
00000-A

Rev. 1.02

Renesas Electronics Corporation
MCU Business Unit
MCU Software Division
MCU Tool Product Marketing Department

R20UT2150EJ01002012/10/18

R8C,M16C Integrated Development
Environment for RL78 Family

Migration to New Integrated Development Environment “CubeSuite+”: Onchip

Debug

2

Introduction
This document describes how to migrate from the High-performance Embedded Workshop for
R8C,M16C Family to CubeSuite+

for RL78 and how to operate E1

and E20 emulators in the
CubeSuite+

environment, this explanation is based on CubeSuite+

V1.02.00.
For toolchains, refer to the following three materials.
-

Integrated Development Environment

for RL78

Family Migration to Integrated Development
Environment

“CubeSuite+”: Build,.
-

Integrated Development Environment

for RL78

Family Migration to Integrated Development
Environment

“CubeSuite+”: Coding,.
-

Integrated Development Environment

for RL78

Family Migration to Integrated Development
Environment

“CubeSuite+”: Starting,.
Also refer to the tutorial guide

provided by CubeSuite+

for how to use tools.
The

tutorial guide

is available by selecting [Help]

-> [Tutorial] from the CubeSuite+ menu.

Tutorial Guide

3

1. Integrated Development Environment
and Emulators

2. Differences between the Target
Interfaces (for OCD)

3.Changing the Debugger

4. Entering an ID Code

5. Securing Resources

6. Setting the On-Chip Debugging
Option Byte

7.Where Do We Make Settings when
Connecting an Emulator?

8. Connecting an Emulator

9. Disconnecting the Emulator

10. Downloading a Program

11. Registering Additional Download
Files

12. Starting/Stopping a Program

13. Difference in MCU Operation during
a Break (Peripheral Break Function)

Contents

14. Viewing/Changing Memory Data and
Variables While the Program Is Running

15. Automatically Updating Memory Data and
Variables While the Program Is Running

16. Setting Breakpoints

17. Causing a Break on Access to a Variable

18. Filling Memory

19. Saving Memory Data

20. Flash Self-Programming

21. How to program to check Operation on the
Stand-Alone MCU

22. Action Event (Printf

Event)

23. Viewing Lists of Variables and Functions

24. Analytical Graphs

25. Debugging Functions of Emulators (OCD)

4

1.

Integrated Development Environment and Emulators

R8C,M16C RL78
Integrated
Development
Environment
(IDE)

On-chip
Debuggers

 (OCD)

Full-spec.
Emulators*

High-performance
Embedded Workshop

High-performance full-spec. emulators
with more advanced debugging functions

Provides basic debugging functions
at a low price

A new integrated development
environment that supports 8-

to 32-bit
MCUs from Renesas

*This document describes about On-chip Debuggers.

E8a(R8C,M16C)

E1(R8C)

CPE
(R8C,M16C)

E100
(R8C,M16C)

5

2.

Differences between the Target Interfaces (for OCD)
The RL78

and E1

emulator are connectable via the 14-pin connectors listed
below.

Although these are the same connectors as for the E8a

and
E1/E20 for R8C and M16C products, the communications interface is
different.

The E8a

(for M16C) is connected via seven lines.

The E1

(for RL78)

communicates via a single line.

The circuits for connection also vary with the MCU. For
details, refer to E1/E20 Emulator Additional Document
for User's Manual (Notes on Connecting RL78).

The E8a or E1/E20 (for R8C)

is connected via single line.

6

3.Changing the Debugger

Selecting a Debugger (E8a,E1/E20 Emulator

or Simulator)

in the HEW

The HEW

allowed users to select a debugger (E8a,E1/E20 emulator

or simulator)
 in the process of changing the debug session or the target shown in the [Debug

Settings] dialog box. The CubeSuite+, on the other hand, allows users to select a
debugger on the project

tree. The procedure to change the debugger is described

on the following pages.

7

3.

Changing the Debugger

(1) The debug tool name

(debug tool) on the project

tree

panel

indicates the
currently selected debugger.
The following example shows that the E1 Emulator

is selected:

Selected debugger

8

3.

Changing the Debugger

(2) To change the debugger, right-click the debug tool name

(debug tool)

to
open a pop-up menu. Select [Using Debug Tool]

from the pop-up menu

to

select the debug tool

you want to use.

Right-click
Select the debug tool
you want to use.

9

4.

Entering an ID Code
Both the R8C/M16C and RL78

require entering of an ID

code.
However, there are some differences regarding the setting and authentication of the ID code and the
action that is taken if the ID code does not match.

