LENESAS

Tutorial for RH850 Multi-core (Build) Rev.1.00
Sep 20, 2014

Contents
SectioN 1 OVEIVIEW ... rr s s s s e e nm e nnas 2
1.1 Configuration of @ MUulti-COre ProdUuCt ... 2
Section 2 Boot Loader Project.........ccoecoiiimiieciiirrrceccsserreces e e e 3
2.1 Creating a New Boot Loader Projectuucoiiiiiiiiiecie e 3
2.2 RegisteriNng the SOUICEooieiiiiei e e e e e e 5
2.21 Start-up routing for OOt I0AAET e e e 5
2.2.2 Exception/Interrupt veCtor tableo 9
B T VL B T To (= i = SRS 11
2.3 Setting the OPtiONSccooi ittt aaraaanannaa 12
D220 T I 1 oo o] o < TSP SURPRRSPRR 12
Section 3 Application Project...........oeeeciiiiiriceciirerreeer e e 13
3.1 Creating a New Application Project....... ..o 13
3.2 RegiSteriNng the SOUICE 15
3.2.1 Start-up routine for appliCationoooi e 15
0 @ B 1= = o =T o 1 OO PER 18
3.3 Setting the OpPlioNS 19
1 TR B IR 00 401 o113 o] 1 o) o 1S SRRSO PPRRTRN 19
3.3.2 LINK OP I ONS e ———— 20
3.4 Sharing the Variables ... 25
3.5 Sharing the FUNCHONS. ... 28
Section4 Rebuilding....ccccoiiiieiecirecc e 30
4.1 Rebuilding MUItIple Projectscocoo e 30
Section 5 Uniting the Objects.........ccooveeeeciiiiiircc e 33
5.1 Whatis the Object Uniting FUNCLION............oeiiiiiii e 33
5.2 Selecting "Constituent application projects” ... 34
5.3 UNitiNg the ODJECEScooiiiiiiee e ee e e 35
R20UT3070EJ0100 Rev.1.00 Page 1 of 36

Sep 20, 2014

RENESAS

Tutorial for RH850 Multi-core Environment (Build)

Section 1 Overview

This tutorial explains the steps for using CubeSuite+ to newly create and build a multi-core project that targets
the RH850/E1x-FCC1 (R7F701Z07) microcontroller.

This section describes the overview of a multi-core project. A multi-core project consists of a single project for
the boot loader for a multi-core and projects for applications for a multi-core for the number of CPU cores
mounted on the microcontroller.

1.1 Configuration of a Multi-core Product

When creating a multi-core project, create a project for the boot loader for a multi-core (hereafter referred to
as boot loader project) and projects for applications for a multi-core (hereafter referred to as application
projects). The boot loader project executes processes starting from a reset and until branching to each
application project. An application project executes processes for each PE (processor element).

The Project Tree of CubeSuite+ has the following configuration. The boot loader project serves as the main

project, and application projects for the number of PEs serve as subprojects. This kind of a project
configuration allows not only one of the PEs to be debugged but both PEs to be debugged in synchronization.

Froject Tree g %
¢ @ 2 &
E---__:fgéhnnt {Project) !

""" % RIFTOLZ0T (Microcontroller) | Project for boot loader for multi-core
----- ¢ Boot Loader (Configuration Tool for Multi-core) I’

..... 4y, CC-RH (Build Toal)

----- Project for application for multi-core

----- = RHE50 Sirmulator fRebees Taal
File Main CPU (PE1)

=" f_: PE3 (Subproject)

..... =5 RHA50 Sirnulator Mekun Tanl
Q_’ﬂ] File PCU (PE3)

R20UT3070EJ0100 Rev.1.00 Page 2 of 36

Sep 20, 2014 RENES

Tutorial for RH850 Multi-core Environment (Build)

Section 2 Boot Loader Project

This section describes the method for creating a boot loader project. The boot loader project executes
processes starting from a reset and until branching to each application project.

2.1 Creating a New Boot Loader Project
Create a boot loader project following the steps listed below.
1. Create a new project.

Start CubeSuite+ and click the [Start] button. Then, click the the [GO] button of [Create New Project] on the
Start panel.

& neww project can be created.
A new project can alzo be created by reuzing the file configuration registered to an existing project.

ubeSuite+ - [Start] felfeEs
File EMe View Project Build Debug ool Window Help

I e B X DB ss s - & @
[irectiiiee] LI 2 Y >0
. 023 Learn About B]

Croate No 5]
e by g th e conipaaion rgitered
te New M
isting B
Loads the prictof CubeSule. Can oo be opened diecl o te fckonin k.
| GO [g
oSuite 2
ih & s and the ol IDE canbe
(' mtpi) -
¢ s cane e
(Only CCR:

that can be bt immediately are provided. After selecting the desited piojsct from the lst below, press the GO buiton and specily the destination folder to
el

7K X[veso
7AK0_KC2A.
GO 78KO_KE2A tion

JaDISCONNECT

Remarks A project can also be created from [Create New Multi-core Project] on the Start panel.
In this case, if [Create an application project with a boot loader project] is selected in the Create
Project dialog box, a boot loader project and a single application project are created. The
application project name becomes "Boot loader project name_App1". The project name can be
changed.

R20UT3070EJ0100 Rev.1.00 Page 3 of 36
Sep 20, 2014
RENESAS

Tutorial for RH850 Multi-core Environment (Build)

2. Set the project.

The Create Project dialog box opens. In this dialog box, specify "RH850" in [Microcontroller]. Also select
the target microcontroller in [Using microcontroller]. Next, specify "Boot Loader for Multi-core (CC-RH)" in
[Kind of project]. Finally, specify Project name and Place, and then click the Create button.

Create Project

Micracontroller:

Uzing microcontroller:

5 [Search microcontroller]

-
E

IHHBSD

Update...

EE T

E F I L] | 5
RHB50/E15Eva
¥ RHS50/F1L
RHE50/R1L
¥ RHBS0/FILGW

=]

2]

Product Name:R7F70TZ07 -
Internal ROM size[KBytes]:
Code Flash:4036

D ata Flash:64

Internal Rk size[Bytes]:
Local RAM[PE 1165536
Local RAM[PCLU).32768
Global RAM: 262144
Emulation RA: 794624

m

Kind of project:
Project name:

Place:

[:\sampleboot. mipj

Additional Information:Mumber of Cores: 2 -
Boot Loader for Multi-core[CC-RH) lz‘ I
boot
D:hsample lz‘ m

[Make the project folder

7] Pass the file composzition of an existing project to the new project

Praject ta be paszed:

Browse...

Copy composition files in the diverted project folder to a new project folder.

3. Start the boot loader project.
The boot loader project is started. The Boot Loader node is displayed in the Project Tree. boot.asm,
vecttbl.asm, and iodefine.h are automatically registered in the File node.

’ EreatE‘Rj ’ Cancel] ’ Help
N

boot - CubeSuite+ - [Property] | =N e |
Eile Edit Miew Project Build Debug Tool Window Help
@ sert (B ES X 0 @0 & 88 & - g & DefaultBuild ME- S INORCEC R TR R
023Q 5
FeaTes B[rorey “x
' @ 8@ (% boot Froperty L e ~
B ey =T boot (Project)
3 ot o Cotme sttty || S 7o " -
- Accavont ot M R7F701707 (Microcontroller)
w25, RHB50 Simulator (Debug Tool) - - -
<O [R { Book Loader {Configuration Tool For Mulki-core)
.80 vecttbl.asm
St [[“ CC-RH (Build Tool)
----- %, RHE50 Simulakor (Debug Toal)
= J! File
H 1
:,... BEm
-850 boot.asm
File H I 1
...BM yecttbl.asm
L ANGE S R | indefine.h
Information(M0Z31001) : iodefine h
[EOF]
' All Messages / :
q m v ||@ oupur [E Enor it |
] F2 F2 = & F& F7 ra [F2 e R e
i DISCONNECT

R20UT3070EJ0100 Rev.1.00

Sep 20, 2014

RENESAS

Page 4 of 36

Tutorial for RH850 Multi-core Environment (Build)

2.2 Registering the Source

When a boot loader project for a multi-core is newly created in CubeSuite+, the following three files are
automatically registered in the File node of the Project Tree.

e Start-up routine for boot loader (boot.asm)
e Exception/interrupt vector table (vecttbl.asm)
e 1/O header file (iodefine.h)

The source files for a boot loader project for a multi-core consist of only boot.asm, cstartm.asm, and
iodefine.h. boot.asm, cstartm.asm, and iodefine.h are described in the following subsections.

2.2.1 Start-up routine for boot loader

In the start-up routine (boot.asm) for the boot loader, the following processes starting from a reset and until
branching to each application project are executed. The processes should be customized if required.

