing whether in serial programming mode or except serial programming mode
		18	removed "FLMD0,1 hold time" spec

Rev.	Date	Description	
		Page	Summary
1.20	Jun 30, 2015	18	changed the condition of RESET edge from rise to fall for "FLMD0 setup time"
		18	changed the unit for "FLMD0 setup time" from "ms" to "us"
		18	removed "Note 2" which explained handling of FLMD0 and FLMD1
		19	correction of description for "Condtion" of $\mathrm{t}_{\text {DPOR }}$ ("=" -> ":")
		20	correction of description for "Condtion" of $\mathrm{t}_{\text {HPOMD }}$ ("=" -> ":")
		20	improvement of figure for mode insertion (VPOC(max.), t_{Vs})
		21	Improvement of explanation for "Note 1" (added "include self-programming mode")
		21	addition " $\mathrm{V}_{\text {IL }}$ " in figure
		22	correction of description for "Condtion" of $\mathrm{t}_{\text {DPOR }}$ ("=" -> ":")
		23	correction, RESET/SHMT2 : with *4 -> w/o *4
		23,24	Pin Characteristics table have been updated
		25	correction, "resistor" -> "resistors" for Note 1.
		25	addition of "Caution"
		25	addition of "Note 6"
		28	description alignment, "Deep STOP" -> "DeepSTOP"
		29	description alignment LS-IntOSC -> LS IntOSC
		30	description alignment High Speed Internal Oscillator -> HS IntOSC Low Speed Internal Oscillator -> LS IntOSC
		33	description alignment with another F1x products. separation for high level width and low level width. Addition Note 1 to 4.
		36	addition of $\mathrm{t}_{\text {WENTIH }}$, $\mathrm{t}_{\text {WENTIL }}$
		$\begin{array}{\|l} 30,31,34,35,52 \\ 53 \end{array}$	addition for Note 2 (page 30,31,34,52,53), Note 4 (page 35), "Noise such as the figure can be filtered"
		38	changed CSIGnRYO output delay spec
		39	correction of register name which is used as "Condition" CSIHnCTL1.CSIHnDAP -> CSIHnCFGx.CSIHnDAP
		39	description alignment of bit number ("CSIHnCFG0-7.CSIHnID2-0" -> "CSIHnCFGx.CSIHnID[2:0]") ("CSIHnCFG0-7.CSIHnSP3-0" -> "CSIHnCFGx.CSIHnSPx[3:0]") ("CSIHnCFG0-7.CSIHnHD3-0" -> "CSIHnCFGx.CSIHnHDx[3:0]")
		39	correction of register name which is used in "CAUTION" CSIHnCFG7-0.CSIHnCKP0-7 -> CSIHnCFGx.CSIHnCKPx
		40	changed CSIHnRYO output delay spec
		43	CSSETUP -> CSSETUP
		44	CSHOLD -> CSHOLD
		49,50	removed "0" as MIN. of RIICOSCL clock period (Normal Mode) removed "0" as MIN. of RIICOSCL clock period (Fast Mode)
		57,59	addition "Note 4. Only for program/erase operation."
		60	removed $\mathrm{t}_{\text {DPOR }}$, $\mathrm{t}_{\text {SMDR }}, \mathrm{t}_{\text {HMDR }}$
		60	improvement of time chart
		62	description alignment, "CyclicSTOP" -> "Cyclic STOP"
		63	description alignment : (LSB -> -)
		64	addition "Note 5", CAUTIONS sentence 2
		65	removed "1.28.1 Equivalent Circuit of the Analog Input Block"
		65	correction of Product Name list and Type
		65	addition of "Note 1" for PgE' and PgB'
		68	addition "1.28 Thermal Characteristics"

Rev.	Date	Description	
		Page	Summary
1.21	Jul 03, 2015	1	Correction of revision number
		24	Pin Characteristics table have been updated
1.30	Dec 09, 2015	12	addition spec: "V ${ }_{\text {MOScsP" }}$ changed spec : $1^{* 3} \rightarrow 0.4 \times$ REGVCC $-0.2^{* 3}$
		12	changed figure: MainOSC: Addition ($\mathrm{V}_{\text {MOSCSP }}$)
		15	addition of Note 8 for Detection voltage
		18	removed FLMD0 setup time
		18	addition of Note 2 for figure
		24	correction, P10_8 to P11_1,P11_4,P11_5/Drive Strength : "Slow/Fast" \rightarrow "Slow"
		64	correction of CAUTION
		69	description alignment of header "Parameter" \rightarrow "Symbol"
1.31	Apr 20, 2016	14	addition of Note 3 of 1.8.1 Regulator Characteristics
		18	correction of Note 2 in 1.8.3 Power Up/Down Timing
		62	correction of ADCLKn spec in 1.26 A/D Converter Characteristics
		64	correction of caution of 1.26 A/D Converter Characteristics

All trademarks and registered trademarks are the property of their respective owners.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

SALES OFFICES
Renesas Electronics Corporation
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
2801 Scott Boulevard Santa Clara, CA 95050-2
Tel: $+1-408-588-600$, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Dukes Meadow, Millboard Road, Bourne End, Bu
Tel: $+44-1628-585-100$, Fax: $+44-1628-585-900$
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: $+49-211-6503-0$ Fax: $+49-211-6503-1327$
Renesas Electronics (China) Co., Ltd.
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: $+852-2265-6688$, Fax: +852 2886-9022
Tel: +852-2265-6688,' Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel:
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit \#06-02 Hyflux Innovation Centre, Singapore 339949
Tel: $+65-6213-0200$, Fax: $+65-6213-0300$
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn. Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No. $177 \mathrm{C}, 100$ Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
Renesas Tectron-rs, Gangnam-Gu, Seoul, 135-080, Korea
Tel: $+82-2-558-3737$, Fax: $+82-2-558-5141$