ID code size Address of
the ID

 Code

Setting the ID
Code

Authenticating the ID
Code

Action Taken
When the ID
Code Does Not
Match

Valid for the
On-board
Programmer?

R8C
M16C

7 bytes 0xFFDF,
0xFFE3,
0xFFEB,
0xFFEF,
0xFFF3,
0xFFF7,
0xFFFB

Embed the
code in the
user program
when
building.

When all ID is FFh, It
is authenticated
automatically at a
debugger start-up, and
when other, enter ID
into a dialog.

A debugger is
not started (the
contents of the
flash memory
are held).

Yes

RL78 10 bytes 0xC4 to
0xCD

Embed the
code in the
user program
when
building.

Enter an ID

code for
the debugger in
advance.

Depends on the
setting of the
on-chip
debugging
option byte*

No (only valid
during
debugging)

For details, see E1/E20 Emulator Additional Document for User's Manual (Notes on Connecting RL78).

10

4.

Entering an ID Code

In the HEW,

the [ID

Code verification] dialog box

opens at startup if an ID code
 has been written in the MCU. In CubeSuite+, on the other hand, an ID code

must

be set on the [Property] panel before the emulator

is started up.
Set an ID code

by referring to the following figures:

Example:
[ID Code] dialog box of the E8a for the R8C

11

5.

Securing Resources
When in use with the RL78, OCD

takes up some user resources. These areas

should not be used by the user program so keep them reserved (e.g. by using
the build tool).

Reserved areas to be used by E1/E20 (RL78)*

Does OCD
Take up
Resources?

Size What Should be
Used to Allocate
the User
Resources?

R8C
(E8a/E1/E20)

Yes
(depending
on the
MCU)

Up to
2 Kbytes of ROM,
8 bytes of stack,
and some vectors

Build tool
(setting up the
linkage editor to
avoid the areas
to be taken up
by OCD)M16C

(E8a)
Yes
(depending
on the
MCU)

Up to
2 Kbytes of ROM,
128 bytes of RAM,
14bytes of stack,
and some vectors

RL78
(E1/E20)

Yes See the figure at
left.

Build tool
(through the GUI
of CubeSuite+)

Comparison with the R8C and M16C

For how to allocate resources
through CubeSuite+, see the next
page.

*For details, see E1/E20 Emulator Additional Document
for User's Manual (Notes on Connecting RL78).

12

5.

Securing Resources
The address of the area for monitoring by the debugger can be specified on
the [Link Options] sheet of the [Property] panel of the build tool.

13

6.

Setting the On-Chip Debugging Option Byte
The on-chip debugging option byte can be set on the [Link Options] sheet of
the [Property] panel of the build tool.

14

7. Where Do We Make Settings when Connecting an Emulator?
In the HEW,

the [Emulator Setting] dialog boxes open to make settings when

connecting an emulator. In the CubeSuite+, on the other hand, you need to
make settings on the [Property] panel before connecting an emulator

by taking

the following procedure.
Double-click

the debug tool name

(debug tool)

on the [Project Tree] panel

to

open the Properties window of the debug tool.

Double-click

15

7.Where Do We Make Settings when Connecting an Emulator?
In the case of HEW, settings required for connection are made in

the [Emulator Setting]

dialog box during the process of connecting the emulator. In the

case of CubeSuite+, on
the other hand, these settings must be made in the [Property] panel

of the debugger before

connecting the emulator.
(1)

The [Emulator Setting]

dialog box of HEW

corresponds to the [Connect Settings] tab of

CubeSuite+.

On CubeSuite+, the device needs to be selected during the
process of creating a project.

Example:
[Emulator Setting] dialog box of the E8a

for the R8C

Some functions
including power
supply are
correspondent.

16

(2) [Configuration] dialog box of the HEW corresponds to the [Debug Tool
Settings]

tab of the CubeSuite+.

Example:
[Configuration] dialog box of the E8a

for the R8C

7. Where Do We Make Settings when Connecting an Emulator?

17

8. Connecting an Emulator
Select [Debug]

-> [Connect to Debug Tool]

from the CubeSuite+ menu

to

establish connection to the selected emulator

(debug tool).
Upon completion of

the connection, the debug tool name

appears on the

status bar at the bottom right of the window.

Before connection

After connection

Note: If an ID code

has been written in the MCU, set an ID code in advance according
to “2.

Entering an ID Code.”

Select [Connect to
Debug Tool].