(1) Common entry routine for PEs

The PEID (processor element number) is acquired to identify which PE is executed from among the multiple
PEs. Execution branches to the entry routine of each PE according to the acquired PEID. When the PEID is
1, branching is performed to PE1's entry routine (__start PE1). When the PEID is 2, branching is performed
to PE2's entry routine (__start_PE2). When the PEID is 3, branching is performed to PE3's entry routine
(__start_PE3).

; jump to entry point of each PE

stsr 0,r10, 2 ; get HTCFGO
shr 16, r10 ; get PEID
cmp 1,r10

bz __start_PE1

cmp 2,110

bz __start PE2

cmp 3,r10

bz __start PE3

(2) Entry routine for PE1 (__start PE1)

Execution branches to a routine (_hdwinit_PE1) to clear RAM and a routine (_init_eiint) to change the mode
for El-level interrupts to table reference mode, and after that, jumps to the application project for PE1.

__start PE1:
jarl _hdwinit_PEA1, Ip ; initialize hardware
$ifdef USE_TABLE_REFERENCE_METHOD
jarl _init_eiint, Ip ; initialize exception
$endif
mov # pm1_setting_table, r13
Id.w .OFFSET_ENTRY[r13],r10 ; r10 <- #__start
jmp [r10] ;jump to #__start
R20UT3070EJ0100 Rev.1.00 Page 5 of 36
Sep 20, 2014

RENESAS

Tutorial for RH850 Multi-core Environment (Build)

Calling hdwinit PE1

The global RAM and local RAM (PE1) are initialized to zero for the ECC function. The symbols
(GLOBAL_RAM_ADDR, GLOBAL_RAM_END, LOCAL_RAM_PE1_ADDR, and
LOCAL_RAM_PE1_END) which are used in initialization are defined at the beginning of the file. These
values should be changed to the addresses of the target microcontroller if needed.

; The following is the addresses in R7F701Z07.
; Specify values suitable to your system if needed.
GLOBAL_RAM_ADDR .set Oxfeee0000
GLOBAL_RAM_END .set Oxfef1ffff

LOCAL_RAM_PE1_ADDR .set 0xfedf0000
LOCAL_RAM_PE1_END .set Oxfedfffff

hdwinit_PE1

.section ".text", text
.align 2

_hdwinit_PE1:

mov Ip, r14 ; save return address

; clear Global RAM

mov GLOBAL_RAM_ADDR, r6
mov GLOBAL_RAM_END, r7
jarl _zeroclr4, Ip

; clear Local RAM PE1
mov LOCAL_RAM PE1 _ADDR, r6
mov LOCAL_RAM_PE1_END, r7

jarl _zeroclr4, Ip
mov r14, Ip
jmp [Ip]
; zeroclr4
.align 2
_zeroclr4:
br .L.zeroclIr4.2
.L.zeroclr4.1:
stw r0, [r6]
add 4,16
.L.zeroclIr4.2:
cmp 6, r7
bh .L.zeroclr4.1
jmp [Ip]

R20UT3070EJ0100 Rev.1.00
Sep 20, 2014

RENESAS

Page 6 of 36

Tutorial for RH850 Multi-core Environment (Build)

Calling _init_eiint

The mode for El-level interrupts with interrupt priority levels of 0 to 2 is changed from direct branch mode
to table reference mode. Since the change is to be made to table reference mode, the interrupt vector
mode select bits of El-level interrupt control registers EICO, EIC1, and EIC2 are to be set. As the ICBASE
symbol whose value is the EICO address is defined and the address is set using the offset from this
ICBASE value, the address should be changed to an address for the target microcontroller if required.
Note that when the mode for an El-level interrupt with a different priority is changed to table reference
mode, the interrupt vector mode select bit of each El-level interrupt control register is to be set.

Set the start address of the EIINTTBL section in the INTBP register. The EIINTTBL section is defined in
vecttbl.asm. However, since this is commented out by default, the macro
"USE_TABLE_REFERENCE_METHOD" that is defined at the beginning of the file needs to be validated
to enable this processing.

[When disabled]
; example of using eiint as table reference method
,USE_TABLE_REFERENCE_METHOD .set 1

[When enabled] ";" is deleted.

; example of using eiint as table reference method
USE_TABLE_REFERENCE_METHOD .set 1

$ifdef USE_TABLE_REFERENCE_METHOD

init_eiint

; interrupt control register address
ICBASE .set Oxfffeea00

.align 2
_init_eiint:
mov # SEIINTTBL, r10
ldsr r10, 4, 1 ; set INTBP

; Some interrupt channels use the table reference method.

mov ICBASE, r10 ; get interrupt control register address
set1 6, 0[r10] ; set INTO as table reference

set1 6, 2[r10] ; set INT1 as table reference

set1 6, 4[r10] ; set INT2 as table reference

jmp [Ip]

$endif

Branching to entry routine of PE1's application project

Read the address of the entry routine (__start_pm) of the application project for PE1 from the application
information table (_pm1_setting_table of cstartm.asm) that is created in the application project for PE1.
Then, branch to this entry routine.

R20UT3070EJ0100 Rev.1.00 Page 7 of 36

Sep 20, 2014 RENES

Tutorial for RH850 Multi-core Environment (Build)

(3) Entry routine for PE2 (__start PE2)

Since the RH850/E1x-FCC1 (R7F701Z07) is a microcontroller without PE2, processing is ended by
branching to the __exit routine. The __exit routine is a routine that repeatedly branches to itself to keep an
unused PE waiting.

__start_ PE2:

br __exit ; PE2 does not exist in R7TF701207
__exit:

br __exit

(4) Entry routine for PE3 (__start PE3)

Execution branches to a routine (_hdwinit_PE3) to clear RAM and a routine (_init_eiint) to change the mode
for El-level interrupts to table reference mode, and after that, jumps to the application project for PE3.
However, since these processes are commented out, processing is ended by branching to the __ exit
routine by default, assuming that PE3 is not used. When using PE3, cancel the comment out and make the
comment out of "br __exit".

__start PE3:

; jarl _hdwinit_PE3, Ip ; initialize hardware

;$ifdef USE_TABLE_REFERENCE_METHOD

; jarl _init_eiint, Ip ; initialize exception

:$endif

; mov # pm3_setting_table, r13

; Id.w .OFFSET_ENTRY[r13],r10 ;r10 <-#__start

; jmp [r10] ;jump to #__start

br __exit

Calling _hdwinit PE3

The local RAM (PE3) is initialized to zero for the ECC function. The symbols (LOCAL_RAM_PE3 ADDR
and LOCAL_RAM_PE3 END) which are used in initialization are defined at the beginning of the file.
These values should be changed to the addresses of the target microcontroller if needed.

LOCAL_RAM_PE3_ADDR .set 0xfedf8000
LOCAL_RAM_PE3_END .set Oxfedfffff

Calling _init_eiint

Like for PE1, call _init_eiint. The macro "USE_TABLE_REFERENCE_METHOD" that is defined at the
beginning of the file needs to be validated to enable this processing.

Branching to entry routine of PE3's application project

Like for PE1, read the address of the entry routine (__start pm) of the application project for PE3 from
the application information table (_pm3_setting_table of cstartm.asm) that is created in the application
project for PE3. Then, branch to this entry routine.

Note however that cstartm.asm is created for PE1 and so the application information table name needs
to be changed from _pm1_setting_table to _pm3_setting_table to suit PE3.

R20UT3070EJ0100 Rev.1.00 Page 8 of 36

Sep 20, 2014 RENES

Tutorial for RH850 Multi-core Environment (Build)

2.2.2 Exception/Interrupt vector table

The reset process or exception/interrupt process is executed in vector mode. The handler address can be
specified in two modes: direct vector mode and table reference mode. For details on setting the mode to
select the exception handler address for each interrupt channel used, refer to the specifications for the
interrupt controller built in each product.

The exception/interrupt vector table (vecttbl.asm) that is automatically registered in the File node of the
Project Tree when creating a new project in CubeSuite+ is described below. The table should be customized if
required.

(1) RESET

The address of RESET is obtained by adding the exception source offset (exception source offset of RESET
is 0) to the base address indicated by the RBASE register. The RESET handler address of the
RH850/E1x-FCC1 (R7F701207) is address 0x00000000 when started from the user area and is address
0x01000000 when started from the user boot area.

.section "RESET", text
.align 512
jr32 __start; RESET

"ir32 _ start" is embedded at the start of the RESET section due to the above definition.
When creating a new project in CubeSuite+, the linker option "-start" specifies the RESET section to be
allocated at address 0x01000000.

(2) Exception/Interrupt of direct vector mode

In the direct vector mode, execution branches to a fixed handler address in accordance with the interrupt
priority. For the reference location of a handler address, a value obtained by adding the offset of the exception
source to the base address indicated by the RBASE register or EBASE register is used. The PSW.EBV bit is
used to select which base address is to be used.

When creating a new project in CubeSuite+, an interrupt/exception handler is allocated immediately after the
RESET section on assumption that the RBASE register value is used as the base address.

.section "RESET", text
.align 512
jr32 __start; RESET
Allocated immediately after RESET
.align 16 /
jr32 _Dummy ; SYSERR
.align 16
jr32 _Dummy ; HVTRAP

By default, an instruction specifying to branch to the dummy function "_Dummy" is located at the offset
location corresponding to SYSERR, HVTRAP, FETRAP, etc. " Dummy" is a routine that repeatedly branches
to itself, and it is defined in vecttbl.asm. The routine should be customized if required.

Change the name of "__Dummy" at the offset location corresponding to the exception/interrupt that is to be
customized to "_Interrupt function name". Also, define the interrupt function. If the interrupt function is to be
defined in the C source file, use the "#pragma interrupt" directive to define it. For details on coding, refer to the
manual on coding.

R20UT3070EJ0100 Rev.1.00 Page 9 of 36

Sep 20, 2014 RENES

Tutorial for RH850 Multi-core Environment (Build)

[Sample code] If interrupt function "func1" is executed when exception "SYSERR" occurs

.section "RESET", text
.align 512
jr32 __start; RESET
" __Dummy" is changed to "_Interrupt
align 16 / function name”.
jr32 _func1 ; SYSERR
.align 16
jr32 _Dummy ; HVTRAP
.align 16
jr32 _Dummy ; FETRAP

#pragma interrupt func1(priority=SYSERR, callt=true, fpu=true)
void func1(unsigned long feic)

{
}

(3) Exception/Interrupt of table reference mode

In the RH850, an interrupt in table reference mode can be specified as an extended specification of interrupts.
In a direct reference mode, the handler address of an El-level interrupt is one for each interrupt priority, and
multiple interrupt channels with the same priority branch to the same interrupt handler address. However,
there are cases where it is preferable for each interrupt handler to use a different code area, due to the
application. The table reference mode is defined in the RH850 to handle interrupts which may be used in such
kind of manner.

When creating a new project in CubeSuite+, if the exception/interrupt table is in the EIINTTBL section, the
allocated address of the dummy function "_Dummy_EI" is embedded in an area which is a multiple of 4 from
the start of the EIINTTBL section. According to this, upon occurrence of an exception/interrupt of table
reference mode with an interrupt priority of n (n = 0 to 512), execution branches to " Dummy_EI".
" Dummy_EI" is a routine that repeatedly branches to itself, and it is defined in vecttbl.asm. The routine
should be customized if required.

.section "EIINTTBL", const
.align 512

.dw # Dummy_EIl; INTO
.dw # Dummy_EIl; INT1
.dw # Dummy_EIl; INT2

.rept 512-3
.dw # Dummy_EIl; INTn
endm

When creating a new project in CubeSuite+, the EIINTTBL section is specified to be allocated at address
0x00 by the linker option "-start". So if necessary, specify the allocated address.

Change the name of "# Dummy" at the offset location corresponding to the exception/interrupt that is to be
customized to "# Interrupt function name". Also, define the interrupt function. If the interrupt function is to be
defined in the C source file, use the "#pragma interrupt" directive to define it. For details on coding, refer to the
manual on coding.

R20UT3070EJ0100 Rev.1.00 Page 10 of 36

Sep 20, 2014 RENES

Tutorial for RH850 Multi-core Environment (Build)

[Sample code] If interrupt function "func2" is executed when EIINT interrupt channel 9 "EIINT9" occurs

.section "EIINTTBL", const
.align 512

.dw # Dummy_EIl; INTO
.dw # Dummy_EIl; INT1
.dw # Dummy_EIl; INT2
.dw # Dummy_EIl; INT3
.dw # Dummy_El; INT4
.dw # Dummy_EI ; INT5
.dw # Dummy_EI ; INT6
.dw # Dummy_EIl; INT7
.dw # Dummy_EI ; INT8
.dw # func2 ; INT9
.rept 512-9

.dw # Dummy_EI; INTn

"#_Dummy_EI" is changed to
"#_Interrupt function name".

#pragma interrupt func2(channel=9, enable=true, callt=true, fpu=true)

void func2(unsigned long eiic)

{
}

2.2.3 1/O header file

When creating a new boot loader project, generate the I/O header file (iodefine.h) for the relevant
microcontroller specified in the project and automatically register it in the project. In the I/O header file,
register names of the microcontroller and their addresses are defined. If this file is not used in the boot loader
project, remove it from the project.

The 1/O header file can also be generated by right-clicking the [CC-RH (Build Tool)] node of the CubeSuite+
Project Tree and then selecting [Generate 1/0 Header File].

----- o, RHES0 Simulator (De
le File

| Bem
-850 hoot.asm

Build Project Fi
Rebuild Project Shift+F7

Clean Project

.| iodefine.h " Setto Default Build Option for Project

@
..... ﬁﬂ,"' vecttbl.asm @
L
[

Irmport Build Options...

I Set Link Order..,
Generate /0 Header File

Property

R20UT3070EJ0100 Rev.1.00 Page 11 of 36

Sep 20, 2014 RENES

Tutorial for RH850 Multi-core Environment (Build)

2.3 Setting the Options

The options used in particular to create the boot loader project are described here.

2.3.1 Link options

Specify the start address of the section by selecting [Link Options] tab -> [Section] category -> [Section start
address]. The following specification is made by default. This string is passed to the linker as a parameter of
the link option "-start".

> List

4 Section
Section start address ENMTTEL, text/0RESET /01000000 E]j
Section that outputs external defined spmbols to the file Section that outputs external defined symbalz to the: file[0]

>

> Section alignment Section alignment[0]

> ROM to Rak mapped section ROM to Rak mapped section[0]
> Werify

» Message

> Others

Section start address

Specify the section start address.
This option conezponds to the -STARE option of the rink command.

\ Common Options ,{ Compile Cptions ,{/ Assemble Options ,.- Link Options 4 Hex Cutput Options ,f I/0 Header File Generation Options f

Clicking the [...] button at the right edge of the [Section start address] property opens the Section Settings
dialog box as shown below. The start address of the section can also be specified from this dialog box.

b

Section Settings

Addiess Sechion dd
EIIMTTEL
Modify. ..
fewt
(«01000000 |RESET Mews Owverlay...

Remove

Irnpat..

i1

Export...

0k] [Cancel Help

Based on this section setting, the "EIINTTBL=>.text" section is allocated from address 0x00000000 in the
address ascending order and the RESET section is allocated from address 0x01000000. Customize the
section settings in this dialog box so that the sections are allocated to the desired addresses.

R20UT3070EJ0100 Rev.1.00 Page 12 of 36

Sep 20, 2014 RENES

Tutorial for RH850 Multi-core Environment (Build)

Section 3 Application Project

This section describes the method for creating application projects for a multi-core product. An application
project executes processes for each PE.

Two application projects are created with PE1 as the project name for the main CPU and PE3 as the project
name for PCU. All steps, from creation of a new project, option setting, and up to the build method are
described in this section.

3.1 Creating a New Application Project

An explanation of the procedure for creating an application project as a subproject with the boot loader project
already created is given here. Since the RH850/E1x-FCC1 is a dual-core product, two application projects are
to be made.

1. Add a subproject.
Add subprojects to the boot loader project which is the main project. Right-click the [Project] node of the
Project Tree -> [Add] -> [Add New Subproject] to add a subproject. When adding a subproject that has
already been created, add it from [Add Subproject].

Froject Tree 72 Froperty
: @ 3 Fl _f; bioot Property
4 iFile
FERIFOLZ0 E] Build boot
-y Boot Load .
Ay CCRH (B] Rebuild boot
-gih RHa50 Sim .4 Clean boot
El:ﬂ] I-:”? ?:L Open Folderwith Explorer
-850 boot.
aLm vectt E indows Explarer Menu
e odefi Add P F Add Subproject...
tfa et boot as Active Project L\t Add Mew Subproject..,
[i] Sawe Project and Developrment Tools as Package.., 1 addFile..,
Paste Chrl +4 11 Add Mew File...
Rename F? 71 Add Mew Category
Property
I

2. Set the subproject.
The Create Subproject dialog box opens.
In [Using microcontroller], specify the same microcontroller as that for the boot loader project. Next, specify
"Application for Multi-core (CC-RH)" in [Kind of project]. Finally, specify Project name and Place, and then
click the Create button.
Here, the project name is set as PE1 assuming that it is a project for the main CPU.

R20UT3070EJ0100 Rev.1.00 Page 13 of 36
Sep 20, 2014
RENESAS

Tutorial for RH850 Multi-core Environment (Build)

Create Subproject

|

Microzontraller: IHHSSD

Using microcontroller:

& (Search miciocantraller)

Update...
E- ¥ B Product Name:R 7F701Z07 -
Internal ROM size[KBytes]
i Code Flash: 4096
Data Flash:G4
RHB50/E1EVA Internal RaM size[Bytes]: =
RHE50/F1L Local RAMIPE).65536
RHE50/R1L Local RAMIPCU):32768
e I Global RAM: 262144
% RHESDAILGW Emnulation Fiatd: 734524
Additional Infarmation:Mumber of Cores: 2 -
Kind of project: Application for Multi-core[CC-RH] Eu

Project name: PE1|

Flace: D:samplebPET | Browse...