18

9. Disconnecting the Emulator

To disconnect the emulator, select [Disconnect from Debug Tool]

from the
menu

or click the button on the debug toolbar.

[Disconnect from
Debug Tool]

 button

19

10.

Downloading a Program

Selecting [Debug]

-> [Download]

from the menu

or clicking the button on
the debug toolbar starts downloading specified files.

Selecting [Debug]

-> [Build & Download]

from the menu

or clicking the
button on the debug toolbar builds a project and then starts downloading the
specified files.

If no debug tool

is

connected, CubeSuite+ connect debug tool automatically
before downloading.

Download

Build & Download

20

11.

Registering Additional Download

Files

Add download files in the

[Download File Settings] sheet on the [Property] panel.
(1)

Select [Download files] and click […] button on the right.

(2)

The [Download Files] dialog box

opens. Click the [Add]

button.

Select [Download files] and click […].

Click

[Add] button.

21

11.

Registering Additional Download

Files

(3)

Specify the file name

and file type in the [Download file information] field
and then click the [OK]

button.

Note: When downloading is

performed, all of the registered

files are downloaded.
To download only desired

files,

set [Download object] and [Download symbol

information] to “Yes”

in this window only for files you want to download.

Specify download

file
and file type.

Click [OK]

button.

Use these

buttons to
select download order.

22

11.

Registering Additional Download

Files

(4)

The available file formats (extensions) for the R8C/M16C and for the RL78
 are not the same. For details, see the table below.

Load Module Format Hexadecimal File Binary File

R8C/M16C *.x30 *.abs *.mot

*.hex *.bin

RL78 *.lmf *.hex *.bin

Purpose To be downloaded for
source-level
debugging

To be used for
writing by a ROM

 programmer, etc.

Data file

23

12.

Starting/Stopping a Program

You can start or stop a program

and reset the CPU from the menu

or toolbar
in the same way as the HEW

(see below).

Reset CPU

Run
Run without
break Restart (reset

go)

Step in

Step over
Step out

CubeSuite+ menu

Stop

24

13.

Difference in MCU Operation during a Break (Peripheral Break Function)
While timers and serial communication interfaces in the R8C/M16C

continue to operate

while CPU breaks in execution by the emulator, CubeSuite+

for the RL78

allows you to
use the [Debug Tool Settings] sheet to select whether or not those modules are to be
stopped while CPU breaks.

In the case of HEW for the R8C/M16C,
you need to use the Start/Stop

functions to
create and embed code that will stop the
peripheral modules if this is required.
(R8C/5x series have the Peripheral Break
Function)

Selectable on CubeSuite+

for the RL78

25

14.

Viewing/Changing Memory

Data and Variables While the
Program

Is Running

To view or change memory data and variables while the program

is running in
CubeSuite+, make settings on the [Property] panel

by using the following procedure:

(1)

Open the [Debug Tool Settings] sheet on the [Property] panel

of the debug tool.
(2)

Set [Access by stopping execution]

in the [Access Memory While Running] field to

[Yes]. Memory data and variables can be viewed while the program

is running.

Change this to [Yes].

If [No] is selected, “**”

is displayed
on the memory panel

while the

program

is running.

26

15.

Automatically Updating Memory

Data and Variables While
the Program

Is Running

To automatically update memory

data and variables via CubeSuite+, make settings on
the [Property] panel

by using the following procedure:

(1)

Open the [Debug Tool Settings] sheet on the [Propertiy] panel

of the debug tool.
(2)

Set [Access by stopping execution]

and [Update display during execution]

in the

[Access Memory While Running] field to [Yes].
Information displayed on the memory and watch

panels is automatically updated while

the program

is running.
To change the update interval, modify the [Display update interval]

value.

Change two items to [Yes].

Set update interval.
Variables registered in the watch panel

and memory data in the memory

panel

are automatically updated while the
program is running.

27

16.

Setting Breakpoints

(1)

You can set breakpoints in the main area (enclosed by a red line in the figure
below)

on the editor panel

of CubeSuite+.

Set break points: Single-clicking a line with an address.
Delete break points: Single-clicking a line for which a breakpoint has been set.

Click here.

28

16.

Setting Breakpoints

(2)

Select a breakpoint type (software break or hardware break) for

[First using
type of breakpoint]

in the [Debug Tool Settings] sheet on the [Property] panel.

(Software break is selected in the example below.)

(3)

If the number of breakpoints of the selected type exceeds the limit, the other
type of breakpoints are used.
Event marks indicate the types of breakpoints.