[Make the projsct folder

D:MzampleSPE1APET. mtsp
[Pass the file composition of an existing project to the new project
Froject to be passed: Browsze...

Copy composition files in the diverted project folder to a new project folder.

[Cre%’ [coea || Help

When a project was created from [Create New Multi-core Project] on the Start panel, in addition to the boot
loader project, one application project for a multi-core will be created as a subproject.

%

3. Register the application project.

An application project is registered as a subproject of the boot loader project. cstartm.asm, main.c, and
iodefine.h are automatically registered in the File node of the Project Tree for a subproject.

boot - CubeSuite+ - [Property] | =
File Edit Wiew Project Build Debug Tool Mindow Help
@ ostart |[JE G X By [0 O 58 & - fef @R DefaultBuild LA L, IO RO NN e
09335
Project Tree B ox [Propetty M
¢ @al@E i boctPropery 2 L)
=+ 1} boot (Proect); 4 iEde
I R7F701207 (Microcontraler) Z'Le ”‘a'[“e " ED\OWD: B
it Book Loader (Configuration Tool For Muticore) || N:Il“fpa sampiEboot mie!
A, CC-RH (Buid Toal)
25 RHBS0 Simulator (Debug Toal)
LFie
i..8a) hook.asm
{..8s vecttblasm
i) b
sl
L4 PEL (Subproject)
+- % RFF701207 (Microcontroller)
A CC-RH (Build Tool)
H RH850 Simulator {Debug Tool}
"
L8 cstartm.asm
6] main.c
L] iodefine.h
File
\ Project / <
Dutput T %
Information(M0Z91001) : iodefine.h was qEnEratEd.d
[EOF]
_All Messages / ~
a i + ||@ ouput I Bt
F1 3 F2 = [Fs & F? e [F2] m 3
5§ DISCOMNECT

Following a similar procedure, add one more subproject as the project of PCU. That project name is set as
PES.

R20UT3070EJ0100 Rev.1.00 Page 14 of 36
Sep 20, 2014

RENESAS

Tutorial for RH850 Multi-core Environment (Build)

3.2 Registering the Source

When an application project for a multi-core is newly created in CubeSuite+, the following three files are
automatically registered in the File node of the Project Tree.

e Start-up routine for application (cstartm.asm)
e Empty main function (main.c)
e 1/O header file (iodefine.h)

Register the necessary source files in the File node of the Project Tree. Registration can be done by dragging
and dropping the file into the File node or right-clicking the File node and selecting [Add]. The start-up routine
(cstartm.asm) for an application and the 1/0 header file are described in the following subsections.

3.2.1 Start-up routine for application

In the start-up routine (cstartm.asm) for an application, the start-up process is performed for each PE. The
process should be customized if required.

(1) Define the application information table
The application information table (_pm1_setting_table) for PE1 is defined. The entry routine (__start_pm) of

PE1's application project which is branched from within __start PE1 of the start-up routine (boot.asm) for the
boot loader is set using this application information table.

; processing module setting table

, .section ".const.cmn", const
.public _pm1_setting_table

.align 4
_pm1_setting_table:
.dw # start_pm ; ENTRY ADDRESS

[Referencel] start PE1 of boot.asm

__start_PE1:

mov # pm1_setting_table, r13
Id.w .OFFSET_ENTRY[r13], r10 ; r10 <- #__start
jmp [r10] ;jump to#__start_pm

Since the application information table is located in the .const.cmn section, the address of _pm1_setting_table
can be passed to the boot loader project by specifying ".const.cmn" as a parameter of the -fsymbol option. In
the boot loader project, the address (# _start_ pm) of the entry routine of PE1's application project, which is
located in _pm1_setting_table is loaded and execution branches to this address.

For an application project for PE3, change the application information table name from _pm1_setting_table to
_pm3_setting_table.

.section ".const.cmn", const
.public _pm3_setting_table
.align 4
_pm3_setting_table:
.dw # start_pm ; ENTRY ADDRESS

R20UT3070EJ0100 Rev.1.00 Page 15 of 36
Sep 20, 2014
RENESAS

Tutorial for RH850 Multi-core Environment (Build)

(2) Allocating the stack area

0x200 bytes should be allocated as the stack area used by the compiler-generated code for each PE. The
stack areas are allocated in the .stack.bss section.

; system stack

STACKSIZE .set 0x200
.section ".stack.bss", bss
.align 4
.ds (STACKSIZE)
.align 4

_stacktop:

(3) Defining the RAM section initialization table

The table to be specified as a parameter of "_INITSCT_RH" (function that copies the initial values of the RAM
section and clears the contents to zero) is defined. The address value (#__s section name) of the starting
label in the section and the address value (# e section name) of the ending label are used in the table. As a
default table, the section for variables with initial values is the .data section and the section for variables
without initial values is the .bss section, and "-rom=.data=.data.R" has been specified.

; section initialize table

.section ".INIT_DSEC.const", const

align 4

.dw # s.data, # e.data, # s.data.R
.section ".INIT_BSEC.const", const

.align 4

.dw # s.bss, # e.bss

When a RAM section is newly added, the added section should be defined in the table. Sections added to the
table are also subject to copying and zero-clearing by the " _INITSCT_RH" function.

[Sample code] When the .sdata section and .sbss section are added (-rom=.sdata=.sdata.R is specified)

; section initialize table

.section ".INIT_DSEC.const", const

.align 4
.dw # s.data, # e.data, # s.data.R
.dw # s.sdata, # e.sdata, # s.sdata.R

.section ".INIT_BSEC.const", const

.align 4
.dw # s.bss, # e.bss
dw #__s.sbss, #__e.sbss
R20UT3070EJ0100 Rev.1.00 Page 16 of 36

Sep 20, 2014

RENESAS

Tutorial for RH850 Multi-core Environment (Build)

(4) Entry routine for application project (__start_pm)

This is an entry routine for the application project that branches from within __start PE1 of the start-up routine
(boot.asm) for the boot loader. The following process until branching to the main function is performed. The
process should be customized if required.

Setting registers

Set values to the SP, GP, and EP registers.

; startup
.section ".text", text
.public __start pm
.align 2
__start_pm:

mov # stacktop, sp
mov # gp_data, gp
mov # ep_data, ep

; set sp register
; set gp register
; setep register

Calling _hdwinit

As necessary, define the hdwinit function and perform the initialization processing for the peripheral
devices. If this definition does not exist, the empty hdwinit function in the standard library (libc.lib) is

linked and called.

Calling __INITSCT RH

The section specified by the RAM section initialization table is copied and cleared to zero.

mov # s.INIT_DSEC.const, r6
mov # e.INIT_DSEC.const, r7
mov # s.INIT_BSEC.const, r8
mov # e.INIT_BSEC.const, r9

jarl32 __INITSCT_RH, Ip ; initialize RAM area

Setting FPU

Set PSW.CUO so the FPU usage is enabled. Also, initialize the FPU function registers (FPSR and
FPEPC). Delete this process when it is used as the start-up routine of a CPU that does not incorporate

FPU as a processor.

stsr 5,r10,0

movhi 0x0001, rO, r11
or r11, r10
Idsr r10, 5,0

movhi 0x0002, r0, r11
Idsr r1,6, 0
Idsr r0,7,0

; set various flags to PSW via FEPSW

:r10 <- PSW

; enable FPU

; initialize FPSR
: initialize FPEPC

R20UT3070EJ0100 Rev.1.00
Sep 20, 2014

RENESAS

Page 17 of 36

Tutorial for RH850 Multi-core Environment (Build)

Transiting to main function
The following two processes are commented out. Both of them are processes to set the FEPSW register
value, and the value will be reflected in PSW upon execution of the feret instruction. Delete the
comments to enable these processes if needed.
- Clear the PSW.ID bit and enable interrupts. * Because the PSW.ID value after a reset is 1.
- Set the PSW.UM bit to shift from SV (supervisor mode) to UM (user mode).

Set the address (#_exit) of _exit (routine that repeatedly branches to itself) to Ip and the start address
(#_main) of the main function for PE1 to the FEPC register. Later, when the feret instruction is executed,
the FEPSW register value is reflected in PSW and the FEPC register value is reflected in PC, and
execution shifts to the main function.

;XOri 0x0020, r10, r10 ; enable interrupt

:movhi 0x4000, r0, r11

;or r11, r10 ; supervisor mode -> user mode
Idsr r10, 3,0 ; FEPSW <-r10
mov # exit, Ip ;Ip <- #_exit
mov # main, r10
Idsr r10,2,0 ; FEPC <- # main
; apply PSW and PC to start user mode
ferret
_exit:
br _exit ; end of program

3.2.2 /O header file

When creating a new application project, generate the 1/0O header file (iodefine.h) for the relevant
microcontroller specified in the project and automatically register it in the project. In the I/O header file,
register names of the microcontroller and their addresses are defined.

When /O registers are to be accessed in the program, include the 1/0 header file. Note that an #include
specification does not have to be made in the source file when this file is specified as a parameter of the
-Xpreinclude option. The -Xpreinclude option can be specified by [Compile Options] tab -> [Preprocess]
category -> [Include files at head of compiling units]. In this property, specify the I/O header file for the relevant
microcontroller.

4 Preprocess

» Additional include paths Additional include pathz[0]

> Spztem include paths Syztem include paths[0]

M |nclude files at head of compiling units Include files at head of compiling unitz[0] [.]
¢ Macro definition b acro definition[0]

¢ Macro undefinition b acro undefinition[0]

Include files at head of compiling units

Specifies inchide files at head of compiling units.

Thiz option caresponds to the -<preinclude option of the corh command.

The follmwing placeholders are supported mainly.

ZBuildtodeM ame?: Feplaces with the build mode name.

ZProjectMame®: Beplaces with the project name.

EMicomToolPathi: Feplaces with the abzolute path of the product install folder.

i, Common Options ,.- Compile Opti... \ Assemble Sptions ; Link Dpkions ; Hex Dukput Opk.. ; IO Header Fils.. /

R20UT3070EJ0100 Rev.1.00 Page 18 of 36

Sep 20, 2014 RENES

Tutorial for RH850 Multi-core Environment (Build)

3.3 Setting the Options

The options used in particular to create application projects are described here.

3.3.1 Compile option

-Xcpu option

This option specifies the CPU core. An object for the specified core is generated. Specify either [Object for
G3M] or [Object for G3K] at [Common Options] tab -> [Output File Type and Path] category -> [Specify CPU

core]. [Object for G3K] is specified by default.

= Property

4‘ CC-RH Froperty @ @ B[
4 BuildMode
Build mode DefaultBuild

4 DutputFile Type andPath

COutput file tpe Execute Module[Load Madule File)

Output common object file for vanous devices Yez[AHE50 architecture common][+{common=rh2a0]

g iy CPU core Object for G3M([-Xcpu=g3m)
Object for G 3k [g3m)

Object for G3K[<cpu=g3k)

o
p=]

Output cross reference information
Intermediate file output folder
4 Frequently Uzed Options{for Compie)

Lewvel of optimization Default Optimization(Mone]
> Additional include paths Additional include pathz[0]
> System include pathz Syztem include paths[(]
> Macro definition Macro definition]0]

Specify CPU core

Specify the CPU core.
Thiz option comezpondz to the =<cpu option of the corh command.

Common Opt... / Compile Cptions /(Assemble Options ,{’1 Link, Opkions ,{f Hesx Output Opt... ,{f 1/0 Header File... /

Select [Object for G3M] for a main CPU project and select [Object for G3K] for a PCU project. [Object for G3K]
should be selected when compiling a file that includes functions that are executed from both the main CPU

and PCU.

R20UT3070EJ0100 Rev.1.00
Sep 20, 2014

RENESAS

Page 19 of 36

Tutorial for RH850 Multi-core Environment (Build)

3.3.2 Link options

-rom option

The section containing variables with initial values needs to be located in ROM at a reset and in RAM at
program execution. This process is called ROMization. The -rom option specifies the section which is mapped
from ROM to RAM by ROMization. Click the [...] button at the right edge in [Link Options] tab -> [Section]
category -> [ROM to RAM mapped section], and specify the section whose mapping is to be changed from
ROM to RAM. Specify one section in one line in the format of <ROM section name>=<RAM section name>.

! Property - X
4‘ CC-BH Property |i’ \il \;lli’
Fill with padding data at the end of a section Mo -
‘Wwhork, around overrun fetch Mo
» Ligt
4 Section
Section start addreszs .congt.cmn,.const, INIT_DSEC.const, IMIT_BSEC. const, text, date

> [Far mult-caore) Section that outputs external defined = [For multi-core) Section that outputs external defined spmbols to the
Section that outputz external defined symbols to the file Section that outputs external defined symbols to the file[0]
Owenarite setting of symbal address file of boot loader YWes

> Section alignment Section alignment[0]

3 ROk to Ak mapped arn ROM to Ak mapped section[1] T< E

» Werfy

> Message >
: Others i

ROM to RAM mapped section

Specify ROM to RAM mapped zection in the format of "<ROM section namer=<Rak zection name:", one per line.
Thiz aption coresponds to the -R0m aption of the rlink command.

\ Common Options 4 Compile Options 4 Assemble Options , Link Options ~. Hew: Output Opt... 4 IO Header File.. /

<ROM section name> is the section to which ROMization is to be performed. The -start option is used to
specify the section set in <ROM section name> to be allocated to ROM and the section set in <RAM section
name> to be allocated to RAM.

The following is specified by default.
.data=.data.R

When a section other than the .data section is added and it requires ROMization, this option must be
additionally specified.

[Example] When .sdata23 is added and it is subject to ROMization (-rom=.sdata23=.sdata23.R is specified)

Text Edit (=3l

Test:

= data B
I .sdata23= sdata23 R ||

ak l | Cancel | | Help

R20UT3070EJ0100 Rev.1.00 Page 20 of 36
Sep 20, 2014
RENESAS

Tutorial for RH850 Multi-core Environment (Build)

The initialization table of an added section also has to be added to the section initialization table
(.INIT_DSEC.const) of the start-up routine (cstartm.asm). Prefixing the section name with "__s" makes it
become a reserved symbol whose value is the start address of that section. Similarly, prefixing the section
name with " __e" makes it become a reserved symbol whose value is the end address of that section. Usage
of these reserved symbols is recommended for addition to the initialization table.

[Example] When .sdata23 is added (-rom=.sdata23=.sdata23.R is specified)

; section initialize table

.section ".INIT_DSEC.const", const

.align 4

.dw # s.data, # e.data, # s.data.R

.dw # s.sdata23, # e.sdata23, # s.sdata23.R
Start address of ROM section End address of ROM section Start address of RAM section

In a similar manner, when adding a section to which variables without initial values are located, it has to be
added to the section initialization table (.INIT_BSEC.const).

[Example] When .sbss23 is newly added

.section ".INIT_BSEC.const", const
.align 4
.dw # s.bss, # e.bss
.dw # s.sbss23, # e.sbss23
Start address of RAM section End address of RAM section

-start option

This option specifies the start address of the section. Make the specification from [Link Options] tab ->
[Section] category -> [Section start address].

1 Property - X
A‘ CC-RH Froperty \i’ \i’ - \l’
Fill with padding data at the end of a section Mo -
whork around overun fetch Ho
> List
4 Sechon
Section start address .const.cmn,.const,.INIT_DSEC.const,.INIT_BSEE.CUnst,.text,.QV’
> [For multi-core) Section that autputs esternal defined & [For multi-core] Section that outputs external defined symbals to the N
» Section that outputs external defined surmbals to the file Section that outputs external defined zumbols to the file[0]
Ovenurite getting of symbol address file of boot loader Yes
> Section alignment Section alignment[0]
> ROM to Bak mapped section ROM to Rékd mapped section[1] =
> Yerify
> Message
> Others i
Section start address
Specify the zection start address.
Thiz option coresponds to the -STARY option of the rlink commatd.

\ Common Options 4 Compile Opbions 4 Assemble Options , Link Options \ Hew Outpuk Opt.. 4 1/0 Header File.. / ¥

R20UT3070EJ0100 Rev.1.00 Page 21 of 36
Sep 20, 2014
RENESAS

Tutorial for RH850 Multi-core Environment (Build)

Clicking the [...] button at the right edge, opens the Section Settings dialog box. The following specification is
made by default.

Section Settings

Address Section
W AR monist. crin
Modify...

.const
IMIT_DSE... Mew Overlay...
AMIT_BSE... Remave
tent
.data

O=FEDF2000 | .dataR
bss
.stack.bss

Import....

Export..

=5
=3

[0K,] I Cancel Help

The above specification allocates the .const.cmn -> .const -> INIT_DSEC.const -> INIT_BSEC.const -> .text
-> .data sections from address 0x1000 in the address ascending order and allocates the .data.R -> .bss
-> _stack.bss sections from address OxFEDF8000 in the address ascending order. Address OxFEDF8000 is
assumed to be the start address of the local RAM self area of PCU. Customize the specification in this dialog
box to obtain the desired address allocation. For a project for the main CPU, for example, the local RAM self
area starts from address OxFEDFO0000. Therefore, changing the specified address to address OxFEDF0000
allows the RAM area to be used efficiently.

When a section other than the sections specified by default is added, this option must be additionally
specified.

[Example] .sdata23 and .sbss23 are newly added (-rom=.sdata23=.sdata23.R is specified), and these variables are
specified to be located at address OxXFEEEO000 which is in the global RAM area.