: Software break : Hardware break

Set a breakpoint type to
be preferentially

used.

29

16.

Setting Breakpoints

(4)

You can check the breakpoint setting on the [Events] panel.
Select [View]

-> [Event]

from the CubeSuite+ menu

to open the [Events] panel.

Unnecessary breakpoints can be deleted or disabled on the [Events] panel.

30

17.

Causing a Break on Access to a Variable

You can use the watch or editor panel

to make a setting to cause a break on
access to a specific variable.
(1)

On the watch or editor panel, right-click the variable that you want to set a

break when it is accessed.
(2)

Select [Access Break] (or [Break Settings] on the editor panel)

and select

[Set Read Combination Break to], [Set Write Combination Break to], or [Set R/W
Combination Break to].

Select [Access Break].

Select a break

condition

 (read, write, or read/write).

Right-click the variable
to open a pop-up menu.

31

17.

Causing a Break on Access to a Variable

(3)

Enter a value to set a data

condition

(or leave the box blank if no data
 condition

is needed).

Enter a data condition

 if necessary.

Note: Enter a decimal number here. When entering a hexadecimal number, add “0x”

to
the head (e.g. 0xAA).

32

18.

Filling Memory

Memory

can be filled (batch change)

by using the [Memory Initialize]

dialog box.
(1)

Right-click on the [Memory] panel

to open a pop-up menu, and select [Fill]

from the

pop-up menu.
(2)

The [Memory Initialize]

dialog box opens. Enter addresses (start address

and end

address)

and initialization data, and then click the [OK]

button.

Note: Enter decimal numbers here. When entering hexadecimal numbers,

add “0x”

to
the head of each number.

Right-click here to open a pop-up
menu

and select [Fill].
Enter a start address, end address,
and initialization data.
This example shows filling 0x0000
to 0x0FFF

with 0xAA.

33

19.

Saving Memory

Data

[Data Save] dialog box

is used to save memory

data.
Select [Debug]

-> [Upload...]

from the menu.

The [Data Save]

dialog box

opens. Specify the file name, type, and range of
memory data you want to save, and then click the [Save]

button.

Note: Enter decimal numbers here. When entering hexadecimal numbers,

add “0x”

to
the head of each number.

Specify a memory range.

Specify a file type (Intel
Hex, Motorola S, or binary).

Enter the

name

of a file to be saved.

34

20.

Flash Self-Programming
The RL78 supports a self-programming feature for the rewriting of data in flash
memory by user programs. This is accomplished for user applications by using the
self-programming library for the RL78.

To add the flash self-programming file, right-click
on [File] in [Project Tree] on CubeSuite+ and
select [Add

-> Add File

] from the list, then click on
the [Files of type] pull-down menu and select the
file type.

In the case of HEW for the R8C/M16C, you
essentially need to place the debugger in a special
mode and create a flash-rewriting program.

In the case of CubeSuite+ for the RL78, on the other hand,
you need to install the self-programming library (provided
for free) in the project.
For details on how to install the library, visit the following
URL:http://www.renesas.com/products/tools/flash_

 prom_programming/flash_libraries/index.jsp

http://www.renesas.com/products/tools/flash_prom_programming/flash_libraries/index.jsp
http://www.renesas.com/products/tools/flash_prom_programming/flash_libraries/index.jsp

35

21.

How to program to check Operation on the Stand-Alone
MCU

If you wish to check operation on the RL78

MCU as a stand-alone device after debugging, use
the Renesas Flash Programmer

(flash programming software) to program the data to the flash
memory instead of using CubeSuite+.

In the case of HEW for the R8C/M16C, you need to
select the mode that is suitable for debugging and
also equivalent to the on-chip programmer.

The Renesas Flash Programmer is software that
is used to program to the flash memory of
Renesas MCUs and is specialized for easy
operation and functionality for programming.

In the case of the RL78, on the other
hand, you need to use the Renesas
Flash Programmer instead of
CubeSuite+.

36

22.

Action Event (Printf

Event)
CubeSuite+

allows the setting of a Printf

event as an action event.

A Printf

event is used to stop the program momentarily at a specified address and make
software execute the printf

command. When a Printf

event is set in the [Action Event]

dialog box, the program stops before execution of the instruction at the address where
the event is set, and CubeSuite+

outputs the value of the variables to the [Output] panel.

Useful features of CubeSuite+

To insert code that is equivalent to
printf(“Sample: g_count

= %d, P6 = %d¥n",g_count,P6)

 at this address

->

Set an action event.