Section Settings

Address Section
000007000 .cohEt. crin
Maodify...
Lconst -
ANIT_DSEC. const MNew Dverlay...

AMIT_BSEC const
Bemove

o
o

ent

.dats
I.sdataES
O=FEDFS000 data R
bz
.stack.bes
OxFEEE QOO0 sdataZ3.R
.shEs
QK] l Cancel [Help J
.sdata23 which is specified as the <ROM section name> parameter
of the -rom option is specified to be located in the ROM area
while .sdata23.R which is specified as the <RAM section name>
parameter is specified to be located in the RAM area.
R20UT3070EJO100 Rev.1.00 Page 22 of 36

Sep 20, 2014

RENESAS

Tutorial for RH850 Multi-core Environment (Build)

-fsymbol option

This option makes externally defined symbols be output to the symbol address file (*.fsy). Externally defined
symbols in the section which are specified as parameters of this option are output to the *.fsy file in the
assembler directive format. Specify it from [Link Options] tab -> [Section] category -> [(For multi-core) Section
that outputs external defined symbols to the file].

1 Property - X
4 CCRH Property \i| \£| \;“ﬂ
Fill with padding data at the end of a section Ma -
Wwaork, around overun fetch Mo
> List

.const.cmn.const. INIT_DSEC. const. INIT_BSEC.const._text_.d.
[For multi-core] Section that outputs extemal defined symbols to the file[1][...]
Section that outputs external defined symbols to the file[0]

Owenwrite zetting of symbol address file of boot loader for stand-alone oo Yes

> Section alignment Section alignment{0]

> ROM to RAM mapped section ROM to RAM mapped section[1] =
> Werify

> Message

: Others i

[For multi-core) Section that outputs external defined symbaols to the Rle

Specifies the sections that outputs extemal defined symbaols for mult-core to the file in the format of "'<section name:", one per line. Use thiz property
to specify the section of a table passed from an application project for multi-core to a boot loader project for multi-core, or use [Section that outputs
external defined symbals to the file] property to specify the ordinary section that iz output to the symbol address file.

This option corezponds to the -FSymbol option af the rlink command.

\ Common Options 4 Compile Options 4 Assemble Options ,r Link Options \ Hex Qutput Oplions 4 1f0 Header File Generation Opt.. / =
In [(For multi-core) Section that outputs external defined symbols to the file], specify a section name that
includes external symbols shared between application projects or between the boot loader project and
application projects.

The .const.cmn section is specified by default. This means that the address of externally defined symbol
_pm1_setting_table is output to the .fsy file. The .fsy file is an assembly source file in which the externally
defined symbol is written by an assembler directive. By inputting the .fsy file to a project which wants to share
this externally defined symbol and building them together, the externally defined symbol can be shared

between projects.

[cstartm.asm by default]

processing module setting table

.section ".const.cmn", const
.public _pm1_setting_table
.align 4
_pm1_setting_table:
.dw # start ; ENTRY ADDRESS

[Output example of *.fsy file]

;SECTION NAME = .const.cmn
.public _pm1_setting_table
_pm1_setting_table .equ 0x1000

\

Externally defined symbol Located address

R20UT3070EJ0100 Rev.1.00 Page 23 of 36

Sep 20, 2014

RENESAS

Tutorial for RH850 Multi-core Environment (Build)

_pm1_setting_table can also be referenced from the boot loader project by inputting this *.fsy file to the boot
loader project. The following code in boot.asm of the boot loader project triggers a branch to the value
(address of __start) in address 0x1000.

.OFFSET_ENTRY .set 0

mov # pm1_setting_table, r13
Id.w .OFFSET_ENTRY[r13],r10 ; r10 <- #__start
jmp [r10] ;jump to #__start

If there is an external symbol shared between projects other than the external symbols in the .const.cmn
section, add the section name that contains the external symbol.

R20UT3070EJ0100 Rev.1.00 Page 24 of 36
Sep 20, 2014
RENESAS

Tutorial for RH850 Multi-core Environment (Build)

3.4 Sharing the Variables

Variables can be shared between projects by using the symbol address file (*.fsy). In other words, variables
can be shared between cores.

In this section, variable val1 with an initial value and variable val2 without an initial value are defined in project
PE1 and the method for referencing the variables from project PE3 is described.

(1) Changing the section names

By default, variables with initial values are located in the .data section and variables without initial values are
located in the .bss section. In the C source file registered in project PE1 as a source file, change the section
name of the variables that are to be shared with project PE3.

[Sample code of C source file]

#pragma section r0_disp32 "com"

intvall = 1; <- com.data section
int val2; <- com.bss section

#pragma section default

When the -Xmulti_level=0 (default) option is specified, val1 is located in the com.data section and val2 is
located in the com.bss section.

(2) ROMization

Using the -rom option, specify the section to which variables with initial values are to be located as a target to
perform ROMization.

In CubeSuite+, click the [...] button at the right edge of [Link Options] tab -> [Section] category -> [ROM to
RAM mapped section], and make the specification in the [Text Edit] dialog box.

[When com.data.R is specified as the RAM section name of com.data]

com.data=com.data.R

Text Edit (===l

Text:

_dats=dats B
fcom.data=com. data.H ||

Ok] | Cancel | | Help

R20UT3070EJ0100 Rev.1.00 Page 25 of 36
Sep 20, 2014
RENESAS

Tutorial for RH850 Multi-core Environment (Build)

(3) Allocating the sections

Using the -start option, specify the com.data section to be allocated to the ROM area and the com.data.R
section to the RAM area. Similarly, specify the com.bss section to be allocated to the RAM area.

In CubeSuite+, click the [...] button at the right edge of [Link Options] tab -> [Section] category -> [Section start
address], and make the specifications in the [Section Settings] dialog box.

[Example] When allocating the com.data section to address 0x2000 and the com.data.R and com.bss sections to
address OxFEEEOO0O which is in the global RAM area

Section Settings @

Address Section I Add... ‘

(00007 000 .conzt.cmn] I Modifn.. ‘
.congt

AMIT_DSEC. const I Mew Overlay... I

AMIT_BSEC. const I CR I

et

.data
000002000 cor.data
O=FEDFE000 .data.R

bss

.stack.bss

G [comdetaR | | Impor.
I com. bes I I Export... I

[Ok || cCancel || Hep |

(4) Adding to the section initialization table
Add the address value (#__s section name) of the starting label and the address value (#__e section name) of
the ending label in the added section to the section initialization table defined in cstartm.asm.

.section ".INIT_DSEC.const", const

.align 4
.dw # s.data, # e.data, # s.data.R
dw # scom.data, # ecom.data, # scom.data.R

.section ".INIT_BSEC.const", const

.align 4
.dw # s.bss, # e.bss
.dw # scom.bss, # ecom.bss
R20UT3070EJ0100 Rev.1.00 Page 26 of 36

Sep 20, 2014

RENESAS

Tutorial for RH850 Multi-core Environment (Build)

(5) Outputting the *.fsy file
Output the variable name and its located address to the *.fsy file using the -fsymbol option. In CubeSuite+,
click the [...] button at the right edge of [Link Options] tab -> [Section] category -> [(For multi-core) Section that

outputs external defined symbols to the file], and specify the com.data and com.bss sections in the [Text Edit]
dialog box.

Text Edit (=5

Text:

.canst. cmn
com.data
com bz

[QK l | Cancel | | Help |

When rebuilding is executed, the *.fsy file as shown below is output. The file name is "Project name.fsy".
" val1" being located at address OXFEEEOOOO and "_val2" being located at addressOxFEEE0004 as
externally defined symbols will be indicated.

Registering this *.fsy file in another project as a source file enables externally defined symbols, variables

“val1"and "_val2" in this case, to be referenced from another project.

;SECTION NAME = .const.cmn
.public _pm1_setting_table

_pm1_setting_table .equ 0x1000

;SECTION NAME = com.data
.public _val1

_val1 .equ 0xfeee0000

;SECTION NAME = com.bss
.public _val2

_val2 .equ 0xfeee0004

(6) Registering the *.fsy file as a source file

Register the *.fsy file that is output in step 5 in the File node of the Project Tree for project PE3 which
references externally defined symbols " val1" and " _val2". Registration can be done by dragging and
dropping the file into the File node or right-clicking the File node and selecting [Add].

R20UT3070EJ0100 Rev.1.00 Page 27 of 36
Sep 20, 2014
RENESAS

Tutorial for RH850 Multi-core Environment (Build)

3.5 Sharing the Functions

Functions can be shared between projects by using the symbol address file (*.fsy). In other words, functions
can be shared between cores.

In this section, function func is defined in project PE1 and the method for referencing the function from project
PES3 is described.

(1) Changing the section name
By default, functions are located in the .text section. In the C source file registered in project PE1 as a source
file, change the section name of the function that is to be shared with project PE3.

[Sample code of C source file]

#pragma section text "com”

void func (void) {

}...

#pragma section default

func is located in the com.text section.

(2) Allocating the section

Using the -start option, specify where to allocate the com.text section.

In CubeSuite+, click the [...] button at the right edge of [Link Options] tab -> [Section] category -> [Section start
address], and make the specification in the [Section Settings] dialog box.

When allocating the com.text section to address 0x3000

Section Settings @

Address Section Add..

0«00007000 | .const.cmn ————
: b odify...

.const

AMIT_DSE... Mew Owverlay. .
AMIT_BSE... — o
Bemove

Sfewt

.data

o |

0=FEDF3000 | .data.R

ez

stack.bss Import...
Export..

ok, || Cancal || Hep |

R20UT3070EJ0100 Rev.1.00 Page 28 of 36

Sep 20, 2014 RENES

Tutorial for RH850 Multi-core Environment (Build)

(3) Outputting the *.fsy file

Output the function name and its located address to the *.fsy file using the -fsymbol option.

In CubeSuite+, click the [...] button at the right edge of [Link Options] tab -> [Section] category -> [(For
multi-core) Section that outputs external defined symbols to the file], and specify the com.text section in the
[Text Edit] dialog box.

Text Edit (=53]

Text:

.canst.cmn
Icom.[e:-:l |

ak. H Caticel || Help

When rebuilding is executed, the *.fsy file as shown below is output. The file name is "Project name.fsy".

" func" being located at address 0x3000 as an externally defined symbol will be indicated.

Registering this *.fsy file in another project as a source file enables externally defined symbol "_func" to be
referenced from another project.

;SECTION NAME = .const.cmn
.public _pm1_setting_table

_pm1_setting_table .equ 0x1000

;SECTION NAME = com.text
.public _func

_func .equ 0x3000

(4) Registering the *.fsy file as a source file

Register the *.fsy file that is output in step 3 in the File node of the Project Tree for project PE3 which
references externally defined symbol "_func". Registration can be done by dragging and dropping the file into
the File node or right-clicking the File node and selecting [Add].

(5) Specifying the -Xcpu=g3k option

When compiling a source file that includes a shared function, individually specify the -Xcpu=g3k option.

In CubeSuite+, right-click the relevant source file in the Project Tree -> [Property] -> [Build Settings] tab ->
select "Yes" in [Set individual compile option]. Then, directly specify the -Xcpu=g3k option in [Individual
Compile Options] tab -> [Others] category -> [Other additional options].

R20UT3070EJ0100 Rev.1.00 Page 29 of 36
Sep 20, 2014
RENESAS

Tutorial for RH850 Multi-core Environment (Build)

Section 4 Rebuilding

This section describes the method for rebuilding the boot loader project and application projects.

4.1 Rebuilding Multiple Projects

Rebuild the boot loader project and two application projects. Note that it is recommended to define the shared

variables and shared functions in the subproject that is to be rebuilt first.

Rebuilding is performed in the order of PE1 (subproject) => PE3 (subproject) => boot (main project), by
default. If the shared variables and shared functions are defined in PE1 which is to be rebuilt first and the
symbol address file (*.fsy) including the definitions is registered in PE3, an *.fsy file that is always updated will

be input to PE3 at rebuilding and so the rebuild process needs to be executed only once.

Project Tree

: @ 8 &

E_ﬁ boot (Project]

..... 44 CC-RH (Build Tool)
----- £l RHB50 Simulator (Debug Toal)

=L 73 PEL (Subpraject)

----- 2. RHB50 Sirmulatar (Debug Toal)

[File

----- ¢t Boot Loader (Configuration Tool for Multi-core)

Eg jé File

=0 E PE3 (Subproject)

25, RHE50 Sirmulator (Debug Taoal)

Note that the building order of projects can be controlled in CubeSuite+. Select [Dependent Projects Settings]

from the [Project] menu and make settings in the [Dependent Projects Settings] dialog box.

Dependent Projects Settings

()

FProject:
FEE

M |

Dependent projects:

(] boot
23

[ox [cencel ||

Help]

This dialog box setting specifies that PE3 is a project dependent on PE1. As a result, rebuilding takes place in

the order of PE1 => PE3 => boot.

R20UT3070EJ0100 Rev.1.00
Sep 20, 2014

RENESAS

Page 30 of 36

Tutorial for RH850 Multi-core Environment (Build)

A project configuration example is shown below. In this configuration, "boot" is the boot loader project, "PE1"
is the application project for the main CPU, and "PE3" is the application project for PCU.

Project Tree 3 x
: @ 2 @&

M RTFT01Z0T (Microcontroller) - " " .
squration Tool for Multi-core) 1. When the entire project is rebuilt, first the "PE1" project

Input file will be rebuilt. This generates the symbol address file
(PE1.fsy) containing the located addresses of the
application information table (_pm1_setting_table) and
shared variables and shared functions which are
defined in "PE1".

2. Next, the "PE3" project will be rebuilt. Inputting PE1.fsy
to "PE3" permits the shared variables and shared

YA, CC-RH (Euild Toal)
InbutfrHE50 Simulator (Debug Too
- File
£ PEL (Subproject)
L. RTET01Z07 (Microcontroller)
LAy CC-RH (Build Toal)
----- =2, RHB50 Sirmulator (Debug Taol)

-3 File functions defined in "PE1" to be accessed from "PE3".
@---ﬂl Build tool generated files Also, the symbol address file (PE3.fsy) containing the
| oohp PELabs located address of the application information table (e.g.
[oo PELFsy Generated file " pm3_setting_table") defined in "PE3" is generated.
- omrFeLmot 3. Finally, the "boot" project will be rebuilt. By inputting
a :"j"' ::::";”'asm PE1.fsy and PE3.fsy to "boot", the located addresses of

the application information tables defined in "PE1" and
"PE3" are determined.

Note that if "PE1" and "PE3" are registered as
constituent projects of "boot", these *.fsy files will be
automatically registered.

E RTFT0LE0T (Microcontraller)
i Ay CC-RH (Build Toal)

----- =2, RHB50 Sirmulator (Debug Taol)
=-[7 File

Bﬂ Build tool generated files
..... abs PE3,abs

-| Bal PE3.fry |

Generaté’d mot: PEd. ot
file— BN Cstartrm,asm

..... !ﬂ rnair.c
[Bem PELfsy [**1nput file

To check if *.fsy files are registered in the boot loader project, right-click [Boot Loader (Configuration Tool for
Multi-core)] and select [Property]. In the Property panel, click the [...] button at the right edge of [Constituent
Projects] category -> [Constituent application projects].

Project Tres 1 x | 5 Property
i @8R

B,ﬁ boot (Project)

- X
¢ Boot Loader Property @ E]
i Projects

rl Ons en

> Macio definition for stand-alone core debugging M acro definition for stand-alone core debuagingl0]

4 Debuggng

-REEuild . Priarity D ebugging No
g RH850 Simulator (Debug Taol) > Motes

- File
=-| {3 PE1 (Subproject)®

I RIFTOLZ0T (Microcontraller)

% CC-RH (Build Tool) Constituent application projects

[.
-z RHES0 Sirmulator (Debug Tool) Open dialog box for selecting constituent application projects.

= _rﬂ File By selecting these projects, vou can use the following features: launch an application from boot loader, uge stand-aslone core debugging, debug..
E--ﬂ Build tool generated files -
EL; PELabs \ Boot Loader / -

This opens the [Select Constituent Application Projects] dialog box as shown below. It can be confirmed that
the application projects added to the boot loader project have been selected and the *.fsy files that will be
generated in that application project are associated.

R20UT3070EJ0100 Rev.1.00 Page 31 of 36

Sep 20, 2014 RENES

Tutorial for RH850 Multi-core Environment (Build)

Select Constituent Application Projects
Select constituent application projects.

parallel.
Project:

HIFE
PE3

I 4

I Symbol address file

By selecting these projects. vou can use the following features: launch an application from boot loader, uze stand-alone core debugging. debug all projects in

Aszociation settings:

Project information

EEloian

(=l

ZBuildM odeM ame 2\ % ConstituentProjectLinkerDutputFilel eafZ fay I

Symbol address file
Specify the zymbol addrezz file that iz assembled and linked with the boot loader project. This wail
enable the boot loader project ta rezolve the symbol-address of the start-up routing of the congtituent ...

Ok

H Cancel][Help

The flow for rebuilding the "PE1", "PE3", and "boot" projects is as follows:

Project "PE1"

1

Csource

Compile ‘

ﬂe

Project "PE3”

Csource
i

Compile |

Project "boot”

ﬁ

Assembly source }'—'«ssembl\.r source Assembh,.r source fsyfile Assembly source fsy file
‘ Assemble ‘ Assemble Assemble ‘
Object file Ob]ect file Ob]ect file Ob]ect file ObleCt file Ob]ect file
-fsymbol=xxx -feymbol=xxx
‘ Link ‘ ‘ Link ‘ Link
~- T - —_ A —_— = —
Load module feyfile Load module feyfile Load module
—= Dataflow
R20UT3070EJO100 Rev.1.00 Page 32 of 36

Sep 20, 2014

RENESAS

Tutorial for RH850 Multi-core Environment (Build)

Section 5 Uniting the Objects

This section describes the function for selecting constituent application projects and uniting multiple objects.