The result is output
to the [Output] panel.

37

23.

Viewing Lists of Variables and Functions

CubeSuite+

can automatically display lists of variables and functions used

in
the project.
Select [View -> Program Analyzer]

from the menu.

Clicking on a variable or function name opens the corresponding source file.

Useful features of CubeSuite+

38

24.

Analytical Graphs
CubeSuite+

has an analytical graphing feature, which shows line graphs indicating the

relationships between the values of variables, registers, and addresses and time.
The graphs shown by CubeSuite+

during on-chip debugging of the RL78

are based on

data acquired through the pseudo-RRM

function.

Graph control area

Cursor A Cursor B

Channel
information area

Cursor
information area

Useful features of CubeSuite+

Trigger
information

39

25.

Debugging Functions of Emulators (OCD)
Debugging Function RL78

(E1/E20) R8C (E8a/E1/E20) M16C (E8a)

Breaks Software breaks 2000 points 255

points 255

points
Hardware breaks 1 to 2

points shared between
instruction-execution and access
events*

2 to 10

points shared between
instruction-execution and access
events*

6 to 10

points shared between
instruction-execution and
access events*

Forced breaks Supported Supported Supported
Events Number of event

points
1 to 2

points shared between
instruction-execution and access
events*

1

to 2

points* 0 to 2

points*

Usage of events For hardware breaks only For hardware breaks only For hardware breaks only
Tracing Branch trace* Branch trace/Data trace* Branch trace/Data trace*
Performance
measurement

Measurement item From the start to the end of
execution

From the start to the end of
execution

From the start to the end of
execution

Performance Resolution:

100

s
Measurement time:

Up to 100
hours

E8a Resolution:

1

ms
Note: A timer in the host machine
is required as a resource.
E1/E20 Resolution:

1

s

Resolution:

1

ms
Note: A timer in the host
machine is required as a
resource.

Pseudo realtime

RAM monitor (RRM) Supported: the CPU is occupied
during monitoring.

Supported: the CPU is occupied
during monitoring. / Debug DMA

Supported: the CPU is
occupied during monitoring. /
Debug DMA

Dynamic memory modification

(DMM) Supported: the CPU is occupied
during modification.

Supported: the CPU is occupied
during modification./
Debug DMA

Supported: the CPU is
occupied during modification. /
Debug DMA

Hot plug-in Not supported Not supported Not supported
Security Authentication of 10-byte ID** Authentication of 2-

or 4-byte ID** Authentication of 4-byte ID**
Number of pins taken up 1 (TOOL0) 1 (MODE) 1 or 2 or 7

Peripheral breaks Supported Not supported
(R8C/5x: Supported)

Not supported

*

Varies with the MCU.
**

For details on differences in specifications of the ID code, refer to 4. Entering an ID Code

in this document.

Renesas Electronics Corporation
©2012. Renesas Electronics Corporation, All rights reserved.

	R8C,M16C Integrated Development Environment for RL78 Family
	Introduction
	Contents
	1. Integrated Development Environment and Emulators
	2. Differences between the Target Interfaces (for OCD)
	3.Changing the Debugger
	3. Changing the Debugger
	3. Changing the Debugger
	4. Entering an ID Code
	4. Entering an ID Code
	5. Securing Resources
	5. Securing Resources
	6. Setting the On-Chip Debugging Option Byte
	7. Where Do We Make Settings when Connecting an Emulator?
	7.Where Do We Make Settings when Connecting an Emulator?
	7. Where Do We Make Settings when Connecting an Emulator?
	8. Connecting an Emulator
	9. Disconnecting the Emulator
	10. Downloading a Program
	11. Registering Additional Download Files
	11. Registering Additional Download Files
	11. Registering Additional Download Files
	12. Starting/Stopping a Program
	13. Difference in MCU Operation during a Break (Peripheral Break Function)
	14. Viewing/Changing Memory Data and Variables While the Program Is Running
	15. Automatically Updating Memory Data and Variables While the Program Is Running
	16. Setting Breakpoints
	16. Setting Breakpoints
	16. Setting Breakpoints
	17. Causing a Break on Access to a Variable
	17. Causing a Break on Access to a Variable
	18. Filling Memory
	19. Saving Memory Data
	20. Flash Self-Programming
	21. How to program to check Operation on the Stand-Alone MCU
	22. Action Event (Printf Event)
	23. Viewing Lists of Variables and Functions
	24. Analytical Graphs
	25. Debugging Functions of Emulators (OCD)
	スライド番号 40