5.1 What is the Object Uniting Function

When the boot loader project and two application projects are rebuilt, three load modules and three hex files
(Intel HEX files or Motorola S-record files) are generated. The generated multiple hex files can be united to
generate a single hex file as a whole. This is performed by the object uniting function. The hex files can be
managed as a single file using the object uniting function. However, since Intel HEX files and Motorola
S-record files cannot be united, the hex format for the boot loader project and application projects must be the
same.

Note that when uniting multiple hex files, if the addresses overlap, an overlap error occurs. However, RAM
areas not containing any data cannot be checked. Therefore, the user must check whether addresses are not
overlapping by referencing the map file or using other means. The "-cpu" option that checks the addresses
where sections are allocated can be used for checking.

Hex file for main CPU Hex file for boot loader Hex file for PCU
OO0
0x01000 0x00500
0x05000
0x06000
0x06500

United hex file

R20UT3070EJ0100 Rev.1.00 Page 33 of 36

Sep 20, 2014 RENES

Tutorial for RH850 Multi-core Environment (Build)

5.2 Selecting "Constituent application projects"

Created application projects need to be registered in the boot loader project as "Constituent application
projects". Note that application projects added to the boot loader project are registered as "Constituent

application projects" by default.

Constituent application projects can be changed in [Constituent Projects] category -> [Constituent application
projects] on the Property panel. The Property panel is opened by right-clicking [Boot Loader (Configuration

Tool for Multi-core)] of the Project Tree and selecting [Property].

Froject Tree 3 X

2 08 @

=J-|_T% boot (Project)

Froperty

¢t Boot Loader Property

4 Debuggng

¢iBoot Loader (Configuration Tool for Multi-care)

.. Ay, CC-RH (Build Taal)
i, RHE50 Simulatar (Debug Toaly
-7 File
SR (Subproject)*
L3 RIFTIZ0T (Micracontroller)
A, CC-RH (Build Toal)

=, RHE50 Sirmulator (Debug Tool)
3 File

= '[] Build tool generated files

. l.sbd PELabs

> Macro definition for stand-alone core debugging
Priority Debugging
> Notes

Constituent application projects

Open dialog bax for selecting constituent application projects.

onztituent application projects[?] K

Macro defintion for stand-alone core debugging[0]
Mo

By selecting these projects, you can use the following features: launch an application from boot loader, use stand-alone core debugaing, debug...

', Boot Loader

Click the [...] button at the right edge. This opens the [Select Constituent Application Projects] dialog box as
shown below. Application projects "PE1" and "PE3" which have been added to boot loader project "boot" are
selected, and they are registered as constituent application projects of "boot".

Select Constituent Application Projects

Select constituent application projects.

Project:

/| FE1
/] FEZ

By selecting these projects, pou can use the following features: launch an application fram boat loader, use
stand-alone core debugging, debug all projects in parallel.

Agzociation settings:

4 Project information
Froject file
Symbaol addrezs file

Project file

Thisz is the project file of the constituent application

project.

=3

Ok H Cancel H

Help

R20UT3070EJ0100 Rev.1.00
Sep 20, 2014

RENESAS

Page 34 of 36

Tutorial for RH850 Multi-core Environment (Build)

5.3 Uniting the Objects

The generated hex files (Intel HEX files or Motorola S-record files) can be united following the steps listed
below. Uniting is performed by the object uniting function. Using the object uniting function, the hex files
generated in the boot loader project can be united with the hex files which are for the main CPU and PCU and
are generated in application projects to generate a single hex file.

In the boot loader project and each application project, make settings for output of hex files and the hex format.
Select "Yes" in [Hex Output Options] tab -> [Output File] category -> [Output hex file]. "Yes" is selected by
default.

= Property - X
4_ CC-RH Property E] E] [E]
P .
Yes \E
Clutput faolder : %Buildi adeM ame?:
Output file name %ProjectM arme’.mat
s Division autput file Division output file[0]
4 Hex Format
Hex file format Motarala S-record filel-FOm=5type]
Unify record size Mo
Output 59 record at the end Mo
> Dthers
Dutput hex file
Selects whether bo output a hex file.
Thiz option conesponds ta the -FOm option of the rlink command.
'\ Common Options ,{ Compile Options ,{ Aszemble Options ,{i Link, Opkions ,;‘ Hex Output Options _;{‘ 1/0 Header File Generatio... ,f ¥

Next, select either "Intel HEX file" or "Motorola S-record file" in [Hex Output Options] tab -> [Hex Format]
category -> [Hex file format]. Note that Intel HEX files and Motorola S-record files cannot be united. The hex
format for the boot loader project and application projects must be the same.

7 Property - X
4. CC-RH Property E] E] E]
4 Dutput File i
Output ke file Yes
Output folder EBuildid odet ame;
Output file narme EProjectM ame? mat
> Diwizgion output file Division output file]0]
4 Hex Format
He file farmat Matarala 5-recard file(-FOrm=5tpe) IL
Unify record size Intel HE, file]-FOrm=Hexadecimal]
Output 59 record at the end Motorola S-record file[-FOm=5type]
> Others Binary file[-FOrm=Binary) K

Hex file format
Select the Hex file format,
Thiz option cormezponds to the -FOm option of the dink command.

\ Common Options f Compile Options {{’ Assemble Options ,f Link. Opkions ,h Hex Output Options 4 I{0 Header File Generatio... ,f ¥

R20UT3070EJ0100 Rev.1.00 Page 35 of 36

Sep 20, 2014 RENES

Tutorial for RH850 Multi-core Environment (Build)

Finally, specify the hex files to be united to form a single hex file in the boot loader project. Select "Yes" in
[Hex Output Options] tab -> [Output File] category -> [Use object uniting function] of the boot loader project.

= Property - X
"\ CC-RH Property @ @ B
4 QutputFile -

Output hex file Ves

%BuildModeh) ame?
ProjectMame®. mot
Drivizion output file[0]

Output folder
Qutput file name
Divigion output file
Use object uniting function

4 Hex Format
Hes file format TATCTOTO S TE O TS T O =0 (]
Unify record size Mo W
Mo -

QOutput 59 record at the end

Use object uniting function

Select whether to unite hex filez of Constituent Application Projects.
To change this property to "ves", it is necesszary to change the setting [Output hex file] property of Constituent Application Projects to "es" and..

| Common Opkions ,f Compile Options f Aszemble Options j{ Link Options ; Hex Output Options /| [J0 Header File Generatio... f ¥

When the boot loader project is rebuilt, hex files of the boot loader project are united with hex files of the

projects that have been specified as constituent application projects.
The united hex file is generated in [Output File] category -> [Output folder for united hex file]. The united hex

file is generated in the "DefaultBuild_merged" folder by default.

R20UT3070EJ0100 Rev.1.00 Page 36 of 36

Sep 20, 2014 RENES

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such i ification, copy or ise misappropriation of Renesas Electronics product.

Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality”. The recommended applications for each Renesas Electronics product depends on
the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical
implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it
in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses
incurred by you or third parties arising from the use of any Renesas Electronics product for which the productis not intended by Renesas Electronics.

You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage
range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the
use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and
malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,
please evaluate the safety of the final products or systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics
products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes
no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

regulations and follow the procedures required by such laws and regulations.

i
1<)

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

. Itis the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

12. Please contacta Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

LENESAS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd
Room 1709, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86- 21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd
13F, No. 363, Fu Shing North Road Talpel 10543, Taiwan
Tel: +886-2-8175- 9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955- 9390 Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam- Ku Seoul, 135-920, Korea
Tel: +82-2-558- 3737, Fax: +82-2- 558-5141

© 2014 Renesas Electronics Corporation and Renesas Solutions Corp.

Colophon 4.0

	Contents

	Section 1 Overview
	1.1 Configuration of a Multi-core Product

	Section 2 Boot Loader Project
	2.1 Creating a New Boot Loader Project
	2.2 Registering the Source
	2.2.1 Start-up routine for boot loader
	2.2.2 Exception/Interrupt vector table
	2.2.3 I/O header file

	2.3 Setting the Options
	2.3.1 Link options

	Section 3 Application Project
	3.1 Creating a New Application Project
	3.2 Registering the Source
	3.2.1 Start-up routine for application
	3.2.2 I/O header file

	3.3 Setting the Options
	3.3.1 Compile option
	3.3.2 Link options

	3.4 Sharing the Variables
	3.5 Sharing the Functions

	Section 4 Rebuilding
	4.1 Rebuilding Multiple Projects

	Section 5 Uniting the Objects
	5.1 What is the Object Uniting Function
	5.2 Selecting "Constituent application projects"
	5.3 Uniting the Objects

